WorldWideScience

Sample records for soil-based microbial biofilm

  1. Microbial ecology of phototrophic biofilms

    OpenAIRE

    Roeselers, G.

    2007-01-01

    Biofilms are layered structures of microbial cells and an extracellular matrix of polymeric substances, associated with surfaces and interfaces. Biofilms trap nutrients for growth of the enclosed microbial community and help prevent detachment of cells from surfaces in flowing systems. Phototrophic biofilms can best be defined as surface attached microbial communities mainly driven by light as the energy source with a photosynthesizing component clearly present. Eukaryotic algae and cyanobact...

  2. Microbial ecology of phototrophic biofilms

    NARCIS (Netherlands)

    Roeselers, G.

    2007-01-01

    Biofilms are layered structures of microbial cells and an extracellular matrix of polymeric substances, associated with surfaces and interfaces. Biofilms trap nutrients for growth of the enclosed microbial community and help prevent detachment of cells from surfaces in flowing systems. Phototrophic

  3. A soil-based microbial biofilm exposed to 2,4-D: bacterial community development and establishment of conjugative plasmid pJP4

    DEFF Research Database (Denmark)

    Aspray, T.J.; Hansen, Susse Kirkelund; Burns, R.G.

    2005-01-01

    A soil suspension was used as a source to initiate the development of microbial communities in flow cells irrigated with 2,4-dichlorophenoxyacetic acid (2,4-D) (25 mu g ml(-1)). Culturable bacterial members of the community were identified by 16S rRNA gene sequencing and found to be members...

  4. Manipulation of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  5. Manipulatiaon of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  6. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  7. Microbial biofilms: biosurfactants as antibiofilm agents.

    Science.gov (United States)

    Banat, Ibrahim M; De Rienzo, Mayri A Díaz; Quinn, Gerry A

    2014-12-01

    Current microbial inhibition strategies based on planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilm communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. All aspects of biofilm measurement, monitoring, dispersal, control, and inhibition are becoming issues of increasing importance. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms in addition to many other advantages. The dispersal properties of biosurfactants have been shown to rival those of conventional inhibitory agents against bacterial and yeast biofilms. This makes them suitable candidates for use in new generations of microbial dispersal agents and for use as adjuvants for existing microbial suppression or eradication strategies. In this review, we explore aspects of biofilm characteristics and examine the contribution of biologically derived surface-active agents (biosurfactants) to the disruption or inhibition of microbial biofilms.

  8. MICROBIAL BIOFILMS AS INDICATORS OF ESTUARINE CONDITION

    Science.gov (United States)

    Microbial biofilms are complex communities of bacteria, protozoa, microalgae, and micrometazoa which exist in a polymer matrix on submerged surfaces. Their development is integrative of environmental conditions and is affected by local biodiversity, the availability of organic ma...

  9. Microbial Biofilm as a Smart Material

    DEFF Research Database (Denmark)

    Garde, Christian; Welch, Martin; Ferkinghoff-Borg, Jesper

    2015-01-01

    Microbial biofilm colonies will in many cases form a smart material capable of responding to external threats dependent on their size and internal state. The microbial community accordingly switches between passive, protective, or attack modes of action. In order to decide which strategy to employ...

  10. Characterization of Mechanical Properties of Microbial Biofilms

    Science.gov (United States)

    Callison, Elizabeth; Gose, James; Perlin, Marc; Ceccio, Steven

    2017-11-01

    The physical properties of microbial biofilms grown subject to shear flows determine the form and mechanical characteristics of the biofilm structure, and consequently, the turbulent interactions over and through the biofilm. These biofilms - sometimes referred to as slime - are comprised of microbial cells and extracellular polymeric substance (EPS) matrices that surround the multicellular communities. Some of the EPSs take the form of streamers that tend to oscillate in flows, causing increased turbulent mixing and drag. As the presence of EPS governs the compliance and overall stability of the filamentous streamers, investigation of the mechanical properties of biofilms may also inform efforts to understand hydrodynamic performance of fouled systems. In this study, a mixture of four diatom genera was grown under turbulent shear flow on test panels. The mechanical properties and hydrodynamic performance of the biofilm were investigated using rheology and turbulent flow studies in the Skin-Friction Flow Facility at the University of Michigan. The diatoms in the mixture of algae were identified, and the elastic and viscous moduli were determined from small-amplitude oscillations, while a creep test was used to evaluate the biofilm compliance.

  11. Community Composition of Bacterial Biofilms Formed on Simple Soil Based Bioelectrochemical Cell Anodes and Cathodes

    Science.gov (United States)

    2012-04-01

    miniaturization of BES. Novel designs have been used to minimize an- ode cathode distances and to take advantage of 3D electrode materials to significantly... print . ERDC/CRREL TR-12-2 24 Hou, H., L. Li, P. de Figueiredo, and A. Han. 2011. Air-cathode microbial fuel cell array: a device for identifying...2008a. Characterization of a filamentous biofilm community established in a cellulose -fed microbial fuel cell. BMC Microbiol 8: 6.  Ishii, S., Y

  12. Computational modeling of synthetic microbial biofilms.

    Science.gov (United States)

    Rudge, Timothy J; Steiner, Paul J; Phillips, Andrew; Haseloff, Jim

    2012-08-17

    Microbial biofilms are complex, self-organized communities of bacteria, which employ physiological cooperation and spatial organization to increase both their metabolic efficiency and their resistance to changes in their local environment. These properties make biofilms an attractive target for engineering, particularly for the production of chemicals such as pharmaceutical ingredients or biofuels, with the potential to significantly improve yields and lower maintenance costs. Biofilms are also a major cause of persistent infection, and a better understanding of their organization could lead to new strategies for their disruption. Despite this potential, the design of synthetic biofilms remains a major challenge, due to the complex interplay between transcriptional regulation, intercellular signaling, and cell biophysics. Computational modeling could help to address this challenge by predicting the behavior of synthetic biofilms prior to their construction; however, multiscale modeling has so far not been achieved for realistic cell numbers. This paper presents a computational method for modeling synthetic microbial biofilms, which combines three-dimensional biophysical models of individual cells with models of genetic regulation and intercellular signaling. The method is implemented as a software tool (CellModeller), which uses parallel Graphics Processing Unit architectures to scale to more than 30,000 cells, typical of a 100 μm diameter colony, in 30 min of computation time.

  13. Microbial pathogenesis and biofilm development

    DEFF Research Database (Denmark)

    Reisner, A.; Høiby, N.; Tolker-Nielsen, Tim

    2004-01-01

    cycles of different microorganisms will eventually lead to improved treatments. Several bacteria have evolved specific strategies for virulent colonization of humans in addition to their otherwise harmless establishment as environmental inhabitants. In many such cases biofilm development seems to play...... been termed 'maturation', which is thought to be mediated by a differentiation process. Maturation into late stages of biofilm development resulting in stable and robust structures may require the formation of a matrix of extracellular polymeric substances (EPS), which are most often assumed to consist...... permit bacterial growth to occur. In laboratory model systems the growth of the surface-associated bacteria is supported by the nutrient supply in the moving or standing liquid. A benchmark of biofilm formation by several organisms in vitro is the development of three-dimensional structures that have...

  14. Microbial Biofilms: Persisters, Tolerance and Dosing

    Science.gov (United States)

    Cogan, N. G.

    2005-03-01

    Almost all moist surfaces are colonized by microbial biofilms. Biofilms are implicated in cross-contamination of food products, biofouling, medical implants and various human infections such as dental cavities, ulcerative colitis and chronic respiratory infections. Much of current research is focused on the recalcitrance of biofilms to typical antibiotic and antimicrobial treatments. Although the polymer component of biofilms impedes the penetration of antimicrobials through reaction-diffusion limitation, this does not explain the observed tolerance, it merely delays the action of the agent. Heterogeneities in growth-rate also slow the eradication of the bacteria since most antimicrobials are far less effective for non-growing, or slowly growing bacteria. This also does not fully describe biofilm tolerance, since heterogeneities arr primairly a result of nutrient consumption. In this investigation, we describe the formation of `persister' cells which neither grow nor die in the presence of antibiotics. We propose that the cells are of a different phenotype than typical bacterial cells and the expression of the phenotype is regulated by the growth rate and the antibiotic concentration. We describe several experiments which describe the dynamics of persister cells and which motivate a dosing protocol that calls for periodic dosing of the population. We then introduce a mathematical model, which describes the effect of such a dosing regiment and indicates that the relative dose/withdrawal times are important in determining the effectiveness of such a treatment. A reduced model is introduced and the similar behavior is demonstrated analytically.

  15. Biofilm and dental implant: The microbial link

    Directory of Open Access Journals (Sweden)

    Sangeeta Dhir

    2013-01-01

    Full Text Available Mouth provides a congenial environment for the growth of the microorganisms as compared to any other part of the human body by exhibiting an ideal nonshedding surface. Dental plaque happens to be a diverse community of the microorganisms found on the tooth surface. Periodontal disease and the peri-implant disease are specific infections that are originating from these resident microbial species when the balance between the host and the microbial pathogenicity gets disrupted. This review discusses the biofilms in relation to the peri-implant region, factors affecting its presence, and the associated treatment to manage this complex microbial colony. Search Methodology: Electronic search of the medline was done with the search words: Implants and biofilms/dental biofilm formation/microbiology at implant abutment interface/surface free energy/roughness and implant, periimplantitis/local drug delivery and dental implant. Hand search across the journals - clinical oral implant research, implant dentistry, journal of dental research, international journal of oral implantology, journal of prosthetic dentistry, perioodntology 2000, journal of periodontology were performed. The articles included in the review comprised of in vivo studies, in vivo (animal and human studies, abstracts, review articles.

  16. Marine and estuarine natural microbial biofilms: ecological and biogeochemical dimensions

    Directory of Open Access Journals (Sweden)

    O. Roger Anderson

    2016-08-01

    Full Text Available Marine and estuarine microbial biofilms are ubiquitously distributed worldwide and are increasingly of interest in basic and applied sciences because of their unique structural and functional features that make them remarkably different from the biota in the plankton. This is a review of some current scientific knowledge of naturally occurring microbial marine and estuarine biofilms including prokaryotic and microeukaryotic biota, but excluding research specifically on engineering and applied aspects of biofilms such as biofouling. Because the microbial communities including bacteria and protists are integral to the fundamental ecological and biogeochemical processes that support biofilm communities, particular attention is given to the structural and ecological aspects of microbial biofilm formation, succession, and maturation, as well as the dynamics of the interactions of the microbiota in biofilms. The intent is to highlight current state of scientific knowledge and possible avenues of future productive research, especially focusing on the ecological and biogeochemical dimensions.

  17. MICROBIAL BIOFILMS AS INTEGRATIVE SENSORS OF ENVIRONMENTAL QUALITY

    Science.gov (United States)

    Snyder, Richard A., Michael A. Lewis, Andreas Nocker and Joe E. Lepo. In press. Microbial Biofilms as Integrative Sensors of Environmental Quality. In: Estuarine Indicators Workshop Proceedings. CRC Press, Boca Raton, FL. 34 p. (ERL,GB 1198). Microbial biofilms are comple...

  18. Microbial Biofilm as a Smart Material

    Directory of Open Access Journals (Sweden)

    Christian Garde

    2015-02-01

    Full Text Available Microbial biofilm colonies will in many cases form a smart material capable of responding to external threats dependent on their size and internal state. The microbial community accordingly switches between passive, protective, or attack modes of action. In order to decide which strategy to employ, it is essential for the biofilm community to be able to sense its own size. The sensor designed to perform this task is termed a quorum sensor, since it only permits collective behaviour once a sufficiently large assembly of microbes have been established. The generic quorum sensor construct involves two genes, one coding for the production of a diffusible signal molecule and one coding for a regulator protein dedicated to sensing the signal molecules. A positive feedback in the signal molecule production sets a well-defined condition for switching into the collective mode. The activation of the regulator involves a slow dimerization, which allows low-pass filtering of the activation of the collective mode. Here, we review and combine the model components that form the basic quorum sensor in a number of Gram-negative bacteria, e.g., Pseudomonas aeruginosa.

  19. Recent advances in dental biofilm: impacts of microbial interactions on the biofilm ecology and pathogenesis

    Directory of Open Access Journals (Sweden)

    Yung-Hua Li

    2017-05-01

    Full Text Available The human oral cavity is a complex ecosystem harboring hundreds species of microbes that are largely living on the tooth surfaces as dental biofilms. Most microbes in dental biofilms promote oral health by stimulating the immune system or by preventing invasion of pathogens. Species diversity, high cell density and close proximity of cells are typical of life in dental biofilms, where microbes interact with each other and develop complex interactions that can be either competitive or cooperative. Competition between species is a well-recognized ecological force to drive microbial metabolism, species diversity and evolution. However, it was not until recently that microbial cooperative activities are also recognized to play important roles in microbial physiology and ecology. Importantly, these interactions profoundly affect the overall biomass, function, diversity and the pathogenesis in dental biofilms. It is now recognized that every human body contains a personalized oral microbiome that is essential to maintaining the oral health. Remarkably, the indigenous species in dental biofilms often maintain a relatively stable and harmless relationship with the host, despite regular exposure to environmental perturbations and the host defense factors. Such stability or homeostasis results from a dynamic balance of microbial-microbial and microbial-host interactions. Under certain circumstances, however, the homeostasis may breakdown, predisposing a site to diseases. In this review, we describe several examples of microbial interactions and their impacts on the homeostasis and pathogenesis of dental biofilms. We hope to encourage research on microbial interactions in the regulation of the homeostasis in biofilms.

  20. Unraveling the resistance of microbial biofilms: has proteomics been helpful?

    Science.gov (United States)

    Seneviratne, C Jayampath; Wang, Yu; Jin, Lijian; Wong, Sarah S W; Herath, Thanuja D K; Samaranayake, Lakshman P

    2012-02-01

    Biofilms are surface-attached, matrix-encased, structured microbial communities which display phenotypic features that are dramatically different from those of their free-floating, or planktonic, counterparts. Biofilms seem to be the preferred mode of growth of microorganisms in nature, and at least 65% of all human infections are associated with biofilms. The most notable and clinically relevant property of biofilms is their greater resistance to antimicrobials compared with their planktonic counterparts. Although both bacterial and fungal biofilms display this phenotypic feature, the exact mechanisms underlying their increased drug resistance are yet to be determined. Advances in proteomics techniques during the past decade have facilitated in-depth analysis of the possible mechanisms underpinning increased drug resistance in biofilms. These studies have demonstrated the ability of proteomics techniques to unravel new targets for combating microbial biofilms. In this review, we discuss the putative drug resistance mechanisms of microbial biofilms that have been uncovered by proteomics and critically evaluate the possible contribution of the new knowledge to future development in the field. We also summarize strategic uses of novel proteomics technologies in studies related to drug resistance mechanisms of microbial biofilms. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Agriculturally important microbial biofilms: Present status and future prospects.

    Science.gov (United States)

    Velmourougane, Kulandaivelu; Prasanna, Radha; Saxena, Anil Kumar

    2017-07-01

    Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    that extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  3. Microbial biofilms and wound healing: an ecological hypothesis

    NARCIS (Netherlands)

    Krom, B.P.; Oskam, J.

    2014-01-01

    Man has lived together with microbes for so long that we have become completely dependent on their presence. Most microbes reside in biofilms; structured communities encased in a protective matrix of biopolymers. Under healthy conditions, the microbial biofilm is in balance with itself

  4. Microbiële biofilms in tandheelkunde

    NARCIS (Netherlands)

    Krom, B.P.

    2015-01-01

    Aangehechte gemeenschappen van micro-organismen, ook wel biofilms genoemd, zijn altijd en overal aanwezig. Hoewel biofilms een slechte naam hebben, zijn ze meestal natuurlijk, gezond en zelfs gewenst. In de mondzorgpraktijk komen zowel gezonde (orale biofilms) als ongezonde (bijv. in de waterleiding

  5. Microbiële biofilms in tandheelkunde

    NARCIS (Netherlands)

    Krom, B.P.

    2015-01-01

    Aangehechte gemeenschappen van micro-organismen, ook wel biofilms genoemd, zijn altijd en overal aanwezig. Hoewel biofilms een slechte naam hebben, zijn ze meestal natuurlijk, gezond en zelfs gewenst. In de tandartspraktijk komen zowel gezonde (orale biofilms) als ongezonde (bijv. in de waterleiding

  6. Coexistence facilitates interspecific biofilm formation in complex microbial communities.

    Science.gov (United States)

    Madsen, Jonas S; Røder, Henriette L; Russel, Jakob; Sørensen, Helle; Burmølle, Mette; Sørensen, Søren J

    2016-09-01

    Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However, the underlying role of fundamental ecological factors, specifically coexistence and phylogenetic history, in biofilm formation remains unclear. This study examines how social interactions affect biofilm formation in multi-species co-cultures from five diverse environments. We found prevalence of increased biofilm formation among co-cultured bacteria that have coexisted in their original environment. Conversely, when randomly co-culturing bacteria across these five consortia, we found less biofilm induction and a prevalence of biofilm reduction. Reduction in biofilm formation was even more predominant when co-culturing bacteria from environments where long-term coexistence was unlikely to have occurred. Phylogenetic diversity was not found to be a strong underlying factor but a relation between biofilm induction and phylogenetic history was found. The data indicates that biofilm reduction is typically correlated with an increase in planktonic cell numbers, thus implying a behavioral response rather than mere growth competition. Our findings suggest that an increase in biofilm formation is a common adaptive response to long-term coexistence. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. A short history of microbial biofilms and biofilm infections

    DEFF Research Database (Denmark)

    Høiby, Niels

    2017-01-01

    to be important for biofouling on submerged surfaces, for example, ships. The concept of biofilm infections and their importance in medicine was, however, initiated in the early 1970s by the observation of heaps of Pseudomonas aeruginosa cells in sputum and lung tissue from chronically infected cystic fibrosis....... The medical importance of biofilm infections is now generally accepted and guidelines for prophylaxis, diagnosis, and treatment have been published....

  8. Microbial biofilms and wound healing: an ecological hypothesis.

    Science.gov (United States)

    Krom, Bastiaan P; Oskam, Jacques

    2014-05-01

    Man has lived together with microbes for so long that we have become completely dependent on their presence. Most microbes reside in biofilms; structured communities encased in a protective matrix of biopolymers. Under healthy conditions, the microbial biofilm is in balance with itself (endo-balance) and with the host (exo-balance). Integrity of the skin is an important immunological function. Wounds go through a well-orchestrated series of healing steps. However, if for some reason healing times are extended, serious problems related to infection and homeostasis can develop. Based on recent advances in biofilm research and microbiological identification we discuss two hypotheses describing the role of microbial biofilms in chronic wound biology. The first hypothesis describes microbial biofilms as the cause of extended healing times. The second hypothesis is based on the host as cause of extended healing times and basically treats microbial biofilms as a logical consequence of failure to re-build the integrity of the skin. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Investigating Microbial Biofilm Formations on Crustal Rock Substrates

    Science.gov (United States)

    Weiser, M.; D'Angelo, T.; Carr, S. A.; Orcutt, B.

    2017-12-01

    Ocean crust hosts microbial life that, in some cases, alter the component rocks as a means of obtaining energy. Variations in crust lithology, included trace metal and mineral content, as well as the chemistry of the fluids circulating through them, provide substrates for some microbes to metabolize, leading to formation of biofilm community structures. Microbes have different parameters for the situations in which they will form biofilms, but they must have some source of energy in excess at the site of biofilm formation for them to become stationary and form the carbohydrate-rich structures connecting the cells to one another and the substrate. Generally, the requirements for microbes to form biofilms on crustal minerals are unclear. We designed two experiments to test (1) mineral preference and biofilm formation rates by natural seawater microbial communities, and (2) biofilm development as a function of phosphate availability for an organism isolated from subseafloor ocean crust. In Experiment 1, we observed that phyric basalt groundmass is preferentially colonized over aphyric basalt or metal sulfides in a shallow water and oxic seawater environment. In experiment 2, tests of the anaerobic heterotroph Thalassospira bacteria isolated from oceanic crustal fluids showed that they preferentially form biofilms, lose motility, and increase exponentially in number over time in higher-PO4 treatments (50 micromolar), including with phosphate-doped basalts, than in treatments with low phosphate concentrations (0.5 micromolar) often found in crustal fluids. These observations suggest phosphate as a main driver of biofilm formation in subsurface crust. Overall, these data suggest that the drivers of microbial biofilm formation on crustal substrates are selective to the substrate conditions, which has important implications for estimating the global biomass of life harbored in oceanic crust.

  10. Microbial Biofilms in Pulmonary and Critical Care Diseases.

    Science.gov (United States)

    Boisvert, Andree-Anne; Cheng, Matthew P; Sheppard, Don C; Nguyen, Dao

    2016-09-01

    Microbial biofilms can colonize medical devices and human tissues, and their role in microbial pathogenesis is now well established. Not only are biofilms ubiquitous in natural and human-made environments, but they are also estimated to be associated with approximately two-thirds of nosocomial infections. This multicellular aggregated form of microbial growth confers a remarkable resistance to killing by antimicrobials and host defenses, leading biofilms to cause a wide range of subacute or chronic infections that are difficult to eradicate. We have gained tremendous knowledge on the molecular, genetic, microbiological, and biophysical processes involved in biofilm formation. These insights now shape our understanding, diagnosis, and management of many infectious diseases and direct the development of novel antimicrobial therapies that target biofilms. Bacterial and fungal biofilms play an important role in a range of diseases in pulmonary and critical care medicine, most importantly catheter-associated infections, ventilator-associated pneumonia, chronic Pseudomonas aeruginosa infections in cystic fibrosis lung disease, and Aspergillus fumigatus pulmonary infections.

  11. Laser Microbial Killing and Biofilm Disruption

    Science.gov (United States)

    Krespi, Yosef P.; Kizhner, Victor

    2009-06-01

    Objectives: To analyze the ability of NIR lasers to reduce bacterial load and demonstrate the capability of fiber-based Q-switched Nd:YAG laser disrupting biofilm. Study Design: NIR diode laser was tested in vitro and in vivo using pathogenic microorganisms (S. aureus, S. pneumoniae, P. aeruginosa). In addition biofilms were grown from clinical Pseudomonas isolates and placed in culture plates, screws, tympanostomy tubes and PET sutures. Methods: In the animal experiments acute rhinosinusitis model was created by packing the rabbit nose with bacteria soaked solution. The nasal pack was removed in two days and nose was exposed to laser irradiation. A 940 nm diode laser with fiber diffuser was used. Nasal cultures were obtained before and after the laser treatments. Animals were sacrificed fifteen days following laser treatment and bacteriologic/histologic results analyzed. Q-switched Nd:YAG laser generated shockwave pulses were delivered on biofilm using special probes over culture plates, screws, tubes, and PET sutures for the biofilm experiments. Results: Average of two log bacteria reduction was achieved with NIR laser compared to controls. Histologic studies demonstrated preservation of tissue integrity without significant damage to mucosa. Biofilms were imaged before, during and after treatment using a confocal microscope. During laser-generated shockwave application, biofilm was initially seen to oscillate and eventually break off. Large and small pieces of biofilm were totally and instantly removed from the surface to which they were attached in seconds. Conclusions: Significant bacterial reduction was achieved with NIR laser therapy in this experimental in vitro and animal study. In addition we disrupted Pseudomonas aeruginosa biofilms using Q-switched Nd:YAG laser and special probes generating plasma and shockwave. This new and innovative method of bacteria killing and biofilm disruption without injuring host tissue may have clinical application in the

  12. Microbial Biofilm and Bacterial Contamination on Pig Carcasses

    Directory of Open Access Journals (Sweden)

    Adriana Morar

    2010-10-01

    Full Text Available The aim of this study was to emphasize the presence of biofilm on meat surfaces using epifluorescences microscopy and establishing the microbial contamination level by classical microbiological methods. The research was performed in a pork slaughterhouse. The presence of microbial biofilm and the level of contamination were performed on surfaces from pig carcasses and cut pieces. Clusters of microorganisms included in a biofilm matrix were found on the surface of carcasses on sternal region, coast region, coccigian region and on surfaces of cut pieces: chop, front of thighs. Microbial biofilm was present on carcasses and cut pieces at least 3 days length, in regions with high humidity and microbial contamination level ranged of 102- 103 cfu/ cm2. The microbial load of the surfaces was assessed using the following microbiological indicators: total viable count (TVC, the number of enterobacteria and Pseudomonas genus. The level of carcasses contamination ranged on average from 1.3 x 10 cfu/ cm2 (neck to 2.6 x 103 cfu/cm2 (front of pulp. The proportion of Enterobacteriaceae-positive samples was 60%, with a low level of contamination (less than 1 cfu/ cm2. Germs of the Pseudomonas genus were absent in all the analyzed samples.

  13. Embryo fossilization is a biological process mediated by microbial biofilms.

    Science.gov (United States)

    Raff, Elizabeth C; Schollaert, Kaila L; Nelson, David E; Donoghue, Philip C J; Thomas, Ceri-Wyn; Turner, F Rudolf; Stein, Barry D; Dong, Xiping; Bengtson, Stefan; Huldtgren, Therese; Stampanoni, Marco; Chongyu, Yin; Raff, Rudolf A

    2008-12-09

    Fossilized embryos with extraordinary cellular preservation appear in the Late Neoproterozoic and Cambrian, coincident with the appearance of animal body fossils. It has been hypothesized that microbial processes are responsible for preservation and mineralization of organic tissues. However, the actions of microbes in preservation of embryos have not been demonstrated experimentally. Here, we show that bacterial biofilms assemble rapidly in dead marine embryos and form remarkable pseudomorphs in which the bacterial biofilm replaces and exquisitely models details of cellular organization and structure. The experimental model was the decay of cleavage stage embryos similar in size and morphology to fossil embryos. The data show that embryo preservation takes place in 3 distinct steps: (i) blockage of autolysis by reducing or anaerobic conditions, (ii) rapid formation of microbial biofilms that consume the embryo but form a replica that retains cell organization and morphology, and (iii) bacterially catalyzed mineralization. Major bacterial taxa in embryo decay biofilms were identified by using 16S rDNA sequencing. Decay processes were similar in different taphonomic conditions, but the composition of bacterial populations depended on specific conditions. Experimental taphonomy generates preservation states similar to those in fossil embryos. The data show how fossilization of soft tissues in sediments can be mediated by bacterial replacement and mineralization, providing a foundation for experimentally creating biofilms from defined microbial species to model fossilization as a biological process.

  14. Active microbial biofilms in deep poor porous continental subsurface rocks.

    Science.gov (United States)

    Escudero, Cristina; Vera, Mario; Oggerin, Monike; Amils, Ricardo

    2018-01-24

    Deep continental subsurface is defined as oligotrophic environments where microorganisms present a very low metabolic rate. To date, due to the energetic cost of production and maintenance of biofilms, their existence has not been considered in poor porous subsurface rocks. We applied fluorescence in situ hybridization techniques and confocal laser scanning microscopy in samples from a continental deep drilling project to analyze the prokaryotic diversity and distribution and the possible existence of biofilms. Our results show the existence of natural microbial biofilms at all checked depths of the Iberian Pyrite Belt (IPB) subsurface and the co-occurrence of bacteria and archaea in this environment. This observation suggests that multi-species biofilms may be a common and widespread lifestyle in subsurface environments.

  15. The pulsed light inactivation of veterinary relevant microbial biofilms ...

    African Journals Online (AJOL)

    tulyasys

    2016-01-27

    Jan 27, 2016 ... the increase in antibiotic resistant microbial species and zoonotic infections. However ... This study aims to provide a means of detecting veterinary relevant parasite species in bacterial biofilms, and to provide a means of ..... chlorine commonly observed with these complex structures (Aguilar-Romero et al., ...

  16. Microbial biofilm study by synchrotron X-ray microscopy

    International Nuclear Information System (INIS)

    Pennafirme, S.; Lima, I.; Bitencourt, J.A.; Crapez, M.A.C.; Lopes, R.T.

    2015-01-01

    Microbial biofilm has already being used to remove metals and other pollutants from wastewater. In this sense, our proposal was to isolate and cultivate bacteria consortia from mangrove’s sediment resistant to Zn (II) and Cu (II) at 50 mg L −1 and to observe, through synchrotron X-ray fluorescence microscopy (microXRF), whether the biofilm sequestered the metal. The biofilm area analyzed was 1 mm 2 and a 2D map was generated (pixel size 20×20 μm 2 , counting time 5 s/point). The biofilm formation and retention followed the sequence Zn>Cu. Bacterial consortium zinc resistant formed dense biofilm and retained 63.83% of zinc, while the bacterial consortium copper resistant retained 3.21% of copper, with lower biofilm formation. Dehydrogenase activity of Zn resistant bacterial consortium was not negatively affect by 50 mg ml −1 zinc input, whereas copper resistant bacterial consortium showed a significant decrease on dehydrogenase activity (50 mg mL −1 of Cu input). In conclusion, biofilm may protect bacterial cells, acting as barrier against metal toxicity. The bacterial consortia Zn resistant, composed by Nitratireductor spp. and Pseudomonas spp formed dense biofilm and sequestered metal from water, decreasing the metal bioavailability. These bacterial consortia can be used in bioreactors and in bioremediation programs. - Highlights: • We studied bacterial bioremediation by microXRF. • Dense biofilm may act sequestering metal while protecting bacterial metabolism. • Nitratireductor spp. and Pseudomonas spp decreased seawater metal bioavailability. • Bacterial consortia from polluted areas may be used in bioremediation programs.

  17. Microbial Surface Colonization and Biofilm Development in Marine Environments.

    Science.gov (United States)

    Dang, Hongyue; Lovell, Charles R

    2016-03-01

    Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. High-throughput metal susceptibility testing of microbial biofilms.

    Science.gov (United States)

    Harrison, Joe J; Turner, Raymond J; Ceri, Howard

    2005-10-03

    Microbial biofilms exist all over the natural world, a distribution that is paralleled by metal cations and oxyanions. Despite this reality, very few studies have examined how biofilms withstand exposure to these toxic compounds. This article describes a batch culture technique for biofilm and planktonic cell metal susceptibility testing using the MBEC assay. This device is compatible with standard 96-well microtiter plate technology. As part of this method, a two part, metal specific neutralization protocol is summarized. This procedure minimizes residual biological toxicity arising from the carry-over of metals from challenge to recovery media. Neutralization consists of treating cultures with a chemical compound known to react with or to chelate the metal. Treated cultures are plated onto rich agar to allow metal complexes to diffuse into the recovery medium while bacteria remain on top to recover. Two difficulties associated with metal susceptibility testing were the focus of two applications of this technique. First, assays were calibrated to allow comparisons of the susceptibility of different organisms to metals. Second, the effects of exposure time and growth medium composition on the susceptibility of E. coli JM109 biofilms to metals were investigated. This high-throughput method generated 96-statistically equivalent biofilms in a single device and thus allowed for comparative and combinatorial experiments of media, microbial strains, exposure times and metals. By adjusting growth conditions, it was possible to examine biofilms of different microorganisms that had similar cell densities. In one example, Pseudomonas aeruginosa ATCC 27853 was up to 80 times more resistant to heavy metalloid oxyanions than Escherichia coli TG1. Further, biofilms were up to 133 times more tolerant to tellurite (TeO3(2-)) than corresponding planktonic cultures. Regardless of the growth medium, the tolerance of biofilm and planktonic cell E. coli JM109 to metals was time

  19. Dental Biofilm and Laboratory Microbial Culture Models for Cariology Research

    Directory of Open Access Journals (Sweden)

    Ollie Yiru Yu

    2017-06-01

    Full Text Available Dental caries form through a complex interaction over time among dental plaque, fermentable carbohydrate, and host factors (including teeth and saliva. As a key factor, dental plaque or biofilm substantially influence the characteristic of the carious lesions. Laboratory microbial culture models are often used because they provide a controllable and constant environment for cariology research. Moreover, they do not have ethical problems associated with clinical studies. The design of the microbial culture model varies from simple to sophisticated according to the purpose of the investigation. Each model is a compromise between the reality of the oral cavity and the simplification of the model. Researchers, however, can still obtain meaningful and useful results from the models they select. Laboratory microbial culture models can be categorized into a closed system and an open system. Models in the closed system have a finite supply of nutrients, and are also simple and cost-effective. Models in the open system enabled the supply of a fresh culture medium and the removal of metabolites and spent culture liquid simultaneously. They provide better regulation of the biofilm growth rate than the models in the closed system. This review paper gives an overview of the dental plaque biofilm and laboratory microbial culture models used for cariology research.

  20. Microbial biofilm growth on irradiated, spent nuclear fuel cladding

    Science.gov (United States)

    Bruhn, D. F.; Frank, S. M.; Roberto, F. F.; Pinhero, P. J.; Johnson, S. G.

    2009-02-01

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 × 10 3 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments.

  1. Clinical implications of microbial biofilms in chronic rhinosinusitis and orbital cellulitis

    OpenAIRE

    Nayak, Niranjan; Satpathy, Gita; Prasad, Sujata; Thakar, Alok; Chandra, Mahesh; Nag, TC

    2016-01-01

    Background Discovery of sessile mode of microbial existence (Biofilm state) focussed much interest, during the recent years, on the study of biofilms in many recurring and chronic infections. However, the exact role of microbial biofilms in chronic rhinosinusitis and orbital cellulitis were not elucidated earlier. The purpose of the present study was to look for the adherent property and biofilm producing ability of the clinical isolates in chronic rhinosinusitis and orbital cellulitis, and t...

  2. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    Science.gov (United States)

    Davis, C. A.; Pyrak-Nolte, L. J.; Atekwana, E. A.; Werkema, D. D.; Haugen, M. E.

    2009-12-01

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand columns. A control column (non-biostimulated) and a biostimulated column were studied in a 2D acoustic scanning apparatus, and a second set of columns were constructed with Ag-AgCl electrodes for complex conductivity measurements. At the completion of the 29-day experiment, compressional wave amplitudes and arrival times for the control column were observed to be relatively uniform over the scanned 2D region. However, the biostimulated sample exhibited a high degree of spatial variability within the column for both the amplitude and arrival times. Furthermore, portions of the sample exhibited increased attenuation (~ 80%) concurrent with an increase in the arrival times, while other portions exhibited decreased attenuation (~ 45%) and decreased arrival time. The acoustic amplitude and arrival times changed significantly in the biostimulated column between Days 5 and 7 of the experiment and are consistent with a peak in the imaginary conductivity (σ”) values. The σ” response corresponds to different stages of biofilm development. That is, we interpret the peak σ” with the maximum biofilm thickness and decreasing σ” due to cell death or detachment. Environmental scanning electron microscope (ESEM) imaging confirmed microbial cell attachment to sand surfaces in the biostimulated columns, showed apparent differences in the morphology of attached biomass between regions of increased and decreased attenuation, and indicated no mineral precipitation or biomineralization. The heterogeneity in the elastic properties arises from the differences in the morphology and structure of attached biofilms. These results suggest that combining acoustic imaging and complex conductivity techniques

  3. Advances in Microbial Biofilm Prevention on Indwelling Medical Devices with Emphasis on Usage of Acoustic Energy

    Directory of Open Access Journals (Sweden)

    Gad Lavie

    2009-04-01

    Full Text Available Microbial biofilms are a major impediment to the use of indwelling medical devices, generating device-related infections with high morbidity and mortality. Major efforts directed towards preventing and eradicating the biofilm problem face difficulties because biofilms protect themselves very effectively by producing a polysaccharide coating, reducing biofilm sensitivity to antimicrobial agents. Techniques applied to combating biofilms have been primarily chemical. These have met with partial and limited success rates, leading to current trends of eradicating biofilms through physico-mechanical strategies. Here we review the different approaches that have been developed to control biofilm formation and removal, focusing on the utilization of acoustic energy to achieve these objectives.

  4. Advances in Microbial Biofilm Prevention on Indwelling Medical Devices with Emphasis on Usage of Acoustic Energy

    Science.gov (United States)

    Dror, Naama; Mandel, Mathilda; Hazan, Zadik; Lavie, Gad

    2009-01-01

    Microbial biofilms are a major impediment to the use of indwelling medical devices, generating device-related infections with high morbidity and mortality. Major efforts directed towards preventing and eradicating the biofilm problem face difficulties because biofilms protect themselves very effectively by producing a polysaccharide coating, reducing biofilm sensitivity to antimicrobial agents. Techniques applied to combating biofilms have been primarily chemical. These have met with partial and limited success rates, leading to current trends of eradicating biofilms through physico-mechanical strategies. Here we review the different approaches that have been developed to control biofilm formation and removal, focusing on the utilization of acoustic energy to achieve these objectives. PMID:22574031

  5. Microbial stratification structure within cathodic biofilm of the microbial fuel cell using the freezing microtome method.

    Science.gov (United States)

    Li, Xiao; Lu, Yaobin; Luo, Haiping; Liu, Guangli; Zhang, Renduo

    2017-10-01

    The aim of this study was to investigate the microbial stratification structure within cathodic biofilm of the microbial fuel cell (MFC) using the freezing microtome method. Experiments were conducted in a single-chamber air-cathode MFC with 0.8g/L maltodextrin as substrate for ∼30d operation. The maximum power density was 945±10mW/m 2 in the MFC. Maltodextrin resulted in the relative abundance of Candidatus Saccharibacteria of 37.0% in the anodic biofilm. Different bacterial communities were identified in different layers within the cathodic biofilm. The relative abundance of Enterococcus was 3.7%, 10.5%, and 1.6% in the top (100-150μm), middle (50-100μm), and bottom (0-50μm) layers, respectively. Higher bacterial viability was observed within the top and bottom layers of the cathodic biofilm. Understanding the stratification of bacterial community in cathodic biofilm should be important to control the cathodic biofilm in the MFC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biodiversity and species competition regulate the resilience of microbial biofilm community

    DEFF Research Database (Denmark)

    Feng, Kai; Zhang, Zhaojing; Cai, Weiwei

    2017-01-01

    The relationship between biodiversity and ecosystem stability is poorly understood in microbial communities. Biofilm communities in small bioreactors called microbial electrolysis cells (MEC) contain moderate species numbers and easy tractable functional traits, thus providing an ideal platform f...

  7. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community

    KAUST Repository

    Xue, Zheng

    2014-07-15

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. © 2014 © 2014 Taylor & Francis.

  8. Anti-microbial and anti-biofilm compounds from Indonesian medicinal plants

    NARCIS (Netherlands)

    Pratiwi, Sylvia U.T.

    2015-01-01

    Microbial biofilms causing elevated resistance to both most anti-microbial drugs and the host defense systems, which often results in persistent and difficult-to-treat infections. The discovery of anti-infective agents which are active against planktonic and biofilm microorganisms are therefore

  9. Microbial diversity and putative opportunistic pathogens in dishwasher biofilm communities

    DEFF Research Database (Denmark)

    Raghupathi, Prem Krishnan; Zupančič, Jerneja; Brejnrod, Asker Daniel

    2018-01-01

    impact the abundance of microbial groups, and investigated on the inter- and intra-kingdom interactions that shape these biofilms. The age, the usage frequency and hardness of incoming tap water of dishwashers had significant impact on bacterial and fungal composition. Representatives ofCandidaspp. were......Extreme habitats are not only limited to natural environments, but also apply to man-made systems, for instance household appliances such as dishwashers. Limiting factors, such as high temperatures, high and low pH, high NaCl concentrations, presence of detergents and shear force from water during...

  10. Anti-microbial and anti-biofilm compounds from Indonesian medicinal plants

    OpenAIRE

    Pratiwi, Sylvia U.T.

    2015-01-01

    Microbial biofilms causing elevated resistance to both most anti-microbial drugs and the host defense systems, which often results in persistent and difficult-to-treat infections. The discovery of anti-infective agents which are active against planktonic and biofilm microorganisms are therefore urgently required to deal with these biofilm-mediated infections. Plants are a rich source of new molecules with pharmacological properties for the development of new drugs. Indonesia is one of the cou...

  11. Enhanced performance of microbial fuel cell with a bacteria/multi-walled carbon nanotube hybrid biofilm

    Science.gov (United States)

    Zhang, Peng; Liu, Jia; Qu, Youpeng; Zhang, Jian; Zhong, Yingjuan; Feng, Yujie

    2017-09-01

    The biofilm on the anode of a microbial fuel cell (MFC) is a vital component in system, and its formation and characteristic determines the performance of the system. In this study, a bacteria/Multi-Walled Carbon Nanotube (MWCNT) hybrid biofilm is fabricated by effectively inserting the MWCNTs into the anode biofilm via an adsorption-filtration method. This hybrid biofilm has been demonstrated to be an efficient structure for improving an anode biofilm performance. Electrochemical impedance spectroscopy (EIS) results show that the hybrid biofilm takes advantage of the conductivity and structure of MWCNT to enhance the electron transfer and substrate diffusion of the biofilm. With this hybrid biofilm, the current density, power density and coulombic efficiency are increased by 46.2%, 58.8% and 84.6%, respectively, relative to naturally grown biofilm. Furthermore, the start-up time is reduced by 53.8% compared with naturally grown biofilm. The perturbation test demonstrates that this type of hybrid biofilm exhibits strong adsorption ability and enhances the biofilm's resistance to a sudden change of substrate concentration. The superior performance of the hybrid biofilm with MWCNT ;nanowire; matrix compared with naturally grown biofilm demonstrates its great potential for boosting the performance of MFCs.

  12. Biophysical controls on cluster dynamics and architectural differentiation of microbial biofilms in contrasting flow environments

    Science.gov (United States)

    Hödl, Iris; Mari, Lorenzo; Bertuzzo, Enrico; Suweis, Samir; Besemer, Katharina; Rinaldo, Andrea; Battin, Tom J

    2014-01-01

    Ecology, with a traditional focus on plants and animals, seeks to understand the mechanisms underlying structure and dynamics of communities. In microbial ecology, the focus is changing from planktonic communities to attached biofilms that dominate microbial life in numerous systems. Therefore, interest in the structure and function of biofilms is on the rise. Biofilms can form reproducible physical structures (i.e. architecture) at the millimetre-scale, which are central to their functioning. However, the spatial dynamics of the clusters conferring physical structure to biofilms remains often elusive. By experimenting with complex microbial communities forming biofilms in contrasting hydrodynamic microenvironments in stream mesocosms, we show that morphogenesis results in ‘ripple-like’ and ‘star-like’ architectures – as they have also been reported from monospecies bacterial biofilms, for instance. To explore the potential contribution of demographic processes to these architectures, we propose a size-structured population model to simulate the dynamics of biofilm growth and cluster size distribution. Our findings establish that basic physical and demographic processes are key forces that shape apparently universal biofilm architectures as they occur in diverse microbial but also in single-species bacterial biofilms. PMID:23879839

  13. Ethyl Pyruvate: An Anti-Microbial Agent that Selectively Targets Pathobionts and Biofilms.

    Science.gov (United States)

    Debebe, Tewodros; Krüger, Monika; Huse, Klaus; Kacza, Johannes; Mühlberg, Katja; König, Brigitte; Birkenmeier, Gerd

    The microbiota has a strong influence on health and disease in humans. A causative shift favoring pathobionts is strongly linked to diseases. Therefore, anti-microbial agents selectively targeting potential pathogens as well as their biofilms are urgently demanded. Here we demonstrate the impact of ethyl pyruvate, so far known as ROS scavenger and anti-inflammatory agent, on planktonic microbes and biofilms. Ethyl pyruvate combats preferably the growth of pathobionts belonging to bacteria and fungi independent of the genera and prevailing drug resistance. Surprisingly, this anti-microbial agent preserves symbionts like Lactobacillus species. Moreover, ethyl pyruvate prevents the formation of biofilms and promotes matured biofilms dissolution. This potentially new anti-microbial and anti-biofilm agent could have a tremendous positive impact on human, veterinary medicine and technical industry as well.

  14. Ethyl Pyruvate: An Anti-Microbial Agent that Selectively Targets Pathobionts and Biofilms.

    Directory of Open Access Journals (Sweden)

    Tewodros Debebe

    Full Text Available The microbiota has a strong influence on health and disease in humans. A causative shift favoring pathobionts is strongly linked to diseases. Therefore, anti-microbial agents selectively targeting potential pathogens as well as their biofilms are urgently demanded. Here we demonstrate the impact of ethyl pyruvate, so far known as ROS scavenger and anti-inflammatory agent, on planktonic microbes and biofilms. Ethyl pyruvate combats preferably the growth of pathobionts belonging to bacteria and fungi independent of the genera and prevailing drug resistance. Surprisingly, this anti-microbial agent preserves symbionts like Lactobacillus species. Moreover, ethyl pyruvate prevents the formation of biofilms and promotes matured biofilms dissolution. This potentially new anti-microbial and anti-biofilm agent could have a tremendous positive impact on human, veterinary medicine and technical industry as well.

  15. In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system

    KAUST Repository

    Lee, O.O.

    2014-01-08

    Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development.

  16. Coexistence facilitates interspecific biofilm formation in complex microbial communities

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Røder, Henriette Lyng; Russel, Jakob

    2016-01-01

    , the underlying role of fundamental ecological factors, specifically coexistence and phylogenetic history, in biofilm formation remains unclear. This study examines how social interactions affect biofilm formation in multi-species co-cultures from five diverse environments. We found prevalence of increased...... biofilm formation among co-cultured bacteria that have coexisted in their original environment. Conversely, when randomly co-culturing bacteria across these five consortia, we found less biofilm induction and a prevalence of biofilm reduction. Reduction in biofilm formation was even more predominant when...... co-culturing bacteria from environments where long-term coexistence was unlikely to have occurred. Phylogenetic diversity was not found to be a strong underlying factor but a relation between biofilm induction and phylogenetic history was found. The data indicates that biofilm reduction is typically...

  17. Reduction of microbial biofilm formation using hydrophobic nano ...

    African Journals Online (AJOL)

    A cooling tower is a heat removal device, which extracts waste heat to the atmosphere through the cooling of a water stream to a lower temperature. Cooling towers are frequently associated with biofilm problems and Legionnaires disease outbreaks. Where biofilms can cause clogging and corrosion, reduction of biofilms is ...

  18. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...

  19. Complex conductivity response to microbial growth and biofilm formation on phenanthrene spiked medium

    Science.gov (United States)

    Albrecht, Remy; Gourry, Jean Christophe; Simonnot, Marie-Odile; Leyval, Corinne

    2011-11-01

    Several laboratory studies have recently demonstrated the utility of geophysical methods for the investigation of microbial-induced changes over contaminated sites. However, it remains difficult to distinguish the effects due to the new physical properties imparted by microbial processes, to bacterial growth, or to the development of bacterial biofilm. We chose to study the influence of biofilm formation on geophysical response using complex conductivity measurements (0.1-1000 Hz) in phenanthrene-contaminated media. Biotic assays were conducted with two phenanthrene (PHE) degrading bacterial strains: Burkholderia sp (NAH1), which produced biofilm and Stenophomonas maltophilia (MATE10), which did not, and an abiotic control. Results showed that bacterial densities for NAH1 and MATE10 strains continuously increased at the same rate during the experiment. However, the complex conductivity signature showed noticeable differences between the two bacteria, with a phase shift of 50 mrad at 4 Hz for NAH1, which produced biofilm. Biofilm volume was quantified by Scanning Confocal Laser Microscopy (SCLM). Significant correlations were established between phase shift decrease and biofilm volume for NAH1 assays. Results suggest that complex conductivity measurements, specifically phase shift, can be a useful indicator of biofilm formation inside the overall signal of microbial activity on contaminated sites.

  20. Microbial composition of biofilms associated with lithifying rubble of Acropora palmata branches.

    Science.gov (United States)

    Beltrán, Yislem; Cerqueda-García, Daniel; Taş, Neslihan; Thomé, Patricia E; Iglesias-Prieto, Roberto; Falcón, Luisa I

    2016-01-01

    Coral reefs are among the most productive ecosystems on the planet, but are rapidly declining due to global-warming-mediated changes in the oceans. Particularly for the Caribbean region, Acropora sp. stony corals have lost ∼80% of their original coverage, resulting in vast extensions of dead coral rubble. We analyzed the microbial composition of biofilms that colonize and lithify dead Acropora palmata rubble in the Mexican Caribbean and identified the microbial assemblages that can persist under scenarios of global change, including high temperature and low pH. Lithifying biofilms have a mineral composition that includes aragonite and magnesium calcite (16 mole% MgCO(3)) and calcite, while the mineral phase corresponding to coral skeleton is basically aragonite. Microbial composition of the lithifying biofilms are different in comparison to surrounding biotopes, including a microbial mat, water column, sediments and live A. palmata microbiome. Significant shifts in biofilm composition were detected in samples incubated in mesocosms. The combined effect of low pH and increased temperature showed a strong effect after two-week incubations for biofilm composition. Findings suggest that lithifying biofilms could remain as a secondary structure on reef rubble possibly impacting the functional role of coral reefs. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Biodiversity and species competition regulate the resilience of microbial biofilm community.

    Science.gov (United States)

    Feng, Kai; Zhang, Zhaojing; Cai, Weiwei; Liu, Wenzong; Xu, Meiying; Yin, Huaqun; Wang, Aijie; He, Zhili; Deng, Ye

    2017-11-01

    The relationship between biodiversity and ecosystem stability is poorly understood in microbial communities. Biofilm communities in small bioreactors called microbial electrolysis cells (MEC) contain moderate species numbers and easy tractable functional traits, thus providing an ideal platform for verifying ecological theories in microbial ecosystems. Here, we investigated the resilience of biofilm communities with a gradient of diversity, and explored the relationship between biodiversity and stability in response to a pH shock. The results showed that all bioreactors could recover to stable performance after pH disturbance, exhibiting a great resilience ability. A further analysis of microbial composition showed that the rebound of Geobacter and other exoelectrogens contributed to the resilient effectiveness, and that the presence of Methanobrevibacter might delay the functional recovery of biofilms. The microbial communities with higher diversity tended to be recovered faster, implying biofilms with high biodiversity showed better resilience in response to environmental disturbance. Network analysis revealed that the negative interactions between the two dominant genera of Geobacter and Methanobrevibacter increased when the recovery time became longer, implying the internal resource or spatial competition of key functional taxa might fundamentally impact the resilience performances of biofilm communities. This study provides new insights into our understanding of the relationship between diversity and ecosystem functioning. © 2017 John Wiley & Sons Ltd.

  2. Influence of microbial biofilms on the preservation of primary soft tissue in fossil and extant archosaurs.

    Science.gov (United States)

    Peterson, Joseph E; Lenczewski, Melissa E; Scherer, Reed P

    2010-10-12

    Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.

  3. Synthesis and biological evaluation of 2-aminoimidazole/carbamate hybrid anti-biofilm and anti-microbial agents.

    Science.gov (United States)

    Rogers, Steven A; Lindsey, Erick A; Whitehead, Daniel C; Mullikin, Trey; Melander, Christian

    2011-02-15

    The successful marriage of structural features from our 2-aminoimidazole and menthyl carbamate classes of anti-biofilm agents has resulted in the development of a novel hybrid scaffold of biofilm modulators. The compounds were evaluated against a panel of four bacterial strains for anti-biofilm and anti-microbial activity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. The effects of disinfectant foam on microbial biofilms.

    Science.gov (United States)

    Sreenivasan, Prem K; Chorny, Roberto C

    2005-01-01

    This investigation examined the effects of common aqueous biocides and disinfectant foams derived from them on Pseudomonas aeruginosa biofilms. Biofilms were grown on stainless steel coupons under standardised conditions in a reactor supplemented with low concentrations of organic matter to simulate conditions prevalent in industrial systems. Five-day-old biofilms formed under ambient conditions with continuous agitation demonstrated a low coefficient of variation (5.809%) amongst viable biofilm bacteria from independent trials. Scanning electron microscopy revealed biofilms on coupons with viable biofilm bacteria observed by confocal microscopy. An aqueous solution of a common foaming agent amine oxide (AO) produced negligible effects on bacterial viability in biofilms (p>0.05). However, significant biofilm inactivation was noted with aqueous solutions of common biocides (peracetic acid, sodium hypochlorite, sodium ethylenediaminetetraacetic acid) with or without AO (p0.05). In summary, the studies revealed significant biofilm inactivation by biocidal foam prepared with common biocides. Validation of foam disinfectants in controlled trials at manufacturing sites may facilitate developments for clean in place applications. Advantages of foam disinfectants include reductions in the volumes of biocides for industrial disinfection and in their disposal after use.

  5. Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell

    Science.gov (United States)

    Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius

    2016-11-01

    The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.

  6. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyungmi; Okabe, Satoshi [Hokkaido Univ., Sapporo (Japan). Dept. of Urban and Environmental Engineering

    2009-07-15

    A mediator-less three-stage two-chamber microbial fuel cell (MFC) system was developed and operated continuously for more than 1.5 years to evaluate continuous power generation while treating artificial wastewater containing glucose (10 mM) concurrently. A stable power density of 28 W/m3 was attained with an anode hydraulic retention time of 4.5 h and phosphate buffer as the cathode electrolyte. An overall dissolved organic carbon removal ratio was about 85%, and coulombic efficiency was about 46% in this MFC system. We also analyzed the microbial community structure of anode biofilms in each MFC. Since the environment in each MFC was different due to passing on the products to the next MFC in series, the microbial community structure was different accordingly. The anode biofilm in the first MFC consisted mainly of bacteria belonging to the Gammaproteobacteria, identified as Aeromonas sp., while the Firmicutes dominated the anode biofilms in the second and third MFCs that were mainly fed with acetate. Cyclic voltammetric results supported the presence of a redox compound(s) associated with the anode biofilm matrix, rather than mobile (dissolved) forms, which could be responsible for the electron transfer to the anode. Scanning electron microscopy revealed that the anode biofilms were comprised of morphologically different cells that were firmly attached on the anode surface and interconnected each other with anchor-like filamentous appendages, which might support the results of cyclic voltammetry. (orig.)

  7. Microbial Community Composition and Dynamics of Moving Bed Biofilm Reactor Systems Treating Municipal Sewage

    OpenAIRE

    Biswas, Kristi; Turner, Susan J.

    2012-01-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community comp...

  8. Ethyl Pyruvate: An Anti-Microbial Agent that Selectively Targets Pathobionts and Biofilms

    OpenAIRE

    Debebe, Tewodros; Kr?ger, Monika; Huse, Klaus; Kacza, Johannes; M?hlberg, Katja; K?nig, Brigitte; Birkenmeier, Gerd

    2016-01-01

    The microbiota has a strong influence on health and disease in humans. A causative shift favoring pathobionts is strongly linked to diseases. Therefore, anti-microbial agents selectively targeting potential pathogens as well as their biofilms are urgently demanded. Here we demonstrate the impact of ethyl pyruvate, so far known as ROS scavenger and anti-inflammatory agent, on planktonic microbes and biofilms. Ethyl pyruvate combats preferably the growth of pathobionts belonging to bacteria and...

  9. Clinical implications of microbial biofilms in chronic rhinosinusitis and orbital cellulitis.

    Science.gov (United States)

    Nayak, Niranjan; Satpathy, Gita; Prasad, Sujata; Thakar, Alok; Chandra, Mahesh; Nag, T C

    2016-09-21

    Discovery of sessile mode of microbial existence (Biofilm state) focussed much interest, during the recent years, on the study of biofilms in many recurring and chronic infections. However, the exact role of microbial biofilms in chronic rhinosinusitis and orbital cellulitis were not elucidated earlier. The purpose of the present study was to look for the adherent property and biofilm producing ability of the clinical isolates in chronic rhinosinusitis and orbital cellulitis, and to look for the effects of antimicrobial agents on these biofilms by colorimetric assay and ultrastructural analysis. Organisms were isolated and identified from various clinical samples in patients with chronic sinusitis and orbital cellulitis. Antimicrobial sensitivity testing was carried out by the standard protocol. Biofilms were developed; quantified and antimicrobial drug perfusion through the biofilm model was evaluated by the earlier devised procedure. Electronmicroscopic study of the biofilm was performed by the recommended technique. Of the total of 70 clinical samples processed, 48 i.e. 68.5 % grew bacteria and 13 i.e.(18.6 %) fungi. Staphylococcus aureus (20), S epidermidis (16) and Pseudomonas aeruginosa (6) accounted for the majority of the bacterial isolates. Aspergillus flavus (8), however was the commonest amongst the fungi. A total of 40 bacteria and 8 fungi could be tested for biofilm production. Eighteen (45 %) of the 40 bacterial isolates and 4(50 %) out of the 8 A flavus isolates were found to be biofilm producers. In vitro adherence testing revealed that majority i.e. 16 (88.8 %) of the 18 biofilm positive bacteria were adherent to artificial surfaces. Antimicrobial drug perfusion through the biofilm model was poor. Antimicrobial treatment was totally ineffective against strong biofilm producers, whose electron microscopic picture was quite similar to that observed for biofilm producers without any antimicrobial pre-treatment. Filamentous fungi, like bacteria

  10. The pulsed light inactivation of veterinary relevant microbial biofilms ...

    African Journals Online (AJOL)

    Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose.

  11. Biopolymer and Water Dynamics in Microbial Biofilm Extracellular Polymeric Substance

    Science.gov (United States)

    Hornemann, Jennifer A.; Lysova, Anna A.; Codd, Sarah L.; Seymour, Joseph D.; Busse, Scott C.; Stewart, Philip S.; Brown, Jennifer R.

    2008-01-01

    Nuclear magnetic resonance (NMR) is a noninvasive and nondestructive tool able to access several observable quantities in biofilms such as chemical composition, diffusion, and macroscale structure and transport. Pulsed gradient spin echo (PGSE) NMR techniques were used to measure spectrally resolved biomacromolecular diffusion in biofilm biomass, extending previous research on spectrally resolved diffusion in biofilms. The dominant free water signal was nulled using an inversion recovery modification of the traditional PGSE technique in which the signal from free water is minimized in order to view the spectra of components such as the rotationally mobile carbohydrates, DNA, and proteins. Diffusion data for the major constituents obtained from each of these spectral peaks demonstrate that the biomass of the biofilm contains both a fast and slow diffusion component. The dependence of diffusion on antimicrobial and environmental challenges suggests the polymer molecular dynamics measured by NMR are a sensitive indicator of biofilm function. PMID:18665639

  12. Unraveling microbial biofilms of importance for food microbiology.

    Science.gov (United States)

    Winkelströter, Lizziane Kretli; Teixeira, Fernanda Barbosa dos Reis; Silva, Eliane Pereira; Alves, Virgínia Farias; De Martinis, Elaine Cristina Pereira

    2014-07-01

    The presence of biofilms is a relevant risk factors in the food industry due to the potential contamination of food products with pathogenic and spoilage microorganisms. The majority of bacteria are able to adhere and to form biofilms, where they can persist and survive for days to weeks or even longer, depending on the microorganism and the environmental conditions. The biological cycle of biofilms includes several developmental phases such as: initial attachment, maturation, maintenance, and dispersal. Bacteria in biofilms are generally well protected against environmental stress, consequently, extremely difficult to eradicate and detect in food industry. In the present manuscript, some techniques and compounds used to control and to prevent the biofilm formation are presented and discussed. Moreover, a number of novel techniques have been recently employed to detect and evaluate bacteria attached to surfaces, including real-time polymerase chain reaction (PCR), DNA microarray and confocal laser scanning microscopy. Better knowledge on the architecture, physiology and molecular signaling in biofilms can contribute for preventing and controlling food-related spoilage and pathogenic bacteria. The present study highlights basic and applied concepts important for understanding the role of biofilms in bacterial survival, persistence and dissemination in food processing environments.

  13. Biofilm removal technique using sands as a research tool for accessing microbial attachment on surface

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2004-01-01

    Full Text Available Biofilms have profound impacts on improved survival of the constituent microorganisms in nature. Biofilms were believed to protect constituent microorganisms from sanitizer treatment, provide a more suitable habitat for microorganisms, and become a site for genetic material exchanges between microorganisms. As we realize more about the significance of biofilm, methods used for biofilm study should be consistently developed and evaluated. To determine microbial attachment on surfaces, usually biofilms are grown on substratum surfaces and removed by vortexing with glass beads or scraping. However, scraping is not as effective as vortexing with glass beads. Another approach is direct-agar overlaying which cannot be used with high density biofilm. In this experiment, we compared effectiveness of glass beads (298±28 μm in diameter and sands (width: 221±55 μm and length: 329±118 μm in removing biofilm of Pseudomonas aeruginosa by vortexing method. The results suggested that acid-washed sands, which are significantly less inexpensive than glass beads, were as effective as (P>0.05 analytical grade glass beads in Pseudomonas aeruginosa biofilm removal without inhibiting growth of the organism.

  14. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms

    Directory of Open Access Journals (Sweden)

    Jékely Gáspár

    2007-01-01

    Full Text Available Abstract Background The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation. Presentation of the hypothesis Here I propose that eukaryotic cells originated in a social environment, a differentiated microbial mat or biofilm that was maintained by the cooperative action of its members. Cooperation was costly (e.g. the production of developmental signals or an extracellular matrix but yielded benefits that increased the overall fitness of the social group. I propose that eukaryotes originated as selfish cheaters that enjoyed the benefits of social aggregation but did not contribute to it themselves. The cheaters later evolved into predators that lysed other cells and eventually became professional phagotrophs. During several cycles of social aggregation and dispersal the number of cheaters was contained by a chicken game situation, i.e. reproductive success of cheaters was high when they were in low abundance but was reduced when they were over-represented. Radical changes in cell structure, including the loss of the rigid prokaryotic cell wall and the development of endomembranes, allowed the protoeukaryotes to avoid cheater control and to exploit nutrients more efficiently. Cellular changes were buffered by both the social benefits and the protective physico-chemical milieu of the interior of biofilms. Symbiosis

  15. Sampling natural biofilms: a new route to build efficient microbial anodes.

    Science.gov (United States)

    Erable, Benjamin; Roncato, Marie-Anne; Achouak, Wafa; Bergel, Alain

    2009-05-01

    Electrochemically active biofilms were constructed on graphite anodes under constant polarization at -0.1V vs saturated calomel reference (SCE) with 10 mM acetate as substrate. The reactors were inoculated with three different microbial samples that were drawn from exactly the same place in a French Atlantic coastal port (i) by scraping the biofilm that had formed naturally on the surface of a floating bridge, (ii) by taking marine sediments just under the floating bridge, and (iii) by taking nearby beach sand. Current densities of 2.0 A/m2 were reached using the biofilm sample as inoculum while only 0.4 A/m2 and 0.8 A/m2 were obtained using the underlying sediments and the beach sand, respectively. The structure of bacterial communities forming biofilms was characterized by denaturing gradient gel electrophoresis (DGGE) analysis, and revealed differences between samples with the increase in relative intensities of some bands and the appearance of others. Bacteria close related to Bacteroidetes, Halomonas, and Marinobacterium were retrieved only from the efficient EA-biofilms formed from natural biofilms, whereas, bacteria close related to Mesoflavibacter were predominant on biofilm formed from sediments. The marine biofilm was selected as the inoculum to further optimize the microbial anode. Epifluorescence microscopy and SEM confirmed that maintaining the electrode under constant polarization promoted rapid settlement of the electrode surface by a bacterial monolayer film. The microbial anode was progressively adapted to the consumption of acetate by three serial additions of substrate, thus improving the Coulombic efficiency of acetate consumption from 31 to 89%. The possible oxidation of sulfide played only a very small part in the current production and the biofilm was not able to oxidize hydrogen. Graphite proved to be more efficient than dimensionally stable anode (DSA) or stainless steel butthis result might be due to differences in the surface roughness

  16. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    Science.gov (United States)

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms.

  17. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review

    Science.gov (United States)

    Dos Santos Ramos, Matheus Aparecido; Da Silva, Patrícia Bento; Spósito, Larissa; De Toledo, Luciani Gaspar; Bonifácio, Bruna Vidal; Rodero, Camila Fernanda; Dos Santos, Karen Cristina; Chorilli, Marlus; Bauab, Taís Maria

    2018-01-01

    Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms. PMID:29520143

  18. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review.

    Science.gov (United States)

    Dos Santos Ramos, Matheus Aparecido; Da Silva, Patrícia Bento; Spósito, Larissa; De Toledo, Luciani Gaspar; Bonifácio, Bruna Vidal; Rodero, Camila Fernanda; Dos Santos, Karen Cristina; Chorilli, Marlus; Bauab, Taís Maria

    2018-01-01

    Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms.

  19. Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage.

    Science.gov (United States)

    Biswas, Kristi; Turner, Susan J

    2012-02-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems.

  20. Microbial Biofilm Community Variation in Flowing Habitats: Potential Utility as Bioindicators of Postmortem Submersion Intervals

    Directory of Open Access Journals (Sweden)

    Jennifer M. Lang

    2016-01-01

    Full Text Available Biofilms are a ubiquitous formation of microbial communities found on surfaces in aqueous environments. These structures have been investigated as biomonitoring indicators for stream heath, and here were used for the potential use in forensic sciences. Biofilm successional development has been proposed as a method to determine the postmortem submersion interval (PMSI of remains because there are no standard methods for estimating the PMSI and biofilms are ubiquitous in aquatic habitats. We sought to compare the development of epinecrotic (biofilms on Sus scrofa domesticus carcasses and epilithic (biofilms on unglazed ceramic tiles communities in two small streams using bacterial automated ribosomal intergenic spacer analysis. Epinecrotic communities were significantly different from epilithic communities even though environmental factors associated with each stream location also had a significant influence on biofilm structure. All communities at both locations exhibited significant succession suggesting that changing communities throughout time is a general characteristic of stream biofilm communities. The implications resulting from this work are that epinecrotic communities have distinctive shifts at the first and second weeks, and therefore the potential to be used in forensic applications by associating successional changes with submersion time to estimate a PMSI. The influence of environmental factors, however, indicates the lack of a successional pattern with the same organisms and a focus on functional diversity may be more applicable in a forensic context.

  1. A personal history of research on microbial biofilms and biofilm infections.

    Science.gov (United States)

    Høiby, Niels

    2014-04-01

    The observation of aggregated microorganisms surrounded by a self-produced matrix adhering to surfaces or located in tissues or secretions is as old as microbiology, with both Leeuwenhoek and Pasteur describing the phenomenon. In environmental and technical microbiology, biofilms were already shown 80-90 years ago to be important for biofouling on submerged surfaces, e.g. ships. The concept of biofilm infections and their importance in medicine is, however, dental pellicles and my own observations of heaps of Pseudomonas aeruginosa cells in sputum and lung tissue from chronically infected cystic fibrosis patients. The term biofilm was introduced into medicine in 1985 by Costerton. In the following decades, it became obvious that biofilm infections are widespread in medicine, and their importance is now generally accepted. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Influence of Microbial Biofilms on the Preservation of Primary Soft Tissue in Fossil and Extant Archosaurs

    Science.gov (United States)

    Peterson, Joseph E.; Lenczewski, Melissa E.; Scherer, Reed P.

    2010-01-01

    Background Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Conclusions/Significance Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure. PMID:20967227

  3. Influence of microbial biofilms on the preservation of primary soft tissue in fossil and extant archosaurs.

    Directory of Open Access Journals (Sweden)

    Joseph E Peterson

    Full Text Available BACKGROUND: Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. METHODOLOGY/PRINCIPAL FINDINGS: This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. CONCLUSIONS/SIGNIFICANCE: Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.

  4. Microbial community diversity and composition varies with habitat characteristics and biofilm function in macrophyte-rich streams

    DEFF Research Database (Denmark)

    Levi, Peter S.; Starnawski, Piotr; Poulsen, Britta

    2017-01-01

    as determined by measuring the similarity among communities (i.e. Sørensen similarity index). Furthermore, we found significant correlations between microbial diversity (i.e. Chao1 rarefied richness and Pielou’s evenness) and biofilm structure and function (i.e. C:N ratio and ammonium uptake efficiency......) the variation in microbial diversity may dictate the structural and functional characteristics of stream biofilm communities.......Biofilms in streams play an integral role in ecosystem processes and function yet few studies have investigated the broad diversity of these complex prokaryotic and eukaryotic microbial communities. Physical habitat characteristics can affect the composition and abundance of microorganisms...

  5. Investigation of Hyporheic Microbial Biofilms as Indicators of Heavy Metal Toxicity in the Clark Fork Basin, Montana

    Science.gov (United States)

    Barnhart, E. P.; Hwang, C.; Bouskill, N.; Hornberger, M.; Fields, M. W.

    2015-12-01

    Water-saturated sediments that underlie a stream channel contain microbial biofilms that are often responsible for the majority of the metabolic activity in river and stream ecosystems. Metal contamination from mining effluent can modify the biofilm community structure, diversity, and activity. Developing a mechanistic understanding of the biofilm response to metal contamination could provide a useful bioindicator of metal toxicity due to the ease of standard biofilm sampling, environmental ubiquity of biofilms and the rapid response of biofilms to environmental perturbation and metal toxicity. Here we present data on the structure of the biofilm community (e.g., microbial population composition and diversity) and trace metal concentrations in water, bed sediment and biota (benthic insects) across 15 sites in the Clark Fork Basin. Sample sites were selected across a historically-monitored metal pollution gradient at shallow riffles with bed sediment predominantly composed of pebbles, cobbles, and sand. Bed-sediment samples (for biofilm analysis) were obtained from the top 20 centimeters of the hyporheic zone and sieved using sterile sieves to obtain homogeneous sediment samples with particle sizes ranging from 1.70 to 2.36 millimeters. Linear discriminant analysis and effect size statistical methods were used to integrate the metals concentration data (for water and benthic-insects samples) with the microbial community analysis to identify microbial biomarkers of metal toxicity. The development of rapid microbial biomarker tools could provide reproducible and quantitative insights into the effectiveness of remediation activities on metal toxicity and advances in the field of environmental biomonitoring.

  6. Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors

    Directory of Open Access Journals (Sweden)

    Chieu Anh Kim Ta

    2015-12-01

    Full Text Available Microbial biofilms readily form on many surfaces in nature including plant surfaces. In order to coordinate the formation of these biofilms, microorganisms use a cell-to-cell communication system called quorum sensing (QS. As formation of biofilms on vascular plants may not be advantageous to the hosts, plants have developed inhibitors to interfere with these processes. In this mini review, research papers published on plant-derived molecules that have microbial biofilm or quorum sensing inhibition are reviewed with the objectives of determining the biosynthetic classes of active compounds, their biological activity in assays, and their families of occurrence and range. The main findings are the identification of plant phenolics, including benzoates, phenyl propanoids, stilbenes, flavonoids, gallotannins, proanthocyanidins and coumarins as important inhibitors with both activities. Some terpenes including monoterpenes, sesquiterpenes, diterpenes and triterpenes also have anti-QS and anti-biofilm activities. Relatively few alkaloids were reported. Quinones and organosulfur compounds, especially from garlic, were also active. A common feature is the polar nature of these compounds. Phytochemicals with these activities are widespread in Angiosperms in temperate and tropical regions, but gymnosperms, bryophytes and pteridophytes were not represented.

  7. Photodynamic therapy versus ultrasonic irrigation: interaction with endodontic microbial biofilm, an ex vivo study.

    Science.gov (United States)

    Muhammad, Omid H; Chevalier, Marlene; Rocca, Jean-Paul; Brulat-Bouchard, Nathalie; Medioni, Etienne

    2014-06-01

    Photodynamic therapy was introduced as an adjuvant to conventional chemo-mechanical debridement during endodontic treatment to overcome the persistence of biofilms. The aim of this study was to evaluate the ability of photodynamic therapy (PDT) to disrupt an experimental microbial biofilm inside the root canal in a clinically applicable working time. Thirty extracted teeth were prepared and then divided in three groups. All samples were infected with an artificially formed biofilm made of Enterococcus faecalis, Streptococcus salivarius, Porphyromonas gingivalis and Prevotella intermedia bacteria. First group was treated with Aseptim Plus® photo-activated (LED) disinfection system, second group by a 650 nm Diode Laser and Toluidine blue as photosensitizer, and the third group, as control group, by ultrasonic irrigation (PUI) using EDTA 17% and NaOCl 2.6% solutions. The working time for all three groups was fixed at 3 min. Presence or absence of biofilm was assessed by aerobic and anaerobic cultures. There was no statistically significant difference between results obtained from groups treated by Aseptim Plus® and Diode Laser (Ptherapy could not disrupt endodontic artificial microbial biofilm and could not inhibit bacterial growth in a clinically favorable working time. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Growth dynamic of Naegleria fowleri in a microbial freshwater biofilm.

    Science.gov (United States)

    Goudot, Sébastien; Herbelin, Pascaline; Mathieu, Laurence; Soreau, Sylvie; Banas, Sandrine; Jorand, Frédéric

    2012-09-01

    The presence of pathogenic free-living amoebae (FLA) such as Naegleria fowleri in freshwater environments is a potential public health risk. Although its occurrence in various water sources has been well reported, its presence and associated factors in biofilm remain unknown. In this study, the density of N. fowleri in biofilms spontaneously growing on glass slides fed by raw freshwater were followed at 32 °C and 42 °C for 45 days. The biofilms were collected with their substrata and characterized for their structure, numbered for their bacterial density, thermophilic free-living amoebae, and pathogenic N. fowleri. The cell density of N. fowleri within the biofilms was significantly affected both by the temperature and the nutrient level (bacteria/amoeba ratio). At 32 °C, the density remained constantly low (1-10 N. fowleri/cm(2)) indicating that the amoebae were in a survival state, whereas at 42 °C the density reached 30-900 N. fowleri/cm(2) indicating an active growth phase. The nutrient level, as well, strongly affected the apparent specific growth rate (μ) of N. fowleri in the range of 0.03-0.23 h(-1). At 42 °C a hyperbolic relationship was found between μ and the bacteria/amoeba ratio. A ratio of 10(6) to 10(7) bacteria/amoeba was needed to approach the apparent μ(max) value (0.23 h(-1)). Data analysis also showed that a threshold for the nutrient level of close to 10(4) bacteria/amoeba is needed to detect the growth of N. fowleri in freshwater biofilm. This study emphasizes the important role of the temperature and bacteria as prey to promote not only the growth of N. fowleri, but also its survival. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The microbial community of a biofilm contact reactor for the treatment of winery wastewater.

    Science.gov (United States)

    de Beer, D M; Botes, M; Cloete, T E

    2018-02-01

    To utilize a three-tiered approach to provide insight into the microbial community structure, the spatial distribution and the metabolic capabilities of organisms of a biofilm in the two towers of a high-rate biological contact reactor treating winery wastewater. Next-generation sequencing indicated that bacteria primarily responsible for the removal of carbohydrates, sugars and alcohol were more abundant in tower 1 than tower 2 while nitrifying and denitrifying bacteria were more abundant in tower 2. Yeast populations differed in each tower. Fluorescent in situ hybridization coupled with confocal microscopy showed distribution of organisms confirming an oxygen gradient across the biofilm depth. The Biolog system (ECO plates) specified the different carbon-metabolizing profiles of the two biofilms. The three-tiered approach confirmed that the addition of a second subunit to the bioreactor, expanded the treatment capacity by augmenting the microbial and metabolic diversity of the system, improving the treatment scope of the system. A three-tiered biofilm analysis provided data required to optimize the design of a bioreactor to provide favourable conditions for the development of a microbial consortium, which has optimal waste removal properties for the treatment requirements at hand. © 2017 The Society for Applied Microbiology.

  10. Quantum dots conjugated zinc oxide nanosheets: Impeder of microbial growth and biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Rajendra [Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 (India); Gholap, Haribhau, E-mail: haribhau.gholap@fergusson.edu [Department of Physics, Fergusson College, Pune 411004 (India); Warule, Sambhaji [Department of Physics, Nowrosjee Wadia College, Pune 411001 (India); Banpurkar, Arun; Kulkarni, Gauri [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Gade, Wasudeo, E-mail: wngade@unipune.ac.in [Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 (India)

    2015-01-30

    Graphical abstract: The visible light upon incident on ZnO/CdTe initiate the phenomenon of photocatalytical impedance of biofilm. - Highlights: • Synthesis of efficient light photocatalyst ZnO/CdTe nanostructures by hydrothermal method. • ZnO/CdTe nanostructures show a good antibacterial activity by action on cell membrane. • ZnO/CdTe nanostructures show a good antibiofilm activity, and also act on the cells inside the biofilm. - Abstract: The grieving problem of the 21st century has been the antimicrobial resistance in pathogenic microorganisms to conventional antibiotics. Therefore, developments of novel antibacterial materials which effectively inhibit or kill such resistant microorganisms have become the need of the hour. In the present study, we communicate the synthesis of quantum dots conjugated zinc oxide nanostructures (ZnO/CdTe) as an impeder of microbial growth and biofilm. The as-synthesized nanostructures were characterized by X-ray diffraction, ultraviolet–visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy. The growth impedance property of ZnO and ZnO/CdTe on Gram positive organism, Bacillus subtilis NCIM 2063 and Gram negative, Escherichia coli NCIM 2931 and biofilm impedance activity in Pseudomonas aeruginosa O1 was found to occur due to photocatalytical action on the cell biofilm surfaces. The impedance in microbial growth and biofilm formation was further supported by ruptured appearances of cells and dettrered biofilm under field emission scanning electron and confocal laser scanning microscope. The ZnO/CdTe nanostructures array synthesized by hydrothermal method has an advantage of low growth temperature, and opportunity to fabricate inexpensive material for nano-biotechnological applications.

  11. Biofilm-induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure

    Science.gov (United States)

    Caruso, Alice; Boano, Fulvio; Ridolfi, Luca; Chopp, David L.; Packman, Aaron

    2017-05-01

    Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zone is poorly understood. We present a hydrobiogeochemical model to assess how the growth of heterotrophic and autotrophic biomass affects the transport and transformation of dissolved nitrogen compounds in bed form-induced hyporheic zones. Coupling between hyporheic exchange, nitrogen metabolism, and biomass growth leads to an equilibrium between permeability reduction and microbial metabolism that yields shallow hyporheic flows in a region with low permeability and high rates of microbial metabolism near the stream-sediment interface. The results show that the bioclogging caused by microbial growth can constrain rates and patterns of hyporheic fluxes and microbial transformation rate in many streams.

  12. A personal history of research on microbial biofilms and biofilm infections

    DEFF Research Database (Denmark)

    Høiby, Niels

    2014-01-01

    The observation of aggregated microorganisms surrounded by a self-produced matrix adhering to surfaces or located in tissues or secretions is as old as microbiology, with both Leeuwenhoek and Pasteur describing the phenomenon. In environmental and technical microbiology, biofilms were already sho...

  13. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms

    DEFF Research Database (Denmark)

    Klausen, M.; Gjermansen, Morten; Kreft, J.-U.

    2006-01-01

    Surface-associated microbial communities in many cases display dynamic developmental patterns. Model biofilms formed by Pseudomonas aeruginosa and Pseudomonas putida in laboratory flow-chamber setups represent examples of such behaviour. Dependent on the experimental conditions the bacteria...

  14. Interactions between laponite and microbial biofilms in porous media: implications for colloid transport and biofilm stability.

    Science.gov (United States)

    Leon-Morales, C Felipe; Leis, Andrew P; Strathmann, Martin; Flemming, Hans-Curt

    2004-09-01

    Quartz sand columns and sand-filled microscope flow cells were used to investigate the transport characteristics of the clay colloid laponite, and a biofilm-forming bacterium, Pseudomonas aeruginosa SG81. Separate experiments were performed with each particle to determine their individual transport characteristics in clean sand columns. In a second set of experiments, bacterial biofilms were formed prior to introduction of the clay colloids. In the independent transport experiments, bacteria and laponite each conformed to known physicochemical principles. A sodium chloride concentration of 7 x 10(-2) M caused complete retention of the laponite within the sand columns. P. aeruginosa SG81 was generally less influenced by ionic strength effects; it showed relatively low mobility at all ionic strengths tested and some (albeit reduced) mobility when introduced to the columns in 1M NaCl, the highest concentration tested, but nevertheless showed reproducible trends. Under conditions favourable to laponite retention and biofilm stability (7 x 10(-2) MNaCl), laponite suspensions were able to remobilise a portion of the attached bacterial biomass. At low ionic strength, the profile of laponite elution was also altered in the presence of a P. aeruginosa biofilm. These observations suggest that while a reduction in ionic strength has a dominant influence on the mobilisation of biological and inorganic colloids, the presence of laponite and biomass can have a distinct influence on the mobility of both types of colloids. Since these events are likely to occur in subsurface environments, our results suggest that colloid-biofilm interactions will have implications for colloid-bound contaminant transport and the remobilisation of pathogens.

  15. Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing.

    Science.gov (United States)

    Rademacher, Antje; Zakrzewski, Martha; Schlüter, Andreas; Schönberg, Mandy; Szczepanowski, Rafael; Goesmann, Alexander; Pühler, Alfred; Klocke, Michael

    2012-03-01

    DNAs of two biofilms of a thermophilic two-phase leach-bed biogas reactor fed with rye silage and winter barley straw were sequenced by 454-pyrosequencing technology to assess the biofilm-based microbial community and their genetic potential for anaerobic digestion. The studied biofilms matured on the surface of the substrates in the hydrolysis reactor (HR) and on the packing in the anaerobic filter reactor (AF). The classification of metagenome reads showed Clostridium as most prevalent bacteria in the HR, indicating a predominant role for plant material digestion. Notably, insights into the genetic potential of plant-degrading bacteria were determined as well as further bacterial groups, which may assist Clostridium in carbohydrate degradation. Methanosarcina and Methanothermobacter were determined as most prevalent methanogenic archaea. In consequence, the biofilm-based methanogenesis in this system might be driven by the hydrogenotrophic pathway but also by the aceticlastic methanogenesis depending on metabolite concentrations such as the acetic acid concentration. Moreover, bacteria, which are capable of acetate oxidation in syntrophic interaction with methanogens, were also predicted. Finally, the metagenome analysis unveiled a large number of reads with unidentified microbial origin, indicating that the anaerobic degradation process may also be conducted by up to now unknown species. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition.

    Science.gov (United States)

    Reen, F Jerry; Gutiérrez-Barranquero, José A; Parages, María L; O Gara, Fergal

    2018-03-01

    Antibiotic resistance is a growing threat worldwide, causing serious problems in the treatment of microbial infections. The discovery and development of new drugs is urgently needed to overcome this problem which has greatly undermined the clinical effectiveness of conventional antibiotics. An intricate cell-cell communication system termed quorum sensing (QS) and the coordinated multicellular behaviour of biofilm formation have both been identified as promising targets for the treatment and clinical management of microbial infections. QS systems allow bacteria to adapt rapidly to harsh conditions, and are known to promote the formation of antibiotic tolerant biofilm communities. It is well known that biofilm is a recalcitrant mode of growth and it also increases bacterial resistance to conventional antibiotics. The pharmacological properties of coumarins have been well described, and these have included several that possess antimicrobial properties. More recently, reports have highlighted the potential role of coumarins as alternative therapeutic strategies based on their ability to block the QS signalling systems and to inhibit the formation of biofilms in clinically relevant pathogens. In addition to human infections, coumarins have also been found to be effective in controlling plant pathogens, infections in aquaculture, food spoilage and in reducing biofouling caused by eukaryotic organisms. Thus, the coumarin class of small molecule natural product are emerging as a promising strategy to combat bacterial infections in the new era of antimicrobial resistance.

  17. Microbial Activation of Wooden Vats Used for Traditional Cheese Production and Evolution of Neoformed Biofilms.

    Science.gov (United States)

    Gaglio, Raimondo; Cruciata, Margherita; Di Gerlando, Rosalia; Scatassa, Maria Luisa; Cardamone, Cinzia; Mancuso, Isabella; Sardina, Maria Teresa; Moschetti, Giancarlo; Portolano, Baldassare; Settanni, Luca

    2016-01-15

    Three Lactococcus lactis subsp. cremoris strains were used to develop ad hoc biofilms on the surfaces of virgin wooden vats used for cheese production. Two vats (TZ) were tested under controlled conditions (pilot plant), and two vats (TA) were tested under uncontrolled conditions (industrial plant). In each plant, one vat (TA1 and TZ1) was used for the control, traditional production of PDO Vastedda della Valle del Belìce (Vastedda) cheese, and one (TA2 and TZ2) was used for experimental production performed after lactococcal biofilm activation and the daily addition of a natural whey starter culture (NWSC). Microbiological and scanning electron microscopy analyses showed differences in terms of microbial levels and composition of the neoformed biofilms. The levels of the microbial groups investigated during cheese production showed significant differences between the control trials and between the control and experimental trials, but the differences were not particularly marked between the TA2 and TZ2 productions, which showed the largest numbers of mesophilic lactic acid bacterium (LAB) cocci. LAB populations were characterized phenotypically and genotypically, and 44 dominant strains belonging to 10 species were identified. Direct comparison of the polymorphic profiles of the LAB collected during cheese making showed that the addition of the NWSC reduced their biodiversity. Sensory evaluation showed that the microbial activation of the wooden vats with the multistrain Lactococcus culture generated cheeses with sensory attributes comparable to those of commercial cheese. Thus, neoformed biofilms enable a reduction of microbial variability and stabilize the sensorial attributes of Vastedda cheese. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Curcumin-mediated anti-microbial photodynamic therapy against Candida dubliniensis biofilms.

    Science.gov (United States)

    Sanitá, Paula Volpato; Pavarina, Ana Cláudia; Dovigo, Lívia Nordi; Ribeiro, Ana Paula Dias; Andrade, Mariana Carvalho; Mima, Ewerton Garcia de Oliveira

    2017-11-13

    The purpose of this study was to evaluate the effectiveness of anti-microbial photodynamic therapy (aPDT) mediated by curcumin (Cur) associated with LED light against biofilms of Candida dubliniensis, and further, investigate cellular uptake and drug penetration through the biofilms under confocal laser scanning microscopy (CLSM). Four C. dubliniensis strains were tested: three clinical isolates from HIV-positive patients and one reference strain (CBS 7987). Biofilms were treated with three Cur concentrations (20.0, 30.0, and 40.0 μM). All samples were incubated in the dark for 20 min and exposed to a 5.28 J/cm 2 of LED light fluence. Additional samples of each strain were treated either with Cur or LED light only. Control samples had neither Cur nor light. After aPDT, results were read using the XTT salt reduction method. The data were statistically analyzed by two-way ANOVA followed by Games-Howell post-hoc test (α = 0.05). Confocal laser scanning microscopy was used to verify both the uptake of Cur by yeast cells and its penetration through the biofilm. The results showed that aPDT promoted significant reduction on the metabolism of the biofilm-organized cells of C. dubliniensis. Further, while Cur was rapidly taken up by C. dubliniensis cells, a longer time interval was required to allow Cur penetration into biofilm cells. Based on these results, aPDT associating LED and Cur presents promising potential on fungal control of biofilms of C. dubliniensis.

  19. Molecular Techniques Revealed Highly Diverse Microbial Communities in Natural Marine Biofilms on Polystyrene Dishes for Invertebrate Larval Settlement

    KAUST Repository

    Lee, On On

    2014-01-09

    Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members in the communities using traditional 16S rRNA gene-based molecular methods and in identifying the chemical signals involved. In this study, pyrosequencing was used to characterize the bacterial communities in intertidal and subtidal marine biofilms developed during two seasons. We revealed highly diverse biofilm bacterial communities that varied with season and tidal level. Over 3,000 operational taxonomic units with estimates of up to 8,000 species were recovered in a biofilm sample, which is by far the highest number recorded in subtropical marine biofilms. Nineteen phyla were found, of which Cyanobacteria and Proteobacteria were the most dominant one in the intertidal and subtidal biofilms, respectively. Apart from these, Actinobacteria, Bacteroidetes, and Planctomycetes were the major groups recovered in both intertidal and subtidal biofilms, although their relative abundance varied among samples. Full-length 16S rRNA gene clone libraries were constructed for the four biofilm samples and showed similar bacterial compositions at the phylum level to those revealed by pyrosequencing. Laboratory assays confirmed that cyrids of the barnacle Balanus amphitrite preferred to settle on the intertidal rather than subtidal biofilms. This preference was independent of the biofilm bacterial density or biomass but was probably related to the biofilm community structure, particularly, the Proteobacterial and Cyanobacterial groups. © 2014 Springer Science+Business Media New York.

  20. The nanostructure of microbially-reduced graphene oxide fosters thick and highly-performing electrochemically-active biofilms

    Science.gov (United States)

    Virdis, Bernardino; Dennis, Paul G.

    2017-07-01

    Biofilms of electrochemically-active organisms are used in microbial electrochemical technologies (METs) to catalyze bioreactions otherwise not possible at bare electrodes. At present, however, achievable current outputs are still below levels considered sufficient for economic viability of large-scale METs implementations. Here, we report three-dimensional, self-aggregating biofilm composites comprising of microbial cells embedded with microbially-reduced graphene oxide (rGO) nanoparticles to form a thick macro-porous network with superior electrochemical properties. In the presence of metabolic substrate, these hybrid biofilms are capable of producing up to five times more catalytic current than the control biofilms. Cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy, show that in spite of the increased thickness, the biofilms amended with GO display lower polarization/charge transfer resistance compared to the controls, which we ascribe to the incorporation of rGO into the biofilms, which (1) promotes fast electron transfer, yet conserving a macroporous structure that allows free diffusion of reactants and products, and (2) enhances the interfacial dynamics by allowing a higher load of microbial cells per electrode surface area. These results suggest an easy-to-apply and cost-effective method to produce high-performing electrochemically-active biofilms in situ.

  1. Microbial diversity in a thermophilic aerobic biofilm process: analysis by length heterogeneity PCR (LH-PCR).

    Science.gov (United States)

    Tiirola, Marja A; Suvilampi, Juhani E; Kulomaa, Markku S; Rintala, Jukka A

    2003-05-01

    A two-stage pilot-scale thermophilic aerobic suspended carrier biofilm process (SCBP) was set up for the on-site treatment of pulp and paper mill whitewater lining. The microbial diversity in this process was analyzed by length heterogeneity analysis of PCR-amplified 16S ribosomal DNA. The primer pair selected for PCR amplification was first evaluated by a computational analysis of fragment lengths in ten main phylogenetical eubacterial groups. The fragment contained the first third of the 16S rRNA gene, which was shown to vary naturally between 465 and 563 bp in length. The length heterogeneity analysis of polymerase chain reaction (LH-PCR) profile of the biomass attached to carrier elements was found to be diverse in both stages of the SCBP. During normal operating conditions, sequences belonging to beta-Proteobacteria, Cytophaga/Flexibacter/Bacteroides group and gamma-Proteobacteria were assigned to the most prominent LH-PCR peak. Samples from the suspended biomass consisted of completely different bacterial populations, which were, however, similar in the serial reactors. The pilot process experienced alkaline shocks, after which Bacillus-like sequences were detected in both the biofilm and suspended biomass. However, when the conditions were reversed, the normal microbial population in the biofilm recovered rapidly without further biomass inoculations. This study shows that LH-PCR is a valuable method for profiling microbial diversity and dynamics in industrial wastewater processes.

  2. Potential Antibacterial Activity of Carvacrol-Loaded Poly(DL-lactide-co-glycolide (PLGA Nanoparticles against Microbial Biofilm

    Directory of Open Access Journals (Sweden)

    Luigina Cellini

    2011-08-01

    Full Text Available The ability to form biofilms contributes significantly to the pathogenesis of many microbial infections, including a variety of ocular diseases often associated with the biofilm formation on foreign materials. Carvacrol (Car. is an important component of essential oils and recently has attracted much attention pursuant to its ability to promote microbial biofilm disruption. In the present study Car. has been encapsulated in poly(DL-lactide-co-glycolide (PLGA nanocapsules in order to obtain a suitable drug delivery system that could represent a starting point for developing new therapeutic strategies against biofilm-associated infections, such as improving the drug effect by associating an antimicrobial agent with a biofilm viscoelasticity modifier.

  3. Microbiomes in Dishwashers: Analysis of the microbial diversity and putative opportunistic pathogens in dishwasher biofilm communities.

    Science.gov (United States)

    Raghupathi, Prem Krishnan; Zupančič, Jerneja; Brejnrod, Asker Daniel; Jacquiod, Samuel; Houf, Kurt; Burmølle, Mette; Gunde-Cimerman, Nina; Sørensen, Søren J

    2018-01-12

    Extreme habitats are not only limited to natural environments, but also apply to man-made systems, for instance household appliances such as dishwashers. Limiting factors, such as high temperatures, high and low pH, high NaCl concentrations, presence of detergents and shear force from water during washing cycles define the microbial survival in this extreme system. Fungal and bacterial diversity in biofilms isolated from rubber seals of 24 different household dishwashers were investigated using next generation sequencing. Bacterial genera such as Pseudomonas , Escherichia and Acinetobacter , known to include opportunistic pathogens, were represented in most samples. The most frequently encountered fungal genera in these samples belonged to Candida , Cryptococcus and Rhodotorula , also known to include opportunistic pathogenic representatives. This study showed how specific conditions of the dishwashers impact the abundance of microbial groups, and investigated on the inter- and intra-kingdom interactions that shape these biofilms. The age, the usage frequency and hardness of incoming tap water of dishwashers had significant impact on bacterial and fungal composition. Representatives of Candida spp. were found at highest prevalence (100%) in all dishwashers and are assumingly one of the first colonizers in recent dishwashers. Pairwise correlations in tested microbiome showed that certain bacterial groups co-occur and so did the fungal groups. In mixed bacterial-fungal biofilms, early adhesion, contact and interactions were vital in the process of biofilm formation, where mixed complexes of the two, bacteria and fungi, could provide a preliminary biogenic structure for the establishment of these biofilms. IMPORTANCE Worldwide demand for household appliances, such as dishwashers and washing machines, is increasing, as well as the number of immune-compromised individuals. The harsh conditions in household dishwashers should prevent growth of most microorganisms

  4. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent.

    Science.gov (United States)

    Baranitharan, E; Khan, Maksudur R; Prasad, D M R; Teo, Wee Fei Aaron; Tan, Geok Yuan Annie; Jose, Rajan

    2015-01-01

    Anode biofilm is a crucial component in microbial fuel cells (MFCs) for electrogenesis. Better knowledge about the biofilm development process on electrode surface is believed to improve MFC performance. In this study, double-chamber microbial fuel cell was operated with diluted POME (initial COD = 1,000 mg L(-1)) and polyacrylonitrile carbon felt was used as electrode. The maximum power density, COD removal efficiency and Coulombic efficiency were found as 22 mW m(-2), 70 and 24 %, respectively. FTIR and TGA analysis confirmed the formation of biofilm on the electrode surface during MFC operation. The impact of anode biofilm on anodic polarization resistance was investigated using electrochemical impedance spectroscopy (EIS) and microbial community changes during MFC operation using denaturing gradient gel electrophoresis (DGGE). The EIS-simulated results showed the reduction of charge transfer resistance (R ct) by 16.9 % after 14 days of operation of the cell, which confirms that the development of the microbial biofilm on the anode decreases the R ct and therefore improves power generation. DGGE analysis showed the variation in the biofilm composition during the biofilm growth until it forms an initial stable microbial community, thereafter the change in the diversity would be less. The power density showed was directly dependent on the biofilm development and increased significantly during the initial biofilm development period. Furthermore, DGGE patterns obtained from 7th and 14th day suggest the presence of less diversity and probable functional redundancy within the anodic communities possibly responsible for the stable MFC performance in changing environmental conditions.

  5. Microbial Diversity in the Early In Vivo-Formed Dental Biofilm.

    Science.gov (United States)

    Heller, D; Helmerhorst, E J; Gower, A C; Siqueira, W L; Paster, B J; Oppenheim, F G

    2016-01-08

    Although the mature dental biofilm composition is well studied, there is very little information on the earliest phase of in vivo tooth colonization. Progress in dental biofilm collection methodologies and techniques of large-scale microbial identification have made new studies in this field of oral biology feasible. The aim of this study was to characterize the temporal changes and diversity of the cultivable and noncultivable microbes in the early dental biofilm. Samples of early dental biofilm were collected from 11 healthy subjects at 0, 2, 4, and 6 h after removal of plaque and pellicle from tooth surfaces. With the semiquantitative Human Oral Microbiome Identification Microarray (HOMIM) technique, which is based on 16S rRNA sequence hybridizations, plaque samples were analyzed with the currently available 407 HOMIM microbial probes. This led to the identification of at least 92 species, with streptococci being the most abundant bacteria across all time points in all subjects. High-frequency detection was also made with Haemophilus parainfluenzae, Gemella haemolysans, Slackia exigua, and Rothia species. Abundance changes over time were noted for Streptococcus anginosus and Streptococcus intermedius (P = 0.02), Streptococcus mitis bv. 2 (P = 0.0002), Streptococcus oralis (P = 0.0002), Streptococcus cluster I (P = 0.003), G. haemolysans (P = 0.0005), and Stenotrophomonas maltophilia (P = 0.02). Among the currently uncultivable microbiota, eight phylotypes were detected in the early stages of biofilm formation, one belonging to the candidate bacterial division TM7, which has attracted attention due to its potential association with periodontal disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single

  7. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents?

    Science.gov (United States)

    Pandin, Caroline; Le Coq, Dominique; Canette, Alexis; Aymerich, Stéphane; Briandet, Romain

    2017-07-01

    Almost one-third of crop yields are lost every year due to microbial alterations and diseases. The main control strategy to limit these losses is the use of an array of chemicals active against spoilage and unwanted pathogenic microorganisms. Their massive use has led to extensive environmental pollution, human poisoning and a variety of diseases. An emerging alternative to this chemical approach is the use of microbial biocontrol agents. Biopesticides have been used with success in several fields, but a better understanding of their mode of action is necessary to better control their activity and increase their use. Very few studies have considered that biofilms are the preferred mode of life of microorganisms in the target agricultural biotopes. Increasing evidence shows that the spatial organization of microbial communities on crop surfaces may drive important bioprotection mechanisms. The aim of this review is to summarize the evidence of biofilm formation by biocontrol agents on crops and discuss how this surface-associated mode of life may influence their biology and interactions with other microorganisms and the host and, finally, their overall beneficial activity. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Syntrophic microbial communities on straw as biofilm carrier increase the methane yield of a biowaste-digesting biogas reactor

    Directory of Open Access Journals (Sweden)

    Frank R. Bengelsdorf

    2015-08-01

    Full Text Available Biogas from biowaste can be an important source of renewable energy, but the fermentation process of low-structure waste is often unstable. The present study uses a full-scale biogas reactor to test the hypothesis that straw as an additional biofilm carrier will increase methane yield; and this effect is mirrored in a specific microbial community attached to the straw. Better reactor performance after addition of straw, at simultaneously higher organic loading rate and specific methane yield confirmed the hypothesis. The microbial communities on straw as a biofilm carrier and of the liquid reactor content were investigated using 16S rDNA amplicon sequencing by means of 454 pyrosequencing technology. The results revealed high diversity of the bacterial communities in the liquid reactor content as well as the biofilms on the straw. The most abundant archaea in all samples belonged to the genera Methanoculleus and Methanosarcina. Addition of straw resulted in a significantly different microbial community attached to the biofilm carrier. The bacterium Candidatus Cloacamonas acidaminovorans and methanogenic archaea of the genus Methanoculleus dominated the biofilm on straw. Syntrophic interactions between the hydrogenotrophic Methanoculleus sp. and members of the hydrogen-producing bacterial community within biofilms may explain the improved methane yield. Thus, straw addition can be used to improve and to stabilize the anaerobic process in substrates lacking biofilm-supporting structures.

  9. Effect of UV on De-NOx performance and microbial community of a hybrid catalytic membrane biofilm reactor

    Science.gov (United States)

    Chen, Zhouyang; Huang, Zhensha; He, Yiming; Xiao, Xiaoliang; Wei, Zaishan

    2018-02-01

    The hybrid membrane catalytic biofilm reactor provides a new way of flue gas denitration. However, the effects of UV on denitrification performance, microbial community and microbial nitrogen metabolism are still unknown. In this study, the effects of UV on deNO x performance, nitrification and denitrification, microbial community and microbial nitrogen metabolism of a bench scale N-TiO2/PSF hybrid catalytic membrane biofilm reactor (HCMBR) were evaluated. The change from nature light to UV in the HCMBR leads to the fall of NO removal efficiency of HCMBR from 92.8% to 81.8%. UV affected the microbial community structure, but did not change microbial nitrogen metabolism, as shown by metagenomics sequencing method. Some dominant phyla, such as Gammaproteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Alphaproteobacteria, increased in abundance, whereas others, such as Proteobacteria and Betaproteobacteria, decreased. There were nitrification, denitrification, nitrogen fixation, and organic nitrogen metabolism in the HCMBR.

  10. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium.

    Science.gov (United States)

    Brenner, Katie; Karig, David K; Weiss, Ron; Arnold, Frances H

    2007-10-30

    Microbial consortia form when multiple species colocalize and communally generate a function that none is capable of alone. Consortia abound in nature, and their cooperative metabolic activities influence everything from biodiversity in the global food chain to human weight gain. Here, we present an engineered consortium in which the microbial members communicate with each other and exhibit a "consensus" gene expression response. Two colocalized populations of Escherichia coli converse bidirectionally by exchanging acyl-homoserine lactone signals. The consortium generates the gene-expression response if and only if both populations are present at sufficient cell densities. Because neither population can respond without the other's signal, this consensus function can be considered a logical AND gate in which the inputs are cell populations. The microbial consensus consortium operates in diverse growth modes, including in a biofilm, where it sustains its response for several days.

  11. Large-scale environmental controls on microbial biofilms in high-alpine streams

    Directory of Open Access Journals (Sweden)

    T. J. Battin

    2004-01-01

    Full Text Available Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater geochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal, groundwater-fed (krenal and snow-fed (rhithral streams - all of them representative for alpine stream networks - and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportionately high microbial growth. Tributaries are relatively more constant and favorable environments than kryal streams, and serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g., snowmelt of elevated hydrologic linkage among streams. Ice and snow dynamics - and their impact on the amount and composition of dissolved organic matter - have a crucial impact on stream biofilms, and we thus need to consider microbes and critical hydrological episodes in future models of alpine stream communities.

  12. Bacterial Diversity Associated with Anodic Biofilms in Microbial Fuel Cells Fed with Wastewater

    Directory of Open Access Journals (Sweden)

    Alexander Mora Collazos

    2017-01-01

    Full Text Available This study evaluated the bacterial diversity associated with biofilms formed on the anode of microbial fuel cells (MFC, by analyzing the 16S rRNA gene and observations by scanning electron microscopy. Single chambered MFC were constructed and kept in operation for 30 days using environmental samples as inoculum and sole energy substrate; the MFC were monitored as a function of energy production in the course of the experiment; at endpoint, molecular characterization and observations using scanning electron microscopy was performed to the formed biofilms. Values of maximum power density of 4.85 mW/m2 for domestic wastewater and 1.85 mW/m2 in the case of industrial wastewater are reported, with declines of 71 % of the BOD for domestic wastewater and 59 % of the BOD in the case of industrial wastewater. Recovery of 15 unique sequences from the amplification of 16S rRNA gene obtained from the biofilms formed on the anodes was accomplished. Phylogenetic analysis placed these sequences in the Deltaproteobacteria class. The two environmental substrates contain an important and interesting microbial diversity, showing them very promising for the construction and operation of MFC and implementing biodegradation of organic material.

  13. Spatial and temporal analogies in microbial communities in natural drinking water biofilms.

    Science.gov (United States)

    Douterelo, I; Jackson, M; Solomon, C; Boxall, J

    2017-03-01

    Biofilms are ubiquitous throughout drinking water distribution systems (DWDS), playing central roles in system performance and delivery of safe clean drinking water. However, little is known about how the interaction of abiotic and biotic factors influence the microbial communities of these biofilms in real systems. Results are presented here from a one-year study using in situ sampling devices installed in two operational systems supplied with different source waters. Independently of the characteristics of the incoming water and marked differences in hydraulic conditions between sites and over time, a core bacterial community was observed in all samples suggesting that internal factors (autogenic) are central in shaping biofilm formation and composition. From this it is apparent that future research and management strategies need to consider the specific microorganisms found to be able to colonise pipe surfaces and form biofilms, such that it might be possible to exclude these and hence protect the supply of safe clean drinking water. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms

    DEFF Research Database (Denmark)

    Merkey, Brian; Rittmann, Bruce E.; Chopp, David L.

    2009-01-01

    . In this paper, we develop and use a mathematical model to describe a model biofilm system that includes autotrophic and heterotrophic bacteria and the key products produced by the bacteria. The model combines the methods of earlier multi-species models with a multi-component biofilm model in order to explore...... the interaction between species via exchange of soluble microbial products (SMP). We show that multiple parameter sets are able to describe the findings of experimental studies, and that heterotrophs growing on autotrophically produced SMP may pursue either r- or K-strategies to sustain themselves when SMP...... is their only substrate. We also show that heterotrophs can colonize some distance from the autotrophs and still be sustained by autotrophically produced SMP. This work defines the feasible range of parameters for utilization of SMP by heterotrophs and the nature of the interactions between autotrophs...

  15. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life...... is believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review...

  16. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell

    Directory of Open Access Journals (Sweden)

    Hotta Yasuaki

    2008-01-01

    Full Text Available Abstract Background Microbial fuel cells (MFCs are devices that exploit microorganisms to generate electric power from organic matter. Despite the development of efficient MFC reactors, the microbiology of electricity generation remains to be sufficiently understood. Results A laboratory-scale two-chamber microbial fuel cell (MFC was inoculated with rice paddy field soil and fed cellulose as the carbon and energy source. Electricity-generating microorganisms were enriched by subculturing biofilms that attached onto anode electrodes. An electric current of 0.2 mA was generated from the first enrichment culture, and ratios of the major metabolites (e.g., electric current, methane and acetate became stable after the forth enrichment. In order to investigate the electrogenic microbial community in the anode biofilm, it was morphologically analyzed by electron microscopy, and community members were phylogenetically identified by 16S rRNA gene clone-library analyses. Electron microscopy revealed that filamentous cells and rod-shaped cells with prosthecae-like filamentous appendages were abundantly present in the biofilm. Filamentous cells and appendages were interconnected via thin filaments. The clone library analyses frequently detected phylotypes affiliated with Clostridiales, Chloroflexi, Rhizobiales and Methanobacterium. Fluorescence in-situ hybridization revealed that the Rhizobiales population represented rod-shaped cells with filamentous appendages and constituted over 30% of the total population. Conclusion Bacteria affiliated with the Rhizobiales constituted the major population in the cellulose-fed MFC and exhibited unique morphology with filamentous appendages. They are considered to play important roles in the cellulose-degrading electrogenic community.

  17. Benzene degradation in a denitrifying biofilm reactor: activity and microbial community composition.

    Science.gov (United States)

    van der Waals, Marcelle J; Atashgahi, Siavash; da Rocha, Ulisses Nunes; van der Zaan, Bas M; Smidt, Hauke; Gerritse, Jan

    2017-06-01

    Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than 14 years on benzene with nitrate as electron acceptor. We determined steady state degradation rates, microbial community composition dynamics in the biofilm, and the initial anaerobic benzene degradation reactions. Benzene was degraded at a rate of 0.15 μmol/mg protein/day and a first-order rate constant of 3.04/day which was fourfold higher than rates reported previously. Bacteria belonging to the Peptococcaceae were found to play an important role in this anaerobic benzene-degrading biofilm culture, but also members of the Anaerolineaceae were predicted to be involved in benzene degradation or benzene metabolite degradation based on Illumina MiSeq analysis of 16S ribosomal RNA genes. Biomass retention in the reactor using a filtration finger resulted in reduction of benzene degradation capacity. Detection of the benzene carboxylase encoding gene, abcA, and benzoic acid in the culture vessel indicated that benzene degradation proceeds through an initial carboxylation step.

  18. Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors

    Directory of Open Access Journals (Sweden)

    Jiseon You

    2015-12-01

    Full Text Available Stability and reliability of microbial fuel cell anodic biofilms, consisting of mixed cultures, were investigated in a continuously fed system. Two groups of anodic biofilm matured with different substrates, acetate and casein for 20–25 days, reached steady states and produced 80–87 μW and 20–29 μW consistently for 3 weeks, respectively. When the substrates were swapped, the casein-enriched group showed faster response to acetate and higher power output, compared to the acetate-enriched group. Also when the substrates were switched back to their original groups, the power output of both groups returned to the previous levels more quickly than when the substrates were swapped the first time. During the substrate change, both MFC groups showed stable power output once they reached their steady states and the output of each group with different substrates was reproducible within the same group. Community level physiological profiling also revealed the possibility of manipulating anodic biofilm metabolisms through exposure to different feedstock conditions.

  19. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams.

    Science.gov (United States)

    Ren, Ze; Gao, Hongkai; Elser, James J; Zhao, Qiudong

    2017-10-04

    Benthic biofilms in glacier-fed streams harbor diverse microorganisms driving biogeochemical cycles and, consequently, influencing ecosystem-level processes. Benthic biofilms are vulnerable to glacial retreat induced by climate change. To investigate microbial functions of benthic biofilms in glacier-fed streams, we predicted metagenomes from 16s rRNA gene sequence data using PICRUSt and identified functional genes associated with nitrogen and sulfur metabolisms based on KEGG database and explored the relationships between metabolic pathways and abiotic factors in glacier-fed streams in the Tianshan Mountains in Central Asia. Results showed that the distribution of functional genes was mainly associated with glacier area proportion, glacier source proportion, total nitrogen, dissolved organic carbon, and pH. For nitrogen metabolism, the relative abundance of functional genes associated with dissimilatory pathways was higher than those for assimilatory pathways. The relative abundance of functional genes associated with assimilatory sulfate reduction was higher than those involved with the sulfur oxidation system and dissimilatory sulfate reduction. Hydrological factors had more significant correlations with nitrogen metabolism than physicochemical factors and anammox was the most sensitive nitrogen cycling pathway responding to variation of the abiotic environment in these glacial-fed streams. In contrast, sulfur metabolism pathways were not sensitive to variations of abiotic factors in these systems.

  20. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Directory of Open Access Journals (Sweden)

    Marie Ragon

    Full Text Available BACKGROUND: The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta and ascomycete fungi (Ascomycota dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. CONCLUSIONS/SIGNIFICANCE: Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in

  1. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2011-01-01

    A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was req....../L (∼233 ± 1 mA/m2), with a response time of...

  2. Microbial biofilms on the sandstone monuments of the Angkor Wat Complex, Cambodia.

    Science.gov (United States)

    Gaylarde, Christine C; Rodríguez, César Hernández; Navarro-Noya, Yendi E; Ortega-Morales, B Otto

    2012-02-01

    Discoloring biofilms from Cambodian temples Angkor Wat, Preah Khan, and the Bayon and West Prasat in Angkor Thom contained a microbial community dominated by coccoid cyanobacteria. Molecular analysis identified Chroococcidiopsis as major colonizer, but low similarity values (<95%) suggested a similar genus or species not present in the databases. In only two of the six sites sampled were filamentous cyanobacteria, Microcoleus, Leptolyngbya, and Scytonema, found; the first two detected by sequencing of 16S rRNA gene library clones from samples of a moist green biofilm on internal walls in Preah Khan, where Lyngbya (possibly synonymous with Microcoleus) was seen by direct microscopy as major colonizer. Scytonema was detected also by microscopy on an internal wall in the Bayon. This suggests that filamentous cyanobacteria are more prevalent in internal (high moisture) areas. Heterotrophic bacteria were found in all samples. DNA sequencing of bands from DGGE gels identified Proteobacteria (Stenotrophomonas maltophilia and Methylobacterium radiotolerans) and Firmicutes (Bacillus sp., Bacillus niacini, Bacillus sporothermodurans, Lysinibacillus fusiformis, Paenibacillus sp., Paenibacillus panacisoli, and Paenibacillus zanthoxyli). Some of these bacteria produce organic acids, potentially degrading stone. Actinobacteria, mainly streptomycetes, were present in most samples; algae and fungi were rare. A dark-pigmented filamentous fungus was detected in internal and external Preah Khan samples, while the alga Trentepohlia was found only in samples taken from external, pink-stained stone at Preah Khan. Results show that these microbial biofilms are mature communities whose major constituents are resistant to dehydration and high levels of irradiation and can be involved in deterioration of sandstone. Such analyses are important prerequisites to the application of control strategies.

  3. Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells.

    Science.gov (United States)

    Pozo, Guillermo; Lu, Yang; Pongy, Sebastien; Keller, Jürg; Ledezma, Pablo; Freguia, Stefano

    2017-12-01

    Selective microbial retention is of paramount importance for the long-term performance of cathodic sulfate reduction in microbial electrolysis cells (MECs) due to the slow growth rate of autotrophic sulfate-reducing bacteria. In this work, we investigate the biofilm retention and current-to-sulfide conversion efficiency using carbon granules (CG) or multi-wall carbon nanotubes deposited on reticulated vitreous carbon (MWCNT-RVC) as electrode materials. For ~2months, the MECs were operated at sulfate loading rates of 21 to 309gSO 4 -S/m 2 /d. Although MWCNT-RVC achieved a current density of 57±11A/m 2 , greater than the 32±9A/m 2 observed using CG, both materials exhibited similar sulfate reduction rates (SRR), with MWCNT-RVC reaching 104±16gSO 4 -S/m 2 /d while 110±13gSO 4 -S/m 2 /d were achieved with CG. Pyrosequencing analysis of the 16S rRNA at the end of experimentation revealed a core community dominated by Desulfovibrio (28%), Methanobacterium (19%) and Desulfomicrobium (14%), on the MWCNT-RVC electrodes. While a similar Desulfovibrio relative abundance of 29% was found in CG-biofilms, Desulfomicrobium was found to be significantly less abundant (4%) and Methanobacterium practically absent (0.2%) on CG electrodes. Surprisingly, our results show that CG can achieve higher current-to-sulfide efficiencies at lower power consumption than the nano-modified three-dimensional MWCNT-RVC. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Deciphering the Contribution of Biofilm to the Pathogenesis of Peritoneal Dialysis Infections: Characterization and Microbial Behaviour on Dialysis Fluids.

    Directory of Open Access Journals (Sweden)

    Joana Sampaio

    Full Text Available Infections are major complications in peritoneal dialysis (PD with a multifactorial etiology that comprises patient, microbial and dialytic factors. This study aimed at investigating the contribution of microbial biofilms on PD catheters to recalcitrant infections and their interplay with PD related-factors. A prospective observational study was performed on 47 patients attending Centro Hospitalar of Porto and Vila Nova de Gaia/Espinho to whom the catheter was removed due to infectious (n = 16 and non-infectious causes (n = 31. Microbial density on the catheter was assessed by culture methods and the isolated microorganisms identified by matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry. The effect of conventional and three biocompatible PD solutions on 16 Coagulase Negative Staphylococci (CNS and 10 Pseudomonas aeruginosa strains planktonic growth and biofilm formation was evaluated. Cultures were positive in 87.5% of the catheters removed due infectious and 90.3% removed due to non-infectious causes. However, microbial yields were higher on the cuffs of catheters removed due to infection vs. non-infection. Staphylococci (CNS and Staphylococcus aureus and P. aeruginosa were the predominant species: 32% and 20% in the infection and 43.3% and 22.7% in the non-infection group, respectively. In general, PD solutions had a detrimental effect on planktonic CNS and P. aeruginosa strains growth. All strains formed biofilms in the presence of PD solutions. The solutions had a more detrimental effect on P. aeruginosa than CNS strains. No major differences were observed between conventional and biocompatible solutions, although in icodextrin solution biofilm biomass was lower than in bicarbonate/lactate solution. Overall, we show that microbial biofilm is universal in PD catheters with the subclinical menace of Staphylococci and P. aeruginosa. Cuffs colonization may significantly contribute to infection. PD solutions

  5. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus

    Science.gov (United States)

    2011-01-01

    Background Chronic, infected wounds typically contain multiple genera of bacteria, including Staphylococcus aureus, many of which are strong biofilm formers. Bacterial biofilms are thought to be a direct impediment to wound healing. New therapies that focus on a biofilm approach may improve the recovery and healing rate for infected wounds. In this study, cathelicidins and related short, synthetic peptides were tested for their anti-microbial effectiveness as well as their ability to inhibit the ability of S. aureus to form biofilms. Results The helical human cathelicidin LL-37 was tested against S. aureus, and was found to exhibit effective anti-microbial, anti-attachment as well as anti-biofilm activity at concentrations in the low μg/ml range. The effect of peptide chirality and associated protease-resistance was explored through the use of an all-D amino acid peptide, D-LL-37, and in turn compared to scrambled LL-37. Helical cathelicidins have been identified in other animals such as the Chinese cobra, Naja atra (NA-CATH). We previously identified an 11-residue imperfectly repeated pattern (ATRA motif) within the sequence of NA-CATH. A series of short peptides (ATRA-1, -2, -1A), as well as a synthetic peptide, NA-CATH:ATRA1-ATRA1, were designed to explore the significance of the conserved residues within the ATRA motif for anti-microbial activity. The CD spectrum of NA-CATH and NA-CATH:ATRA1-ATRA1 revealed the structural properties of these peptides and suggested that helicity may factor into their anti-microbial and anti-biofilm activities. Conclusions The NA-CATH:ATRA1-ATRA1 peptide inhibits the production of biofilm by S. aureus in the presence of salt, exhibiting anti-biofilm activity at lower peptide concentrations than NA-CATH, LL-37 and D-LL-37; and demonstrates low cytoxicity against host cells but does not affect bacterial attachment. The peptides utilized in this anti-biofilm approach may provide templates for a new group of anti-microbials and

  6. Biofouling of reverse osmosis membranes: effects of cleaning on biofilm microbial communities, membrane performance, and adherence of extracellular polymeric substances.

    Science.gov (United States)

    Al Ashhab, Ashraf; Sweity, Amer; Bayramoglu, Bihter; Herzberg, Moshe; Gillor, Osnat

    2017-05-01

    Laboratory-scale reverse osmosis (RO) flat-sheet systems were used with two parallel flow cells, one treated with cleaning agents and a control (ie undisturbed). The cleaning efforts increased the affinity of extracellular polymeric substances (EPS) to the RO membrane and altered the biofilm surface structure. Analysis of the membrane biofilm community composition revealed the dominance of Proteobacteria. However, within the phylum Proteobacteria, γ-Proteobacteria dominated the cleaned membrane biofilm, while β-Proteobacteria dominated the control biofilm. The composition of the fungal phyla was also altered by cleaning, with enhancement of Ascomycota and suppression of Basidiomycota. The results suggest that repeated cleaning cycles select for microbial groups that strongly attach to the RO membrane surface by producing rigid and adhesive EPS that hampers membrane performance.

  7. Phototrophic Biofilm Assembly in Microbial-Mat-Derived Unicyanobacterial Consortia: Model Systems for the Study of Autotroph-Heterotroph Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.; Kim, Young-Mo; Chrisler, William B.; Engelmann, Heather E.; Dohnalkova, Alice; Hu, Dehong; Metz, Thomas O.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2014-04-07

    Though microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, the diversity and complexity of natural systems and their intractability to in situ environmental manipulation makes elucidation of the principles governing these interactions challenging. Examination of primary succession during phototrophic biofilm assembly provides a robust means by which to elucidate the dynamics of such interactions and determine their influence upon recruitment and maintenance of phylogenetic and functional diversity in microbial communities. We isolated and characterized two unicyanobacterial consortia from the Hot Lake phototrophic mat, quantifying the structural and community composition of their assembling biofilms. The same heterotrophs were retained in both consortia and included members of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, taxa frequently reported as consorts of microbial photoautotrophs. Cyanobacteria led biofilm assembly, eventually giving way to a late heterotrophic bloom. The consortial biofilms exhibited similar patterns of assembly, with the relative abundances of members of Bacteroidetes and Alphaproteobacteria increasing and members of Gammaproteobacteria decreasing as colonization progressed. Despite similar trends in assembly at higher taxa, the consortia exhibited substantial differences in community structure at the species level. These similar patterns of assembly with divergent community structures suggest that, while similar niches are created by the metabolism of the cyanobacteria, the resultant webs of autotroph-heterotroph and heterotroph-heterotroph interactions driving metabolic exchange are specific to each primary producer. Altogether, our data support these Hot Lake unicyanobacterial consortia as generalizable model systems whose simplicity and tractability permit the deciphering of community assembly principles relevant to natural microbial communities.

  8. Seasonal variations of the composition of microbial biofilms in sandy tidal flats: Focus of fatty acids, pigments and exopolymers

    Science.gov (United States)

    Passarelli, Claire; Meziane, Tarik; Thiney, Najet; Boeuf, Dominique; Jesus, Bruno; Ruivo, Mickael; Jeanthon, Christian; Hubas, Cédric

    2015-02-01

    Biofilms, or microbial mats, are common associations of microorganisms in tidal flats; they generally consist of a large diversity of organisms embedded in a matrix of Extracellular Polymeric Substances (EPS). These molecules are mainly composed of carbohydrates and proteins, but their detailed monomer compositions and seasonal variations are currently unknown. Yet this composition determines the numerous roles of biofilms in these systems. This study investigated the changes in composition of carbohydrates in intertidal microbial mats over a year to decipher seasonal variations in biofilms and in varying hydrodynamic conditions. This work also aimed to assess how these compositions are related to microbial assemblages. In this context, natural biofilms whose development was influenced or not by artificial structures mimicking polychaete tubes were sampled monthly for over a year in intertidal flats of the Chausey archipelago. Biofilms were compared through the analysis of their fatty acid and pigment contents, and the monosaccharide composition of their EPS carbohydrates. Carbohydrates from both colloidal and bound EPS contained mainly glucose and, to a lower extent, galactose and mannose but they showed significant differences in their detailed monosaccharide compositions. These two fractions displayed different seasonal evolution, even if glucose accumulated in both fractions in summer; bound EPS only were affected by artificial biogenic structures. Sediment composition in fatty acids and pigments showed that microbial communities were dominated by diatoms and heterotrophic bacteria. Their relative proportions, as well as those of other groups like cryptophytes, changed between times and treatments. The changes in EPS composition were not fully explained by modifications of microbial assemblages but also depended on the processes taking place in sediments and on environmental conditions. These variations of EPS compositions are likely to alter different

  9. Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality.

    Science.gov (United States)

    Douterelo, Isabel; Jackson, M; Solomon, C; Boxall, J

    2016-04-01

    Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality.

  10. Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells

    KAUST Repository

    Liu, Jia

    2014-09-01

    Current generation in a microbial fuel cell can be limited by the amount of anode surface area available for biofilm formation, and slow substrate degradation kinetics. Increasing the anode surface area can increase the amount of biofilm, but performance will improve only if the anode material is located near the cathode to minimize solution internal resistance. Here we demonstrate that biofilms do not have to be in constant contact with the anode to produce current in an MFC. Granular activated carbon particles enriched with exoelectrogenic biofilm are fluidized (by stirring) in the anode chamber of the MFC, resulting in only intermittent contact between the particles and the anode current collector. The maximum power density generated is 951 ± 10 mW m-2, compared to 813 ± 2 mW m-2 for the control without stirring (packed bed), and 525 ± 1 mW m-2 in the absence of GAC particles and without stirring. GAC-biofilm particles demonstrate capacitor-like behavior, but achieve nearly constant discharge conditions due to the large number of particles that contact the current collector. These results provide proof of concept for the development of flowable electrode reactors, where anode biofilms can be electrically charged in a separate storage tank and then rapidly discharged in compact anode chambers. © 2014 Elsevier B.V. All rights reserved.

  11. Biofilms and Oxidizing Biocides; Evaluation of Disinfection and Removal Effects by Using Established Microbial Systems.

    Science.gov (United States)

    Tachikawa, Mariko

    2017-01-01

    The formation of bacterial biofilms and their disinfection and removal have been important subjects in the maintenance of water quality in areas such as public spas, swimming pools, food processing lines, industrial water systems, and in the hygienic control of medical devices, hospital procedures, etc. Presented here is an outline of biofilm formation, as well as studies on the disinfection and removal of biofilms by oxidizing biocides using established biofilms. These studies using established biofilms may increase the understanding of the variable response of biofilms to planktonic bacteria, and the unique aspects of oxidizing biocides in the disinfection and removal of biofilms.

  12. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community

    Science.gov (United States)

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-01-01

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library. PMID:27271534

  13. Response of wastewater biofilm to CuO nanoparticle exposure in terms of extracellular polymeric substances and microbial community structure.

    Science.gov (United States)

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Yao, Yu; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi; Gu, Qihao

    2017-02-01

    The growing production and application of CuO nanoparticles increase the chance that these particles will be released into wastewater treatment plants (WWTPs) and interact with microorganisms. However, the toxicity response mechanism of biofilm to NP exposure may be different from that of activated sludge due to the denser and stronger microbial aggregate structure of biofilm. Thus, in this study, the response to CuO NPs of wastewater biofilm collected from a rotating biological contactor was investigated. Short-term exposure (24h) to CuO NPs led to a great loss in cell viability, and SEM-EDS images revealed that the nano-CuO aggregates were not transformed to Cu-S species in the biofilm samples. In response, more extracellular polymeric substance (EPS) (especially loosely bound-EPS) was produced in wastewater biofilm exposed to CuO NPs, with a higher content of protein compared to polysaccharides. The shifts of fluorescence intensity and peak locations in 3D-EEM fluorescence spectra indicated chemical changes of the EPS components. FT-IR analysis revealed that exposure to nano-CuO had more distinct effects on the functional groups of proteins and polysaccharides in LB-EPS. Illumina sequencing of 16S rRNA gene amplicons revealed that CuO NPs enhanced bacterial diversity. The bacterial community structure significantly shifted, with a significantly increased abundance of Comamonas, a slight increase in Zoogloea, and a notable decrease in Flavobacterium. The shifts of these dominant genera may be associated with altered EPS production, which might result in microbial community function fluctuations. In conclusion, exposure to high concentrations of CuO NPs has the potential to shape wastewater biofilm bacterial community structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Crustose coralline algae and associated microbial biofilms deter seaweed settlement on coral reefs

    Science.gov (United States)

    Gomez-Lemos, Luis A.; Diaz-Pulido, Guillermo

    2017-06-01

    Crustose coralline algae (CCA), a group of calcifying red algae found commonly in benthic marine ecosystems worldwide, perform essential ecological functions on coral reefs, including creating benthic substrate, stabilizing the reef structure and inducing coral settlement. An important feature of CCA is the ability to keep their surfaces free of epiphytic algae, thereby reducing algal overgrowth and allowing them access to light. However, the mechanisms by which CCA prevent settlement of opportunistic seaweeds (fleshy macroalgae) are not fully understood, nor is whether these mechanisms vary among CCA species. In our study based on the Great Barrier Reef, we demonstrate that three common CCA species ( Titanoderma pustulatum, Porolithon onkodes and Neogoniolithon sp.) have a remarkable ability to deter settlement of seaweed spores. We provide experimental evidence that the CCA use allelopathy and microbial inhibition against the settlement of spores of the brown seaweed Padina boergesenii. Methanol extracts of allelopathic compounds from T. pustulatum, Po. onkodes and Neogoniolithon sp. significantly reduced the settlement of Pa. boergesenii spores by 4.3 times, 3.0 and 3.8 times, respectively. Further, we found that microbial biofilms, while having a lower inhibitory effect than allelopathic compounds, also reduced seaweed settlement of Pa. boergesenii. Our study demonstrates that allelopathy and microbial inhibition, in addition to epithallial tissue sloughing, are mechanisms employed by CCA to prevent the settlement of epiphytic algae. Understanding the mechanisms by which CCA avoid seaweed overgrowth contributes to our understanding of the dynamics of seaweed proliferations on reefs and to the ecological knowledge of this important group of reef-building organisms.

  15. Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria-polymer mixtures and biofilms

    Science.gov (United States)

    Nichols, P. D.; Henson, J. M.; Guckert, J. B.; Nivens, D. E.; White, D. C.

    1985-01-01

    Fourier transform-infrared (FT-IR) spectroscopy has been used to rapidly and nondestructively analyze bacteria, bacteria-polymer mixtures, digester samples and microbial biofilms. Diffuse reflectance FT-IR (DRIFT) analysis of freeze-dried, powdered samples offered a means of obtaining structural information. The bacteria examined were divided into two groups. The first group was characterized by a dominant amide I band and the second group of organisms displayed an additional strong carbonyl stretch at approximately 1740 cm-1. The differences illustrated by the subtraction spectra obtained for microbes of the two groups suggest that FT-IR spectroscopy can be utilized to recognize differences in microbial community structure. Calculation of specific band ratios has enabled the composition of bacteria and extracellular or intracellular storage product polymer mixtures to be determined for bacteria-gum arabic (amide I/carbohydrate C-O approximately 1150 cm-1) and bacteria-poly-beta-hydroxybutyrate (amide I/carbonyl approximately 1740 cm-1). The key band ratios correlate with the compositions of the material and provide useful information for the application of FT-IR spectroscopy to environmental biofilm samples and for distinguishing bacteria grown under differing nutrient conditions. DRIFT spectra have been obtained for biofilms produced by Vibrio natriegens on stainless steel disks. Between 48 and 144 h, an increase in bands at approximately 1440 and 1090 cm-1 was seen in FT-IR spectra of the V. natriegens biofilm. DRIFT spectra of mixed culture effluents of anaerobic digesters show differences induced by shifts in input feedstocks. The use of flow-through attenuated total reflectance has permitted in situ real-time changes in biofilm formation to be monitored and provides a powerful tool for understanding the interactions within adherent microbial consortia.

  16. CMEIAS bioimage informatics that define the landscape ecology of immature microbial biofilms developed on plant rhizoplane surfaces

    Directory of Open Access Journals (Sweden)

    Frank B Dazzo

    2015-10-01

    Full Text Available Colonization of the rhizoplane habitat is an important activity that enables certain microorganisms to promote plant growth. Here we describe various types of computer-assisted microscopy that reveal important ecological insights of early microbial colonization behavior within biofilms on plant root surfaces grown in soil. Examples of the primary data are obtained by analysis of processed images of rhizoplane biofilm landscapes analyzed at single-cell resolution using the emerging technology of CMEIAS bioimage informatics software. Included are various quantitative analyses of the in situ biofilm landscape ecology of microbes during their pioneer colonization of white clover roots, and of a rhizobial biofertilizer strain colonized on rice roots where it significantly enhances the productivity of this important crop plant. The results show that spatial patterns of immature biofilms developed on rhizoplanes that interface rhizosphere soil are highly structured (rather than distributed randomly when analyzed at the appropriate spatial scale, indicating that regionalized microbial cell-cell interactions and the local environment can significantly affect their cooperative and competitive colonization behaviors.

  17. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    KAUST Repository

    Kiely, Patrick D.

    2010-07-15

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most (~30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m 2, whereas the original mixed culture produced up to 10 mW/m 2. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m2) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. © 2010 Springer-Verlag.

  18. Microbial electrochemical energy storage and recovery in a combined electrotrophic and electrogenic biofilm

    Science.gov (United States)

    Electroactive biofilms, used as biocatalysts in bioelectrochemical systems (BESs), are usually operated either as electrogenic (the electrode is the electron acceptor) or electrotrophic (the electrode is the electron donor). Here, we enriched a non-photosynthetic bifunctional electroactive biofilm c...

  19. Biofilms 2015: Multidisciplinary Approaches Shed Light into Microbial Life on Surfaces

    Science.gov (United States)

    Yildiz, Fitnat

    2016-01-01

    The 7th ASM Conference on Biofilms was held in Chicago, Illinois, from 24 to 29 October 2015. The conference provided an international forum for biofilm researchers across academic and industry platforms, and from different scientific disciplines, to present and discuss new findings and ideas. The meeting covered a wide range of topics, spanning environmental sciences, applied biology, evolution, ecology, physiology, and molecular biology of the biofilm lifestyle. This report summarizes the presentations with regard to emerging biofilm-related themes. PMID:26977109

  20. Raoultella electrica sp. nov., isolated from anodic biofilms of a glucose-fed microbial fuel cell.

    Science.gov (United States)

    Kimura, Zen-ichiro; Chung, Kyung Mi; Itoh, Hiroaki; Hiraishi, Akira; Okabe, Satoshi

    2014-04-01

    A Gram-stain-negative, non-spore-forming, rod-shaped bacterium, designated strain 1GB(T), was isolated from anodic biofilms of a glucose-fed microbial fuel cell. Strain 1GB(T) was facultatively anaerobic and chemo-organotrophic, having both a respiratory and a fermentative type of metabolism, and utilized a wide variety of sugars as carbon and energy sources. Cells grown aerobically contained Q-8 as the major quinone, but excreted Q-9 and a small amount of Q-10 when cultured with an electrode serving as the sole electron acceptor. The G+C content of the genomic DNA of 1GB(T) was 54.5 mol%. Multilocus sequence typing (MLST) analysis showed that strain 1GB(T) represented a distinct lineage within the genus Raoultella (98.5-99.4 % 16S rRNA gene sequence similarity and 94.0-96.5 % sequence similarity based on the three concatenated housekeeping genes gyrA, rpoB and parC. Strain 1GB(T) exhibited DNA-DNA hybridization relatedness of 7-43 % with type strains of all established species of the genus Raoultella. On the basis of these phenotypic, phylogenetic and genotypic data, the name Raoultella electrica sp. nov. is proposed for strain 1GB(T). The type strain is 1GB(T) ( = NBRC 109676(T) = KCTC 32430(T)).

  1. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    Directory of Open Access Journals (Sweden)

    L. Vanysacker

    2013-01-01

    Full Text Available Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development.

  2. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    Science.gov (United States)

    Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906

  3. Hyporheic Microbial Biofilms as Indicators of Heavy and Rare Earth Metals in the Clark Fork Basin, Montana

    Science.gov (United States)

    Barnhart, E. P.; Hornberger, M.; Hwang, C.; Dror, I.; Bouskill, N.; Short, T.; Cain, D.; Fields, M. W.

    2016-12-01

    The ability to effectively monitor the impact of hard rock mining activities on rivers and streams is a growing concern given the large number of active and abandoned mines in the western United States. One such example, the Clark Fork Basin (CFB), western Montana, was extensively mined for copper in the early 20th century: it is now one of largest U.S. EPA superfund sites. Microbial biofilms are at the base of the lotic food chain and may provide a useful biomonitoring tool for the assessment of metal toxicity due to their environmental ubiquity, rapidity of response to environmental perturbation, and importance in determining metal mobility. Hyporheic microbial biofilms from the CFB were sampled in 2014, concurrent with the USGS National Research Programs (NRP) long-term site monitoring of metals in bed sediment and aquatic benthic insects. Integration of the DNA sequencing results from the hyporheic biofilms with the sediment and insect metal concentrations correlated several bacterial phyla with metal contamination. For example, the genus Lysobacter was strongly associated with copper (Cu) bioaccumulation in the aquatic insect Hydropsyche. These results support previous studies identifying Lysobacter as a bacterial genus that is resistant to Cu ions. Our analysis is the first to indicate that specific microorganisms can act as biomarkers of Cu contamination in rivers. Moreover, our work demonstrates that changes at the microbial community level in the hyporheic zone can be coupled to observed perturbations across higher trophic levels. In 2015, extensive remediation occurred at several of the sites sampled in 2014, providing an excellent opportunity to revisit the sites and examine the temporal variability of identified biomarkers and the short-term effectiveness of remediation. In addition, samples were analyzed for rare earth metals, of which little is known, and could provide additional insight into other metals that change the microbial community structure.

  4. Microbial dynamics of biofilm and suspended flocs in anammox membrane bioreactor: The effect of non-woven fabric membrane.

    Science.gov (United States)

    Ren, Long-Fei; Lv, Lu; Kang, Qi; Gao, Baoyu; Ni, Shou-Qing; Chen, Yi-Han; Xu, Shiping

    2018-01-01

    Membrane bioreactor with non-woven fabric membranes (NWMBR) is developing into a suitable method for anaerobic ammonium oxidation (anammox). As a carrier, non-woven fabric membrane divided total biomass into biofilm and suspended flocs gradually. Total nitrogen removal efficiency was maintained around 82.6% under nitrogen loading rate of 567.4mgN/L/d after 260days operation. Second-order substrate removal and Stover-Kincannon models were successfully used to simulate the nitrogen removal performance in NWMBR. High-throughput sequence was employed to elucidate the underlying microbial community dynamics. Candidatus Brocadia, Kuenenia, Jettenia were detected to affirm the dominant status of anammox microorganisms and 98.2% of anammox microorganisms distributed in biofilm. In addition, abundances of functional genes (hzs, nirK) in biofilm and suspended flocs were assessed by quantitative PCR to further investigate the coexistence of anammox and other microorganisms. Potential nitrogen removal pathways were established according to relevant nitrogen removal performance and microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells

    KAUST Repository

    Ren, Zhiyong

    2011-01-01

    The relationship between anode microbial characteristics and electrochemical parameters in microbial fuel cells (MFCs) was analyzed by time-course sampling of parallel single-bottle MFCs operated under identical conditions. While voltage stabilized within 4. days, anode biofilms continued growing during the six-week operation. Viable cell density increased asymptotically, but membrane-compromised cells accumulated steadily from only 9% of total cells on day 3 to 52% at 6. weeks. Electrochemical performance followed the viable cell trend, with a positive correlation for power density and an inverse correlation for anode charge transfer resistance. The biofilm architecture shifted from rod-shaped, dispersed cells to more filamentous structures, with the continuous detection of Geobacter sulfurreducens-like 16S rRNA fragments throughout operation and the emergence of a community member related to a known phenazine-producing Pseudomonas species. A drop in cathode open circuit potential between weeks two and three suggested that uncontrolled biofilm growth on the cathode deleteriously affects system performance. © 2010 Elsevier Ltd.

  6. Soluble Microbial Product Characterization of Biofilm Formation in Bench-Scale

    KAUST Repository

    Mines, Paul

    2012-12-01

    The biological process known as activated sludge (AS) in conjunction with membrane separation technology for the treatment of wastewater has been employed for over four decades. While, membrane biological reactors (MBR) are now widely employed, the phenomenon of membrane fouling is still the most significant factor leading to performance decline of MBRs. Although much research has been done on the subject of MBR fouling over the past two decades, many questions remain unanswered, and consensus within the scientific community is rare. However, research has led to one system parameter generally being regarded as a contributor to membrane fouling, extracellular polymeric compounds (EPS). EPS, and more specifically, the soluble fraction of EPS known as soluble microbial products (SMP), must be further investigated in order to better understand membrane fouling. The biological activity and performance of the MBR is affected by myriad operational parameters, which in turn affects the SMP generated. A commonly varied operational parameter is, depending on the specific treatment needs of a MBR, the sludge retention time (SRT). This study aims to characterize the SMP in three bench-scale MBRs as the SRT is gradually lowered. By studying how the SMP change as the operation of the system is altered, greater understanding of how SMP are related to fouling can be achieved. At the onset of the study, a steady state was established in the system with a SRT of 20 days. Upon stabilization of a 20 day SRT, the system was gradually transitioned to a five and a half day SRT, in stepwise adjustments. Initially, both the trans-membrane pressure (TMP) and the SMP concentrations were at relatively low values, indicating the presence of minimal amounts of biofilm on the membrane surfaces. As the system was altered and more activated sludge was wasted from the reactors, the SRT inherently decreased. As the lower SRT was transitioned and established, the data from TMP measurements, as well

  7. Difference in influence of commercial industrial paints on microbial biofilms and planktonic cells

    OpenAIRE

    Grujić, Sandra M.; Radević, Stefan D.; Radojević, Ivana D.; Čomić, Ljiljana R.; Ostojić, Aleksandar M.

    2017-01-01

    This study compares the effect of commercial industrial paints on the Escherichia coli PMFKG-F2, Proteus mirabilis PMFKG-F4 and Saccharomyces cerevisiae PMFKG-F6 planktonic cells and biofilms. A MBECTM-HTP assay and standard 96 microtiter plate assay were used to test the levels of resistance of planktonic cells and biofilms. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of the tested substances, which affects planktonic cells and biofilms, were determined ...

  8. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB...... to the membrane, while AnAOB were localized next to them in areas where no oxygen was available. NOB were detected in very low amounts. Results proved the feasibility of developing biofilm structures for high-rate completely autotrophic nitrogen removal....

  9. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.

    Science.gov (United States)

    Pinto, David; Coradin, Thibaud; Laberty-Robert, Christel

    2018-04-01

    In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between -0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (-0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In Situ Ecophysiology of Microbial Biofilm Communities Analyzed by CMEIAS Computer-Assisted Microscopy at Single-Cell Resolution

    Directory of Open Access Journals (Sweden)

    Youssef G. Yanni

    2013-06-01

    Full Text Available This paper describes the utility of CMEIAS (Center for Microbial Ecology Image Analysis System computer-assisted microscopy to extract data from accurately segmented images that provide 63 different insights into the ecophysiology of microbial populations and communities within biofilms and other habitats. Topics include quantitative assessments of: (i morphological diversity as an indicator of impacts that substratum physicochemistries have on biofilm community structure and dominance-rarity relationships among populations; (ii morphotype-specific distributions of biovolume body size that relate microbial allometric scaling, metabolic activity and growth physiology; (iii fractal geometry of optimal cellular positioning for efficient utilization of allocated nutrient resources; (iv morphotype-specific stress responses to starvation, environmental disturbance and bacteriovory predation; (v patterns of spatial distribution indicating positive and negative cell–cell interactions affecting their colonization behavior; and (vi significant methodological improvements to increase the accuracy of color-discriminated ecophysiology, e.g., differentiation of cell viability based on cell membrane integrity, cellular respiratory activity, phylogenetically differentiated substrate utilization, and N-acyl homoserine lactone-mediated cell–cell communication by bacteria while colonizing plant roots. The intensity of these ecophysiological attributes commonly varies at the individual cell level, emphasizing the importance of analyzing them at single-cell resolution and the proper spatial scale at which they occur in situ.

  11. Surface-to-surface biofilm transfer: a quick and reliable startup strategy for mixed culture microbial fuel cells.

    Science.gov (United States)

    Vogl, Andreas; Bischof, Franz; Wichern, Marc

    2016-01-01

    The startup of microbial fuel cells (MFCs) is known to be prone to failure or result in erratic performance impeding the research. The aim of this study was to advise a quick launch strategy for laboratory-scale MFCs that ensures steady operation performance in a short period of time. Different startup strategies were investigated and compared with membraneless single chamber MFCs. A direct surface-to-surface biofilm transfer (BFT) in an operating MFC proved to be the most efficient method. It provided steady power densities of 163 ± 13 mWm(-2) 4 days after inoculation compared to 58 ± 15 mWm(-2) after 30 days following a conventional inoculation approach. The in situ BFT eliminates the need for microbial acclimation during startup and reduces performance fluctuations caused by shifts in microbial biodiversity. Anaerobic pretreatment of the substrate and addition of suspended enzymes from an operating MFC into the new MFC proved to have a beneficial effect on startup and subsequent operation. Polarization methods were applied to characterize the startup phase and the steady state operation in terms of power densities, internal resistance and power overshoot during biofilm maturation. Applying this method a well-working MFC can be multiplied into an array of identically performing MFCs.

  12. Effect of biofilm and selective mixed culture on microbial fuel cell for the treatment of tempeh industrial wastewater

    Science.gov (United States)

    Arbianti, Rita; Surya Utami, Tania; Leondo, Vifki; Elisabeth; Andyah Putri, Syafira; Hermansyah, Heri

    2018-03-01

    Microbial Fuel Cell (MFC) provides a new alternative in the treatment of organic waste. MFC produces 50-90% less sludge to be disposed than other methods. MFC technology can utilize existing microorganisms in the waste as a catalyst to generate electricity and simultaneously also serves as a wastewater treatment unit itself. Tempeh wastewater is one of the abundant industrial wastewater which can be processed using MFC. Research using the selective mixed culture is very likely to do due to the good result on COD removals by adding mixed culture. Microorganisms in tempeh wastewater consist of bacteria gram positive and gram negative. This study focused on the aspects of waste treatment which is determined by decreased levels of COD and BOD. Variations in this study are the formation time of biofilm and the addition of selective gram. MFC operated for 50 hours. For a variation of biofilm formation, experiments were performed after incubation by replacing incubation substrates used in the formation of biofilms. Biofilm formation time in this study was 3 days, 5 days, 7 days and 14 days. Gram positive and gram negative bacteria were used in selective mixed culture experiments. Selective mixed culture added to the reactor by 1 mL and 5 mL. Selection of gram-positive or gram-negative bacteria carried by growing mixed culture on selective media. COD and BOD levels were measured in the wastewater before and after the experiment conducted in each variation. Biofilm formation optimum time is 7 days which decrease COD and BOD levels by 18.2% and 35.9%. The addition of gram negative bacteria decreases COD and BOD levels by 29.32% and 51.32%. Further research is needed in order to get a better result on decreasing levels of COD and BOD.

  13. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing

    2012-05-01

    Nitrogen removal is needed in microbial fuel cells (MFCs) for the treatment of most waste streams. Current designs couple biological denitrification with side-stream or combined nitrification sustained by upstream or direct aeration, which negates some of the energy-saving benefits of MFC technology. To achieve simultaneous nitrification and denitrification, without extra energy input for aeration, the air cathode of a single-chamber MFC was pre-enriched with a nitrifying biofilm. Diethylamine-functionalized polymer (DEA) was used as the Pt catalyst binder on the cathode to improve the differential nitrifying biofilm establishment. With pre-enriched nitrifying biofilm, MFCs with the DEA binder had an ammonia removal efficiency of up to 96.8% and a maximum power density of 900 ± 25 mW/m 2, compared to 90.7% and 945 ± 42 mW/m 2 with a Nafion binder. A control with Nafion that lacked nitrifier pre-enrichment removed less ammonia and had lower power production (54.5% initially, 750 mW/m 2). The nitrifying biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode, and enhanced system stability. These results demonstrated that with proper cathode pre-enrichment it is possible to simultaneously remove organics and ammonia in a single-chamber MFC without supplemental aeration. © 2012 Elsevier Ltd.

  14. Controlled release of chlorhexidine from a mesoporous silica-containing macroporous titanium dental implant prevents microbial biofilm formation.

    Science.gov (United States)

    De Cremer, K; Braem, A; Gerits, E; De Brucker, K; Vandamme, K; Martens, J A; Michiels, J; Vleugels, J; Cammue, B P; Thevissen, K

    2017-01-11

    Roughened surfaces are increasingly being used for dental implant applications as the enlarged contact area improves bone cell anchorage, thereby facilitating osseointegration. However, the additional surface area also entails a higher risk for the development of biofilm associated infections, an etiologic factor for many dental ailments, including peri-implantitis. To overcome this problem, we designed a dental implant composed of a porous titanium-silica (Ti/SiO2) composite material and containing an internal reservoir that can be loaded with antimicrobial compounds. The composite material consists of a sol-gel derived mesoporous SiO2 diffusion barrier integrated in a macroporous Ti load-bearing structure obtained by powder metallurgical processing. The antimicrobial compounds can diffuse through the porous implant walls, thereby reducing microbial biofilm formation on the implant surface. A continuous release of µM concentrations of chlorhexidine through the Ti/SiO2 composite material was measured, without initial burst effect, over at least 10 days and using a 5 mM chlorhexidine solution in the implant reservoir. Metabolic staining, CFU counting and visualisation by scanning electron microscopy confirmed that Streptococcus mutans biofilm formation on the implant surface was almost completely prevented due to chlorhexidine release (preventive setup). Moreover, we demonstrated efficacy of released chlorhexidine against mature Streptococcus mutans biofilms (curative setup). In conclusion, we provide a proof of concept of the sustained release of chlorhexidine, one of the most widely used oral antiseptics, through the Ti/SiO2 material thereby preventing and eradicating biofilm formation on the surface of the dental implant. In principle, our flexible design allows for the use of any bioactive compound, as discussed.

  15. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains.

    Science.gov (United States)

    Gugala, Natalie; Lemire, Joe A; Turner, Raymond J

    2017-06-01

    The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.

  16. Microbial composition and ecological features of phototrophic biofilms proliferating in the Moidons Caves (France): investigation at the single-cell level.

    Science.gov (United States)

    Borderie, Fabien; Denis, Michel; Barani, Aude; Alaoui-Sossé, Badr; Aleya, Lotfi

    2016-06-01

    The authors investigated the microbial composition of phototrophic biofilms proliferating in a show cave using flow cytometry for the first time in such a context. Results are based on several biofilms sampled in the Moidons Caves (France) and concern both heterotrophic prokaryotes and autotrophic microorganisms. Heterotrophic microorganisms with low nucleic acid content were dominant in biofilms, as can be expected from the oligotrophic conditions prevailing within the cave. Analysis of the biofilm autotrophic components revealed the presence of several taxa, particularly the unicellular green algae Chlorella minutissima, specifically well adapted to this cave. Relationships between flow cytometry results and environmental variables determined in the cave were established and discussed so as to better understand biofilm proliferation processes in caves.

  17. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions

    Directory of Open Access Journals (Sweden)

    Jessica K Cole

    2014-04-01

    Full Text Available Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity over time. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in Hot Lake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gammaproteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural

  18. An overview of the structure and function of microbial biofilms, with ...

    African Journals Online (AJOL)

    As a food resource, streambed biofilms are intensively grazed by protozoans and macrobenthos, their quality as a food source for grazing organisms affecting the diversity, abundance and distribution of macrobenthic invertebrates. Biofilms are indicators of environmental quality and are active sites for species evolution.

  19. Recent Advances in the Study of Marine Microbial Biofilm: From the Involvement of Quorum Sensing in Its Production up to Biotechnological Application of the Polysaccharide Fractions

    Directory of Open Access Journals (Sweden)

    Paola Di Donato

    2016-05-01

    Full Text Available The present review will explore the most relevant findings on marine microbial biofilm, with particular attention towards its polysaccharide fraction, namely exopolysaccharide (EPS. EPSs of microbial origin are ubiquitous in nature, possess unique properties and can be isolated from the bacteria living in a variety of habitats, including fresh water or marine environments, extreme environments or different soil ecosystems. These biopolymers have many application in the field of biotechnology. Several studies showed that the biofilm formation is closely related to quorum sensing (QS systems, which is a mechanism relying on the production of small molecules defined as “autoinducers” that bacteria release in the surrounding environment where they accumulate. In this review, the involvement of microbial chemical communication, by QS mechanism, in the formation of marine biofilm will also be discussed.

  20. Removal of microbial multi-species biofilms from the paper industry by enzymatic treatments.

    Science.gov (United States)

    Marcato-Romain, C E; Pechaud, Y; Paul, E; Girbal-Neuhauser, E; Dossat-Létisse, V

    2012-01-01

    This study aimed to characterize biofilms from the paper industry and evaluate the effectiveness of enzymatic treatments in reducing them. The extracellular polymeric substances (EPS) extracted from six industrial biofilms were studied. EPS were mainly proteins, the protein to polysaccharide ratio ranging from 1.3 to 8.6 depending on where the sampling point was situated in the paper making process. Eight hydrolytic enzymes were screened on a 24-h multi-species biofilm. The enzymes were tested at various concentrations and contact durations. Glycosidases and lipases were inefficient or only slightly efficient for biofilm reduction, while proteases were more efficient: after treatment for 24 h with pepsin, Alcalase® or Savinase®, the removal exceeded 80%. Savinase® appeared to be the most adequate for industrial conditions and was tested on an industrial biofilm sample. This enzyme led to a significant release of proteins from the EPS matrix, indicating its potential efficiency on an industrial scale.

  1. Pharmaceutical Wastewater Treatment Associated with Renewable Energy Generation in Microbial Fuel Cell Based on Mobilized Electroactive Biofilm on Zeolite Bearer

    Directory of Open Access Journals (Sweden)

    Zainab Ziad Ismail

    2015-07-01

    Full Text Available In this study, a novel application of lab-scale dual chambered air-cathode microbial fuel cell (MFC has been developed for simultaneous bio-treatment of real pharmaceutical wastewater and renewable electricity generation. The microbial fuel cell (MFC was provided with zeolite-packed anodic compartment and a cation exchange membrane (CEM to separate the anode and cathode. The performance of the proposed MFC was evaluated in terms of COD removal and power generation based on the activity of the bacterial consortium in the biofilm mobilized on zeolite bearer. The MFC was fueled with real pharmaceutical wastewater having an initial COD concentration equal to 800 mg/L and inoculated with anaerobic aged sludge. Results demonstrated that the COD removal efficiency, power density and current density were 66%, 2.4 mW/m2 and 10 mA/m2, respectively.

  2. Innovative biofilm inhibition and anti-microbial behavior of molybdenum sulfide nanostructures generated by microwave-assisted solvothermal route

    Science.gov (United States)

    Qureshi, Nilam; Patil, Rajendra; Shinde, Manish; Umarji, Govind; Causin, Valerio; Gade, Wasudev; Mulik, Uttam; Bhalerao, Anand; Amalnerkar, Dinesh P.

    2015-03-01

    The incessant use of antibiotics against infectious diseases has translated into a vicious circle of developing new antibiotic drug and its resistant strains in short period of time due to inherent nature of micro-organisms to alter their genes. Many researchers have been trying to formulate inorganic nanoparticles-based antiseptics that may be linked to broad-spectrum activity and far lower propensity to induce microbial resistance than antibiotics. The way-out approaches in this direction are nanomaterials based (1) bactericidal and (2) bacteriostatic activities. We, herein, present hitherto unreported observations on microbial abatement using non-cytotoxic molybdenum disulfide nanostructures (MSNs) which are synthesized using microwave assisted solvothermal route. Inhibition of biofilm formation using MSNs is a unique feature of our study. Furthermore, this study evinces antimicrobial mechanism of MSNs by reactive oxygen species (ROS) dependent generation of superoxide anion radical via disruption of cellular functions.

  3. Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens

    DEFF Research Database (Denmark)

    Sun, Guotao; Rodrigues, Diogo De Sacadura; Thygesen, Anders

    2016-01-01

    Microbial fuel cells (MFCs) rely on microbial conversion of organic substrates to electricity. The optimal performance depends on the establishment of a microbial community rich in electrogenic bacteria. Usually this microbial community is established from inoculation of the MFC anode chamber...

  4. Morphological observation and microbial population dynamics in anaerobic polyurethane foam biofilm degrading gelatin

    Directory of Open Access Journals (Sweden)

    Tommaso G.

    2002-01-01

    Full Text Available This work reports on a preliminary study of anaerobic degradation of gelatin with emphasis on the development of the proteolytic biofilm in polyurethane foam matrices in differential reactors. The evolution of the biofilm was observed during 22 days by optical and scanning electron microscopy (SEM analyses. Three distinct immobilization patterns could be observed in the polyurethane foam: cell aggregates entrapped in matrix pores, thin biofilms attached to inner polyurethane foam surfaces and individual cells that have adhered to the support. Rods, cocci and vibrios were observed as the predominant morphologies of bacterial cells. Methane was produced mainly by hydrogenothrophic reactions during the operation of the reactors.

  5. Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system.

    Science.gov (United States)

    Fish, Katherine E; Collins, Richard; Green, Nicola H; Sharpe, Rebecca L; Douterelo, Isabel; Osborn, A Mark; Boxall, Joby B

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  6. Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane.

    Science.gov (United States)

    Jeong, Sanghyun; Cho, Kyungjin; Jeong, Dawoon; Lee, Seockheon; Leiknes, TorOve; Vigneswaran, Saravanamuthu; Bae, Hyokwan

    2017-11-01

    Four dual media filters (DMFs) were operated in a biofiltration mode with different engineered environments (DMF I and II: coagulation with/without acidification and DMF III and IV: without/with chlorination). Designed biofilm enrichment reactors (BERs) containing the removable reverse osmosis (RO) coupons, were connected at the end of the DMFs in parallel to analyze the biofilm on the RO membrane by DMF effluents. Filtration performances were evaluated in terms of dissolved organic carbon (DOC) and assimilable organic carbon (AOC). Organic foulants on the RO membrane were also quantified and fractionized. The bacterial community structures in liquid (seawater and effluent) and biofilm (DMF and RO) samples were analyzed using 454-pyrosequencing. The DMF IV fed with the chlorinated seawater demonstrated the highest reductions of DOC including LMW-N as well as AOC among the other DMFs. The DMF IV was also effective in reducing organic foulants on the RO membrane surface. The bacterial community structure was grouped according to the sample phase (i.e., liquid and biofilm samples), sampling location (i.e., DMF and RO samples), and chlorination (chlorinated and non-chlorinated samples). In particular, the biofilm community in the DMF IV differed from the other DMF treatments, suggesting that chlorination exerted as stronger selective pressure than pH adjustment or coagulation on the biofilm community. In the DMF IV, several chemoorganotrophic chlorine-resistant biofilm-forming bacteria such as Hyphomonas, Erythrobacter, and Sphingomonas were predominant, and they may enhance organic carbon degradation efficiency. Diverse halophilic or halotolerant organic degraders were also found in other DMFs (i.e., DMF I, II, and III). Various kinds of dominant biofilm-forming bacteria were also investigated in RO membrane samples; the results provided possible candidates that cause biofouling when DMF process is applied as the pretreatment option for the RO process. Copyright

  7. Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane

    KAUST Repository

    Jeong, Sanghyun

    2017-07-25

    Four dual media filters (DMFs) were operated in a biofiltration mode with different engineered environments (DMF I and II: coagulation with/without acidification and DMF III and IV: without/with chlorination). Designed biofilm enrichment reactors (BERs) containing the removable reverse osmosis (RO) coupons, were connected at the end of the DMFs in parallel to analyze the biofilm on the RO membrane by DMF effluents. Filtration performances were evaluated in terms of dissolved organic carbon (DOC) and assimilable organic carbon (AOC). Organic foulants on the RO membrane were also quantified and fractionized. The bacterial community structures in liquid (seawater and effluent) and biofilm (DMF and RO) samples were analyzed using 454-pyrosequencing. The DMF IV fed with the chlorinated seawater demonstrated the highest reductions of DOC including LMW-N as well as AOC among the other DMFs. The DMF IV was also effective in reducing organic foulants on the RO membrane surface. The bacterial community structure was grouped according to the sample phase (i.e., liquid and biofilm samples), sampling location (i.e., DMF and RO samples), and chlorination (chlorinated and non-chlorinated samples). In particular, the biofilm community in the DMF IV differed from the other DMF treatments, suggesting that chlorination exerted as stronger selective pressure than pH adjustment or coagulation on the biofilm community. In the DMF IV, several chemoorganotrophic chlorine-resistant biofilm-forming bacteria such as Hyphomonas, Erythrobacter, and Sphingomonas were predominant, and they may enhance organic carbon degradation efficiency. Diverse halophilic or halotolerant organic degraders were also found in other DMFs (i.e., DMF I, II, and III). Various kinds of dominant biofilm-forming bacteria were also investigated in RO membrane samples; the results provided possible candidates that cause biofouling when DMF process is applied as the pretreatment option for the RO process.

  8. The involvement of rhamnolipids in microbial cell adhesion and biofilm development – an approach for control?

    OpenAIRE

    Nickzad , A; Déziel , E.

    2013-01-01

    International audience; Biofilms are omnipresent in clinical and industrial settings and most of the times cause detrimental side effects. Finding efficient strategies to control surface-growing communities of microorganisms remains a significant challenge. Rhamnolipids are extracellular secondary metabolites with surface-active properties mainly produced by Pseudomonas aeruginosa. There is growing evidence for the implication of this biosurfactant in different stages of biofilm development o...

  9. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis.

    Directory of Open Access Journals (Sweden)

    Devendra H Dusane

    Full Text Available BACKGROUND: Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. METHODOLOGY/PRINCIPAL FINDINGS: B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275 derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. CONCLUSION/SIGNIFICANCE: We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent.

  10. Disruption of Microbial Biofilms by an Extracellular Protein Isolated from Epibiotic Tropical Marine Strain of Bacillus licheniformis

    Science.gov (United States)

    Dusane, Devendra H.; Damare, Samir R.; Nancharaiah, Yarlagadda V.; Ramaiah, N.; Venugopalan, Vayalam P.; Kumar, Ameeta Ravi; Zinjarde, Smita S.

    2013-01-01

    Background Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. Methodology/Principal Findings B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275) derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC) value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. Conclusion/Significance We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent. PMID:23691235

  11. Anti-microbial efficacy of Allium sativum extract against Enterococcus faecalis biofilm and its penetration into the root dentin: An in vitro study.

    Science.gov (United States)

    Birring, Ourvind J S; Viloria, Iluminada L; Nunez, Phides

    2015-01-01

    Sodium hypochlorite (NaOCl) has long been the most preferred root canal irrigant in endodontic treatment, but besides being an effective anti-microbial agent, it is highly cytotoxic. Thus, a search for an alternative herbal irrigant which would be more biocompatible but equally effective led to this study. To assess the anti-microbial efficacy of garlic extract (GE) against Enterococcus faecalis biofilm and its ability to penetrate into root dentin. E. faecalis was cultured and treated with the test agents--normal saline, 5.25% of NaOCl, and the three different concentrations of GE (10%, 40%, and 70%). The experiment was done in four groups namely, 24-h Co-treatment group, 24-h biofilm treatment group, 1-week biofilm group, and 3-week biofilm group. These groups were subjected to microbial viability assay and fluorescence microscopic analysis. The most effective concentration of garlic (70%) was further tested and compared with 5.25% NaOCl for its dentin penetration property using 0.2% alizarin red under a fluorescence microscope. The findings revealed that GE was able to disrupt as well as prevent the formation of biofilm produced by E. faecalis. All the concentrations of GE displayed considerable anti-microbial efficacy where 70% concentration was most effective and exhibited similar anti-microbial efficacy as 5.25% NaOCl. In terms of dentin penetration, no significant difference was found between GE and NaOCl. The results indicate that GE has a potential to serve as an alternative herbal root canal irrigant being an effective and biocompatible anti-microbial agent with good dentinal penetration property.

  12. Difference in influence of commercial industrial paints on microbial biofilms and planktonic cells

    Directory of Open Access Journals (Sweden)

    Grujić Sandra M.

    2017-01-01

    Full Text Available This study compares the effect of commercial industrial paints on the Escherichia coli PMFKG-F2, Proteus mirabilis PMFKG-F4 and Saccharomyces cerevisiae PMFKG-F6 planktonic cells and biofilms. A MBECTM-HTP assay and standard 96 microtiter plate assay were used to test the levels of resistance of planktonic cells and biofilms. The minimum inhibitory concentration (MIC and minimum lethal concentration (MLC of the tested substances, which affects planktonic cells and biofilms, were determined and the results were confirmed by fluorescence microscopy. Results obtained for planktonic cells were compared between them and with the results obtained for biofilms. Noticeable difference in the resistance between the biofilms and the planktonic cells on paints, was observed. The E. coli PMFKG-F2 planktonic cells showed the highest resistance in the presence of the tested substance 2 (MICp 2.5 μl/ml, while the P. mirabilis PMFKG-F4 planktonic cells showed the highest resistance in the presence of the tested substance 2 (MICp 5 μl/ml. The S. cerevisiae PMFKG-F6 planktonic cells showed the same level of resistance in the presence of the tested substances 1, 2 and 5 (MICp 0.62 μl/ml. The E. coli PMFKG-F2, P. mirabilis PMFKGF4 and S. cerevisiae PMFKG-6 biofilms showed the highest resistance in the presence of the tested substance 5 (MICb 125 μl/ml, MICb 125 μl/ml and MICb 62.5 μl/ml. The obtained results suggest that the biofilm may have a potential to be used in bioremediation of wastewater contaminated with industrial paints.

  13. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tian-shun [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 (China); College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816 (China); Jiangsu Branch of China Academy of Science & Technology Development, Nanjing (China); Jin, Yuejuan; Bao, Jingjing [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 (China); College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816 (China); Kang, Dongzhou, E-mail: kangdz@ybu.edu.cn [College of Pharmacy, Yanbian University, Yanji 133002 (China); Xie, Jingjing, E-mail: xiej@njtech.edu.cn [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 (China); College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816 (China); Jiangsu Branch of China Academy of Science & Technology Development, Nanjing (China); College of Pharmacy, Yanbian University, Yanji 133002 (China); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 211816 (China)

    2016-11-05

    Highlights: • Graphene/biofilm was microbially fabricated to cathode of a Cr(VI)-reducing MFC. • High Cr(VI) reduction rate was generated by self-assembled graphene biocathode MFC. • Graphene biocathode improves the electricity production of Cr(VI)-reducing MFC. • High surface area of the graphene provides more adsorption sites for Cr(VI). • Graphene biocathode improves the electron transfer rate in the MFC. - Abstract: In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48 h, at 40 mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions.

  14. Hydraulic continuity and biological effects of low strength very low frequency electromagnetic waves: Case of microbial biofilm growth in water treatment.

    Science.gov (United States)

    Gérard, Merlin; Noamen, Omri; Evelyne, Gonze; Eric, Valette; Gilles, Cauffet; Marc, Henry

    2015-10-15

    This study aims to elucidate the interactions between water, subjected to electromagnetic waves of very low frequency (VLF) (kHz) with low strength electromagnetic fields (3.5 mT inside the coils), and the development of microbial biofilms in this exposed water. Experimental results demonstrate that in water exposed to VLF electromagnetic waves, the biomass of biofilm is limited if hydraulic continuity is achieved between the electromagnetic generator and the biofilm media. The measured amount of the biofilm's biomass is approximately a factor two lower for exposed biofilm than the non-exposed biofilm. Measurements of electromagnetic fields in the air and simulations exhibit very low intensities of fields (electromagnetic generator. Exposure to electric and magnetic fields of the quoted intensities cannot explain thermal and ionizing effects on the biofilm. A variable electrical potential with a magnitude close to 20 mV was detected in the tank in hydraulic continuity with the electromagnetic generator. The application of quantum field theory may help to explain the observed effects in this case. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms.

    Science.gov (United States)

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Geng, Nan; Yao, Yu; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2016-09-01

    The transport behaviors of copper oxide (CuO) NPs in wastewater matrix and their possible impacts on microbial activities of stable wastewater biofilms cultivated in a lab scale rotating biological contactor (RBC) were investigated. Significant aggregation of CuO NPs was observed in the wastewater samples, depending on their mass concentrations. Extracellular polymeric substance (EPS)-adsorbed copper accounted for a large proportion of the total copper accumulated in biofilms. The microelectrode profiles showed that a single pulse exposure to 50mg/L CuO resulted in a deeper penetration depth of oxygen in biofilms compared to the CuO NP free biofilms. The maximum oxygen consumption rate shifted to the deeper parts of biofilms, indicating that the respiration activities of bacteria in the top region of the biofilms was significantly inhibited by CuO NPs. Biofilms secreted more EPS in response to the nano-CuO stress, with higher production of proteins compared to polysaccharides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Reaction–diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections

    Science.gov (United States)

    Stewart, Philip S; Zhang, Tianyu; Xu, Ruifang; Pitts, Betsey; Walters, Marshall C; Roe, Frank; Kikhney, Judith; Moter, Annette

    2016-01-01

    Reaction–diffusion models were applied to gain insight into the aspects of biofilm infection and persistence by comparing mathematical simulations with the experimental data from varied bacterial biofilms. These comparisons, including three in vitro systems and two clinical investigations of specimens examined ex vivo, underscored the central importance of concentration gradients of metabolic substrates and the resulting physiological heterogeneity of the microorganisms. Relatively simple one-dimensional and two-dimensional (2D) models captured the: (1) experimentally determined distribution of specific growth rates measured in Pseudomonas aeruginosa cells within sputum from cystic fibrosis patients; (2) pattern of relative growth rate within aggregates of streptococcal biofilm harboured in an endocarditis vegetation; (3) incomplete penetration of oxygen into a Pseudomonas aeruginosa biofilm under conditions of exposure to ambient air and also pure oxygen; (4) localisation of anabolic activity around the periphery of P. aeruginosa cell clusters formed in a flow cell and attribution of this pattern to iron limitation; (5) very low specific growth rates, as small as 0.025 h−1, in the interior of cell clusters within a Klebsiella pneumoniae biofilm in a complex 2D domain of variable cell density. PMID:28721248

  17. Microbial Biofilms as a Mechanism for Metal Sorption on Plastic Debris

    Science.gov (United States)

    Richard, H.; Rochman, C. M.; Komada, T.; Carpenter, E. J.

    2016-02-01

    Heavy metals from the water column accumulate onto weathered plastic debris to a greater extent than onto virgin plastic. Hypothesized mechanisms that drive this process include oxidation by ultraviolet light, precipitation of metal ions onto the surface of the plastic, and biofilm growth. We provide the first example of research quantifying how biofilms influence metal sorption onto plastic debris. We conducted laboratory experiments to find out whether or not the presence of biofilms increases the sorption capacity of plastic debris, and also performed in situ experiments in the San Francisco Bay to compare low-density polyethylene, polylactic acid, and glass as substrates for fouling and metal sorption. This research reveals the potential for plastic debris to act as a vector bringing heavy metals into aquatic food webs relative to other debris materials.

  18. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Lackner, Susanne

    2013-01-01

    The remarkable oxygen transfer efficiencies attainable in membrane-aerated biofilm reactors (MABRs) are expected to favor their prompt industrial implementation. However, tests in clean water, currently used for the estimation of their oxygen transfer potential, lead to wrong estimates once biofilm...... is present, significantly complicating reactor modelling and control. This study shows for the first time the factors affecting oxygen mass transfer across membranes during clean water tests and reactor operation via undisturbed microelectrode inspection and bulk measurements. The mass transfer resistance...... of the liquid boundary layer developed at the membrane-liquid interface during clean water tests accounted for two thirds of the total mass transfer resistance, suggesting a strong underestimation of the oxygen transfer rates when it is absent (e.g. after biofilm growth). Reactor operation to attain partial...

  19. Presence and effects of marine microbial biofilms on biocide-based antifouling paints

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Erik Weinell, Claus

    2006-01-01

    Marine microorganisms are capable of successfully colonizing toxic surfaces through the formation of biofilm structures. In this article, most of the literature reporting the presence of marine biofilms on chemically-active antifouling paints is briefly reviewed. Of special concern is the influence...... of the dense extracellular polymeric substances (EPS) matrix on the release rate of the compounds involved in antifouling paint performance (i.e. active compounds and controlled-release binder molecules). A deeper understanding of these phenomena is of interest for both environmental legislators and paint...

  20. Effect of florfenicol on performance and microbial community of a sequencing batch biofilm reactor treating mariculture wastewater.

    Science.gov (United States)

    Gao, Feng; Li, Zhiwei; Chang, Qingbo; Gao, Mengchun; She, Zonglian; Wu, Juan; Jin, Chunji; Zheng, Dong; Guo, Liang; Zhao, Yangguo; Wang, Sen

    2018-02-01

    The effects of florfenicol (FF) on the performance, microbial activity and microbial community of a sequencing batch biofilm reactor (SBBR) were evaluated in treating mariculture wastewater. The chemical oxygen demand (COD) and nitrogen removal were inhibited at high FF concentrations. The specific oxygen utilization rate (SOUR), specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR) and specific nitrate reduction rate (SNRR) were decreased with an increase in the FF concentration from 0 to 35 mg/L. The chemical compositions of loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) could be affected with an increase in the FF concentration. The high-throughput sequencing indicated some obvious variations in the microbial community at different FF concentrations. The relative abundance of Nitrosomonas and Nitrospira showed a decreasing tendency with an increase in the FF concentration, suggesting that FF could affect the nitrification process of SBBR. Some genera capable of reducing nitrate to nitrogen gas could be inhibited by the addition of FF in the influent, such as Azospirillum and Hyphomicrobium.

  1. Bactericidal Effect of Different Anti-Microbial Agents on Fusobacterium Nucleatum Biofilm.

    Science.gov (United States)

    Ashok, Rupa; Ganesh, Arathi; Deivanayagam, Kandaswamy

    2017-06-11

    The root canal anatomy of the teeth is very complex. Complete debridement of the root canals is a challenge and is very important for the success of the root canal treatment. Hence, this study was done to find an effective irrigant which can be used during root canal treatment. The bactericidal effect of a potential root canal irrigant was compared with two commonly used root canal irrigants against monoculture biofilm of a commercially available isolate of Fusobacterium nucleatum. A monoculture biofilm of Fusobacterium nucleatum was grown on glass slides. The glass slides containing the biofilm were immersed in centrifuge tubes containing 5% sodium hypochlorite, 2% Chlorhexidine, 6% turmeric solution, 9% turmeric solution and distilled water for a time span of one minute. A wire loop was used to scrape off the biofilms onto sterile brain heart infusion agar plates. This was further subjected to an incubation period of 96 hours at 37° C. Colony forming units were quantified by statistical analysis and results were obtained. The anti-bacterial activity of 6% and 9% turmeric solution was statistically significant against Fusobacterium nucleatum when compared to 2% Chlorhexidine and 5% sodium hypochlorite. In endodontic treatment, turmeric solution may be considered as an effective irrigant.

  2. Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms.

    Science.gov (United States)

    Gomes, Fernanda; Saavedra, Maria José; Henriques, Mariana

    2016-04-01

    Bovine mastitis (BM) is a disease with high incidence worldwide and one of the most relevant bovine pathologies and the most costly to the dairy industry. BM is an inflammation of the udder and represents one of the most difficult veterinary diseases to control. Biofilm formation is considered a selective advantage for pathogens causing mastitis, facilitating bacterial persistence in the udder. In fact, recently some authors drew attention to the biofilm formation ability presented by several mastitis causing pathogens and to its possible relation with recurrent mastitis infections and with the increased resistance to antimicrobial agents and host immune defence system. Actually, up to now, several researchers reported the potential role of cells in this mode of growth in the previous facts mentioned. As a consequence of the presence of biofilms, the infection here focused is more difficult to treat and eradicate, making this problem a more relevant pressing issue. Thus, we believe that a deeper knowledge of these structures in mastitis can help to determine the best control strategy to be used in veterinary practice in order to reduce losses in the dairy industry and to ensure milk safety and quality. The aim of this paper was to review the existing research and consequently to provide an overview of the role of biofilms in BM infections. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Mael; Smets, Barth F.

    2012-01-01

    with the experimental observations of the bacterial distribution, as well as the nitrogenous transformations in batch and continuous experiments. The modeling results showed that low nitrogen surface loading resulted in a lower availability of SMP leading to low heterotrophic growth in Anammox biofilm, but high...

  4. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  5. Benzene degradation in a denitrifying biofilm reactor : activity and microbial community composition

    NARCIS (Netherlands)

    van der Waals, Marcelle J.; Atashgahi, Siavash; da Rocha, Ulisses Nunes; van der Zaan, Bas M.; Smidt, Hauke; Gerritse, Jan

    2017-01-01

    Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than

  6. Microbial diversity in biofilm infections of the urinary tract with the use of sonication techniques

    Czech Academy of Sciences Publication Activity Database

    Holá, V.; Růžička, F.; Horká, Marie

    2010-01-01

    Roč. 59, č. 3 (2010), s. 525-528 ISSN 0928-8244 R&D Projects: GA MZd(CZ) NS9678 Institutional research plan: CEZ:AV0Z40310501 Keywords : biofilm * sonication * urinary tract infection * catheter Subject RIV: CA - Inorganic Chemistry Impact factor: 2.494, year: 2010

  7. Microbial investigation of biofilms recovered from endotracheal tubes using sonication in intensive care unit pediatric patients

    Directory of Open Access Journals (Sweden)

    Thiago de Oliveira Ferreira

    2016-09-01

    Conclusions: Our study demonstrated that sonication technique can be applied to ET biofilms to identify microorganisms attached to their surface with a great variety of species identified. However, we did not find significant differences in comparison with the traditional tracheal aspirate culture approach.

  8. Effect of different disinfection protocols on microbial and biofilm contamination of dental unit waterlines in community dental practices.

    Science.gov (United States)

    Dallolio, Laura; Scuderi, Amalia; Rini, Maria S; Valente, Sabrina; Farruggia, Patrizia; Sabattini, Maria A Bucci; Pasquinelli, Gianandrea; Acacci, Anna; Roncarati, Greta; Leoni, Erica

    2014-02-18

    Output water from dental unit waterlines (DUWLs) may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two underwent continuous disinfection with hydrogen peroxide/silver ions (0.02%) and stabilized chlorine dioxide (0.22%), respectively. After three months of applying the disinfection protocols, continuous disinfection systems were more effective than intermittent systems in reducing the microbial contamination of the water, allowing compliance with the CDC guidelines and the European Council regulatory thresholds for drinking water. P. aeruginosa, Legionella spp, sulphite-reducing Clostridium spores, S. aureus and β-haemolytic streptococci were also absent from units treated with continuous disinfection. The biofilm covering the DUWLs was more extensive, thicker and more friable in the intermittent disinfection dental units than in those with continuous disinfection. Overall, the findings showed that the products used for continuous disinfection of dental unit waterlines showed statistically better results than the intermittent treatment products under the study conditions.

  9. Effect of Different Disinfection Protocols on Microbial and Biofilm Contamination of Dental Unit Waterlines in Community Dental Practices

    Directory of Open Access Journals (Sweden)

    Laura Dallolio

    2014-02-01

    Full Text Available Output water from dental unit waterlines (DUWLs may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two underwent continuous disinfection with hydrogen peroxide/silver ions (0.02% and stabilized chlorine dioxide (0.22%, respectively. After three months of applying the disinfection protocols, continuous disinfection systems were more effective than intermittent systems in reducing the microbial contamination of the water, allowing compliance with the CDC guidelines and the European Council regulatory thresholds for drinking water. P. aeruginosa, Legionella spp, sulphite-reducing Clostridium spores, S. aureus and β-haemolytic streptococci were also absent from units treated with continuous disinfection. The biofilm covering the DUWLs was more extensive, thicker and more friable in the intermittent disinfection dental units than in those with continuous disinfection. Overall, the findings showed that the products used for continuous disinfection of dental unit waterlines showed statistically better results than the intermittent treatment products under the study conditions.

  10. Microbial diversities (16S and 18S rDNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper

    Science.gov (United States)

    Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, e.g. Legionella pneumophila, via parasitization of free-living amoebae such as Acanthamoebae. Yet knowledge about the microbial composition of DW biofilms developed on common in-premise pl...

  11. Novel Approaches to Manipulating Bacterial Pathogen Biofilms: Whole-Systems Design Philosophy and Steering Microbial Evolution.

    Science.gov (United States)

    Penn, Alexandra S

    2016-01-01

    Understanding and manipulating bacterial biofilms is crucial in medicine, ecology and agriculture and has potential applications in bioproduction, bioremediation and bioenergy. Biofilms often resist standard therapies and the need to develop new means of intervention provides an opportunity to fundamentally rethink our strategies. Conventional approaches to working with biological systems are, for the most part, "brute force", attempting to effect control in an input and effort intensive manner and are often insufficient when dealing with the inherent non-linearity and complexity of living systems. Biological systems, by their very nature, are dynamic, adaptive and resilient and require management tools that interact with dynamic processes rather than inert artefacts. I present an overview of a novel engineering philosophy which aims to exploit rather than fight those properties, and hence provide a more efficient and robust alternative. Based on a combination of evolutionary theory and whole-systems design, its essence is what I will call systems aikido; the basic principle of aikido being to interact with the momentum of an attacker and redirect it with minimal energy expenditure, using the opponent's energy rather than one's own. In more conventional terms, this translates to a philosophy of equilibrium engineering, manipulating systems' own self-organisation and evolution so that the evolutionarily or dynamically stable state corresponds to a function which we require. I illustrate these ideas with a description of a proposed manipulation of environmental conditions to alter the stability of co-operation in the context of Pseudomonas aeruginosa biofilm infection of the cystic fibrosis lung.

  12. Discriminating activated sludge flocs from biofilm microbial communities in a novel pilot-scale reciprocation MBR using high-throughput 16S rRNA gene sequencing.

    Science.gov (United States)

    De Sotto, Ryan; Ho, Jaeho; Lee, Woonyoung; Bae, Sungwoo

    2018-03-29

    Membrane bioreactors (MBRs) are a well-established filtration technology that has become a popular solution for treating wastewater. One of the drawbacks of MBRs, however, is the formation of biofilm on the surface of membrane modules. The occurrence of biofilms leads to biofouling, which eventually compromises water quality and damages the membranes. To prevent this, it is vital to understand the mechanism of biofilm formation on membrane surfaces. In this pilot-scale study, a novel reciprocation membrane bioreactor was operated for a period of 8 months and fed with domestic wastewater from an aerobic tank of a local WWTP. Water quality parameters were monitored and the microbial composition of the attached biofilm and suspended aggregates was evaluated in this reciprocating MBR configuration. The abundance of nitrifiers and composition of microbial communities from biofilm and suspended solids samples were investigated using qPCR and high throughput 16S amplicon sequencing. Removal efficiencies of 29%, 16%, and 15% of chemical oxygen demand, total phosphorus and total nitrogen from the influent were observed after the MBR process with average effluent concentrations of 16 mg/L, 4.6 mg/L, and 5.8 mg/L respectively. This suggests that the energy-efficient MBR, apart from reducing the total energy consumption, was able to maintain effluent concentrations that are within regulatory standards for discharge. Molecular analysis showed the presence of amoA Bacteria and 16S Nitrospira genes with the occurrence of nitrification. Candidatus Accumulibacter, a genus with organisms that can accumulate phosphorus, was found to be present in both groups which explains why phosphorus removal was observed in the system. High-throughput 16S rRNA amplicon sequencing revealed the genus Saprospira to be the most abundant species from the total OTUs of both the membrane tank and biofilm samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community

    Directory of Open Access Journals (Sweden)

    Parro Víctor

    2010-06-01

    Full Text Available Abstract Background Extreme acidic environments are characterized by their high metal content and lack of nutrients (oligotrophy. Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers. In the Río Tinto (Spain, brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum spp. (L. ferrooxidans and L. ferriphilum and Acidithiobacillus ferrooxidans are abundant. These microorganisms play a critical role in bioleaching processes for industrial (biominery and environmental applications (acid mine drainage, bioremediation. The aim of this study was to investigate the physiological differences between the free living (planktonic and the sessile (biofilm associated lifestyles of Leptospirillum spp. as part of its natural extremely acidophilic community. Results Total RNA extracted from environmental samples was used to determine the composition of the metabolically active members of the microbial community and then to compare the biofilm and planktonic environmental transcriptomes by hybridizing to a genomic microarray of L. ferrooxidans. Genes up-regulated in the filamentous biofilm are involved in cellular functions related to biofilm formation and maintenance, such as: motility and quorum sensing (mqsR, cheAY, fliA, motAB, synthesis of cell wall structures (lnt, murA, murB, specific proteases (clpX/clpP, stress response chaperons (clpB, clpC, grpE-dnaKJ, groESL, etc. Additionally, genes involved in mixed acid fermentation (poxB, ackA were up-regulated in the biofilm. This result, together with the presence of small organic acids like acetate and formate (1.36 mM and 0.06 mM respectively in the acidic (pH 1.8 water stream, suggests that either L. ferrooxidans or other member of the microbial community are producing acetate in the acidophilic biofilm under microaerophilic conditions. Conclusions Our results indicate that the

  14. Distribution and rate of microbial processes in ammonia-loaded air filter biofilm

    DEFF Research Database (Denmark)

    Juhler, Susanne; Nielsen, Lars Peter; Schramm, Andreas

    2009-01-01

    The in situ activity and distribution of heterotrophic and nitrifying bacteria and their potential interactions were investigated in a full-scale, two-section, trickling filter designed for biological degradation of volatile organics and NH3 in ventilation air from pig farms. The filter biofilm w...... with heterotrophic bacteria for O2 and inhibition by the protonated form of NO2-, HNO2. Product inhibition of AOB growth could explain why this type of filter tends to emit air with a rather constant NH3 concentration irrespective of variations in inlet concentration and airflow....

  15. Regioselective synthesis of 3-benzyl substituted pyrimidino chromen-2-ones and evaluation of anti-microbial and anti-biofilm activities.

    Science.gov (United States)

    Emmadi, Narender Reddy; Atmakur, Krishnaiah; Bingi, Chiranjeevi; Godumagadda, Narender Reddy; Chityal, Ganesh Kumar; Nanubolu, Jagadeesh Babu

    2014-01-15

    Regioselective synthesis of a number of highly functionalized 3-benzylpyrimidino chromen-2-ones (4) were accomplished in a one pot three component reaction in acetic acid and determined their anti-microbial and anti-biofilm activities. Compounds 4o and 4p showed an excellent anti-microbial activity against Micrococcus luteus MTCC 2470 at a par with standard control (Ciprofloxacin) and exhibited best activity against Staphylococcus aureus MTCC 96 and Bacillus subtilis MTCC 121. Further, compounds 4h, 4i, 4m, 4n and 4q showed promising activity against Micrococcus luteus MTCC 2470, Staphylococcus aureus MTCC 96 and Bacillus subtilis MTCC 121. Whereas, compounds 4m showed very promising biofilm inhibition activity against Staphylococcus aureus MLS 16 MTCC 2940 and 4o, 4p showed very potent activity against Staphylococcus aureus MTCC 96 at a par with Ciprofloxacin used as standard control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Microbial succession within an anaerobic sequencing batch biofilm reactor (ASBBR treating cane vinasse at 55ºC

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Ferreira Ribas

    2009-08-01

    Full Text Available The aim of this work was to investigate the anaerobic biomass formation capable of treating vinasse from the production of sugar cane alcohol, which was evolved within an anaerobic sequencing batch biofilm reactor (ASBBR as immobilized biomass on cubes of polyurethane foam at the temperature of 55ºC. The reactor was inoculated with mesophilic granular sludge originally treating poultry slaughterhouse wastewater. The evolution of the biofilm in the polyurethane foam matrices was assessed during seven experimental phases which were thus characterized by the changes in the organic matter concentrations as COD (1.0 to 20.0 g/L. Biomass characterization proceeded with the examination of sludge samples under optical and scanning electron microscopy. The reactor showed high microbial morphological diversity along the trial. The predominance of Methanosaeta-like cells was observed up to the organic load of 2.5 gCOD/L.d. On the other hand, Methanosarcinalike microorganisms were the predominant archaeal population within the foam matrices at high organic loading ratios above 3.3 gCOD/L.d. This was suggested to be associated to a higher specific rate of acetate consumption by the later organisms.Este trabalho investigou a formação de um biofilme anaeróbio capaz de tratar vinhaça da produção de álcool de cana-de-açúcar, que evoluiu dentro de um reator operado em bateladas seqüenciais com biofilme (ASBBR tendo a biomassa imobilizada em cubos de espuma de poliuretano na temperatura de 55ºC. O reator foi inoculado com lodo granular mesofílico tratando água residuária de abatedouro de aves. A evolução do biofilme nas matrizes de espuma de poliuretano foi observada durante sete fases experimentais que foram caracterizadas por mudanças nas concentrações de matéria orgânica como DQO (1,0 a 20,0 g/L. A caracterização da biomassa foi feita por exames de amostras do lodo em microscopia ótica e eletrônica de varredura. O reator apresentou

  17. Implications of in situ calcification for photosynthesis in a ~ 3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa

    Science.gov (United States)

    Westall, Frances; Cavalazzi, Barbara; Lemelle, Laurence; Marrocchi, Yves; Rouzaud, Jean-Noël; Simionovici, Alexandre; Salomé, Murielle; Mostefaoui, Smail; Andreazza, Caroline; Foucher, Frédéric; Toporski, Jan; Jauss, Andrea; Thiel, Volker; Southam, Gordon; MacLean, Lachlan; Wirick, Susan; Hofmann, Axel; Meibom, Anders; Robert, François; Défarge, Christian

    2011-10-01

    Timing the appearance of photosynthetic microorganisms is crucial to understanding the evolution of life on Earth. The ability of the biosphere to use sunlight as a source of energy (photoautotrophy) would have been essential for increasing biomass and for increasing the biogeochemical capacity of all prokaryotes across the range of redox reactions that support life. Typical proxies for photosynthesis in the rock record include features, such as a mat-like, laminated morphology (stratiform, domical, conical) often associated with bulk geochemical signatures, such as calcification, and a fractionated carbon isotope signature. However, to date, in situ, calcification related to photosynthesis has not been demonstrated in the oldest known microbial mats. We here use in situ nanometre-scale techniques to investigate the structural and compositional architecture in a 3.3 billion-year (Ga) old microbial biofilm from the Barberton greenstone belt, thus documenting in situ calcification that was most likely related to anoxygenic photosynthesis. The Josefsdal Chert Microbial Biofilm (JCMB) formed in a littoral (photic) environment. It is characterised by a distinct vertical structural and compositional organisation. The lower part is calcified in situ by aragonite, progressing upwards into uncalcified kerogen characterised by up to 1% sulphur, followed by an upper layer that contains intact filaments at the surface. Crystallites of pseudomorphed pyrite are also associated with the biofilm suggesting calcification related to the activity of heterotrophic sulphur reducing bacteria. In this anoxygenic, nutrient-limited environment, the carbon required by the sulphur reducing bacteria could only have been produced by photoautotrophy. We conclude that the Josfsdal Chert Microbial Biofilm was formed by a consortium of anoxygenic microorganisms, including photosynthesisers and sulphur reducing bacteria.

  18. Zn biomineralization processes and microbial biofilm in a metal-rich stream (Naracauli, Sardinia).

    Science.gov (United States)

    Podda, F; Medas, D; De Giudici, G; Ryszka, P; Wolowski, K; Turnau, K

    2014-01-01

    Several decades after the closure of the Ingurtosu mine (SW Sardinia), a variety of seasonal Zn biomineralizations occurs. In this work, waters, microbial consortia, and seasonal precipitates from the Naracauli stream were sampled to investigate chemical composition of stream waters and biominerals, and microbial strain identity. Molecular and morphological analysis revealed that activity of dominant cyanobacterium Leptolyngbya frigida results in precipitation of Zn silicate. The activity of the cyanobacterium was associated to other bacteria and many kind of diatoms, such as Halamphora subsalina and Encyonopsis microcephala, which are trapped in the process of biomineral growth. In this work, the precipitation process is shown to be the result of many different parameters such as hydrologic regime, microbial community adaptation, and biological mediation. It results in a decrease of dissolved Zn in the stream water, and is a potential tool for Zn pollution abatement.

  19. Stratification of Microbial Processes and Populations in Biofilms Treating Pig Farm Waste Air

    DEFF Research Database (Denmark)

    Juhler, Susanne; Saunders, Aaron Marc; Pedersen, Kristina

    2006-01-01

    . The system, which is dominated by organoheterotrophic and ammonia oxidizing bacteria (AOB), thus comprises an extreme microbial habitat with high loads of organic acids and ammonia (up to 400 mM) and accumulation of toxic metabolites such as nitrite (reaching 300 mM). Furthermore, the filters show strong...

  20. Microbial Selenate Reduction Driven by a Denitrifying Anaerobic Methane Oxidation Biofilm.

    Science.gov (United States)

    Luo, Jing-Huan; Chen, Hui; Hu, Shihu; Cai, Chen; Yuan, Zhiguo; Guo, Jianhua

    2018-04-03

    Anaerobic oxidation of methane (AOM) plays a crucial role in controlling the flux of methane from anoxic environments. Sulfate-, nitrite-, nitrate-, and iron-dependent methane oxidation processes have been considered to be responsible for the AOM activities in anoxic niches. We report that nitrate-reducing AOM microorganisms, enriched in a membrane biofilm bioreactor, are able to couple selenate reduction to AOM. According to ion chromatography, X-ray photoelectron spectroscopy, and long-term bioreactor performance, we reveal that soluble selenate was reduced to nanoparticle elemental selenium. High-throughput 16S rRNA gene sequencing indicates that Candidatus Methanoperedens and Candidatus Methylomirabilis remained the only known methane-oxidizing microorganisms after nitrate was switched to selenate, suggesting that these organisms could couple anaerobic methane oxidation to selenate reduction. Our findings suggest a possible link between the biogeochemical selenium and methane cycles.

  1. Stimulation of electro-fermentation in single-chamber microbial electrolysis cells driven by genetically engineered anode biofilms

    Science.gov (United States)

    Awate, Bhushan; Steidl, Rebecca J.; Hamlischer, Thilo; Reguera, Gemma

    2017-07-01

    Unwanted metabolites produced during fermentations reduce titers and productivity and increase the cost of downstream purification of the targeted product. As a result, the economic feasibility of otherwise attractive fermentations is low. Using ethanol fermentation by the consolidated bioprocessing cellulolytic bacterium Cellulomonas uda, we demonstrate the effectiveness of anodic electro-fermentations at maximizing titers and productivity in a single-chamber microbial electrolysis cell (SCMEC) without the need for metabolic engineering of the fermentative microbe. The performance of the SCMEC platform relied on the genetic improvements of anode biofilms of the exoelectrogen Geobacter sulfurreducens that prevented the oxidation of cathodic hydrogen and improved lactate oxidation. Furthermore, a hybrid bioanode was designed that maximized the removal of organic acids in the fermentation broth. The targeted approach increased cellobiose consumption rates and ethanol titers, yields, and productivity three-fold or more, prevented pH imbalances and reduced batch-to-batch variability. In addition, the sugar substrate was fully consumed and ethanol was enriched in the broth during the electro-fermentation, simplifying its downstream purification. Such improvements and the possibility of scaling up SCMEC configurations highlight the potential of anodic electro-fermentations to stimulate fermentative bacteria beyond their natural capacity and to levels required for industrial implementation.

  2. CMEIAS JFrad: a digital computing tool to discriminate the fractal geometry of landscape architectures and spatial patterns of individual cells in microbial biofilms.

    Science.gov (United States)

    Ji, Zhou; Card, Kyle J; Dazzo, Frank B

    2015-04-01

    Image analysis of fractal geometry can be used to gain deeper insights into complex ecophysiological patterns and processes occurring within natural microbial biofilm landscapes, including the scale-dependent heterogeneities of their spatial architecture, biomass, and cell-cell interactions, all driven by the colonization behavior of optimal spatial positioning of organisms to maximize their efficiency in utilization of allocated nutrient resources. Here, we introduce CMEIAS JFrad, a new computing technology that analyzes the fractal geometry of complex biofilm architectures in digital landscape images. The software uniquely features a data-mining opportunity based on a comprehensive collection of 11 different mathematical methods to compute fractal dimension that are implemented into a wizard design to maximize ease-of-use for semi-automatic analysis of single images or fully automatic analysis of multiple images in a batch process. As examples of application, quantitative analyses of fractal dimension were used to optimize the important variable settings of brightness threshold and minimum object size in order to discriminate the complex architecture of freshwater microbial biofilms at multiple spatial scales, and also to differentiate the spatial patterns of individual bacterial cells that influence their cooperative interactions, resource use, and apportionment in situ. Version 1.0 of JFrad is implemented into a software package containing the program files, user manual, and tutorial images that will be freely available at http://cme.msu.edu/cmeias/. This improvement in computational image informatics will strengthen microscopy-based approaches to analyze the dynamic landscape ecology of microbial biofilm populations and communities in situ at spatial resolutions that range from single cells to microcolonies.

  3. Microbial diversity of the supra- and subgingival biofilm of healthy individuals after brushing with chlorhexidine- or silver-coated toothbrush bristles.

    Science.gov (United States)

    do Nascimento, Cássio; Paulo, Diana Ferreira; Pita, Murillo Sucena; Pedrazzi, Vinícius; de Albuquerque Junior, Rubens Ferreira

    2015-02-01

    Nanoparticulate silver has recently been reported as an effective antimicrobial agent. The aim of this clinical study was to investigate the potential changes on the oral microbiota of healthy individuals after controlled brushing with chlorhexidine- or silver-coated toothbrush bristles. Twenty-four healthy participants were enrolled in this investigation and randomly submitted to 3 interventions. All the participants received, in a crossover format, the following toothbrushing interventions: (i) chlorhexidine-coated bristles, (ii) silver-coated bristles, and (iii) conventional toothbrush (Control). All the interventions had a duration of 30 days. The DNA checkerboard hybridization method was used to identify and quantify up to 43 microbial species colonizing the supra- and subgingival biofilm. The supragingival samples presented higher genome counts than the subgingival samples (p toothbrush bristles impregnated with silver nanoparticles reduced the total and individual genome count in the supra- and subgingival biofilm after 4 weeks of brushing. Chlorhexidine was not effective in reducing the total genome counts in both supra- or subgingival biofilm after 4 weeks of brushing. Chlorhexidine reduced the individual genome counts in the supragingival biofilm for most of the target species, including putative periodontal pathogens.

  4. A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes.

    Science.gov (United States)

    Zhang, Shuai; Song, Hai-Liang; Yang, Xiao-Li; Li, Hua; Wang, Ya-Wen

    2018-05-01

    The aim of this work was to study sulfamethoxazole (SMX) removal efficiency and fate of corresponding sul genes in a stacked microbial fuel cell-constructed wetland coupled biofilm electrode reactor system (MFC-CW-BER). Findings showed that two stacked MFC-CWs could provide a relatively stable electricity supply to support the biofilm for SMX removal. Excellent SMX removal (>99.29%) was obtained in the BER-MFC-CW. Compared with the 2000 µg L -1 SMX influent, the relative abundance of the sul genes in biofilm media and effluent was enhanced with continuously high concentrations of SMX (4000 μg L -1 ). The relative abundances of sul genes in biofilm media and effluent increased as the hydraulic retention time decreased. However, there was no obvious variation in the relative abundance of sul genes in the effluent from MFC-CWs. No effect could be observe of the direct voltage and bioelectricity on the relative abundance of the sul genes in the BER. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem.

    Science.gov (United States)

    Lidbury, Ian; Johnson, Vivienne; Hall-Spencer, Jason M; Munn, Colin B; Cunliffe, Michael

    2012-05-01

    The impacts of ocean acidification on coastal biofilms are poorly understood. Carbon dioxide vent areas provide an opportunity to make predictions about the impacts of ocean acidification. We compared biofilms that colonised glass slides in areas exposed to ambient and elevated levels of pCO(2) along a coastal pH gradient, with biofilms grown at ambient and reduced light levels. Biofilm production was highest under ambient light levels, but under both light regimes biofilm production was enhanced in seawater with high pCO(2). Uronic acids are a component of biofilms and increased significantly with high pCO(2). Bacteria and Eukarya denaturing gradient gel electrophoresis profile analysis showed clear differences in the structures of ambient and reduced light biofilm communities, and biofilms grown at high pCO(2) compared with ambient conditions. This study characterises biofilm response to natural seabed CO(2) seeps and provides a baseline understanding of how coastal ecosystems may respond to increased pCO(2) levels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Bifunctional Ag/Fe/N/C Catalysts for Enhancing Oxygen Reduction via Cathodic Biofilm Inhibition in Microbial Fuel Cells.

    Science.gov (United States)

    Dai, Ying; Chan, Yingzi; Jiang, Baojiang; Wang, Lei; Zou, Jinlong; Pan, Kai; Fu, Honggang

    2016-03-23

    Limitation of the oxygen reduction reaction (ORR) in single-chamber microbial fuel cells (SC-MFCs) is considered an important hurdle in achieving their practical application. The cathodic catalysts faced with a liquid phase are easily primed with the electrolyte, which provides more surface area for bacterial overgrowth, resulting in the difficulty in transporting protons to active sites. Ag/Fe/N/C composites prepared from Ag and Fe-chelated melamine are used as antibacterial ORR catalysts for SC-MFCs. The structure-activity correlations for Ag/Fe/N/C are investigated by tuning the carbonization temperature (600-900 °C) to clarify how the active-constituents of Ag/Fe and N-species influence the antibacterial and ORR activities. A maximum power density of 1791 mW m(-2) is obtained by Ag/Fe/N/C (630 °C), which is far higher than that of Pt/C (1192 mW m(-2)), only having a decline of 16.14% after 90 days of running. The Fe-bonded N and the cooperation of pyridinic N and pyrrolic N in Ag/Fe/N/C contribute equally to the highly catalytic activity toward ORR. The ·OH or O2(-) species originating from the catalysis of O2 can suppress the biofilm growth on Ag/Fe/N/C cathodes. The synergistic effects between the Ag/Fe heterojunction and N-species substantially contribute to the high power output and Coulombic efficiency of Ag/Fe/N/C catalysts. These new antibacterial ORR catalysts show promise for application in MFCs.

  7. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox Biofilms from Digestate in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2015-01-01

    Full Text Available Microbial Fuel cells (MFCs have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  8. Effects of porous carrier size on biofilm development, microbial distribution and nitrogen removal in microaerobic bioreactors

    KAUST Repository

    Ahmad, Muhammad

    2017-03-15

    In this study, effects of porous carrier’s size (polyurethane-based) on microbial characteristics were systematically investigated in addition to nitrogen removal performance in six microaerobic bioreactors. Among different sized carriers (50, 30, 20, 15,10, 5 mm), 15 mm carrier showed highest nitrogen removal (98%) due to optimal micro-environments created for aerobic nitrifiers in outer layer (0∼7 mm), nitrifiers and denitrifiers in middle layer (7∼10 mm) and anaerobic denitrifiers in inner layer (10∼15 mm). Candidatus brocadia, a dominant anammox bacteria, was solely concentrated close to centroid (0∼70 μm) and strongly co-aggregated with other bacterial communities in the middle layer of the carrier. Contrarily, carriers with a smaller (<15 mm) or larger size (>15 mm) either destroy the effective zone for anaerobic denitrifiers or damage the microaerobic environments due to poor mass transfer. This study is of particular use for optimal design of carriers in enhancing simultaneous nitrification-denitrification in microaerobic wastewater treatment processes.

  9. A novel series of N-acyl substituted indole-linked benzimidazoles and naphthoimidazoles as potential anti inflammatory, anti biofilm and anti microbial agents.

    Science.gov (United States)

    Abraham, Rajan; Prakash, Periakaruppan; Mahendran, Karthikeyan; Ramanathan, Murugappan

    2018-01-01

    A novel N-acyl substituted indole-linked benzimidazoles and naphthoimidazoles were synthesized. Their chemical structures were confirmed using spectroscopic tools including 1 H NMR, 13 C NMR and CHN-elemental analyses. Anti inflammatory activity for all target compounds was evaluated in-vitro. The synthesized compounds hinder the biofilm formation and control the growth of the pathogen, Staphylococcus epidermis. Anti microbial activity of the compounds was evaluated against both Gram negative and Gram positive bacteria such as Staphylococcus aureus (MTCC 2940), Pseudomonas aeruginosa (MTCC424), Escherchia coli (MTCC 443) and Enterococcus fecalis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A prospective study on evaluation of pathogenesis, biofilm formation, antibiotic susceptibility of microbial community in urinary catheter

    Science.gov (United States)

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2015-09-01

    This study is aimed to isolate, detect biofilm formation ability and antibiotic susceptibility of urinary catheter adherent microorganisms from elderly hospitalized patient at the Universiti Kebangsaan Malaysia Medical Center. Microorganisms were isolated from three samples of urinary catheters (UC) surface; one of the acute vascular rejection patient (UCB) and two from benign prostate hyperplasia patients (UCC and UCD). A total of 100 isolates was isolated with 35 from UCB, 38 (UCC) and 28 (UCD). Ninety six were identified as Gram-negative bacilli, one Gram-positive bacilli and three yeasts. Results of biofilm forming on sterile foley catheter showed that all the isolates can form biofilm at different degrees; strong biofilm forming: 32% from the 35 isolates (UCB), 25% out of 38 isolates (UCC), 26% out of 28 isolates (UCD). As for moderate biofilm forming; 3% from UCB, 10% from UCC and 2% from UCD. Weak biofilm forming in UCC (3%). The antibiotic susceptibility for (UCB) isolates showed highly resistant to ampicillin, novobiocin and penicillin 100 (%), kanamycin (97%), tetracycline (94%), chloramphenicol (91%), streptomycin (77%) and showed low level of resistance to gentamycin (17%), while all the isolates from (UCC-D) showed high resistant towards ampicillin and penicillin, novobiocin (94%), tetracycline (61%), streptomycin (53%), gentamycin (50%) and low level of resistance to kanamycin (48%), chloramphenicol (47%). The findings indicate that these isolates can spread within the community on urinary catheters surface and produce strong biofilm, therefore, monitoring antibiotic susceptibility of bacteria isolated in the aggregation is recommended.

  11. Dental biofilm: ecological interactions in health and disease

    NARCIS (Netherlands)

    Marsh, P.D.; Zaura, E.

    Background: The oral microbiome is diverse and exists as multispecies microbial communities on oral surfaces in structurally and functionally organized biofilms. Aim: To describe the network of microbial interactions (both synergistic and antagonistic) occurring within these biofilms and assess

  12. Effects of marine microbial biofilms on the biocide release rate from antifouling paints – A model-based analysis

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Erik Weinell, Claus

    2006-01-01

    The antifouling (AF) paint model of Kiil et al. [S. Kiil, C.E. Weinell, M.S. Pedersen, K. Dam-Johansen, Analysis of self-polishing antifouling paints using rotary experiments and mathematical modelling, Ind. Eng. Chem. Res. 40 (2001) 3906-3920] and the simplified biofilm. growth model of Gujer......, polishing behaviour of AF paints. It is concluded that the perturbation of the local sea water conditions (e.g. pH), as a consequence of the metabolic activity of the biofilm should not affect the net biocide leaching and binder reaction rates significantly. This results from the thin and poorly active...... biofilms which presumably grow onto the highly effective modern AF paints. According to simulations, the experimental decrease in the biocide leaching rate caused by biofilm growth must be mainly attributed to adsorption of the biocide by the exopolymeric substances secreted by the microorganisms...

  13. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; JØRGENSEN, BB

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO4(2-) reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100-mu-m) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured...... concentration profiles by using a simple one-dimensional diffusion reaction model. The importance of electron acceptor and electron donor availability for the microzonation of respiratory processes and their reaction rates was investigated. Oxygen respiration was found in the upper 0.2 to 0.4 mm of the biofilm......, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying...

  14. Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics

    Science.gov (United States)

    Sgier, Linn; Freimann, Remo; Zupanic, Anze; Kroll, Alexandra

    2016-01-01

    Biofilms serve essential ecosystem functions and are used in different technical applications. Studies from stream ecology and waste-water treatment have shown that biofilm functionality depends to a great extent on community structure. Here we present a fast and easy-to-use method for individual cell-based analysis of stream biofilms, based on stain-free flow cytometry and visualization of the high-dimensional data by viSNE. The method allows the combined assessment of community structure, decay of phototrophic organisms and presence of abiotic particles. In laboratory experiments, it allows quantification of cellular decay and detection of survival of larger cells after temperature stress, while in the field it enables detection of community structure changes that correlate with known environmental drivers (flow conditions, dissolved organic carbon, calcium) and detection of microplastic contamination. The method can potentially be applied to other biofilm types, for example, for inferring community structure for environmental and industrial research and monitoring. PMID:27188265

  15. Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases : Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease

    NARCIS (Netherlands)

    Sanz, M.; Beighton, D.; Curtis, M.A.; Cury, J.A.; Dige, I.; Dommisch, H.; Ellwood, R.; Giacaman, R.A.; Herrera, D.; Herzberg, M.C.; Könönen, E.; Marsh, P.D.; Meyle, J.; Mira, A.; Molina, A.; Mombelli, A.; Quirynen, M.; Reynolds, E.C.; Shapira, L.; Zaura, E.

    Background and Aims: The scope of this working group was to review (1) ecological interactions at the dental biofilm in health and disease, (2) the role of microbial communities in the pathogenesis of periodontitis and caries, and (3) the innate host response in caries and periodontal diseases.

  16. Does reactor staging influence microbial structure and functions in biofilm systems? The case of pre-denitrifying MBBRs

    DEFF Research Database (Denmark)

    Polesel, Fabio; Torresi, Elena; Jensen, Marlene Mark

    To date, a number of treatment technologies and configurations have been tested to improve the elimination of conventional and trace (e.g., pharmaceutical residues) pollutants via biological wastewater treatment. Bioreactor staging and the moving bed biofilm reactor (MBBR) technology have emerged...

  17. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry

    Science.gov (United States)

    Latorre, Juan D.; Hernandez-Velasco, Xochitl; Wolfenden, Ross E.; Vicente, Jose L.; Wolfenden, Amanda D.; Menconi, Anita; Bielke, Lisa R.; Hargis, Billy M.; Tellez, Guillermo

    2016-01-01

    Social concern about misuse of antibiotics as growth promoters (AGP) and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM) are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly resistant endospores, produce antimicrobial compounds, and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity, and pathogen-inhibition activity. Thirty-one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase, and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as Bacillus subtilis (1/3), and Bacillus amyloliquefaciens (2/3), based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31), Escherichia coli (28/31), and Clostridioides difficile (29/31). Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds, may contribute to enhanced performance through improving nutrient digestibility

  18. Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity and biofilm synthesis as direct-fed microbials candidates for poultry

    Directory of Open Access Journals (Sweden)

    Juan D Latorre

    2016-10-01

    Full Text Available Social concern about misuse of antibiotics as growth promoters (AGP and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly-resistant endospores, production of antimicrobial compounds and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity and pathogen-inhibition activity. Thirty one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as B. subtilis (1/3, and B. amyloliquefaciens (2/3 based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31, Escherichia coli (28/31 and Clostridioides difficile (29/31. Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds may contribute to enhanced performance through improving nutrient digestibility

  19. Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease.

    Science.gov (United States)

    Sanz, Mariano; Beighton, David; Curtis, Michael A; Cury, Jaime A; Dige, Irene; Dommisch, Henrik; Ellwood, Roger; Giacaman, Rodrigo A; Herrera, David; Herzberg, Mark C; Könönen, Eija; Marsh, Philip D; Meyle, Joerg; Mira, Alex; Molina, Ana; Mombelli, Andrea; Quirynen, Marc; Reynolds, Eric C; Shapira, Lior; Zaura, Egija

    2017-03-01

    The scope of this working group was to review (1) ecological interactions at the dental biofilm in health and disease, (2) the role of microbial communities in the pathogenesis of periodontitis and caries, and (3) the innate host response in caries and periodontal diseases. A health-associated biofilm includes genera such as Neisseria, Streptococcus, Actinomyces, Veillonella and Granulicatella. Microorganisms associated with both caries and periodontal diseases are metabolically highly specialized and organized as multispecies microbial biofilms. Progression of these diseases involves multiple microbial interactions driven by different stressors. In caries, the exposure of dental biofilms to dietary sugars and their fermentation to organic acids results in increasing proportions of acidogenic and aciduric species. In gingivitis, plaque accumulation at the gingival margin leads to inflammation and increasing proportions of proteolytic and often obligately anaerobic species. The natural mucosal barriers and saliva are the main innate defence mechanisms against soft tissue bacterial invasion. Similarly, enamel and dentin are important hard tissue barriers to the caries process. Given that the present state of knowledge suggests that the aetiologies of caries and periodontal diseases are mutually independent, the elements of innate immunity that appear to contribute to resistance to both are somewhat coincidental. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Bacterial biofilm and associated infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jamal

    2018-01-01

    Full Text Available Microscopic entities, microorganisms that drastically affect human health need to be thoroughly investigated. A biofilm is an architectural colony of microorganisms, within a matrix of extracellular polymeric substance that they produce. Biofilm contains microbial cells adherent to one-another and to a static surface (living or non-living. Bacterial biofilms are usually pathogenic in nature and can cause nosocomial infections. The National Institutes of Health (NIH revealed that among all microbial and chronic infections, 65% and 80%, respectively, are associated with biofilm formation. The process of biofilm formation consists of many steps, starting with attachment to a living or non-living surface that will lead to formation of micro-colony, giving rise to three-dimensional structures and ending up, after maturation, with detachment. During formation of biofilm several species of bacteria communicate with one another, employing quorum sensing. In general, bacterial biofilms show resistance against human immune system, as well as against antibiotics. Health related concerns speak loud due to the biofilm potential to cause diseases, utilizing both device-related and non-device-related infections. In summary, the understanding of bacterial biofilm is important to manage and/or to eradicate biofilm-related diseases. The current review is, therefore, an effort to encompass the current concepts in biofilm formation and its implications in human health and disease.

  1. Long-term evaluation of the antimicrobial susceptibility and microbial profile of subgingival biofilms in individuals with aggressive periodontitis.

    Science.gov (United States)

    Lourenço, Talita Gomes Baêta; Heller, Débora; do Souto, Renata Martins; Silva-Senem, Mayra Xavier E; Varela, Victor Macedo; Torres, Maria Cynesia Barros; Feres-Filho, Eduardo Jorge; Colombo, Ana Paula Vieira

    2015-06-01

    This study evaluates the antimicrobial susceptibility and composition of subgingival biofilms in generalized aggressive periodontitis (GAP) patients treated using mechanical/antimicrobial therapies, including chlorhexidine (CHX), amoxicillin (AMX) and metronidazole (MET). GAP patients allocated to the placebo (C, n = 15) or test group (T, n = 16) received full-mouth disinfection with CHX, scaling and root planning, and systemic AMX (500 mg)/MET (250 mg) or placebos. Subgingival plaque samples were obtained at baseline, 3, 6, 9 and 12 months post-therapy from 3-4 periodontal pockets, and the samples were pooled and cultivated under anaerobic conditions. The minimum inhibitory concentrations (MICs) of AMX, MET and CHX were assessed using the microdilution method. Bacterial species present in the cultivated biofilm were identified by checkerboard DNA-DNA hybridization. At baseline, no differences in the MICs between groups were observed for the 3 antimicrobials. In the T group, significant increases in the MICs of CHX (p periodontal pathogens, the MICs diminished. A transitory increase in the MIC of the subgingival biofilm to AMX and CHX was observed in GAP patients treated using enhanced mechanical therapy with topical CHX and systemic AMX/MET. Both protocols presented limited effects on the cultivable subgingival microbiota.

  2. Strategies for combating bacterial biofilm infections

    DEFF Research Database (Denmark)

    Wu, Hong; Moser, Claus Ernst; Wang, Heng-Zhuang

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases...

  3. Novel Materials for Biofilm Inhibition

    Data.gov (United States)

    National Aeronautics and Space Administration — Determine to what extent the physical properties of the omniphobic and PC coatings will increase resistance to microbial attachment and subsequent biofilm formation....

  4. Biofilms in wounds

    DEFF Research Database (Denmark)

    Cooper, R A; Bjarnsholt, Thomas; Alhede, M

    2014-01-01

    of biofilms in chronic wounds has provided new insight into the reasons why. Increased tolerance of biofilms to antimicrobial agents explains the limited efficacy of antimicrobial agents in chronic wounds and illustrates the need to develop new management strategies. This review aims to explain the nature...... in diagnostic laboratories are mainly in a planktonic form that is unrepresentative of the way in which most microbial species exist naturally. Usually microbial species adhere to each other, as well as to living and non-living surfaces, where they form complex communities surrounded by collectively secreted...

  5. Biofilm Risks

    DEFF Research Database (Denmark)

    Wirtanen, Gun Linnea; Salo, Satu

    2016-01-01

    This chapter on biofilm risks deals with biofilm formation of pathogenic microbes, sampling and detection methods, biofilm removal, and prevention of biofilm formation. Several common pathogens produce sticky and/or slimy structures in which the cells are embedded, that is, biofilms, on various s...

  6. Soil-based ecosystem services

    DEFF Research Database (Denmark)

    Ghaley, Bhim Bahadur; Porter, John Roy; Sandhu, Harpinder S.

    2014-01-01

    Among the soil-based ecosystem services (ES), nutrient cycling and carbon sequestration have direct influence on the biogeochemical cycles and greenhouse gas emissions affecting provision of other ES that support human existence. We reviewed methods to assess the two key ES by identifying...

  7. Discovering Biofilms: Inquiry-Based Activities for the Classroom

    Science.gov (United States)

    Redelman, Carly V.; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    In nature, bacteria exist in and adapt to different environments by forming microbial communities called "biofilms." We propose simple, inquiry-based laboratory exercises utilizing a biofilm formation assay, which allows controlled biofilm growth. Students will be able to qualitatively assess biofilm growth via staining. Recently, we developed a…

  8. Differentiation of Microbial Species and Strains in Coculture Biofilms by Multivariate Analysis of Laser Desorption Postionization Mass Spectra

    Energy Technology Data Exchange (ETDEWEB)

    University of Illinois at Chicago; Montana State University; Bhardwaj, Chhavi; Cui, Yang; Hofstetter, Theresa; Liu, Suet Yi; Bernstein, Hans C.; Carlson, Ross P.; Ahmed, Musahid; Hanley, Luke

    2013-04-01

    7.87 to 10.5 eV vacuum ultraviolet (VUV) photon energies were used in laser desorption postionization mass spectrometry (LDPI-MS) to analyze biofilms comprised of binary cultures of interacting microorganisms. The effect of photon energy was examined using both tunable synchrotron and laser sources of VUV radiation. Principal components analysis (PCA) was applied to the MS data to differentiate species in Escherichia coli-Saccharomyces cerevisiae coculture biofilms. PCA of LDPI-MS also differentiated individual E. coli strains in a biofilm comprised of two interacting gene deletion strains, even though these strains differed from the wild type K-12 strain by no more than four gene deletions each out of approximately 2000 genes. PCA treatment of 7.87 eV LDPI-MS data separated the E. coli strains into three distinct groups two ?pure? groups and a mixed region. Furthermore, the ?pure? regions of the E. coli cocultures showed greater variance by PCA when analyzed by 7.87 eV photon energies than by 10.5 eV radiation. Comparison of the 7.87 and 10.5 eV data is consistent with the expectation that the lower photon energy selects a subset of low ionization energy analytes while 10.5 eV is more inclusive, detecting a wider range of analytes. These two VUV photon energies therefore give different spreads via PCA and their respective use in LDPI-MS constitute an additional experimental parameter to differentiate strains and species.

  9. Accelerating anodic biofilms formation and electron transfer in microbial fuel cells: Role of anionic biosurfactants and mechanism.

    Science.gov (United States)

    Zhang, Yunshu; Jiang, Junqiu; Zhao, Qingliang; Gao, YunZhi; Wang, Kun; Ding, Jing; Yu, Hang; Yao, Yue

    2017-10-01

    Anodic electron transfer is the predominant electricity generation process of MFCs. To accelerate anodic biofilms formation and electron transfer, 40mg/L, 80mg/L, and 120mg/L of rhamnolipid biosurfactants were added to the anolyte, resulting in an increased abiotic capacitance from 15.12F/m 2 (control) to 16.54F/m 2 , 18.00F/m 2 , and 19.39F/m 2 , respectively. Anodic biofilm formation was facilitated after dosing 40mg/L of rhamnolipids on the 7th day after inoculation, resulting in an increased anodic biofilm coverage from 0.43% to 42.51%, and an increased maximum power density from 6.92±1.18W/m 3 to 9.93±0.88W/m 3 . Furthermore, the adsorption of rhamnolipids on the anode caused the Frumkin effect, leading to a decrease of equilibrium potential from -0.43V to -0.56V, and an increase of exchange current density from 5.09×10 -3 A/m 2 to 8.72×10 -3 A/m 2 . However, electron transfer was blocked when the rhamnolipid concentration was further increased to 80mg/L, and 120mg/L. Analysis of the anodic bacterial communities revealed that rhamnolipids facilitated the enrichment of exoelectrogen, increasing the total proportion from 65% to 81%. Additionally, biosurfactants were found to have significant impacts on the composition of exoelectrogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens

    DEFF Research Database (Denmark)

    Sun, Guotao; Rodrigues, Diogo De Sacadura; Thygesen, Anders

    2016-01-01

    ) on the MFC. The electrogenic bacterium Geobacter sulfurreducens was identified in all inocula and its abundance during MFC operation was positively linked to the MFC performance. The LS inoculated MFCs showed highest abundance (18% ± 1%) of G. sulfurreducens, maximum current density [Imax = (690 ± 30) mA·m......- 2] and coulombic efficiency (CE = 29% ± 1%) with acetate as the substrate. Imax and CE increased to (1780 ± 30) mA·m- 2 and 58% ± 1%, respectively, after decreasing the Rext from 1000 Ω to 200 Ω, which also correlated to a higher abundance of G. sulfurreducens (21% ± 0.7%) on the MFC anodic biofilm...

  11. The Efficacy of Umbelliferone, Arbutin, and N-Acetylcysteine to Prevent Microbial Colonization and Biofilm Development on Urinary Catheter Surface: Results from a Preliminary Study

    Directory of Open Access Journals (Sweden)

    Tommaso Cai

    2016-01-01

    Full Text Available We evaluated, in a preliminary study, the efficacy of umbelliferone, arbutin, and N-acetylcysteine to inhibit biofilm formation on urinary catheter. We used 20 urinary catheters: 5 catheters were incubated with Enterococcus faecalis (control group; 5 catheters were incubated with E. faecalis in presence of umbelliferone (150 mg, arbutin (60 mg, and N-acetylcysteine (150 mg (group 1; 5 catheters were incubated with E. faecalis in presence of umbelliferone (150 mg, arbutin (60 mg, and N-acetylcysteine (400 mg (group 2; and 5 catheters were incubated with E. faecalis in presence of umbelliferone (300 mg, arbutin (60 mg, and N-acetylcysteine (150 mg (group 3. After 72 hours, planktonic microbial growth and microorganisms on catheter surface were assessed. In the control group, we found a planktonic load of ≥105 CFU/mL in the inoculation medium and retrieved 3.69 × 106 CFU/cm from the sessile cells adherent to the catheter surface. A significantly lower amount in planktonic (p<0.001 and sessile (p=0.004 bacterial load was found in group 3, showing <100 CFU/mL and 0.12 × 106 CFU/cm in the incubation medium and on the catheter surface, respectively. In groups 1 and 2, 1.67 × 106 CFU/cm and 1.77 × 106 CFU/cm were found on catheter surface. Our results document that umbelliferone, arbutin, and N-acetylcysteine are able to reduce E. faecalis biofilm development on the surface of urinary catheters.

  12. Viscoelastic Properties of Levan-DNA Mixtures Important in Microbial Biofilm Formation as Determined by Micro- and Macrorheology

    Science.gov (United States)

    Stojković, Biljana; Sretenovic, Simon; Dogsa, Iztok; Poberaj, Igor; Stopar, David

    2015-01-01

    We studied the viscoelastic properties of homogeneous and inhomogeneous levan-DNA mixtures using optical tweezers and a rotational rheometer. Levan and DNA are important components of the extracellular matrix of bacterial biofilms. Their viscoelastic properties influence the mechanical as well as molecular-transport properties of biofilm. Both macro- and microrheology measurements in homogeneous levan-DNA mixtures revealed pseudoplastic behavior. When the concentration of DNA reached a critical value, levan started to aggregate, forming clusters of a few microns in size. Microrheology using optical tweezers enabled us to measure local viscoelastic properties within the clusters as well as in the DNA phase surrounding the levan aggregates. In phase-separated levan-DNA mixtures, the results of macro- and microrheology differed significantly. The local viscosity and elasticity of levan increased, whereas the local viscosity of DNA decreased. On the other hand, the results of bulk viscosity measurements suggest that levan clusters do not interact strongly with DNA. Upon treatment with DNase, levan aggregates dispersed. These results demonstrate the advantages of microrheological measurements compared to bulk viscoelastic measurements when the materials under investigation are complex and inhomogeneous, as is often the case in biological samples. PMID:25650942

  13. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters.

    Science.gov (United States)

    Oberbeckmann, Sonja; Loeder, Martin G J; Gerdts, Gunnar; Osborn, A Mark

    2014-11-01

    Plastic pollution is now recognised as a major threat to marine environments and marine biota. Recent research highlights that diverse microbial species are found to colonise plastic surfaces (the plastisphere) within marine waters. Here, we investigate how the structure and diversity of marine plastisphere microbial community vary with respect to season, location and plastic substrate type. We performed a 6-week exposure experiment with polyethylene terephthalate (PET) bottles in the North Sea (UK) as well as sea surface sampling of plastic polymers in Northern European waters. Scanning electron microscopy revealed diverse plastisphere communities comprising prokaryotic and eukaryotic microorganisms. Denaturing gradient gel electrophoresis (DGGE) and sequencing analysis revealed that plastisphere microbial communities on PET fragments varied both with season and location and comprised of bacteria belonging to Bacteroidetes, Proteobacteria, Cyanobacteria and members of the eukaryotes Bacillariophyceae and Phaeophyceae. Polymers sampled from the sea surface mainly comprised polyethylene, polystyrene and polypropylene particles. Variation within plastisphere communities on different polymer types was observed, but communities were primarily dominated by Cyanobacteria. This research reveals that the composition of plastisphere microbial communities in marine waters varies with season, geographical location and plastic substrate type. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Metagenomic Analysis of Showerhead Biofilms from a Hospital in Ohio

    Science.gov (United States)

    Background: The National Institute of Health estimated that 80% of human microbial infections are associated with biofilms. Although water supplies and hospital equipments are constantly treated with disinfectants, the presence of biofilms in these areas has been frequently obser...

  15. Complete nucleotide sequence and analysis of two conjugative broad host range plasmids from a marine microbial biofilm.

    Directory of Open Access Journals (Sweden)

    Peter Norberg

    Full Text Available The complete nucleotide sequence of plasmids pMCBF1 and pMCBF6 was determined and analyzed. pMCBF1 and pMCBF6 form a novel clade within the IncP-1 plasmid family designated IncP-1 ς. The plasmids were exogenously isolated earlier from a marine biofilm. pMCBF1 (62 689 base pairs; bp and pMCBF6 (66 729 bp have identical backbones, but differ in their mercury resistance transposons. pMCBF1 carries Tn5053 and pMCBF6 carries Tn5058. Both are flanked by 5 bp direct repeats, typical of replicative transposition. Both insertions are in the vicinity of a resolvase gene in the backbone, supporting the idea that both transposons are "res-site hunters" that preferably insert close to and use external resolvase functions. The similarity of the backbones indicates recent insertion of the two transposons and the ongoing dynamics of plasmid evolution in marine biofilms. Both plasmids also carry the insertion sequence ISPst1, albeit without flanking repeats. ISPs1is located in an unusual site within the control region of the plasmid. In contrast to most known IncP-1 plasmids the pMCBF1/pMCBF6 backbone has no insert between the replication initiation gene (trfA and the vegetative replication origin (oriV. One pMCBF1/pMCBF6 block of about 2.5 kilo bases (kb has no similarity with known sequences in the databases. Furthermore, insertion of three genes with similarity to the multidrug efflux pump operon mexEF and a gene from the NodT family of the tripartite multi-drug resistance-nodulation-division (RND system in Pseudomonas aeruginosa was found. They do not seem to confer antibiotic resistance to the hosts of pMCBF1/pMCBF6, but the presence of RND on promiscuous plasmids may have serious implications for the spread of antibiotic multi-resistance.

  16. Candida Biofilms: Development, Architecture, and Resistance

    Science.gov (United States)

    CHANDRA, JYOTSNA; MUKHERJEE, PRANAB K.

    2015-01-01

    Intravascular device–related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis–associated infections and also are commonly isolated from contact lens–related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms. PMID:26350306

  17. [Bacteria and biofilm in respiratory tract infections].

    Science.gov (United States)

    Drago, Lorenzo

    2009-07-01

    Biofilm is a structured community of bacterial cells included in a self-produced polymeric matrix adherent to an inert or living surface. The main property of biofilm consists of making microrganisms more resistant to exogenous insults. Antibiotic therapy typically resolves symptoms determined by planktonic cells released by biofilms but is not able to eradicate and completely clear biofilm. This is why infections sustained by biofilm-producer bacteria are often recurrent, making mandatory repeated antibiotic treatments. The typical conformation of biofilm, the phenotypical and genetical features existing among the different microrganisms confer a natural resistance to a number of antimicrobials so that it is necessary to test antimicrobial activity against the microbial species itself and also against biofilm, when it is present. Comparative studies, performed on quinolones and beta-lactams, evidenced a significant activity against biofilm produced by pneumococci, haemophyli and pseudomonas as well.

  18. Biodegradation of Methyl Tertiary Butyl Ether (MTBE by a Microbial Consortium in a Continuous Up-Flow Packed-Bed Biofilm Reactor: Kinetic Study, Metabolite Identification and Toxicity Bioassays.

    Directory of Open Access Journals (Sweden)

    Guadalupe Alfonso-Gordillo

    Full Text Available This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater.

  19. An Update on the Management of Endodontic Biofilms Using Root Canal Irrigants and Medicaments

    Science.gov (United States)

    Mohammadi, Zahed; Soltani, Mohammad Karim; Shalavi, Sousan

    2014-01-01

    Microbial biofilm is defined as a sessile multicellular microbial community characterized by cells that are firmly attached to a surface and enmeshed in a self-produced matrix of extracellular polymeric substances. Biofilms play a very important role in pulp and periradicular pathosis. The aim of this article was to review the role of endodontic biofilms and the effects of root canal irrigants, medicaments as well as lasers on biofilms A Medline search was performed on the English articles published from 1982 to 2013 and was limited to papers published in English. The searched keywords were “Biofilms AND endodontics”, “Biofilms AND sodium hypochlorite”, "Biofilms AND chlorhexidine", "Biofilms AND MTAD", "Biofilms AND calcium hydroxide", “Biofilms AND ozone”, “Biofilms AND lasers” and "Biofilms AND nanoparticles". The reference list of each article was manually searched to find other suitable sources of information. PMID:24688576

  20. Innovative Strategies to Overcome Biofilm Resistance

    Directory of Open Access Journals (Sweden)

    Aleksandra Taraszkiewicz

    2013-01-01

    Full Text Available We review the recent literature concerning the efficiency of antimicrobial photodynamic inactivation toward various microbial species in planktonic and biofilm cultures. The review is mainly focused on biofilm-growing microrganisms because this form of growth poses a threat to chronically infected or immunocompromised patients and is difficult to eradicate from medical devices. We discuss the biofilm formation process and mechanisms of its increased resistance to various antimicrobials. We present, based on data in the literature, strategies for overcoming the problem of biofilm resistance. Factors that have potential for use in increasing the efficiency of the killing of biofilm-forming bacteria include plant extracts, enzymes that disturb the biofilm structure, and other nonenzymatic molecules. We propose combining antimicrobial photodynamic therapy with various antimicrobial and antibiofilm approaches to obtain a synergistic effect to permit efficient microbial growth control at low photosensitizer doses.

  1. Innovative strategies to overcome biofilm resistance.

    Science.gov (United States)

    Taraszkiewicz, Aleksandra; Fila, Grzegorz; Grinholc, Mariusz; Nakonieczna, Joanna

    2013-01-01

    We review the recent literature concerning the efficiency of antimicrobial photodynamic inactivation toward various microbial species in planktonic and biofilm cultures. The review is mainly focused on biofilm-growing microrganisms because this form of growth poses a threat to chronically infected or immunocompromised patients and is difficult to eradicate from medical devices. We discuss the biofilm formation process and mechanisms of its increased resistance to various antimicrobials. We present, based on data in the literature, strategies for overcoming the problem of biofilm resistance. Factors that have potential for use in increasing the efficiency of the killing of biofilm-forming bacteria include plant extracts, enzymes that disturb the biofilm structure, and other nonenzymatic molecules. We propose combining antimicrobial photodynamic therapy with various antimicrobial and antibiofilm approaches to obtain a synergistic effect to permit efficient microbial growth control at low photosensitizer doses.

  2. The ecology and biogeochemistry of stream biofilms.

    Science.gov (United States)

    Battin, Tom J; Besemer, Katharina; Bengtsson, Mia M; Romani, Anna M; Packmann, Aaron I

    2016-04-01

    Streams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribute substantially to global biogeochemical fluxes. In turn, water flow and related deliveries of nutrients and organic matter to biofilms constitute major constraints on microbial life. In this Review, we describe the ecology and biogeochemistry of stream biofilms and highlight the influence of physical and ecological processes on their structure and function. Recent advances in the study of biofilm ecology may pave the way towards a mechanistic understanding of the effects of climate and environmental change on stream biofilms and the biogeochemistry of stream ecosystems.

  3. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm

  4. Antibiotic tolerance and resistance in biofilms

    DEFF Research Database (Denmark)

    Ciofu, Oana; Tolker-Nielsen, Tim

    2010-01-01

    One of the most important features of microbial biofilms is their tolerance to antimicrobial agents and components of the host immune system. The difficulty of treating biofilm infections with antibiotics is a major clinical problem. Although antibiotics may decrease the number of bacteria...... in biofilms, they will not completely eradicate the bacteria in vivo which may have important clinical consequences in form of relapses of the infection....

  5. Effect of Lactoferrin on Oral Biofilm Formation

    Science.gov (United States)

    2009-10-01

    surfaces leading to lysis has also been described. Biofilms are medically important since few diseases are caused by microbes in their non- adherent...and free-floating forms. In the oral cavity, microbial biofilms including dental plaque, are involved in the pathogenesis of caries, periodontitis ...dental implant failures, denture stomatitis and oral yeast infections such as candidiasis. It is one of the most widely studied biofilm systems, yet

  6. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  7. Visco-elastic properties of biofilms

    NARCIS (Netherlands)

    Peterson, Brandon Wade

    2013-01-01

    Microbiële biofilms aanpakken door ze te laten resoneren Naar schatting tachtig procent van alle bacteriële infecties die door dokters behandeld worden, wordt veroorzaakt door biofilms, dunne laagjes micro-organismen. Brandon Peterson stelt in preklinisch onderzoek de hypothese op dat de hechting

  8. Antibiotic tolerance and resistance in biofilms

    DEFF Research Database (Denmark)

    Ciofu, Oana; Tolker-Nielsen, Tim

    2010-01-01

    One of the most important features of microbial biofilms is their tolerance to antimicrobial agents and components of the host immune system. The difficulty of treating biofilm infections with antibiotics is a major clinical problem. Although antibiotics may decrease the number of bacteria...

  9. Biofilm formation by Borrelia burgdorferi sensu lato.

    Science.gov (United States)

    Timmaraju, Venkata Arun; Theophilus, Priyanka A S; Balasubramanian, Kunthavai; Shakih, Shafiq; Luecke, David F; Sapi, Eva

    2015-08-01

    Bacterial biofilms are microbial communities held together by an extracellular polymeric substance matrix predominantly composed of polysaccharides, proteins and nucleic acids. We had previously shown that Borrelia burgdorferi sensu stricto, the causative organism of Lyme disease in the United States is capable of forming biofilms in vitro. Here, we investigated biofilm formation by B. afzelii and B. garinii, which cause Lyme disease in Europe. Using various histochemistry and microscopy techniques, we show that B. afzelii and B. garinii form biofilms, which resemble biofilms formed by B. burgdorferi sensu stricto. High-resolution atomic force microscopy revealed similarities in the ultrastructural organization of the biofilms form by three Borrelia species. Histochemical experiments revealed a heterogeneous organization of exopolysaccharides among the three Borrelia species. These results suggest that biofilm formation might be a common trait of Borrelia genera physiology. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Biodiversity, community structure and function of biofilms in stream ecosystems.

    Science.gov (United States)

    Besemer, Katharina

    2015-12-01

    Multi-species, surface-attached biofilms often dominate microbial life in streams and rivers, where they contribute substantially to biogeochemical processes. The microbial diversity of natural biofilms is huge, and may have important implications for the functioning of aquatic environments and the ecosystem services they provide. Yet the causes and consequences of biofilm biodiversity remain insufficiently understood. This review aims to give an overview of current knowledge on the distribution of stream biofilm biodiversity, the mechanisms generating biodiversity patterns and the relationship between biofilm biodiversity and ecosystem functioning. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Microelectrodes as novel research tools for environmental biofilm studies

    International Nuclear Information System (INIS)

    Yu, T.; Lu, R.; Bishop, L.

    2002-01-01

    Biofilm processes are widely utilized in environmental engineering for biodegradation of contaminated waters, gases and soils. It is important to understand the structure and functions of biofilms. Microelectrodes are novel experimental tools for environmental biofilm studies. The authors reviewed the techniques of oxygen, sulfide, redox potential and pH microelectrode. These microelectrodes have tip diameters of 3 to 20 μm, resulting a high spatial resolution. They enable us directly measure the chemical conditions as results of microbial activities in biofilms. The authors also reported the laboratory and field studies of wastewater biofilms using microelectrode techniques. The results of these studies provided experimental evidence on the stratification of microbial processes and the associated redox potential change in wastewater biofilms: (1) The oxygen penetration depth was only a fraction of the biofilm thickness. This observation, first made under laboratory conditions, has been confirmed under field conditions. (2) The biofilms with both aerobic oxidation and sulfate reduction had a clearly stratified structure. This was evidenced by a sharp decrease of redox potential near the interface between the aerobic zone and the sulfate reduction zone within the biofilm. In this type of biofilms, aerobic oxidation took place only in a shallow layer near the biofilm surface and sulfate reduction occurred in the deeper anoxic zone. (3) The redox potential changed with the shift of primary microbial process in biofilms, indicating that it is possible to use redox potential to help illustrate the structure and functions of biofilms. (author)

  12. Experimental evolution in biofilm populations

    Science.gov (United States)

    Steenackers, Hans P.; Parijs, Ilse; Foster, Kevin R.; Vanderleyden, Jozef

    2016-01-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  13. Impact of a Novel, Anti-microbial Dressing on In Vivo, Pseudomonas aeruginosa Wound Biofilm: Quantitative Comparative Analysis using a Rabbit Ear Model

    Science.gov (United States)

    2014-12-01

    Impact of a novel, antimicrobial dressing on in vivo, Pseudomonas aeruginosa wound biofilm : Quantitative comparative analysis using a rabbit ear...Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China, and 3. Microbiology Branch, US Army Dental and...Manuscript received: April 18, 2014 Accepted in final form: September 4, 2014 DOI:10.1111/wrr.12232 ABSTRACT The importance of bacterial biofilms to

  14. Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells

    DEFF Research Database (Denmark)

    Weiss Nielsen, Martin; Sternberg, Claus; Molin, Søren

    2011-01-01

    Many microbial cells have the ability to form sessile microbial communities defined as biofilms that have altered physiological and pathological properties compared to free living microorganisms. Biofilms in nature are often difficult to investigate and reside under poorly defined conditions(1). ...

  15. Salmonella biofilms

    OpenAIRE

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm formation. A collection of SalmonellaTyphimurium clinical, outbreak-related and retail product isolates, was used to determine biofilm formation capacity and to identify cellular parameters contributing to surface colon...

  16. Confocal microscopy imaging of the biofilm matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke L

    2017-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens....... Confocal microscopes are held by many research groups, and a number of methods for qualitative and quantitative imaging of the matrix have emerged in recent years. This review provides an overview and a critical discussion of techniques used to visualize different matrix compounds, to determine...... the concentration of solutes and the diffusive properties of the biofilm matrix....

  17. Biofilm induced tolerance towards antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Anders Folkesson

    Full Text Available Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.

  18. An improved protocol for harvesting Bacillus subtilis colony biofilms.

    Science.gov (United States)

    Fuchs, Felix Matthias; Driks, Adam; Setlow, Peter; Moeller, Ralf

    2017-03-01

    Bacterial biofilms cause severe problems in medicine and industry due to the high resistance to disinfectants and environmental stress of organisms within biofilms. Addressing challenges caused by biofilms requires full understanding of the underlying mechanisms for bacterial resistance and survival in biofilms. However, such work is hampered by a relative lack of systems for biofilm cultivation that are practical and reproducible. To address this problem, we developed a readily applicable method to culture Bacillus subtilis biofilms on a membrane filter. The method results in biofilms with highly reproducible characteristics, and which can be readily analyzed by a variety of methods with little further manipulation. This biofilm preparation method simplifies routine generation of B. subtilis biofilms for molecular and cellular analysis, and could be applicable to other microbial systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Exploiting social evolution in biofilms

    DEFF Research Database (Denmark)

    Boyle, Kerry E; Heilmann, Silja; van Ditmarsch, Dave

    2013-01-01

    and thus, regrettably, select for resistance against their own action. A possible solution lies in targeting the mechanisms by which bacteria interact with each other within biofilms. The emerging field of microbial social evolution combines molecular microbiology with evolutionary theory to dissect...... the molecular mechanisms and the evolutionary pressures underpinning bacterial sociality. This exciting new research can ultimately lead to new therapies against biofilm infections that exploit evolutionary cheating or the trade-off between biofilm formation and dispersal.......Bacteria are highly social organisms that communicate via signaling molecules, move collectively over surfaces and make biofilm communities. Nonetheless, our main line of defense against pathogenic bacteria consists of antibiotics-drugs that target individual-level traits of bacterial cells...

  20. Electrochemical impedance spectroscopy of biofilms

    Science.gov (United States)

    Microbial activity that leads to the formation of biofilms on process equipment can accelerate corrosion, reduce heat transfer rates, and generally decrease process efficiencies. Additional concerns arise in the food and pharma industries where product quality and safety are a high priority. Pharmac...

  1. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater.

    Science.gov (United States)

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-02-01

    Biofilm-based technologies, such as moving bed biofilm reactor (MBBR) systems, are widely used to treat wastewater. Biofilm development is important for MBBR systems as much of the microbial biomass is retained within reactors as biofilm on suspended carriers. Little is known about this process of biofilm development and the microorganisms upon which MBBRs rely. We documented successional changes in microbial communities as biofilms established in two full-scale MBBR systems treating municipal wastewater over two seasons. 16S rRNA gene-targeted pyrosequencing and clone libraries were used to describe microbial communities. These data indicate a successional process that commences with the establishment of an aerobic community dominated by Gammaproteobacteria (up to 52 % of sequences). Over time, this community shifts towards dominance by putatively anaerobic organisms including Deltaproteobacteria and Clostridiales. Significant differences were observed between the two wastewater treatment plants (WWTPs), mostly due to a large number of sequences (up to 55 %) representing Epsilonproteobacteria (mostly Arcobacter) at one site. Archaea in young biofilms included several lineages of Euryarchaeota and Crenarchaeota. In contrast, the mature biofilm consisted entirely of Methanosarcinaceae (Euryarchaeota). This study provides new insights into the community structure of developing biofilms at full-scale WWTPs and provides the basis for optimizing MBBR start-up and operational parameters.

  2. Conductive properties of methanogenic biofilms.

    Science.gov (United States)

    Li, Cheng; Lesnik, Keaton Larson; Liu, Hong

    2018-02-01

    Extracellular electron transfer between syntrophic partners needs to be efficiently maintained in methanogenic environments. Direct extracellular electron transfer via electrical current is an alternative to indirect hydrogen transfer but requires construction of conductive extracellular structures. Conductive mechanisms and relationship between conductivity and the community composition in mixed-species methanogenic biofilms are not well understood. The present study investigated conductive behaviors of methanogenic biofilms and examined the correlation between biofilm conductivity and community composition between different anaerobic biofilms enriched from the same inoculum. Highest conductivity observed in methanogenic biofilms was 71.8±4.0μS/cm. Peak-manner response of conductivity upon changes over a range of electrochemical potentials suggests that electron transfer in methanogenic biofilms occurs through redox driven super-exchange. The strong correlation observed between biofilm conductivity and Geobacter spp. in the metabolically diverse anaerobic communities suggests that the efficiency of DEET may provide pressure for microbial communities to select for species that can produce electrical conduits. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Phototrophic Microbial Mats

    NARCIS (Netherlands)

    Stal, L.J.; Bolhuis, H.; Cretoiu, M.S.

    2017-01-01

    Microbial mats are structured, small-scale microbial ecosystems, andsimilar as biofilms cover a substratum like a tissue. A general characteristic of amicrobial mat is the steep physicochemical gradients that are the result of the metabolicactivities of the mat microorganisms. Virtually every

  4. Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation

    Directory of Open Access Journals (Sweden)

    Wennerberg Ann

    2011-03-01

    Full Text Available Abstract Background The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown. Methods We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy. Results Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm. Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth. Conclusions Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm

  5. Biofilm Development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    , and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  6. Biofilm Infections

    DEFF Research Database (Denmark)

    as being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections...

  7. Sub-Optimal Treatment of Bacterial Biofilms

    Directory of Open Access Journals (Sweden)

    Tianyan Song

    2016-06-01

    Full Text Available Bacterial biofilm is an emerging clinical problem recognized in the treatment of infectious diseases within the last two decades. The appearance of microbial biofilm in clinical settings is steadily increasing due to several reasons including the increased use of quality of life-improving artificial devices. In contrast to infections caused by planktonic bacteria that respond relatively well to standard antibiotic therapy, biofilm-forming bacteria tend to cause chronic infections whereby infections persist despite seemingly adequate antibiotic therapy. This review briefly describes the responses of biofilm matrix components and biofilm-associated bacteria towards sub-lethal concentrations of antimicrobial agents, which may include the generation of genetic and phenotypic variabilities. Clinical implications of bacterial biofilms in relation to antibiotic treatments are also discussed.

  8. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2011-01-01

    Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually...... formed by multiple bacterial species. Conventional methods for bacterial cleaning, such as applications of antibiotics and/or disinfectants are often ineffective for biofilm populations due to their special physiology and physical matrix barrier. It has been estimated that billions of dollars are spent...... every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi...

  9. Human Plasma Enhances the Expression of Staphylococcal Microbial Surface Components Recognizing Adhesive Matrix Molecules Promoting Biofilm Formation and Increases Antimicrobial Tolerance In Vitro

    Science.gov (United States)

    2014-07-17

    osteomyelitis isolate of S. aureus [31]. The other isolates in this study were isolated from the following anatomic sites: bone (UAMS-1), nares (MRSA-1...875. 7. Wagner C, Aytac S, Hansch GM: Biofilm growth on implants: bacteria prefer plasma coats. Int J Artif Organs 2011, 34:811 817. 8. Bjarnsholt T

  10. Minimum information about a biofilm experiment (MIABiE): standards for reporting experiments and data on sessile microbial communities living at interfaces

    Science.gov (United States)

    Lourenço, Anália; Coenye, Tom; Goeres, Darla M.; Donelli, Gianfranco; Azevedo, Andreia S.; Ceri, Howard; Coelho, Filipa L.; Flemming, Hans-Curt; Juhna, Talis; Lopes, Susana P.; Oliveira, Rosário; Oliver, Antonio; Shirtliff, Mark E.; Sousa, Ana M.; Stoodley, Paul; Pereira, Maria Olivia; Azevedo, Nuno F.

    2015-01-01

    The minimum information about a biofilm experiment (MIABiE) initiative has arisen from the need to find an adequate and scientifically sound way to control the quality of the documentation accompanying the public deposition of biofilm-related data, particularly those obtained using high-throughput devices and techniques. Thereby, the MIABiE consortium has initiated the identification and organization of a set of modules containing the minimum information that needs to be reported to guarantee the interpretability and independent verification of experimental results and their integration with knowledge coming from other fields. MIABiE does not intend to propose specific standards on how biofilms experiments should be performed, because it is acknowledged that specific research questions require specific conditions which may deviate from any standardization. Instead, MIABiE presents guidelines about the data to be recorded and published in order for the procedure and results to be easily and unequivocally interpreted and reproduced. Overall, MIABiE opens up the discussion about a number of particular areas of interest and attempts to achieve a broad consensus about which biofilm data and metadata should be reported in scientific journals in a systematic, rigorous and understandable manner. PMID:24478124

  11. Monitoring of biofilm formation on different material surfaces of medical devices using hyperspectral imaging method

    Science.gov (United States)

    Kim, Do-Hyun; Kim, Moon S.; Hwang, Jeeseong

    2012-03-01

    Contamination of the inner surface of indwelling (implanted) medical devices by microbial biofilm is a serious problem. Some microbial bacteria such as Escherichia coli form biofilms that lead to potentially lifethreatening infections. Other types of medical devices such as bronchoscopes and duodenoscopes account for the highest number of reported endoscopic infections where microbial biofilm is one of the major causes for these infections. We applied a hyperspectral imaging method to detect biofilm contamination on the surface of several common materials used for medical devices. Such materials include stainless steel, titanium, and stainless-steeltitanium alloy. Potential uses of hyperspectral imaging technique to monitor biofilm attachment to different material surfaces are discussed.

  12. Efficacy of a surfactant-based wound dressing on biofilm control.

    Science.gov (United States)

    Percival, Steven L; Mayer, Dieter; Salisbury, Anne-Marie

    2017-09-01

    The aim of this study was to evaluate the efficacy of both a nonantimicrobial and antimicrobial (1% silver sulfadiazine-SSD) surfactant-based wound dressing in the control of Pseudomonas aeruginosa, Enterococcus sp, Staphylococcus epidermidis, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA) biofilms. Anti-biofilm efficacy was evaluated in numerous adapted American Standards for Testing and Materials (ASTM) standard biofilm models and other bespoke biofilm models. The ASTM standard models employed included the Minimum biofilm eradication concentration (MBEC) biofilm model (ASTM E2799) and the Centers for Disease Control (CDC) biofilm reactor model (ASTM 2871). Such bespoke biofilm models included the filter biofilm model and the chamberslide biofilm model. Results showed complete kill of microorganisms within a biofilm using the antimicrobial surfactant-based wound dressing. Interestingly, the nonantimicrobial surfactant-based dressing could disrupt existing biofilms by causing biofilm detachment. Prior to biofilm detachment, we demonstrated, using confocal laser scanning microscopy (CLSM), the dispersive effect of the nonantimicrobial surfactant-based wound dressing on the biofilm within 10 minutes of treatment. Furthermore, the non-antimicrobial surfactant-based wound dressing caused an increase in microbial flocculation/aggregation, important for microbial concentration. In conclusion, this nonantimicrobial surfactant-based wound dressing leads to the effective detachment and dispersion of in vitro biofilms. The use of surfactant-based wound dressings in a clinical setting may help to disrupt existing biofilm from wound tissue and may increase the action of antimicrobial treatment. © 2017 by the Wound Healing Society.

  13. Biofilms: The Stronghold of Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Mena Abdel-Nour

    2013-10-01

    Full Text Available Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colonization within multispecies microbial communities. There is now evidence that some legionellosis outbreaks are correlated with the presence of biofilms. Thus, preventing biofilm formation appears as one of the strategies to reduce water system contamination. However, we lack information about the chemical and biophysical conditions, as well as the molecular mechanisms that allow the production of biofilms by L. pneumophila. Here, we discuss the molecular basis of biofilm formation by L. pneumophila and the roles of other microbial species in L. pneumophila biofilm colonization. In addition, we discuss the protective roles of biofilms against current L. pneumophila sanitation strategies along with the initial data available on the regulation of L. pneumophila biofilm formation.

  14. Advances in the treatment of problematic industrial biofilms.

    Science.gov (United States)

    Xu, D; Jia, R; Li, Y; Gu, T

    2017-05-01

    In nature, microorganisms tend to form biofilms that consist of extracellular polymeric substances with embedded sessile cells. Biofilms, especially mixed-culture synergistic biofilm consortia, are notoriously difficult to treat. They employ various defense mechanisms against attacks from antimicrobial agents. Problematic industrial biofilms cause biofouling as well as biocorrosion, also known as microbiologically influenced corrosion. Biocides are often used to treat biofilms together with scrubbing or pigging. Unfortunately, chemical treatments suppress vulnerable microbial species while allowing resistant species to take over. Repeated treatment cycles are typically needed in biofilm mitigation. This leads to biocide dosage escalation, causing environmental problems, higher costs and sometimes operational problems such as scale formation. New treatment methods are being developed such as enhanced biocide treatment and bacteriophage treatment. Special materials such as antibacterial stainless steels are also being created to combat biofilms. This review discussed some of the advances made in the fight against problematic industrial biofilms.

  15. Microscopic monitoring of extracellular pH in dental biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Garcia, Javier; Greve, Matilde

    extracellular pH irrespective of the dye concentration. We showed that at pH stained 15 bacterial species frequently isolated from dental biofilm and visualized the entire bacterial biomass in dental biofilms grown intraorally on glass slabs mounted on individually designed lower jaw splints. We......pH in dental biofilm is a key virulence factor for the development of caries lesions. The complex three-dimensional architecture of dental biofilms leads to steep gradients of nutrients and metabolites, including organic acids, across the biofilm. For decades, measuring pH in dental biofilm has......H ratiometry, can be employed to map the pH landscape in dental biofilm with more detail. However, when pH sensitive fluorescent probes are used to visualize pH in biofilms, it is crucial to differentiate between extracellular and intracellular pH. Intracellular microbial pH and pH in the extracellular matrix...

  16. Revealing the relationship between microbial community structure in natural biofilms and the pollution level in urban rivers: a case study in the Qinhuai River basin, Yangtze River Delta.

    Science.gov (United States)

    Cai, Wei; Li, Yi; Wang, Peifang; Niu, Lihua; Zhang, Wenlong; Wang, Chao

    River pollution is one of the most challenging environmental issues, but the effect of river pollution levels on the biofilm communities has not been well-studied. Spatial and temporal distribution characteristics of environmental parameters and the biofilm communities were investigated in the Qinhuai River basin, Nanjing, China. Water samples were grouped into three clusters reflecting their varying pollution levels of relatively slight pollution, moderated pollution, and high pollution by hierarchical cluster analysis. In different clusters, the biofilm communities mainly differed in the proportion of Actinobacteria, Firmicutes, and Proteobacteria. As the dominant classes of Proteobacteria, Alpha-, Beta- and Gammaproteobacteria seemed to show an upward trend followed by a small fluctuation in the abundance with the escalation of water pollution level. Results of redundancy analysis demonstrated that temperature, total nitrogen to total phosphorus ratios (TN/TP) and concentrations of ammonia nitrogen (NH3-N) and TN were mainly responsible for the variation in bacterial community structure. The occurrences of Alpha-, Beta- and Gammaproteobacteria were closely associated with higher temperature, higher concentrations of NH3-N and TN and a lower TN/TP ratio. This study may provide a theoretical basis for the water pollution control and ecological restoration in urban rivers under different pollution levels.

  17. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Directory of Open Access Journals (Sweden)

    Zhejun Wang

    Full Text Available Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM, peptide 1018 was able to significantly (p50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  18. Benzene degradation in a denitrifying biofilm reactor

    OpenAIRE

    Waals, van der, Marcelle J.; Atashgahi, Siavash; Rocha, da, Ulisses Nunes; Zaan, van der, Bas M.; Smidt, Hauke; Gerritse, Jan

    2017-01-01

    Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than 14 years on benzene with nitrate as electron acceptor. We determined steady state degradation rates, microbial community composition dynamics in the biofilm, and the initial anaerobic benzene degr...

  19. Actinomyces naeslundii in intial dental biofilm formation

    DEFF Research Database (Denmark)

    Dige, Irene; Raarup, Merete Krog; Nyengaard, Jens Randel

    2009-01-01

    Combined use of Confocal Laser Scanning Microscopy (CLSM) and Fluorescent in situ Hybridization (FISH) offers new opportunities for analysing the spatial relationships and temporal changes of specific members of microbial populations in intact dental biofilms. AIMS: The purpose of this study was ...... colonization in the inner part of the biofilm may have important ecological consequences. This study was supported by Aarhus University Research Foundation, The Swedish Patent Revenue Fund for Research in Preventive Odontology, and The Danish Dental Association....

  20. Growing and analyzing biofilms in flow chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    conditions, and the environment can be carefully controlled and easily changed. The protocols in this unit include construction of the flow chamber and the bubble trap, assembly and sterilization of the flow chamber system, inoculation of the flow chambers, running of the system, image capture and analysis......This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber-grown biofilms are addressed....

  1. Growing and Analyzing Biofilms in Flow Chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    conditions, and the environment can be carefully controlled and easily changed. The protocols in this unit include construction of the flow chamber and the bubble trap, assembly and sterilization of the flow chamber system, inoculation of the flow chambers, running of the system, image capture and analysis......This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber–grown biofilms are addressed. Curr. Protoc. Microbiol. 21:1B.2.1-1B.2.17. © 2011 by John Wiley & Sons, Inc....

  2. Wound biofilms: lessons learned from oral biofilms

    Science.gov (United States)

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relatively recently directed attentionto the role biofilms have in chronic wounds. This review discusses the biofilms in periodontal disease and chronic wounds with comparisons focusing on biofilm detection, biofilm formation, the immune response to biofilms, bacterial interaction and quorum sensing. Current treatment modalities used by both fields as well as future therapies are also discussed. PMID:23551419

  3. Anti-biofilm activity as a health issue

    Directory of Open Access Journals (Sweden)

    Sylvie eMiquel

    2016-04-01

    Full Text Available The formation and persistence of surface-attached microbial communities, known as biofilms, are responsible for 75% of human microbial infections (National Institutes of Health. Biofilm lifestyle confers several advantages to the pathogens, notably during the colonization process of medical devices and/or patients’ organs. In addition, sessile bacteria have a high tolerance to exogenous stress including anti-infectious agents. Biofilms are highly competitive communities and some microorganisms exhibit anti-biofilm capacities such as bacterial growth inhibition, exclusion or competition, which enable them to acquire advantages and become dominant. The deciphering and control of anti-biofilm properties represent future challenges in human infection control. The aim of this review is to compare and discuss the mechanisms of natural bacterial anti-biofilm strategies/mechanisms recently identified in pathogenic, commensal and probiotic bacteria and the main synthetic strategies used in clinical practice, particularly for catheter-related infections.

  4. Biofilm mediated decontamination of pollutants from the environment

    Directory of Open Access Journals (Sweden)

    Arindam Mitra

    2016-01-01

    Full Text Available In this review, we highlight beneficial use of microbial biofilms in remediation of environmental pollutants by bioremediation. Bioremediation is an environment friendly, cost effective, sustainable technology that utilizes microbes to decontaminate and degrade a wide variety of pollutants into less harmful products. Relative to free-floating planktonic cells, microbes existing in biofilm mode are advantageous for bioremediation because of greater tolerance to pollutants, environmental stress and ability to degrade varied harsh pollutants via diverse catabolic pathways. In biofilm mode, microbes are immobilized in a self-synthesized matrix which offers protection from stress, contaminants and predatory protozoa. Contaminants ranging from heavy metals, petroleum, explosives, pesticides have been remediated using microbial consortia of biofilms. In the industry, biofilm based bioremediation is used to decontaminate polluted soil and groundwater. Here we discuss conventional and newer strategies utilizing biofilms in environmental remediation.

  5. Extracts of three Laserpitium L. species and their principal components laserpitine and sesquiterpene lactones inhibit microbial growth and biofilm formation by oral Candida isolates.

    Science.gov (United States)

    Popović, Višnja; Stojković, Dejan; Nikolić, Miloš; Heyerick, Arne; Petrović, Silvana; Soković, Marina; Niketić, Marjan

    2015-04-01

    Antimicrobial properties of extracts of underground parts of three Laserpitium L. (Apiaceae) species, namely Laserpitium latifolium L., Laserpitium zernyi Hayek and Laserpitium ochridanum Micevski, were investigated. The investigated species are widely used as functional foods, as spices and for preparations in traditional medicine for treating complaints connected with infection and inflammation. Furthermore, antimicrobial and antibiofilm effects of laserpitine, the most abundant compound in the chloroform extract of L. latifolium, and guaianolide sesquiterpene lactones, such as, isomontanolide, montanolide and tarolide, principal components of the extracts of L. zernyi and L. ochridanum were assessed. The antimicrobial activity was tested using the microdilution method against five pathogenic bacteria and five fungi, as well as in the microplate biofilm assay on two Candida clinical isolates (C. albicans and C. krusei). Among the extracts, L. latifolium showed the most prominent activity. Isolated metabolites exerted higher effects against fungal than against bacterial strains, isomontanolide being the most active. Interestingly, all constituents showed higher potential on inhibition of biofilm formation than fluconazole, a reference compound. Tested metabolites may be good novel agents with high antifungal and antibacterial potential that might find practical applications in food industry as food preservatives in order to retard the growth of food spoiling microbes, but only after detailed safety assessments.

  6. Understanding the influence of biofilm accumulation on the hydraulic properties of soils: a mechanistic approach based on experimental data

    Science.gov (United States)

    Carles Brangarí, Albert; Sanchez-Vila, Xavier; Freixa, Anna; Romaní, Anna M.; Fernàndez-Garcia, Daniel

    2017-04-01

    The distribution, amount, and characteristics of biofilms and its components govern the capacity of soils to let water through, to transport solutes, and the reactions occurring. Therefore, unraveling the relationship between microbial dynamics and the hydraulic properties of soils is of concern for the management of natural systems and many technological applications. However, the increased complexity of both the microbial communities and the geochemical processes entailed by them causes that the phenomenon of bioclogging remains poorly understood. This highlights the need for a better understanding of the microbial components such as live and dead bacteria and extracellular polymeric substances (EPS), as well as of their spatial distribution. This work tries to shed some light on these issues, providing experimental data and a new mechanistic model that predicts the variably saturated hydraulic properties of bio-amended soils based on these data. We first present a long-term laboratory infiltration experiment that aims at studying the temporal variation of selected biogeochemical parameters along the infiltration path. The setup consists of a 120-cm-high soil tank instrumented with an array of sensors plus soil and liquid samplers. Sensors measured a wide range of parameters in continuous, such as volumetric water content, electrical conductivity, temperature, water pressure, soil suction, dissolved oxygen, and pH. Samples were kept for chemical and biological analyses. Results indicate that: i) biofilm is present at all depths, denoting the potential for deep bioclogging, ii) the redox conditions profile shows different stages, indicating that the community was adapted to changing redox conditions, iii) bacterial activity, richness and diversity also exhibit zonation with depth, and iv) the hydraulic properties of the soil experienced significant changes as biofilm proliferated. Based on experimental evidences, we propose a tool to predict changes in the

  7. Performance comparison of plant root biofilm, gravel attached ...

    African Journals Online (AJOL)

    Performance comparison of plant root biofilm, gravel attached biofilm and planktonic microbial populations, in phenol removal within a constructed wetland wastewater treatment system. Eyal Kurzbaum1*, Felix Kirzhner2 and Robert Armon2. 1Golan Research Institute, University of Haifa, P.O. Box 97, Katzrin 12900, Israel.

  8. Performance comparison of plant root biofilm, gravel attached ...

    African Journals Online (AJOL)

    Performance comparison of plant root biofilm, gravel attached biofilm and planktonic microbial populations, in phenol removal within a constructed wetland ... to lower numbers of root-attached and planktonic bacterial fractions, as isolated using phenol-agar plates which contained phenol as the sole carbon source.

  9. A limited legacy effect of copper in marine biofilms.

    Science.gov (United States)

    McElroy, David J; Doblin, Martina A; Murphy, Richard J; Hochuli, Dieter F; Coleman, Ross A

    2016-08-15

    The effects of confounding by temporal factors remains understudied in pollution ecology. For example, there is little understanding of how disturbance history affects the development of assemblages. To begin addressing this gap in knowledge, marine biofilms were subjected to temporally-variable regimes of copper exposure and depuration. It was expected that the physical and biological structure of the biofilms would vary in response to copper regime. Biofilms were examined by inductively coupled plasma optical emission spectrometry, chlorophyll-a fluorescence and field spectrometry and it was found that (1) concentrations of copper were higher in those biofilms exposed to copper, (2) concentrations of copper remain high in biofilms after the source of copper is removed, and (3) exposure to and depuration from copper might have comparable effects on the photosynthetic microbial assemblages in biofilms. The persistence of copper in biofilms after depuration reinforces the need for consideration of temporal factors in ecology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Biofilm ved kronisk rhinosinuitis og cystisk fibrose

    DEFF Research Database (Denmark)

    Fisker, Jacob; Buchwald, Christian von; Johansen, Helle Krogh

    2011-01-01

    Microbial biofilms are known to cause persistent foreign-body infections and have recently been acknowledged as involved in more than 65% of all human infections. Microbial biofilms have been detected in chronic rhinosinusitis, and chronic rhinosinusitis is mandatory in patients with cystic fibro...... fibrosis. We believe that a reservoir for a sustained lung infection in these patients might be found in the nasal sinuses, and that the sinuses may act as a reservoir for reinfection after CF-patient lung transplants. Further studies are necessary....

  11. Battling Bacterial Biofilms with Gas Discharge Plasma

    Science.gov (United States)

    Zelaya, Anna; Vandervoort, Kurt; Brelles-Mariño, Graciela

    Most studies dealing with growth and physiology of bacteria have been carried out using free-living cells. However, most bacteria live in communities referred to as biofilms where cooperative interactions among their members make conventional methods of controlling microbial growth often ineffective. The use of gas discharge plasmas represents an alternative to traditional decontamination/sterilization methods. We studied biofilms using two organisms, Chromobacterium violaceum and Pseudomonas aeruginosa. With the first organism we demonstrated almost complete loss of cell culturability after a 5-min plasma treatment. However, additional determinations showed that non-culturable cells were still alive after short exposure times. We have recently reported the effect of plasma on P. aeruginosa biofilms grown on borosilicate coupons. In this paper, we present results for plasma treatments of 1-, 3-, and 7-day old P. aeruginosa biofilms grown on polycarbonate or stainless-steel coupons. Results indicate nearly 100% of ­biofilm inactivation after 5 min of exposure with similar inactivation kinetics for 1-, 3-, and 7-day-old biofilms, and for both materials used. The inactivation kinetics is similar for both organisms, suggesting that the method is useful regardless of the type of biofilm. AFM images show changes in biofilm structure for various plasma exposure times.

  12. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.

    Science.gov (United States)

    Kim, Wooseong; Tengra, Farah K; Young, Zachary; Shong, Jasmine; Marchand, Nicholas; Chan, Hon Kit; Pangule, Ravindra C; Parra, Macarena; Dordick, Jonathan S; Plawsky, Joel L; Collins, Cynthia H

    2013-01-01

    Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.

  13. Microbial colonization of irradiated pathogenic yeast to catheter surfaces: Relationship between adherence, cell surface hydrophobicity, biofilm formation and antifungal susceptibility. A scanning electron microscope analysis.

    Science.gov (United States)

    Farrag, Hala Abdallah; A-Karam El-Din, Alzahraa; Mohamed El-Sayed, Zeinab Galal; Abdel-Latifissa, Soheir; Kamal, Mona Mohamed

    2015-06-01

    Technological advances such as long-term indwelling catheters have created milieu in which infections are a major complication. Thus it is essential to be able to recognize, diagnose, and treat infections occurring in immunocompromised patients. Adherence assay and quantitation of biofilms was performed by a spectrophotometric method, hydrophobicity was evaluated by adhesion to p-xylene. The minimum inhibitory concentration (MIC) of Nystatin was carried out by a well dilution method. Out of 100 bladder cancer patients, 23 pathogenic yeast isolates were identified. The samples were taken from urinary catheters and urine collected from their attached drainage bags. Pathogenic yeast identified were species of Candida, Cryptococcus, Saccharomyces, Blastoschizomyces, Trichosporn, Hansenula, Prototheca and Rhodotorula. With the exception of Rhodotorula minuta, the yeast were sensitive to the antimycotic agent (Nystatin) used before and after in vitro gamma irradiation at 24.41 Gy as measured by a disc diffusion method. All tested yeast strains were slime producers and showed positive adherence reactions. There were considerable differences in adherence measurements after irradiation. An increase in adherence measurement values (using a spectrophotometric method) after irradiation were detected in four strains whereas eight other strains showed a reduction in their adherence reaction. The cell surface hydrophobicity (CSH) was evaluated by adhesion to p-xylene. Candida tropicalis showed a hydrophobic reaction with an increase in the cell surface hydrophobicity after irradiation. Scanning electron microscopy of irradiated C. tropicalis showed marked abnormalities in cell shape and size with significant reduction in adherence ability at the MIC level of Nystatin (4 μg/ml). More basic research at the level of pathogenesis and catheter substance is needed to design novel strategies to prevent fungal adherence and to inhibit biofilm formation.

  14. Study of the effect of essential oil of Salvia glutinosa L. on microbial biofilm formation by clinical isolates of Acinetobacter baumannii

    Science.gov (United States)

    Tutar, Uǧur

    2016-04-01

    Acinetobacter baumannii is becoming a serious concern in the treatment of infections that can develop resistance to many antibiotics. This persistence may be explained by its capacity to form biofilms. In our study, the essential oil (EO) of the Salvia glutinosa plant, was obtained through the hydrodistillation method. Antimicrobial and antibiofilm activities of the EO on the 20 multi-drug resistant (MDR) A.baumannii isolates were researched. Broth microdilution methods were applied for the determination of the antimicrobial activity. For the determined antibiofilm activity, the Minimal Biofilm Inhibition Concentration (MBIC) test was implemented with the microtiter plate method. Photometric assay was applied for the identification of the antioxidant capacity and colorimetric assay was used to specify the cytotoxicity of the EO of S. glutinosa on L929 cells. In our study, Minimal Inhibition Concentration (MIC) and Minimal Bactericidal Concentration (MBC) values between 1.25-2.5 µl/mL and 5-10 µl/mL respectively. MBIC value of the EO was found as 0.3-2.5 µl/mL. IC50= = 24.4±0.66 µl/mL was found as the antioxidant capacity of the EO. At 25%, 12.5% and 6.25% EO concentrations, no cytotoxicity appeared for the fibroblast cells in terms of the cytotoxic activities (p>0.05). According to the findings obtained in our study, antibiofilm, antimicrobial and antioxidant activities of the S. glutinosa EO seem remarkable. These findings seem promising for the development of potential phytotherapeutic agents in the treatment of the multi-drug resistance (MDR) A.baumannii infections.

  15. Detecting contaminating microorganism in human food and water from Raman mapping through biofilms

    Science.gov (United States)

    Detecting microbial growth can help experts determine how to prevent the outbreaks especially if human food or water has been contaminated. Biofilms are a group of microbial cells that can either grow on living surfaces or surrounding themselves as they progress. Biofilms are not necessarily uniform...

  16. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    Science.gov (United States)

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  17. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm

    OpenAIRE

    Soto, Sara M.

    2013-01-01

    Biofilms are complex microbial associations anchored to abiotic or biotic surfaces, embedded in extracellular matrix produced by the biofilms themselves where they interact with each other and the environment. One of the main properties of biofilms is their capacity to be more resistant to antimicrobial agents than planktonic cells. Efflux pumps have been reported as one of the mechanisms responsible for the antimicrobial resistance in biofilm structures. Evidence of the role of efflux pump i...

  18. Pacifiers: a microbial reservoir.

    Science.gov (United States)

    Comina, Elodie; Marion, Karine; Renaud, François N R; Dore, Jeanne; Bergeron, Emmanuelle; Freney, Jean

    2006-12-01

    The permanent contact between the nipple part of pacifiers and the oral microflora offers ideal conditions for the development of biofilms. This study assessed the microbial contamination on the surface of 25 used pacifier nipples provided by day-care centers. Nine were made of silicone and 16 were made of latex. The biofilm was quantified using direct staining and microscopic observations followed by scraping and microorganism counting. The presence of a biofilm was confirmed on 80% of the pacifier nipples studied. This biofilm was mature for 36% of them. Latex pacifier nipples were more contaminated than silicone ones. The two main genera isolated were Staphylococcus and Candida. Our results confirm that nipples can be seen as potential reservoirs of infections. However, pacifiers do have some advantages; in particular, the potential protection they afford against sudden infant death syndrome. Strict rules of hygiene and an efficient antibiofilm cleaning protocol should be established to answer the worries of parents concerning the safety of pacifiers.

  19. Structure, composition, and strength of nitrifying membrane-aerated biofilms

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    2014-01-01

    Membrane-aerated biofilm reactors (MABRs) are a novel technology based on the growth of biofilms on oxygen-permeable membranes. Hereby, MABRs combine all the advantages of biofilm growth with a more flexible and efficient control of the oxygen load. In the present work, flow cell operation...... had a higher content of proteins and a lower level of carbohydrates. Staining analyses revealed that the EPS in the stronger biofilm regions had hydrophilic nature and distributed around dense microbial aggregates, whereas it was homogeneously distributed in the weaker strata. Overall, the obtained...

  20. Benthic biofilm controls on fine particle dynamics in streams

    Science.gov (United States)

    Roche, K. R.; Drummond, J. D.; Boano, F.; Packman, A. I.; Battin, T. J.; Hunter, W. R.

    2017-01-01

    Benthic (streambed) biofilms metabolize a substantial fraction of particulate organic matter and nutrient inputs to streams. These microbial communities comprise a significant proportion of overall biomass in headwater streams, and they present a primary control on the transformation and export of labile organic carbon. Biofilm growth has been linked to enhanced fine particle deposition and retention, a feedback that confers a distinct advantage for the acquisition and utilization of energy sources. We quantified the influence of biofilm structure on fine particle deposition and resuspension in experimental stream mesocosms. Biofilms were grown in identical 3 m recirculating flumes over periods of 18-47 days to obtain a range of biofilm characteristics. Fluorescent, 8 µm particles were introduced to each flume, and their concentrations in the water column were monitored over a 30 min period. We measured particle concentrations using a flow cytometer and mesoscale (10 µm to 1 cm) biofilm structure using optical coherence tomography. Particle deposition-resuspension dynamics were determined by fitting results to a stochastic mobile-immobile model, which showed that retention timescales for particles within the biofilm-covered streambeds followed a power-law residence time distribution. Particle retention times increased with biofilm areal coverage, biofilm roughness, and mean biofilm height. Our findings suggest that biofilm structural parameters are key predictors of particle retention in streams and rivers.

  1. Biofilms in Endodontics—Current Status and Future Directions

    Science.gov (United States)

    Neelakantan, Prasanna; Romero, Monica; Vera, Jorge; Daood, Umer; Khan, Asad U.; Yan, Aixin; Cheung, Gary Shun Pan

    2017-01-01

    Microbiota are found in highly organized and complex entities, known as biofilms, the characteristics of which are fundamentally different from microbes in planktonic suspensions. Root canal infections are biofilm mediated. The complexity and variability of the root canal system, together with the multi-species nature of biofilms, make disinfection of this system extremely challenging. Microbial persistence appears to be the most important factor for failure of root canal treatment and this could further have an impact on pain and quality of life. Biofilm removal is accomplished by a chemo-mechanical process, using specific instruments and disinfecting chemicals in the form of irrigants and/or intracanal medicaments. Endodontic research has focused on the characterization of root canal biofilms and the clinical methods to disrupt the biofilms in addition to achieving microbial killing. In this narrative review, we discuss the role of microbial biofilms in endodontics and review the literature on the role of root canal disinfectants and disinfectant-activating methods on biofilm removal. PMID:28800075

  2. Prospects for Anti-Biofilm Pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Philip S. Stewart

    2015-08-01

    Full Text Available This commentary highlights several avenues currently being pursued in research labs to the development of new anti-biofilm pharmaceuticals. There is a real need for alternative therapeutic modalities for treating the persistent infections that sometimes form on implanted medical devices or compromised niches within the body. Strategies being researched include discovering new antimicrobial agents that kill microorganisms in biofilms more effectively than do existing antibiotics, designing drugs that block microbial adhesion or interfere with intercellular communication, developing chemistries to disperse biofilms, and combining agents with different mechanisms of action. Though the need is great, the pathway to commercialization of new drugs is steep. One possible streamlined approach to navigating the regulatory approval process is to repurpose old drugs, a strategy that a few groups have shown can yield agents with anti-biofilm properties.

  3. Prospects for Anti-Biofilm Pharmaceuticals

    Science.gov (United States)

    Stewart, Philip S.

    2015-01-01

    This commentary highlights several avenues currently being pursued in research labs to the development of new anti-biofilm pharmaceuticals. There is a real need for alternative therapeutic modalities for treating the persistent infections that sometimes form on implanted medical devices or compromised niches within the body. Strategies being researched include discovering new antimicrobial agents that kill microorganisms in biofilms more effectively than do existing antibiotics, designing drugs that block microbial adhesion or interfere with intercellular communication, developing chemistries to disperse biofilms, and combining agents with different mechanisms of action. Though the need is great, the pathway to commercialization of new drugs is steep. One possible streamlined approach to navigating the regulatory approval process is to repurpose old drugs, a strategy that a few groups have shown can yield agents with anti-biofilm properties. PMID:26343685

  4. Biofilms in Infections of the Eye

    Directory of Open Access Journals (Sweden)

    Paulo J. M. Bispo

    2015-03-01

    Full Text Available The ability to form biofilms in a variety of environments is a common trait of bacteria, and may represent one of the earliest defenses against predation. Biofilms are multicellular communities usually held together by a polymeric matrix, ranging from capsular material to cell lysate. In a structure that imposes diffusion limits, environmental microgradients arise to which individual bacteria adapt their physiologies, resulting in the gamut of physiological diversity. Additionally, the proximity of cells within the biofilm creates the opportunity for coordinated behaviors through cell–cell communication using diffusible signals, the most well documented being quorum sensing. Biofilms form on abiotic or biotic surfaces, and because of that are associated with a large proportion of human infections. Biofilm formation imposes a limitation on the uses and design of ocular devices, such as intraocular lenses, posterior contact lenses, scleral buckles, conjunctival plugs, lacrimal intubation devices and orbital implants. In the absence of abiotic materials, biofilms have been observed on the capsule, and in the corneal stroma. As the evidence for the involvement of microbial biofilms in many ocular infections has become compelling, developing new strategies to prevent their formation or to eradicate them at the site of infection, has become a priority.

  5. Oral biofilm architecture on natural teeth.

    Directory of Open Access Journals (Sweden)

    Vincent Zijnge

    Full Text Available Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species.

  6. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Science.gov (United States)

    Wang, Zhejun; de la Fuente-Núñez, Cesar; Shen, Ya; Haapasalo, Markus; Hancock, Robert E W

    2015-01-01

    Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM), peptide 1018 was able to significantly (pbiofilm formation over 3 days. The activity of the peptide on preformed biofilms was found to be concentration-dependent since more than 60% of the total plaque biofilm cell population was killed by 10 μg/ml of peptide 1018 in 3 days, while at 5 μg/ml 50% of cells were dead and at 1 μg/ml the peptide triggered cell death in around 30% of the total bacterial population, as revealed by confocal microscopy. The presence of saliva did not affect peptide activity, since no statistically significant difference was found in the ability of peptide 1018 to kill oral biofilms using either saliva coated and non-saliva coated hydroxyapatite surfaces. Scanning electron microscopy experiments indicated that peptide 1018 induced cell lysis in plaque biofilms. Furthermore, combined treatment using peptide 1018 and chlorhexidine (CHX) increased the anti-biofilm activity of each compound compared to when these were used alone, resulting in >50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  7. Kinetic modeling and microbial assessment by fluorescent in situ hybridization in anaerobic sequencing batch biofilm reactors treating sulfate-rich wastewater

    Directory of Open Access Journals (Sweden)

    A. J. Silva

    2011-06-01

    Full Text Available This paper reports the results of applying anaerobic sequencing batch biofilm reactors (AnSBBR for treating sulfate-rich wastewater. The reactor was filled with polyurethane foam matrices or with eucalyptus charcoal, used as the support for biomass attachment. Synthetic wastewater was prepared with two ratios between chemical oxygen demand (COD and sulfate concentration (COD/SO4(2- of 0.4 and 3.2. For a COD/SO4(2- ratio of 3.2, the AnSBBR performance was influenced by the support material used; the average levels of organic matter removal were 67% and 81% in the reactors filled with polyurethane foam and charcoal, respectively, and both support materials were associated with similar levels of sulfate reduction (above 90%. In both reactors, sulfate-reducing bacteria (SRB represented more than 65% of the bacterial community. The kinetic model indicated equilibrium between complete- and incomplete-oxidizing SRB in the reactor filled with polyurethane foam and predominantly incomplete-oxidizing SRB in the reactor filled with charcoal. Methanogenic activity seems to have been the determining factor to explain the better performance of the reactor filled with charcoal to remove organic matter at a COD/SO4(2- ratio of 3.2. For a COD/SO4(2- ratio of 0.4, low values of sulfate reduction (around 32% and low reaction rates were observed as a result of the small SRB population (about 20% of the bacterial community. Although the support material did not affect overall performance for this condition, different degradation pathways were observed; incomplete oxidation of organic matter by SRB was the main kinetic pathway and methanogenesis was negligible in both reactors.

  8. Effect of fluoride and chlorhexidine digluconate mouthrinses on plaque biofilms

    DEFF Research Database (Denmark)

    Rabe, Per; Twetman, Svante; Kinnby, Bertil

    2015-01-01

    OBJECTIVE: To develop a model in which to investigate the architecture of plaque biofilms formed on enamel surfaces in vivo and to compare the effects of anti-microbial agents of relevance for caries on biofilm vitality. Materials and Methodology : Enamel discs mounted on healing abutments...... in the pre-molar region were worn by three subjects for 7 days. Control discs were removed before subjects rinsed with 0.1% chlorhexidine digluconate (CHX) or 0.2% sodium fluoride (NaF) for 1 minute. Biofilms were stained with Baclight Live/Dead and z-stacks of images created using confocal scanning laser...... micoscopy. The levels of vital and dead/damaged bacteria in the biofilms, assessed as the proportion of green and red pixels respectively, were analysed using ImageTrak(®) software. Results : The subjects showed individual differences in biofilm architecture. The thickness of the biofilms varied from 28...

  9. Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms

    DEFF Research Database (Denmark)

    Dragoš, Anna; Lakshmanan, Nivedha; Martin, Marivic

    2018-01-01

    -similarly to other species-B. subtilis diversifies into distinct colony variants. These variants dramatically differ in biofilm formation abilities and expression of biofilm-related genes. In addition, using a quantitative approach, we reveal striking differences in surface complexity and hydrophobicity......Microbial biofilms are tightly packed, heterogeneous structures that serve as arenas for social interactions. Studies on Gram negative models reveal that during evolution in structured environments like biofilms, isogenic populations commonly diversify into phenotypically and genetically distinct...... variants. These variants can settle in alternative biofilm niches and develop new types of interactions that greatly influence population productivity. Here, we explore the evolutionary diversification of pellicle biofilms of the Gram positive, spore-forming bacterium Bacillus subtilis. We discover that...

  10. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    KAUST Repository

    Ling, Fangqiong

    2013-01-01

    This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, the biofilms were subjected to chloramination for 8 more weeks at concentrations of 7.5±1.4 to 9.1±0.4 mg Cl2 L-1. Control reactors received no disinfection during the development of biofilms. Confocal laser scanning microscopy and image analysis indicated that chloramination could lead to 81.4-83.5% and 86.3-95.6% reduction in biofilm biomass and thickness, respectively, but could not eliminate biofilm growth. 16S rRNA gene terminal restriction fragment length polymorphism analysis indicated that microbial community structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant populations, whereas natural development leads to the selection of members of Nitrospira and Bacteroidetes as dominant biofilm populations. Overall, chloramination treatment could alter the growth of multi-species biofilms on the PVC surface, shape the biofilm architecture, and select a certain microbial community that can survive or proliferate under chloramination.

  11. Microbial biodiversity in glacier-fed streams.

    Science.gov (United States)

    Wilhelm, Linda; Singer, Gabriel A; Fasching, Christina; Battin, Tom J; Besemer, Katharina

    2013-08-01

    While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams.

  12. Development of Spatial Distribution Patterns by Biofilm Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Hansen, Susse Kirkelund; Bak Christensen, Bjarke

    2015-01-01

    Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. C6, originally isolated from a creosote-polluted aquifer, has evolved...

  13. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection

    OpenAIRE

    Ma, Hongyan; Bryers, James D.

    2012-01-01

    Biofilms cause much of all human microbial infections. Attempts to eradicate biofilm-based infections rely on disinfectants and antibiotics. Unfortunately, biofilm bacteria are significantly less responsive to antibiotic stressors than their planktonic counterparts. Sublethal doses of antibiotics can actually enhance biofilm formation. Here, we have developed a non-invasive microscopic image analyses to quantify plasmid conjugation within a developing biofilm. Corroborating destructive sample...

  14. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  15. Anti-biofilm compounds derived from marine sponges.

    Science.gov (United States)

    Stowe, Sean D; Richards, Justin J; Tucker, Ashley T; Thompson, Richele; Melander, Christian; Cavanagh, John

    2011-01-01

    Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues-including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  16. Implications of Biofilm Formation on Urological Devices

    Science.gov (United States)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  17. aBiofilm: a resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance.

    Science.gov (United States)

    Rajput, Akanksha; Thakur, Anamika; Sharma, Shivangi; Kumar, Manoj

    2018-01-04

    Biofilms play an important role in the antibiotic drug resistance, which is threatening public health globally. Almost, all microbes mimic multicellular lifestyle to form biofilm by undergoing phenotypic changes to adapt adverse environmental conditions. Many anti-biofilm agents have been experimentally validated to disrupt the biofilms during last three decades. To organize this data, we developed the 'aBiofilm' resource (http://bioinfo.imtech.res.in/manojk/abiofilm/) that harbors a database, a predictor, and the data visualization modules. The database contains biological, chemical, and structural details of 5027 anti-biofilm agents (1720 unique) reported from 1988-2017. These agents target over 140 organisms including Gram-negative, Gram-positive bacteria, and fungus. They are mainly chemicals, peptides, phages, secondary metabolites, antibodies, nanoparticles and extracts. They show the diverse mode of actions by attacking mainly signaling molecules, biofilm matrix, genes, extracellular polymeric substances, and many more. The QSAR based predictor identifies the anti-biofilm potential of an unknown chemical with an accuracy of ∼80.00%. The data visualization section summarized the biofilm stages targeted (Circos plot); interaction maps (Cytoscape) and chemicals diversification (CheS-Mapper) of the agents. This comprehensive platform would help the researchers to understand the multilevel communication in the microbial consortium. It may aid in developing anti-biofilm therapeutics to deal with antibiotic drug resistance menace. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Microbiology of dental plaque biofilms and their role in oral health and caries.

    Science.gov (United States)

    Marsh, Philip D

    2010-07-01

    Dental plaque is the biofilm found naturally on teeth. Dental plaque is also implicated in dental caries, which is associated with shifts in the microbial balance of the biofilm resulting in increased proportions of acid producing and acid tolerating bacteria, especially (but not exclusively) mutans streptococci and lactobacilli. The regular intake of fermentable dietary sugars, or impaired saliva flow, produces persistent conditions of low pH within the biofilm, which selects for these cariogenic bacteria. Clinicians should prevent this disruption to the natural microbial balance of the biofilm (relevant approaches are described) rather than merely treating its consequences by restoring cavities. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater.

    Science.gov (United States)

    Logroño, Washington; Pérez, Mario; Urquizo, Gladys; Kadier, Abudukeremu; Echeverría, Magdy; Recalde, Celso; Rákhely, Gábor

    2017-06-01

    An air exposed single-chamber microbial fuel cell (SCMFC) using microalgal biocathodes was designed. The reactors were tested for the simultaneous biodegradation of real dye textile wastewater (RTW) and the generation of bioelectricity. The results of digital image processing revealed a maximum coverage area on the biocathodes by microalgal cells of 42%. The atmospheric and diffused CO 2 could enable good algal growth and its immobilized operation on the cathode electrode. The biocathode-SCMFCs outperformed an open circuit voltage (OCV), which was 18%-43% higher than the control. Furthermore, the maximum volumetric power density achieved was 123.2 ± 27.5 mW m -3 . The system was suitable for the treatment of RTW and the removal/decrease of COD, colour and heavy metals. High removal efficiencies were observed in the SCMFCs for Zn (98%) and COD (92-98%), but the removal efficiencies were considerably lower for Cr (54-80%). We observed that this single chamber MFC simplifies a double chamber system. The bioelectrochemical performance was relatively low, but the treatment capacity of the system seems encouraging in contrast to previous studies. A proof-of-concept experiment demonstrated that the microalgal biocathode could operate in air exposed conditions, seems to be a promising alternative to a Pt cathode and is an efficient and cost-effective approach to improve the performance of single chamber MFCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biofilms in churches built in grottoes

    Energy Technology Data Exchange (ETDEWEB)

    Cennamo, Paola, E-mail: paola.cennamo@unisob.na.it [Facoltà di Lettere, Università degli Studi Suor Orsola Benincasa di Napoli, Via Santa Caterina da Siena 37, 80135 Naples (Italy); Montuori, Naomi [Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Foria 223, 80139 Naples (Italy); Trojsi, Giorgio; Fatigati, Giancarlo [Facoltà di Lettere, Università degli Studi Suor Orsola Benincasa di Napoli, Via Santa Caterina da Siena 37, 80135 Naples (Italy); Moretti, Aldo [Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Foria 223, 80139 Naples (Italy)

    2016-02-01

    We investigated microorganisms dwelling on rocks, walls and paintings in two votive chapels built in grottoes in the Region of Campania, Italy. One grotto was near the coast in an area with a Mediterranean climate, and the other grotto was inland on a mountain in an area with a cold continental climate. Color and distribution of biofilms in various areas of the grottoes were examined. Microbial components of biofilms were identified by light and electron microscopy and by molecular techniques (DNA analyses and Automatic rRNA Intergenic Spacer Analysis). Biofilms were also analyzed by X-ray diffraction to detect inorganic constituents deriving from rocks in the grottoes and walls of the churches and by X-ray fluorescence to detect the elements that made up the pigments of the mural paintings; optical cross sections were used to observe their relationships with substrata. Species of eubacteria, cyanobacteria and green algae were identified. Some of these species occurred in both grottoes, while others were exclusive to only one of the grottoes. The diversity of species, their common or exclusive occurrence in the grottoes, the relationships among microbial communities and the differences in color and distribution of biofilms were discussed on the basis of the different climatic factors affecting the two grottoes and the different inorganic components of substrata. - Highlights: • Biofilms concur to the degradation of cultural heritage. • Microorganisms cause esthetic and structural damage in votive churches. • Biofilm features vary on different substrata, as limestone, plaster and paintings. • Features of biofilms mainly depend on environmental conditions. • Molecular biology techniques are indispensable in the study of biodegradation.

  1. The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms

    DEFF Research Database (Denmark)

    Nilsson, Carl Martin Peter; Rybtke, Morten; Givskov, Michael

    2016-01-01

    Microbial biofilms are tolerant to antibiotic treatment and therefore cause problematic infections. Knowledge about the molecular mechanisms underlying biofilm-associated antimicrobial tolerance will aid the development of antibiofilm drugs. Screening of a Streptococcus mutans transposon mutant...... library for genes that are important for biofilm-associated antimicrobial tolerance provided evidence that the dlt genes play a role in the tolerance of S. mutans biofilms towards gentamicin. The minimum bactericidal concentration for biofilm cells (MBC-B) for a dltA transposon mutant was eight-fold lower...... and complemented strain confirmed that the dlt genes in S. mutans play a role in biofilm-associated tolerance to gentamicin. Confocal laser scanning microscopy analyses of biofilms grown on glass slides showed that the dltA mutant produced roughly the same amount of biofilm as the wild-type, indicating...

  2. Bacterial communities in pigmented biofilms formed on the sandstone bas-relief walls of the Bayon Temple, Angkor Thom, Cambodia.

    Science.gov (United States)

    Kusumi, Asako; Li, Xianshu; Osuga, Yu; Kawashima, Arata; Gu, Ji-Dong; Nasu, Masao; Katayama, Yoko

    2013-01-01

    The Bayon temple in Angkor Thom, Cambodia has shown serious deterioration and is subject to the formation of various pigmented biofilms. Because biofilms are damaging the bas-reliefs, low reliefs engraved on the surface of sandstone, information about the microbial community within them is indispensable to control biofilm colonization. PCR-denaturing gradient gel electrophoresis (DGGE) analysis of biofilm samples from the pigmented sandstone surfaces showed that the bacterial community members in the biofilms differed clearly from those in the air and had low sequence similarity to database sequences. Non-destructive sampling of biofilm revealed novel bacterial groups of predominantly Rubrobacter in salmon pink biofilm, Cyanobacteria in chrome green biofilm, Cyanobacteria and Chloroflexi in signal violet biofilm, Chloroflexi in black gray biofilm, and Deinococcus-Thermus, Cyanobacteria, and Rubrobacter in blue green biofilm. Serial peeling-off of a thick biofilm by layers with adhesive sheets revealed a stratified structure: the blue-green biofilm, around which there was serious deterioration, was very rich in Cyanobacteria near the surface and Chloroflexi in deep layer below. Nitrate ion concentrations were high in the blue-green biofilm. The characteristic distribution of bacteria at different biofilm depths provides valuable information on not only the biofilm formation process but also the sandstone weathering process in the tropics.

  3. In vitro characterization of biofilms formed by Kingella kingae.

    Science.gov (United States)

    Kaplan, J B; Sampathkumar, V; Bendaoud, M; Giannakakis, A K; Lally, E T; Balashova, N V

    2017-08-01

    The Gram-negative bacterium Kingella kingae is part of the normal oropharyngeal mucosal flora of children biofilm formation has been coupled with pharyngeal colonization, osteoarticular infections, and infective endocarditis, no studies have investigated biofilm formation in K. kingae. In this study we measured biofilm formation by 79 K. kingae clinical isolates using a 96-well microtiter plate crystal violet binding assay. We found that 37 of 79 strains (47%) formed biofilms. All strains that formed biofilms produced corroding colonies on agar. Biofilm formation was inhibited by proteinase K and DNase I. DNase I also caused the detachment of pre-formed K. kingae biofilm colonies. A mutant strain carrying a deletion of the pilus gene cluster pilA1pilA2fimB did not produce corroding colonies on agar, autoaggregate in broth, or form biofilms. Biofilm forming strains have higher levels of pilA1 expression. The extracellular components of biofilms contained 490 μg cm -2 of protein, 0.68 μg cm -2 of DNA, and 0.4 μg cm -2 of total carbohydrates. We concluded that biofilm formation is common among K. kingae clinical isolates, and that biofilm formation is dependent on the production of proteinaceous pili and extracellular DNA. Biofilm development may have relevance to the colonization, transmission, and pathogenesis of this bacterium. Extracellular DNA production by K. kingae may facilitate horizontal gene transfer within the oral microbial community. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Candida albicans Biofilms and Human Disease

    Science.gov (United States)

    Nobile, Clarissa J.; Johnson, Alexander D.

    2016-01-01

    In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. Candida albicans is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to C. albicans overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of C. albicans have been carried out in suspension cultures; however, the medical impact of C. albicans (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. C. albicans biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by C. albicans and closely related fungal species. PMID:26488273

  5. Modelling of biofilm growth and its influence on CO2 and water (two-phase) flow in porous media

    OpenAIRE

    Ebigbo, Anozie

    2009-01-01

    Bacterial biofilms are groups of microbial cells attached to surfaces and to each other. Cells in a biofilm are protected from adverse external conditions. In natural environments, this attached mode of growth is more successful than the suspended mode, and a major portion of microbial activity takes place at surfaces. In porous media, biofilms are used as bioreactors (e.g, in wastewater treatment) and as biobarriers (e.g., in enhanced oil recovery). They are also used in the containment and ...

  6. The ability to form a biofilm by odontogenic infectious agents obtained from patients with odontogenic pyoinflammatory processes of various prevalence

    OpenAIRE

    Kabanova, Arina; Pohodenko-chudakova, Irina

    2015-01-01

    The purpose of the study was to investigate the biofilm formation by bacteria agents causing odontogenic infections. 117 patients with pyoinflammatory diseases of the maxillofacial region were examined. During the study it was revealed that the odontogenic infection pathogens were able to form the microbial biofilm in a varying degree, P. аeruginosa had the strongest biofilm formation ability and S. epidermidis had the least biofilm formation ability.

  7. Incorporation of Listeria monocytogenes strains in raw milk biofilms.

    Science.gov (United States)

    Weiler, Christiane; Ifland, Andrea; Naumann, Annette; Kleta, Sylvia; Noll, Matthias

    2013-02-01

    Biofilms develop successively on devices of milk production without sufficient cleaning and originate from the microbial community of raw milk. The established biofilm matrices enable incorporation of pathogens like Listeria monocytogenes, which can cause a continuous contamination of food processing plants. L. monocytogenes is frequently found in raw milk and non-pasteurized raw milk products and as part of a biofilm community in milk meters and bulk milk tanks. The aim of this study was to analyze whether different L. monocytogenes strains are interacting with the microbial community of raw milk in terms of biofilm formation in the same manner, and to identify at which stage of biofilm formation a selected L. monocytogenes strain settles best. Bacterial community structure and composition of biofilms were analyzed by a cloning and sequencing approach and terminal restriction fragment length polymorphism analysis (T-RFLP) based on the bacterial 16S rRNA gene. The chemical composition of biofilms was analyzed by Fourier transform infrared spectroscopy (FTIR), while settled L. monocytogenes cells were quantified by fluorescence in situ hybridization (FISH). Addition of individual L. monocytogenes strains to raw milk caused significant shifts in the biofilm biomass, in the chemical as well as in the bacterial community composition. Biofilm formation and attachment of L. monocytogenes cells were not serotype but strain specific. However, the added L. monocytogenes strains were not abundant since mainly members of the genera Citrobacter and Lactococcus dominated the bacterial biofilm community. Overall, added L. monocytogenes strains led to a highly competitive interaction with the raw milk community and triggered alterations in biofilm formation. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Biofilm Fixed Film Systems

    Directory of Open Access Journals (Sweden)

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  9. Biofilm community succession: a neutral perspective.

    Science.gov (United States)

    Woodcock, Stephen; Sloan, William T

    2017-05-22

    Although biofilms represent one of the dominant forms of life in aqueous environments, our understanding of the assembly and development of their microbial communities remains relatively poor. In recent years, several studies have addressed this and have extended the concepts of succession theory in classical ecology into microbial systems. From these datasets, niche-based conceptual models have been developed explaining observed biodiversity patterns and their dynamics. These models have not, however, been formulated mathematically and so remain untested. Here, we further develop spatially resolved neutral community models and demonstrate that these can also explain these patterns and offer alternative explanations of microbial succession. The success of neutral models suggests that stochastic effects alone may have a much greater influence on microbial community succession than previously acknowledged. Furthermore, such models are much more readily parameterised and can be used as the foundation of more complex and realistic models of microbial community succession.

  10. A reproducible oral microcosm biofilm model for testing dental materials.

    Science.gov (United States)

    Rudney, J D; Chen, R; Lenton, P; Li, J; Li, Y; Jones, R S; Reilly, C; Fok, A S; Aparicio, C

    2012-12-01

    Most studies of biofilm effects on dental materials use single-species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model. Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite discs were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms was analysed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veillonella. Biofilms from the same donor, grown at different times, clustered together. This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries. This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials. © 2012 The Society for Applied Microbiology.

  11. An optical microfluidic platform for spatiotemporal biofilm treatment monitoring

    International Nuclear Information System (INIS)

    Kim, Young Wook; Mosteller, Matthew P; Subramanian, Sowmya; Meyer, Mariana T; Ghodssi, Reza; Bentley, William E

    2016-01-01

    Bacterial biofilms constitute in excess of 65% of clinical microbial infections, with the antibiotic treatment of biofilm infections posing a unique challenge due to their high antibiotic tolerance. Recent studies performed in our group have demonstrated that a bioelectric effect featuring low-intensity electric signals combined with antibiotics can significantly improve the efficacy of biofilm treatment. In this work, we demonstrate the bioelectric effect using sub-micron thick planar electrodes in a microfluidic device. This is critical in efforts to develop microsystems for clinical biofilm infection management, including both in vivo and in vitro applications. Adaptation of the method to the microscale, for example, can enable the development of localized biofilm infection treatment using microfabricated medical devices, while augmenting existing capabilities to perform biofilm management beyond the clinical realm. Furthermore, due to scale-down of the system, the voltage requirement for inducing the electric field is reduced further below the media electrolysis threshold. Enhanced biofilm treatment using the bioelectric effect in the developed microfluidic device elicited a 56% greater reduction in viable cell density and 26% further decrease in biomass growth compared to traditional antibiotic therapy. This biofilm treatment efficacy, demonstrated in a micro-scale device and utilizing biocompatible voltage ranges, encourages the use of this method for future clinical biofilm treatment applications. (paper)

  12. Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid

    Directory of Open Access Journals (Sweden)

    Cláudia N. H. Marques

    2015-11-01

    Full Text Available Biofilms are complex communities of microorganisms in organized structures attached to surfaces. Importantly, biofilms are a major cause of bacterial infections in humans, and remain one of the most significant challenges to modern medical practice. Unfortunately, conventional therapies have shown to be inadequate in the treatment of most chronic biofilm infections based on the extraordinary innate tolerance of biofilms to antibiotics. Antagonists of quorum sensing signaling molecules have been used as means to control biofilms. QS and other cell-cell communication molecules are able to revert biofilm tolerance, prevent biofilm formation and disrupt fully developed biofilms, albeit with restricted effectiveness. Recently however, it has been demonstrated that Pseudomonas aeruginosa produces a small messenger molecule cis-2-decenoic acid (cis-DA that shows significant promise as an effective adjunctive to antimicrobial treatment of biofilms. This molecule is responsible for induction of the native biofilm dispersion response in a range of Gram-negative and Gram-positive bacteria and in yeast, and has been shown to reverse persistence, increase microbial metabolic activity and significantly enhance the cidal effects of conventional antimicrobial agents. In this manuscript, the use of cis-2-decenoic acid as a novel agent for biofilm control is discussed. Stimulating the biofilm dispersion response as a novel antimicrobial strategy holds significant promise for enhanced treatment of infections and in the prevention of biofilm formation.

  13. aBiofilm: a resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance

    Science.gov (United States)

    Rajput, Akanksha; Thakur, Anamika; Sharma, Shivangi

    2018-01-01

    Abstract Biofilms play an important role in the antibiotic drug resistance, which is threatening public health globally. Almost, all microbes mimic multicellular lifestyle to form biofilm by undergoing phenotypic changes to adapt adverse environmental conditions. Many anti-biofilm agents have been experimentally validated to disrupt the biofilms during last three decades. To organize this data, we developed the ‘aBiofilm’ resource (http://bioinfo.imtech.res.in/manojk/abiofilm/) that harbors a database, a predictor, and the data visualization modules. The database contains biological, chemical, and structural details of 5027 anti-biofilm agents (1720 unique) reported from 1988–2017. These agents target over 140 organisms including Gram-negative, Gram-positive bacteria, and fungus. They are mainly chemicals, peptides, phages, secondary metabolites, antibodies, nanoparticles and extracts. They show the diverse mode of actions by attacking mainly signaling molecules, biofilm matrix, genes, extracellular polymeric substances, and many more. The QSAR based predictor identifies the anti-biofilm potential of an unknown chemical with an accuracy of ∼80.00%. The data visualization section summarized the biofilm stages targeted (Circos plot); interaction maps (Cytoscape) and chemicals diversification (CheS-Mapper) of the agents. This comprehensive platform would help the researchers to understand the multilevel communication in the microbial consortium. It may aid in developing anti-biofilm therapeutics to deal with antibiotic drug resistance menace. PMID:29156005

  14. Mathematical modeling of dormant cell formation in growing biofilm

    OpenAIRE

    Kotaro eChihara; Shinya eMatsumoto; Yuki eKagawa; Satoshi eTsuneda

    2015-01-01

    Understanding the dynamics of dormant cells in microbial biofilms, in which the bacteria are embedded in extracellular matrix, is important for developing successful antibiotic therapies against pathogenic bacteria. Although some of the molecular mechanisms leading to bacterial persistence have been speculated in planktonic bacterial cell, how dormant cells emerge in the biofilms of pathogenic bacteria such as Pseudomonas aeruginosa remains unclear. The present study proposes four hypotheses ...

  15. Nanoparticles for Control of Biofilms of Acinetobacter Species

    Directory of Open Access Journals (Sweden)

    Richa Singh

    2016-05-01

    Full Text Available Biofilms are the cause of 80% of microbial infections. Acinetobacter species have emerged as multi- and pan-drug-resistant bacteria and pose a great threat to human health. These act as nosocomial pathogens and form excellent biofilms, both on biotic and abiotic surfaces, leading to severe infections and diseases. Various methods have been developed for treatment and control of Acinetobacter biofilm including photodynamic therapy, radioimmunotherapy, prophylactic vaccines and antimicrobial peptides. Nanotechnology, in the present scenario, offers a promising alternative. Nanomaterials possess unique properties, and multiple bactericidal mechanisms render them more effective than conventional drugs. This review intends to provide an overview of Acinetobacter biofilm and the significant role of various nanoparticles as anti-biofouling agents, surface-coating materials and drug-delivery vehicles for biofilm control and treatment of Acinetobacter infections.

  16. Shell biofilm-associated nitrous oxide production in marine molluscs

    DEFF Research Database (Denmark)

    Heisterkamp, I.M.; Schramm, Andreas; Larsen, Lone Heimann

    2013-01-01

    Emission of the greenhouse gas nitrous oxide (N2O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces...... are important sites of N2O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2O emission. Nitrification and denitrification were equally important sources of N2O in shell biofilms as revealed by 15N-stable isotope...... mollusc species. Ammonium excretion by the animals was found to be sufficient to sustain N2O production in the shell biofilm. Apparently, the animals provide a nutrient-enriched microenvironment that stimulates growth and N2O production of the shell biofilm. This animal-induced stimulation...

  17. Difference in initial dental biofilm accumulation between night and day

    DEFF Research Database (Denmark)

    Dige, Irene; Schlafer, Sebastian; Nyvad, Bente

    2012-01-01

    formed during day and night. We hypothesised that there is a diurnal variation in the rate of accumulation of bacteria on solid surfaces in the oral cavity. Material and methods. In situ biofilm from healthy individuals was collected for 12 h during day and night, respectively, subjected to fluorescent......Objective. The study of initial microbial colonization on dental surfaces is a field of intensive research because of the aetiological role of biofilms in oral diseases. Most previous studies of de novo accumulation and composition of dental biofilms in vivo do not differentiate between biofilms...... in situ hybridization, and visualized using confocal laser scanning microscopy. Results. Analysis of the biofilms using stereological methods and digital image analysis revealed a consistent statistically significant difference between both the total number of bacteria and the biovolume in the two 12-h...

  18. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  19. Mathematical modeling of dormant cell formation in growing biofilm

    Directory of Open Access Journals (Sweden)

    Kotaro eChihara

    2015-05-01

    Full Text Available Understanding the dynamics of dormant cells in microbial biofilms, in which the bacteria are embedded in extracellular matrix, is important for developing successful antibiotic therapies against pathogenic bacteria. Although some of the molecular mechanisms leading to bacterial persistence have been speculated in planktonic bacterial cell, how dormant cells emerge in the biofilms of pathogenic bacteria such as Pseudomonas aeruginosa remains unclear. The present study proposes four hypotheses of dormant cell formation; stochastic process, nutrient-dependent, oxygen-dependent, and time-dependent processes. These hypotheses were implemented into a three-dimensional individual-based model of biofilm formation. Numerical simulations of the different mechanisms yielded qualitatively different spatiotemporal distributions of dormant cells in the growing biofilm. Based on these simulation results, we discuss what kinds of experimental studies are effective for discriminating dormant cell formation mechanisms in biofilms.

  20. Mathematical modeling of dormant cell formation in growing biofilm.

    Science.gov (United States)

    Chihara, Kotaro; Matsumoto, Shinya; Kagawa, Yuki; Tsuneda, Satoshi

    2015-01-01

    Understanding the dynamics of dormant cells in microbial biofilms, in which the bacteria are embedded in extracellular matrix, is important for developing successful antibiotic therapies against pathogenic bacteria. Although some of the molecular mechanisms leading to bacterial persistence have been speculated in planktonic bacterial cell, how dormant cells emerge in the biofilms of pathogenic bacteria such as Pseudomonas aeruginosa remains unclear. The present study proposes four hypotheses of dormant cell formation; stochastic process, nutrient-dependent, oxygen-dependent, and time-dependent processes. These hypotheses were implemented into a three-dimensional individual-based model of biofilm formation. Numerical simulations of the different mechanisms yielded qualitatively different spatiotemporal distributions of dormant cells in the growing biofilm. Based on these simulation results, we discuss what kinds of experimental studies are effective for discriminating dormant cell formation mechanisms in biofilms.

  1. Biofilm Shows Spatially Stratified Metabolic Responses to Contaminant Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Bin; Majors, Paul D.; Ahmed, B.; Renslow, Ryan S.; Sylvia, Crystal P.; Shi, Liang; Kjelleberg, Staffan; Fredrickson, Jim K.; Beyenal, Haluk

    2012-11-01

    The objective of this study was to elucidate the spatiotemporal responses of live S. oneidensis MR-1 biofilms to U(VI) (uranyl, UO22+) and Cr(VI) (chromate, CrO42-), important environmental contaminants at DOE contaminated sites. Toward this goal, we applied noninvasive nuclear magnetic resonance (NMR) imaging, diffusion, relaxation and spectroscopy techniques to monitor in situ spatiotemporal responses of S. oneidensis biofilms to U(VI) and Cr(VI) exposure in terms of changes in biofilm structures, diffusion properties, and cellular metabolism. Exposure to U(VI) or Cr(VI) did not appear to change the overall biomass distribution but caused changes in the physicochemical microenvironments inside the biofilm as indicated by diffusion measurements. Changes in the diffusion properties of the biofilms in response to U(VI) and Cr(VI) exposure imply a novel function of the extracellular polymeric substances (EPS) affecting the biotransformation and transport of contaminants in the environment. In the presence of U(VI) or Cr(VI), the anaerobic metabolism of lactate was inhibited significantly, although the biofilms were still capable of reducing U(VI) and Cr(VI). Local concentrations of Cr(III)aq in the biofilm suggested relatively high Cr(VI) reduction activities at the top of the biofilm, near the medium-biofilm interface. The depth-resolved metabolic activities of the biofilm suggested higher diversion effects of gluconeogenesis and C1 metabolism pathways at the bottom of the biofilm and in the presence of U(VI). This study provides a noninvasive means to investigate spatiotemporal responses of biofilms, including surface-associated microbial communities in engineering, natural and medical settings, to various environmental perturbations including exposure to environmental contaminants and antimicrobials.

  2. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  3. Biophysics of Biofilm Infection

    OpenAIRE

    Stewart, Philip S.

    2014-01-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofi...

  4. Application of biofilm bioreactors in white biotechnology.

    Science.gov (United States)

    Muffler, K; Lakatos, M; Schlegel, C; Strieth, D; Kuhne, S; Ulber, R

    2014-01-01

    The production of valuable compounds in industrial biotechnology is commonly done by cultivation of suspended cells or use of (immobilized) enzymes rather than using microorganisms in an immobilized state. Within the field of wastewater as well as odor treatment the application of immobilized cells is a proven technique. The cells are entrapped in a matrix of extracellular polymeric compounds produced by themselves. The surface-associated agglomerate of encapsulated cells is termed biofilm. In comparison to common immobilization techniques, toxic effects of compounds used for cell entrapment may be neglected. Although the economic impact of biofilm processes used for the production of valuable compounds is negligible, many prospective approaches were examined in the laboratory and on a pilot scale. This review gives an overview of biofilm reactors applied to the production of valuable compounds. Moreover, the characteristics of the utilized materials are discussed with respect to support of surface-attached microbial growth.

  5. Bacterial biofilms, resistance mechanisms to disinfection; Biopeliculas bacterianas (biofilms), mecanismos de resistencia a la desinfeccion

    Energy Technology Data Exchange (ETDEWEB)

    Codony Iglesias, F.; Morato Farreras, J.

    2002-07-01

    Biofilm is a cell community attached to a support surface, frequently enmeshed within a polymeric matrix secreted by the bacteria. Usually, such structures are developed in a wide range of materials. This development as attached to surfaces or forming suspended aggregates, greatly improve the microbial growth and their survival. This fact may be responsible of adverse effects over equipment and may constitute a public health hazard. In this work are reviewed the basis of the different microbial resistance mechanisms to disinfection from the cellular level to more complex microbial structure. (Author) 16 refs.

  6. Dental biofilm: ecological interactions in health and disease.

    Science.gov (United States)

    Marsh, P D; Zaura, Egija

    2017-03-01

    The oral microbiome is diverse and exists as multispecies microbial communities on oral surfaces in structurally and functionally organized biofilms. To describe the network of microbial interactions (both synergistic and antagonistic) occurring within these biofilms and assess their role in oral health and dental disease. PubMed database was searched for studies on microbial ecological interactions in dental biofilms. The search results did not lend themselves to systematic review and have been summarized in a narrative review instead. Five hundred and forty-seven original research articles and 212 reviews were identified. The majority (86%) of research articles addressed bacterial-bacterial interactions, while inter-kingdom microbial interactions were the least studied. The interactions included physical and nutritional synergistic associations, antagonism, cell-to-cell communication and gene transfer. Oral microbial communities display emergent properties that cannot be inferred from studies of single species. Individual organisms grow in environments they would not tolerate in pure culture. The networks of multiple synergistic and antagonistic interactions generate microbial inter-dependencies and give biofilms a resilience to minor environmental perturbations, and this contributes to oral health. If key environmental pressures exceed thresholds associated with health, then the competitiveness among oral microorganisms is altered and dysbiosis can occur, increasing the risk of dental disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  8. Surface modification of materials to encourage beneficial biofilm formation

    Directory of Open Access Journals (Sweden)

    Amreeta Sarjit

    2015-10-01

    Full Text Available Biofilms are communities of sessile microorganisms that grow and produce extrapolymeric substances on an abiotic or biotic surface. Although biofilms are often associated with negative impacts, the role of beneficial biofilms is wide and include applications in bioremediation, wastewater treatment and microbial fuel cells. Microbial adhesion to a surface, which is highly dependent on the physicochemical properties of the cells and surfaces, is an essential step in biofilm formation. Surface modification therefore represents an important way to modulate microbial attachment and ultimately biofilm formation by microorganisms. In this review different surface modification processes such as organosilane surface modification, plasma treatment, and chemical modification of carbon nanotubes, electro-oxidation and covalent-immobilization with neutral red and methylene blue molecules are outlined. The effectiveness of these modifications and their industrial applications are also discussed. There is inadequate literature on surface modification as a process to enhance beneficial biofilm formation. These methods need to be safe, economically viable, scalable and environmental friendly and their potential to fulfil these criteria for many applications has yet to be determined.

  9. Fate of deposited cells in an aerobic binary bacterial biofilm

    International Nuclear Information System (INIS)

    Banks, M.K.

    1989-01-01

    A biofilm is a matrix of microbial cells and their extracellular products that is associated with a solid surface. Previous studies on biofilm development have employed only dissolved compounds as growth limiting substrates, without the influence of microbial species invading from the bulk liquid. The goal of this research project was to quantify the kinetics of processes governing suspended biomass turnover in biofilm systems, and the accompanying effects of suspended cell deposition on biofilm population dynamics. Experiments were conducted with two species of bacteria, Pseudomonas putida ATCC 11172 grown on glucose, and Hyphomicrobium ZV620 grown on methanol. Cryptic growth and particulate hydrolysis studies were evaluated, using combinations of these two bacteria, by measuring the uptake of radiolabelled cell lysis products, under batch conditions. Biofilms studies were performed to investigate bacterial deposition, continual biofilm removal by shear induced erosion, and biofilm ecology. Biofilms were developed in a flow cell reactor, under laminar flow conditions. Bacterial species were differentiated by radioactively labelling each species with their carbon substrate. A mathematical model was developed to predict the biofilm ecology of mixed cultures. The equations developed predict biofilm accumulation, as well as substrate and oxygen consumption. Results indicate that cryptic growth will occur for bacteria growing on their own species soluble lysis products and in some cases, bacteria growing on the soluble lysis products of other species. Particulate hydrolysis only occurred for Pseudomonas putida growing on Pseudomonas putida lysis products, but the lack of particulate hydrolysis occurring in the other studies may have been due to the short experimental period

  10. Millimeter scale electron conduction through exoelectrogenic mixed species biofilms.

    Science.gov (United States)

    Li, Cheng; Lesnik, Keaton Larson; Fan, Yanzhen; Liu, Hong

    2016-08-01

    The functioning of many natural and engineered environments is dependent on long distance electron transfer mediated through electrical currents. These currents have been observed in exoelectrogenic biofilms and it has been proposed that microbial biofilms can mediate electron transfer via electrical currents on the centimeter scale. However, direct evidence to confirm this hypothesis has not been demonstrated and the longest known electrical transfer distance for single species exoelectrogenic biofilms is limited to 100 μm. In the present study, biofilms were developed on electrodes with electrically non-conductive gaps from 50 μm to 1 mm and the in situ conductance of biofilms was evaluated over time. Results demonstrated that the exoelectrogenic mixed species biofilms in the present study possess the ability to transfer electrons through electrical currents over a distance of up to 1 mm, 10 times further than previously observed. Results indicate the possibility of interspecies interactions playing an important role in the spatial development of exoelectrogenic biofilms, suggesting that these biological networks might remain conductive even at longer distance. These findings have significant implications in regards to future optimization of microbial electrochemical systems. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae.

    Science.gov (United States)

    Bhattacharyya, Purnita; Agarwal, Bikash; Goswami, Madhurankhi; Maiti, Debasish; Baruah, Sunandan; Tribedi, Prosun

    2018-01-01

    Biofilms are structured consortia of microbial cells that grow on living and non living surfaces and surround themselves with secreted polymers. Infections with bacterial biofilms have emerged as a foremost public health concern because biofilm growing cells can be highly resistant to both antibiotics and host immune defenses. Zinc oxide nanoparticles have been reported as a potential antimicrobial agent, thus, in the current study, we have evaluated the antimicrobial as well as antibiofilm activity of zinc oxide nanoparticles against the bacterium Streptococcus pneumoniae which is a significant cause of disease. Zinc oxide nanoparticles showed strong antimicrobial activity against S. pneumoniae, with an MIC value of 40 μg/ml. Biofilm inhibition of S. pneumoniae was also evaluated by performing a series of experiments such as crystal violet assay, microscopic observation, protein count, EPS secretion etc. using sub-MIC concentrations (3, 6 and 12 µg/ml) of zinc oxide nanoparticles. The results showed that the sub-MIC doses of zinc oxide nanoparticles exhibited significant anti-biofilm activity against S. pneumoniae, with maximum biofilm attenuation found at 12 μg/ml. Taken together, the results indicate that zinc oxide nanoparticles can be considered as a potential agent for the inhibition of microbial biofilms.

  12. Biofilms and mechanics: a review of experimental techniques and findings

    International Nuclear Information System (INIS)

    Gordon, Vernita D; Davis-Fields, Megan; Kovach, Kristin; Rodesney, Christopher A

    2017-01-01

    Biofilms are developmentally-dynamic communities of sessile microbes that adhere to each other and, often, to other structures in their environment. The cohesive mechanical forces binding microbes to each other confer mechanical and structural stability on the biofilm and give rise to biofilm viscoelasticity. The adhesive mechanical forces binding microbes to other structures in their environment can promote biofilm initiation and mechanosensing that leads to changes in biological activity. Thus, physical mechanics is intrinsic to characteristics that distinguish biofilms from free-swimming or free-floating microbes in liquid culture. However, very little is known about the specifics of what mechanical traits characterize different types of biofilms at different stages of development. Even less is known about how mechanical inputs impact microbial biology and how microbes can adjust their mechanical coupling to, and interaction with, their environment. These knowledge gaps arise, in part, from the challenges associated with experimental measurements of microbial and biofilm biomechanics. Here, we review extant experimental techniques and their most-salient findings to date. At the end of this review we indicate areas where significant advances in the state-of-the art are heading. (topical review)

  13. Biofilms and mechanics: a review of experimental techniques and findings

    Science.gov (United States)

    Gordon, Vernita D.; Davis-Fields, Megan; Kovach, Kristin; Rodesney, Christopher A.

    2017-06-01

    Biofilms are developmentally-dynamic communities of sessile microbes that adhere to each other and, often, to other structures in their environment. The cohesive mechanical forces binding microbes to each other confer mechanical and structural stability on the biofilm and give rise to biofilm viscoelasticity. The adhesive mechanical forces binding microbes to other structures in their environment can promote biofilm initiation and mechanosensing that leads to changes in biological activity. Thus, physical mechanics is intrinsic to characteristics that distinguish biofilms from free-swimming or free-floating microbes in liquid culture. However, very little is known about the specifics of what mechanical traits characterize different types of biofilms at different stages of development. Even less is known about how mechanical inputs impact microbial biology and how microbes can adjust their mechanical coupling to, and interaction with, their environment. These knowledge gaps arise, in part, from the challenges associated with experimental measurements of microbial and biofilm biomechanics. Here, we review extant experimental techniques and their most-salient findings to date. At the end of this review we indicate areas where significant advances in the state-of-the art are heading.

  14. The electric picnic: synergistic requirements for exoelectrogenic microbial communities

    KAUST Repository

    Kiely, Patrick D

    2011-06-01

    Characterization of the various microbial populations present in exoelectrogenic biofilms provides insight into the processes required to convert complex organic matter in wastewater streams into electrical current in bioelectrochemical systems (BESs). Analysis of the community profiles of exoelectrogenic microbial consortia in BESs fed different substrates gives a clearer picture of the different microbial populations present in these exoelectrogenic biofilms. Rapid utilization of fermentation end products by exoelectrogens (typically Geobacter species) relieves feedback inhibition for the fermentative consortia, allowing for rapid metabolism of organics. Identification of specific syntrophic processes and the communities characteristic of these anodic biofilms will be a valuable aid in improving the performance of BESs. © 2011 Elsevier Ltd.

  15. Anti-Biofilm Efficacy of Nitric Oxide-Releasing Silica Nanoparticles

    OpenAIRE

    Hetrick, Evan M.; Shin, Jae Ho; Paul, Heather S.; Schoenfisch, Mark H.

    2009-01-01

    The ability of nitric oxide (NO)-releasing silica nanoparticles to kill biofilm-based microbial cells is reported. Biofilms of Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans were formed in vitro and exposed to NO-releasing silica nanoparticles. Replicative viability experiments revealed that ≥ 99% of cells from each type of biofilm were killed via NO release, with the greatest efficacy (≥ 99.999% killing) against gram-negative...

  16. The biofilm matrix.

    Science.gov (United States)

    Flemming, Hans-Curt; Wingender, Jost

    2010-09-01

    The microorganisms in biofilms live in a self-produced matrix of hydrated extracellular polymeric substances (EPS) that form their immediate environment. EPS are mainly polysaccharides, proteins, nucleic acids and lipids; they provide the mechanical stability of biofilms, mediate their adhesion to surfaces and form a cohesive, three-dimensional polymer network that interconnects and transiently immobilizes biofilm cells. In addition, the biofilm matrix acts as an external digestive system by keeping extracellular enzymes close to the cells, enabling them to metabolize dissolved, colloidal and solid biopolymers. Here we describe the functions, properties and constituents of the EPS matrix that make biofilms the most successful forms of life on earth.

  17. Occurrence of Legionella pneumophila and Hartmannella vermiformis in fresh water environments and their interactions in biofilms

    NARCIS (Netherlands)

    Kuiper, M.W.

    2006-01-01

    Legionella pneumophila, the causative agent of Legionnaires’ disease, is widespread in natural fresh water environments and is also frequently found in man-made water systems. Microbial biofilms and protozoa are known to play a major role in the proliferation of L. pneumophila. Biofilms provide

  18. Biofilm systems for the removal of micro-pollutants from wastewater

    DEFF Research Database (Denmark)

    Escola, Monica

    2016-01-01

    Among the different technologies available to improve the removal of organic micropollutants in wastewater, biofilms (a microbial community founded on a surface) have been envisioned as a promising solution. Different processes involving the degradation of micro-pollutants by biofilms were studie...

  19. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  20. Advanced microscopy of microbial cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  1. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    OpenAIRE

    Elena P. Ivanova; Russell J. Crawford; Barbara Vu; Miao Chen

    2009-01-01

    Extracellular polymeric substances (EPS) produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydrati...

  2. Sound waves effectively assist tobramycin in elimination of Pseudomonas aeruginosa biofilms in vitro.

    Science.gov (United States)

    Bandara, H M H N; Harb, A; Kolacny, D; Martins, P; Smyth, H D C

    2014-12-01

    Microbial biofilms are highly refractory to antimicrobials. The aim of this study was to investigate the use of low-frequency vibration therapy (20-20 kHz) on antibiotic-mediated Pseudomonas aeruginosa biofilm eradication. In screening studies, low-frequency vibrations were applied on model biofilm compositions to identify conditions in which surface standing waves were observed. Alginate surface tension and viscosity were also measured. The effect of vibration on P. aeruginosa biofilms was studied using a standard biofilm assay. Subminimal inhibitory concentrations (sub-MIC) of tobramycin (5 μg/ml) were added to biofilms 3 h prior, during, and immediately after vibration and quantitatively assessed by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay (XTT) and, qualitatively, by confocal laser scanning microscopy (CLSM). The standing waves occurred at frequencies sound waves together with antibiotics are a promising approach in eliminating pathogenic biofilms.

  3. The Effect of Predators on Cholera Biofilms: If it Lyses, We Can Smash It

    Science.gov (United States)

    Kalziqi, Arben; Bernardy, Eryn; Thomas, Jacob; Ratcliff, Will; Hammer, Brian; Yunker, Peter

    Many microbes form biofilms--dense clumps of cells and proteins--on surfaces. Biofilms are complex communities that facilitate the study of biological competition (e.g., two types of microbes may compete to form a biofilm in the same location) and interesting physics (e.g., the source of a biofilm's rigidity). Vibrio cholerae can produce biofilms which have a network-like structure--however, cholera can be genetically engineered to kill other cholera with different genotypes, which leaves behind a structureless ``slime'' rather than such a biofilm. Through mechanical creep testing of both predator-prey and non-predator populations, we found that the predator-prey population responds viscously and decreases in height with repeated compression, whereas the non-predator population responds elastically and maintains its original height. The current work suggests that cell lysis after killing disrupts biofilm formation, preventing microbial colonies from forming rigid networks.

  4. Biofilms on Hospital Shower Hoses: Characterization and ...

    Science.gov (United States)

    Although the source of drinking water used in hospitals is commonly, biofilms on water pipelines are refuge to bacteria that survive different disinfection strategies. Drinking water (DW) biofilms are well known to harbor opportunistic pathogens, however, these biofilm communities remain poorly characterized by culture-independent approaches that circumvent the limitations of conventional monitoring efforts. Hence, the frequency of pathogens in DW biofilms and how biofilm members withstand high doses of disinfectants and/or chlorine residuals in the water supply remain speculative, but directly impact public health. The aim of this study was to characterize the composition of microbial communities growing on five hospital shower hoses using both culture-dependent and culture-independent techniques. Two different sequence-based methods were used to characterize the bacterial fractions: 16S rRNA gene sequencing of bacterial cultures and next generation sequencing of metagenomes. Based on the metagenomic data, we found that Mycobacterium-like species was the abundant bacterial taxa that overlapped among the five samples. We also recovered the draft genome of a novel Mycobacterium species, closely related to opportunistic pathogenic nontuberculous mycobacteria, M. rhodesiae and M. tusciae, in addition to other, less abundant species. In contrast, the cultured fraction was mostly affiliated to Proteobacteria, such as members of the Sphingomonas, Blastomonas and Porph

  5. Monitoring bacterial biofilms with a microfluidic flow chip designed for imaging with white-light interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Brann, Michelle; Suter, Jonathan D.; Addleman, R. Shane; Larimer, Curtis

    2017-07-01

    There is a need for imaging and sensing instrumentation that can monitor transitions in biofilm structure in order to better understand biofilm development and emergent properties such as anti-microbial resistance. Herein, we expanded on our previously reported technique for measuring and monitoring the thickness and topology of live biofilms using white-light interferometry (WLI). A flow cell designed for WLI enabled the use of this non-disruptive imaging method for the capture of high resolution three-dimensional profile images of biofilm growth over time. The fine axial resolution (3 nm) and wide field of view (>1 mm by 1 mm) enabled detection of biofilm formation as early as three hours after inoculation of the flow cell with a live bacterial culture (Pseudomonas fluorescens). WLI imaging facilitated monitoring the early stages of biofilm development and subtle variations in the structure of mature biofilms. Minimally-invasive imaging enabled monitoring of biofilm structure with surface metrology metrics (e.g., surface roughness). The system was used to observe a transition in biofilm structure that occurred in response to expsoure to a common antiseptic. In the future, WLI and the biofilm imaging cell described herein may be used to test the effectiveness of biofilm-specific therapies to combat common diseases associated with biofilm formation such as cystic fibrosis and periodontitis.

  6. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm.

    Science.gov (United States)

    Miller, Haylea C; Wylie, Jason; Dejean, Guillaume; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J

    2015-09-15

    Naegleria fowleri associated with biofilm and biological demand water (organic matter suspended in water that consumes disinfectants) sourced from operational drinking water distribution systems (DWDSs) had significantly increased resistance to chlorine disinfection. N. fowleri survived intermittent chlorine dosing of 0.6 mg/L for 7 days in a mixed biofilm from field and laboratory-cultured Escherichia coli strains. However, N. fowleri associated with an attached drinking water distribution biofilm survived more than 30 times (20 mg/L for 3 h) the recommended concentration of chlorine for drinking water. N. fowleri showed considerably more resistance to chlorine when associated with a real field biofilm compared to the mixed laboratory biofilm. This increased resistance is likely due to not only the consumption of disinfectants by the biofilm and the reduced disinfectant penetration into the biofilm but also the composition and microbial community of the biofilm itself. The increased diversity of the field biofilm community likely increased N. fowleri's resistance to chlorine disinfection compared to that of the laboratory-cultured biofilm. Previous research has been conducted in only laboratory scale models of DWDSs and laboratory-cultured biofilms. To the best of our knowledge, this is the first study demonstrating how N. fowleri can persist in a field drinking water distribution biofilm despite chlorination.

  7. [Detection of biofilm formation by selected pathogens relevant to the food industry].

    Science.gov (United States)

    Šilhová-Hrušková, L; Moťková, P; Šilha, D; Vytřasová, J

    2015-09-01

    Detection of biofilm formation by microbial pathogens relevant to the food industry and comparison of biofilm formation under different conditions of culture. The following microorganisms were selected for the study: Staphylococcus aureus, Listeria innocua, Listeria ivanovii, Cronobacter sakazakii, Cronobacter muytjensii, Arcobacter butzleri, Arcobacter cryaerophilus, Campylobacter jejuni, and Campylobacter coli. To detect biofilm formation the microtiter plate assay, as described by Christensen and culture on stainless steel coupons were used. The biofilm forming capacity was confirmed in all microorganisms tested, both on the microtiter plates and stainless steel coupons. Biofilm formation was influenced by the culture medium, material used, and culture duration as well as by the test microorganism. It was found that different species and strains of the same genus differ in biofilm formation. Differences were also found between the collection strains and isolates from the environment. Some bacteria tended to form biofilm more readily on the surface of the polyethylene microtiter plates and less readily on stainless steel coupons while others appeared to have an opposite tendency. Some pathogens were able to increase the planktonic cell density in the initial suspension even by three orders of magnitude within 72 hours while producing plenty of biofilm. The study of biofilm formation by high risk pathogens is of utmost importance, not only to the food industry. From the obtained results, it is evident that bacterial biofilms form rapidly (within 24 hours in the present study). Due to their architecture, these biofilms are difficult to eradicate, and therefore, it is crucial to prevent biofilm formation.

  8. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani, Sahar, E-mail: ssoleima@connect.carleton.ca; Isgor, O. Burkan, E-mail: burkan_isgor@carleton.ca; Ormeci, Banu, E-mail: banu_ormeci@carleton.ca

    2013-11-15

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimens without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process.

  9. Evidence for biofilm acid neutralization by baking soda.

    Science.gov (United States)

    Zero, Domenick T

    2017-11-01

    The generating of acids from the microbial metabolism of dietary sugars and the subsequent decrease in biofilm pH below the pH at which tooth mineral begins to demineralize (critical pH) are the key elements of the dental caries process. Caries preventive strategies that rapidly neutralize biofilm acids can prevent demineralization and favor remineralization and may help prevent the development of sugar-induced dysbiosis that shifts the biofilm toward increased cariogenic potential. Although the neutralizing ability of sodium bicarbonate (baking soda) has been known for many years, its anticaries potential as an additive to fluoride dentifrice has received only limited investigation. There is evidence that baking soda rapidly can reverse the biofilm pH decrease after a sugar challenge; however, the timing of when it is used in relation to a dietary sugar exposure is critical in that the sooner its used the greater the benefit in preventing a sustained biofilm pH decrease and subsequent demineralization. Furthermore, the effectiveness of baking soda in elevating biofilm pH appears to depend on concentration. Thus, the concentration of baking soda in marketed dentifrice products, which ranges from 10% to 65%, may affect their biofilm pH neutralizing performance. People with hyposalivation particularly may benefit from using fluoride dentifrice containing baking soda because of their diminished ability to clear dietary sugars and buffer biofilm acids. Although promising, there is the need for more evidence that strategies that modify the oral ecology, such as baking soda, can alter the cariogenic (acidogenic and aciduric) properties of biofilm microorganisms. The acid neutralization of dental biofilm by using fluoride dentifrice that contains baking soda has potential for helping counteract modern high-sugar diets by rapidly neutralizing biofilm-generated acid, especially in people with hyposalivation. Copyright © 2017 American Dental Association. Published by

  10. Characterization and performance of a toluene-degrading biofilm developed on pumice stones

    OpenAIRE

    Di Lorenzo, Alessandra; Varcamonti, Mario; Parascandola, Palma; Vignola, Rodolfo; Bernardi, Adriano; Sacceddu, Pasquale; Sisto, Raffaello; de Alteriis, Elisabetta

    2005-01-01

    Abstract Background Hydrocarbon-degrading biofilms in the treatment of contaminated groundwaters have received increasing attention due to the role played in the so-called "biobarriers". These are bioremediation systems in which a microbial consortium adherent to a solid support is placed across the flow of a contaminated plume, thus promoting biodegradation of the pollutant. Results A microbial consortium adherent to pumice granules (biofilm) developed from a toluene-enriched microflora in a...

  11. Focusing on Environmental Biofilms With Variable-Pressure Scanning Electron Microscopy

    Science.gov (United States)

    Joubert, L.; Wolfaardt, G. M.; Du Plessis, K.

    2006-12-01

    Since the term biofilm has been coined almost 30 years ago, visualization has formed an integral part of investigations on microbial attachment. Electron microscopic (EM) biofilm studies, however, have been limited by the hydrated extracellular matrix which loses structural integrity with conventional preparative techniques, and under required high-vacuum conditions, resulting in a loss of information on spatial relationships and distribution of biofilm microbes. Recent advances in EM technology enable the application of Variable Pressure Scanning Electron Microscopy (VP SEM) to biofilms, allowing low vacuum and hydrated chamber atmosphere during visualization. Environmental biofilm samples can be viewed in situ, unfixed and fully hydrated, with application of gold-sputter-coating only, to increase image resolution. As the impact of microbial biofilms can be both hazardous and beneficial to man and his environment, recognition of biofilms as a natural form of microbial existence is needed to fully assess the potential role of microbial communities on technology. The integration of multiple techniques to elucidate biofilm processes has become imperative for unraveling complex phenotypic adaptations of this microbial lifestyle. We applied VP SEM as integrative technique with traditional and novel analytical techniques to (1)localize lignocellulosic microbial consortia applied for producing alternative bio-energy sources in the mining wastewater industry, (2) characterize and visualize wetland microbial communities in the treatment of winery wastewater, and (3)determine the impact of recombinant technology on yeast biofilm behavior. Visualization of microbial attachment to a lignocellulose substrate, and degradation of exposed plant tissue, gave insight into fiber degradation and volatile fatty acid production for biological sulphate removal from mining wastewater. Also, the 3D-architecture of complex biofilms developing in constructed wetlands was correlated with

  12. Rock physics models for constraining quantitative interpretation of ultrasonic data for biofilm growth and development

    Science.gov (United States)

    Alhadhrami, Fathiya Mohammed

    This study examines the use of rock physics modeling for quantitative interpretation of seismic data in the context of microbial growth and biofilm formation in unconsolidated sediment. The impetus for this research comes from geophysical experiments by Davis et al. (2010) and Kwon and Ajo-Franklin et al. (2012). These studies observed that microbial growth has a small effect on P-wave velocities (VP) but a large effect on seismic amplitudes. Davis et al. (2010) and Kwon and Ajo-Franklin et al. (2012) speculated that the amplitude variations were due to a combination of rock mechanical changes from accumulation of microbial growth related features such as biofilms. A more definite conclusion can be drawn by developing rock physics models that connect rock properties to seismic amplitudes. The primary objective of this work is to provide an explanation for high amplitude attenuation due to biofilm growth. The results suggest that biofilm formation in the Davis et al. (2010) experiment exhibit two growth styles: a loadbearing style where biofilm behaves like an additional mineral grain and a non-loadbearing mode where the biofilm grows into the pore spaces. In the loadbearing mode, the biofilms contribute to the stiffness of the sediments. We refer to this style as "filler." In the non-loadbearing mode, the biofilms contribute only to change in density of sediments without affecting their strength. We refer to this style of microbial growth as "mushroom." Both growth styles appear to be changing permeability more than the moduli or the density. As the result, while the VP velocity remains relatively unchanged, the amplitudes can change significantly depending on biofilm saturation. Interpreting seismic data from biofilm growths in term of rock physics models provide a greater insight into the sediment-fluid interaction. The models in turn can be used to understand microbial enhanced oil recovery and in assisting in solving environmental issues such as creating bio

  13. Taxonomic and chemical assessment of exceptionally abundant rock mine biofilm

    Directory of Open Access Journals (Sweden)

    Karolina Tomczyk-Żak

    2017-08-01

    Full Text Available Background An exceptionally thick biofilm covers walls of ancient gold and arsenic Złoty Stok mine (Poland in the apparent absence of organic sources of energy. Methods and Results We have characterized this microbial community using culture-dependent and independent methods. We sequenced amplicons of the 16S rRNA gene obtained using generic primers and additional primers targeted at Archaea and Actinobacteria separately. Also, we have cultured numerous isolates from the biofilm on different media under aerobic and anaerobic conditions. We discovered very high biodiversity, and no single taxonomic group was dominant. The majority of almost 4,000 OTUs were classified above genus level indicating presence of novel species. Elemental analysis, performed using SEM-EDS and X-ray, of biofilm samples showed that carbon, sulphur and oxygen were not evenly distributed in the biofilm and that their presence is highly correlated. However, the distribution of arsenic and iron was more flat, and numerous intrusions of elemental silver and platinum were noted, indicating that microorganisms play a key role in releasing these elements from the rock. Conclusions Altogether, the picture obtained throughout this study shows a very rich, complex and interdependent system of rock biofilm. The chemical heterogeneity of biofilm is a likely explanation as to why this oligotrophic environment is capable of supporting such high microbial diversity.

  14. TOF-SIMS imaging of chlorhexidine-digluconate transport in frozen hydrated biofilms of the fungus Candida albicans

    Science.gov (United States)

    Tyler, Bonnie J.; Rangaranjan, Srinath; Möller, Jörg; Beumer, Andre'; Arlinghaus, Heinrich F.

    2006-07-01

    The diffusion of the anti-microbial chlorhexidine digluconate (CHG) has been studied in C. albicans biofilms by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). C. albicans has been shown to become resistant to common anti-microbial agents, including CHG, when growing as a biofilm. Mass transport resistance within biofilms has commonly been suggested as a resistance mechanism, but measurement of transport for most anti-microbial agents in biofilms has proven extremely difficult because of the heterogeneity of the biofilms and the difficulty in detecting these agents within an intact biofilm. In this study, TOF-SIMS has been used to study the transport of CHG and glucose in a frozen hydrated biofilm. The TOF-SIMS images reveal a progression of CHG from the top of the biofilm to its base with time. Images suggest that there are channels within the biofilm and show preferential binding of CHG to cellular components of the biofilm. Additionally, both living and dead cells can be identified in the TOF-SIMS images by the sequestration of K + and the presence of cell markers. This study demonstrates that TOF-SIMS has the unique potential to simultaneously observe the presence of an antimicrobial agent, concentration of nutrients, and the viability of the cell population.

  15. [The formation of bio-films by opportunistic microorganisms isolated from patients with rheumatic diseases].

    Science.gov (United States)

    Malafeeva, E V; Gul'neva, M Iu; Noskov, S M; Romanov, V A

    2014-11-01

    The study was carried out concerning capability of 194 strains of opportunistic microorganisms to form bio-films. It is established that bacteria ecizing organism of patients with rheumatic diseases have capacity to form microbial bio-films. The formation of bio-films is manifested with the same rate as in agents of inflammatory processes. At that, Escherichia coli, Staphylococcus haemolyticus and bacteria of genus Proteus isolated under rheumatic diseases have significantly higher capability to form biofilms that matters for development of comorbide infections.

  16. EFFECT OF ESSENTIAL OIL ON BIOFILM PRODUCTION BY DIFFERENT LISTERIA MONOCYTOGENES STRAINS

    Directory of Open Access Journals (Sweden)

    G. Comi

    2008-12-01

    Full Text Available The effects of different essential oil (hexanal, 2-(E-hexenal, carvacrol, citron, red orange, thymol and limonene on biofilm production of some Lmonocytogenes strains are evaluated. The formation of biofilm on certain surfaces or on the food, seems to be related with cross-contamination during processing or with the contamination of the final product, with potential risk for the consumer. Many studies were done on the antimicrobial activity of essential oils and their components, but not too much is known about their capacity to influence and reduce the microbial production of biofilm. Our data showed that essential oils can inhibit or limit the biofilm production.

  17. Revamping the role of biofilm regulating operons in device-associated Staphylococci and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Pradeep P Halebeedu

    2014-01-01

    Full Text Available Extensive use of indwelling devices in modern medicine has revoked higher incidence of device associated infections and most of these devices provide an ideal surface for microbial attachment to form strong biofilms. These obnoxious biofilms are responsible for persistent infections, longer hospitalization and high mortality rate. Gene regulations in bacteria play a significant role in survival, colonization and pathogenesis. Operons being a part of gene regulatory network favour cell colonization and biofilm formation in various pathogens. This review explains the functional role of various operons in biofilm expression and regulation observed in device-associated pathogens such as Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa.

  18. Effect of fluoride and chlorhexidine digluconate mouthrinses on plaque biofilms.

    Science.gov (United States)

    Rabe, Per; Twetman, Svante; Kinnby, Bertil; Svensäter, Gunnel; Davies, Julia R

    2015-01-01

    To develop a model in which to investigate the architecture of plaque biofilms formed on enamel surfaces in vivo and to compare the effects of anti-microbial agents of relevance for caries on biofilm vitality. Materials and Methodology : Enamel discs mounted on healing abutments in the pre-molar region were worn by three subjects for 7 days. Control discs were removed before subjects rinsed with 0.1% chlorhexidine digluconate (CHX) or 0.2% sodium fluoride (NaF) for 1 minute. Biofilms were stained with Baclight Live/Dead and z-stacks of images created using confocal scanning laser micoscopy. The levels of vital and dead/damaged bacteria in the biofilms, assessed as the proportion of green and red pixels respectively, were analysed using ImageTrak(®) software. Results : The subjects showed individual differences in biofilm architecture. The thickness of the biofilms varied from 28-96µm although cell density was always the greatest in the middle layers. In control biofilms, the overall levels of vitality were high (71-98%) especially in the area closest to the enamel interface. Rinsing with either CHX or NaF caused a similar reduction in overall vitality. CHX exerted an effect throughout the biofilm, particularly on the surface of cell clusters whereas NaF caused cell damage/death mainly in the middle to lower biofilm layers. Conclusion : We describe a model that allows the formation of mature, undisturbed oral biofilms on human enamel surfaces in vivo and show that CHX and NaF have a similar effect on overall vitality but differ in their sites of action.

  19. Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system

    KAUST Repository

    Zhang, Wei Peng

    2014-10-17

    Studies focusing on biofilm assembly in deep-sea environments are rarely conducted. To examine the effects of substrate type on microbial community assembly, biofilms were developed on different substrates for different durations at two locations in the Red Sea: in a brine pool and in nearby bottom water (NBW) adjacent to the Thuwal cold seep II. The composition of the microbial communities in 51 biofilms and water samples were revealed by classification of pyrosequenced 16S rRNA gene amplicons. Together with the microscopic characteristics of the biofilms, the results indicate a stronger selection effect by the substrates on the microbial assembly in the brine pool compared with the NBW. Moreover, the selection effect by substrate type was stronger in the early stages compared with the later stages of the biofilm development. These results are consistent with the hypotheses proposed in the framework of species sorting theory, which states that the power of species sorting during microbial community assembly is dictated by habitat conditions, duration and the structure of the source community. Therefore, the results of this study shed light on the control strategy underlying biofilm-associated marine fouling and provide supporting evidence for ecological theories important for understanding the formation of deep-sea biofilms.

  20. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis.

    Science.gov (United States)

    Kalishwaralal, Kalimuthu; BarathManiKanth, Selvaraj; Pandian, Sureshbabu Ram Kumar; Deepak, Venkataraman; Gurunathan, Sangiliyandi

    2010-09-01

    Biofilms are ensued due to bacteria that attach to surfaces and aggregate in a hydrated polymeric matrix. Formation of these sessile communities and their inherent resistance to anti-microbial agents are the source of many relentless and chronic bacterial infections. Such biofilms are responsible play a major role in development of ocular related infectious diseases in human namely microbial keratitis. Different approaches have been used for preventing biofilm related infections in health care settings. Many of these methods have their own demerits that include chemical based complications; emergent antibiotic resistant strains, etc. silver nanoparticles are renowned for their influential anti-microbial activity. Hence the present study over the biologically synthesized silver nanoparticles, exhibited a potential anti-biofilm activity that was tested in vitro on biofilms formed by Pseudomonas aeruginosa and Staphylococcus epidermidis during 24-h treatment. Treating these organisms with silver nanoparticles resulted in more than 95% inhibition in biofilm formation. The inhibition was known to be invariable of the species tested. As a result this study demonstrates the futuristic application of silver nanoparticles in treating microbial keratitis based on its potential anti-biofilm activity. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Mini-review: Biofilm responses to oxidative stress.

    Science.gov (United States)

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  2. Kinetics of carbendazim degradation in a horizontal tubular biofilm reactor.

    Science.gov (United States)

    Alvarado-Gutiérrez, María Luisa; Ruiz-Ordaz, Nora; Galíndez-Mayer, Juvencio; Santoyo-Tepole, Fortunata; Curiel-Quesada, Everardo; García-Mena, Jaime; Ahuatzi-Chacón, Deifilia

    2017-04-01

    The fungicide carbendazim is an ecotoxic agent affecting aquatic biota. Due to its suspected hormone-disrupting effects, it is considered a "priority hazard substance" by the Water Framework Directive of the European Commission, and its degradation is of major concern. In this work, a horizontal tubular biofilm reactor (HTBR) operating in plug-flow regime was used to study the kinetics of carbendazim removal by an acclimated microbial consortium. The reactor was operated in steady state continuous culture at eight different carbendazim loading rates. The concentrations of the fungicide were determined at several distances of the HTBR. At the loading rates tested, the highest instantaneous removal rates were observed in the first section of the tubular biofilm reactor. No evidence of inhibition of the catabolic activity of the microbial community was found. Strains of the genera Flectobacillus, Klebsiella, Stenotrophomonas, and Flavobacterium were identified in the biofilm; the last three degrade carbendazim in axenic culture.

  3. Does dental biofilm accumulation differ between night and day?

    DEFF Research Database (Denmark)

    Dige, Irene; Nyvad, Bente

    Objective: The initial microbial colonization of dental surfaces has been studied thoroughly by classical ultrastructural and microbiological studies and further analysed by fluorescent methods. Most of these studies, however, do not differentiate between biofilms formed during night and day....... The purpose of the study was to perform a quantitative and qualitative analysis of in situ dental biofilms collected during night and day, respectively. We hypothesised that there is a circadian rhythm in the accumulation of bacteria during initial biofilm formation. Methods: Biofilms were collected...... on standardized glass slabs mounted in intra-oral appliances and worn by eight individuals for 12-h during day and night, respectively. Subsequently, fluorescent in situ hybridization was performed using probes against Streptococcus spp., Actinomyces naeslundii, and all bacteria and analysed by confocal laser...

  4. Periphytic biofilms: A promising nutrient utilization regulator in wetlands.

    Science.gov (United States)

    Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R

    2018-01-01

    Low nutrient utilization efficiency in agricultural ecosystems is the main cause of nonpoint source (NPS) pollution. Therefore, novel approaches should be explored to improve nutrient utilization in these ecosystems. Periphytic biofilms composed of microalgae, bacteria and other microbial organisms are ubiquitous and form a 'third phase' in artificial wetlands such as paddy fields. Periphytic biofilms play critical roles in nutrient transformation between the overlying water and soil/sediment, however, their contributions to nutrient utilization improvement and NPS pollution control have been largely underestimated. This mini review summarizes the contributions of periphytic biofilms to nutrient transformation processes, including assimilating and storing bioavailable nitrogen and phosphorus, fixing nitrogen, and activating occluded phosphorus. Future research should focus on augmenting the nitrogen fixing, phosphate solubilizing and phosphatase producing microorganisms in periphytic biofilms to improve nutrient utilization and thereby reduce NPS pollution production in artificial and natural wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Assessment of Aspergillus niger biofilm growth kinetics in ...

    African Journals Online (AJOL)

    Jane

    2011-10-12

    Oct 12, 2011 ... assessed by evaluating the CO2 released during the fermentation in minibioreactors. Key words: Aspergillus niger, biofilm, mathematical modeling, endogenous respiration, Cryo-SEM. INTRODUCTION. Aspergillus niger is currently one of the microbial species of main biotechnological importance because ...

  6. Development of the floating sulphur biofilm reactor for sulphide ...

    African Journals Online (AJOL)

    driniev

    The formation of floating sulphur biofilm was observed in the microbial ecology studies of tannery ponds undertaken by the. Environmental Biotechnology Group at Rhodes University. This was related to the steep Redox gradients established at the air/ water interface of anaerobic, organically loaded and actively sulphate ...

  7. Distribution of bacterial growth activity in flow-chamber biofilms

    DEFF Research Database (Denmark)

    Sternberg, Claus; Christensen, Bjarke B.; Johansen, Tove

    1999-01-01

    In microbial communities such as those found in biofilms, individual organisms most often display heterogeneous behavior with respect to their metabolic activity, growth status, gene expression pattern, etc. In that context, a novel reporter system for monitoring of cellular growth activity has...

  8. Transported biofilms and their influence on subsequent macrofouling colonization.

    Science.gov (United States)

    Sweat, L Holly; Swain, Geoffrey W; Hunsucker, Kelli Z; Johnson, Kevin B

    2017-05-01

    Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.

  9. Molecular Determinants of Staphylococcal Biofilm Dispersal and Structuring

    Directory of Open Access Journals (Sweden)

    Katherine Y Le

    2014-11-01

    Full Text Available Staphylococci are frequently implicated in human infections, and continue to pose a therapeutic dilemma due to their ability to form deeply seated microbial communities, known as biofilms, on the surfaces of implanted medical devices and host tissues. Biofilm development has been proposed to occur in three stages: 1 attachment, 2 proliferation/structuring, and 3 detachment/dispersal. Although research within the last several decades has implicated multiple molecules in the roles as effectors of staphylococcal biofilm proliferation/structuring and detachment/dispersal, to date, only phenol soluble modulins (PSMs have been consistently demonstrated to serve in this role under both in-vitro and in-vivo settings. PSMs are regulated directly through a density-dependent manner by the accessory gene regulator (Agr system. They disrupt the non-covalent forces holding the biofilm extracellular matrix together, which is necessary for the formation of channels, a process essential for the delivery of nutrients to deeper biofilm layers, and for dispersal/dissemination of clusters of biofilm to distal organs in acute infection. Given their relevance in both acute and chronic biofilm-associated infections, the Agr system and the psm genes hold promise as potential therapeutic targets.

  10. A Mathematical Model of Quorum Sensing Induced Biofilm Detachment.

    Science.gov (United States)

    Emerenini, Blessing O; Hense, Burkhard A; Kuttler, Christina; Eberl, Hermann J

    2015-01-01

    Cell dispersal (or detachment) is part of the developmental cycle of microbial biofilms. It can be externally or internally induced, and manifests itself in discrete sloughing events, whereby many cells disperse in an instance, or in continuous slower dispersal of single cells. One suggested trigger of cell dispersal is quorum sensing, a cell-cell communication mechanism used to coordinate gene expression and behavior in groups based on population densities. To better understand the interplay of colony growth and cell dispersal, we develop a dynamic, spatially extended mathematical model that includes biofilm growth, production of quorum sensing molecules, cell dispersal triggered by quorum sensing molecules, and re-attachment of cells. This is a highly nonlinear system of diffusion-reaction equations that we study in computer simulations. Our results show that quorum sensing induced cell dispersal can be an efficient mechanism for bacteria to control the size of a biofilm colony, and at the same time enhance its downstream colonization potential. In fact we find that over the lifetime of a biofilm colony the majority of cells produced are lost into the aqueous phase, supporting the notion of biofilms as cell nurseries. We find that a single quorum sensing based mechanism can explain both, discrete dispersal events and continuous shedding of cells from a colony. Moreover, quorum sensing induced cell dispersal affects the structure and architecture of the biofilm, for example it might lead to the formation of hollow inner regions in a biofilm colony.

  11. Toluene diffusion and reaction in unsaturated Pseudomonas putida biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Holden, P.A.; Hunt, J.R.; Firestone, M.K. [Univ. of California, Berkeley, CA (United States)

    1997-12-20

    Biofilms are frequently studied in the context of submerged or aquatic systems. However, much less is known about biofilms in unsaturated systems, despite their importance to such processes as food spoilage, terrestrial nutrient cycling, and biodegradation of environmental pollutants in soils. Using modeling and experimentation, the authors have described the biodegradation of toluene in unsaturated media by bacterial biofilms as a function of matric water potential, a dominant variable in unsaturated systems. They experimentally determined diffusion and kinetic parameters for Pseudomonas putida biofilms, then predicted biodegradation rates over a range of matric water potentials. For validation, the authors measured the rate of toluene depletion by intact biofilms and found the results to reasonably follow the model predictions. The diffusion coefficient for toluene through unsaturated P. putida biofilm averaged 1.3 {times} 10{sup {minus}7} cm{sup 2}/s, which is approximately two orders of magnitude lower than toluene diffusivity in water. Their studies show that, at the scale of the microbial biofilm, the diffusion of toluene to biodegrading bacteria can limit the overall rate of biological toluene depletion in unsaturated systems.

  12. Mercury bioavailability, transformations, and effects on freshwater biofilms.

    Science.gov (United States)

    Dranguet, Perrine; Le Faucheur, Séverine; Slaveykova, Vera I

    2017-12-01

    Mercury (Hg) compounds represent an important risk to aquatic ecosystems because of their persistence, bioaccumulation, and biomagnification potential. In the present review, we critically examine state-of-the-art studies on the interactions of Hg compounds with freshwater biofilms, with an emphasis on Hg accumulation, transformations, and effects. Freshwater biofilms contain both primary producers (e.g., algae) and decomposers (e.g., bacteria and fungi), which contribute to both aquatic food webs and the microbial loop. Hence they play a central role in shallow water and streams, and also contribute to Hg trophic transfer through their consumption. Both inorganic and methylated mercury compounds accumulate in biofilms, which could transform them mainly by methylation, demethylation, and reduction. Accumulated Hg compounds could induce diverse metabolic and physiological perturbations in the microorganisms embedded in the biofilm matrix and affect their community composition. The bioavailability of Hg compounds, their transformations, and their effects depend on their concentrations and speciation, ambient water characteristics, biofilm matrix composition, and microorganism-specific characteristics. The basic processes governing the interactions of Hg compounds with biofilm constituents are understudied. The development of novel conceptual and methodological approaches allowing an understanding of the chemo- and biodynamic aspects is necessary to improve the knowledge on Hg cycling in shallow water as well as to enable improved use of freshwater biofilms as potential indicators of water quality and to support better informed risk assessment. Environ Toxicol Chem 2017;36:3194-3205. © 2017 SETAC. © 2017 SETAC.

  13. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    Science.gov (United States)

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  14. Quorum sensing and microbial drug resistance.

    Science.gov (United States)

    Chen, Yu-fan; Liu, Shi-yin; Liang, Zhi-bin; Lv, Ming-fa; Zhou, Jia-nuan; Zhang, Lian-hui

    2016-10-20

    Microbial drug resistance has become a serious problem of global concern, and the evolution and regulatory mechanisms of microbial drug resistance has become a hotspot of research in recent years. Recent studies showed that certain microbial resistance mechanisms are regulated by quorum sensing system. Quorum sensing is a ubiquitous cell-cell communication system in the microbial world, which associates with cell density. High-density microbial cells produce sufficient amount of small signal molecules, activating a range of downstream cellular processes including virulence and drug resistance mechanisms, which increases bacterial drug tolerance and causes infections on host organisms. In this review, the general mechanisms of microbial drug resistance and quorum-sensing systems are summarized with a focus on the association of quorum sensing and chemical signaling systems with microbial drug resistance mechanisms, including biofilm formation and drug efflux pump. The potential use of quorum quenching as a new strategy to control microbial resistance is also discussed.

  15. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  16. Measurements of drag and flow over biofilm

    Science.gov (United States)

    Hartenberger, Joel; Gose, James W.; Perlin, Marc; Ceccio, Steven L.

    2017-11-01

    Microbial `slime' biofilms detrimentally affect the performance of every day systems from medical devices to large ocean-going vessels. In flow applications, the presence of biofilm typically results in a drag increase and may alter the turbulence in the adjacent boundary layer. Recent studies emphasize the severity of the drag penalty associated with soft biofouling and suggest potential mechanisms underlying the increase; yet, fundamental questions remain-such as the role played by compliance and the contribution of form drag to the overall resistance experienced by a fouled system. Experiments conducted on live biofilm and 3D printed rigid replicas in the Skin-Friction Flow Facility at the University of Michigan seek to examine these factors. The hydrodynamic performance of the biofilms grown on test panels was evaluated through pressure drop measurements as well as conventional and microscale PIV. High-resolution, 3D rigid replicas of select cases were generated via additive manufacturing using surface profiles obtained from a laser scanning system. Drag and flow measurements will be presented along with details of the growth process and the surface profile characterization method.

  17. Adenoid Reservoir for Pathogenic Biofilm Bacteria▿

    Science.gov (United States)

    Nistico, L.; Kreft, R.; Gieseke, A.; Coticchia, J. M.; Burrows, A.; Khampang, P.; Liu, Y.; Kerschner, J. E.; Post, J. C.; Lonergan, S.; Sampath, R.; Hu, F. Z.; Ehrlich, G. D.; Stoodley, P.; Hall-Stoodley, L.

    2011-01-01

    Biofilms of pathogenic bacteria are present on the middle ear mucosa of children with chronic otitis media (COM) and may contribute to the persistence of pathogens and the recalcitrance of COM to antibiotic treatment. Controlled studies indicate that adenoidectomy is effective in the treatment of COM, suggesting that the adenoids may act as a reservoir for COM pathogens. To investigate the bacterial community in the adenoid, samples were obtained from 35 children undergoing adenoidectomy for chronic OM or obstructive sleep apnea. We used a novel, culture-independent molecular diagnostic methodology, followed by confocal microscopy, to investigate the in situ distribution and organization of pathogens in the adenoids to determine whether pathogenic bacteria exhibited criteria characteristic of biofilms. The Ibis T5000 Universal Biosensor System was used to interrogate the extent of the microbial diversity within adenoid biopsy specimens. Using a suite of 16 broad-range bacterial primers, we demonstrated that adenoids from both diagnostic groups were colonized with polymicrobial biofilms. Haemophilus influenzae was present in more adenoids from the COM group (P = 0.005), but there was no significant difference between the two patient groups for Streptococcus pneumoniae or Staphylococcus aureus. Fluorescence in situ hybridization, lectin binding, and the use of antibodies specific for host epithelial cells demonstrated that pathogens were aggregated, surrounded by a carbohydrate matrix, and localized on and within the epithelial cell surface, which is consistent with criteria for bacterial biofilms. PMID:21307211

  18. Influence of biofilm lubricity on shear-induced transmission of staphylococcal biofilms from stainless steel to silicone rubber.

    Science.gov (United States)

    Gusnaniar, Niar; Sjollema, Jelmer; Jong, Ed D; Woudstra, Willem; de Vries, Joop; Nuryastuti, Titik; van der Mei, Henny C; Busscher, Henk J

    2017-11-01

    In real-life situations, bacteria are often transmitted from biofilms growing on donor surfaces to receiver ones. Bacterial transmission is more complex than adhesion, involving bacterial detachment from donor and subsequent adhesion to receiver surfaces. Here, we describe a new device to study shear-induced bacterial transmission from a (stainless steel) pipe to a (silicone rubber) tube and compare transmission of EPS-producing and non-EPS-producing staphylococci. Transmission of an entire biofilm from the donor to the receiver tube did not occur, indicative of cohesive failure in the biofilm rather than of adhesive failure at the donor-biofilm interface. Biofilm was gradually transmitted over an increasing length of receiver tube, occurring mostly to the first 50 cm of the receiver tube. Under high-shearing velocity, transmission of non-EPS-producing bacteria to the second half decreased non-linearly, likely due to rapid thinning of the lowly lubricious biofilm. Oppositely, transmission of EPS-producing strains to the second tube half was not affected by higher shearing velocity due to the high lubricity and stress relaxation of the EPS-rich biofilms, ensuring continued contact with the receiver. The non-linear decrease of ongoing bacterial transmission under high-shearing velocity is new and of relevance in for instance, high-speed food slicers and food packaging. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Meningococcal biofilm formation

    DEFF Research Database (Denmark)

    Lappann, M.; Haagensen, Janus Anders Juul; Claus, H.

    2006-01-01

    We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains...

  20. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments...... and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  1. [Wastewater treatment based on biofilm regulation by Lux type quorum sensing system-a review].

    Science.gov (United States)

    Zhao, Chang; Wang, Ning; Wang, Wenzhao; Xu, Qiyong

    2017-09-25

    Studies on biofilm regulation based on Lux type quorum sensing system in wastewater treatment have attracted much attention. The intervention of quorum sensing system includes both mechanisms of positive and negative control. The positive invigorating effect improves the efficiency of biofilm wastewater treatment, promotes the production of extracellular polymeric substance (EPS) and soluble microbial products (SMP), and increases the yield of biofilm. The negative weakening effect of quorum sensing can decompose the signal molecules needed in the process of biofilm formation, interrupts the gene expression process of biofilm formation, and inhibits the formation of biofilm on MBR membrane surface effectively. The further study of the structure and mechanism of N-acyl homoserine lactone (AHLs), the immobilization technology and application of quorum quenching bacteria, the synergistic effect verification of different biofouling control methods and the application feasibility of quorum sensing system based technology in more wastewater treatment fields are the next important researches to explore.

  2. Management of dental unit waterline biofilms in the 21st century.

    LENUS (Irish Health Repository)

    O'Donnell, Mary J

    2011-10-01

    Dental chair units (DCUs) use water to cool and irrigate DCU-supplied instruments and tooth surfaces, and provide rinsewater during dental treatment. A complex network of interconnected plastic dental unit waterlines (DUWLs) supply water to these instruments. DUWLs are universally prone to microbial biofilm contamination seeded predominantly from microorganisms in supply water. Consequently, DUWL output water invariably becomes contaminated by high densities of microorganisms, principally Gram-negative environmental bacteria including Pseudomonas aeruginosa and Legionella species, but sometimes contain human-derived pathogens such as Staphylococcus aureus. Patients and staff are exposed to microorganisms from DUWL output water and to contaminated aerosols generated by DCU instruments. A wide variety of approaches, many unsuccessful, have been proposed to control DUWL biofilm. More recently, advances in biofilm science, chemical DUWL biofilm treatment agents, DCU design, supply water treatment and development of automated DUWL biofilm control systems have provided effective long-term solutions to DUWL biofilm control.

  3. Dental biofilm infections

    DEFF Research Database (Denmark)

    Larsen, Tove; Fiehn, Nils-Erik

    2017-01-01

    and cause gingival inflammation and breakdown of supporting periodontal fibers and bone and ultimately tooth loss, i.e., gingivitis, chronic or aggressive periodontitis, and around dental implants, peri-implantitis. Furthermore, bacteria from the dental biofilm may spread to other parts of the body......Teeth are colonized by oral bacteria from saliva containing more than 700 different bacterial species. If removed regularly, the dental biofilm mainly comprises oral streptococci and is regarded as resident microflora. But if left undisturbed, a complex biofilm containing up to 100 bacterial...... species at a site will build up and may eventually cause development of disease. Depending on local ecological factors, the composition of the dental biofilm may vary considerably. With access to excess carbohydrates, the dental biofilm will be dominated by mainly gram-positive carbohydrate...

  4. pH landscapes in a novel five-species model of early dental biofilm.

    Science.gov (United States)

    Schlafer, Sebastian; Raarup, Merete K; Meyer, Rikke L; Sutherland, Duncan S; Dige, Irene; Nyengaard, Jens R; Nyvad, Bente

    2011-01-01

    Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate. Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours. The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth, composition and extracellular pH. Ratiometric pH analysis using C-SNARF-4 gives detailed

  5. Annual progress Report on research related to our research project “Stabilization of Plutonium in Subsurface Environments via Microbial Reduction and Biofilm Formation” funded by the Environmental Remediation Sciences Division (ERSD)

    Energy Technology Data Exchange (ETDEWEB)

    New, Mary

    2006-06-01

    The overarching goal of this research project is to investigate and optimize the mechanisms for in situ immobilization of Pu species by naturally-occurring bacteria. Specific research objectives are: (a) investigate the mechanism of bacterial accumulation and immobilization of plutonium species by biofilm formation under aerobic conditions and (b) to demonstrate the direct and indirect stabilization of Pu via dissimilatory reduction by Geobacter metallireducens.

  6. Investigation of the microbial degradation of phenazone-type drugs and their metabolites by natural biofilms derived from river water using liquid chromatography/tandem mass spectrometry (LC-MS/MS).

    Science.gov (United States)

    Pieper, Christina; Risse, Doreen; Schmidt, Bertram; Braun, Burga; Szewzyk, Ulrich; Rotard, Wolfgang

    2010-08-01

    The degradation of the pharmaceuticals phenazone and metamizole, two pyrazolone-derivates in widespread use, using biofilms created by natural organisms from the national park Unteres Odertal, Germany, were investigated. An analytical method based on LC-MS/MS was optimised to determine the substances phenazone and methylaminoantipyrine (MAA), the hydrolysis product of metamizole (also known as dipyrone), as well as their metabolites 1,5-dimethyl-1,2-dehydro-3-pyrazolone (DP), acetaminoantipyrine (AAA), formylaminoantipyrine (FAA) and 4-aminoantipyrine (AA). Performance characteristics of the method were evaluated in terms of recovery, standard deviation, coefficient of variation, method detection limits (MDL) and method quantification limits (MQL). Degradation studies of phenazone and MAA were conducted using a laboratory-scale continuous flow biofilm reactor fed with different nutrient media and with variable hydraulic retention times of 24 and 32 h. MAA was degraded rapidly to FAA and AA, while phenazone was not degraded under the prevailing conditions even after 32 h. By operating the bioreactor in batch mode to study the phenazone degradation potential of the biofilm under limiting nutrient conditions, an elimination rate of 85% phenazone was observed, but because of the slow elimination rate and aerobic conditions, the metabolite DP was not detected. In additional batch experiments using bacterial isolates from the natural biofilm to decompose phenazone, some bacterial strains were able to form DP from phenazone in marginal concentrations over the sampling period of eight weeks. Obviously, the microorganisms need a reasonably long time to adapt their metabolisms to enable the removal of phenazone from water samples. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Molecular methods for biofilms

    KAUST Repository

    Ferrera, Isabel

    2014-08-30

    This chapter deals with both classical and modern molecular methods that can be useful for the identification of microorganisms, elucidation and comparison of microbial communities, and investigation of their diversity and functions. The most important and critical steps necessary for all molecular methods is DNA isolation from microbial communities and environmental samples; these are discussed in the first part. The second part provides an overview over DNA polymerase chain reaction (PCR) amplification and DNA sequencing methods. Protocols and analysis software as well as potential pitfalls associated with application of these methods are discussed. Community fingerprinting analyses that can be used to compare multiple microbial communities are discussed in the third part. This part focuses on Denaturing Gradient Gel Electrophoresis (DGGE), Terminal Restriction Fragment Length Polymorphism (T-RFLP) and Automated rRNA Intergenic Spacer Analysis (ARISA) methods. In addition, classical and next-generation metagenomics methods are presented. These are limited to bacterial artificial chromosome and Fosmid libraries and Sanger and next-generation 454 sequencing, as these methods are currently the most frequently used in research. Isolation of nucleic acids: This chapter discusses, the most important and critical steps necessary for all molecular methods is DNA isolation from microbial communities and environmental samples. Nucleic acid isolation methods generally include three steps: cell lysis, removal of unwanted substances, and a final step of DNA purification and recovery. The first critical step is the cell lysis, which can be achieved by enzymatic or mechanical procedures. Removal of proteins, polysaccharides and other unwanted substances is likewise important to avoid their interference in subsequent analyses. Phenol-chloroform-isoamyl alcohol is commonly used to recover DNA, since it separates nucleic acids into an aqueous phase and precipitates proteins and

  8. The presence of biofilm forming microorganisms on hydrotherapy equipment and facilities.

    Science.gov (United States)

    Jarząb, Natalia; Walczak, Maciej

    2017-10-01

    Hydrotherapy equipment provides a perfect environment for the formation and growth of microbial biofilms. Biofilms may reduce the microbiological cleanliness of hydrotherapy equipment and harbour opportunistic pathogens and pathogenic bacteria. The aims of this study were to investigate the ability of microorganisms that colonize hydrotherapy equipment to form biofilms, and to assess the influence of temperature and nutrients on the rate of biofilm formation. Surface swab samples were collected from the whirlpool baths, inhalation equipment and submerged surfaces of a brine pool at the spa center in Ciechocinek, Poland. We isolated and identified microorganisms from the swab samples and measured their ability to form biofilms. Biofilm formation was observed at a range of temperatures, in both nutrient-deficient and nutrient-rich environments. We isolated and identified microorganisms which are known to form biofilms on medical devices (e.g. Stenotrophomonas maltophilia). All isolates were classified as opportunistic pathogens, which can cause infections in humans with weakened immunity systems. All isolates showed the ability to form biofilms in the laboratory conditions. The potential for biofilm formation was higher in the presence of added nutrients. In addition, the hydrolytic activity of the biofilm was connected with the presence of nutrients.

  9. Potential applications of nonthermal plasmas against biofilm-associated micro-organisms in vitro.

    Science.gov (United States)

    Puligundla, P; Mok, C

    2017-05-01

    Biofilms as complex microbial communities attached to surfaces pose several challenges in different sectors, ranging from food and healthcare to desalination and power generation. The biofilm mode of growth allows microorganisms to survive in hostile environments and biofilm cells exhibit distinct physiology and behaviour in comparison with their planktonic counterparts. They are ubiquitous, resilient and difficult to eradicate due to their resistant phenotype. Several chemical-based cleaning and disinfection regimens are conventionally used against biofilm-dwelling micro-organisms in vitro. Although such approaches are generally considered to be effective, they may contribute to the dissemination of antimicrobial resistance and environmental pollution. Consequently, advanced green technologies for biofilm control are constantly emerging. Disinfection using nonthermal plasmas (NTPs) is one of the novel strategies having a great potential for control of biofilms of a broad spectrum of micro-organisms. This review discusses several aspects related to the inactivation of biofilm-associated bacteria and fungi by different types of NTPs under in vitro conditions. A brief introduction summarizes prevailing methods in biofilm inactivation, followed by introduction to gas discharge plasmas, active plasma species and their inactivating mechanism. Subsequently, significance and aspects of NTP inactivation of biofilm-associated bacteria, especially those of medical importance, including opportunistic pathogens, oral pathogenic bacteria, foodborne pathogens and implant bacteria, are discussed. The remainder of the review discusses majorly about the synergistic effect of NTPs and their activity against biofilm-associated fungi, especially Candida species. © 2017 The Society for Applied Microbiology.

  10. Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics

    Science.gov (United States)

    Lebeaux, David; Ghigo, Jean-Marc

    2014-01-01

    SUMMARY Surface-associated microbial communities, called biofilms, are present in all environments. Although biofilms play an important positive role in a variety of ecosystems, they also have many negative effects, including biofilm-related infections in medical settings. The ability of pathogenic biofilms to survive in the presence of high concentrations of antibiotics is called “recalcitrance” and is a characteristic property of the biofilm lifestyle, leading to treatment failure and infection recurrence. This review presents our current understanding of the molecular mechanisms of biofilm recalcitrance toward antibiotics and describes how recent progress has improved our capacity to design original and efficient strategies to prevent or eradicate biofilm-related infections. PMID:25184564

  11. Influence of fluoride on the bacterial composition of a dual-species biofilm composed of Streptococcus mutans and Streptococcus oralis.

    Science.gov (United States)

    Jung, Ji-Eun; Cai, Jian-Na; Cho, Sung-Dae; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2016-10-01

    Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.

  12. Biofilms in shower hoses.

    Science.gov (United States)

    Proctor, Caitlin R; Reimann, Mauro; Vriens, Bas; Hammes, Frederik

    2017-12-14

    Shower hoses offer an excellent bacterial growth environment in close proximity to a critical end-user exposure route within building drinking water plumbing. However, the health risks associated with and processes underlying the development of biofilms in shower hoses are poorly studied. In a global survey, biofilms from 78 shower hoses from 11 countries were characterized in terms of cell concentration (4.1 × 10 4 -5.8 × 10 8  cells/cm 2 ), metal accumulation (including iron, lead, and copper), and microbiome composition (including presence of potential opportunistic pathogens). In countries using disinfectant, biofilms had on average lower cell concentrations and diversity. Metal accumulation (up to 5 μg-Fe/cm 2 , 75 ng-Pb/cm 2 , and 460 ng-Cu/cm 2 ) seemed to be partially responsible for discoloration in biofilms, and likely originated from other pipes upstream in the building. While some genera that may contain potential opportunistic pathogens (Legionella, detected in 21/78 shower hoses) were positively correlated with biofilm cell concentration, others (Mycobacterium, Pseudomonas) had surprisingly non-existent or negative correlations with biofilm cell concentrations. In a controlled study, 15 identical shower hoses were installed for the same time period in the same country, and both stagnant and flowing water samples were collected. Ecological theory of dispersal and selection helped to explain microbiome composition and diversity of different sample types. Shower hose age was related to metal accumulation but not biofilm cell concentration, while frequency of use appeared to influence biofilm cell concentration. This study shows that shower hose biofilms are clearly a critical element of building drinking water plumbing, and a potential target for building drinking water plumbing monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Antibacterial activity of Espand (Peganum harmala alcoholic extracts against six pathogenic bacteria in planktonic and biofilm forms

    Directory of Open Access Journals (Sweden)

    Zinab Mohsenipour

    2016-03-01

    Full Text Available Introduction: Microbial biofilms have attracted interest in recent years because they have become the most important cause of nosocomial infections. This study was aimed to examine the antibacterial activities of Peganum harmala extracts on the development of microbial biofilms and planktonic form of six pathogenic bacteria which include Staphylococcus aureus, Bacillus cereus, Streptococcus pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Materials and methods: Antimicrobial activities of the crude extracts against the planktonic form of bacteria were evaluated by using disc diffusion method, minimum inhibitory concentration (MIC and the minimum bactericidal concentration (MBC values were determined by a macrobroth dilution technique. Anti- biofilm effects of the extracts were assessed by microtiter plate method. Results: According to the results, P. harmala extracts could inhibit test bacteria in planktonic form. To inhibit biofilm formation, biofilm metabolic activity and eradication of established biofilms, efficiency of the extracts depended on concentration. The highest inhibitory effects of P. harmala extracts were observed on biofilm formation of S. aureus (90.28% also, the greatest demolish were observed on S. pneumonia biofilm (77.76%. These extracts cause dramatically decrease the metabolic activity of bacteria in biofilm structures, in this case the decrement of B. cereus were highest (69.98% compared to other tested bacteria. Discussion and conclusion: Therefore, it can be suggested that P.harmala extracts applied as antimicrobial agents against testing bacteria particularly in biofilm forms. 

  14. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting

    KAUST Repository

    Zhang, Weipeng

    2015-11-28

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of the present study sheds new light on microbial community assembly in special habitats and bridges a gap in species sorting theory.

  15. Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection

    Science.gov (United States)

    de Melo, Wanessa CMA; Avci, Pinar; de Oliveira, Milene Nóbrega; Gupta, Asheesh; Vecchio, Daniela; Sadasivam, Magesh; Chandran, Rakkiyappan; Huang, Ying-Ying; Yin, Rui; Perussi, Livia R; Tegos, George P; Perussi, Janice R; Dai, Tianhong; Hamblin, Michael R

    2015-01-01

    Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. PMID:23879608

  16. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting.

    Science.gov (United States)

    Zhang, Weipeng; Tian, Renmao; Bo, Yang; Cao, Huiluo; Cai, Lin; Chen, Lianguo; Zhou, Guowei; Sun, Jin; Zhang, Xixiang; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2016-05-01

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep-sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of this study shed new light on microbial community assembly in special habitats and bridge a gap in species sorting theory. © 2015 John Wiley & Sons Ltd.

  17. Modern approaches to non-surgical biofilm management.

    Science.gov (United States)

    Apatzidou, Danae Anastasia

    2012-01-01

    The subgingival dental plaque is a microbial biofilm consisting of highly variable bacterial microcolonies embedded within a self-produced matrix of extracellular polymeric substance. In contrast to microorganisms growing in a planktonic state, the inhabitants of a biofilm are effectively protected within this dense structure from host defense mechanisms and from therapeutic agents, including antimicrobials. The mechanical removal of the microbial biofilm and the establishment of meticulous plaque control measures comprise the key elements for the success of non-surgical periodontal treatment. Ultrasonic devices are effective in disrupting the biofilm, and carefully remove soft and hard deposits from a root surface with minimal trauma to the tooth structure. Controversies and modern trends in non-surgical periodontal therapy - such as quadrant-wise treatment modalities versus full-mouth approaches, hand-versus power-driven instrumentation, and the time frame of non-surgical periodontal therapy - are discussed here in depth in order to provide an insight into modern approaches to non-surgical biofilm management. Clinical, microbiological and immunological findings following different treatment protocols, in addition to cost-effective benefits of these clinical modalities, are discussed. Copyright © 2012 S. Karger AG, Basel.

  18. Modeling phototrophic biofilms in a plug-flow reactor.

    Science.gov (United States)

    Muñoz Sierra, J D; Picioreanu, C; van Loosdrecht, M C M

    2014-01-01

    The use of phototrophic biofilms in wastewater treatment has been recognized as a potential option for development of new reactor configurations. For better understanding of these systems, a numerical model was developed including relevant microbial processes. As a novelty, this model was implemented in COMSOL Multiphysics, a modern computational environment for complex dynamic models. A two-dimensional biofilm model was used to study the spatial distribution of microbial species within the biofilm and along the length of the reactor. The biofilm model was coupled with a one-dimensional plug-flow bulk liquid model. The impact of different operational conditions on the chemical oxygen demand (COD) and ammonia conversions was assessed. The model was tuned by varying two parameters: the half-saturation coefficient for light use by phototrophs and the oxygen mass transfer coefficient. The mass transfer coefficient was found to be determining for the substrate conversion rate. Simulations indicate that heterotrophs would overgrow nitrifiers and phototrophs within the biofilm until a low biodegradable COD value in the wastewater is reached (organic loading rate reactor performance.

  19. The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly

    Directory of Open Access Journals (Sweden)

    Ed eHall

    2015-07-01

    Full Text Available The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P or nitrogen (N. Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs. To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership andstructure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm versus planktonic has a stronger influence on community composition.

  20. Biofilms in an urban water distribution system: measurement of biofilm biomass, pathogens and pathogen persistence within the Greater Stockholm Area, Sweden.

    Science.gov (United States)

    Långmark, J; Storey, M V; Ashbolt, N J; Stenström, T A

    2005-01-01

    Distribution pipe biofilms can provide sites for the concentration of a wide range of microbial pathogens, thereby acting as a potential source of continual microbial exposure and furthermore can affect the aesthetic quality of water. In a joint project between Stockholm Water, the MISTRA "Sustainable Urban Water" program, the Swedish Institute for Infectious Disease Control and the Royal Technical University, Stockholm, the aim of the current study was to investigate biofilms formed in an urban water distribution system, and quantify the impact of such biofilms on potential pathogen accumulation and persistence within the Greater Stockholm Area, Sweden. When used for primary disinfection, ultra-violet (UV) treatment had no measurable influence on biofilm formation within the distribution system when compared to conventional chlorination. Biofilms produced within a model pilot-plant were found to be representative to those that had formed within the larger municipal water distribution system, demonstrating the applicability of the novel pilot-plant for future studies. Polystyrene microspheres (1.0 microm) and Salmonella bacteriophages demonstrated their ability to accumulate and persist within the model pilot-plant system, where the means of primary disinfection (UV-treatment, chlorination) had no influence on such phenomena. With the exception of aeromonads, potential pathogens and faecal indicators could not be detected within biofilms from the Stockholm water distribution system. Results from this investigation may provide information for water treatment and distribution management strategies, and fill key data gaps that presently hinder the refinement of microbial risk models.

  1. [Bacterial biofilms as a natural form of existence of bacteria in the environment and host organism].

    Science.gov (United States)

    Romanova, Iu M; Gintsburg, A L

    2011-01-01

    Advances in microscopic analysis and molecular genetics research methods promoted the acquisition of evidence that natural bacteria populations exist predominately as substrate attached biofilms. Bacteria in biofilms are able to exchange signals and display coordinated activity that is inherent to multicellular organisms. Formation of biofilm communities turned out to be one of the main survival strategies of bacteria in their ecological niche. Bacteria in attached condition in biofilm are protected from the environmental damaging factors and effects of antibacterial substances in the environment and host organism during infection. According to contemporary conception, biofilm is a continuous layer of bacterial cells that are attached to a surface and each other, and contained in a biopolymer matrix. Such bacterial communities may be composed of bacteria of one or several species, and composed of actively functioning cells as well as latent and uncultured forms. Particular attention has recently been paid to the role of biofilms in the environment and host organism. Microorganisms form biofilm on any biotic and abiotic surfaces which creates serious problems in medicine and various areas of economic activity. Currently, it is established that biofilms are one of the pathogenetic factors of chronic inflection process formation. The review presents data on ubiquity of bacteria existence as biofilms, contemporary methods of microbial community analysis, structural-functional features of bacterial biofilms. Particular attention is paid to the role of biofilm in chronic infection process formation, heightened resistance to antibiotics of bacteria in biofilms and possible mechanisms of resistance. Screening approaches for agents against biofilms in chronic infections are discussed.

  2. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms.

    Science.gov (United States)

    He, Jinzhi; Hwang, Geelsu; Liu, Yuan; Gao, Lizeng; Kilpatrick-Liverman, LaTonya; Santarpia, Peter; Zhou, Xuedong; Koo, Hyun

    2016-10-01

    l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. Dental caries is one

  3. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  4. Investigating the impact of microbial interactions with geologic media on geophysical properties

    Science.gov (United States)

    Davis, Caroline Ann

    The goals of this study were to investigate the effect of: (1) microbial metabolic byproducts, microbial growth, and biofilm formation on the low frequency electrical properties of porous media, (2) biofilm formation on acoustic wave properties, and (3) the natural electrical (self-potential) signatures associated with an in-situ biological permeable reactive barrier (PRB). The results suggest: (1) increases in electrolytic conductivity are consistent with increased concentrations of organic acids and biosurfactants; (2) mineral weathering promoted by organic acids causes increases in electrolytic conductivity, concomitant with increases in major cation concentrations; (3) interfacial conductivity generally parallels microbial cell concentrations and biofilm formation; (4) variations in microbial growth and biofilms causes spatiotemporal heterogeneity in the elastic properties of porous media; (5) SP signatures associated with the injection of groundwater into an in-situ biological PRB are dominated by diffusion potentials induced by the injections. The results suggest that electrolytic conductivity may be useful as an indicator of metabolism, while interfacial conductivity may be used as proxy indicator for microbial growth and biofilm formation in porous media. In addition, acoustic measurements may provide diagnostic spatiotemporal data for the validation of bioclogging models/simulations. Collectively, this study provides further evidence that geophysical measurements are sensitive to microbial-induced changes to geologic media, and may be useful for the detection and monitoring of subsurface microbial growth, activity, and distribution such as in microbial enhanced oil recovery, assessing biofilm barriers used for contaminant remediation, or as sealants for reservoirs in CO2 sequestration studies.

  5. Interactions in multispecies biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Ren, Dawei; Bjarnsholt, Thomas

    2014-01-01

    The recent focus on complex bacterial communities has led to the recognition of interactions across species boundaries. This is particularly pronounced in multispecies biofilms, where synergistic interactions impact the bacterial distribution and overall biomass produced. Importantly, in a number...... of settings, the interactions in a multispecies biofilm affect its overall function, physiology, or surroundings, by resulting in enhanced resistance, virulence, or degradation of pollutants, which is of significant importance to human health and activities. The underlying mechanisms causing these synergistic...

  6. Antimicrobial Tolerance in Biofilms

    OpenAIRE

    Stewart, Philip S.

    2015-01-01

    The tolerance of microorganisms in biofilms to antimicrobial agents is examined through a meta-analysis of literature data. A numerical tolerance factor comparing the rates of killing in the planktonic and biofilm states is defined to provide a quantitative basis for the analysis. Tolerance factors for biocides and antibiotics range over three orders of magnitude. This variation is not explained by taking into account the molecular weight of the agent, the chemistry of the agent, the substrat...

  7. Bacteriophages and Biofilms

    Science.gov (United States)

    Harper, David R.; Parracho, Helena M. R. T.; Walker, James; Sharp, Richard; Hughes, Gavin; Werthén, Maria; Lehman, Susan; Morales, Sandra

    2014-01-01

    Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce) enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  8. Bacteriophages and Biofilms

    Directory of Open Access Journals (Sweden)

    David R. Harper

    2014-06-01

    Full Text Available Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  9. Liquid Flow in Biofilm Systems

    Science.gov (United States)

    Stoodley, Paul; deBeer, Dirk; Lewandowski, Zbigniew

    1994-01-01

    A model biofilm consisting of Pseudomonas aeruginosa, Pseudomonas fluorescens, and Klebsiella pneumoniae was developed to study the relationships between structural heterogeneity and hydrodynamics. Local fluid velocity in the biofilm system was measured by a noninvasive method of particle image velocimetry, using confocal scanning laser microscopy. Velocity profiles were measured in conduit and porous medium reactors in the presence and absence of biofilm. Liquid flow was observed within biofilm channels; simultaneous imaging of the biofilm allowed the liquid velocity to be related to the physical structure of the biofilm. Images PMID:16349345

  10. Antimicrobial Photodynamic Therapy Treatment of Chronic Recurrent Sinusitis Biofilms

    Science.gov (United States)

    Biel, Merrill A.; Sievert, Chet; Usacheva, Marina; Teichert, Matthew; Balcom, Jim

    2011-01-01

    Background Chronic recurrent sinusitis (CRS) is an inflammatory disease of the facial sinuses and nasal passages that is defined as lasting longer than 12 weeks or occurring more than 4 times per year with symptoms usually lasting more than 20 days. The National Institute for Health Statistics estimates that CRS is one of the most common chronic conditions in the United States affecting an estimated 37 million Americans. The potential etiologies of CRS include bacteria, viruses, allergies, fungi, superantigens and microbial biofilms. In clinical practice there is a significant subpopulation of patients with CRS who remain resistant to cure despite rigorous treatment regimens including surgery, allergy therapy and prolonged antibiotic therapy. The reason for treatment failure is thought to be related to the destruction of the sinus mucociliary defense by the chronic sinus infection resulting in the development of secondary antibiotic resistant microbial colonization of the sinuses and biofilm formation. Antimicrobial photodynamic therapy (aPDT) is a non-antibiotic broad spectrum antimicrobial treatment that has been demonstrated to eradicate antibiotic resistant bacteria and biofilms. Objective The objective of this study was to demonstrate the effectiveness of a non-invasive aPDT treatment method of eradicating antibiotic resistant biofilms/microorganisms known to cause CRS in an in vitro model. Methods Antibiotic resistant planktonic bacteria and fungi and polymicrobial biofilms of Pseudomonas aerugenosa and MRSA were grown on silastic sheets and treated with a methylene blue photosensitizer and 670nm non-thermal activating light. Cultures of the planktonic micoroorganisms and biofilms were obtained before and after light treatment to determine efficacy of planktonic baciteria and biofilm reduction. Results The in vitro CRS planktonic microorganism and biofilm study demonstrated that aPDT reduced the CRS polymicrobial biofilm by >99.9% after a single treatment

  11. Efficacy of Honey Dressing Versus Mechanical Debridement in Healing of Ulcers with Biofilms: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Suryaprakash A

    2018-04-01

    Full Text Available Background: Chronic and delayed healing wounds are the significant health problems globally. Microbial bio burden in the form of biofilms contribute significantly for chronicity and delayed healing. Management of biofilm is complex task. Effective management of biofilms significantly reduces healing time. Raw unprocessed honey has several antibacterial properties and factors stimulating wound healing. Aim and Objectives: Acomparative study was taken to compare the efficacy of local application of raw unprocessed honey versus mechanical debridement and antiseptic application in terms of biofilm eradication and enhanced wound healing. Method and Materials: Ninety patients with non healing wounds having biofilms were included and divided equally (forty five each for local application of honey and mechanical debridement respectively. They were managed similarly and assessed for presence or eradication of biofilms, healing process and final outcome regularly. Results: Data analysed showed presence of biofilms in chronic wounds was 60% and 68% in study and control groups respectively. Time for appearance of healthy granulation tissue was significantly less (P=0.022 Mean duration for eradication of biofilms was less with (P=0.025 Mean hospital stay was also reduced (P=0.004. Conclusion: Raw unprocessed honey is a good, simple and effective solution for eradication of biofilms and enhances healing in non healing ulcers.

  12. Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms.

    Directory of Open Access Journals (Sweden)

    Katja Fricke

    Full Text Available INTRODUCTION: The medical use of non-thermal physical plasmas is intensively investigated for sterilization and surface modification of biomedical materials. A further promising application is the removal or etching of organic substances, e.g., biofilms, from surfaces, because remnants of biofilms after conventional cleaning procedures are capable to entertain inflammatory processes in the adjacent tissues. In general, contamination of surfaces by micro-organisms is a major source of problems in health care. Especially biofilms are the most common type of microbial growth in the human body and therefore, the complete removal of pathogens is mandatory for the prevention of inflammatory infiltrate. Physical plasmas offer a huge potential to inactivate micro-organisms and to remove organic materials through plasma-generated highly reactive agents. METHOD: In this study a Candida albicans biofilm, formed on polystyrene (PS wafers, as a prototypic biofilm was used to verify the etching capability of the atmospheric pressure plasma jet operating with two different process gases (argon and argon/oxygen mixture. The capability of plasma-assisted biofilm removal was assessed by microscopic imaging. RESULTS: The Candida albicans biofilm, with a thickness of 10 to 20 µm, was removed within 300 s plasma treatment when oxygen was added to the argon gas discharge, whereas argon plasma alone was practically not sufficient in biofilm removal. The impact of plasma etching on biofilms is localized due to the limited presence of reactive plasma species validated by optical emission spectroscopy.

  13. A mathematical model of quorum sensing regulated EPS production in biofilm communities

    Science.gov (United States)

    2011-01-01

    Background Biofilms are microbial communities encased in a layer of extracellular polymeric substances (EPS). The EPS matrix provides several functional purposes for the biofilm, such as protecting bacteria from environmental stresses, and providing mechanical stability. Quorum sensing is a cell-cell communication mechanism used by several bacterial taxa to coordinate gene expression and behaviour in groups, based on population densities. Model We mathematically model quorum sensing and EPS production in a growing biofilm under various environmental conditions, to study how a developing biofilm impacts quorum sensing, and conversely, how a biofilm is affected by quorum sensing-regulated EPS production. We investigate circumstances when using quorum-sensing regulated EPS production is a beneficial strategy for biofilm cells. Results We find that biofilms that use quorum sensing to induce increased EPS production do not obtain the high cell populations of low-EPS producers, but can rapidly increase their volume to parallel high-EPS producers. Quorum sensing-induced EPS production allows a biofilm to switch behaviours, from a colonization mode (with an optimized growth rate), to a protection mode. Conclusions A biofilm will benefit from using quorum sensing-induced EPS production if bacteria cells have the objective of acquiring a thick, protective layer of EPS, or if they wish to clog their environment with biomass as a means of securing nutrient supply and outcompeting other colonies in the channel, of their own or a different species. PMID:21477365

  14. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  15. Spatial Patterns in Biofilm Diversity across Hierarchical Levels of River-Floodplain Landscapes.

    Directory of Open Access Journals (Sweden)

    Marc Peipoch

    Full Text Available River-floodplain systems are among the most diverse and productive ecosystems, but the effects of biophysical complexity at multiple scales on microbial biodiversity have not been studied. Here, we investigated how the hierarchical organization of river systems (i.e., region, floodplain, zone, habitats, and microhabitats influences epilithic biofilm community assemblage patterns by characterizing microbial communities using 16S rRNA gene sequence data and analyzing bacterial species distribution across local and regional scales. Results indicate that regional and local environmental filters concurrently sort bacterial species, suggesting that spatial configuration of epilithic biofilms resembles patterns of larger organisms in floodplain ecosystems. Along the hierarchical organization of fluvial systems, floodplains constitute a vector of maximum environmental heterogeneity and consequently act as a major landscape filter for biofilm species. Thus, river basins and associated floodplains may simply reflect very large scale 'patches' within which environmental conditions select for community composition of epilithic biofilms.

  16. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system.

    Science.gov (United States)

    Liu, Ruyin; Zhu, Junge; Yu, Zhisheng; Joshi, DevRaj; Zhang, Hongxun; Lin, Wenfang; Yang, Min

    2014-04-01

    To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure

    Science.gov (United States)

    Lee, Mi Hee; Park, Bong Joo; Jin, Soo Chang; Kim, Dohyun; Han, Inho; Kim, Jungsung; Hyun, Soon O.; Chung, Kie-Hyung; Park, Jong-Chul

    2009-11-01

    Microbial biofilms are a functional matrix of microbial cells, enveloped in polysaccharides, enzymes and virulence factors secreted by them that can develop on indwelling medical devices and biomaterials. Plasma sterilization has been widely studied in recent years for biological applications. In this study, we evaluated the possibility of removal and anti-recovery of biofilms by microwave-induced argon plasma at atmospheric pressure. We observed that all bacterial biofilms formatted by Gram-negative and Gram-positive bacteria are removed in less than 20 s, and the growth inhibitions of planktonic bacteria within biofilms are also confirmed by plasma exposure for 5 s. These results suggest that our plasma system can be applied to medical and biological fields where the removal of biofilms and their debris is required.

  18. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  19. Bacterial extracellular polysaccharides involved in biofilm formation.

    Science.gov (United States)

    Vu, Barbara; Chen, Miao; Crawford, Russell J; Ivanova, Elena P

    2009-07-13

    Extracellular polymeric substances (EPS) produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  20. Biofilms and Inflammation in Chronic Wounds

    Science.gov (United States)

    Zhao, Ge; Usui, Marcia L.; Lippman, Soyeon I.; James, Garth A.; Stewart, Philip S.; Fleckman, Philip; Olerud, John E.

    2013-01-01

    Significance The incidence, cost, morbidity, and mortality associated with non-healing of chronic skin wounds are dramatic. With the increasing numbers of people with obesity, chronic medical conditions, and an increasing life expectancy, the healthcare cost of non-healing ulcers has recently been estimated at $25 billion annually in the United States. The role played by bacterial biofilm in chronic wounds has been emphasized in recent years, particularly in the context of the prolongation of the inflammatory phase of repair. Recent Advances Rapid high-throughput genomic approaches have revolutionized the ability to identify and quantify microbial organisms from wounds. Defining bacterial genomes and using genetic approaches to knock out specific bacterial functions, then studying bacterial survival on cutaneous wounds is a promising strategy for understanding which genes are essential for pathogenicity. Critical Issues When an animal sustains a cutaneous wound, understanding mechanisms involved in adaptations by bacteria and adaptations by the host in the struggle for survival is central to development of interventions that favor the host. Future Directions Characterization of microbiomes of clinically well characterized chronic human wounds is now under way. The use of in vivo models of biofilm-infected cutaneous wounds will permit the study of the mechanisms needed for biofilm formation, persistence, and potential synergistic interactions among bacteria. A more complete understanding of bacterial survival mechanisms and how microbes influence host repair mechanisms are likely to provide targets for chronic wound therapy. PMID:24527355

  1. The Role of Biofilms in the Sedimentology of Actively Forming Gypsum Deposits at Guerrero Negro, Mexico

    Science.gov (United States)

    Vogel, Marilyn B.; Des Marais, David J.; Turk, Kendra A.; Parenteau, Mary N.; Jahnke, Linda L.; Kubo, Michael D. Y.

    2009-11-01

    Actively forming gypsum deposits at the Guerrero Negro sabkha and saltern system provided habitats for stratified, pigmented microbial communities that exhibited significant morphological and phylogenetic diversity. These deposits ranged from meter-thick gypsum crusts forming in saltern seawater concentration ponds to columnar microbial mats with internally crystallized gypsum granules developing in natural anchialine pools. Gypsum-depositing environments were categorized as forming precipitation surfaces, biofilm-supported surfaces, and clastic surfaces. Each surface type was described in terms of depositional environment, microbial diversity, mineralogy, and sedimentary fabrics. Precipitation surfaces developed in high-salinity subaqueous environments where rates of precipitation outpaced the accumulation of clastic, organic, and/or biofilm layers. These surfaces hosted endolithic biofilms comprised predominantly of oxygenic and anoxygenic phototrophs, sulfate-reducing bacteria, and bacteria from the phylum Bacteroidetes. Biofilm-supported deposits developed in lower-salinity subaqueous environments where light and low water-column turbulence supported dense benthic microbial communities comprised mainly of oxygenic phototrophs. In these settings, gypsum granules precipitated in the extracellular polymeric substance (EPS) matrix as individual granules exhibiting distinctive morphologies. Clastic surfaces developed in sabkha mudflats that included gypsum, carbonate, and siliclastic particles with thin gypsum/biofilm components. Clastic surfaces were influenced by subsurface brine sheets and capillary evaporation and precipitated subsedimentary gypsum discs in deeper regions. Biofilms appeared to influence both chemical and physical sedimentary processes in the various subaqueous and subaerially exposed environments studied. Biofilm interaction with chemical sedimentary processes included dissolution and granularization of precipitation surfaces, formation of

  2. Delivery of cyclodextrin polymers to bacterial biofilms - An exploratory study using rhodamine labelled cyclodextrins and multiphoton microscopy.

    Science.gov (United States)

    Thomsen, Hanna; Benkovics, Gábor; Fenyvesi, Éva; Farewell, Anne; Malanga, Milo; Ericson, Marica B

    2017-10-15

    Cyclodextrin (CD) polymers are interesting nanoparticulate systems for pharmaceutical delivery; however, knowledge regarding their applications towards delivery into complex microbial biofilm structures is so far limited. The challenge is to demonstrate penetration and transport through the biofilm and its exopolysaccharide matrix. The ideal functionalization for penetration into mature biofilms is unexplored. In this paper, we present a novel set of rhodamine labelled βCD-polymers, with different charge moieties, i.e., neutral, anionic, and cationic, and explore their potential delivery into mature Staphylococcus epidermidis biofilms using multiphoton laser scanning microscopy (MPM). The S. epidermidis biofilms, being a medically relevant model organism, were stained with SYTO9. By using MPM, three-dimensional imaging and spectral investigation of the distribution of the βCD-polymers could be obtained. It was found that the cationic βCD-polymers showed significantly higher integration into the biofilms, compared to neutral and anionic functionalized βCDs. None of the carriers presented any inherent toxicity to the biofilms, meaning that the addition of rhodamine moiety does not affect the inertness of the delivery system. Taken together, this study demonstrates a novel approach by which delivery of fluorescently labelled CD nanoparticles to bacterial biofilms can be explored using MPM. Future studies should be undertaken investigating the potential in using cationic functionalization of CD based delivery systems for targeting anti-microbial effects in biofilms. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Evaluating the impacts of migration in the biofilm anode using the model PCBIOFILM

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Andrew K., E-mail: andrew_marcus@asu.ed [Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701 (United States); Torres, Cesar I., E-mail: cit@asu.ed [Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701 (United States); Rittmann, Bruce E., E-mail: Rittmann@asu.ed [Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701 (United States)

    2010-09-30

    Microbial electrochemical cells depend on the reaction by anode-respiring bacteria (ARB). The ARB reaction generates multiple e{sup -} and H{sup +}, which take diverging paths, creating a charge imbalance. An electric field must migrate ions to restore electrical neutrality. Here, the model proton condition in bioflim (PCBIOFILM) expands for evaluating the impact of migration on the biofilm anode: the expansion makes the proton condition (PC) work in tandem with the electrical-neutrality condition, which is a novel methodological advancement. The analysis with PCBIOFILM examines relevant scenarios of phosphate- and carbonate-buffered biofilm anodes using established parameters. The analysis demonstrates how: (1) the proton condition (PC) maintains electrical neutrality by achieving charge balance; (2) migration influences the biofilm anode more than non-ARB biofilms; (3) migration increases the overall current density, but by less than 15 percent; and (4) PCBIOFILM without migration accurately captures large-scale trends in biofilm anodes.

  4. Evaluating the impacts of migration in the biofilm anode using the model PCBIOFILM

    International Nuclear Information System (INIS)

    Marcus, Andrew K.; Torres, Cesar I.; Rittmann, Bruce E.

    2010-01-01

    Microbial electrochemical cells depend on the reaction by anode-respiring bacteria (ARB). The ARB reaction generates multiple e - and H + , which take diverging paths, creating a charge imbalance. An electric field must migrate ions to restore electrical neutrality. Here, the model proton condition in bioflim (PCBIOFILM) expands for evaluating the impact of migration on the biofilm anode: the expansion makes the proton condition (PC) work in tandem with the electrical-neutrality condition, which is a novel methodological advancement. The analysis with PCBIOFILM examines relevant scenarios of phosphate- and carbonate-buffered biofilm anodes using established parameters. The analysis demonstrates how: (1) the proton condition (PC) maintains electrical neutrality by achieving charge balance; (2) migration influences the biofilm anode more than non-ARB biofilms; (3) migration increases the overall current density, but by less than 15 percent; and (4) PCBIOFILM without migration accurately captures large-scale trends in biofilm anodes.

  5. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  6. Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual‐based modelling study

    DEFF Research Database (Denmark)

    Merkey, Brian; Lardon, Laurent; Seoane, Jose Miguel

    2011-01-01

    Plasmid invasion in biofilms is often surprisingly limited in spite of the close contact of cells in a biofilm. We hypothesized that this poor plasmid spread into deeper biofilm layers is caused by a dependence of conjugation on the growth rate (relative to the maximum growth rate) of the donor...... and scan speed) and spatial reach (EPS yield, conjugal pilus length) are more important for successful plasmid invasion than the recipients' growth rate or the probability of segregational loss. While this study identifies one factor that can limit plasmid invasion in biofilms, the new individual....... By extending an individual‐based model of microbial growth and interactions to include the dynamics of plasmid carriage and transfer by individual cells, we were able to conduct in silico tests of this and other hypotheses on the dynamics of conjugal plasmid transfer in biofilms. For a generic model plasmid...

  7. Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin

    Directory of Open Access Journals (Sweden)

    Cerca Nuno

    2012-05-01

    Full Text Available Abstract Background Staphylococcus epidermidis is the major bacterial species found in biofilm-related infections on indwelling medical devices. Microbial biofilms are communities of bacteria adhered to a surface and surrounded by an extracellular polymeric matrix. Biofilms have been associated with increased antibiotic tolerance to the immune system. This increased resistance to conventional antibiotic therapy has lead to the search for new antimicrobial therapeutical agents. Farnesol, a quorum-sensing molecule in Candida albicans, has been described as impairing growth of several different microorganisms and we have previously shown its potential as an adjuvant in antimicrobial therapy against S. epidermidis. However, its mechanism of action in S. epidermidis is not fully known. In this work we better elucidate the role of farnesol against S: epidermidis biofilms using confocal laser scanning microscopy (CLSM. Findings 24 h biofilms were exposed to farnesol, vancomycin or rifampicin and were analysed by CLSM, after stained with a Live/Dead stain, a known indicator of cell viability, related with cell membrane integrity. Biofilms were also disrupted by sonication and viable and cultivable cells were quantified by colony forming units (CFU plating. Farnesol showed a similar effect as vancomycin, both causing little reduction of cell viability but at the same time inducing significant changes in the biofilm structure. On the other hand, rifampicin showed a distinct action in S. epidermidis biofilms, by killing a significant proportion of biofilm bacteria. Conclusions While farnesol is not very efficient at killing biofilm bacteria, it damages cell membrane, as determined by the live/dead staining, in a similar way as vancomycin. Furthermore, farnesol might induce biofilm detachment, as determined by the reduced biofilm biomass, which can partially explain the previous findings regarding its role as a possible chemotherapy adjuvant.

  8. Vibrio cholerae Combines Individual and Collective Sensing to Trigger Biofilm Dispersal.

    Science.gov (United States)

    Singh, Praveen K; Bartalomej, Sabina; Hartmann, Raimo; Jeckel, Hannah; Vidakovic, Lucia; Nadell, Carey D; Drescher, Knut

    2017-11-06

    Bacteria can generate benefits for themselves and their kin by living in multicellular, matrix-enclosed communities, termed biofilms, which are fundamental to microbial ecology and the impact bacteria have on the environment, infections, and industry [1-6]. The advantages of the biofilm mode of life include increased stress resistance and access to concentrated nutrient sources [3, 7, 8]. However, there are also costs associated with biofilm growth, including the metabolic burden of biofilm matrix production, increased resource competition, and limited mobility inside the community [9-11]. The decision-making strategies used by bacteria to weigh the costs between remaining in a biofilm or actively dispersing are largely unclear, even though the dispersal transition is a central aspect of the biofilm life cycle and critical for infection transmission [12-14]. Using a combination of genetic and novel single-cell imaging approaches, we show that Vibrio cholerae integrates dual sensory inputs to control the dispersal response: cells use the general stress response, which can be induced via starvation, and they also integrate information about the local cell density and molecular transport conditions in the environment via the quorum sensing apparatus. By combining information from individual (stress response) and collective (quorum sensing) avenues of sensory input, biofilm-dwelling bacteria can make robust decisions to disperse from large biofilms under distress, while preventing premature dispersal when biofilm populations are small. These insights into triggers and regulators of biofilm dispersal are a key step toward actively inducing biofilm dispersal for technological and medical applications, and for environmental control of biofilms. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Rosanna ePapa

    2015-12-01

    Full Text Available Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules.The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules.The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules

  10. Combination of selected enzymes with cetyltrimethylammonium bromide in biofilm inactivation, removal and regrowth

    KAUST Repository

    Araujo, Paula Alexandra Da Silva

    2017-03-01

    Enzymes are considered an innovative and environmentally friendly approach for biofilm control due to their lytic and dispersal activities. In this study, four enzymes (β-glucanase, α-amylase, lipase and protease) were tested separately and in combination with the quaternary ammonium compound cetyltrimethylammonium bromide (CTAB) to control flow-generated biofilms of Pseudomonas fluorescens. The four enzymes caused modest reduction of biofilm colony forming units (CFU). Protease, β-glucanase and α-amylase also caused modest biofilm removal. CTAB combined with either β-glucanase or α-amylase increased biofilm removal. Its combination with either β-glucanase or protease increased CFU reduction. However, CTAB−protease combination was antagonist in biofilm removal. Long-term effects in biofilm mass reduction were observed after protease exposure. In contrast, biofilms treated with β-glucanase were able to regrowth significantly after exposure. Moreover, short-term respirometry tests with planktonic cells were performed to understand the effects of enzymes and their combination with CTAB on P. fluorescens viability. Protease and lipase demonstrated antimicrobial action, while α-amylase increased bacterial metabolic activity. The combination of CTAB with either protease or α-amylase was antagonistic, decreasing the antimicrobial action of CTAB. The overall results demonstrate a modest effect of the selected enzymes in biofilm control, either when applied alone or each one in combination with CTAB. Total biofilm removal or CFU reduction was not achieved and, in some cases, the use of enzymes antagonized the effects of CTAB. The results also propose that complementary tests, to characterize biofilm integrity and microbial viability, are required when someone is trying to assess the role of novel biocide - enzyme mixtures for effective biofilm control.

  11. Absolute Quantitation of Bacterial Biofilm Adhesion and Viscoelasticity by Microbead Force Spectroscopy

    Science.gov (United States)

    Lau, Peter C.Y.; Dutcher, John R.; Beveridge, Terry J.; Lam, Joseph S.

    2009-01-01

    adhesion and viscoelasticity in bacterial biofilms under native conditions. This method could prove valuable for elucidating the contribution of genetic backgrounds, growth conditions, and environmental stresses to microbial community physiology. PMID:19348775

  12. Biofilms: Community Behavior by Bacteria

    Indian Academy of Sciences (India)

    IAS Admin

    phenotypically planktonic bacteria, leaving behind an empty colony. Dispersal is usually ... dental plaque biofilms includes a series of steps that begins with the initial colonization of the pellicle and ends with the complex formation ... treated by the biofilm method (activated sludge) is very effective. Biofilms can also be used ...

  13. Contribution of confocal laser scanning microscopy in deciphering biofilm tridimensional structure and reactivity.

    Science.gov (United States)

    Bridier, Arnaud; Briandet, Romain

    2014-01-01

    Confocal laser scanning microscopy (CLSM) became in last years an invaluable technique to study biofilms since it enables researchers to explore noninvasively the dynamic architecture and the reactivity of these biological edifices. The constant development of fluorescent markers and genetic tools along with the improvement of spatial, spectral, and temporal resolution of imaging facilities offers new opportunities to better decipher microbial biofilm properties. In this contribution, we proposed to describe the contribution of CLSM to the study of biofilm architecture and reactivity throughout two different illustrative approaches.

  14. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis.

    Directory of Open Access Journals (Sweden)

    Robert C Shields

    Full Text Available BACKGROUND: The persistent colonization of paranasal sinus mucosa by microbial biofilms is a major factor in the pathogenesis of chronic rhinosinusitis (CRS. Control of microorganisms within biofilms is hampered by the presence of viscous extracellular polymers of host or microbial origin, including nucleic acids. The aim of this study was to investigate the role of extracellular DNA in biofilm formation by bacteria associated with CRS. METHODS/PRINCIPAL FINDINGS: Obstructive mucin was collected from patients during functional endoscopic sinus surgery. Examination of the mucous by transmission electron microscopy revealed an acellular matrix punctuated occasionally with host cells in varying states of degradation. Bacteria were observed in biofilms on mucosal biopsies, and between two and six different species were isolated from each of 20 different patient samples. In total, 16 different bacterial genera were isolated, of which the most commonly identified organisms were coagulase-negative staphylococci, Staphylococcus aureus and α-haemolytic streptococci. Twenty-four fresh clinical isolates were selected for investigation of biofilm formation in vitro using a microplate model system. Biofilms formed by 14 strains, including all 9 extracellular nuclease-producing bacteria, were significantly disrupted by treatment with a novel bacterial deoxyribonuclease, NucB, isolated from a marine strain of Bacillus licheniformis. Extracellular biofilm matrix was observed in untreated samples but not in those treated with NucB and extracellular DNA was purified from in vitro biofilms. CONCLUSION/SIGNIFICANCE: Our data demonstrate that bacteria associated with CRS form robust biofilms which can be reduced by treatment with matrix-degrading enzymes such as NucB. The dispersal of bacterial biofilms with NucB may offer an additional therapeutic target for CRS sufferers.

  15. Induced Polarization Signature of Biofilms in Porous Media: From Laboratory Experiments to Theoretical Developments and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Atekwana, Estella [Oklahoma State Univ., Stillwater, OK (United States); Patrauchan, Marianna [Oklahoma State Univ., Stillwater, OK (United States); Revil, Andre [Colorado School of Mines, Golden, CO (United States)

    2016-10-04

    Bioremediation strategies for mitigating the transport of heavy metals and radionuclides in subsurface sediments have largely targeted the use of dissimilatory metal and sulfate-reducing bacteria. Growth and metabolic activities from these organisms can significantly influence biogeochemical processes, including mineral dissolution/precipitation, fluctuating pH and redox potential (Eh) values, development of biofilms, and decreasing hydraulic conductivity. The Spectral Induced Polarization (SIP) technique has emerged as the technique most sensitive to the presence of microbial cells and biofilms in porous media; yet it is often difficult to unambiguously distinguish the impact of multiple and often competing processes that occur during in-situ biostimulation activities on the SIP signatures. The main goal of our project is to quantitatively characterize major components within bacterial biofilms (cells, DNA, metals, metabolites etc.) contributing to detectable SIP signatures. We specifically: (i) evaluated the contribution of biofilm components to SIP signatures, (ii) determined the contribution of biogenic minerals commonly found in biofilms to SIP signatures, (iii) determined if the SIP signatures can be used to quantify the rates of biofilm formation, (iv) developed models and a fundamental understanding of potential underlying polarization mechanisms at low frequencies (<40 kHz) resulting from the presence of microbial cells and biofilms

  16. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals.

    Science.gov (United States)

    Sneed, Jennifer M; Sharp, Koty H; Ritchie, Kimberly B; Paul, Valerie J

    2014-07-07

    Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Characterization of Microbial Fuel Cells at Microbially and Electrochemically Meaningful Time scales

    KAUST Repository

    Ren, Zhiyong

    2011-03-15

    The variable biocatalyst density in a microbial fuel cell (MFC) anode biofilm is a unique feature of MFCs relative to other electrochemical systems, yet performance characterizations of MFCs typically involve analyses at electrochemically relevant time scales that are insufficient to account for these variable biocatalyst effects. This study investigated the electrochemical performance and the development of anode biofilm architecture under different external loadings, with duplicate acetate-fed singlechamber MFCs stabilized at each resistance for microbially relevant time scales. Power density curves from these steady-state reactors generally showed comparable profiles despite the fact that anode biofilm architectures and communities varied considerably, showing that steady-state biofilm differences had little influence on electrochemical performance until the steady-state external loading was much larger than the reactor internal resistance. Filamentous bacteria were dominant on the anodes under high external resistances (1000 and 5000 Ω), while more diverse rod-shaped cells formed dense biofilms under lower resistances (10, 50, and 265 Ω). Anode charge transfer resistance decreased with decreasing fixed external resistances, but was consistently 2 orders of magnitude higher than the resistance at the cathode. Cell counting showed an inverse exponential correlation between cell numbers and external resistances. This direct link ofMFCanode biofilm evolution with external resistance and electricity production offers several operational strategies for system optimization. © 2011 American Chemical Society.

  19. Biofilm human consumption water distribution systems; El biofilm en sistemas de distribuciond e aguas de consumo humano

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Pedreira, S.

    2003-07-01

    A study was carried out of the presence of biofilm in the water distribution conduits in urban supply systems, as it raises health, water quality and corrosion issues. In order to take appropriate measures to control the presence of biofilm, it is first necessary to know what it, is how it is formed and the factors that influence its development. its structure includes both microbial cells and biopolymers that make up a protective structure. The most common micro-organisms are usually heterotrophic bacteria, that is bacteria requiring organic carbon in ore to grow. They may also occasionally include fungus, protozoa and algae, though to a lesser degree. Definitions are provided of the factors influencing the growth of biofilm, preventive measures and detection in water supply systems and solutions are put forward for dealing with it once it has appeared. (Author)

  20. Dynamic processes of the microbiota - from metagenomics to biofilms

    Science.gov (United States)

    Wingreen, Ned

    The extent, origin, and impact of microbial diversity is a central question in biology. We expect that physical processes contribute to this diversity, but we are only beginning to explore the nature of these interactions. I will briefly discuss two approaches to this question, one based on metagenomics the other on observation of bacterial biofilms. First, I will address the challenge of identifying the constituents of microbial systems by presenting a new approach to analyzing community sequencing data that identifies microbial subpopulations while avoiding problematic clustering-based methods. Using data from a time-series study of human tongue microbiota, we were able to resolve within the standard definition of a ``species'' up to 20 ecologically distinct subpopulations with tag sequences differing by as little as one nucleotide (99.2% similarity). This fine resolution allowed us decouple sequence similarity from dynamical similarity, and to resolve dynamics on multiple time scales, including the slow appearance and disappearance of strains over months. Second, I will present recent results on the growth and competition of bacteria within biofilms. We imaged the growth ofliving biofilms of Vibrio choleraefrom single founder cells to ten thousand cells at single cell spatial resolution and with temporal resolution of one cell cycle. We discovered a transition from a branched 2D colony to a dense 3D cluster, in which cells at the biofilm center exhibit collective vertical alignment and local nematic packing. Our results suggest that biofilm cells exploit mechanics to simultaneously achieve strong surface adhesion, access to 3D space, resistance to invasion, and dominance over surface territory.

  1. Peri-implant infections of oral biofilm etiology.

    Science.gov (United States)

    Belibasakis, Georgios N; Charalampakis, Georgios; Bostanci, Nagihan; Stadlinger, Bernd

    2015-01-01

    Biofilms are complex microbial communities that grow on various surfaces in nature. The oral micobiota tend to form polymicrobial biofilms, particularly on the hard mineralized surfaces of teeth, which may impact on oral health and disease. They can cause inflammation of the adjacent tooth-supporting (periodontal) tissues, leading to destructive periodontal disease and tooth loss. The emergence of osseointegrated dental implants as a restorative treatment option for replacing missing teeth has also brought along new artificial surfaces within the oral cavity, on which oral bacteria can form biofilms. As in the case of natural teeth, biofilms on implant surfaces may also trigger infection and cause inflammatory destruction of the peri-implant tissue (i.e. peri-implantitis). While there are strong similarities in the composition of the mixed microbial flora between periodontal and peri-implant infections, there are also a few distinctive differences. The immunological events underlying the pathogenesis of peri-implant infections are qualitatively similar, yet more extensive, compared to periodontal infections, resulting in a faster progression of tissue destruction. This chapter summarizes the current knowledge on the microbiology and immunology of peri-implant infections, including findings from the peri-implant crevicular fluid, the inflammatory exudate of the peri-implant tissue. Moreover, it discusses the diagnosis and current approaches for the treatment of oral infections.

  2. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    , but the identity and significance of interspecies bacterial interactions is neglected in these analyses. There is therefore an urgent need for bridging the gap between metagenomic analysis and in vitro models suitable for studies of bacterial interactions.Bacterial interactions and coadaptation are important......The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...

  3. AI-2 of Aggregatibacter actinomycetemcomitans Inhibits Candida albicans Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Endang W. Bachtiar

    2014-07-01

    Full Text Available Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2, synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities.

  4. Biofilm retention on surfaces with variable roughness and hydrophobicity.

    Science.gov (United States)

    Tang, Lone; Pillai, Saju; Revsbech, Niels Peter; Schramm, Andreas; Bischoff, Claus; Meyer, Rikke Louise

    2011-01-01

    Biofilms on food processing equipment cause food spoilage and pose a hazard to consumers. The bacterial community on steel surfaces in a butcher's shop was characterized, and bacteria representative of this community enriched from minced pork were used to study biofilm retention. Stainless steel (SS) was compared to two novel nanostructured sol-gel coatings with differing hydrophobicity. Surfaces were characterized with respect to roughness, hydrophobicity, protein adsorption, biofilm retention, and community composition of the retained bacteria. Fewer bacteria were retained on the sol-gel coated surfaces compared to the rougher SS. However, the two sol-gel coatings did not differ in either protein adsorption, biofilm retention, or microbial community composition. When polished to a roughness similar to sol-gel, the SS was colonized by the same amount of bacteria as the sol-gel, but the bacterial community contained fewer Pseudomonas cells. In conclusion, biofilm retention was affected more by surface roughness than chemical composition under the condition described in this study.

  5. Critical review on biofilm methods.

    Science.gov (United States)

    Azeredo, Joana; Azevedo, Nuno F; Briandet, Romain; Cerca, Nuno; Coenye, Tom; Costa, Ana Rita; Desvaux, Mickaël; Di Bonaventura, Giovanni; Hébraud, Michel; Jaglic, Zoran; Kačániová, Miroslava; Knøchel, Susanne; Lourenço, Anália; Mergulhão, Filipe; Meyer, Rikke Louise; Nychas, George; Simões, Manuel; Tresse, Odile; Sternberg, Claus

    2017-05-01

    Biofilms are widespread in nature and constitute an important strategy implemented by microorganisms to survive in sometimes harsh environmental conditions. They can be beneficial or have a negative impact particularly when formed in industrial settings or on medical devices. As such, research into the formation and elimination of biofilms is important for many disciplines. Several new methodologies have been recently developed for, or adapted to, biofilm studies that have contributed to deeper knowledge on biofilm physiology, structure and composition. In this review, traditional and cutting-edge methods to study biofilm biomass, viability, structure, composition and physiology are addressed. Moreover, as there is a lack of consensus among the diversity of techniques used to grow and study biofilms. This review intends to remedy this, by giving a critical perspective, highlighting the advantages and limitations of several methods. Accordingly, this review aims at helping scientists in finding the most appropriate and up-to-date methods to study their biofilms.

  6. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.

    Science.gov (United States)

    Kitayama, Miho; Koga, Ryota; Kasai, Takuya; Kouzuma, Atsushi; Watanabe, Kazuya

    2017-09-01

    An electrochemical flow cell equipped with a graphite working electrode (WE) at the bottom was inoculated with Shewanella oneidensis MR-1 expressing an anaerobic fluorescent protein, and biofilm formation on the WE was observed over time during current generation at WE potentials of +0.4 and 0 V (versus standard hydrogen electrodes), under electrolyte-flow conditions. Electrochemical analyses suggested the presence of unique electron-transfer mechanisms in the +0.4-V biofilm. Microscopic analyses revealed that, in contrast to aerobic biofilms, current-generating biofilm (at +0.4 V) was thin and flat (∼10 μm in thickness), and cells were evenly and densely distributed in the biofilm. In contrast, cells were unevenly distributed in biofilm formed at 0 V. In situ fluorescence staining and biofilm recovery experiments showed that the amounts of extracellular polysaccharides (EPSs) in the +0.4-V biofilm were much smaller than those in the aerobic and 0-V biofilms, suggesting that Shewanella cells suppress the production of EPSs at +0.4 V under flow conditions. We suggest that Shewanella cells perceive electrode potentials and modulate the structure and composition of biofilms to efficiently transfer electrons to electrodes. IMPORTANCE A promising application of microbial fuel cells (MFCs) is to save energy in wastewater treatment. Since current is generated in these MFCs by biofilm microbes under horizontal flows of wastewater, it is important to understand the mechanisms for biofilm formation and current generation under water-flow conditions. Although massive work has been done to analyze the molecular mechanisms for current generation by model exoelectrogenic bacteria, such as Shewanella oneidensis , limited information is available regarding the formation of current-generating biofilms over time under water-flow conditions. The present study developed electrochemical flow cells and used them to examine the electrochemical and structural features of current

  7. CMEIAS-Aided Microscopy of the Spatial Ecology of Individual Bacterial Interactions Involving Cell-to-Cell Communication within Biofilms

    Directory of Open Access Journals (Sweden)

    Frank B. Dazzo

    2012-05-01

    Full Text Available This paper describes how the quantitative analytical tools of CMEIAS image analysis software can be used to investigate in situ microbial interactions involving cell-to-cell communication within biofilms. Various spatial pattern analyses applied to the data extracted from the 2-dimensional coordinate positioning of individual bacterial cells at single-cell resolution indicate that microbial colonization within natural biofilms is not a spatially random process, but rather involves strong positive interactions between communicating cells that influence their neighbors’ aggregated colonization behavior. Geostatistical analysis of the data provide statistically defendable estimates of the micrometer scale and interpolation maps of the spatial heterogeneity and local intensity at which these microbial interactions autocorrelate with their spatial patterns of distribution. Including in situ image analysis in cell communication studies fills an important gap in understanding the spatially dependent microbial ecophysiology that governs the intensity of biofilm colonization and its unique architecture.

  8. CMEIAS-aided microscopy of the spatial ecology of individual bacterial interactions involving cell-to-cell communication within biofilms.

    Science.gov (United States)

    Dazzo, Frank B

    2012-01-01

    This paper describes how the quantitative analytical tools of CMEIAS image analysis software can be used to investigate in situ microbial interactions involving cell-to-cell communication within biofilms. Various spatial pattern analyses applied to the data extracted from the 2-dimensional coordinate positioning of individual bacterial cells at single-cell resolution indicate that microbial colonization within natural biofilms is not a spatially random process, but rather involves strong positive interactions between communicating cells that influence their neighbors' aggregated colonization behavior. Geostatistical analysis of the data provide statistically defendable estimates of the micrometer scale and interpolation maps of the spatial heterogeneity and local intensity at which these microbial interactions autocorrelate with their spatial patterns of distribution. Including in situ image analysis in cell communication studies fills an important gap in understanding the spatially dependent microbial ecophysiology that governs the intensity of biofilm colonization and its unique architecture.

  9. Current density reversibly alters metabolic spatial structure of exoelectrogenic anode biofilms

    Science.gov (United States)

    Sun, Dan; Cheng, Shaoan; Zhang, Fang; Logan, Bruce E.

    2017-07-01

    Understanding how current densities affect electrogenic biofilm activity is important for wastewater treatment as current densities can substantially decrease at COD concentrations greater than those suitable for discharge to the environment. We examined the biofilm's response, in terms of viability and enzymatic activity, to different current densities using microbial electrolysis cells with a lower (0.7 V) or higher (0.9 V) added voltage to alter current production. Viability was assessed using florescent dyes, with dead cells identified on the basis of dye penetration due to a compromised cell outer-membrane (red), and live cells (intact membrane) fluorescing green. Biofilms operated with 0.7 V produced 2.4 ± 0.2 A m-2, and had an inactive layer near the electrode and a viable layer at the biofilm-solution interface. The lack of cell activity near the electrode surface was confirmed by using an additional dye that fluoresces only with enzymatic activity. Adding 0.9 V increased the current by 61%, and resulted in a single, more homogeneous and active biofilm layer. Switching biofilms between these two voltages produced outcomes associated with the new current rather than the previous biofilm conditions. These findings suggest that maintaining higher current densities will be needed to ensure long-term viability electrogenic biofilms.

  10. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.

    Directory of Open Access Journals (Sweden)

    Philippe Thomen

    Full Text Available Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities.

  11. In Situ Molecular Imaging of the Biofilm and Its Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yuanzhao; Zhou, Yufan; Yao, Juan; Szymanski, Craig J.; Fredrickson, Jim K.; Shi, Liang; Cao, B.; Zhu, Zihua; Yu, Xiao-Ying

    2016-11-15

    Molecular mapping of live biofilms at submicron resolution presents a grand challenge. Here, we present the first chemical mapping results of biofilm extracellular polymeric sub-stance (EPS) components in biofilms using correlative imaging be-tween super resolution florescence microscopy and liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS). Shewanella oneidensis is used as a model organism. Heavy metal anions chro-mate (Cr2O72-) consisting of chromium Cr (VI) was a model envi-ronmental stressor used to treat the biofilms. Of particular interest, biologically relevant water clusters have been first observed in the biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be spatially im-aged. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments are found to respond af-ter the biofilm is treated with Cr (VI), leading to biofilm dispersion. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environ-ment are observed, suggesting that they might result in fatty acid synthesis and inhibit riboflavin production. The Cr (VI) reduction seems to follow the Mtr pathway leading to Cr (III) formation. Our approach potentially opens a new avenue for mechanistic insight of microbial community processes and communications using in situ imaging mass spectrometry and superresolution optical micros-copy.

  12. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance.

    Science.gov (United States)

    Heisterkamp, Ines M; Schramm, Andreas; Larsen, Lone H; Svenningsen, Nanna B; Lavik, Gaute; de Beer, Dirk; Stief, Peter

    2013-07-01

    Emission of the greenhouse gas nitrous oxide (N2 O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2 O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces are important sites of N2 O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2 O emission. Nitrification and denitrification were equally important sources of N2 O in shell biofilms as revealed by (15) N-stable isotope experiments with dissected shells. Microsensor measurements confirmed that both nitrification and denitrification can occur in shell biofilms due to a heterogeneous oxygen distribution. Accordingly, ammonium, nitrite and nitrate were important drivers of N2 O production in the shell biofilm of the three mollusc species. Ammonium excretion by the animals was found to be sufficient to sustain N2 O production in the shell biofilm. Apparently, the animals provide a nutrient-enriched microenvironment that stimulates growth and N2 O production of the shell biofilm. This animal-induced stimulation was demonstrated in a long-term microcosm experiment with the snail H. reticulata, where shell biofilms exhibited the highest N2 O emission rates when the animal was still living inside the shell. © 2012 John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Surface modification of platelet concentrate bags to reduce biofilm formation and transfusion sepsis.

    Science.gov (United States)

    Wilson-Nieuwenhuis, Joels S T; Dempsey-Hibbert, Nina; Liauw, Christopher M; Whitehead, Kathryn A

    2017-12-01

    Bacterial contamination of blood products poses a major risk in transfusion medicine, including transfusions involving platelet products. Although testing systems are in place for routine screening of platelet units, the formation of bacterial biofilms in such units may decrease the likelihood that bacteria will be detected. This work determined the surface properties of p-PVC platelet concentrate bags and investigated how these characteristics influenced biofilm formation. Serratia marcescens and Staphylococcus epidermidis, two species commonly implicated in platelet contamination, were used to study biofilm growth. The platelet concentrate bags were physically flattened to determine if reducing the surface roughness altered biofilm formation. The results demonstrated that the flattening process of the platelet bags affected the chemistry of the surface and reduced the surface hydrophobicity. Flattening of the surfaces resulted in a reduction in biofilm formation for both species after 5 days, with S. marcescens demonstrating a greater reduction. However, there was no significant difference between the smooth and flat surfaces following 7 days' incubation for S. marcescens and no significant differences between any of the surfaces following 7 days' incubation for S. epidermidis. The results suggest that flattening the p-PVC surfaces may limit potential biofilm formation for the current duration of platelet storage time of 5 days. It is hoped that this work will enhance the understanding of how surface properties influence the development of microbial biofilms in platelet concentrate bags in order to devise a solution to discourage biofilm formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quantifying the Effects of Biofilm on the Hydraulic Properties of Unsaturated Soils

    Science.gov (United States)

    Volk, E.; Iden, S.; Furman, A.; Durner, W.; Rosenzweig, R.

    2017-12-01

    Quantifying the effects of biofilms on hydraulic properties of unsaturated soils is necessary for predicting water and solute flow in soil with extensive microbial presence. This can be relevant to bioremediation processes, soil aquifer treatment and effluent irrigation. Previous works showed a reduction in the hydraulic conductivity and an increase in water content due to the addition of biofilm analogue materials. The objective of this research is to quantify soil hydraulic properties of unsaturated soil (water retention and hydraulic conductivity) using real soil biofilm. In this work, Hamra soil was incubated with Luria Broth (LB) and biofilm-producing bacteria (Pseudomonas Putida F1). Hydraulic conductivity and water retention were measured by the evaporation method, Dewpoint method and a constant head permeameter. Biofilm was quantified using viable counts and the deficit of TOC. The results show that the presence of biofilms increases soil retention in the `dry' range of the curve and reduces the hydraulic conductivity (see figure). This research shows that biofilms may have a non-negligible effect on flow and transport in unsaturated soils. These findings contribute to modeling water flow in biofilm amended soil.

  15. Biofilm composition in the Olt River (Romania) reservoirs impacted by a chlor-alkali production plant.

    Science.gov (United States)

    Dranguet, P; Cosio, C; Le Faucheur, S; Hug Peter, D; Loizeau, J-L; Ungureanu, V-Gh; Slaveykova, V I

    2017-05-24

    Freshwater biofilms can be useful indicators of water quality and offer the possibility to assess contaminant effects at the community level. The present field study examines the effects of chlor-alkali plant effluents on the community composition of biofilms grown in the Olt River (Romania) reservoirs. The relationship between ambient water quality variables and community composition alterations was explored. Amplicon sequencing revealed a significant modification of the composition of microalgal, bacterial and fungal communities in the biofilms collected in the impacted reservoirs in comparison with those living in the uncontaminated control reservoir. The abundance corrected Simpson index showed lower richness and diversity in biofilms collected in the impacted reservoirs than in the control reservoir. The biofilm bacterial communities of the impacted reservoirs were characterized by the contaminant-tolerant Cyanobacteria and Bacteroidetes, whereas microalgal communities were predominantly composed of Bacillariophyta and fungal communities of Lecanoromycetes and Paraglomycetes. A principal component analysis revealed that major contaminants present in the waste water of the chlor-alkali production plant, i.e. Na + , Ca 2+ , Cl - and Hg, were correlated with the alteration of biofilm community composition in the impacted reservoirs. However, the biofilm composition was also influenced by water quality variables such as NO 3 - , SO 4 2- , DOC and Zn from unknown sources. The results of the present study imply that, even when below the environmental quality standards, typical contaminants of chlor-alkali plant releases may affect biofilm composition and that their impacts on the microbial biodiversity might be currently overlooked.

  16. Structural Analysis of Biofilm Formation by Rapidly and Slowly Growing Nontuberculous Mycobacteria▿

    Science.gov (United States)

    Williams, Margaret M.; Yakrus, Mitchell A.; Arduino, Matthew J.; Cooksey, Robert C.; Crane, Christina B.; Banerjee, Shailen N.; Hilborn, Elizabeth D.; Donlan, Rodney M.

    2009-01-01

    Mycobacterium avium complex (MAC) and rapidly growing mycobacteria (RGM) such as M. abscessus, M. mucogenicum, M. chelonae, and M. fortuitum, implicated in health care-associated infections, are often isolated from potable water supplies as part of the microbial flora. To understand factors that influence growth in their environmental source, clinical RGM and slowly growing MAC isolates were grown as biofilm in a laboratory batch system. High and low nutrient levels were compared, as well as stainless steel and polycarbonate surfaces. Biofilm growth was measured after 72 h of incubation by enumeration of bacteria from disrupted biofilms and by direct quantitative image analysis of biofilm microcolony structure. RGM biofilm development was influenced more by nutrient level than by substrate material, though both affected biofilm growth for most of the isolates tested. Microcolony structure revealed that RGM develop several different biofilm structures under high-nutrient growth conditions, including pillars of various shapes (M. abscessus and M. fortuitum) and extensive cording (M. abscessus and M. chelonae). Although it is a slowly growing species in the laboratory, a clinical isolate of M. avium developed more culturable biofilm in potable water in 72 h than any of the 10 RGM examined. This indicates that M. avium is better adapted for growth in potable water systems than in laboratory incubation conditions and suggests some advantage that MAC has over RGM in low-nutrient environments. PMID:19201956

  17. Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo.

    Directory of Open Access Journals (Sweden)

    Heidi Mulcahy

    2011-10-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3 demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo.

  18. The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms.

    Science.gov (United States)

    Nilsson, Martin; Rybtke, Morten; Givskov, Michael; Høiby, Niels; Twetman, Svante; Tolker-Nielsen, Tim

    2016-09-01

    Microbial biofilms are tolerant to antibiotic treatment and therefore cause problematic infections. Knowledge about the molecular mechanisms underlying biofilm-associated antimicrobial tolerance will aid the development of antibiofilm drugs. Screening of a Streptococcus mutans transposon mutant library for genes that are important for biofilm-associated antimicrobial tolerance provided evidence that the dlt genes play a role in the tolerance of S. mutans biofilms towards gentamicin. The minimum bactericidal concentration for biofilm cells (MBC-B) for a dltA transposon mutant was eight-fold lower than that of the wild-type. The minimum bactericidal concentration for planktonic cells (MBC-P) was only slightly reduced, indicating that the mechanism involved in the observed antimicrobial tolerance has a predominant role specifically in biofilms. Experiments with a knockout dltA mutant and complemented strain confirmed that the dlt genes in S. mutans play a role in biofilm-associated tolerance to gentamicin. Confocal laser scanning microscopy analyses of biofilms grown on glass slides showed that the dltA mutant produced roughly the same amount of biofilm as the wild-type, indicating that the reduced antimicrobial tolerance of the dltA mutant is not due to a defect in biofilm formation. The products of the dlt genes have been shown to mediate alanylation of teichoic acids, and in accordance the dltA mutant showed a more negatively charged surface than the wild-type, which likely is an important factor in the reduced tolerance of the dltA mutant biofilms towards the positively charged gentamicin. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  19. Kinetic parameter estimation in N. europaea biofilms using a 2-D reactive transport model.

    Science.gov (United States)

    Lauchnor, Ellen G; Semprini, Lewis; Wood, Brian D

    2015-06-01

    Biofilms of the ammonia oxidizing bacterium Nitrosomonas europaea were cultivated to study microbial processes associated with ammonia oxidation in pure culture. We explored the hypothesis that the kinetic parameters of ammonia oxidation in N. europaea biofilms were in the range of those determined with batch suspended cells. Oxygen and pH microelectrodes were used to measure dissolved oxygen (DO) concentrations and pH above and inside biofilms and reactive transport modeling was performed to simulate the measured DO and pH profiles. A two dimensional (2-D) model was used to simulate advection parallel to the biofilm surface and diffusion through the overlying fluid while reaction and diffusion were simulated in the biofilm. Three experimental studies of microsensor measurements were performed with biofilms: i) NH3 concentrations near the Ksn value of 40 μM determined in suspended cell tests ii) Limited buffering capacity which resulted in a pH gradient within the biofilms and iii) NH3 concentrations well below the Ksn value. Very good fits to the DO concentration profiles both in the fluid above and in the biofilms were achieved using the 2-D model. The modeling study revealed that the half-saturation coefficient for NH3 in N. europaea biofilms was close to the value measured in suspended cells. However, the third study of biofilms with low availability of NH3 deviated from the model prediction. The model also predicted shifts in the DO profiles and the gradient in pH that resulted for the case of limited buffering capacity. The results illustrate the importance of incorporating both key transport and chemical processes in a biofilm reactive transport model. © 2014 Wiley Periodicals, Inc.

  20. Biofilm formation in Haemophilus parasuis: relationship with antibiotic resistance, serotype and genetic typing.

    Science.gov (United States)

    Zhang, Jianmin; Xu, Chenggang; Shen, Haiyan; Li, Jingyi; Guo, Lili; Cao, Guojie; Feng, Saixiang; Liao, Ming

    2014-10-01

    Biofilms are surface-associated microbial communities, which are encased in self-synthesized extracellular environment. Biofilm formation may trigger drug resistance and inflammation, resulting in persistent infections. Haemophilus parasuis is the etiological agent of a systemic disease, Glässer's disease, characterized by fibrinous polyserositis, arthritis and meningitis in pigs. The purpose of this study was to examine the correlation between biofilm and antibiotic resistance among the clinical isolates of H. parasuis. In the present study, we tested biofilm-forming ability of 110 H. parasuis isolates from various farms using polystyrene microtiter plate assays. Seventy-three isolates of H. parasuis (66.4%) showed biofilm formation and most of them performed weak biofilm-forming ability (38/73). All isolates were tested for antimicrobial susceptibility to 18 antimicrobial agents by the broth microdilution method. H. parasuis isolates showed very high resistance (>90%) to sulfanilamide, nalidixic acid, and trimethoprim. Resistance to eight antibiotics such as penicillin (41.1% vs 8.1%), ampicillin (31.5% vs 8.1%), amoxicillin (28.8% vs 5.4%), gentamicin (46.6% vs 24.3%), cefazolin (19.2% vs 2.7%), doxycycline (19.2% vs 8.1%), cefotaxime (11% vs 2.7%), and cefaclor (13.7% vs 5.4%) was comparatively higher among biofilm producers than non-biofilm producers. Pulsed-field gel electrophoresis (PFGE) analyses could distinguish various isolates. Our data indicated that H. parasuis field isolates were able to form biofilms in vitro. In addition, biofilm positive strains had positive correlation with resistance to β-lactams antibiotics. Thus, biofilm formation may play important roles during H. parasuis infections. Copyright © 2014. Published by Elsevier Ltd.

  1. The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems.

    Science.gov (United States)

    Risse-Buhl, Ute; Anlanger, Christine; Kalla, Katalin; Neu, Thomas R; Noss, Christian; Lorke, Andreas; Weitere, Markus

    2017-12-15

    Previous laboratory and on-site experiments have highlighted the importance of hydrodynamics in shaping biofilm composition and architecture. In how far responses to hydrodynamics can be found in natural flows under the complex interplay of environmental factors is still unknown. In this study we investigated the effect of near streambed turbulence in terms of turbulent kinetic energy (TKE) on the composition and architecture of biofilms matured in two mountainous streams differing in dissolved nutrient concentrations. Over both streams, TKE significantly explained 7% and 8% of the variability in biofilm composition and architecture, respectively. However, effects were more pronounced in the nutrient richer stream, where TKE significantly explained 12% and 3% of the variability in biofilm composition and architecture, respectively. While at lower nutrient concentrations seasonally varying factors such as stoichiometry of dissolved nutrients (N/P ratio) and light were more important and explained 41% and 6% of the variability in biofilm composition and architecture, respectively. Specific biofilm features such as elongated ripples and streamers, which were observed in response to the uniform and unidirectional flow in experimental settings, were not observed. Microbial biovolume and surface area covered by the biofilm canopy increased with TKE, while biofilm thickness and porosity where not affected or decreased. These findings indicate that under natural flows where near bed flow velocities and turbulence intensities fluctuate with time and space, biofilms became more compact. They spread uniformly on the mineral surface as a film of densely packed coccoid cells appearing like cobblestone pavement. The compact growth of biofilms seemed to be advantageous for resisting hydrodynamic shear forces in order to avoid displacement. Thus, near streambed turbulence can be considered as important factor shaping the composition and architecture of biofilms grown under natural

  2. The Root Canal Biofilm

    NARCIS (Netherlands)

    van der Sluis, L.W.M.; Boutsioukis, C.; Jiang, L.M.; Macedo, R.; Verhaagen, B.; Versluis, Michel; Chávez de Paz, E.; Sedgley, C.M.; Kishen, A.

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root

  3. Antimicrobial Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (VIS + wIRA) Alters In Situ Oral Biofilms

    Science.gov (United States)

    Al-Ahmad, A.; Bucher, M.; Anderson, A. C.; Tennert, C.; Hellwig, E.; Wittmer, A.; Vach, K.; Karygianni, L.

    2015-01-01

    Recently, growing attention has been paid to antimicrobial photodynamic therapy (aPDT) in dentistry. Changing the microbial composition of initial and mature oral biofilm by aPDT using visible light plus water-filtered infrared-A wavelengths (VIS + wIRA) has not yet been investigated. Moreover, most aPDT studies have been conducted on planktonic bacterial cultures. Therefore, in the present clinical study we cultivated initial and mature oral biofilms in six healthy volunteers for 2 hours or 3 days, respectively. The biofilms were treated with aPDT using VIS+wIRA (200 mW cm-2), toluidine blue (TB) and chlorine e6 (Ce6) for 5 minutes. Chlorhexidine treated biofilm samples served as positive controls, while untreated biofilms served as negative controls. After aPDT treatment the colony forming units (CFU) of the biofilm samples were quantified, and the surviving bacteria were isolated in pure cultures and identified using MALDI-TOF, biochemical tests and 16S rDNA-sequencing. aPDT killed more than 99.9% of the initial viable bacterial count and 95% of the mature oral biofilm in situ, independent of the photosensitizer. The number of surviving bacterial species was highly reduced to 6 (TB) and 4 (Ce6) in the treated initial oral biofilm compared to the 20 different species of the untreated biofilm. The proportions of surviving bacterial species were also changed after TB- and Ce6-mediated aPDT of the mature oral biofilm, resulting in a shift in the microbial composition of the treated biofilm compared to that of the control biofilm. In conclusion, aPDT using VIS + wIRA showed a remarkable potential to eradicate both initial and mature oral biofilms, and also to markedly alter the remaining biofilm. This encourages the clinical use of aPDT with VIS + wIRA for the treatment of periimplantitis and periodontitis. PMID:26162100

  4. Comparison microbial killing efficacy between sonodynamic therapy and photodynamic therapy

    Science.gov (United States)

    Drantantiyas, Nike Dwi Grevika; Astuti, Suryani Dyah; Nasution, Aulia M. T.

    2016-11-01

    Biofilm is a way used by bacteria to survive from their environmental conditions by forming colony of bacteria. Specific characteristic in biofilm formation is the availability of matrix layer, known as extracellular polymer substance. Treatment using antibiotics may lead bacteria to be to resistant. Other treatments to reduce microbial, like biofilm, can be performed by using photodynamic therapy. Successful of this kind of therapy is induced by penetration of light and photosensitizer into target cells. The sonodynamic therapy offers greater penetrating capability into tissues. This research aimed to use sonodynamic therapy in reducing biofilm. Moreover, it compares also the killing efficacy of photodynamic therapy, sonodynamic therapy, and the combination of both therapeutic schemes (known as sono-photodynamic) to achieve higher microbial killing efficacy. Samples used are Staphylococcus aureus biofilm. Treatments were divided into 4 groups, i.e. group under ultrasound treatment with variation of 5 power levels, group of light treatment with exposure of 75s, group of combined ultrasound-light with variation of ultrasound power levels, and group of combined lightultrasound with variation of ultrasound power levels. Results obtained for each treatment, expressed in % efficacy of log CFU/mL, showed that the treatment of photo-sonodynamic provides greater killing efficacy in comparison to either sonodynamic and sono-photodynamic. The photo-sonodynamic shows also greater efficacy to photodynamic. So combination of light-ultrasound (photo-sonodynamic) can effectively kill microbial biofilm. The combined therapy will provide even better efficacy using exogenous photosensitizer.