WorldWideScience

Sample records for soil textural zones

  1. Cokriging of Electromagnetic Induction Soil Electrical Conductivity Measurements and Soil Textural Properties to Demarcate Sub-field Management Zones for Precision Irrigation.

    Science.gov (United States)

    Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.

    2017-12-01

    There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each

  2. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates.

    Science.gov (United States)

    Fenton, O; Vero, S; Ibrahim, T G; Murphy, P N C; Sherriff, S C; Ó hUallacháin, D

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (t(T)) is divided into unsaturated (t(u)) and saturated (t(s)) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of t(T). In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of t(u) were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When t(u) estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from

  3. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates

    Science.gov (United States)

    Fenton, O.; Vero, S.; Ibrahim, T. G.; Murphy, P. N. C.; Sherriff, S. C.; Ó hUallacháin, D.

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (tT) is divided into unsaturated (tu) and saturated (ts) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of tT. In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of tu were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When tu estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of

  4. Intrinsic Problems In Determination Of Soil Texture In Calcareous Soils Of Arid Zones

    Directory of Open Access Journals (Sweden)

    Mozna A. Ahmed

    2017-08-01

    Full Text Available This study aimed at studying the effect of removal of CaCO3 on the texture of the soil profile and that of the control section in some Aridisols of the Sudan. Sixty soil profiles were sampled from Shendi area latitude1636 and longitude 33 48 River Nile State Sudan. These soils were analyzed for CaCO3 and 20 of these profiles were found to be of relatively appreciable calcareousness and were therefore selected for this study. The following three weighted soil textures were determined 1 before any removal of the CaCO3 Texture1 2 after the removal of CaCO3 Texture2 3 after amending the texture by adding the clay sized CaCO3 to the silt fraction Texture 3. Statistical analysis revealed significant differences among soil separates in the three textures except between clay of T2 and clay of T3 and among sand fractions in the three textures. That was not unexpected because the first texture included both mineral separates plus their equivalent size of CaCO3 the second texture included only the mineral separates in complete absence of CaCO3 while texture 3 was an amended texture. The change in the textural class amounted to 72 of the profiles. Statistical analysis in the weighted texture of the control section revealed that this texture was not affected except in two profiles. That could be attributed to the fact that the clay content of the soils of the study area did not fall at or near the boundary between any two major textural classes used in the Soil Taxonomy. The size of the CaCO3 was found in the order of clay size silt size sand size.

  5. Soil texture classification algorithm using RGB characteristics of soil images

    Science.gov (United States)

    Soil texture has an important influence on agriculture, affecting crop selection, movement of nutrients and water, soil electrical conductivity, and crop growth. Soil texture has traditionally been determined in the laboratory using pipette and hydrometer methods that require a considerable amount o...

  6. Impact of Soil Texture on Soil Ciliate Communities

    Science.gov (United States)

    Chau, J. F.; Brown, S.; Habtom, E.; Brinson, F.; Epps, M.; Scott, R.

    2014-12-01

    Soil water content and connectivity strongly influence microbial activities in soil, controlling access to nutrients and electron acceptors, and mediating interactions between microbes within and between trophic levels. These interactions occur at or below the pore scale, and are influenced by soil texture and structure, which determine the microscale architecture of soil pores. Soil protozoa are relatively understudied, especially given the strong control they exert on bacterial communities through predation. Here, ciliate communities in soils of contrasting textures were investigated. Two ciliate-specific primer sets targeting the 18S rRNA gene were used to amplify DNA extracted from eight soil samples collected from Sumter National Forest in western South Carolina. Primer sets 121F-384F-1147R (semi-nested) and 315F-959R were used to amplify soil ciliate DNA via polymerase chain reaction (PCR), and the resulting PCR products were analyzed by gel electrophoresis to obtain quantity and band size. Approximately two hundred ciliate 18S rRNA sequences were obtained were obtained from each of two contrasting soils. Sequences were aligned against the NCBI GenBank database for identification, and the taxonomic classification of best-matched sequences was determined. The ultimate goal of the work is to quantify changes in the ciliate community under short-timescale changes in hydrologic conditions for varying soil textures, elucidating dynamic responses to desiccation stress in major soil ciliate taxa.

  7. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.

    2010-08-15

    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture

  8. Associations between soil texture, soil water characteristics and earthworm populations of grassland

    DEFF Research Database (Denmark)

    Holmstrup, Martin; Lamandé, Mathieu; Torp, Søren Bent

    2011-01-01

    ) was not causally associated with the soil parameters studied. This indicates that there must be other causal factors associated with the abundance (and composition) of anecic worms that are not among the soil texture and structure parameters studied. On the other hand, soil texture (Coarse sand) was associated...

  9. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    Science.gov (United States)

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Interactions between soil texture, water, and nutrients control patterns of biocrusts abundance and structure

    Science.gov (United States)

    Young, Kristina; Bowker, Matthew; Reed, Sasha; Howell, Armin

    2017-04-01

    Heterogeneity in the abiotic environment structures biotic communities by controlling niche space and parameters. This has been widely observed and demonstrated in vascular plant and other aboveground communities. While soil organisms are presumably also strongly influenced by the physical and chemical dimensions of the edaphic environment, there are fewer studies linking the development, structure, productivity or function of surface soil communities to specific edaphic gradients. Here, we use biological soil crusts (biocrusts) as a model system to determine mechanisms regulating community structure of soil organisms. We chose soil texture to serve as an edaphic gradient because of soil texture's influence over biocrust distribution on a landscape level. We experimentally manipulated texture in constructed soil, and simultaneously manipulated two main outcomes of texture, water and nutrient availability, to determine the mechanism underlying texture's influence on biocrust abundance and structure. We grew biocrust communities from a field-sourced inoculum on four different soil textures, sieved from the same parent soil material, manipulating watering levels and nutrient additions across soil textures in a full-factorial design over a 5-month period of time. We measured abundance and structure of biocrusts over time, and measured two metrics of function, N2 fixation rates and soil stabilization, at the conclusion of the experiment. Our results showed finer soil textures resulted in faster biocrust community development and dominance by mosses, whereas coarser textures grew more slowly and had biocrust communities dominated by cyanobacteria and lichen. Additionally, coarser textured soils contained cyanobacterial filaments significantly deeper into the soil profile than fine textured soils. N2-fixation values increased with increasing moss cover and decreased with increasing cyanobacterial cover, however, the rate of change depended on soil texture and water amount

  11. "Textural analysis of multiparametric MRI detects transition zone prostate cancer".

    Science.gov (United States)

    Sidhu, Harbir S; Benigno, Salvatore; Ganeshan, Balaji; Dikaios, Nikos; Johnston, Edward W; Allen, Clare; Kirkham, Alex; Groves, Ashley M; Ahmed, Hashim U; Emberton, Mark; Taylor, Stuart A; Halligan, Steve; Punwani, Shonit

    2017-06-01

    To evaluate multiparametric-MRI (mpMRI) derived histogram textural-analysis parameters for detection of transition zone (TZ) prostatic tumour. Sixty-seven consecutive men with suspected prostate cancer underwent 1.5T mpMRI prior to template-mapping-biopsy (TPM). Twenty-six men had 'significant' TZ tumour. Two radiologists in consensus matched TPM to the single axial slice best depicting tumour, or largest TZ diameter for those with benign histology, to define single-slice whole TZ-regions-of-interest (ROIs). Textural-parameter differences between single-slice whole TZ-ROI containing significant tumour versus benign/insignificant tumour were analysed using Mann Whitney U test. Diagnostic accuracy was assessed by receiver operating characteristic area under curve (ROC-AUC) analysis cross-validated with leave-one-out (LOO) analysis. ADC kurtosis was significantly lower (p Textural features of the whole prostate TZ can discriminate significant prostatic cancer through reduced kurtosis of the ADC-histogram where significant tumour is included in TZ-ROI and reduced T1 entropy independent of tumour inclusion. • MR textural features of prostate transition zone may discriminate significant prostatic cancer. • Transition zone (TZ) containing significant tumour demonstrates a less peaked ADC histogram. • TZ containing significant tumour reveals higher post-contrast T1-weighted homogeneity. • The utility of MR texture analysis in prostate cancer merits further investigation.

  12. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations

    NARCIS (Netherlands)

    Bouma, T.J.; Bryla, D.R.

    2000-01-01

    Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil

  13. Soil texture and depth influence on the neutron probe calibration

    International Nuclear Information System (INIS)

    Santos, Reginaldo Ferreira; Carlesso, Reimar

    1998-01-01

    The neutron probe is an equipment used on determination of the soil water content, based on the fast neutron attenuation. Therefore, there is a calibration need in the field and, consequently, to verify the soil texture and depth influence for to determining the calibration curves in relation to the water content. The study was developed at Santa Maria's Federal University in a lisimeter group, protected from the rains with transparent plastic. There different soil textures, three depths (10, 30 and 50 cm from the soil surface) and four replicates were used. Linear regression equations between neutron counts and soil water contents were made. The results showed that there was interference of the texture and depth of the soil, analyzed jointly, on the calibration curves, and the observed and estimated values varied form o,02 to 0,06 cm3/cm3 of the soil water content and the correlation coefficients were 0,86 0,95 and 0,89 for clayray, franc-silt-clayey and franc-sandy, respectively. For soil texture and depth, analyzed separately, the differences among the values observed in the field and the estimated ones, varied from 0,0 to 0,02 cm3/cm3 soil water content and presented correlation coefficients between 0,97 and 1,0. (author)

  14. Soil salinization in different natural zones of intermontane depressions in Tuva

    Science.gov (United States)

    Chernousenko, G. I.; Kurbatskaya, S. S.

    2017-11-01

    Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.

  15. Soil texture derived from topography in North-eastern Amazonia

    OpenAIRE

    Laurent, François; Poccard-Chapuis, René; Plassin, Sophie; Pimentel Martinez, Gustavo

    2017-01-01

    We present a 1:100,000 scale soil texture map of Paragominas county (Pará, Brazil), covering 19,330 km2. The method allows rapid production of a soil texture map of a large area where the strength of a duricrust controls the relief. It is based on an easily accessible explanatory variable, topography, which is represented using a Digital Elevation Model. The method makes it possible to map the spatial distribution of the texture of the topsoil layer. Modelling was complemented by field observ...

  16. High-Resolution 3-D Mapping of Soil Texture in Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mette Balslev

    2013-01-01

    Soil texture which is spatially variable in nature, is an important soil physical property that governs most physical, chemical, biological, and hydrological processes in soils. Detailed information on soil texture variability both in vertical and lateral dimensions is crucial for proper crop...... and land management and environmental studies, especially in Denmark where mechanized agriculture covers two thirds of the land area. We modeled the continuous depth function of texture distribution from 1958 Danish soil profiles (up to a 2-m depth) using equal-area quadratic splines and predicted clay......, silt, fine sand, and coarse sand content at six standard soil depths of GlobalSoilMap project (0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm) via regression rules using the Cubist data mining tool. Seventeen environmental variables were used as predictors and their strength of prediction was also...

  17. Controls on deep drainage beneath the root soil zone in snowmelt-dominated environments

    Science.gov (United States)

    Hammond, J. C.; Harpold, A. A.; Kampf, S. K.

    2017-12-01

    Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and high latitude locations, yet we still lack a detailed understanding of how snowmelt is partitioned between the soil, deep drainage, and streamflow under a variety of soil, climate, and snow conditions. Here we use Hydrus 1-D simulations with historical inputs from five SNOTEL snow monitoring sites in each of three regions, Cascades, Sierra, and Southern Rockies, to investigate how inter-annual variability on water input rate and duration affects soil saturation and deep drainage. Each input scenario was run with three different soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also created artificial snowmelt scenarios to test how snowmelt intermittence affects deep drainage. Results indicate that precipitation is the strongest predictor (R2 = 0.83) of deep drainage below the root zone, with weaker relationships observed between deep drainage and snow persistence, peak snow water equivalent, and melt rate. The ratio of deep drainage to precipitation shows a stronger positive relationship to melt rate suggesting that a greater fraction of input becomes deep drainage at higher melt rates. For a given amount of precipitation, rapid, concentrated snowmelt may create greater deep drainage below the root zone than slower, intermittent melt. Deep drainage requires saturation below the root zone, so saturated hydraulic conductivity serves as a primary control on deep drainage magnitude. Deep drainage response to climate is mostly independent of soil texture because of its reliance on saturated conditions. Mean water year saturations of deep soil layers can predict deep drainage and may be a useful way to compare sites in soils with soil hydraulic porosities. The unit depth of surface runoff often is often greater than deep drainage at daily and annual timescales, as snowmelt exceeds infiltration capacity in near-surface soil layers

  18. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function

    Science.gov (United States)

    Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape

  19. Comparison of model microbial allocation parameters in soils of varying texture

    Science.gov (United States)

    Hagerty, S. B.; Slessarev, E.; Schimel, J.

    2017-12-01

    The soil microbial community decomposes the majority of carbon (C) inputs to the soil. However, not all of this C is respired—rather, a substantial portion of the carbon processed by microbes may remain stored in the soil. The balance between C storage and respiration is controlled by microbial turnover rates and C allocation strategies. These microbial community properties may depend on soil texture, which has the potential to influence both the nature and the fate of microbial necromass and extracellular products. To evaluate the role of texture on microbial turnover and C allocation, we sampled four soils from the University of California's Hastings Reserve that varied in texture (one silt loam, two sandy loam, and on clay soil), but support similar grassland plant communities. We added 14C- glucose to the soil and measured the concentration of the label in the carbon dioxide (CO2), microbial biomass, and extractable C pools over 7 weeks. The labeled biomass turned over the slowest in the clay soil; the concentration of labeled biomass was more than 1.5 times the concentration of the other soils after 8 weeks. The clay soil also had the lowest mineralization rate of the label, and mineralization slowed after two weeks. In contrast, in the sandier soils mineralization rates were higher and did not plateau until 5 weeks into the incubation period. We fit the 14C data to a microbial allocation model and estimated microbial parameters; assimilation efficiency, exudation, and biomass specific respiration and turnover for each soil. We compare these parameters across the soil texture gradient to assess the extent to which models may need to account for variability in microbial C allocation across soils of different texture. Our results suggest that microbial C turns over more slowly in high-clay soils than in sandy soils, and that C lost from microbial biomass is retained at higher rates in high-clay soils. Accounting for these differences in microbial allocation

  20. Nitrogen enrichment in runoff sediments as affected by soil texture in Beijing mountain area.

    Science.gov (United States)

    Yang, Yang; Ye, Zhihan; Liu, Baoyuan; Zeng, Xianqin; Fu, Suhua; Lu, Bingjun

    2014-02-01

    Enrichment ratio (ER) is widely used in nonpoint source pollution models to estimate the nutrient loss associated with soil erosion. The objective of this study was to determine the ER of total nitrogen (ERN) in the sediments eroded from the typical soils with varying soil textures in Beijing mountain area. Each of the four soils was packed into a 40 by 30 by 15 cm soil pan and received 40-min simulated rainfalls at the intensity of 90 mm h(-1) on five slopes. ERN for most sediments were above unity, indicating the common occurrence of nitrogen enrichment accompanied with soil erosion in Beijing mountain area. Soil texture was not the only factor that influenced N enrichment in this experiment since the ERN for the two fine-textured soils were not always lower. Soil properties such as soil structure might exert a more important influence in some circumstances. The selective erosion of clay particles was the main reason for N enrichment, as implied by the significant positive correlation between the ER of total nitrogen and clay fraction in eroded sediments. Significant regression equations between ERN and sediment yield were obtained for two pairs of soils, which were artificially categorized by soil texture. The one for fine-textured soils had greater intercept and more negative slope. Thus, the initially higher ERN would be lower than that for the other two soils with coarser texture once the sediment yield exceeded 629 kg ha(-1).

  1. Mapping the Soil Texture in the Heihe River Basin Based on Fuzzy Logic and Data Fusion

    Directory of Open Access Journals (Sweden)

    Ling Lu

    2017-07-01

    Full Text Available Mapping soil texture in a river basin is critically important for eco-hydrological studies and water resource management at the watershed scale. However, due to the scarcity of in situ observation of soil texture, it is very difficult to map the soil texture in high resolution using traditional methods. Here, we used an integrated method based on fuzzy logic theory and data fusion to map the soil texture in the Heihe River basin in an arid region of Northwest China, by combining in situ soil texture measurement data, environmental factors, a previous soil texture map, and other thematic maps. Considering the different landscape characteristics over the whole Heihe River basin, different mapping schemes have been used to extract the soil texture in the upstream, middle, and downstream areas of the Heihe River basin, respectively. The validation results indicate that the soil texture map achieved an accuracy of 69% for test data from the midstream area of the Heihe River basin, which represents a much higher accuracy than that of another existing soil map in the Heihe River basin. In addition, compared with the time-consuming and expensive traditional soil mapping method, this new method could ensure greater efficiency and a better representation of the explicitly spatial distribution of soil texture and can, therefore, satisfy the requirements of regional modeling.

  2. Soil Texture Aanalysis by Laser Diffraction – Standardisation Needed

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Palviainen, Marjo; Kjoenaas, O. Janne

    2017-01-01

    sedimentation and sieving methods have been well-defined. From literature and a mini-survey, we know already that laser diffraction is a commonly used analytical method for soil PSD determination in scientific environmental studies that involve soils. A body of literature has documented that colloid......-sized fraction results obtained by laser diffraction analysis of fine-textured soil samples are not comparable to those obtained with sedimentation and sieving methods, when translating to the traditional particle size limits clay, silt and sand. Also, operating procedures for pretreatment of soil samples...... content. We conclude that PSD’s obtained by the laser diffraction method are repeatable and mostly reproducible given standardised pretreatment. Translation to texture class using traditional separates does not work well, and more work and new PTF’s for soils are needed that can translate a laser...

  3. Soil compaction during harvest operations in five tropical soils with different textures under eucalyptus forests

    Directory of Open Access Journals (Sweden)

    Paula Cristina Caruana Martins

    Full Text Available ABSTRACT Traffic of farm machinery during harvest and logging operations has been identified as the main source of soil structure degradation in forestry activity. Soil susceptibility to compaction and the amount of compaction caused by each forest harvest operation differs according to a number of factors (such as soil strength, soil texture, kind of equipment, traffic intensity, among many others, what requires the adequate assessment of soil compaction under different traffic conditions. The objectives of this study were to determine the susceptibility to compaction of five soil classes with different textures under eucalyptus forests based on their load bearing capacity models; and to determine, from these models and the precompression stresses obtained after harvest operations, the effect of traffic intensity with different equipment in the occurrence of soil compaction. Undisturbed soil samples were collected before and after harvest operations, being then subjected to uniaxial compression tests to determine their precompression stress. The coarse-textured soils were less resistant and endured greater soil compaction. In the clayey LVd2, traffic intensity below four Forwarder passes limited compaction to a third of the samples, whereas in the sandy loam PVd all samples from the 0-3 cm layer were compacted regardless of traffic intensity. The Feller Buncher and the Clambunk presented a high potential to cause soil compaction even with only one or two passes. The use of soil load bearing capacity models and precompression stress determined after harvest and logging operations allowed insight into the soil compaction process in forestry soils.

  4. Soil texture drives responses of soil respiration to precipitation pulses in the sonoran desert: Implications for climate change

    Science.gov (United States)

    Cable, J.M.; Ogle, K.; Williams, D.G.; Weltzin, J.F.; Huxman, T. E.

    2008-01-01

    Climate change predictions for the desert southwestern U.S. are for shifts in precipitation patterns. The impacts of climate change may be significant, because desert soil processes are strongly controlled by precipitation inputs ('pulses') via their effect on soil water availability. This study examined the response of soil respiration-an important biological process that affects soil carbon (C) storage-to variation in pulses representative of climate change scenarios for the Sonoran Desert. Because deserts are mosaics of different plant cover types and soil textures-which create patchiness in soil respiration-we examined how these landscape characteristics interact to affect the response of soil respiration to pulses. Pulses were applied to experimental plots of bare and vegetated soil on contrasting soil textures typical of Sonoran Desert grasslands. The data were analyzed within a Bayesian framework to: (1) determine pulse size and antecedent moisture (soil moisture prior to the pulse) effects on soil respiration, (2) quantify soil texture (coarse vs. fine) and cover type (bare vs. vegetated) effects on the response of soil respiration and its components (plant vs. microbial) to pulses, and (3) explore the relationship between long-term variation in pulse regimes and seasonal soil respiration. Regarding objective (1), larger pulses resulted in higher respiration rates, particularly from vegetated fine-textured soil, and dry antecedent conditions amplified respiration responses to pulses (wet antecedent conditions dampened the pulse response). Regarding (2), autotrophic (plant) activity was a significant source (???60%) of respiration and was more sensitive to pulses on coarse- versus fine-textured soils. The sensitivity of heterotrophic (microbial) respiration to pulses was highly dependent on antecedent soil water. Regarding (3), seasonal soil respiration was predicted to increase with both growing season precipitation and mean pulse size (but only for pulses

  5. Leaching of Contamination from Stabilization/Solidification Remediated Soils of Different Texture

    Science.gov (United States)

    Burlakovs, Juris; Kasparinskis, Raimonds; Klavins, Maris

    2012-09-01

    Development of soil and groundwater remediation technologies is a matter of great importance to eliminate historically and currently contaminated sites. Stabilization/solidification (S/S) refers to binding of waste contaminants to a more chemically stable form and thus diminishing leaching of contamination. It can be performed using cement with or without additives in order to stabilize and solidify soil with the contamination in matrix. A series of experiments were done to determine leaching properties of spiked soils of different texture bound with cement. Results of experiments showed, that soil texture (content of sand, silt and clay particles) affects the leaching of heavy metals from stabilized soils.

  6. Texture and organic carbon contents do not impact amount of carbon protected in Malagasy soils

    Directory of Open Access Journals (Sweden)

    Tantely Razafimbelo

    2013-06-01

    Full Text Available Soil organic carbon (SOC is usually said to be well correlated with soil texture and soil aggregation. These relations generally suggest a physical and physicochemical protection of SOC within soil aggregates and on soil fine particles, respectively. Because there are few experimental evidences of these relations on tropical soils, we tested the relations of soil variables (SOC and soil aggregate contents, and soil texture with the amount of SOC physically protected in aggregates on a set of 15 Malagasy soils. The soil texture, the SOC and water stable macroaggregate (MA contents and the amount of SOC physically protected inside aggregates, calculated as the difference of C mineralized by crushed and intact aggregates, were characterized. The relation between these variables was established. SOC content was significantly correlated with soil texture (clay+fine silt fraction and with soil MA amount while protected SOC content was not correlated with soil MA amount. This lack of correlation might be attributed to the highest importance of physicochemical protection of SOC which is demonstrated by the positive relation between SOC and clay+fine silt fraction.

  7. Comparison of germination and seed vigor of sunflower in two contaminated soils of different texture

    Science.gov (United States)

    Zhao, Xin; Han, Jaemaro; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Phytoremediation as an emerging low-cost and ecologically friendly alternative to the conventional soil remediation technologies has gained a great deal of attention and into lots of research. As a kind of the methods that use of green plants to remediate heavy metals contaminated soils, the early growth status of plant seeds in the contaminated environmental directly affects the effect of phytoremediation. Germination test in the water (aqueous solution of heavy metal) is generally used for assessing heavy metal phytotoxicity and possibility of plant growth, but there is a limit. Because soil is commonly main target of phytoremediation, not the water. The bioavailability of heavy metals in the soil also depends on the texture. So soil texture is an important factor of phytoremediation effect. Sunflower is the representative species which have good tolerance to various heavy metals; furthermore, the seeds of sunflower can be used as the raw-material for producing bio-diesel. The objectives of this research were to investigate germination rate of sunflowers in various heavy metal contaminated soils and to compare the seedling vigor index (SVI) of sunflower in two contaminated soils of different texture. Sunflower (Helianthusannuus L.) seeds were obtained from a commercial market. In order to prove the soil texture effect on heavy metal contaminated soil, germination tests in soil were conducted with two different types of soil texture (i.e., loam soil and sandy loam soil) classified by soil textural triangle (defined by USDA) including representative soil texture of Korea. Germination tests in soil were conducted using KS I ISO 11260-1 (2005) for reference that sunflower seeds were incubated for 7 days in dark at 25 ± 1 Celsius degree. The target heavy metals are Nickel (Ni) and Zinc (Zn). The Ni and Zn concentrations were 0, 10, 50, 100, 200, 300, 500 mg-Ni/kg-dry soil, and 0, 10, 50, 100, 300, 500, 900 mg-Zn/kg-dry soil, respectively. After germination test for 7

  8. Relationship between soil texture and soil organic matter content on mined-out lands in Berau, East Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    WAHJUNI HARTATI

    2016-01-01

    Full Text Available Abstract. Hartati, Sudarmadji T. 2016. Relationship between soil texture and soil organic matter content on mined-out lands in Berau, East Kalimantan, Indonesia. Nusantara Bioscience 8: 83-88. Post open pit mining may in most cases leave unarable and degraded lands due to heavy soil disturbances and therefore reclamation efforts of such area should be addressed on the revitalization of the soil functions for plant growth. The capability of tropical humid soils, including post open pit mining soils, to support plant growth is largely determined by their organic matter content-nutrient pool, soil aggregation, microbial activity, etc. However, soil organic matter content is, to large extent, governed by the soil clay content which is most likely permanent. This may imply that the soil texture couple with soil organic matter content could be a sound measurement to assess the recovery stages of the mined-out lands in term of soil functions for plant growth. This research was conducted in three sites of reclamation area in Berau, East Kalimantan. Soil texture varied from moderately fine (35-40% clay to fine (40-50% clay and very fine (>50% clay for the BMO, SMO and LMO sites respectively. Soil clay eluviations were found in both of SMO (8 years old revegetation and BMO (>12 years old revegetation sites but not in LMO site. Soil organic matter content ranged from very low (12 and 8 years old revegetation when the organic matter content reaching its maximum. The very fine soil texture does not show clay eluviations process until > 12 years old revegetation even containing the highest organic C content and reaches its maximum at 8-10 years old revegetation.

  9. Soil texture and climatc conditions for biocrust growth limitation: a meta analysis

    Science.gov (United States)

    Fischer, Thomas; Subbotina, Mariia

    2015-04-01

    Along with afforestation, attempts have been made to combat desertification by managing soil crusts, and is has been reported that recovery rates of biocrusts are dependent on many factors, including the type, severity, and extent of disturbance; structure of the vascular plant community; conditions of adjoining substrates; availability of inoculation material; and climate during and after disturbance (Belnap & Eldridge 2001). Because biological soil crusts are known to be more stable on and to prefer fine substrates (Belnap 2001), the question arises as to how successful crust management practices can be applied to coarser soil. In previous studies we observed similar crust biomasses on finer soils under arid and on coarser soils under temperate conditions. We hypothesized that the higher water holding capacity of finer substrates would favor crust development, and that the amount of silt and clay in the substrate that is required for enhanced crust development would vary with changes in climatic conditions. In a global meta study, climatic and soil texture threshold values promoting BSC growth were derived. While examining literature sources, it became evident that the amount of studies to be incorporated into this meta analysis was reversely related to the amount of common environmental parameters they share. We selected annual mean precipitaion, mean temperature and the amount of silt and clay as driving variables for crust growth. Response variable was the "relative crust biomass", which was computed per literature source as the ratio between each individual crust biomass value of the given study to the study maximum value reported. We distinguished lichen, green algal, cyanobacterial and moss crusts. To quantify threshold conditions at which crust biomass responded to differences in texture and climate, we (I) determined correlations between bioclimatic variables, (II) calculated linear models to determine the effect of typical climatic variables with soil

  10. Effect of soil texture on phytoremediation of arsenic-contaminated soils

    Science.gov (United States)

    Pallud, C. E.; Matzen, S. L.; Olson, A.

    2015-12-01

    Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were

  11. Spatial Variability of Soil-Water Storage in the Southern Sierra Critical Zone Observatory: Measurement and Prediction

    Science.gov (United States)

    Oroza, C.; Bales, R. C.; Zheng, Z.; Glaser, S. D.

    2017-12-01

    Predicting the spatial distribution of soil moisture in mountain environments is confounded by multiple factors, including complex topography, spatial variably of soil texture, sub-surface flow paths, and snow-soil interactions. While remote-sensing tools such as passive-microwave monitoring can measure spatial variability of soil moisture, they only capture near-surface soil layers. Large-scale sensor networks are increasingly providing soil-moisture measurements at high temporal resolution across a broader range of depths than are accessible from remote sensing. It may be possible to combine these in-situ measurements with high-resolution LIDAR topography and canopy cover to estimate the spatial distribution of soil moisture at high spatial resolution at multiple depths. We study the feasibility of this approach using six years (2009-2014) of daily volumetric water content measurements at 10-, 30-, and 60-cm depths from the Southern Sierra Critical Zone Observatory. A non-parametric, multivariate regression algorithm, Random Forest, was used to predict the spatial distribution of depth-integrated soil-water storage, based on the in-situ measurements and a combination of node attributes (topographic wetness, northness, elevation, soil texture, and location with respect to canopy cover). We observe predictable patterns of predictor accuracy and independent variable ranking during the six-year study period. Predictor accuracy is highest during the snow-cover and early recession periods but declines during the dry period. Soil texture has consistently high feature importance. Other landscape attributes exhibit seasonal trends: northness peaks during the wet-up period, and elevation and topographic-wetness index peak during the recession and dry period, respectively.

  12. Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer.

    Science.gov (United States)

    Bates, Anthony; Miles, Kenneth

    2017-12-01

    To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at prostate cancer. • Prostate transition zone (TZ) MR texture analysis may assist in prostate cancer detection. • Abnormal transition zone PSMA expression correlates with altered texture on T2-weighted MR. • TZ with abnormal PSMA expression demonstrates significantly reduced MI, SD and MPP.

  13. Phosphorus leaching in a soil textural gradient

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2009-01-01

    Texture is a major factor influencing mobilization and transport of P in soil owing partly to differences in adsorptive properties, and partly to differences in pore-size distribution and pore organization. Slurry application strategies may be important mitigation measures for reducing agricultur...

  14. Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica

    Science.gov (United States)

    Currier, R. M.

    2017-12-01

    In the McMurdo Dry Valleys of Antarctica, a Jurassic aged dolerite sill induced partial melting of granite in the shallow crust. The melt zone can be traced in full, from high degrees of melting (>60%) along the dolerite contact, to no apparent signs of melting, 10s of meters above the contact. Within this melt zone, the well-known rapakivi texture is found, arrested in various stages of development. High above the contact, and at low degrees of melting, K-feldspar crystals are slightly rounded and unmantled. In the lower half of the melt zone, mantles of cellular textured plagioclase appear on K-feldspar, and thicken towards the contact heat source. At the highest degrees of melting, cellular-textured plagioclase completely replaces restitic K-feldspar. Because of the complete exposure and intact context, the leading models of rapakivi texture formation can be tested against this system. The previously proposed mechanisms of subisothermal decompression, magma-mixing, and hydrothermal exsolution all fail to adequately describe rapakivi generation in this melt zone. Preferred here is a closed system model that invokes the production of a heterogeneous, disequilibrium melt through rapid heating, followed by calcium and sodium rich melt reacting in a peritectic fashion with restitic K-feldspar crystals. This peritectic reaction results in the production of plagioclase of andesine-oligoclase composition—which is consistent with not just mantles in the melt zone, but globally as well. The thickness of the mantle is diffusion limited, and thus a measure of the diffusive length scale of sodium and calcium over the time scale of melting. Thermal modeling provides a time scale of melting that is consistent with the thickness of observed mantles. Lastly, the distribution of mantled feldspars is highly ordered in this melt zone, but if it were mobilized and homogenized—mixing together cellular plagioclase, mantled feldspars, and unmantled feldspars—the result would be

  15. Dynamics And Remediation Of Fine Textured Soils And Ground Water Contaminated With Salts And Chlorinated Organic Compounds

    Science.gov (United States)

    Murata, Alison; Naeth, M. Anne

    2017-04-01

    Soil and ground water are frequently contaminated by industrial activities, posing a potential risk to human and environmental health and limiting land use. Proper site management and remediation treatments can return contaminated areas to safe and useful states. Most remediation research focuses on single contaminants in coarse and medium textured soils. Contaminant mixtures are common and make remediation efforts complex due to differing chemical properties. Remediation in fine textured soils is difficult since their low hydraulic conductivities hinder addition of amendments into and removal of contaminated media out of the impacted zone. The objective of this research is to assess contaminant dynamics and potential remediation techniques for fine textured soil and ground water impacted by multiple contaminants in Edmonton, Alberta, Canada. The University of Alberta's Ellerslie Waste Management Facility was used to process liquid laboratory waste from 1972 to 2007. A waste water pond leak prior to 1984 resulted in salt and chlorinated organic compound contamination. An extensive annual ground water monitoring data set for the site is available since 1988. Analytical parameters include pH, electrical conductivity, major ions, volatile organic compounds, and metals. Data have been compared to Alberta Tier 1 Soil and Groundwater Remediation Guidelines to identify exceedances. The parameters of greatest concern, based on magnitude and frequency of detection, are electrical conductivity, sodium, chloride, chloroform, and dichloromethane. Spatial analyses of the data show that the contamination is focused in and down gradient of the former waste water pond. Temporal analyses show different trends depending on monitoring well location. Laboratory column experiments were used to assess leaching as a potential treatment for salt contamination in fine textured soils. Saturated hydraulic conductivity was measured for seven soils from two depth intervals with or without

  16. Responses of plant available water and forest productivity to variably layered coarse textured soils

    Science.gov (United States)

    Huang, Mingbin; Barbour, Lee; Elshorbagy, Amin; Si, Bing; Zettl, Julie

    2010-05-01

    Reforestation is a primary end use for reconstructed soils following oil sands mining in northern Alberta, Canada. Limited soil water conditions strongly restrict plant growth. Previous research has shown that layering of sandy soils can produce enhanced water availability for plant growth; however, the effect of gradation on these enhancements is not well defined. The objective of this study was to evaluate the effect of soil texture (gradation and layering) on plant available water and consequently on forest productivity for reclaimed coarse textured soils. A previously validated system dynamics (SD) model of soil moisture dynamics was coupled with ecophysiological and biogeochemical processes model, Biome-BGC-SD, to simulate forest dynamics for different soil profiles. These profiles included contrasting 50 cm textural layers of finer sand overlying coarser sand in which the sand layers had either a well graded or uniform soil texture. These profiles were compared to uniform profiles of the same sands. Three tree species of jack pine (Pinus banksiana Lamb.), white spruce (Picea glauce Voss.), and trembling aspen (Populus tremuloides Michx.) were simulated using a 50 year climatic data base from northern Alberta. Available water holding capacity (AWHC) was used to identify soil moisture regime, and leaf area index (LAI) and net primary production (NPP) were used as indices of forest productivity. Published physiological parameters were used in the Biome-BGC-SD model. Relative productivity was assessed by comparing model predictions to the measured above-ground biomass dynamics for the three tree species, and was then used to study the responses of forest leaf area index and potential productivity to AWHC on different soil profiles. Simulated results indicated soil layering could significantly increase AWHC in the 1-m profile for coarse textured soils. This enhanced AWHC could result in an increase in forest LAI and NPP. The increased extent varied with soil

  17. Textures of the soils and rocks at Gusev crater from Spirit's Microscopic Imager

    DEFF Research Database (Denmark)

    Herkenhoff, K.E.; Squyres, S.W.; Arvidson, R.

    2004-01-01

    The Microscopic Imager on the Spirit rover analyzed the textures of the soil and rocks at Gusev crater on Mars at a resolution of 100 micrometers. Weakly bound agglomerates of dust are present in the soil near the Columbia Memorial Station. Some of the brushed or abraded rock surfaces show igneous...... textures and evidence for alteration rinds, coatings, and veins consistent with secondary mineralization. The rock textures are consistent with a volcanic origin and subsequent alteration and/or weathering by impact events, wind, and possibly water....

  18. Soil texture analysis revisited: Removal of organic matter matters more than ever

    Science.gov (United States)

    Schjønning, Per; Watts, Christopher W.; Christensen, Bent T.; Munkholm, Lars J.

    2017-01-01

    Exact estimates of soil clay (<2 μm) and silt (2–20 μm) contents are crucial as these size fractions impact key soil functions, and as pedotransfer concepts based on clay and silt contents are becoming increasingly abundant. We examined the effect of removing soil organic matter (SOM) by H2O2 before soil dispersion and determination of clay and silt. Soil samples with gradients in SOM were retrieved from three long-term field experiments each with uniform soil mineralogy and texture. For soils with less than 2 g C 100 g-1 minerals, clay estimates were little affected by SOM. Above this threshold, underestimation of clay increased dramatically with increasing SOM content. Silt contents were systematically overestimated when SOM was not removed; no lower SOM threshold was found for silt, but the overestimation was more pronounced for finer textured soils. When exact estimates of soil particles <20 μm are needed, SOM should always be removed before soil dispersion. PMID:28542416

  19. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates.

    Science.gov (United States)

    Vero, S E; Ibrahim, T G; Creamer, R E; Grant, J; Healy, M G; Henry, T; Kramers, G; Richards, K G; Fenton, O

    2014-12-01

    The true efficacy of a programme of agricultural mitigation measures within a catchment to improve water quality can be determined only after a certain hydrologic time lag period (subsequent to implementation) has elapsed. As the biophysical response to policy is not synchronous, accurate estimates of total time lag (unsaturated and saturated) become critical to manage the expectations of policy makers. The estimation of the vertical unsaturated zone component of time lag is vital as it indicates early trends (initial breakthrough), bulk (centre of mass) and total (Exit) travel times. Typically, estimation of time lag through the unsaturated zone is poor, due to the lack of site specific soil physical data, or by assuming saturated conditions. Numerical models (e.g. Hydrus 1D) enable estimates of time lag with varied levels of input data. The current study examines the consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates using simulated and actual soil profiles. Results indicated that: greater temporal resolution (from daily to hourly) of meteorological data was more critical as the saturated hydraulic conductivity of the soil decreased; high clay content soils failed to converge reflecting prevalence of lateral component as a contaminant pathway; elucidation of soil hydraulic properties was influenced by the complexity of soil physical data employed (textural menu, ROSETTA, full and partial soil water characteristic curves), which consequently affected time lag ranges; as the importance of the unsaturated zone increases with respect to total travel times the requirements for high complexity/resolution input data become greater. The methodology presented herein demonstrates that decisions made regarding input data and landscape position will have consequences for the estimated range of vertical travel times. Insufficiencies or inaccuracies regarding such input data can therefore mislead policy makers regarding

  20. The Evaluation of Basal Respiration for Various Soil Textures in Ecologically Sensitive Area

    Science.gov (United States)

    Huličová, P.; Kotorová, D.; Fazekašová, D.; Hynšt, J.

    2017-10-01

    The present contribution was focused on monitoring changes in the soil basal respiration in different textures of soil in the dry polder Beša. The research was conducted between 2012 and 2014 on soil type Fluvisol locations on three soil textures: clay - loam soil, clayey soil and clay soil in three soil depths. The basal respiration (BR) has been determine by soil CO2 production measuring from incubated soil samples in serum bottles in laboratory condition. Release Co2 has been analysed by gas chromatography. Content of clay particles were in the range 52.18 % to 81.31%, indicating the high difference between the minimum and maximum content. By using of multiple LSD-test we recorded statistically significant impact of clay on basal respiration. Results confirm the values of basal respiration with the depth of the soil profile decreased.

  1. Gamma-ray beam attenuation to assess the influence of soil texture on structure deformation

    International Nuclear Information System (INIS)

    Pires, L.F.; Bacchi, O.O.S.; Dias, N.M.P.

    2006-01-01

    Gamma-ray beam attenuation is a non-invasive technique that permits analysis of soil porosity without disturbing the region of interest of the core sample. The technique has as additional advantage to allow measurements point by point on a millimetric scale in contrast to other methodologies that are invasive and analyze the soil properties in the bulk sample volume. Soil porosity can be used as an important parameter to quantify soil structural damages, which affect soil aeration, water movement and retention. In this study, porosities of three soils different in texture were measured at various positions in order to analyze the impact of the sampling procedure on the structure of each particular soil texture. The gamma-ray attenuation system consisted of an 241 Am radioactive source having an activity of 3.7 GBq, collimated with cylindrical lead collimators of 2 mm diameter. The results obtained show the presence of dense regions near the edges of samples and that different soil textures can suffer distinct deformations at sampling. (author)

  2. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem.

    Science.gov (United States)

    Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme

    2000-01-01

    Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...

  3. Water retention and availability in soils of the State of Santa Catarina-Brazil: effect of textural classes, soil classes and lithology

    Directory of Open Access Journals (Sweden)

    André da Costa

    2013-12-01

    Full Text Available The retention and availability of water in the soil vary according to the soil characteristics and determine plant growth. Thus, the aim of this study was to evaluate water retention and availability in the soils of the State of Santa Catarina, Brazil, according to the textural class, soil class and lithology. The surface and subsurface horizons of 44 profiles were sampled in different regions of the State and different cover crops to determine field capacity, permanent wilting point, available water content, particle size, and organic matter content. Water retention and availability between the horizons were compared in a mixed model, considering the textural classes, the soil classes and lithology as fixed factors and profiles as random factors. It may be concluded that water retention is greater in silty or clayey soils and that the organic matter content is higher, especially in Humic Cambisols, Nitisols and Ferralsol developed from igneous or sedimentary rocks. Water availability is greater in loam-textured soils, with high organic matter content, especially in soils of humic character. It is lower in the sandy texture class, especially in Arenosols formed from recent alluvial deposits or in gravelly soils derived from granite. The greater water availability in the surface horizons, with more organic matter than in the subsurface layers, illustrates the importance of organic matter for water retention and availability.

  4. Texture classification of vegetation cover in high altitude wetlands zone

    International Nuclear Information System (INIS)

    Wentao, Zou; Bingfang, Wu; Hongbo, Ju; Hua, Liu

    2014-01-01

    The aim of this study was to investigate the utility of datasets composed of texture measures and other features for the classification of vegetation cover, specifically wetlands. QUEST decision tree classifier was applied to a SPOT-5 image sub-scene covering the typical wetlands area in Three River Sources region in Qinghai province, China. The dataset used for the classification comprised of: (1) spectral data and the components of principal component analysis; (2) texture measures derived from pixel basis; (3) DEM and other ancillary data covering the research area. Image textures is an important characteristic of remote sensing images; it can represent spatial variations with spectral brightness in digital numbers. When the spectral information is not enough to separate the different land covers, the texture information can be used to increase the classification accuracy. The texture measures used in this study were calculated from GLCM (Gray level Co-occurrence Matrix); eight frequently used measures were chosen to conduct the classification procedure. The results showed that variance, mean and entropy calculated by GLCM with a 9*9 size window were effective in distinguishing different vegetation types in wetlands zone. The overall accuracy of this method was 84.19% and the Kappa coefficient was 0.8261. The result indicated that the introduction of texture measures can improve the overall accuracy by 12.05% and the overall kappa coefficient by 0.1407 compared with the result using spectral and ancillary data

  5. A universal meteorological method to identify potential risk of wind erosion on heavy-textured soils

    Directory of Open Access Journals (Sweden)

    Středová Hana

    2015-06-01

    Full Text Available The climate of Central Europe, mainly winter seasons with no snow cover at lower altitudes and a spring drought as well, might cause erosion events on heavy-textured soils. The aim of this paper is to define a universal method to identify the potential risk of wind erosion on heavy-textured soils. The categorization of potential wind erosion risk due to meteorological conditions is based on: (i an evaluation of the number of freeze-thaw episodes forming bare soil surfaces during the cold period of year; and (ii, an evaluation of the number of days with wet soil surfaces during the cold period of year. In the period 2001–2012 (from November to March, episodes with temperature changes from positive to negative and vice versa (thaw-freeze and freeze-thaw cycles and the effects of wet soil surfaces in connection with aggregate disintegration, are identified. The data are spatially interpolated by GIS tools for areas in the Czech Republic with heavy-textured soils. Blending critical categories is used to locate potential risks. The level of risk is divided into six classes. Those areas identified as potentially most vulnerable are the same localities where the highest number of erosive episodes on heavy-textured soils was documented.

  6. Field tracer investigation of unsaturated zone flow paths and mechanisms in agricultural soils of northwestern Mississippi, USA

    Science.gov (United States)

    Perkins, K.S.; Nimmo, J.R.; Rose, C.E.; Coupe, R.H.

    2011-01-01

    In many farmed areas, intensive application of agricultural chemicals and withdrawal of groundwater for irrigation have led to water quality and supply issues. Unsaturated-zone processes, including preferential flow, play a major role in these effects but are not well understood. In the Bogue Phalia basin, an intensely agricultural area in the Delta region of northwestern Mississippi, the fine-textured soils often exhibit surface ponding and runoff after irrigation and rainfall as well as extensive surface cracking during prolonged dry periods. Fields are typically land-formed to promote surface flow into drainage ditches and streams that feed into larger river ecosystems. Downward flow of water below the root zone is considered minimal; regional groundwater models predict only 5% or less of precipitation recharges the heavily used alluvial aquifer. In this study transport mechanisms within and below the root zone of a fallow soybean field were assessed by performing a 2-m ring infiltration test with tracers and subsurface monitoring instruments. Seven months after tracer application, 48 continuous cores were collected for tracer extraction to define the extent of water movement and quantify preferential flow using a mass-balance approach. Vertical water movement was rapid below the pond indicating the importance of vertical preferential flow paths in the shallow unsaturated zone, especially to depths where agricultural disturbance occurs. Lateral flow of water at shallow depths was extensive and spatially non-uniform, reaching up to 10. m from the pond within 2. months. Within 1. month, the wetting front reached a textural boundary at 4-5. m between the fine-textured soil and sandy alluvium, now a potential capillary barrier which, prior to extensive irrigation withdrawals, was below the water table. Within 10. weeks, tracer was detectable at the water table which is presently about 12. m below land surface. Results indicate that 43% of percolation may be through

  7. Moisture and textural variations in unsaturated soils/sediments near the Hanford Wye barricade

    International Nuclear Information System (INIS)

    Heller, P.R.; Gee, G.W.; Myers, D.A.

    1985-03-01

    During November and December 1983, soil samples were collected by Pacific Northwest Laboratory for hydrologic characterization of the partially saturated (vadose) zone sediments from five wells drilled near the Hanford Wye barricade, about 15 km northwest of Richland, Washington. The samples were taken from each of five boreholes in 1.5-m segments down to the water table or to a depth where further drilling became impossible, whichever was deeper. The samples were collected and handled in such a manner as to minimize water loss through evaporation. The field moisture content was determined for each sample, and for three of the five boreholes the water potential at the field moisture content was also measured. Other characterization included textural analysis, water retention characteristics, hydraulic conductivity, and soil chemistry. From the laboratory data, travel time (i.e., the time necessary for water to move a distance of 43 m, from the soil surface to the ground water) estimates were calculated: they range from 600 years for annual water influx rates that ranged from 0.5 to 5.0 cm/yr. The soil properties determined in this study will aid in modeling the transport of water and chemicals (e.g., radionuclides) to the ground water at the Hanford site

  8. Crop residue decomposition, residual soil organic matter and nitrogen mineralization in arable soils with contrasting textures

    NARCIS (Netherlands)

    Matus, F.J.

    1994-01-01

    To evaluate the significance of cropping, soil texture and soil structure for the decomposition of 14C- and 15N-labelled crop residues, a study was conducted in a sand and a

  9. Saturated hydraulic conductivity of US soils grouped according textural class and bulk density

    Science.gov (United States)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  10. [Influence of a new phosphoramide urease inhibitor on urea-N transformation in different texture soil].

    Science.gov (United States)

    Zhou, Xuan; Wu, Liang Huan; Dai, Feng

    2016-12-01

    Addition of urease inhibitors is one of the important measures to increase nitrogen (N) use efficiency of crop, due to retardant of urea hydrolysis and reduction of ammonia volatilization loss. An incubation experiment was conducted to investigate the urease inhibition effect of a new phosphoramide urease inhibitor, NPPT (N-(n-propyl) thiophosphoric triamide) in different texture soils under dark condition at 25 ℃, and NBPT (N-(n-butyl) thiophosphoric triamide) was obtained to compare the inhibition effect on urease in different soil textures by different dosages of urea adding. Results showed that the effective reaction time of urea was less than 9 d in the loamy and clay soil. Addition of inhibitors for retardation of urea hydrolysis was more than 3 d. In sandy soil, urea decomposition was relatively slow, and adding inhibitor significantly inhibited soil urease acti-vity, and reduced NH 4 + -N content. During the incubation time, the inhibition effect of high dosage urea in the soil was better than that of low dosage. At day 6, the urease inhibition rate of NBPT and NPPT (N 250 mg·kg -1 ) were 56.3% and 53.0% in sandy soil, 0.04% and 0.3% in loamy soil, 4.1% and 6.2% in clay soil; the urease inhibition rate of NBPT and NPPT (N 500 mg·kg -1 ) were 59.4% and 65.8% in sandy soil, 14.5% and 15.1% in loamy soil, 49.1% and 48.1% in clay soil. The urease inhibition effects in different texture soil were in order of sandy soil > clay soil> loamy soil. The soil NH 4 + -N content by different inhibitors during incubation time increased at first and then decreased, while soil NO 3 - -N content and apparent nitrification rate both showed rising trends. Compared with urea treatment, addition of urease inhibitors (NBPT and NPPT) significantly increased urea-N left in the soil and reduced NH 4 + -N content. In short, new urease inhibitor NPPT in different texture is an effective urease inhibitor.

  11. Interactions between Soil Texture and Placement of Dairy Slurry Application

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 μm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam...... physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil...

  12. Quantifying the ability of environmental parameters to predict soil texture fractions using regression-tree model with GIS and LIDAR data

    DEFF Research Database (Denmark)

    Greve, Mogens Humlekrog; Bou Kheir, Rania; Greve, Mette Balslev

    2012-01-01

    Soil texture is an important soil characteristic that drives crop production and field management, and is the basis for environmental monitoring (including soil quality and sustainability, hydrological and ecological processes, and climate change simulations). The combination of coarse sand, fine...... sand, silt, and clay in soil determines its textural classification. This study used Geographic Information Systems (GIS) and regression-tree modeling to precisely quantify the relationships between the soil texture fractions and different environmental parameters on a national scale, and to detect...... precipitation, seasonal precipitation to statistically explain soil texture fractions field/laboratory measurements (45,224 sampling sites) in the area of interest (Denmark). The developed strongest relationships were associated with clay and silt, variance being equal to 60%, followed by coarse sand (54...

  13. Soil texture analysis by laser diffraction - standardization needed

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Palviainen, M.; Kjønaas, O. Janne

    2017-01-01

    Soil texture is a central soil quality property. Laser diffraction (LD) for determination of particle size distribution (PSD) is now widespread due to easy analysis and low cost. However, pretreatment methods and interpretation of the resulting soil PSD’s are not standardized. Comparison of LD data...... with sedimentation and sieving data may cause misinterpretation and confusion. In literature that reports PSD’s based on LD, pretreatment methods, operating procedures and data methods are often underreported or not reported, although literature stressing the importance exists (e.g. Konert and Vandenberghe, 1997...... and many newer; ISO 13320:2009). PSD uncertainty caused by pretreatments and PSD bias caused by plate-shaped clay particles still calls for more method standardization work. If LD is used more generally, new pedotransfer functions for other soil properties (e.g water retention) based on sieving...

  14. Estimating spatially distributed soil texture using time series of thermal remote sensing - a case study in central Europe

    Science.gov (United States)

    Müller, Benjamin; Bernhardt, Matthias; Jackisch, Conrad; Schulz, Karsten

    2016-09-01

    For understanding water and solute transport processes, knowledge about the respective hydraulic properties is necessary. Commonly, hydraulic parameters are estimated via pedo-transfer functions using soil texture data to avoid cost-intensive measurements of hydraulic parameters in the laboratory. Therefore, current soil texture information is only available at a coarse spatial resolution of 250 to 1000 m. Here, a method is presented to derive high-resolution (15 m) spatial topsoil texture patterns for the meso-scale Attert catchment (Luxembourg, 288 km2) from 28 images of ASTER (advanced spaceborne thermal emission and reflection radiometer) thermal remote sensing. A principle component analysis of the images reveals the most dominant thermal patterns (principle components, PCs) that are related to 212 fractional soil texture samples. Within a multiple linear regression framework, distributed soil texture information is estimated and related uncertainties are assessed. An overall root mean squared error (RMSE) of 12.7 percentage points (pp) lies well within and even below the range of recent studies on soil texture estimation, while requiring sparser sample setups and a less diverse set of basic spatial input. This approach will improve the generation of spatially distributed topsoil maps, particularly for hydrologic modeling purposes, and will expand the usage of thermal remote sensing products.

  15. Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density

    Science.gov (United States)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  16. Do soil tests help forecast nitrogen response in first-year corn following alfalfa on fine-textured soils?

    Science.gov (United States)

    Improved methods of predicting grain yield response to fertilizer N for first-year corn (Zea mays L.) following alfalfa (Medicago sativa L.) on fine-textured soils are needed. Data from 21 site-years in the North Central Region were used to (i) determine how Illinois soil nitrogen test (ISNT) and pr...

  17. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, Mathias Neumann; Lærke, Poul Erik

    2011-01-01

    Nitrogen (N) uptake (kg ha-1) of field-grown potatoes was measured in 4.32 m2 lysimeters that were filled with coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments...... in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could...... potentially lead to higher yield. However, under limited water conditions and applying water-saving irrigation strategies, sandy loam and coarse sand are better growth media because N is more available for the potatoes. The simple yield prediction model was developed that could explains ca. 96...

  18. Long-term flow rates and biomat zone hydrology in soil columns receiving septic tank effluent.

    Science.gov (United States)

    Beal, C D; Gardner, E A; Kirchhof, G; Menzies, N W

    2006-07-01

    Soil absorption systems (SAS) are used commonly to treat and disperse septic tank effluent (STE). SAS can hydraulically fail as a result of the low permeable biomat zone that develops on the infiltrative surface. The objectives of this experiment were to compare the hydraulic properties of biomats grown in soils of different textures, to investigate the long-term acceptance rates (LTAR) from prolonged application of STE, and to assess if soils were of major importance in determining LTAR. The STE was applied to repacked sand, Oxisol and Vertisol soil columns over a period of 16 months, at equivalent hydraulic loading rates of 50, 35 and 8L/m(2)/d, respectively. Infiltration rates, soil matric potentials, and biomat hydraulic properties were measured either directly from the soil columns or calculated using established soil physics theory. Biomats 1 to 2 cm thick developed in all soils columns with hydraulic resistances of 27 to 39 d. These biomats reduced a 4 order of magnitude variation in saturated hydraulic conductivity (K(s)) between the soils to a one order of magnitude variation in LTAR. A relationship between biomat resistance and organic loading rate was observed in all soils. Saturated hydraulic conductivity influenced the rate and extent of biomat development. However, once the biomat was established, the LTAR was governed by the resistance of the biomat and the sub-biomat soil unsaturated flow regime induced by the biomat. Results show that whilst initial soil K(s) is likely to be important in the establishment of the biomat zone in a trench, LTAR is determined by the biomat resistance and the unsaturated soil hydraulic conductivity, not the K(s) of a soil. The results call into question the commonly used approach of basing the LTAR, and ultimately trench length in SAS, on the initial K(s) of soils.

  19. Analysis of SURRGO Data and Obtaining Soil Texture Classifications for Simulating Hydrologic Processes

    Science.gov (United States)

    2016-07-01

    the general texture classifications. 2. Another source for soil information, such as the Food and Agriculture Organization of the United Nations (FAO...is to use another soils dataset that contains soil properties for the areas of interest, such as the Digital Soil Map of the World provided by the...www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/ NOTE: The contents of this technical note are not to be used for advertising

  20. Soil erosion model predictions using parent material/soil texture-based parameters compared to using site-specific parameters

    Science.gov (United States)

    R. B. Foltz; W. J. Elliot; N. S. Wagenbrenner

    2011-01-01

    Forested areas disturbed by access roads produce large amounts of sediment. One method to predict erosion and, hence, manage forest roads is the use of physically based soil erosion models. A perceived advantage of a physically based model is that it can be parameterized at one location and applied at another location with similar soil texture or geological parent...

  1. Mars on Earth: Analog basaltic soils and particulates from Lonar Crater, India, include Deccan soil, shocked soil, reworked lithic and glassy ejecta, and both shocked and unshocked baked zones

    Science.gov (United States)

    Wright, S. P.

    2017-12-01

    "There is no perfect analog for Mars on Earth" [first line of Hipkin et al. (2013) Icarus, 261-267]. However, fieldwork and corresponding sample analyses from laboratory instrumentation (to proxy field instruments) has resulted in the finding of unique analog materials that suggest that detailed investigations of Lonar Crater, India would be beneficial to the goals of the Mars Program. These are briefly described below as Analog Processes, Materials, and Fieldwork. Analog Processes: The geologic history of Lonar Crater emulates localities on Mars with 1.) flood basaltic volcanism with interlayer development of 2.) baked zones or "boles" and 3.) soil formation. Of six flows, the lower three are aqueously altered by groundwater to produce a range of 4.) alteration products described below. The impact event 570 ka produced a range of 5.) impactites including shocked baked zones, shocked soils, and altered basalt shocked to a range of shock pressures [Kieffer et al., 1976]. Analog Materials: 65 Ma Deccan basalt contains augite and labradorite. Baked zones are higher in hematite and other iron oxides. Soil consists of calcite and organic matter. Several basalts with secondary alteration are listed here and these mirror alteration on Mars: hematite, chlorite, serpentine, zeolite, and palagonite, with varying combinations of these with primary igneous minerals. All of these materials (#1 through 4 above) are shocked to a range of shocked pressures to produce maskelynite, flowing plagioclase glass, vesiculated plagioclase glass, and complete impact melts. Shocked soils contain schlieren calcite amidst comminuted grains of augite, labradorite, and these glasses. Shocked baked zones unsurprisingly have a petrographic texture similar to hornfels, another product of contact metamorphism. Analog Fieldwork: The ejecta consists of two layers: 8 m of lithic breccia with unshocked and fractured basalts under a 1 m suevite consisting of all ranges of shock pressure described above

  2. Genesis of textural contrasts in subsurface soil horizons in the Northern Pantanal-Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Ferreira do Nascimento

    2013-10-01

    Full Text Available The Pantanal region can be characterized as a quaternary floodplain with predominant sedimentation in the form of alluvial fans. In the geomorphologic and sedimentary evolution, the avulsion process is inherent to this depositional system and its dynamics, together with surface water floods, influence soil sedimentation on this plain. The knowledge and differentiation of these two events can contribute to a better understanding of the variability of soil properties and distribution under the influence of these sedimentation processes. Therefore, this study investigated the genesis of soils in the Northern Pantanal with textural contrasts in deeper horizons and their relationship with the depositional system dynamics. We analyzed four soil profiles in the region of Barão de Melgaço, Mato Grosso State, Brazil (RPPN SESC Pantanal. Two profiles were sampled near the Rio Cuiabá (AP1 and AP4 and two near the Rio São Lourenço (AP10 and AP11. In AP11, the horizons contrast in particle size between the profile basis and the surface. In AP1, AP4 and AP10, the horizons overlaying the sand layer have similar particle size properties, mainly in terms of sand distribution. In the first case, floods (surface water seem to have originated the horizons and layers with contrasting texture. In the second case, avulsion is the most pronounced process. Therefore, the two modes can form soils with contrasting texture that are discriminable by soil morphology, based on the distinct features associated to the specific sedimentation processes.

  3. Loss of surface horizon of an irrigated soil detected by radiometric images of normalized difference vegetation index.

    Science.gov (United States)

    Fabian Sallesses, Leonardo; Aparicio, Virginia Carolina; Costa, Jose Luis

    2017-04-01

    The use of the soil in the Humid Pampa of Argentina has changed since the mid-1990s from agricultural-livestock production (that included pastures with direct grazing) to a purely agricultural production. Also, in recent years the area under irrigation by central pivot has been increased to 150%. The waters used for irrigation are sodium carbonates. The combination of irrigation and rain increases the sodium absorption ratio of soil (SARs), consequently raising the clay dispersion and reducing infiltration. This implies an increased risk of soil loss. A reduction in the development of white clover crop (Trifolium repens L.) was observed at an irrigation plot during 2015 campaign. The clover was planted in order to reduce the impact of two maize (Zea mays L.) campaigns under irrigation, which had increased soil SAR and deteriorated soil structure. SPOT-5 radiometric normalized difference vegetation index (NDVI) images were used to determine two zones of high and low production. In each zone, four random points were selected for further geo-referenced field sampling. Two geo-referenced measures of effective depth and surface soil sampling were carried out in each point. Texture of soil samples was determined by Pipette Method of Sedimentation Analysis. Data exploratory analysis showed that low production zone had a media effective depth = 80 cm and silty clay loam texture, while high production zone had a media effective depth > 140 cm and silt loam texture. The texture class of the low production zone did not correspond to prior soil studies carried out by the INTA (National Institute of Agricultural Technology), which showed that those soil textures were silt loam at surface and silty clay loam at sub-surface. The loss of the A horizon is proposed as a possible explanation, but further research is required. Besides, the need of a soil cartography actualization, which integrates new satellite imaging technologies and geo-referenced measurements with soil sensors is

  4. The effects of preferential flow and soil texture on risk assessments of a NORM waste disposal site

    International Nuclear Information System (INIS)

    Pontedeiro, E.M.; Genuchten, M.Th. van; Cotta, R.M.; Simunek, J.

    2010-01-01

    This paper investigates the environmental fate of radionuclide decay chains (specially the 238 U and 232 Th series) being released from a conventional mining installation processing ore containing natural occurring radioactive materials (NORMs). Contaminated waste at the site is being disposed off in an industrial landfill on top of a base of earth material to ensure integrity of the deposit over relatively long geologic times (thousands of years). Brazilian regulations, like those of many other countries, require a performance assessment of the disposal facility using a leaching and off-site transport scenario. We used for this purpose the HYDRUS-1D software package to predict long-term radionuclide transport vertically through both the landfill and the underlying unsaturated zone, and then laterally in groundwater. We assumed that a downgradient well intercepting groundwater was the only source of water for a resident farmer, and that all contaminated water from the well was somehow used in the biosphere. The risk assessment was carried out for both a best-case scenario assuming equilibrium transport in a fine-textured (clay) subsurface, and a worst-case scenario involving preferential flow through a more coarse-textured subsurface. Results show that preferential flow and soil texture both can have a major effect on the results, depending upon the specific radionuclide involved.

  5. Effect of vadose zone on the steady-state leakage rates from landfill barrier systems

    International Nuclear Information System (INIS)

    Celik, B.; Rowe, R.K.; Unlue, K.

    2009-01-01

    Leakage rates are evaluated for a landfill barrier system having a compacted clay liner (CCL) underlain by a vadose zone of variable thickness. A numerical unsaturated flow model SEEP/W is used to simulate the moisture flow regime and steady-state leakage rates for the cases of unsaturated zones with different soil types and thicknesses. The results of the simulations demonstrate that harmonic mean hydraulic conductivity of coarse textured vadose zones is 3-4 orders of magnitude less than saturated hydraulic conductivity; whereas, the difference is only one order of magnitude for fine textured vadose zones. For both coarse and fine textured vadose zones, the effective hydraulic conductivity of the barrier system and the leakage rate to an underlying aquifer increases with increasing thickness of the vadose zone and ultimately reaches an asymptotic value for a coarse textured vadose zone thickness of about 10 m and a fine textured vadose zone thickness of about 5 m. Therefore, the fine and coarse textured vadose zones thicker than about 5 m and 10 m, respectively, act as an effective part of the barrier systems examined. Although the thickness of vadose zone affects the effective hydraulic conductivity of the overall barrier system, the results demonstrated that the hydraulic conductivity of the CCL is the dominant factor controlling the steady-state leakage rates through barrier systems having single low permeability clay layers

  6. [Soil seed bank and its correlations with aboveground vegetation and environmental factors in water level fluctuating zone of Danjiangkou Reservoir, Central China].

    Science.gov (United States)

    Liu, Rui-Xue; Zhan, Juan; Shi, Zhi-Hua; Chen, Long-qing

    2013-03-01

    Taking the water level fluctuating zone of the Danjiangkou Reservoir as a case, and by the method of hierarchical cluster analysis, the soil seed banks at 37 sampling plots within the areas of 140-145 m elevation were divided into 6 groups, and the species composition, density, and diversity of the soil seed banks among the groups were compared. The differences between the soil seed banks and the aboveground vegetations were analyzed by S0rensen similarity coefficient, and the correlations among the soil seed banks, aboveground vegetations, and environmental factors were explored by principal component analysis (PCA) and multivariable regression analysis. At the same altitudes of the water level fluctuating zone, the species composition of the soil seed banks had obvious heterogeneity, and the density and diversity indices of the soil seed banks among different groups were great. The similarity coefficient between the soil seed banks and aboveground vegetations was low, and the species number in the soil seed banks was obviously lesser than that in the aboveground vegetations. The density of the soil seed banks was highly positively correlated with the aboveground vegetations coverage and species number and the soil texture, but highly negatively correlated with the soil water-holding capacity and soil porosity.

  7. Susceptibility of coarse-textured soils to soil erosion by water in the tropics

    International Nuclear Information System (INIS)

    Salako, F.K.

    2004-01-01

    The application of soil physics for the evaluation of factors of soil erosion in the tropics received considerable attention in the last four decades. In Nigeria, physical characteristics of rainfall such as drop size and drop-size distribution, rainfall intensity at short intervals and kinetic energy of rainfall were evaluated using different methods. Thus, compound erosivity indices were evaluated which showed a similar trend in annual rainfall erosivity with annual rainfall amounts. Attempts have also been made to use geostatistical tools and fractal theory to describe temporal variability in rainfall erosivity. High erosivity aggravates the vulnerability of coarse-textured soils to erosion. These soils, high in sand content were poorly aggregated and structurally weak. Thus, they were easily detached and transported by runoff. Long-term data are needed to describe factors of soil erosion in the tropics but quite often, equipment are not available or poorly maintained where available such that useful data are not collected. A greater cooperation of pure physicists, soil physicists and engineers in the developing nations is needed to improve or design equipment and methods for the characterization of factors of soil erosion in the tropics. (author)

  8. Hurricane Wilma's impact on overall soil elevation and zones within the soil profile in a mangrove forest

    Science.gov (United States)

    Whelan, K.R.T.; Smith, T. J.; Anderson, G.H.; Ouellette, M.L.

    2009-01-01

    Soil elevation affects tidal inundation period, inundation frequency, and overall hydroperiod, all of which are important ecological factors affecting species recruitment, composition, and survival in wetlands. Hurricanes can dramatically affect a site's soil elevation. We assessed the impact of Hurricane Wilma (2005) on soil elevation at a mangrove forest location along the Shark River in Everglades National Park, Florida, USA. Using multiple depth surface elevation tables (SETs) and marker horizons we measured soil accretion, erosion, and soil elevation. We partitioned the effect of Hurricane Wilma's storm deposit into four constituent soil zones: surface (accretion) zone, shallow zone (0–0.35 m), middle zone (0.35–4 m), and deep zone (4–6 m). We report expansion and contraction of each soil zone. Hurricane Wilma deposited 37.0 (± 3.0 SE) mm of material; however, the absolute soil elevation change was + 42.8 mm due to expansion in the shallow soil zone. One year post-hurricane, the soil profile had lost 10.0 mm in soil elevation, with 8.5 mm of the loss due to erosion. The remaining soil elevation loss was due to compaction from shallow subsidence. We found prolific growth of new fine rootlets (209 ± 34 SE g m−2) in the storm deposited material suggesting that deposits may become more stable in the near future (i.e., erosion rate will decrease). Surficial erosion and belowground processes both played an important role in determining the overall soil elevation. Expansion and contraction in the shallow soil zone may be due to hydrology, and in the middle and bottom soil zones due to shallow subsidence. Findings thus far indicate that soil elevation has made substantial gains compared to site specific relative sea-level rise, but data trends suggest that belowground processes, which differ by soil zone, may come to dominate the long term ecological impact of storm deposit.

  9. Relationships between respiration, chemical and microbial properties of afforested mine soils with different soil texture and tree species: Does the time of incubation matter

    Czech Academy of Sciences Publication Activity Database

    Józefowska, A.; Pietrzykowski, M.; Woś, B.; Cajthaml, T.; Frouz, Jan

    2017-01-01

    Roč. 80, May (2017), s. 102-109 ISSN 1164-5563 Institutional support: RVO:60077344 Keywords : afforested mine soils * soil texture * tree species * chemical properties * microbial properties Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 2.445, year: 2016

  10. Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture

    Science.gov (United States)

    Gherboudj, Imen; Beegum, S. Naseema; Marticorena, Beatrice; Ghedira, Hosni

    2015-10-01

    The mineral dust emissions from arid/semiarid soils were simulated over the MENA (Middle East and North Africa) region using the dust parameterization scheme proposed by Alfaro and Gomes (2001), to quantify the effect of the soil moisture and clay fraction in the emissions. For this purpose, an extensive data set of Soil Moisture and Ocean Salinity soil moisture, European Centre for Medium-Range Weather Forecasting wind speed at 10 m height, Food Agricultural Organization soil texture maps, MODIS (Moderate Resolution Imaging Spectroradiometer) Normalized Difference Vegetation Index, and erodibility of the soil surface were collected for the a period of 3 years, from 2010 to 2013. Though the considered data sets have different temporal and spatial resolution, efforts have been made to make them consistent in time and space. At first, the simulated sandblasting flux over the region were validated qualitatively using MODIS Deep Blue aerosol optical depth and EUMETSAT MSG (Meteosat Seciond Generation) dust product from SEVIRI (Meteosat Spinning Enhanced Visible and Infrared Imager) and quantitatively based on the available ground-based measurements of near-surface particulate mass concentrations (PM10) collected over four stations in the MENA region. Sensitivity analyses were performed to investigate the effect of soil moisture and clay fraction on the emissions flux. The results showed that soil moisture and soil texture have significant roles in the dust emissions over the MENA region, particularly over the Arabian Peninsula. An inversely proportional dependency is observed between the soil moisture and the sandblasting flux, where a steep reduction in flux is observed at low friction velocity and a gradual reduction is observed at high friction velocity. Conversely, a directly proportional dependency is observed between the soil clay fraction and the sandblasting flux where a steep increase in flux is observed at low friction velocity and a gradual increase is

  11. Growth rate of bacteria is affected by soil texture and extraction procedure

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, Eva; Šantrůčková, Hana

    2003-01-01

    Roč. 35, - (2003), s. 217-224 ISSN 0038-0717 Institutional research plan: CEZ:AV0Z6066911 Keywords : soil texture * extraction of bacteria * biosynthetic activity of bacteria Subject RIV: EH - Ecology, Behaviour Impact factor: 1.915, year: 2003

  12. Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Henriksen, Kaj; Mortensen, Lars

    2010-01-01

    Intrinsic biodegradation of organic contaminants in the soil vadose zone depends on site-specific soil properties controlling biophysical and geochemical interactions within the soil pore space. In this study we evaluated the effect of soil texture and moisture conditions on aerobic biodegradatio...... in the deep vadose zone. As a result, management of petroleum hydrocarbon spill sites will benefit from site-specific conceptual models in which the vadose zone is divided into geological compartments with different biophysical potential for biodegradation and bioremediation....

  13. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    Science.gov (United States)

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  14. Impact of Sub-grid Soil Textural Properties on Simulations of Hydrological Fluxes at the Continental Scale Mississippi River Basin

    Science.gov (United States)

    Kumar, R.; Samaniego, L. E.; Livneh, B.

    2013-12-01

    Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked

  15. Sandy soil plantation in semi-arid zones by polyacrylamide gel conditioner prepared by ionizing radiation. Part of a coordinated programme on radiation modified polymers for biomedical and biochemical applications

    International Nuclear Information System (INIS)

    Azzam, R.A.I.

    1983-07-01

    Polyacrylamide gel prepared by ionizing radiation was found to be capable of furnishing adequate conditions for sandy-soil plantation in semi-arid zones. The gel can be tailored for any soil texture under various climatic conditions. The sand-gel combination maintains three cycles of complete destruction and reformation without significant changes in erosion index. Water holding capacity and retention at different suctions in treated sand are increased. This increases water use efficiency. Fertilizers use efficiency is also increased to almost three times that of fertile clayey soil

  16. Weed infestation of field crops in different soils in the protective zone of Roztocze National Park. Part II. Root crops

    Directory of Open Access Journals (Sweden)

    Marta Ziemińska-Smyk

    2013-12-01

    Full Text Available The study on weed infestation of root crops in different soils in the protective zone of Roztocze National Park was conducted in the years 1991-1995. As many as 240 phytosociological records, made with the use of Braun-Blanquet method, were taken in potato and sugar beet fields. The number of weed species in sugar beet and potato in the area depended on the soil and type of root crop. In the same environment conditions. the iiuinber of weed species was higher in potato than in sugar beet. The most difficult weed species iii all types of soil were: Chenopodium album, Stellaria media and Convolvulus arvensis. Podsolic soils were highly infested by two acidophylic species: Spergula arvensis and Raphanus raphanistum. Potato in loess soil and brown soil made of loamy sands were highly infested by Echinochloa crus-galli, Equisetum arvense and Galinsoga parviflora. Root crop plantations in brown soils formed from gaizes of granulometric loam texture and limestone soils were infested by: Galium aparine, Sonchus arvensis, Sinapis arvensis and Veronica persica.

  17. Rice straw biochar affects water retention and air movement in a sand-textured tropical soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Ahmed, Fauziatu

    2017-01-01

    Despite the current global attention on biochar (BC) as a soil amendment, knowledge is limited on how BC impacts the physical properties of coarse-textured soils (sand > 95%), particularly in tropical regions. A two-season field-study was conducted to investigate the effect of rice straw BC (3% w...

  18. Soil surface protection by Biocrusts: effects of functional groups on textural properties

    Science.gov (United States)

    Concostrina-Zubiri, Laura; Huber-Sannwald, Elisabeth; Martínez, Isabel; Flores Flores, José Luis; Escudero, Adrián

    2015-04-01

    In drylands, where vegetation cover is commonly scarce, soil surface is prone to wind and water soil erosion, with the subsequent loss of topsoil structure and chemical properties. These processes are even more pronounced in ecosystems subjected to extra erosive forces, such as grasslands and rangelands that support livestock production. However, some of the physiological and functional traits of biocrusts (i.e., complex association of cyanobacteria, lichens, mosses, fungi and soil particles) make them ideal to resist in disturbed environments and at the same time to protect soil surface from mechanical perturbations. In particular, the filaments and exudates of soil cyanobacteria and the rhizines of lichen can bind together soil particles, forming soil aggregates at the soil surface and thus enhancing soil stability. Also, they act as "biological covers" that preserve the most vulnerable soil layer from wind and runoff erosion and raindrop impact, maintaining soil structure and composition. In this work, we evaluated soil textural properties and organic matter content under different functional groups of biocrusts (i.e., cyanobacteria crust, 3 lichen species, 1 moss species) and in bare soil. In order to assess the impact of livestock trampling on soil properties and on Biocrust function, we sampled three sites conforming a disturbance gradient (low, medium and high impact sites) and a long-term livestock exclusion as control site. We found that the presence of biocrusts had little effects on soil textural properties and organic matter content in the control site, while noticeable differences were found between bare soil and soil under biocrusts (e.g., up to 16-37% higher clay content, compared to bare soil and up to 10% higher organic matter content). In addition, we found that depending on morphological traits and grazing regime, the effects of biocrusts changed along the gradient. For example, soil under the lichen Diploschistes diacapsis, with thick thallus

  19. Comparing predictive ability of Laser-Induced Breakdown Spectroscopy to Near Infrared Spectroscopy for soil texture and organic carbon determination

    DEFF Research Database (Denmark)

    Knadel, Maria; Peng, Yi; Gislum, René

    Soil organic carbon (SOC) and texture have a practical value for agronomy and the environment. Thus, alternative techniques to supplement or substitute for the expensive conventional analysis of soil are developed. Here the feasibility of laser-induced breakdown spectroscopy (LIBS) to determine SOC...... and texture was tested and compared with near infrared spectroscopy (NIRS) technique and traditional laboratory analysis. Calibration models were developed on 50 topsoil samples. For all properties except silt, higher predictive ability of LIBS than NIRS models was obtained. Successful calibrations indicate...... that LIBS can be used as a fast and reliable method for SOC and texture estimation....

  20. Ecological risk assessment: influence of texture on background concentration of microelements in soils of Russia.

    Science.gov (United States)

    Beketskaya, Olga

    2010-05-01

    In Russia quality standards of contaminated substances values in environment consist of ecological and sanitary rate-setting. The sanitary risk assessment base on potential risk that contaminants pose to protect human beings. The main purpose of the ecological risk assessment is to protect ecosystem. To determine negative influence on living organisms in the sanitary risk assessment in Russia we use MPC. This value of contaminants show how substances affected on different part of environment, biological activity and soil processes. The ecological risk assessment based on comparison compounds concentration with background concentration for definite territories. Taking into account high interval of microelements value in soils, we suggest using statistic method for determination of concentration levels of chemical elements concentration in soils of Russia. This method is based on determination middle levels of elements content in natural condition. The top limit of middle chemical elements concentration in soils is value, which exceed middle regional background level in three times standard deviation. The top limit of natural concentration excess we can explain as anthropogenic impact. At first we study changing in the middle content value of microelements in soils of geographic regions in European part of Russia on the basis of cartographical analysis. Cartographical analysis showed that the soil of mountainous and mountain surrounding regions is enriched with microelements. On the plain territory of European part of Russia for most of microelements was noticed general direction of increasing their concentration in soils from north to south, also in the same direction soil clay content rise for majority of soils. For all other territories a clear connection has been noticed between the distribution of sand sediment. By our own investigation and data from scientific literature data base was created. This data base consist of following soil properties: texture

  1. Biochar-Induced Changes in Soil Resilience: Effects of Soil Texture and Biochar Dosage

    Institute of Scientific and Technical Information of China (English)

    Ayodele Ebenezer AJAYI; Rainer HORN

    2017-01-01

    Biochars are,amongst other available amendment materials,considered as an attractive tool in agriculture for carbon sequestration and improvement of soil functions.The latter is widely discussed as a consequence of improved physical quality of the amended soil.However,the mechanisms for this improvement are still poorly understood.This study investigated the effect of woodchip biochar amendment on micro-structural development,micro-and macro-structural stability,and resilience of two differently textured soils,fine sand (FS) and sandy loam (SL).Test substrates were prepared by adding 50 or 100 g kg-1 biochar to FS or SL.Total porosity and plant available water were significantly increased in both soils.Moreover,compressive strength of the aggregates was significantly decreased when biochar amount was doubled.Mechanical resilience of the aggregates at both micro-and macro-scale was improved in the biochar-amended soils,impacting the cohesion and compressive behavior.A combination of these effects will result in an improved pore structure and aeration.Consequently,the physicochemical environment for plants and microbes is improved.Furthermore,the improved stability properties will result in better capacity of the biochar-amended soil to recover from the myriad of mechanical stresses imposed under arable systems,including vehicle traffic,to the weight of overburden soil.However,it was noted that doubling the amendment rate did not in any case offer any remarkable additional improvement in these properties,suggesting a further need to investigate the optimal amendment rate.

  2. Soils characterisation along ecological forest zones in the Eastern Himalayas

    Science.gov (United States)

    Simon, Alois; Dhendup, Kuenzang; Bahadur Rai, Prem; Gratzer, Georg

    2017-04-01

    Elevational gradients are commonly used to characterise vegetation patterns and, to a lesser extent, also to describe soil development. Furthermore, interactions between vegetation cover and soil characteristics are repeatedly observed. Combining information on soil development and easily to distinguish forest zones along elevational gradients, creates an added value for forest management decisions especially in less studied mountain regions. For this purpose, soil profiles along elevational gradients in the temperate conifer forests of Western and Central Bhutan, ranging from 2600-4000m asl were investigated. Thereby, 82 soil profiles were recorded and classified according to the World Reference Base for Soil Resources. Based on 19 representative profiles, genetic horizons were sampled and analysed. We aim to provide fundamental information on forest soil characteristics along these elevational transects. The results are presented with regard to ecological forest zones. The elevational distribution of the reference soil groups showed distinct distribution ranges for most of the soils. Cambisols were the most frequently recorded reference soil group with 58% of the sampled profiles, followed by Podzols in higher elevations, and Stagnosols, at intermediate elevations. Fluvisols occurred only at the lower end of the elevational transects and Phaeozems only at drier site conditions in the cool conifer dry forest zone. The humus layer thickness differs between forest zones and show a shift towards increased organic layer (O-layer) with increasing elevation. The reduced biomass productivity with increasing elevation and subsequently lower litter input compensates for the slow decomposition rates. The increasing O-layer thickness is an indicator of restrained intermixing of organic and mineral components by soil organisms at higher elevation. Overall, the soil types and soil characteristics along the elevational gradient showed a continuous and consistent change, instead

  3. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    Science.gov (United States)

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in

  4. Soil functional zone management: a vehicle for enhancing production and soil ecosystem services in row-crop agroecosystems

    Directory of Open Access Journals (Sweden)

    Alwyn eWilliams

    2016-02-01

    Full Text Available There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimetre-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth and yield (provisioning services; and adjacent zones of ‘soil building’, that promote soil structure development, carbon storage and moisture regulation (regulating and supporting services. These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown. We present a conceptual model of ‘virtuous cycles’, illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple

  5. Ecophysiology of Trembling Aspen in Response to Root-Zone Conditions and Competition on Reclaimed Mine Soil.

    Science.gov (United States)

    Bockstette, S.; Landhäusser, S.; Pinno, B.; Dyck, M. F.

    2014-12-01

    Reclaimed soils are typically characterized by increased bulk densities, penetration resistances and poor soil structure as well as associated problems with hydrology and aeration. As a result, available rooting space for planted tree seedlings is often restricted to a shallow layer of topsoil, which is usually of higher quality and is cultivated prior to planting. This may hinder the development of healthy root systems, thus drastically increasing the risk for plant stress by limiting access to soil resources such as water, nutrients and oxygen. These problems are exacerbated when herbaceous plants compete for the same resources within this limited root-zone. To understand how limited rooting space affects the physiology of young trees, we experimentally manipulated soil conditions and levels of competition at a reclaimed mine site in central Alberta, Canada. The site was characterized by heavily compacted, fine textured subsoil (~2.0 Mg ha-1), capped with 15 cm of topsoil (~1.5 Mg ha-1). In a replicated study (n=6) half the plots were treated with a subsoil plow to a depth of about 60 cm to increase available rooting spece. Subsequently, trembling aspen (Populus tremuloides Michx.) and smooth brome (Bromus inermis L.) were planted to create four vegetation covers: aspen (a), brome (b), aspen + brome (ab) and control (c) (no vegetation). Various soil properties, including texture, bulk density, penetration resistance and water availability, in conjunction with plant parameters such as root and shoot growth, leaf area development, sap flow, and stomatal conductance have since been monitored, both in-situ and through destructive sampling. Our results indicate that the soil treatment was effective in lowering bulk densities and penetration resistance, while improving moisture retention characteristics. Tree seedling growth and leaf area development were significantly greater without competition, but did not differ between soil treatments. The soil treatment generally

  6. Landuse legacies of old-field succession and soil structure at the Calhoun Criticl Zone Observatory in SC, USA.

    Science.gov (United States)

    Brecheisen, Z. S.; Richter, D. D., Jr.; Callaham, M.; Carrera-Martinez, R.; Heine, P.

    2017-12-01

    The pre-colonial Southern Piedmont was an incredibly stable CZ with erosion rates between 0.35-3m/Myr on a 4th order interfluve. With soils and saprolite weathered up to 30m in total depth bedrock with multi-million year residence times under continual forest cover prior to widespread agricultural disturbance. With this biogeomorphic stability came time for soil macroporosity and soil structure to be established and maintained by the activities of soil fauna, plant root growth and death, and tree-fall tip-up events serving to continually mix and aerate the soil. Greatly accelerated surficial agricultural erosion (ca. 1750-1930) has fundamentally altered the Calhoun Critical Zone Observatory forest community dynamics aboveground and the soil structure, hydrology, and biogeochemistry belowground. The arrival of the plow to the Southern Piedmont marked the destruction of soil structure, macropore networks, and many of the macroinvertebrate soil engineers. This transformation came via forest clearing, soil tilling, compaction, and wholesale soil erosion, with the region having lost an estimated average of 18cm of soil across the landscape. In the temporal LULC progression from hardwood forests, to cultivated farms, to reforestation, secondary forest soil structure is expected to remain altered compared to the reference hardwood ecosystems. The research presented herein seeks to quantify CZ soil structure regeneration in old-field pine soil profiles' Ksat, aggregation, texture, macro-invertebrates, and direct measurements of topsoil porosity using X-ray computed tomography analysis on 15cm soil cores.

  7. Heavy metals contamination characteristics in soil of different mining activity zones

    Institute of Scientific and Technical Information of China (English)

    LIAO Guo-li; LIAO Da-xue; LI Quan-ming

    2008-01-01

    Depending upon the polluted features of various mining activities in a typical nonferrous metal mine, the contaminated soil area was divided into four zones which were polluted by tailings, mine drainage, dust deposition in wind and spreading minerals during vehicle transportation, respectively. In each zone, soil samples were collected. Total 28 soil samples were dug and analyzed by ICP-AES and other relevant methods. The results indicate that the average contents of Zn, Pb, Cd, Cu and As in soils are 508.6, 384.8, 7.53, 356 and 44.6 mg/kg, respectively. But the contents of heavy metals in different zone have distinct differences. The proportion of oxidizing association with organic substance is small. Difference of the association of heavy metals is small in different polluted zones.

  8. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L. Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Directory of Open Access Journals (Sweden)

    Fugen Dou

    Full Text Available The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic, cultivar ('Cocodrie' and 'Rondo', and soil texture (clay and sandy loam on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  9. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, M.N.; Lærke, P.E.

    2011-01-01

    received 65% of FI after tuber bulking and lasted for six weeks until final harvest. Results showed that the irrigation treatments were not significantly different in terms of N uptake in the tubers, shoot, and whole crop. However, there was a statistical difference between the soil textures where plants...... in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could...... potentially lead to higher yield. However, under limited water conditions and applying water-saving irrigation strategies, sandy loam and coarse sand are better growth media because N is more available for the potatoes. The simple yield prediction model was developed that could explains ca. 96...

  10. The texture, structure and nutrient availability of artificial soil on cut slopes restored with OSSS - Influence of restoration time.

    Science.gov (United States)

    Huang, Zhiyu; Chen, Jiao; Ai, Xiaoyan; Li, Ruirui; Ai, Yingwei; Li, Wei

    2017-09-15

    Outside soil spray seeding (OSSS) is widely used to restore cut slopes in southwest of China, and artificial soil is often sprayed onto cut slopes to establish a soil layer for revegetation. The stability of artificial soil layer and its supply of water and nutrients for plants is crucial for successful restoration. To evaluate the long-term effectiveness of OSSS, the texture, structure and nutrient availability of artificial soil were studied, various soil samples were obtained from three cut slopes with different restoration time (restored with OSSS in 1996, 2003 and 2007 respectively) and one natural developed slope (NS). The properties measured including soil particle size distribution (PSD), texture, fractal dimension of PSD (D m ), the bias (C S ) and peak convex (C E ) coefficients of aggregate size distribution, structure failure rate, bulk density, moisture, pH, soil organic carbon (SOC), calcium carbonate content, Available nitrogen (N A ), Available phosphorus (P A ), and Available potassium (K A ). The results showed that different restoration time resulted in significant differences in soil PSD, D m , C S , C E , structure failure rate, bulk density, moisture, pH, N A , and K A . And these properties improved with increasing restoration age. However, there is still a huge disparity in soil texture, structure, and the availability of nutrients and moisture between the cut slopes and NS over a restoration period of up to 17 years, and this is caused by the little fine particles and the lack of slow release fertilizers and organic fertilizers in the artificial soil, resulting in poorer soil structure stability, retention and availability of moisture and nutrients on the cut slopes. Overall, the OSSS technique shows a long-term effectiveness in southwest of China, but there is still room for improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Estimation of soil texture and plant available water by correlation with the laser light-scattering method

    Energy Technology Data Exchange (ETDEWEB)

    Haverland, R. L.; Post, D. F.; Cooper, L. R.; Shirley, E. D.

    1985-07-01

    Particle -size distribution and plant available water are basic input to studies of range, forest and cultivated land. Since the conventional laboratory procedures for determining these parameters are time consuming, an improved method for making these measurements is desirable. Weiss and Frock (1976) reported results from an instrument employing the principle of laser light scattering to measure particle -size distribution. The instrument was reported to be of high precision, and yielded reproducible results. The laser light- scattering instrument used in this study is the Microtrac Particle -size Analyzer Model 7991- 0, manufactured by Leeds and Northrup. The particle -size analysis range of this model is from 1.9 to 176 μm, which does not correspond to the entire fine earth fraction (< 2 mm) usually characterized by soil scientists. It is, therefore, desirable to develop predictive equations to estimate the soil texture of the fine earth fraction. We believe data from this instrument could be used to predict other soil properties. This paper reports on using Microtrac data to estimate the plant available water holding capacity and soil texture of Arizona soils. Two hundred and forty-seven Arizona soils were used in this study. Most of these soils (approximately 230 soils) are thermic or hyperthermic and arid or semiarid soils of dominantly mixed mineralogy, as described on the Arizona General Soils Map (Jay et al., 1975). An array of soil horizons are included, with approximately one half of the samples coming from the A or Ap surface horizons. The other half of the samples are from the subsurface B or C horizons.

  12. Cesium-137 in soil texture fractions and its impact on Cesium-137 soil-to-plant transfer

    International Nuclear Information System (INIS)

    Gerzabek, M.H.; Mohamad, S.A.; Mueck, K.

    1992-06-01

    Field studies at two sites contaminated by the Chernobyl fallout showed 137 Cesium (Cs) soil-to-plant transfer factors in wheat, rye and potato. Transfer values ranged from 0.0017 (potato tuber) to 0.07 (wheat straw). Generally transfer coefficients in cereal grains and potato tubers were significantly below the values of the shoots. A comparison of the two sites led to the conclusion that for all plants investigated 137 Cs transfer factors were higher in Lower Austria (Calcic Chernozem) than in Upper Austria (Eutric Cambisol). The specific activities of the texture fractions of the two soil types increased from sand to silt and clay. In the Calcic Chernozem the ratio of the 137 Cs activity in the silt fraction to the total activity in the soil was considerably higher than in the Eutric Cambisol. At the same time extractability of 137 Cs from the silt fraction of the latter soil was clearly lower. Both results mainly were attributed to the differences between the soils according to the organic matter content of the silt fractions, the Calcic Chernozem being seven times higher. Therefore, the differences in the 137 Cs-soil-to-plant transfer can be attributed partly to these soil characteristics. (authors)

  13. Soil water nitrate concentrations in giant cane and forest riparian buffer zones

    Science.gov (United States)

    Jon E. Schoonover; Karl W. J. Williard; James J. Zaczek; Jean C. Mangun; Andrew D. Carver

    2003-01-01

    Soil water nitrate concentrations in giant cane and forest riparian buffer zones along Cypress Creek in southern Illinois were compared to determine if the riparian zones were sources or sinks for nitrogen in the rooting zone. Suction lysimeters were used to collect soil water samples from the lower rooting zone in each of the two vegetation types. The cane riparian...

  14. Utilizing management zones for Rotylenchulus reniformis in cotton: Effects on nematode levels, crop damage, and Pasteuria sp

    Science.gov (United States)

    Nematode management zones (MZs) based on soil electrical conductivity (EC, a proxy for soil texture) have not been published for R. reniformis. We tested 1) whether R. reniformis levels and the amount of damage caused to cotton differed among MZs, 2) if the relative effectiveness of nematicides dif...

  15. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration

    Directory of Open Access Journals (Sweden)

    Sonia Chamizo

    2018-06-01

    Full Text Available Cyanobacteria are ubiquitous components of biocrust communities and the first colonizers of terrestrial ecosystems. They play multiple roles in the soil by fixing C and N and synthesizing exopolysaccharides, which increase soil fertility and water retention and improve soil structure and stability. Application of cyanobacteria as inoculants to promote biocrust development has been proposed as a novel biotechnological technique for restoring barren degraded areas and combating desertification processes in arid lands. However, previous to their widespread application under field conditions, research is needed to ensure the selection of the most suitable species. In this study, we inoculated two cyanobacterial species, Phormidium ambiguum (non N-fixing and Scytonema javanicum (N-fixing, on different textured soils (from silt loam to sandy, and analyzed cyanobacteria biocrust development and evolution of physicochemical soil properties for 3 months under laboratory conditions. Cyanobacteria inoculation led to biocrust formation in all soil types. Scanning electron microscope (SEM images showed contrasting structure of the biocrust induced by the two cyanobacteria. The one from P. ambiguum was characterized by thin filaments that enveloped soil particles and created a dense, entangled network, while the one from S. javanicum consisted of thicker filaments that grouped as bunches in between soil particles. Biocrust development, assessed by chlorophyll a content and crust spectral properties, was higher in S. javanicum-inoculated soils compared to P. ambiguum-inoculated soils. Either cyanobacteria inoculation did not increase soil hydrophobicity. S. javanicum promoted a higher increase in total organic C and total N content, while P. ambiguum was more effective in increasing total exopolysaccharide (EPS content and soil penetration resistance. The effects of cyanobacteria inoculation also differed among soil types and the highest improvement in soil

  16. 76 FR 11334 - Safety Zone; Soil Sampling; Chicago River, Chicago, IL

    Science.gov (United States)

    2011-03-02

    ...The Coast Guard is establishing a temporary safety zone on the North Branch of the Chicago River near Chicago, Illinois. This zone is intended to restrict vessels from a portion of the North Branch of the Chicago River due to soil sampling in this area. This temporary safety zone is necessary to protect the surrounding public and vessels from the hazards associated with the soil sampling efforts.

  17. Root uptake of 137Cs by natural and semi-natural grasses as a function of texture and moisture of soils

    International Nuclear Information System (INIS)

    Grytsyuk, N.; Arapis, G.; Davydchuk, V.

    2006-01-01

    This work studies the dependence of 137 Cs root uptake on the structure of landscape, especially on texture and moisture of soils, under natural conditions, on abandoned radiopolluted lands in Northern Ukraine. Researches were carried out on a wide range of landscape conditions, at various levels of 137 Cs contamination (from 20 up to 5000 kBq m -2 ), with different types of soils (approx. 20 soil varieties), which differ in texture, granulometric composition, degrees of gleyization and water regime, and anthropogenic transformation. The results showed that transfer factor (TF) values of 137 Cs differ 50 times for the natural grassy coenoses and 8 times for the semi-natural ones. The lowest 137 Cs TF values were measured in the herbages of dry meadows at automorphous loamy soils, while the highest were observed in wetland meadows at organic soils. Finally, the correlation between 137 Cs TF values and granulometric composition of soil was determined for both automorphic and hydromorphic mineral soils

  18. Using purposeful landscape zoning of Ukraine to improve soil protection system

    Directory of Open Access Journals (Sweden)

    Володимир Тишковець

    2016-10-01

    Full Text Available Basic aspects of Ukrainian landscapes target zoning use for maintenance of soil protection system on agricultural lands have been presented. The analysis of current systems of purposeful zoning of territories in the country and modern approaches to its modernization has been done. The ameliorative functions of forest in accordance with existing main and supportive negative factors, forms and intensiveness of its appearance in concrete types of landscapes have been explained. The questions of forest projection optimization in accordance with natural-climatic conditions of certain regions have been described. The ways of qualitative new use of agroforest ameliorative measures have been determined. The new zoning system on the basis of main soil erosion factors principally differs from the previous systems. The proposed zoning method is characterized by complexity, involving main physical, geographical and agricultural factors in the order of their impact on soil erosion processes. These factors consist of climate (water and temperature regime, relief and character of agricultural use of territory. Meanwhile, other factors (soil, vegetative cover and other are used simultaneously with the main factors. That kind of zoning by the main factors of soil erosion is only the first stage. The second stage should be zoning by types of systems of counter erosion measures. In this article the authors have shown that when choosing agrarian ameliorative methods, the influence on negative factors on agriculture should be considered in the new zoning of the territory. A number of references and fund materials, including those of territorial zoning have been analyzed in the article. Preferences and negative aspects as well as selection of a basis for new agrarian ameliorative zoning of Ukrainian landscapes which includes the full information of factors and conditions of formation and expansion of negative factors for agriculture have been proposed.

  19. Cacao Crop Management Zones Determination Based on Soil Properties and Crop Yield

    Directory of Open Access Journals (Sweden)

    Perla Silva Matos de Carvalho

    Full Text Available ABSTRACT: The use of management zones has ensured yield success for numerous agricultural crops. In spite of this potential, studies applying precision agricultural techniques to cacao plantations are scarce or almost nonexistent. The aim of the present study was to delineate management zones for cacao crop, create maps combining soil physical properties and cacao tree yield, and identify what combinations best fit within the soil chemical properties. The study was conducted in 2014 on a cacao plantation in a Nitossolo Háplico Eutrófico (Rhodic Paleudult in Bahia, Brazil. Soil samples were collected in a regular sampling grid with 120 sampling points in the 0.00-0.20 m soil layer, and pH(H2O, P, K+, Ca2+, Mg2+, Na+, H+Al, Fe, Zn, Cu, Mn, SB, V, TOC, effective CEC, CEC at pH 7.0, coarse sand, fine sand, clay, and silt were determined. Yield was measured in all the 120 points every month and stratified into annual, harvest, and early-harvest cacao yields. Data were subjected to geostatistical analysis, followed by ordinary kriging interpolation. The management zones were defined through a Fuzzy K-Means algorithm for combinations between soil physical properties and cacao tree yield. Concordance analysis was carried out between the delineated zones and soil chemical properties using Kappa coefficients. The zones that best classified the soil chemical properties were defined from the early-harvest cacao yield map associated with the clay or sand fractions. Silt content proved to be an inadequate variable for defining management zones for cacao production. The delineated management zones described the spatial variability of the soil chemical properties, and are therefore important for site-specific management in the cacao crop.

  20. Effect of buffer strips and soil texture on runoff losses of flufenacet and isoxaflutole from maize fields.

    Science.gov (United States)

    Milan, Marco; Ferrero, Aldo; Letey, Marilisa; De Palo, Fernando; Vidotto, Francesco

    2013-01-01

    The influence of buffer strips and soil texture on runoff of flufenacet and isoxaflutole was studied for two years in Northern Italy. The efficacy of buffer strips was evaluated on six plots characterized by different soil textures; two plots had Riva soil (18.6% sand, 63.1% silt, 18.3% clay) while the remaining four plots had Tetto Frati (TF) soil (37.1% sand, 57% silt, 5.9% clay). Additionally, the width of the buffer strips, constituted of spontaneous vegetation grown after crop sowing, was also compared for their ability to abate runoff waters. Chemical residues in water following runoff events were investigated, as well as their dissipation in the soil. After the first runoff events, concentrations of herbicides in water samples collected from Riva plots were as much as four times lower in waters from TF plots. On average of two growing seasons, the field half-life of flufenacet in the upper soil layer (5 cm) ranged between 8.1 and 12.8 days in Riva soil, 8.5 and 9.3 days in TF soil. Isoxaflutole field half-life was less than 1 day. The buffer strip was very affective by the uniformity of the vegetative cover, particularly, at the beginning of the season. In TF plots, concentration differences were generally due to the presence or absence of the buffer strip, regardless of its width.

  1. In situ vadose zone remediation of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    Greacen, J.R.; Finkel, D.J.

    1991-01-01

    This paper discusses a pilot-scale system treating vadose zone soils contaminated with petroleum products constructed and operated at a former petroleum bulk storage terminal in New England. A site investigation following decommissioning activities identified more than 100,000 yds of soil at the site contaminated by both No. 2 fuel oil and gasoline. Soil cleanup criteria of 50 ppm TPH and 0.25 ppm BTEX were established. A pilot-scale treatment unit with dimensions of 125 ft x 125 ft x 6 ft was constructed to evaluate the potential for in situ treatment of vadose zone soils. Contaminant levels in pilot cell soils ranged from 0 to 5,250 ppm TPH and 0.0 to 4.2 ppm BTEX. Two soil treatment methods n the pilot system were implemented; venting to treat the lighter petroleum fractions and bioremediation to treat the nonvolatile petroleum constituents. Seven soil gas probes were installed to monitor pressure and soil gas vapor concentrations in the subsurface. Changes in soil gas oxygen and carbon dioxide concentrations were used as an indirect measure of enhanced bioremediation of pilot cell soils. After operating the system for a period of 2.5 months, soil BTEX concentrations were reduced to concentrations below the remediation criteria for the site

  2. Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Anthony [Princess Alexandra Hospital, Brisbane (Australia); Miles, Kenneth [Princess Alexandra Hospital, Department of Diagnostic Radiology, Brisbane, QLD (Australia); University College London, Institute of Nuclear Medicine, London (United Kingdom)

    2017-12-15

    To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at <5%. Eighty-eight T2-weighted images in 18 patients demonstrated abnormal PSMA expression within the TZ on PET-MR. 123 images were PSMA negative. Based on the corrected p-value of 0.005, significant differences between PSMA positive and negative slices were found for 16 texture parameters: Standard deviation and mean of positive pixels for all spatial filters (p = <0.0001 for both at all spatial scaling factor (SSF) values) and mean intensity following filtration for SSF 3-6 mm (p = 0.0002-0.0018). Abnormal expression of PSMA within the TZ is associated with altered texture on T2-weighted MR, providing validation of MRTA for the detection of TZ prostate cancer. (orig.)

  3. Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer

    International Nuclear Information System (INIS)

    Bates, Anthony; Miles, Kenneth

    2017-01-01

    To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at <5%. Eighty-eight T2-weighted images in 18 patients demonstrated abnormal PSMA expression within the TZ on PET-MR. 123 images were PSMA negative. Based on the corrected p-value of 0.005, significant differences between PSMA positive and negative slices were found for 16 texture parameters: Standard deviation and mean of positive pixels for all spatial filters (p = <0.0001 for both at all spatial scaling factor (SSF) values) and mean intensity following filtration for SSF 3-6 mm (p = 0.0002-0.0018). Abnormal expression of PSMA within the TZ is associated with altered texture on T2-weighted MR, providing validation of MRTA for the detection of TZ prostate cancer. (orig.)

  4. Global digital data sets of soil type, soil texture, surface slope and other properties: Documentation of archived data tape

    Science.gov (United States)

    Staub, B.; Rosenzweig, C.; Rind, D.

    1987-01-01

    The file structure and coding of four soils data sets derived from the Zobler (1986) world soil file is described. The data were digitized on a one-degree square grid. They are suitable for large-area studies such as climate research with general circulation models, as well as in forestry, agriculture, soils, and hydrology. The first file is a data set of codes for soil unit, land-ice, or water, for all the one-degree square cells on Earth. The second file is a data set of codes for texture, land-ice, or water, for the same soil units. The third file is a data set of codes for slope, land-ice, or water for the same units. The fourth file is the SOILWRLD data set, containing information on soil properties of land cells of both Matthews' and Food and Agriculture Organization (FAO) sources. The fourth file reconciles land-classification differences between the two and has missing data filled in.

  5. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per

    Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate...... that measurements by traditional pressure plate apparatus generally overestimated water contents at -1.5 MPa (plant wilting point). The 41 soils were classified into four textural classes based on the so-called Dexter index n (= CL/OC), and the Tuller-Or (TO) general scaling model describing the water film...... thickness at a given soil-water matric potential ( 10, the estimated SA from the dry soil-water retention was in good agreement with the SA measured using ethylene glycol monoethyl ether (SA_EGME). A strong relationship between the ratio...

  6. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?

    Science.gov (United States)

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications.

  7. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    Science.gov (United States)

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  8. Potassium availability in soils - forms and spatial distribution

    International Nuclear Information System (INIS)

    Afari-Sefa, Victor; Kwakye, Peter K.; Nyamiah, Mercy; Okae-Anti, Daniel; Imoro, A. Ziblim

    2004-10-01

    Potassium forms the third most important plant nutrient limiting plant growth and consequently reducing crop yields. This study was conducted on soil potassium availability, distribution and relationship with other soil properties. Seventeen top soil samples (0-15 cm) were collected from four agro-ecological zones of the Central and Western Regions of Ghana. Water soluble, exchangeable and non-exchangeable forms of K were determined. The exchangeable K was extracted with 1 N-bar NH 4 OAc, 0.1 N-bar HNO 3 , 0.01 M-bar CaCl 2 , Bray No. 1 and 1 N-bar boiling HNO 3 . The non-exchangeable K was extracted with 1 N-bar boiling HNO 3 . Potassium was determined using flame photometer. The results showed that potassium is available in the soil in different forms and amounts. Soils from the forest-savanna transition and coastal savanna zones had relatively higher soil solution K concentration than soils from the moist rainforest and semi-deciduous forest zones. Also, soils of the semi-deciduous forest and forest savanna transition as well as the coastal savanna zones contained 2-3 times exchangeable K of the soils of the moist rainforest. The results also showed that the pH, texture as well as the land use affected K availability in the soils. (author)

  9. Effects of Plant Residues in Two Types of Soil Texture on Soil characteristics and corn (Zea mays L. NS640 Yield in a Reduced -Tillage cropping System

    Directory of Open Access Journals (Sweden)

    E Hesami

    2018-05-01

    Full Text Available Introduction The impact of agronomy on the subsequent product in rotational cropping systems depends on factors such as plant type, duration of crop growth, soil moisture content, tillage type, irrigation method, the amount of nitrogen fertilizer, quantity and quality of returned crop residues to the soil. Prior cultivated crops improve the next crop yield by causing different conditions (nitrogen availability, organic matter and volume of available water in soil. This study was conducted due to importance of corn cultivation in Khuzestan and necessity of increasing the soil organic matter, moisture conservation and in the other hand the lack of sufficient information about the relationship between soil texture, type of preparatory crop in low-tillage condition and some soil characteristics and corn growth habits. The purpose of this experiment was to evaluate the effect of residue of preparatory crops in low plowing condition in two soil types on corn yield and some soil characteristics. Materials and Methods This experiment was carried out at Shooshtar city located in Khuzestan province. An experiment was performed by combined analysis in randomized complete block design in two fields and in two consecutive years with four replications. Two kinds of soil texture including: clay loam and clay sand. Five preparatory crops including: broad bean, wheat, canola, cabbage and fallow as control assigned as sub plots. SAS Ver. 9.1 statistical software was used for analysis of variance and comparison of means. Graphs were drawn using MS Excel software. All means were compared by Duncan test at 5% probability level. Results and Discussion The soil texture and the type of preparatory crop influenced the characteristics of the soil and corn grain yield. Returning the broad bean residue into two types of soil caused the highest grain yield of corn 10128.6 and 9547.9 kgha-1, respectively. The control treatment in sandy loam texture had the lowest corn seed

  10. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?

    Directory of Open Access Journals (Sweden)

    Christine Fischer

    Full Text Available BACKGROUND: Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. METHODOLOGY/PRINCIPAL FINDINGS: We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs. In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i direct, probably by modifying the pore spectrum and (ii indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. CONCLUSIONS/SIGNIFICANCE: Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications.

  11. Soil type and texture impacts on soil organic carbon accumulation in a sub-tropical agro-ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Daniel Ruiz Potma; Sa, Joao Carlos de Moraes; Mishra, Umakant; Cerri, Carlos Eduardo Pellegrino; Ferreira, Lucimara Aparecida; Furlan, Flavia Juliana Ferreira

    2016-11-02

    Soil organic carbon (C) plays a fundamental role in tropical and subtropical soil fertility, agronomic productivity, and soil health. As a tool for understand ecosystems dynamics, mathematical models such as Century have been used to assess soil's capacity to store C in different environments. However, as Century was initially developed for temperate ecosystems, several authors have hypothesized that C storage may be underestimated by Century in Oxisols. We tested the hypothesis that Century model can be parameterized for tropical soils and used to reliably estimate soil organic carbon (SOC) storage. The aim of this study was to investigate SOC storage under two soil types and three textural classes and quantify the sources and magnitude of uncertainty using the Century model. The simulation for SOC storage was efficient and the mean residue was 10 Mg C ha-1 (13%) for n = 91. However, a different simulation bias was observed for soil with <600 g kg-1 of clay was 16.3 Mg C ha-1 (18%) for n = 30, and at >600 g kg-1 of clay, was 4 Mg C ha-1 (5%) for n = 50, respectively. The results suggest a non-linear effect of clay and silt contents on C storage in Oxisols. All types of soil contain nearly 70% of Fe and Al oxides in the clay fraction and a regression analysis showed an increase in model bias with increase in oxides content. Consequently, inclusion of mineralogical control of SOC stabilization by Fe and Al (hydro) oxides may improve results of Century model simulations in soils with high oxides contents

  12. Influence of soil texture on the distribution and availability of 238U, 230Th, and 226Ra in soils

    International Nuclear Information System (INIS)

    Blanco Rodriguez, P.; Vera Tome, F.; Lozano, J.C.; Perez-Fernandez, M.A.

    2008-01-01

    The influence of soil texture on the distribution and availability of 238 U, 230 Th, and 226 Ra in soils was studied in soil samples collected at a rehabilitated uranium mine located in the Extremadura region in south-west Spain. The activity concentration (Bq kg -1 ) in the soils ranged from 60 to 750 for 238 U, from 60 to 260 for 230 Th, and from 70 to 330 for 226 Ra. The radionuclide distribution was determined in three soil fractions: coarse sand (0.5-2 mm), medium-fine sand (0.067-0.5 mm), and silt and clay ( 238 U, 230 Th, and 226 Ra between the activity concentration per fraction and the total activity concentration in the bulk soil. Thus, from the determination of the activity concentration in the bulk soil, one could estimate the activity concentration in each fraction. Correlations were also found for 238 U and 226 Ra between the labile activity concentration in each fraction and the total activity concentration in bulk soil. Assuming that there is some particle-size fraction that predominates in the process of soil-to-plant transfer, the parameters obtained in this study should be used as correction factors for the transfer factors determined from the bulk soil in previous studies

  13. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer.

    Science.gov (United States)

    Cheng, Nai-Ming; Fang, Yu-Hua Dean; Lee, Li-yu; Chang, Joseph Tung-Chieh; Tsan, Din-Li; Ng, Shu-Hang; Wang, Hung-Ming; Liao, Chun-Ta; Yang, Lan-Yan; Hsu, Ching-Han; Yen, Tzu-Chen

    2015-03-01

    The question as to whether the regional textural features extracted from PET images predict prognosis in oropharyngeal squamous cell carcinoma (OPSCC) remains open. In this study, we investigated the prognostic impact of regional heterogeneity in patients with T3/T4 OPSCC. We retrospectively reviewed the records of 88 patients with T3 or T4 OPSCC who had completed primary therapy. Progression-free survival (PFS) and disease-specific survival (DSS) were the main outcome measures. In an exploratory analysis, a standardized uptake value of 2.5 (SUV 2.5) was taken as the cut-off value for the detection of tumour boundaries. A fixed threshold at 42 % of the maximum SUV (SUVmax 42 %) and an adaptive threshold method were then used for validation. Regional textural features were extracted from pretreatment (18)F-FDG PET/CT images using the grey-level run length encoding method and grey-level size zone matrix. The prognostic significance of PET textural features was examined using receiver operating characteristic (ROC) curves and Cox regression analysis. Zone-size nonuniformity (ZSNU) was identified as an independent predictor of PFS and DSS. Its prognostic impact was confirmed using both the SUVmax 42 % and the adaptive threshold segmentation methods. Based on (1) total lesion glycolysis, (2) uniformity (a local scale texture parameter), and (3) ZSNU, we devised a prognostic stratification system that allowed the identification of four distinct risk groups. The model combining the three prognostic parameters showed a higher predictive value than each variable alone. ZSNU is an independent predictor of outcome in patients with advanced T-stage OPSCC, and may improve their prognostic stratification.

  14. Critical Zone Experimental Design to Assess Soil Processes and Function

    Science.gov (United States)

    Banwart, Steve

    2010-05-01

    Through unsustainable land use practices, mining, deforestation, urbanisation and degradation by industrial pollution, soil losses are now hypothesized to be much faster (100 times or more) than soil formation - with the consequence that soil has become a finite resource. The crucial challenge for the international research community is to understand the rates of processes that dictate soil mass stocks and their function within Earth's Critical Zone (CZ). The CZ is the environment where soils are formed, degrade and provide their essential ecosystem services. Key among these ecosystem services are food and fibre production, filtering, buffering and transformation of water, nutrients and contaminants, storage of carbon and maintaining biological habitat and genetic diversity. We have initiated a new research project to address the priority research areas identified in the European Union Soil Thematic Strategy and to contribute to the development of a global network of Critical Zone Observatories (CZO) committed to soil research. Our hypothesis is that the combined physical-chemical-biological structure of soil can be assessed from first-principles and the resulting soil functions can be quantified in process models that couple the formation and loss of soil stocks with descriptions of biodiversity and nutrient dynamics. The objectives of this research are to 1. Describe from 1st principles how soil structure influences processes and functions of soils, 2. Establish 4 European Critical Zone Observatories to link with established CZOs, 3. Develop a CZ Integrated Model of soil processes and function, 4. Create a GIS-based modelling framework to assess soil threats and mitigation at EU scale, 5. Quantify impacts of changing land use, climate and biodiversity on soil function and its value and 6. Form with international partners a global network of CZOs for soil research and deliver a programme of public outreach and research transfer on soil sustainability. The

  15. Estimativa da erodibilidade pela desagregação por ultra-som e atributos de solos com horizonte B textural Estimating soil erodibility from sonication indexes and other attributes of textural B horizon soils

    Directory of Open Access Journals (Sweden)

    Marcos Aurélio Carolino de Sá

    2004-07-01

    Full Text Available A erodibilidade de solos é um fator importante na estimativa das perdas por erosão. Este fator é uma expressão da combinação de atributos do solo, os quais possibilitam sua estimativa por meio de equações. O objetivo deste trabalho foi medir atributos químicos e mineralógicos que, combinados com índices de estabilidade de agregados determinados por ultra-som, pudessem ser utilizados como variáveis em modelos na estimativa da erodibilidade de solos com horizonte B textural do Brasil. Estes atributos foram determinados em 22 solos de erodibilidade conhecida, medida diretamente em parcelas no campo. Atributos de 21 dos solos foram utilizados no ajuste dos modelos. Um dos solos (Argissolo Vermelho-Amarelo foi escolhido ao acaso para teste. De 96 variáveis, 15 foram incluídas nos modelos de estimativa da erodibilidade. A maioria delas é representada por índices de desagregação por sonificação de amostras do horizonte A. Foram obtidos quatro modelos para estimar a erodibilidade, com R² variando entre 0,83** e 0,91**. A erodibilidade pode ser estimada com base na estabilidade de agregados por ultra-som.Soil erodibility is an important factor for estimating soil erosion losses. This factor is an expression of combined soil attributes, which make possible its estimation by equations. The objective of this study was to measure some chemical and mineralogical attributes, and to combine them with aggregate stability indexes from sonication analysis, in equations in order to estimate soil erodibility of textural B horizon soils from Brazil. These attributes were measured for 22 soils that had their erodibility measured from field plots. Attributes of 21 soils were used to adjust the equations. One of the soils (Red-Yellow Argisol was used to test the equations. From 96 variables, 15 were significantly correlated to soil erodibility. Most of them are represented by the disruption indexes from sonication analysis of A horizon samples. This

  16. Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte.

    Science.gov (United States)

    Hultine, K R; Koepke, D F; Pockman, W T; Fravolini, A; Sperry, J S; Williams, D G

    2006-03-01

    We investigated hydraulic constraints on water uptake by velvet mesquite (Prosopis velutina Woot.) at a site with sandy-loam soil and at a site with loamy-clay soil in southeastern Arizona, USA. We predicted that trees on sandy-loam soil have less negative xylem and soil water potentials during drought and a lower resistance to xylem cavitation, and reach E(crit) (the maximum steady-state transpiration rate without hydraulic failure) at higher soil water potentials than trees on loamy-clay soil. However, minimum predawn leaf xylem water potentials measured during the height of summer drought were significantly lower at the sandy-loam site (-3.5 +/- 0.1 MPa; all errors are 95% confidence limits) than at the loamy-clay site (-2.9 +/- 0.1 MPa). Minimum midday xylem water potentials also were lower at the sandy-loam site (-4.5 +/- 0.1 MPa) than at the loamy-clay site (-4.0 +/- 0.1 MPa). Despite the differences in leaf water potentials, there were no significant differences in either root or stem xylem embolism, mean cavitation pressure or Psi(95) (xylem water potential causing 95% cavitation) between trees at the two sites. A soil-plant hydraulic model parameterized with the field data predicted that E(crit) approaches zero at a substantially higher bulk soil water potential (Psi(s)) on sandy-loam soil than on loamy-clay soil, because of limiting rhizosphere conductance. The model predicted that transpiration at the sandy-loam site is limited by E(crit) and is tightly coupled to Psi(s) over much of the growing season, suggesting that seasonal transpiration fluxes at the sandy-loam site are strongly linked to intra-annual precipitation pulses. Conversely, the model predicted that trees on loamy-clay soil operate below E(crit) throughout the growing season, suggesting that fluxes on fine-textured soils are closely coupled to inter-annual changes in precipitation. Information on the combined importance of xylem and rhizosphere constraints to leaf water supply across soil

  17. Recycling and recharge processes at the Hasandağ Stratovolcano, Central Anatolia: Insights on magma chamber systematics from plagioclase textures and zoning patterns

    Science.gov (United States)

    Gall, H. D.; Cipar, J. H.; Crispin, K. L.; Kürkçüoğlu, B.; Furman, T.

    2017-12-01

    We elucidate crystal recycling and magma recharge processes at Hasandağ by investigating compositional zoning patterns and textural variation in plagioclase crystals from Quaternary basaltic andesite through dacite lavas. Previous work on Hasandağ intermediate compositions identified thermochemical disequilibrium features and showed abundant evidence for magma mixing1,2. We expand on this work through detailed micro-texture and mineral diffusion analysis to explore the mechanisms and timescales of crystal transport and mixing processes. Thermobarometric calculations constrain the plumbing system to 1.2-2 kbar and 850-950°C, corresponding to a felsic magma chamber at 4.5 km. Electron microprobe results reveal plagioclase phenocrysts from all lava types have common core (An33-46) and rim (An36-64) compositions, with groundmass laths (An57-67) resembling the phenocryst rims. Low An cores are ubiquitous, regardless of bulk rock chemistry, and suggest a consistent composition within the magma reservoir prior to high An rim growth. High An rims are regularly enriched in Mg, Fe, Ti and Sr, which we attribute to mafic recharge and magma mixing. We assess mixing timescales by inverse diffusion modeling of Mg profiles across the core-rim boundaries. Initial results suggest mixing to eruption processes occur on the order of days to months. Heterogeneous calculated timescales within thin sections indicate crystal populations with different growth histories. Crystals often display prominent sieve-textured zones just inside the rim, as well as other disequilibrium features such as oscillatory zoning or resorbed and patchy-zoned cores. We interpret these textures to indicate mobilization of a homogeneous dacitic reservoir with abundant An35 plagioclase crystals by frequent injection of mafic magma. Variability in observed textures and calculated timescales manifests during defrosting of a highly crystalline felsic mush, through different degrees of magma mixing. This process

  18. Juvenile Southern Pine Response to Fertilization Is Influenced by Soil Drainage and Texture

    Directory of Open Access Journals (Sweden)

    Timothy J. Albaugh

    2015-08-01

    Full Text Available We examined three hypotheses in a nutrient dose and application frequency study installed in juvenile (aged 2–6 years old Pinus stands at 22 sites in the southeastern United States. At each site, eight or nine treatments were installed where nitrogen was applied at different rates (0, 67, 134, 268 kg ha−1 and frequencies (0, 1, 2, 4 and 6 years in two or four replications. Phosphorus was applied at 0.1 times the nitrogen rate and other elements were added as needed based on foliar nutrient analysis to insure that nutrient imbalances were not induced with treatment. Eight years after treatment initiation, the site responses were grouped based on texture and drainage characteristics: soil group 1 consisted of poorly drained soils with a clayey subsoil, group 2 consisted of poorly to excessively drained spodic soils or soils without a clay subsoil, and group 3 consisted of well-drained soils with a clayey subsoil. We accepted the first hypothesis that site would be a significant factor explaining growth responses. Soil group was also a significant factor explaining growth response. We accepted our second hypothesis that the volume growth-cumulative dose response function was not linear. Volume growth reached an asymptote in soil groups 1 and 3 between cumulative nitrogen doses of 300–400 kg ha−1. Volume growth responses continued to increase up to 800 kg ha−1 of cumulatively applied nitrogen for soil group 2. We accepted our third hypothesis that application rate and frequency did not influence the growth response when the cumulative nitrogen dose was equivalent. There was no difference in the growth response for comparisons where a cumulative nitrogen dose of 568 kg ha−1 was applied as 134 kg ha−1 every two years or as 269 kg ha−1 every four years, or where 269 kg ha−1 of nitrogen was applied as four applications of 67 kg ha−1 every two years or as two applications of 134 kg ha−1 every four years. Clearly, the sites examined

  19. Survey and Zoning of Soil Physical and Chemical Properties Using Geostatistical Methods in GIS (Case Study: Miankangi Region in Sistan

    Directory of Open Access Journals (Sweden)

    M. Hashemi

    2017-02-01

    Full Text Available Introduction: In order to provide a database, it is essential having access to accurate information on soil spatial variation for soil sustainable management such as proper application of fertilizers. Spatial variations in soil properties are common but it is important for understanding these changes, particularly in agricultural lands for careful planning and land management. Materials and Methods: To this end, in winter 1391, 189 undisturbed soil samples (0-30 cm depth in a regular lattice with a spacing of 500 m were gathered from the surface of Miankangi land, Sistan plain, and their physical and chemical properties were studied. The land area of the region is about 4,500 hectares; the average elevation of studied area is 489.2 meters above sea level with different land uses. Soil texture was measured by the hydrometer methods (11, Also EC and pH (39, calcium carbonate equivalent (37 and the saturation percentage of soils were determined. Kriging, Co-Kriging, Inverse Distance Weighting and Local Polynomial Interpolation techniques were evaluated to produce a soil characteristics map of the study area zoning and to select the best geostatistical methods. Cross-validation techniques and Root Mean Square Error (RMSE were used. Results and Discussion: Normalized test results showed that all of the soil properties except calcium carbonate and soil clay content had normal distribution. In addition, the results of correlation test showed that the soil saturation percentage was positively correlated with silt content (r=0.43 and p

  20. Creep model of unsaturated sliding zone soils and long-term deformation analysis of landslides

    Science.gov (United States)

    Zou, Liangchao; Wang, Shimei; Zhang, Yeming

    2015-04-01

    Sliding zone soil is a special soil layer formed in the development of a landslide. Its creep behavior plays a significant role in long-term deformation of landslides. Due to rainfall infiltration and reservoir water level fluctuation, the soils in the slide zone are often in unsaturated state. Therefore, the investigation of creep behaviors of the unsaturated sliding zone soils is of great importance for understanding the mechanism of the long-term deformation of a landslide in reservoir areas. In this study, the full-process creep curves of the unsaturated soils in the sliding zone in different net confining pressure, matric suctions and stress levels were obtained from a large number of laboratory triaxial creep tests. A nonlinear creep model for unsaturated soils and its three-dimensional form was then deduced based on the component model theory and unsaturated soil mechanics. This creep model was validated with laboratory creep data. The results show that this creep model can effectively and accurately describe the nonlinear creep behaviors of the unsaturated sliding zone soils. In order to apply this creep model to predict the long-term deformation process of landslides, a numerical model for simulating the coupled seepage and creep deformation of unsaturated sliding zone soils was developed based on this creep model through the finite element method (FEM). By using this numerical model, we simulated the deformation process of the Shuping landslide located in the Three Gorges reservoir area, under the cycling reservoir water level fluctuation during one year. The simulation results of creep displacement were then compared with the field deformation monitoring data, showing a good agreement in trend. The results show that the creeping deformations of landslides have strong connections with the changes of reservoir water level. The creep model of unsaturated sliding zone soils and the findings obtained by numerical simulations in this study are conducive to

  1. Zone-size nonuniformity of {sup 18}F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Nai-Ming [Chang Gung Memorial Hospital and Chang Gung University, Departments of Nuclear Medicine, Taiyuan (China); Chang Gung Memorial Hospital, Department of Nuclear Medicine, Keelung (China); National Tsing Hua University, Department of Biomedical Engineering and Environmental Sciences, Hsinchu (China); Fang, Yu-Hua Dean [Chang Gung University, Department of Electrical Engineering, Taiyuan (China); Lee, Li-yu [Chang Gung University College of Medicine, Department of Pathology, Chang Gung Memorial Hospital, Taoyuan (China); Chang, Joseph Tung-Chieh; Tsan, Din-Li [Chang Gung University College of Medicine, Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan (China); Ng, Shu-Hang [Chang Gung University College of Medicine, Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Taoyuan (China); Wang, Hung-Ming [Chang Gung University College of Medicine, Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan (China); Liao, Chun-Ta [Chang Gung University College of Medicine, Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan (China); Yang, Lan-Yan [Chang Gung Memorial Hospital, Biostatistics Unit, Clinical Trial Center, Taoyuan (China); Hsu, Ching-Han [National Tsing Hua University, Department of Biomedical Engineering and Environmental Sciences, Hsinchu (China); Yen, Tzu-Chen [Chang Gung Memorial Hospital and Chang Gung University, Departments of Nuclear Medicine, Taiyuan (China); Chang Gung University College of Medicine, Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taipei (China)

    2014-10-23

    The question as to whether the regional textural features extracted from PET images predict prognosis in oropharyngeal squamous cell carcinoma (OPSCC) remains open. In this study, we investigated the prognostic impact of regional heterogeneity in patients with T3/T4 OPSCC. We retrospectively reviewed the records of 88 patients with T3 or T4 OPSCC who had completed primary therapy. Progression-free survival (PFS) and disease-specific survival (DSS) were the main outcome measures. In an exploratory analysis, a standardized uptake value of 2.5 (SUV 2.5) was taken as the cut-off value for the detection of tumour boundaries. A fixed threshold at 42 % of the maximum SUV (SUV{sub max} 42 %) and an adaptive threshold method were then used for validation. Regional textural features were extracted from pretreatment {sup 18}F-FDG PET/CT images using the grey-level run length encoding method and grey-level size zone matrix. The prognostic significance of PET textural features was examined using receiver operating characteristic (ROC) curves and Cox regression analysis. Zone-size nonuniformity (ZSNU) was identified as an independent predictor of PFS and DSS. Its prognostic impact was confirmed using both the SUV{sub max} 42 % and the adaptive threshold segmentation methods. Based on (1) total lesion glycolysis, (2) uniformity (a local scale texture parameter), and (3) ZSNU, we devised a prognostic stratification system that allowed the identification of four distinct risk groups. The model combining the three prognostic parameters showed a higher predictive value than each variable alone. ZSNU is an independent predictor of outcome in patients with advanced T-stage OPSCC, and may improve their prognostic stratification. (orig.)

  2. Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau

    Science.gov (United States)

    Zhao, Hong; Zeng, Yijian; Lv, Shaoning; Su, Zhongbo

    2018-06-01

    Soil information (e.g., soil texture and porosity) from existing soil datasets over the Tibetan Plateau (TP) is claimed to be inadequate and even inaccurate for determining soil hydraulic properties (SHP) and soil thermal properties (STP), hampering the understanding of the land surface process over TP. As the soil varies across three dominant climate zones (i.e., arid, semi-arid and subhumid) over the TP, the associated SHP and STP are expected to vary correspondingly. To obtain an explicit insight into the soil hydrothermal properties over the TP, in situ and laboratory measurements of over 30 soil property profiles were obtained across the climate zones. Results show that porosity and SHP and STP differ across the climate zones and strongly depend on soil texture. In particular, it is proposed that gravel impact on porosity and SHP and STP are both considered in the arid zone and in deep layers of the semi-arid zone. Parameterization schemes for porosity, SHP and STP are investigated and compared with measurements taken. To determine the SHP, including soil water retention curves (SWRCs) and hydraulic conductivities, the pedotransfer functions (PTFs) developed by Cosby et al. (1984) (for the Clapp-Hornberger model) and the continuous PTFs given by Wösten et al. (1999) (for the Van Genuchten-Mualem model) are recommended. The STP parameterization scheme proposed by Farouki (1981) based on the model of De Vries (1963) performed better across the TP than other schemes. Using the parameterization schemes mentioned above, the uncertainties of five existing regional and global soil datasets and their derived SHP and STP over the TP are quantified through comparison with in situ and laboratory measurements. The measured soil physical properties dataset is available at https://data.4tu.nl/repository/uuid:c712717c-6ac0-47ff-9d58-97f88082ddc0" target="_blank">https://data.4tu.nl/repository/uuid:c712717c-6ac0-47ff-9d58-97f88082ddc0.

  3. Topographic Controls on Spatial Patterns of Soil Texture and Moisture in a Semi-arid Montane Catchment with Aspect-Dependent Vegetation

    Science.gov (United States)

    Lehman, B. M.; Niemann, J. D.

    2008-12-01

    Soil moisture exerts significant control over the partitioning of latent and sensible energy fluxes, the magnitude of both vertical and lateral water fluxes, the physiological and water-use characteristics of vegetation, and nutrient cycling. Considerable progress has been made in determining how soil characteristics, topography, and vegetation influence spatial patterns of soil moisture in humid environments at the catchment, hillslope, and plant scales. However, understanding of the controls on soil moisture patterns beyond the plant scale in semi-arid environments remains more limited. This study examines the relationships between the spatial patterns of near surface soil moisture (upper 5 cm), terrain indices, and soil properties in a small, semi-arid, montane catchment. The 8 ha catchment, located in the Cache La Poudre River Canyon in north-central Colorado, has a total relief of 115 m and an average elevation of 2193 m. It is characterized by steep slopes and shallow, gravelly/sandy soils with scattered granite outcroppings. Depth to bedrock ranges from 0 m to greater than 1 m. Vegetation in the catchment is highly correlated with topographic aspect. In particular, north-facing hillslopes are predominately vegetated by ponderosa pines, while south-facing slopes are mostly vegetated by several shrub species. Soil samples were collected at a 30 m resolution to characterize soil texture and bulk density, and several datasets consisting of more than 300 point measurements of soil moisture were collected using time domain reflectometry (TDR) between Fall 2007 and Summer 2008 at a 15 m resolution. Results from soil textural analysis performed with sieving and the ASTM standard hydrometer method show that soil texture is finer on the north-facing hillslope than on the south-facing hillslope. Cos(aspect) is the best univariate predictor of silts, while slope is the best predictor of coarser fractions up to fine gravel. Bulk density increases with depth but shows no

  4. Enhanced biogeochemical cycling and subsequent reduction of hydraulic conductivity associated with soil-layer interfaces in the vadose zone

    Science.gov (United States)

    Hansen, David J.; McGuire, Jennifer T.; Mohanty, Binayak P.

    2013-01-01

    Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In-situ collocated probes measured soil water content, matric potential, and Eh while water samples collected from the same locations were analyzed for Br−, Cl−, NO3−, SO42−, NH4+, Fe2+, and total sulfide. Compared to homogenous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron and sulfate reducing bacteria showed 1-2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface; the presence of which, likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. Findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation and/or slow the rate of transport of contaminants. PMID:22031578

  5. Soil Quality Evaluation Using the Soil Management Assessment Framework (SMAF in Brazilian Oxisols with Contrasting Texture

    Directory of Open Access Journals (Sweden)

    Maurício Roberto Cherubin

    Full Text Available ABSTRACT The Soil Management Assessment Framework (SMAF was developed in the U.S.A. and has been used as a tool for assessing and quantifying changes in soil quality/health (SQ induced by land uses and agricultural practices in that region and elsewhere throughout the world. An initial study using SMAF in Brazil was recently published, but additional research for a variety of soils and management systems is still needed. Our objective was to use data from five studies in southern Brazil to evaluate the potential of SMAF for assessing diverse land-use and management practices on SQ. The studies examined were: (i horizontal and vertical distribution of soil properties in a long-term orange orchard; (ii impacts of long-term land-use change from native vegetation to agricultural crops on soil properties; (iii effects of short-term tillage on soil properties in a cassava production area; (iv changes in soil properties due to mineral fertilizer and pig slurry application coupled with soil tillage practices; and (v row and inter-row sowing effects on soil properties in a long-term no-tillage area. The soils were classified as Oxisols, with clay content ranging from 180 to 800 g kg-1. Six SQ indicators [pH(H2O, P, K, bulk density, organic C, and microbial biomass] were individually scored using SMAF curves and integrated into an overall Soil Quality Index (SQI focusing on chemical, physical, and biological sectors. The SMAF was sensitive for detecting SQ changes induced by different land uses and management practices within this wide textural range of Brazilian Oxisols. The SMAF scoring curve algorithms properly transformed the indicator values expressed in different units into unitless scores ranging from 0-1, thus enabling the individual indicators to be combined into an overall index for evaluating land-use and management effects on soil functions. Soil sector scores (i.e., chemical, physical, and biological identify the principal soil limitations

  6. Designing sustainable soils in Earth's critical zone

    Science.gov (United States)

    Banwart, Steven Allan; de Souza, Danielle Maia; Menon, Manoj; Nikolaidis, Nikolaos; Panagos, Panos; Vala Ragnardsdottir, Kristin; Rousseva, Svelta; van Gaans, Pauline

    2014-05-01

    The demographic drivers of increasing human population and wealth are creating tremendous environmental pressures from growing intensity of land use, resulting in soil and land degradation worldwide. Environmental services are provided through multiple soil functions that include biomass production, water storage and transmission, nutrient transformations, contaminant attenuation, carbon and nitrogen storage, providing habitat and maintaining the genetic diversity of the land environment. One of the greatest challenges of the 21st century is to identify key risks to soil, and to design mitigation strategies to manage these risks and to enhance soil functions that can last into the future. The scientific study of Earth's Critical Zone (CZ), the thin surface layer that extends vertically from the top of the tree canopy to the bottom of aquifers, provides an essential integrating scientific framework to study, protect and enhance soil functions. The research hypothesis is that soil structure, the geometric architecture of solids, pores and biomass, is a critical indicator and essential factor of productive soil functions. The experimental design selects a network of Critical Zone Observatories (CZOs) as advanced field research sites along a gradient of land use intensity in order to quantify soil structure and soil processes that dictate the flows and transformations of material and energy as soil functions. The CZOs focus multidisciplinary expertise on soil processes, field observation and data interpretation, management science and ecological economics. Computational simulation of biophysical processes provides a quantitative method of integration for the range of theory and observations that are required to quantify the linkages between changes in soil structure and soil functions. Key results demonstrate that changes in soil structure can be quantified through the inputs of organic carbon and nitrogen from plant productivity and microbial activity, coupled with

  7. Soil Heavy Metal Concentration Patterns at Two Speed Zones along ...

    African Journals Online (AJOL)

    Soil Heavy Metal Concentration Patterns at Two Speed Zones along the Gaborone- Tlokweng Border Post Highway, Southeast Botswana. ... Since 1988 Botswana has been experiencing an unprecedented increase in vehicular traffic which is suspected to be having contamination effects on soils along heavily used roads ...

  8. Structure-Dependent Water-Induced Linear Reduction Model for Predicting Gas Diffusivity and Tortuosity in Repacked and Intact Soil

    DEFF Research Database (Denmark)

    Møldrup, Per; Chamindu, T. K. K. Deepagoda; Hamamoto, S.

    2013-01-01

    The soil-gas diffusion is a primary driver of transport, reactions, emissions, and uptake of vadose zone gases, including oxygen, greenhouse gases, fumigants, and spilled volatile organics. The soil-gas diffusion coefficient, Dp, depends not only on soil moisture content, texture, and compaction...... but also on the local-scale variability of these. Different predictive models have been developed to estimate Dp in intact and repacked soil, but clear guidelines for model choice at a given soil state are lacking. In this study, the water-induced linear reduction (WLR) model for repacked soil is made...... air) in repacked soils containing between 0 and 54% clay. With Cm = 2.1, the SWLR model on average gave excellent predictions for 290 intact soils, performing well across soil depths, textures, and compactions (dry bulk densities). The SWLR model generally outperformed similar, simple Dp/Do models...

  9. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    Science.gov (United States)

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  10. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    Science.gov (United States)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  11. Analysis of the NASA AirMOSS Root Zone Soil Water and Soil Temperature from Three North American Ecosystems

    Science.gov (United States)

    Hagimoto, Y.; Cuenca, R. H.

    2015-12-01

    Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.

  12. Soil processes and functions in critical zone observatories: hypotheses and experimental design

    NARCIS (Netherlands)

    Banwart, S.; Bernasconi, S.M.; Bloem, J.; Blum, W.; Ruiter, de P.C.; Gaans, van P.; Riemsdijk, van W.H.

    2011-01-01

    European Union policy on soil threats and soil protection has prioritized new research to address global soil threats. This research draws on the methodology of Critical Zone Observatories (CZOs) to focus a critical mass of international, multidisciplinary expertise at specific field sites. These

  13. Evaluation of Soil Flushing for Application to the Deep Vadose Zone in the Hanford Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Oostrom, Martinus; Zhang, Z. F.; Carroll, Kenneth C.; Schramke, Janet A.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Gordon, Kathryn A.; Last, George V.

    2010-11-01

    Soil flushing was included in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau as a technology with the potential to remove contaminants from the vadose zone. Soil flushing operates through the addition of water, and if necessary an appropriate mobilizing agent, to mobilize contaminants and flush them from the vadose zone and into the groundwater where they are subsequently captured by a pump-and-treat system. There are uncertainties associated with applying soil flushing technology to contaminants in the deep vadose zone at the Hanford Central Plateau. The modeling and laboratory efforts reported herein are intended to provide a quantitative assessment of factors that impact water infiltration and contaminant flushing through the vadose zone and into the underlying groundwater. Once in the groundwater, capture of the contaminants would be necessary, but this aspect of implementing soil flushing was not evaluated in this effort. Soil flushing was evaluated primarily with respect to applications for technetium and uranium contaminants in the deep vadose zone of the Hanford Central Plateau.

  14. Texture characterisation of hexagonal metals: Magnesium AZ91 alloy, welded by laser processing

    International Nuclear Information System (INIS)

    Kouadri, A.; Barrallier, L.

    2006-01-01

    Cooled and cast magnesium AZ91 alloy was welded using a CO 2 laser. The changes in the microstructure were analysed by optical and scanning electron microscopy and X-ray diffraction. Modification of the anisotropic properties was evaluated by the characterization of the texture in the base metal, in the core of the welded zone and in the welded zone close to the surface. In the two former zones, we have not observed a texture. Laser welding only leads to a change of the grain size and a disappearance of the eutectic phase. By contrast, in the welded zone close to the surface, the laser process leads both to a finer microstructure, to a loss of the Al-content and to the presence of several texture components. In this zone, our results showed that these textures are on pyramidal {101-bar 1} and prismatic {101-bar 0} planes. Much of the explanation for such texture rests with the fact that during the laser welding, material solidifies in strong non-equilibrium conditions. The kinetics of the nucleation and the growth are partly controlled by the high-rise and high fall of the temperature and the power produced by the laser process. The nature of the texture has been explained by the presence of a columnar to equiaxed transition in the welded zone

  15. ''Textural analysis of multiparametric MRI detects transition zone prostate cancer''

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, Harbir S.; Johnston, Edward W.; Taylor, Stuart A.; Halligan, Steve [Centre for Medical Imaging, University College London, London (United Kingdom); University College London Hospitals NHS Foundation Trust, London (United Kingdom); Benigno, Salvatore; Dikaios, Nikos [Centre for Medical Imaging, University College London, London (United Kingdom); Ganeshan, Balaji [Institute of Nuclear Medicine, University College London, University College Hospital, London (United Kingdom); Allen, Clare; Kirkham, Alex [University College London Hospitals NHS Foundation Trust, London (United Kingdom); Groves, Ashley M. [University College London Hospitals NHS Foundation Trust, London (United Kingdom); Institute of Nuclear Medicine, University College London, University College Hospital, London (United Kingdom); Ahmed, Hashim U.; Emberton, Mark [University College London Hospitals NHS Foundation Trust, London (United Kingdom); University College London, Research Department of Urology, London (United Kingdom); Punwani, Shonit [Centre for Medical Imaging, University College London, London (United Kingdom); University College London Hospitals NHS Foundation Trust, London (United Kingdom); Centre for Medical Imaging, University College London and University College London Hospitals NIHR Biomedical Research Centre, London (United Kingdom)

    2017-06-15

    To evaluate multiparametric-MRI (mpMRI) derived histogram textural-analysis parameters for detection of transition zone (TZ) prostatic tumour. Sixty-seven consecutive men with suspected prostate cancer underwent 1.5T mpMRI prior to template-mapping-biopsy (TPM). Twenty-six men had 'significant' TZ tumour. Two radiologists in consensus matched TPM to the single axial slice best depicting tumour, or largest TZ diameter for those with benign histology, to define single-slice whole TZ-regions-of-interest (ROIs). Textural-parameter differences between single-slice whole TZ-ROI containing significant tumour versus benign/insignificant tumour were analysed using Mann Whitney U test. Diagnostic accuracy was assessed by receiver operating characteristic area under curve (ROC-AUC) analysis cross-validated with leave-one-out (LOO) analysis. ADC kurtosis was significantly lower (p < 0.001) in TZ containing significant tumour with ROC-AUC 0.80 (LOO-AUC 0.78); the difference became non-significant following exclusion of significant tumour from single-slice whole TZ-ROI (p = 0.23). T1-entropy was significantly lower (p = 0.004) in TZ containing significant tumour with ROC-AUC 0.70 (LOO-AUC 0.66) and was unaffected by excluding significant tumour from TZ-ROI (p = 0.004). Combining these parameters yielded ROC-AUC 0.86 (LOO-AUC 0.83). Textural features of the whole prostate TZ can discriminate significant prostatic cancer through reduced kurtosis of the ADC-histogram where significant tumour is included in TZ-ROI and reduced T1 entropy independent of tumour inclusion. (orig.)

  16. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  17. Microstructural strength of tidal soils – a rheometric approach to develop pedotransfer functions

    Directory of Open Access Journals (Sweden)

    Stoppe Nina

    2018-03-01

    Full Text Available Differences in soil stability, especially in visually comparable soils can occur due to microstructural processes and interactions. By investigating these microstructural processes with rheological investigations, it is possible to achieve a better understanding of soil behaviour from the mesoscale (soil aggregates to macroscale (bulk soil. In this paper, a rheological investigation of the factors influencing microstructural stability of riparian soils was conducted. Homogenized samples of Marshland soils from the riparian zone of the Elbe River (North Germany were analyzed with amplitude sweeps (AS under controlled shear deformation in a modular compact rheometer MCR 300 (Anton Paar, Germany at different matric potentials. A range physicochemical parameters were determined (texture, pH, organic matter, CaCO3 etc. and these factors were used to parameterize pedotransfer functions. The results indicate a clear dependence of microstructural elasticity on texture and water content. Although the influence of individual physicochemical factors varies depending on texture, the relevant features were identified taking combined effects into account. Thus, stabilizing factors are: organic matter, calcium ions, CaCO3 and pedogenic iron oxides; whereas sodium ions and water content represent structurally unfavorable factors. Based on the determined statistical relationships between rheological and physicochemical parameters, pedotransfer functions (PTF have been developed.

  18. Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils

    Science.gov (United States)

    Iturri, Laura Antonela; Funk, Roger; Leue, Martin; Sommer, Michael; Buschiazzo, Daniel Eduardo

    2017-10-01

    There is little information about the mineral and organic composition of sediments eroded by wind at different heights. Because of that, wind tunnel simulations were performed on four agricultural loess soils of different granulometry and their saltating materials collected at different heights. The particulate matter with an aerodynamic diameter mainly smaller than 10 μm (PM10) of these soils was obtained separately by a laboratory method. Results indicated that the granulometric composition of sediments collected at different heights was more homogeneous in fine- than in sandy-textured soils, which were more affected by sorting effects during wind erosion. This agrees with the preferential transport of quartz at low heights and of clay minerals at greater heights. SOC contents increased with height, but the composition of the organic materials was different: stable carboxylic acids, aldehydes, amides and aromatics were preferentially transported close to the ground because their were found in larger aggregates, while plant debris and polysaccharides, carbohydrates and derivatives of microbial origin from organic matter dominated at greater heights for all soil types. The amount of SOC in the PM10 fraction was higher when it was emitted from sandy than from fine textured soils. Because of the sorting process produced by wind erosion, the stable organic matter compounds will be transported at low heights and local scales, modifying soil fertility due to nutrient exportation, while less stable organic compounds will be part of the suspension losses, which are known to affect some processes at regional- or global scale.

  19. Root activity and soil feeding zones of some Bajra hybrids (Pennisetum typhoids Stapf.)

    International Nuclear Information System (INIS)

    Shriniwas

    1980-01-01

    Root activity and soil feeding zones of five bajra hybrids (Hybrid D-356, HB-3, HB-4, HB-1 and Bil-3B) were determined under natural field conditions by placement of 32 P labelled superphosphate enclosed in gelatinous capsules at different soil locations around the plant. Percent root activity varied significantly from one depth to another and it decreased with increase in depths and lateral distances. More than 44 percent of the root activity occurred in a soil feeding zone consisting of 0-15 cm depth having double of this much lateral distance. Percent root activity in HB-3 and HB-4 was almost found identical both horizontally and vertically. Hybrid D-356 and HB-1 approximated more than 38 percent root activity in a soil feeding zone of 0-15 cm in depth and 0-10 cm in lateral distance. 32 P placement in capsules appeared to hold promise over Hall's technique since it overcomes the differences caused by disturbance of the feeding activity of roots at the point of 32 P injection into the soil. (author)

  20. Antecedent moisture content and soil texture effects on infiltration and erosion

    Science.gov (United States)

    Mamedov, A. I.; Huang, C.; Levy, G. J.

    2006-12-01

    Water infiltration, seal formation, runoff and erosion depend on the soil's inherent properties and surface conditions. Most erosion models consider only soil inherent properties (mainly texture) in assessing infiltration and erosion without consideration of spatial and temporary variation in the surface condition, particularly the antecedent moisture content. We studied the interaction of two different surface conditions, i.e. antecedent moisture content (AMC) and aging (timing after wetting) on infiltration (IR), seal formation (runoff generation) and erosion in four soils varying from loam to clay. Soil samples were packed in erosion box and wetted with different amounts of water (0, 1, 2, 3, 4, 6, 8, or 16 mm) to obtain a wide moisture range (i.e., pF 0-6.2, or from air dry to full saturation). The boxes were put in plastic bags and allowed to age for 0.01, 1, 3, or 7 days. Then the soil in the erosion box exposed to 60 mm of rain. At no aging final IR of soils did not change significantly, but runoff volume (a measure for seal development) and soil loss increased with an increase in AMC mainly because of aggregate breakdown. For any given aging, the highest IR and smallest runoff volume and soil loss were obtained at the intermediate AMC levels (pF 2.4-4.2, between wilting point and field capacity). For instance, in the clay soil to which 3 mm of water (pF~2.7) was added, as aging increased from one to seven days, final IR increased from 5.3 to 7.9 mm h-1, while runoff and soil loss decreased from 34 mm to 22 mm, and from 630 to 360 g m2 respectively. At this AMC range, increasing aging time resulted in up to 40% increase in IR and decrease in runoff or soil loss. This tendency significantly more pronounced for clay soils because water-filled pores in the clay fabric were considered active in the stabilization process and the development of cohesive bonds between and within particles during the aging period. The results of this study are important for soil

  1. Long-Term Soil Experiments: A Key to Managing Earth's Rapidly Changing Critical Zones

    Science.gov (United States)

    Richter, D., Jr.

    2014-12-01

    In a few decades, managers of Earth's Critical Zones (biota, humans, land, and water) will be challenged to double food and fiber production and diminish adverse effects of management on the wider environment. To meet these challenges, an array of scientific approaches is being used to increase understanding of Critical Zone functioning and evolution, and one amongst these approaches needs to be long-term soil field studies to move us beyond black boxing the belowground Critical Zone, i.e., to further understanding of processes driving changes in the soil environment. Long-term soil experiments (LTSEs) provide direct observations of soil change and functioning across time scales of decades, data critical for biological, biogeochemical, and environmental assessments of sustainability; for predictions of soil fertility, productivity, and soil-environment interactions; and for developing models at a wide range of temporal and spatial scales. Unfortunately, LTSEs globally are not in a good state, and they take years to mature, are vulnerable to loss, and even today remain to be fully inventoried. Of the 250 LTSEs in a web-based network, results demonstrate that soils and belowground Critical Zones are highly dynamic and responsive to human management. The objective of this study is to review the contemporary state of LTSEs and consider how they contribute to three open questions: (1) can soils sustain a doubling of food production in the coming decades without further impinging on the wider environment, (2) how do soils interact with the global C cycle, and (3) how can soil management establish greater control over nutrient cycling. While LTSEs produce significant data and perspectives for all three questions, there is on-going need and opportunity for reviews of the long-term soil-research base, for establishment of an efficiently run network of LTSEs aimed at sustainability and improving management control over C and nutrient cycling, and for research teams that

  2. Assimilation of a thermal remote sensing-based soil moisture proxy into a root-zone water balance model

    Science.gov (United States)

    Crow, W. T.; Kustas, W. P.

    2006-05-01

    Two types of Soil Vegetation Atmosphere Transfer (SVAT) modeling approaches are commonly applied to monitoring root-zone soil water availability. Water and Energy Balance (WEB) SVAT modeling are based forcing a prognostic water balance model with precipitation observations. In constrast, thermal Remote Sensing (RS) observations of canopy radiometric temperatures can be integrated into purely diagnostic SVAT models to predict the onset of vegetation water stress due to low root-zone soil water availability. Unlike WEB-SVAT models, RS-SVAT models do not require observed precipitation. Using four growings seasons (2001 to 2004) of profile soil moisture, micro-meteorology, and surface radiometric temperature observations at the USDA's OPE3 site, root-zone soil moisture predictions made by both WEB- and RS-SVAT modeling approaches are intercompared with each other and availible root- zone soil moisture observations. Results indicate that root-zone soil moisture estimates derived from a WEB- SVAT model have slightly more skill in detecting soil moisture anomalies at the site than comporable predictions from a competing RS-SVAT modeling approach. However, the relative advantage of the WEB-SVAT model disappears when it is forced with lower-quality rainfall information typical of continental and global-scale rainfall data sets. Most critically, root-zone soil moisture errors associated with both modeling approaches are sufficiently independent such that the merger of both information from both proxies - using either simple linear averaging or an Ensemble Kalman filter - creates a merge soil moisture estimate that is more accurate than either of its parent components.

  3. Investigation of Influence Zones Induced by Shallow Tunnelling in Soft Soils

    NARCIS (Netherlands)

    Vu Minh, N.; Broere, W.; Bosch, J.W.

    2017-01-01

    The extent of the influence zone affected by shallow tunnelling depends on the value of volume loss which normally represents the amount of over-excavation and stress changes induced in the soil. This paper combines upper and lower estimates of volume loss for different soft soils and

  4. Analysis of total iodine in soils of some agro-ecological zones of Ghana

    International Nuclear Information System (INIS)

    Kwakye, P.K.; Osei-Agyeman, K.; Frimpong, K.A.; Adams, A.B.; Okae-Anti, D.

    2004-10-01

    Iodine is beneficial in human nutrition and to a lesser extent in plant nutrition. Availability of this element in the soil is thought to be via ocean-atmosphere precipitation, iodine minerals and redistribution by vegetation, but very little is known about levels of iodine in Ghanaian soils. We analyzed for the content of total iodine alongside pH, organic carbon, total nitrogen, cation exchange capacity, sand, silt and clay in top soils of selected agro-ecological zones. These soils occur at various locations spanning from the coastline to the far interior. Variations in nutrient elements were attributed to diverse parent materials from which these soils originated and the complex interactions of organic matter, type of clay, acidity-alkalinity and leaching processes. The soils recorded low total iodine content of 0.08 - 3.92 μg g - 1. There was a decreasing trend of iodine from the coastal zone inwards in the order of 1.85, 0.84 and μg g - 1 for the coastal savanna, semi-deciduous rainforest and Guinea savanna agro-ecological zones respectively. Iodine very weakly negatively correlated with C and N and showed a moderate positive correlation with clay content and moderate negative correlations with pH and sand content. (author)

  5. The influence of the unsaturated zone on the upward transport of radionuclides in soils

    International Nuclear Information System (INIS)

    Elert, M.; Lindgren, M.

    1993-07-01

    The transport of radionuclides from the deep soil to the surface soil is an important part of biosphere modelling. In this study the effect of transient hydrological conditions on the upward transport of radionuclides through soils has been studied. The effect of varying soil properties, climate conditions have been considered as well as the effect of a fluctuating groundwater level. It was shown that the soil characteristics influences the radionuclide concentration; an increased hydraulic conductivity leads to increase in the concentration in the root zone. The climate conditions were shown to be of major importance. A dispersion dependent on both velocity and saturation leads to a more effective upward transport of radionuclides to the root zone than if dispersion is assumed to be dependent only on the saturation. The boundary condition used in the case with varying groundwater level may be more realistic than the boundary condition applied for the case with a constant groundwater level. All calculations with varying groundwater level gave lower radionuclide concentration in the root zone. Sorption is redox sensitive for many radionuclides and the redox potential in the soil will be affected by the degree of water saturation. The performed calculations did, however, not result in any significant change in the radionuclide concentration in the root zone due to variation in sorption. A comparison between the results of the two models show that the compartment model in all studied cases predicts a higher annual average radionuclide concentration in the root zone than the numerical model. Annual variation in soil water flow were not included in the compartment model. During the summer the concentration in the root zone may be several times higher than the annual average. This may be important for plant uptake, since this increased concentrations coincides with the plant growing season. The calculations made with the simple compartment model also show that these

  6. Spatial Variation of Soil Type and Soil Moisture in the Regional Atmospheric Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.

    2001-06-27

    Soil characteristics (texture and moisture) are typically assumed to be initially constant when performing simulations with the Regional Atmospheric Modeling System (RAMS). Soil texture is spatially homogeneous and time-independent, while soil moisture is often spatially homogeneous initially, but time-dependent. This report discusses the conversion of a global data set of Food and Agriculture Organization (FAO) soil types to RAMS soil texture and the subsequent modifications required in RAMS to ingest this information. Spatial variations in initial soil moisture obtained from the National Center for Environmental Predictions (NCEP) large-scale models are also introduced. Comparisons involving simulations over the southeastern United States for two different time periods, one during warmer, more humid summer conditions, and one during cooler, dryer winter conditions, reveals differences in surface conditions related to increases or decreases in near-surface atmospheric moisture con tent as a result of different soil properties. Three separate simulation types were considered. The base case assumed spatially homogeneous soil texture and initial soil moisture. The second case assumed variable soil texture and constant initial soil moisture, while the third case allowed for both variable soil texture and initial soil moisture. The simulation domain was further divided into four geographically distinct regions. It is concluded there is a more dramatic impact on thermodynamic variables (surface temperature and dewpoint) than on surface winds, and a more pronounced variability in results during the summer period. While no obvious trends in surface winds or dewpoint temperature were found relative to observations covering all regions and times, improvement in surface temperatures in most regions and time periods was generally seen with the incorporation of variable soil texture and initial soil moisture.

  7. Soil physical conditions in Nigerian savannas and biomass production

    International Nuclear Information System (INIS)

    Salako, F.K.

    2004-01-01

    Nigeria is located in the tropical zone, with a vast area having savanna vegetation. This is a region that is itself diverse, necessitating a classification into derived savanna, southern Guinea savanna and northern Guinea savanna. These classifications reflect environmental characteristics such as length of growing period, which for instance is 151-180 days for the northern Guinea savanna, 181-210 days for the southern Guinea savanna and 211-270 days for the derived savanna/coastal savanna. The major soils found in the various agro-ecological zones have coarse-textured surface soil, and are low in organic matter and chemical fertility. Although, yields can be improved by addition of inorganic and organic fertilizer, this can only be sustained and assured with high soil physical qualities. Soil physical qualities can be sustained at a high level with conservation tillage and soil conservation measures. Tillage is physical manipulation of the soil. Thus, the most profound effect of tillage is in relation to soil physical properties. For socio-economic and cultural reasons, manual tillage is still widely practiced in Africa as farming is largely at subsistence level. However, there are now a number of commercial farms especially for cash crop production in many parts of Africa. Many of these are located in locations which were hitherto reserved as forest and a need for sustainable production in pertinent to maintain ecological balance. Soils with coarse texture are not often sensitive to some physical parameters while some physical parameters are more relevant in a given study than others. Sustainable crop production researches in the tropics have focused on the role of planted fallows and their spatial arrangement (e.g., as in alley cropping) for many decades. Application of soil physics in the area of food production and environmental management still lags behind other sub-disciplines of soil science, particularly soil fertility in the tropics. A great challenge is

  8. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption.

    Science.gov (United States)

    Awad, John; van Leeuwen, John; Abate, Dawit; Pichler, Markus; Bestland, Erick; Chittleborough, David J; Fleming, Nigel; Cohen, Jonathan; Liffner, Joel; Drikas, Mary

    2015-10-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~30 cm and ~60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV-visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on the

  9. Grazing moderates increases in C3 grass abundance over seven decades across a soil texture gradient in shortgrass steppe

    Science.gov (United States)

    Questions: How does long-term grazing exclusion influence plant community composition in a semiarid grassland? Can spatial variation in the effects of grazing exclusion be explained by variation in soil texture? Location: The shortgrass steppe of northeastern Colorado, USA, located in the North Amer...

  10. Water extraction and implications on soil moisture sensor placement in the root zone of banana

    Directory of Open Access Journals (Sweden)

    Alisson Jadavi Pereira da Silva

    Full Text Available ABSTRACT: The knowledge on spatial and temporal variations of soil water storage in the root zone of crops is essential to guide the studies to determine soil water balance, verify the effective zone of water extraction in the soil and indicate the correct region for the management of water, fertilizers and pesticides. The objectives of this study were: (i to indicate the zones of highest root activity for banana in different development stages; (ii to determine, inside the zone of highest root activity, the adequate position for the installation of soil moisture sensors. A 5.0 m3 drainage lysimeter was installed in the center of an experimental area of 320 m2. Water extraction was quantified inside the lysimeter using a 72 TDR probe. The concept of time stability was applied to indicate the position for sensor installation within the limits of effective water extraction. There are two patterns of water extraction distribution during the development of banana and the point of installation of sensors for irrigation management inside the zone of highest root activity is not constant along the crop development.

  11. TEXTURE ANALYSIS OF EXTRUDED APPLE POMACE - WHEAT SEMOLINA BLENDS

    Directory of Open Access Journals (Sweden)

    Ivan Bakalov

    2016-03-01

    Full Text Available Apple pomace - wheat semolina blends were extruded in a laboratory single screw extruder (Brabender 20 DN, Germany. Effects apple pomace content, moisture content, screw speed, and temperature of final cooking zone on texture of extrudates were studied applying response surface methodology. The texture characteristics of the extrudates were measured using a TA.XT Plus Texture Analyser, Stable Micro Systems.

  12. X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture1[OPEN

    Science.gov (United States)

    Rogers, Eric D.; Monaenkova, Daria; Mijar, Medhavinee; Goldman, Daniel I.

    2016-01-01

    Root system architecture (RSA) impacts plant fitness and crop yield by facilitating efficient nutrient and water uptake from the soil. A better understanding of the effects of soil on RSA could improve crop productivity by matching roots to their soil environment. We used x-ray computed tomography to perform a detailed three-dimensional quantification of changes in rice (Oryza sativa) RSA in response to the physical properties of a granular substrate. We characterized the RSA of eight rice cultivars in five different growth substrates and determined that RSA is the result of interactions between genotype and growth environment. We identified cultivar-specific changes in RSA in response to changing growth substrate texture. The cultivar Azucena exhibited low RSA plasticity in all growth substrates, whereas cultivar Bala root depth was a function of soil hardness. Our imaging techniques provide a framework to study RSA in different growth environments, the results of which can be used to improve root traits with agronomic potential. PMID:27208237

  13. [Retaining and transformation of incoming soil N from highland to adjacent terrestrial water body in riparian buffer zone].

    Science.gov (United States)

    Wang, Qing-cheng; Yu, Hong-li; Yao, Qin; Han, Zhuang-xing; Qiao, Shu-liang

    2007-11-01

    Highland soil nitrogen can enter adjacent water body via erosion and leaching, being one of the important pollutants in terrestrial water bodies. Riparian buffer zone is a transitional zone between highland and its adjacent water body, and a healthy riparian buffer zone can retain and transform the incoming soil N through physical, biological, and biochemical processes. In this paper, the major pathways through which soil nitrogen enters terrestrial water body and the mechanisms the nitrogen was retained and transformed in riparian buffer zone were introduced systematically, and the factors governing the nitrogen retaining and transformation were analyzed from the aspects of hydrological processes, soil characters, vegetation features, and human activities. The problems existing in riparian buffer zone study were discussed, and some suggestions for the further study in China were presented.

  14. Neutron-activation analysis for investigation of biochemical manganese in soils cotton soweol zone of Uzbekistan

    International Nuclear Information System (INIS)

    Zhumamuratov, A.; Tillaev, T.; Khatamov, Sh.; Suvanov, M.; Osinskaya, N.S.; Rakhmanova, T.P.

    2004-01-01

    Full text: For many years we neutron activation analysis of soils sampled from different areas of landscape-geochemical regions of Uzbekistan including zone of extreme ecological catastrophe of Aral. Content of manganese and some other elements in the 'soil-cotton' system was investigated. Neutron-activation method of manganese determining with productivity up to 400 samples on shift with detection limit of 1,1 10 -5 % and discrepancies not more than 10%. Was developed extremely uniform distribution of manganese in cotton sowed soils of the Republic (340-1800mg/kg) is determined. Practically all soils of cotton-sowed zone of Republic are with lack of manganese. Distribution of manganese on soil profile of separate organs of cotton (leaves seeds etc.) was studied. Correlation between gross concentration of manganese and its active part extracted by distilled water on the basis of quantity analysis was found. Successive comparison of gross content of manganese in the soil with crop capacity of cotton in different zones of Republic made it possible to find interconnection between these quantities, which proves necessity of using micro-additions of manganese in the soils where its low concentration is detected

  15. Operational Mapping of Soil Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France

    Directory of Open Access Journals (Sweden)

    Jean François Desprats

    2007-10-01

    Full Text Available Soil moisture is a key parameter in different environmental applications, suchas hydrology and natural risk assessment. In this paper, surface soil moisture mappingwas carried out over a basin in France using satellite synthetic aperture radar (SARimages acquired in 2006 and 2007 by C-band (5.3 GHz sensors. The comparisonbetween soil moisture estimated from SAR data and in situ measurements shows goodagreement, with a mapping accuracy better than 3%. This result shows that themonitoring of soil moisture from SAR images is possible in operational phase. Moreover,moistures simulated by the operational Météo-France ISBA soil-vegetation-atmospheretransfer model in the SIM-Safran-ISBA-Modcou chain were compared to radar moistureestimates to validate its pertinence. The difference between ISBA simulations and radarestimates fluctuates between 0.4 and 10% (RMSE. The comparison between ISBA andgravimetric measurements of the 12 March 2007 shows a RMSE of about 6%. Generally,these results are very encouraging. Results show also that the soil moisture estimatedfrom SAR images is not correlated with the textural units defined in the European Soil Geographical Database (SGDBE at 1:1000000 scale. However, dependence was observed between texture maps and ISBA moisture. This dependence is induced by the use of the texture map as an input parameter in the ISBA model. Even if this parameter is very important for soil moisture estimations, radar results shown that the textural map scale at 1:1000000 is not appropriate to differentiate moistures zones.

  16. Dynamics of Soil Properties and Plant Composition during Postagrogenic Evolution in Different Bioclimatic Zones

    Science.gov (United States)

    Telesnina, V. M.; Kurganova, I. N.; Lopes de Gerenyu, V. O.; Ovsepyan, L. A.; Lichko, V. I.; Ermolaev, A. M.; Mirin, D. M.

    2017-12-01

    The postagrogenic dynamics of acidity and some parameters of humus status have been studied in relation to the restoration of zonal vegetation in southern taiga (podzolic and soddy-podzolic soils ( Retisols)), coniferous-broadleaved (subtaiga) forest (gray forest soil ( Luvic Phaeozem)), and forest-steppe (gray forest soil ( Haplic Phaeozem)) subzones. The most significant transformation of the studied properties of soils under changing vegetation has been revealed for poor sandy soils of southern taiga. The degree of changes in the content and stocks of organic carbon, the enrichment of humus in nitrogen, and acidity in the 0- to 20-cm soil layer during the postagrogenic evolution decreases from north to south. The adequate reflection of soil physicochemical properties in changes of plant cover is determined by the climatic zone and the land use pattern. A correlation between the changes in the soil acidity and the portion of acidophilic species in the plant cover is revealed for the southern taiga subzone. A positive relationship is found between the content of organic carbon and the share of species preferring humus-rich soils in the forest-steppe zone.

  17. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment

    Science.gov (United States)

    Han, Dongmei; Zhou, Tiantian

    2018-04-01

    Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.

  18. Study of downward movement of soil water in unsaturated zones using isotopic techniques. Part of a coordinated programme on studying physical and isotopic behaviour of soil moisture in the zones of aeration

    International Nuclear Information System (INIS)

    Sajjad, M.I.

    1984-08-01

    Experiments carried out to study the relative contribution from canal system, precipitation and irrigated fields to water table are described. The normal delta of irrigation water does not seem to have any appreciable effect on the water table through heavy textured soil. The contribution from irrigated fields and rains through sandy soils is significant. However, the groundwater rise (water logging) is mainly due to the infiltration from the canal system. Flow velocities at 1 m depth and 20 vol. % moisture are of the order of 16 m/a and 1.6 m/a for sandy and loamy soils respectively. The contribution from irrigated fields and rains to groundwater recharge is considered to be less than 30%

  19. Changes in physical conditions of a coarse textured soil by addition of organic wastes

    Directory of Open Access Journals (Sweden)

    Melis Cercioglu

    2014-01-01

    Full Text Available Effects of composted tobacco waste, chicken manure and bio-humus applied during a period of three years on a coarse textured soil (Typic Xerofluvent at Agriculture Faculty’s Research and Practise Farmyard of Ege University located on Menemen plain (Izmir, Turkey on soil physical properties were studied. The experiment was arranged in a randomized block design on 16 plots with four replications. Each plot size was 5x3 m2. Composted tobacco waste (CTW from cigarette industry and chicken manure (CM and bio-humus (BH from plant residuals were applied at rates of 50 t ha-1, 4 t ha-1, 10 t ha-1,respectively. Inorganic fertilizers (N-P-K are also added with chicken manure and bio-humus plots. Tobacco wastes obtained from cigarette industry were used after composting. The addition of organic wastes resulted in a significant (p≤0.05 decrease in bulk density (BD; increase in porosity (PO, field capacity (FC, wilting point (WP, available water content (AWC and structure stability index (SSI of soil samples when compared to the control.

  20. Ecological estimation of the soils good for grape in Ganja-Gazakh zone

    International Nuclear Information System (INIS)

    Mammadov, Q.S.; Yusifova, M.M.

    2009-01-01

    Contemporary agricultural science improved the known adaptive approaches in the past, for it accounting natural peccularities of the concrete region is offered with the assistance of agroecological estimation of soil. Using of collecting materials of the soil ecological parameters of soil cover of the studing territory and applying the system of the private scales of the soil estimation on degree of display of their separate signs, the ecological estimation of the soils good for grape in Ganja-Gazakh zone where the highest ecological markshave been got mountain-grey-brown dark (97 marks) and grey-brown dark (96 marks) soils has been carried out

  1. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption

    Energy Technology Data Exchange (ETDEWEB)

    Awad, John [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Leeuwen, John van, E-mail: John.VanLeeuwen@unisa.edu.au [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); State Key Laboratory for Environmental Aquatic Chemistry, CAS, Beijing (China); Barbara Hardy Institute, University of South Australia, South Australia 5095 (Australia); Abate, Dawit [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Pichler, Markus; Bestland, Erick [School of the Environment, Flinders University, Bedford Park, South Australia 5042 (Australia); Chittleborough, David J. [School of Physical Sciences, University of Adelaide, North Terrace, South Australia 5005 (Australia); Fleming, Nigel [South Australian Research and Development Institute, P.O. Box 397, Adelaide, SA 5000 (Australia); Cohen, Jonathan; Liffner, Joel [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Drikas, Mary [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, South Australia 5000 (Australia); State Key Laboratory for Environmental Aquatic Chemistry, CAS, Beijing (China)

    2015-10-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~ 30 cm and ~ 60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV–visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on

  2. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption

    International Nuclear Information System (INIS)

    Awad, John; Leeuwen, John van; Abate, Dawit; Pichler, Markus; Bestland, Erick; Chittleborough, David J.; Fleming, Nigel; Cohen, Jonathan; Liffner, Joel; Drikas, Mary

    2015-01-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~ 30 cm and ~ 60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV–visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on

  3. Radionuclide contaminated micromycetes in the soil the thirty kilometer zone

    International Nuclear Information System (INIS)

    Zhdanova, N.N.; Vasilevskaya, A.I.; Redchits, T.I.; Gavrilov, V.I.; Lashko, T.N.; Luchkov, P.N.; Shcherbachenko, A.M.; AN Ukrainskoj SSR, Kiev

    1992-01-01

    From 1986 year the ecological monitoring of the soil microscopic fungi exist under conditions of the radioactive contamination in the thirty kilometer zone of the Chernobyl' NPP is conducted. As mycological isotope soil analysis the limiting factor in the ecological situation need consider the radionuclide contamination of the soils. It is shown, that the amount of fungus germs decreased by 200 times in 1986 year and increased sharp to 1989-90 years. During the first years after the accident, in the most contaminated soils dark-pigmented fungi predominated. It is due to a deep reorganization of the soil micromycete associations. Correlations is revealed in the interrelations among various species of fungi, isolated from the soils, differed in the radioactivity. Among 12 species of fungi (from 6 genuses of micromycetes) isotope accumulation is noted. There are Sr-90 and Cs-137, most widespread in the soil after the accident. 18 refs.; 8 figs

  4. Bioventing - a new twist on soil vapor remediation of the vadose zone and shallow ground water

    International Nuclear Information System (INIS)

    Yancheski, T.B.; McFarland, M.A.

    1992-01-01

    Bioventing, which is a combination of soil vapor remediation and bioremediation techniques, may be an innovative, cost-effective, and efficient remedial technology for addressing petroleum contamination in the vadose zone and shallow ground water. The objective of bioventing is to mobilize petroleum compounds from the soil and ground water into soil vapor using soil vapor extraction and injection technology, and to promote the migration of the soil vapor upward to the turf root zone for degradation by active near-surface microbiological activity. Promoting and maintaining optimum microbiological activity in the turf root rhizosphere is a key component to the bioventing technique. Preliminary ongoing USEPA bioventing pilot studies (Kampbell, 1991) have indicated that this technique is a promising remediation technology, although feasibility studies are not yet complete. However, based on the preliminary data, it appears that proper bioventing design and implementation will result in substantial reductions of petroleum compounds in the capillary zone and shallow ground water, complete degradation of petroleum compounds in the turf root zone, and no surface emissions. A bioventing system was installed at a site in southern Delaware with multiple leaking underground storage tanks in early 1992 to remediate vadose zone and shallow ground-water contaminated by petroleum compounds. The system consists of a series of soil vapor extraction and soil vapor/atmospheric air injection points placed in various contamination areas and a central core remediation area (a large grassy plot). This system was chosen for this site because it was least costly to implement and operate as compared to other remedial alternatives (soil vapor extraction with carbon or catalytic oxidation of off-gas treatment, insitu bioremediation, etc.), and results in the generation of no additional wastes

  5. Modeling the monthly mean soil-water balance with a statistical-dynamical ecohydrology model as coupled to a two-component canopy model

    Directory of Open Access Journals (Sweden)

    J. P. Kochendorfer

    2010-10-01

    Full Text Available The statistical-dynamical annual water balance model of Eagleson (1978 is a pioneering work in the analysis of climate, soil and vegetation interactions. This paper describes several enhancements and modifications to the model that improve its physical realism at the expense of its mathematical elegance and analytical tractability. In particular, the analytical solutions for the root zone fluxes are re-derived using separate potential rates of transpiration and bare-soil evaporation. Those potential rates, along with the rate of evaporation from canopy interception, are calculated using the two-component Shuttleworth-Wallace (1985 canopy model. In addition, the soil column is divided into two layers, with the upper layer representing the dynamic root zone. The resulting ability to account for changes in root-zone water storage allows for implementation at the monthly timescale. This new version of the Eagleson model is coined the Statistical-Dynamical Ecohydrology Model (SDEM. The ability of the SDEM to capture the seasonal dynamics of the local-scale soil-water balance is demonstrated for two grassland sites in the US Great Plains. Sensitivity of the results to variations in peak green leaf area index (LAI suggests that the mean peak green LAI is determined by some minimum in root zone soil moisture during the growing season. That minimum appears to be close to the soil matric potential at which the dominant grass species begins to experience water stress and well above the wilting point, thereby suggesting an ecological optimality hypothesis in which the need to avoid water-stress-induced leaf abscission is balanced by the maximization of carbon assimilation (and associated transpiration. Finally, analysis of the sensitivity of model-determined peak green LAI to soil texture shows that the coupled model is able to reproduce the so-called "inverse texture effect", which consists of the observation that natural vegetation in dry climates tends

  6. Deeply subducted continental fragments - Part 1: Fracturing, dissolution-precipitation, and diffusion processes recorded by garnet textures of the central Sesia Zone (western Italian Alps)

    Science.gov (United States)

    Giuntoli, Francesco; Lanari, Pierre; Engi, Martin

    2018-02-01

    Contiguous continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. The approach we chose is to investigate, in detail, the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses in high-pressure conditions. We analysed local textures and garnet compositional patterns, which turned out remarkably complex. By combining these with thermodynamic modelling, we could unravel and quantify repeated fluid-rock interaction processes. Garnet shows low-Ca porphyroclastic cores that were stable under (Permian) granulite facies conditions. The series of rims that surround these cores provide insight into the subsequent evolution: the first garnet rim that surrounds the pre-Alpine granulite facies core in one sample indicates that pre-Alpine amphibolite facies metamorphism followed the granulite facies event. In all samples documented, cores show lobate edges and preserve inner fractures, which are sealed by high-Ca garnet that reflects high-pressure Alpine conditions. These observations suggest that during early stages of subduction, before hydration of the granulites, brittle failure of garnet occurred, indicating high strain rates that may be due to seismic failure. Several Alpine rims show conspicuous textures indicative of interaction with hydrous fluid: (a) resorption-dominated textures produced lobate edges, at the expense of the outer part of the granulite core; (b) peninsulas and atoll garnet are the result of replacement reactions; and (c) spatially limited resorption and enhanced transport

  7. Texture and structure of VT-19 alloy thin sheets and their welded joints

    International Nuclear Information System (INIS)

    Ehgiz, I.V.; Babarehko, A.A.; Khorev, M.A.

    1986-01-01

    The phase content and texture of VT-19 alloys in all zones of welded joints (weld, a heat affected zone a base metal) after different heat treatments and the effect of the latter on mechanical properties of the welded joint are studied. It is characteristic of a 2.5 mm sheet of the VT-19 alloy rolled in the β → α phase transformation temperature range the development of β-phase plane deformation textures with (001), (112), (111) orientations in the rolling plane that compose 56% of the β-phase material volume. In this case a texture of univariant phase transformation of the above β-phase components { 1120 } - { 1122 } - { 1124 }, as well as that of α-phase plane deformation } 1014 } - { 1015 } are formed in the α-phase. Hardening with subsequent ageing of the rolled sheet leads to increasing the fraction of textured material in the β-phase up to 95% with expanding the volume with the (111) orientation, but as a whole the β-phase texture type remains the same. The α-phase texture type corresponds to the univariant β → α phase transformation, the material having the α-phase texture accounts for 70%. In the weld zone the and axes with orientation spreading to 20 deg are the β-phase crystallization axes in the trans verse direction. The textured material accounts for ∼ 70%. The same texture is observed along the normal to the sheet plane. The α-phase texture after hardening and ageing corresponds to the univariant phase transformation of the above-mentionedβ-phase orientations, the material volume with the α-phase texture is ∼80%

  8. Effect of Different Levels of Irrigation Water Salinity and Soil Texture on Growth and N Use Efficiency of Tomato and Melochia Grown in Rotation using 15N

    International Nuclear Information System (INIS)

    Darwish, T.M.; El Moujabber, M.; Atallah, T.; El Chami, D.

    2008-01-01

    Increasing water demands and water scarcity imply large farmer's reliance on groundwater on the coastal area leading to water salinization by seawater intrusion. Irrigation using saline water accumulates salts in the soil notably under protected agriculture leading to negative impact on yields. Consequently salt removal by leaching is required. Bioremediation of salt affected soils through a rotation acquires economic and environmental importance. Pot experiments were conducted under plastic house conditions on sandy soil (T1) and clay soil (T2). Three saline water treatments were used: low (S1=1.0 dS.m-1), moderate (S2=2.5 dS.m-1) and high (S3=5.0 dS.m-1). Tomato cv Tyrade (S and G seeds) was planted first, followed by Melochia or Jew's mallow (Corchorus olitorius) for remediation purposes. Each soil was placed in 24 pots and treatments were distributed randomly. Fertigation was done using drip method. Labeled nitrogen 15 N was used to trace the direct and residual effect of nitrogen under different saline conditions. Tomato yield, for the sandy soil, was negatively affected by the higher level of salinity. This effect could be attributed to the smaller buffering capacity of the sand soil. As a result of salinity, there was a remarkable increase in dry matter contents of fruits in the sandy soil only. Texture had a major effect on leaf area index (LAI) with better development in clay soil. Water consumption in the first 200 days of growth period did not show any significant difference among treatments with around 350-375 mm consumed. Nitrogen derived from fertilizers (% Ndff) was not affected by the soil texture or by the salinity. N yield and use efficiency were higher in the clay soil texture. Moreover, yield and Ndff in Melochia plants were negatively affected due to salt accumulation in the soil. Counting for all recovered N in the tomato-Melochia rotation, N use efficiency was higher in plants grown on clay soil (47%) compared to sandy soil (37.5%). (author)

  9. Soil-atmosphere trace gas exchange in semiarid and arid zones.

    Science.gov (United States)

    Galbally, Ian E; Kirstine, Wayne V; Meyer, C P Mick; Wang, Ying Ping

    2008-01-01

    A review is presented on trace gas exchange of CH4, CO, N2O, and NOx arising from agriculture and natural sources in the world's semiarid and arid zones due to soil processes. These gases are important contributors to the radiative forcing and the chemistry of the atmosphere. Quantitative information is summarized from the available studies. Between 5 and 40% of the global soil-atmosphere exchange for these gases (CH4, CO, N2O, and NOx) may occur in semiarid and arid zones, but for each of these gases there are fewer than a dozen studies to support the individual estimates, and these are from a limited number of locations. Significant differences in the biophysical and chemical processes controlling these trace gas exchanges are identified through the comparison of semiarid and arid zones with the moist temperate or wet/dry savanna land regions. Therefore, there is a poorly quantified understanding of the contribution of these regions to the global trace gas cycles and atmospheric chemistry. More importantly, there is a poor understanding of the feedback between these exchanges, global change, and regional land use and air pollution issues. A set of research issues is presented.

  10. Haralick textural features on T2 -weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer.

    Science.gov (United States)

    Gnep, Khémara; Fargeas, Auréline; Gutiérrez-Carvajal, Ricardo E; Commandeur, Frédéric; Mathieu, Romain; Ospina, Juan D; Rolland, Yan; Rohou, Tanguy; Vincendeau, Sébastien; Hatt, Mathieu; Acosta, Oscar; de Crevoisier, Renaud

    2017-01-01

    To explore the association between magnetic resonance imaging (MRI), including Haralick textural features, and biochemical recurrence following prostate cancer radiotherapy. In all, 74 patients with peripheral zone localized prostate adenocarcinoma underwent pretreatment 3.0T MRI before external beam radiotherapy. Median follow-up of 47 months revealed 11 patients with biochemical recurrence. Prostate tumors were segmented on T 2 -weighted sequences (T 2 -w) and contours were propagated onto the coregistered apparent diffusion coefficient (ADC) images. We extracted 140 image features from normalized T 2 -w and ADC images corresponding to first-order (n = 6), gradient-based (n = 4), and second-order Haralick textural features (n = 130). Four geometrical features (tumor diameter, perimeter, area, and volume) were also computed. Correlations between Gleason score and MRI features were assessed. Cox regression analysis and random survival forests (RSF) were performed to assess the association between MRI features and biochemical recurrence. Three T 2 -w and one ADC Haralick textural features were significantly correlated with Gleason score (P recurrence (P recurrence following prostate cancer radiotherapy. 3 J. Magn. Reson. Imaging 2017;45:103-117. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Material Weakening of Slip Zone Soils Induced by Water Level Fluctuation in the Ancient Landslides of Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    Yu-Yong Jiao

    2014-01-01

    Full Text Available This experimental study investigated the effect of repeated wetting and drying on the reduction of slip zone soils taken from the Huangtupo landslide in the Three Gorges Reservoir, China. The variation process of the physical property and substance composition of the slip zone soils under the wetting-drying cycles was studied through liquid and plastic limit test and X-ray diffraction test. The results indicate that (1 the shearing strength of the slip zone soil dramatically decreased after one wetting-drying cycle and then gradually decreased until reaching a relatively stable state at the fourth cycle; (2 the plasticity index of the slip zone soil varied with increasing number of cycles and a variation process opposite to that of the strength value was observed; and (3 the clay mineral content in the slip zone soil increased and the calcite and quartz contents relatively decreased with increasing number of cycles. The variations in the plasticity index of the slip zone soil, as well as the increase in its clay mineral content, play important roles in the strength reduction. The results of this study provide a foundation for revealing the deformation and damage mechanism of landslides in reservoir banks.

  12. Micro-textures in plagioclase from 1994–1995 eruption, Barren Island Volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone

    Directory of Open Access Journals (Sweden)

    M.L. Renjith

    2014-01-01

    Full Text Available A systematic account of micro-textures and a few compositional profiles of plagioclase from high-alumina basaltic aa lava erupted during the year 1994–1995, from Barren Island Volcano, NE India ocean, are presented for the first time. The identified micro-textures can be grouped into two categories: (i Growth related textures in the form of coarse/fine-sieve morphology, fine-scale oscillatory zoning and resorption surfaces resulted when the equilibrium at the crystal-melt interface was fluctuated due to change in temperature or H2O or pressure or composition of the crystallizing melt; and (ii morphological texture, like glomerocryst, synneusis, swallow-tailed crystal, microlite and broken crystals, formed by the influence of dynamic behavior of the crystallizing magma (convection, turbulence, degassing, etc.. Each micro-texture has developed in a specific magmatic environment, accordingly, a first order magma plumbing model and crystallization dynamics are envisaged for the studied lava unit. Magma generated has undergone extensive fractional crystallization of An-rich plagioclase in stable magmatic environment at a deeper depth. Subsequently they ascend to a shallow chamber where the newly brought crystals and pre-existing crystals have undergone dynamic crystallization via dissolution-regrowth processes in a convective self-mixing environment. Such repeated recharge-recycling processes have produced various populations of plagioclase with different micro-textural stratigraphy in the studied lava unit. Intermittent degassing and eruption related decompression have also played a major role in the final stage of crystallization dynamics.

  13. Relationships between soil-based management zones and canopy sensing for corn nitrogen management

    Science.gov (United States)

    Integrating soil-based management zones (MZ) with crop-based active canopy sensors to direct spatially variable nitrogen (N) applications has been proposed for improving N fertilizer management of corn (Zea mays L.). Analyses are needed to evaluate relationships between canopy sensing and soil-based...

  14. Texture-contrast profile development across the prairie-forest ecotone in northern Minnesota, USA, and its relation to soil aggregation and clay dispersion.

    Science.gov (United States)

    Kasmerchak, C. S.; Mason, J. A.

    2016-12-01

    Along the prairie-forest ecotone, Alfisols with distinct clay-enriched B horizons are found under forest, established only within the past 4 ka, including outlying patches of prairie groves surrounded by prairie. Grassland soils only 5-10 km away from the vegetation boundary show much weaker texture-contrast. In order for clay to be dispersed it must first be released from aggregates upper horizons, which occurs when exposed top soil undergoes wetting and mechanical stress. The relationship between physiochemical soil characteristics and soil aggregation/clay dispersion is of particular interest in explaining texture-contrast development under forest. Soil samples were collected along a transect in northern Minnesota on gentle slopes in similar glacial sediment. Aggregate stability experiments show Mollisol A and B horizons have the most stable aggregates, while Alfisol E horizons have the weakest aggregates and disintegrate rapidly. This demonstrates the strong influence of OM and exchange chemistry on aggregation. Analysis of other physiochemical soil characteristics such as base saturation and pH follow a gradual decreasing eastward trend across the study sites, and do not abruptly change at the prairie-forest boundary like soil morphology does. Linear models show the strongest relationship between rapid aggregate disintegration and ECEC, although they only explain 47-50% of the variance. Higher surface charge enhances aggregation by allowing for greater potential of cation bridging between OM and clay particles. ECEC also represents multiple soil characteristics such as OC, clay, mineralogy, and carbonate presence, suggesting the relationship between aggregation stability and soil characteristics is not simple. Given the parent material consists of calcareous glacial sediment, abundant Ca2+ and Mg2+ from carbonates weathering also contributes to enhanced aggregation in upper horizons. Differences in the rates of bioturbation, most likely also contribute

  15. Does overshoot in leaf development of ponderosa pine in wet years leads to bark beetle outbreaks on fine-textured soils in drier years?

    Directory of Open Access Journals (Sweden)

    Wendy Peterman

    2014-12-01

    attributed to the fact that an equivalent amount of stored water in the rooting zone (100 mm is extracted less efficiently from fine-textured soils than from coarse-textured ones.

  16. Patterns in Soil Electrical Resistivity Across Land Uses in the Calhoun Critical Zone Observatory Landscape

    Science.gov (United States)

    Markewitz, D.; Sutter, L.; Richter, D. D., Jr.

    2017-12-01

    Soil Electrical Resistivity Tomography (ERT) was measured across the Calhoun Critical Zone Observatory in relation to land use cover. ERT can help identify patterns in soil and saprolite physical attributes and moisture content through multiple meters. ERT data were generated with an AGI Supersting R8 with a 28 probe dipole-dipole array on a 1.5 meter spacing providing information through the upper 9 m. In Nov/Dec 2016 ten soil pits were dug to 3m depth in agricultural fields, pine forests, and hardwood forests across the CCZO and ERT measures were taken centered on these pits. ERT values ranged from 200 to 2500 Ohm-m. ERT patterns in the agricultural field demonstrated a limited resistivity gradient (200-700 Ohm-m) appearing moist throughout. In contrast, research areas under pine and hardwood forest had stronger resistivity gradients reflecting both moisture and physical attributes (i.e., texture or rock content). For example, research area 2 under pine had an area of higher resistivity that correlated with a band of saprolite that was readily visible in the exposed profile. In research area 7 and 8 that included both pine and hardwood forest resistivity gradients had contradictory patterns of high to low resistivity from top to bottom. In research area 7 resistivity was highest at the surface and decreased with depth, a common pattern when water table is at depth. In research area 8 the inverse was observed with low resistivity above and resistivity increasing with depth, a pattern observed in upper landscape positions on ridges with moist clay above dry saprolite. ERT patterns did reflect a large difference in the measured agricultural fields compared to forest while other difference appeared to reflect landscape position.

  17. Radionuclide migration in soil within the estrangement zone of ChNPP

    International Nuclear Information System (INIS)

    Mikhalkin, G.S.; Arkhipov, A.N.; Arkhipov, N.P.; Sukhoruchkin, A.K.

    1992-01-01

    The problems of the radionuclide migration and redistribution in soil within the estrangement zone of ChNPP have been discussed. It has been demonstrated that the surface radioactive contamination of soil that has been represented principally by the particles of the waste nuclear fuel eventually migrates into soil depth. In this case the radionuclides remain principally the fuel matrix components, the fuel matrix decomposing gradually and releasing the radionuclides. The mechanisms of the radionuclide migration can be described with the quasi-diffusion migration model in most cases. On the 5th year since the accident the major portion of the radionuclides (95-99%) is still kept within 0-5 cm layer of soil. 3 figs.; 7 tabs

  18. Cloud and surface textural features in polar regions

    Science.gov (United States)

    Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.

    1990-01-01

    The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.

  19. Effect of rain drop washes on soil fertility in cotton production zone of ...

    African Journals Online (AJOL)

    Crop production in the Sahel is limited by nutrients availability. The study aimed to estimate the contribution of avifauna, crop rotation and trees to soil fertility and crop production improvement. Pot experiment was carried out with soils sampled in Faidherbia albida parklands in cotton production zone of West Burkina Faso.

  20. Plagioclase Textures and Zoning Patterns in the Miocene Dowdy Ranch Andesite, Central California Coast Ranges: Implications for Open and Closed System Behavior in Magmatic Systems

    Science.gov (United States)

    Bavishi, D. K.; Metzger, E. P.; Miller, J. S.

    2010-12-01

    The Miocene Dowdy Range Andesite (DRA) of the Central California Coast Ranges is part of a northwestward-younging sequence of volcanic rocks that were apparently formed by northward movement of the Mendocino triple junction, formation of a slab window, and infilling by asthenospheric mantle. The highly porphyritic andesite contains plagioclase phenocrysts with a wide array of disequilibrium textures and zoning patterns, providing an opportunity to reconstruct andesite-forming processes in a tectonic environment that evolved from subduction to transform motion. The DRA encloses metasedimentary, granulitic, and gabbroic xenoliths (described elsewhere) and displays arc-like trace element chemistry. It features glomeroporphyritic, intersertal and hyalopilitic textures with plagioclase as the dominant phase both as phenocrysts and in the groundmass. Other groundmass minerals include orthopyroxene, clinopyroxene, and ilmenite. Plagioclase exhibits normal, reverse, oscillatory and patchy zoning patterns and sieve and sponge textures, with several populations of plagioclase crystals observed on the scale of a single thin section. The presence of abundant quartz xenocrysts rimmed by augite and absence of mafic enclaves suggest that incorporation of crustal material played an important role in forming the andesite. Preliminary examination of back-scattered electron images and electron microprobe analysis of zoned plagioclase shows both concordant and discordant relationships between An and FeO, suggesting that the andesite was formed by a combination of open and closed system magmatic processes. Plagioclase cores vary from An 45-65%. Clear rims surrounding spongy zones are common and show abrupt and significant (~10-50% An and 5-20% FeO) increases in both An and FeO, as expected for magma recharge by more mafic magma. Clear rim compositions are consistent from sample to sample, suggesting that the phenocrysts experienced a common history during later stages of

  1. SU-F-R-36: Validating Quantitative Radiomic Texture Features for Oncologic PET: A Digital Phantom Study

    International Nuclear Information System (INIS)

    Yang, F; Yang, Y; Young, L

    2016-01-01

    Purpose: Radiomic texture features derived from the oncologic PET have recently been brought under intense investigation within the context of patient stratification and treatment outcome prediction in a variety of cancer types; however, their validity has not yet been examined. This work is aimed to validate radiomic PET texture metrics through the use of realistic simulations in the ground truth setting. Methods: Simulation of FDG-PET was conducted by applying the Zubal phantom as an attenuation map to the SimSET software package that employs Monte Carlo techniques to model the physical process of emission imaging. A total of 15 irregularly-shaped lesions featuring heterogeneous activity distribution were simulated. For each simulated lesion, 28 texture features in relation to the intensity histograms (GLIH), grey-level co-occurrence matrices (GLCOM), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated and compared with their respective values extracted from the ground truth activity map. Results: In reference to the values from the ground truth images, texture parameters appearing on the simulated data varied with a range of 0.73–3026.2% for GLIH-based, 0.02–100.1% for GLCOM-based, 1.11–173.8% for GLNDM-based, and 0.35–66.3% for GLZSM-based. For majority of the examined texture metrics (16/28), their values on the simulated data differed significantly from those from the ground truth images (P-value ranges from <0.0001 to 0.04). Features not exhibiting significant difference comprised of GLIH-based standard deviation, GLCO-based energy and entropy, GLND-based coarseness and contrast, and GLZS-based low gray-level zone emphasis, high gray-level zone emphasis, short zone low gray-level emphasis, long zone low gray-level emphasis, long zone high gray-level emphasis, and zone size nonuniformity. Conclusion: The extent to which PET imaging disturbs texture appearance is feature-dependent and could be substantial. It is thus

  2. Revegetation of the riparian zone of the Three Gorges Dam Reservoir leads to increased soil bacterial diversity.

    Science.gov (United States)

    Ren, Qingshui; Li, Changxiao; Yang, Wenhang; Song, Hong; Ma, Peng; Wang, Chaoying; Schneider, Rebecca L; Morreale, Stephen J

    2018-06-06

    As one of the most active components in soil, bacteria can affect soil physicochemical properties, its biological characteristics, and even its quality and health. We characterized dynamics of the soil bacterial diversity in planted (with Taxodium distichum) and unplanted soil in the riparian zone of the Three Gorges Dam Reservoir (TGDR), in southwestern China, in order to accurately quantify the changes in long-term soil bacterial community structure after revegetation. Measurements were taken annually in situ in the TGDR over the course of 5 years, from 2012 to 2016. Soil chemical properties and bacterial diversity were analyzed in both the planted and unplanted soil. After revegetation, the soil chemical properties in planted soil were significantly different than in unplanted soil. The effects of treatment, time, and the interaction of both time and treatment had significant impacts on most diversity indices. Specifically, the bacterial community diversity indices in planted soil were significantly higher and more stable than that in unplanted soil. The correlation analyses indicated that the diversity indices correlated with the pH value, organic matter, and soil available nutrients. After revegetation in the riparian zone of the TGDR, the soil quality and health is closely related to the observed bacterial diversity, and a higher bacterial diversity avails the maintenance of soil functionality. Thus, more reforestation should be carried out in the riparian zone of the TGDR, so as to effectively mitigate the negative ecological impacts of the dam. Vegetating the reservoir banks with Taxodium distichum proved successful, but planting mixed stands of native tree species could promote even higher riparian soil biodiversity and improved levels of ecosystem functioning within the TGDR.

  3. Soils of slopes in the taiga zone of the Middle Ob reaches

    Science.gov (United States)

    Karavaeva, N. A.; Sokolova, T. A.

    2015-06-01

    The morphology, chemical properties, composition of phyllosilicates, as well as their transformation in loamy soils developing on slopes of ridges of the Vakh Upland in Western Siberia, are discussed. Data on two soil profiles-gleyic svetlozem of the middle slope and podzolized gleyzem of the footslope—are presented. Both soils have an acid reaction. The textural differentiation is weakly pronounced in the gleyic svetlozem and more pronounced in the podzolized gleyzem. The soils differ in their cryological conditions. The thawing depth in the svetlozem is about 60-70 cm, and the lower part of the profile to a depth of 3.2 m largely remains in the frozen state. Its complete thawing is only possible during the warm climatic cycles. This is a seasonally frozen soil with the long-lasting frozen state. It is characterized by the thick cryometamorphic (CRM) horizon. The gleyzem is a "normal" seasonally frozen soil with complete thawing of seasonal frost in summer. The CRM horizon is absent in its profile. The alteration of clay minerals in the soil profiles includes their partial dissolution, the formation of soil chlorites, and the transformation of illite into more labile structures. In the upper horizons of both soils, this transformation proceeds through the stage of mixed-layered illite-smectites. In the gleyzem, it reaches a more advanced stage of the formation of beidellite. The cryometamorphic horizons are specified by some amorphization of phyllosilicates and, probably, by the partial dissolution of their crystal lattices under the impact of frequent zero-temperature transitions and cryogenesis in the frozen state.

  4. The quantitative soil quality assessment tobacco plant in Sindoro mountainous zone

    Directory of Open Access Journals (Sweden)

    Supriyadi

    2014-04-01

    Full Text Available The long-term cultivation of tobacco (Nicotiana tabacum plant in the Sindoro mountainous zone of Central Java has resulted in soil quality degradation that could affect economic development in the region if sustainable production practices are not identified. The objective of the study was to identify appropriate indicators for assessing soil quality on tobacco plant. The quantitative soil quality indicators were total organic-C, pH, available P and available K (chemical, soil depth, bulk density, AWC (available water capacity and soil aggregate stability (physical, and qCO2 (soil respiration, MBC (microbial biomass carbon (biological. The decreases in the soil aggregate stability, available water capacity, cation exchange capacity, soil respiration, microbial biomass carbon and total organic-C; or increases in bulk density (compaction, available P, available K and total nitrogen indicated the decrease in soil quality due to long-term tobacco production. The result of this research showed that the change of soil quality had occurred in Sindoro Mountain. The Soil Quality Index (SQI for three land use systems in Sindoro mountain (forest, mixed farm, and tobacco were 0.60, 0.47, and 0.57, respectively. The comparison of these rates with soil quality classes showed that the soil quality presented moderate to good level of quality; class SQI.

  5. HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils

    OpenAIRE

    El-Nesr, MN; Alazba, AA; Šimůnek, J

    2014-01-01

    Subsurface drip irrigation systems, compared to other irrigation systems, enhance the delivery of water and nutrients directly into the root zone. However, in light-textured soils, certain quantities of water may percolate below the root zone due to the subsurface position of drip lines and/or poor management of irrigation systems. The main objective of this paper is to evaluate three technologies to enhance a spatial distribution of water and solutes in the root zone and to limit downward le...

  6. In-situ active/passive bioreclamation of vadose zone soils contaminated with gasoline and waste oil using soil vapor extraction/bioventing: Laboratory pilot study to full scale site operation

    International Nuclear Information System (INIS)

    Zachary, S.P.; Everett, L.G.

    1993-01-01

    The use of soil venting to supply oxygen and remove metabolites from the biodegradation of light hydrocarbons is a cost effective in-situ remediation approach. To date, little data exists on the effective in-situ bioreclamation of vadose zone soil contaminated with waste/hydraulic oil without excavation or the addition of water or nutrients to degrade the heavy petroleum contaminants. Gasoline and waste/hydraulic oil contaminated soils below an active commercial building required an in-situ non-disruptive remediation approach. Initial soil vapor samples collected from the vadose zone revealed CO 2 concentrations in excess of 16% and O 2 concentrations of less than 1% by volume. Soil samples were collected from below the building within the contaminated vadose zone for laboratory chemical and physical analysis as well as to conduct a laboratory biotreatability study. The laboratory biotreatability study was conducted for 30 days to simulate vadose zone bioventing conditions using soil taken from the contaminated vadose zone. Results of the biotreatability study revealed that the waste oil concentrations had been reduced from 960 mg/Kg to non-detectable concentrations within 30 days and the volatile hydrocarbon content had decreased exponentially to less than 0.1% of the original concentration. Post treatability study biological enumeration revealed an increase in the microbial population of two orders of magnitude

  7. Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Jensen, Christian Richardt; Liu, Fulai

    2017-01-01

    signaling that regulates stomatal aperture. PRI induced soil DRW cycles and more soil water dynamics in the root zone enhance soil nutrient mineralization process and thus increase the bioavailability of soil nutrients, resulting in improved nitrogen (N) and phosphorus (P) uptake, in which soil microbial...... processes play a key role. Studies investigating how soil DRW cycles and water dynamics under PRI on nutrient transport in soil solution, soil microbe mediated P transformation, interactions between phytohormones and nutrient uptake, root morphological and architectural traits for nutrient acquisition......Abstract Repeated soil drying and rewetting (DRW) cycles occur in rainfed and irrigated agriculture. The intensity and frequency of DRW cycles regulate both microbial physiology and soil physical processes, hereby affecting the mineralization and immobilization of soil nutrients...

  8. Vadose Zone Nitrate Transport Dynamics Resulting from Agricultural Groundwater Banking

    Science.gov (United States)

    Murphy, N. P.; McLaughlin, S.; Dahlke, H. E.

    2017-12-01

    In recent years, California's increased reliance on groundwater resources to meet agricultural and municipal demands has resulted in significant overdraft and water quality issues. Agricultural groundwater banking (AGB) has emerged as a promising groundwater replenishment opportunity in California; AGB is a form of managed aquifer recharge where farmland is flooded during the winter using excess surface water in order to recharge the underlying groundwater. Suitable farmland that is connected to water delivery systems is available for AGB throughout the Central Valley. However, questions remain how AGB could be implemented on fertilized agricultural fields such that nitrate leaching from the root zone is minimized. Here, we present results from field and soil column studies that investigate the transport dynamics of nitrogen in the root and deeper vadose zone during flooding events. We are specifically interested in estimating how timing and duration of flooding events affect percolation rates, leaching and nitrification/denitrification processes in three soil types within the Central Valley. Laboratory and field measurements include nitrogen (NO3-, NH4+, NO2-, N2O), redox potentials, total organic carbon, dissolved oxygen, moisture content and EC. Soil cores are collected in the field before and after recharge events up to a depth of 4m, while other sensors monitor field conditions continuously. Preliminary results from the three field sites show that significant portions of the applied floodwater (12-62 cm) infiltrated below the root zone: 96.1% (Delhi), 88.6% (Modesto) and 76.8% (Orland). Analysis of the soil cores indicate that 70% of the residual nitrate was flushed from the sandy soil, while the fine sandy loam showed only a 5% loss and in some cores even an increase in soil nitrate (in the upper 20cm). Column experiments support these trends and indicate that increases in soil nitrate in the upper root zone might be due to organic nitrogen mineralization and

  9. Chemical characterization of some soils from four counties that produce Flue-cured tobacco

    Directory of Open Access Journals (Sweden)

    Marcela Rodríguez

    2012-09-01

    Full Text Available The municipalities or counties of Campoalegre and Garzón (State of Huila and Capitanejo and Enciso (State of Santander show different chemical soil characteristics when their origin is taken into account, based on their edaphogenetic environments. For the characterization of the soils from these counties, samples from 65 farms were arranged, based on the database of farmers associated with the Protabaco Company. With the soil samples taken, chemical and texture analyses were performed, codifying the results in order to analyze them, keeping in mind the ideal parameters for the tobacco crop. In the counties of Huila, the texture, pH and organic matter were found to have ideal levels, in contrast to the phosphorus, potassium, magnesium, sulfur and chloride levels which were unsuitable, but the calcium content showed levels between suitable and good. In Santander, the pH, organic matter, phosphorus, calcium, sulfur and chloride were at unsuitable levels, in contrast, the contrary occurred with the texture and potassium which were at normal levels. It is recommended, due to the difference among the chemical parameters, that a fertilization program be handled differently for the zones of Santander and Huila, bearing in mind that the chemical parameters were found to be more limited in Santander than in Huila

  10. Can Process Understanding Help Elucidate The Structure Of The Critical Zone? Comparing Process-Based Soil Formation Models With Digital Soil Mapping.

    Science.gov (United States)

    Vanwalleghem, T.; Román, A.; Peña, A.; Laguna, A.; Giráldez, J. V.

    2017-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties in the critical zone. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of traditional digital soil mapping versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  11. Texture and magnetic property evolution of non-oriented Fe–Si steel due to mechanical cutting

    International Nuclear Information System (INIS)

    Xiong, Xuesong; Hu, Shubing; Hu, Ke; Zeng, Siqi

    2016-01-01

    Microstructures and textures as well as magnetic properties of a non-oriented Fe–Si steel with thickness of 0.5 mm and medium silicon content after mechanical cutting were investigated. The results from electron backscatter diffraction (EBSD) analysis indicated that in the cut edge zone, mechanical cutting resulted in a significant increase in low-angle boundaries (LAGBs, 2°≤θ≤15°) and dislocation densities from both the upper surface (in the shear zone) and the lower surface (in the fracture zone). Mechanical cutting also led to a visible change in textures, such as, intensity decrease of λ fiber (<001>∥normal direction [ND]) and γ fiber (<111>∥ND) components from the upper surface as well as Goss texture ({110}<001>texture) from the lower surface. Microstructure and texture changes from the upper surface seem to be more obvious than these from the lower surface. The results from single sheet testing showed mechanical cutting induced an evident deterioration in magnetic properties and a clear change in hysteresis loop of the steel, and these variations became more obvious with increasing cutting length per mass from 0.86 m/kg to 2.57 m/kg. The largest increment of iron loss reached to 18.45% and 21.76% when the flux density was at 1.0 T and 1.5 T, respectively. The possible main reasons for the changes in magnetic properties and hysteresis loops were discussed in terms of the texture factor TF or residual stress. - Highlights: • Microstructures and textures in the cut edge zone were characterized via EBSD. • Microstructure and texture differences between different surfaces were analyzed. • Quantitative effect of mechanical cutting on magnetic properties was investigated.

  12. Study on soil-water retention curves for loess aerated zone

    International Nuclear Information System (INIS)

    Guo Zede; Cheng Jinru; Deng An; Masayuki Mukai; Hideo Kamiyama

    2000-01-01

    The author introduces the measuring method and results of soil-water retention curves of 46 samples taken from ground surface to water table of 28 m depth at CIRP's Field Test Site. The results indicate that the soil-water retention characteristics vary significantly with depth, and the loess-aerated zone at the site can be divided into five layers. From the results, unsaturated hydraulic parameters are deduced, such as conductivity, specific water capacity and equivalent pore diameter. The water velocity calculated from these parameters is satisfactorily consistent with that one obtained from 3 H tracing test carried out at the site

  13. Assessment of the feasibility of anaerobic composting for treatment of perchlorate - contaminated soils in a war zone

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2015-01-01

    Full Text Available Aims: The objectives of this study were to determine the perchlorate concentrations in surface soils and assess feasibility of anaerobic bioremediation in full-scale for perchlorate-contaminated soils in a war zone. Materials and Methods: Fifteen samples of surface soil were collected using a composite sampling method in the study area. The soil samples, after extraction and preparation, were analyzed by ion chromatography. Anaerobic composting technique (soil excavation, mixing with manure, transfer into treatment cell and cover with a 6-mil high-density polyethylene liner considered to cleanup perchlorate-contaminated soil in a war zone. Results: The concentration of perchlorate in the soil surface samples ranged from 3 to 107.9 mg/kg, which is more than State advisory levels for residential and protection of domestic groundwater use pathway. This study indicates that technologies, skills, experience, raw materials (manure, lands, and machinery needed for implementation of full-scale composting, are available in the study area. Conclusions: Based on the results, anaerobic composting technique could be considered as a feasible, viable and cost-effective alternative for perchlorate bioremediation in the study area. According to the available of techniques and skills, successful experiences of anaerobic composting in other countries, and potential of study area, The application of anaerobic composting is technically feasible and can be use for perchlorate contaminated soil cleanup in a zone war.

  14. Measurement of unsaturated flow below the root zone at an arid site

    International Nuclear Information System (INIS)

    Kirkham, R.R.; Gee, G.W.

    1983-12-01

    We measured moisture content changes below the root zone of a grass-covered area at the Hanford Site in Washington State and determined that drainage exceeded 5 cm or 20% of the total precipitation for November 1982 through October 1983. Although the average annual rainfall at the Hanford Site is 16 cm, the test year precipitation exceeded 24 cm with nearly 75% of the precipitation occurring during November through April. The moisture content at all depths in the soil reached a maximum and the monthly average potential evapotranspiration reached a minimum during this period of time. Moisture content profiles were measured at depth on biweekly intervals from January through October; these data were used to estimate drainage from the profile. Grass roots were not found below 1 m, hence moisture changes below 1 m were assumed to be entirely due to drainage. Upward capillary flow was considered to be negligible since the soil was a coars sand and the water table was below 10 m. The large amount of drainage from this arid site is attributed to rainfall distribution pattern, shallow root-zone, and soil drainage characteristics. Unsaturated flow model simulations predicted about 5-cm drainage from the grass site using daily climatic data, estimated soil hydraulic properties, and estimated transpiration parameters for cheatgrass at the Hanford Site. Improvements in the comparisons between measured and predicted drainage are anticipated with field-measured hydraulic properties and more realistic estimates of grass cover transpiration. However, both measurements and model predictions support the conclusion that under conditions where the majority of the rainfall occurs during periods of low potential evaporation and where soils are coarse textured, significant drainage can occur from the root zone of vegetated areas at Hanford or similar arid zone sites

  15. Sugarcane productivity correlated with physical-chemical attributes to create soil management zone

    Directory of Open Access Journals (Sweden)

    Flávio Carlos Dalchiavon

    2013-10-01

    Full Text Available The socioeconomic importance of sugar cane in Brazil is unquestionable because it is the raw material for the production of ethanol and sugar. The accurate spatial intervention in the management of the crop, resulting zones of soil management, increases productivity as well as its agricultural yields. The spatial and Person's correlations between sugarcane attributes and physico-chemical attributes of a Typic Tropustalf were studied in the growing season of 2009, in Suzanápolis, State of São Paulo, Brazil (20°28'10'' S lat.; 50°49'20'' W long., in order to obtain the one that best correlates with agricultural productivity. Thus, the geostatistical grid with 120 sampling points was installed to soil and data collection in a plot of 14.6 ha with second crop sugarcane. Due to their substantial and excellent linear and spatial correlations with the productivity of the sugarcane, the population of plants and the organic matter content of the soil, by evidencing substantial correlations, linear and spatial, with the productivity of sugarcane, were indicators of management zones strongly attached to such productivity.

  16. Contamination With Cryptosporidium Spp. in Soils of the Main Public Parks and Green Zones of the Tunja City

    Directory of Open Access Journals (Sweden)

    Ana Consuelo González Patiño

    2013-05-01

    Full Text Available Cryptosporidium has become one of the major public health problems around the world. Nowadays, Cryptosporidium has been considered as an emerging infectious disease, although it can occur as a sporadic form, the epidemic outbreaks of this zooneses are caused by drinking contaminated water; as a result of an incorrect drinking water treatment. Moreover, there are some studies related to Cryptosporidium spp. and its interaction with the land, especially, those destined to agricultural use which it has had a great impact on the public health, due to its use as wastewater for crop irrigation. In this study was possible to determine the presence of Cryptosporidium spp. in 159 soil samples which were taken from 12 different Tunja’s green parks, throughout the Ziehl Neelsen Modified staine, Spontaneous sedimentation technique. The development of this research was based on different variables such as texture, soil pH and environmental temperature. The results pointed out that some of the 80, 5% of the public parks areas were contaminated by this protozoan. Therefore, the analysis of temperature, texture and pH showed a (p <0.05 significant association between the soil texture variable and the Cryptosporidium spp. presence. Meanwhile there was not a significant association between temperature and pH. The 80.5 % evidence a high level of contaminated parks which indicates that these parks areas are an important risk factor for submission of this zoonotic diseases for public health importance. In this sense, it is necessary that the local authorities take control in order to reduce the parks contamination in Tunja.

  17. Soil monitoring in agro-ecosystems of high mountain zone in Quindio

    International Nuclear Information System (INIS)

    Sadeghian, Siavosh; Orozco, O l; Murgueitio, E

    2001-01-01

    Were evaluated soil characteristics in 4 common agro-ecosystems of high mountain zone of Quindio department, soil forest exhibit better indicators that others systems. Low macro porosity and hydraulic conductivity were consequences more important of cattle ranching systems. In pinus plantations were registered lower value of organic matter, pH, interchanging bases, gravimetric moisture and microbial activity CO 2 . As a result of pinus establishment on pasture ground increase drainable porosity and hydraulic conductivity. In granadilla cultivation were lower organism diversity and structural stability

  18. Lithological Effects on Evaporation and Direct Infiltration Through the Unsaturated Zone in Damascus Oasis (Syria)

    International Nuclear Information System (INIS)

    Abou zakhem, B.

    2004-01-01

    Soil water movement is directly affected by the lithology and texture of soil profile. The objective of this study is to determine water movement mechanism through the unsaturated zone, by estimating the direct infiltration rate and evaporation process in Damascus Oasis, using isotope techniques. Two soil profiles were drilled using a hand-auger. Soil samples were subjected to granulometry, mineralogy, chemical and isotopic analysis. Isotopic measurements indicate that the evaporation front is located at shallow depth between 0 and 2 m. Variations in isotopic content indicate to the alternation of wet and dry periods corresponding to infiltration and evaporation processes respectively. Results show considerable difference in isotopic content between the unsaturated zone and the groundwater, which is mainly attributed to limited recharge of the aquifer through the unsaturated. Whereas the indirect groundwater recharge is considered to be more predominant. Chloride concentration correspond to stable isotopes in the unsaturated zone, it increases proportionally with the evaporation rate. Using chemical balance of Chloride, it was possible to estimate the effective recharge average rate which is ranging between 1.8 mm/y and 0.45 mm/y. The calculated mean evaporation rate according to Barnes and Allison model is 18.1 mm/y at water table level of 3 m depth. This rate decreases to 2.4 mm/y at 6 m depth. (author)

  19. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones.

    Science.gov (United States)

    Seleiman, Mahmoud F; Kheir, Ahmed M S

    2018-02-01

    Soil salinity and atmosphere temperature change have negative impacts on crop productivity and its quality and can pose a significant risk to soil properties in semi-arid regions. We conducted two field experiments in North (first zone) and South (second zone) of Egypt to investigate the effects of soil bagasse ash (10 ton ha -1 ), foliar thiourea (240 g ha -1 ) and their combination in comparison to the control treatment on saline soil properties and productivity and quality traits of wheat. All studied treatments were received the recommended rate of N, P and K fertilizations. Combination of soil bagasse ash and foliar thiourea application resulted in a significant improvement of most studied soil properties (i.e. EC, compaction, hydraulic conductivity, OM and available P, K, N contents) after harvest in comparison to other treatments in both of zones. Also, it enhanced growth and grain yield of wheat in terms of photosynthesis related attributes and yield components. Moreover, combination of soil bagasse ash and foliar thiourea application resulted in superior grain quality traits in terms of carbohydrate, fibre, protein and ash contents than separated application of soil bagasse ash, foliar thiourea or even control treatment. In conclusion, combination of soil bagasse ash and foliar thiourea application can be used as suitable option to enhance plant nutrition, wheat productivity and improve wheat grain quality and soil traits in saline soil as well as can alleviate heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Apparent soil electrical conductivity in two different soil types

    Directory of Open Access Journals (Sweden)

    Wilker Nunes Medeiros

    Full Text Available ABSTRACT Mapping the apparent soil electrical conductivity (ECa has become important for the characterization of the soil variability in precision agriculture systems. Could the ECa be used to locate the soil sampling points for mapping the chemical and physical soil attributes? The objective of this work was to examine the relations between ECa and soil attributes in two fields presenting different soil textures. In each field, 50 sampling points were chosen using a path that presented a high variability of ECa obtained from a preliminary ECa map. At each sampling point, the ECa was measured in soil depths of 0-20, 0-40 and 0-60 cm. In addition, at each point, soil samples were collected for the determination of physical and chemical attributes in the laboratory. The ECa data obtained for different soil depths was very similar. A large number of significant correlations between ECa and the soil attributes were found. In the sandy clay loam texture field there was no correlation between ECa and organic matter or between ECa and soil clay and sand content. However, a significant positive correlation was shown for the remaining phosphorus. In the sandy loam texture field the ECa had a significant positive correlation with clay content and a significant negative correlation with sand content. The results suggest that the mapping of apparent soil electrical conductivity does not replace traditional soil sampling, however, it can be used as information to delimit regions in a field that have similar soil attributes.

  1. Effect of 211 phase addition of the magnetic properties of 123 textured wires

    International Nuclear Information System (INIS)

    Sengupta, S.; McGinn, P.J.; Chen, Weihua; Zhu, Naiping; Tan, Li

    1991-01-01

    One of the potential candidates for flux pinning in textured 123 wires is the 211 phase. The effect of Y 2 BaCuO 5 additions on the magnetic properties of the textured wires has been studied. Texturing was accomplished by a zone-melting technique. Microstructural studies reveal that they are well textured. Estimation of the critical current density using Bean's model as a function of 211 additions will be presented. These will be compared with transport measurements

  2. Mass Transport within Soils

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated

  3. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    Science.gov (United States)

    Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry

    2017-07-01

    Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF

  4. Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan

    International Nuclear Information System (INIS)

    Yang, T.F.; Walia, V.; Chyi, L.L.; Fu, C.C.; Chen, C.-H.; Liu, T.K.; Song, S.R.; Lee, C.Y.; Lee, M.

    2005-01-01

    An automatic station for soil gas monitoring was set up on an active fault zone of SW Taiwan. After more than one year of continuous measurements, some spike-like anomalous high radon and thoron concentrations could be observed. A similar soil radon spectrum was also obtained from an independent monitoring station, which was only 100m away. These anomalous peaks usually occurred a few days or weeks before the earthquakes (M L >=4.5). This indicates that variations of both soil radon and thoron can serve as useful tools for earthquake surveillance, esp. at fault zones

  5. Delineation of site-specific management zones by fuzzy clustering of soil and topographic attributes: A case study of East Nile Delta, Egypt

    International Nuclear Information System (INIS)

    Saleh, A; Belal, A A

    2014-01-01

    The objective of this study was to define site-specific management zones of 67.2 ha of a wheat pivot field at East of Nile Delta, Egypt for use in precision agriculture based on spatial variability of soil and topographic attributes. The field salinity was analysed by reading the apparent soil electrical conductivity (ECa) with the EM38 sensor horizontally and vertically at 432 locations. The field was sampled for soil attributes systematically with a total of 80 sampling location points. All samples were located using GPS hand held unit. Soil sampling for management zones included soil reaction pH, soil saturation percentage, organic matter, calcium carbonates content, available nitrogen, available phosphorus and available potassium. The field topographic attributes were digital elevation model (DEM), slope, profile curvature, plane curvature, compound topographic index (CTI) and power stream index (PSI). The maps of spatial variability of soil and field topographic attributes were generated using ordinary kriging geostatistical method. Principal component analysis (PCA) was used to determine the most important soil and topographic attributes for representing within-field variability. Principal component analysis of input variables indicated that EM38 horizontal readings (EM38h), soil saturation percentage and digital elevation model were more important attributes for defining field management zones. The fuzzy c-means clustering method was used to divide the field into potential management zones, fuzzy performance index (FPI) and normalized classification entropy (NCE) were used to determine the optimal cluster numbers. Measures of cluster performance indicated no advantage of dividing these fields into more than five management zones. The defined management zones not only provided a better description of the soil properties, but also can direct soil sampling design and provide valuable information for site-specific management in precision agriculture

  6. Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils

    Science.gov (United States)

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Soil microbial communities in dryland ecosystems play important roles as root associates of the widely spaced plants and as the dominant members of biological soil crusts (biocrusts) colonizing the plant interspaces. We employed rRNA gene sequencing (bacterial 16S/fungal large subunit) and shotgun metagenomic sequencing to compare the microbial communities inhabiting the root zones of the dominant shrub, Larrea tridentata (creosote bush), and the interspace biocrusts in a Mojave desert shrubland within the Nevada Free Air CO2 Enrichment (FACE) experiment. Most of the numerically abundant bacteria and fungi were present in both the biocrusts and root zones, although the proportional abundance of those members differed significantly between habitats. Biocrust bacteria were predominantly Cyanobacteria while root zones harbored significantly more Actinobacteria and Proteobacteria. Pezizomycetes fungi dominated the biocrusts while Dothideomycetes were highest in root zones. Functional gene abundances in metagenome sequence datasets reflected the taxonomic differences noted in the 16S rRNA datasets. For example, functional categories related to photosynthesis, circadian clock proteins, and heterocyst-associated genes were enriched in the biocrusts, where populations of Cyanobacteria were larger. Genes related to potassium metabolism were also more abundant in the biocrusts, suggesting differences in nutrient cycling between biocrusts and root zones. Finally, ten years of elevated atmospheric CO2 did not result in large shifts in taxonomic composition of the bacterial or fungal communities or the functional gene inventories in the shotgun metagenomes.

  7. Soil Gas Dynamics and Microbial Activity in the Unsaturated Zone of a Regulated River

    Science.gov (United States)

    Christensen, H.; Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Bennett, P. C.

    2017-12-01

    Over 60% of the world's rivers are dammed, and are therefore regulated. In some river systems, river regulation is the dominant factor governing fluid exchange and soil gas dynamics in the hyporheic region and overlying unsaturated zone of the river banks. Where this is the case, it is important to understand the effects that an artificially-induced change in river stage can have on the chemical, plant, and microbial components of the unsaturated zone. Daily releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River east of Austin, Texas. For this study, we utilized an array of water and gas wells along a transect perpendicular to the river to investigate the biogeochemical process occurring in this mixing zone. The gas wells were installed at several depths up to 1.5 meters, and facilitated the continuous monitoring of soil gases as the pulse percolated through the river bank. Water samples collected from the screened wells penetrated to depths below the water table and were analyzed for nutrients, carbon, and major ions. Additionally, two soil cores were taken at different distances from the river and analyzed for soil moisture and grain size. These cores were also analyzed for microbial activity using the total heterotroph count method and the acetylene inhibition technique, a sensitive method of measuring denitrifying activity. The results provide a detailed picture of soil gas flux and biogeochemical processes in the bank environment in a regulated river. Findings indicate that a river pulse that causes a meter-scale change in river stage causes small, centimeter-scale pulses in the water table. We propose that these conditions create an area of elevated microbial respiration at the base of the unsaturated zone that appears to be decoupled from normal diurnal fluctuations. Along the transect, CO2 concentrations increased with increasing depth down to the water table. CO2 concentrations were highest in the time following a pulse

  8. Acid-base status of soils in groundwater discharge zones — relation to surface water acidification

    Science.gov (United States)

    Norrström, Ann Catrine

    1995-08-01

    Critical load calculations have suggested that groundwater at depth of 2 m in Sweden is very sensitive to acid load. As environmental isotope studies have shown that most of the runoff in streams has passed through the soil, there is a risk in the near future of accelerated acidification of surface waters. To assess the importance of the last soil horizon of contact before discharge, the upper 0-0.2m of soils in seven discharge zones were analysed for pools of base cations, acidity and base saturation. The sites were about 3-4 m 2 in size and selected from two catchments exposed to different levels of acid deposition. The soils in the seven sites had high concentrations of exchangeable base cations and consequently high base saturation. The high correlation ( r2 = 0.74) between base saturation in the soils of the discharge zones and mean pH of the runoff waters suggested that the discharge zone is important for surface water acidification. The high pool of exchangeable base cations will buffer initially against the acid load. As the cation exchange capacity (meq dm -3) and base saturation were lower in the sites from the catchment receiving lower deposition, these streams may be more vulnerable to acidification in the near future. The high concentration of base cations in non-exchangeable fractions may also buffer against acidification as it is likely that some of these pools will become exchangeable with time.

  9. A computational model of pile vertical vibration in saturated soil based on the radial disturbed zone of pile driving

    International Nuclear Information System (INIS)

    Li Qiang; Shi Qian; Wang Kuihua

    2010-01-01

    In this study, a simplified computational model of pile vertical vibration was developed. The model was based on the inhomogeneous radial disturbed zone of soil in the vicinity of a pile disturbed by pile driving. The model contained two regions: the disturbed zone, which was located in the immediate vicinity of the pile, and the undisturbed region, external to the disturbed zone. In the model, excess pore pressure in the disturbed zone caused by pile driving was assumed to follow a logarithmic distribution. The relationships of stress and strain in the disturbed zone were based on the principle of effective stress under plain strain conditions. The external zone was governed by the poroelastic theory proposed by Biot. With the use of a variable separation method, an analytical solution in the frequency domain was obtained. Furthermore, a semi-analytical solution was attained by employing a numerical convolution method. Numerical results from the frequency and time domain indicated that the equivalent radius of the disturbed zone and the ratio of excess pore pressure had a significant effect on pile dynamic response. However, actual interactions between pile and soil will be weaker due to the presence of the radial disturbed zone, which is caused by pile driving. Consequently, the ideal undisturbed model overestimates the interaction between pile and soil; however, the proposed model reflects the interaction of pile and soil better than the perfect contact model. Numerical results indicate that the model can account for the time effect of pile dynamic tests.

  10. Abundance of plankton population densities in relation to bottom soil textural types in aquaculture ponds

    Directory of Open Access Journals (Sweden)

    F. Siddika

    2012-06-01

    Full Text Available Plankton is an important food item of fishes and indicator for the productivity of a water body. The present study was conducted to evaluate the effects of bottom soil textural conditions on abundance of plankton in aquaculture pond. The experiment was carried out using three treatments, i.e., ponds bottom with sandy loam (T1, with loam (T2 and with clay loam (T3. The ranges of water quality parameters analyzed were suitable for the growth of plankton during the experimental period. Similarly, chemical properties of soil were also within suitable ranges and every parameter showed higher ranges in T2. A total 20 genera of phytoplankton were recorded belonged to Chlorophyceae (7, Cyanophyceae (5, Bacillariophyceae (5, Euglenophyceae (2 and Dinophyceae (1. On the other hand, total 13 genera of zooplankton were recorded belonged to Crustacea (7 and Rotifera (6. The highest ranges of phytoplankton and zooplankton densities were found in T2 where low to medium-type bloom was observed during the study period. Consequently, the mean abundance of plankton (phytoplankton and zooplankton density was significantly highest in T2. The highest abundance of plankton in the T2 indicated that pond bottom with loamy soil is suitable for the growth and production of plankton in aquaculture ponds.

  11. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation.

    Science.gov (United States)

    Zhang, Yuping; Sallach, J Brett; Hodges, Laurie; Snow, Daniel D; Bartelt-Hunt, Shannon L; Eskridge, Kent M; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product

    Science.gov (United States)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John

    2010-01-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture

  13. CO{sub 2} and N{sub 2}O emissions in a soil chronosequence at a glacier retreat zone in Maritime Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Thomazini, A., E-mail: andre.thz@gmail.com [Department of Plant Production, Federal University of Espírito Santo, 29500-000 Alegre, Espírito Santo (Brazil); Mendonça, E.S., E-mail: eduardo.mendonca@ufes.br [Department of Plant Production, Federal University of Espírito Santo, 29500-000 Alegre, Espírito Santo (Brazil); Teixeira, D.B., E-mail: daniel.dbt@hotmail.com [FCAV/UNESP, Via de Acesso, Prof. Paulo Donato Castellane s/n, 14884-900 Jaboticabal, SP (Brazil); Almeida, I.C.C., E-mail: ivancarreiro@yahoo.com.br [Instituto Federal do Norte de Minas Gerais, Fazenda São Geraldo, s/n km. 06, 39480-000 Januária, Minas Gerais (Brazil); La Scala, N., E-mail: lascala@fcav.unesp.br [FCAV/UNESP, Via de Acesso, Prof. Paulo Donato Castellane s/n, 14884-900 Jaboticabal, SP (Brazil); Canellas, L.P., E-mail: lucianocanellas@gmail.com [UENF — Universidade Estadual do Norte Fluminense Darcy Ribeiro, Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, Rio de Janeiro (Brazil); Spokas, K.A., E-mail: kurt.Spokas@ars.usda.gov [USDA-ARS, Soil and Water Management Unit, University of Minnesota — St. Paul, MN 55108 (United States); Milori, D.M.B.P., E-mail: debora.milori@embrapa.br [Embrapa Instrumentation Brazilian Agricultural Research Corporation, São Carlos, SP (Brazil); Turbay, C.V.G., E-mail: cturbay@gmail.com [Department of Geology, Federal University of Espírito Santo, 29500-000 Alegre, Espírito Santo (Brazil); and others

    2015-07-15

    Studies of C cycle alterations are extremely important to identify changes due to climate change, especially in the polar ecosystem. The objectives of this study were to (i) examine patterns of soil CO{sub 2}-C and N{sub 2}O-N emissions, and (ii) evaluate the quantity and quality of soil organic matter across a glacier retreat chronosequence in the Maritime Antarctica. Field measurements were carried out during January and February 2010 (summer season) along a retreating zone of the White Eagle Glacier, at King George Island, Maritime Antarctica. Soil samples (0–10 cm) were collected along a 500-m transect at regular intervals to determine changes in soil organic matter. Field CO{sub 2}-C emission measurements and soil temperature were carried out at regular intervals. In addition, greenhouse gas production potentials were assessed through 100 days laboratory incubations. Soils exposed for a longer time tended to have greater concentrations of soluble salts and possess sandier textures. Total organic C (3.59 g kg{sup −1}), total N (2.31 g kg{sup −1}) and labile C (1.83 g kg{sup −1}) tended to be lower near the glacier front compared with sites away from it, which is correlated with decreasing degree of humification of the soil organic matter with exposure time. Soil CO{sub 2}-C emissions tended to increase with distance from the glacier front. On average, the presence of vegetation increased CO{sub 2}-C emissions by 440%, or the equivalent of 0.633 g of CO{sub 2}-C m{sup −2} h{sup −1}. Results suggest that newly exposed landsurfaces undergo soil formation with increasing labile C input from vegetation, accompanied by increasing soil CO{sub 2}-C emissions. Despite the importance of exposure time on CO{sub 2}-C production and emissions, there was no similar trend in soil N{sub 2}O-N production potentials as a function of glacial retreat. For N{sub 2}O, instead, the maximum production occurred in sites with the first stages of vegetation growth

  14. Texture evolution in Nd:YAG-laser welds of AZ31 magnesium alloy hot rolled sheets and its influence on mechanical properties

    International Nuclear Information System (INIS)

    Commin, Lorelei; Dumont, Myriam; Rotinat, Rene; Pierron, Fabrice; Masse, Jean-Eric; Barrallier, Laurent

    2011-01-01

    Research highlights: → AZ31 LBW fusion zone results in Mg 17 (Al-Zn) 12 precipitation, twins formation and {0 0 2} texture modification. → The mechanical properties were reduced after LBW but the fracture occurred in the base metal. → The mechanical properties were reduced after LBW but the fracture occurred in the base metal. → A recovery of elongation and UTS can be achieved by a 300 deg. C/1 h heat treatment. The texture evolution is mainly responsible for the yield strength reduction in the fusion zone. - Abstract: AZ31 hot rolled magnesium alloy presents a strong basal texture. Using laser beam welding (LBW) as a joining process induces high temperature gradients leading to major texture changes. Electron back scattered diffraction (EBSD) was used to study the texture evolution, and tensile tests coupled with speckle interferometry were performed to understand its influence on mechanical properties. The random texture obtained in the LBW fusion zone is mainly responsible for the yield strength reduction.

  15. Bioventing in the subarctic: Field scale implementation of soil heating to allow in situ vadose zone biodegradation throughout the year

    International Nuclear Information System (INIS)

    Oram, D.E.; Winters, A.T.; Winsor, T.R.

    1994-01-01

    Bioventing is a technique of in situ bioremediation of contaminants in unsaturated zone soils that has advantages over other technologies such as soil vapor extraction. At locations where off-gas treatment would be required, bioventing can be a more cost-effective method of remediation. Using bioventing to remediate petroleum hydrocarbons in the vadose zone soils in extremely cold climates may be augmented by heating the subsurface soils. The US Air Force has conducted a bioventing feasibility study at Eielson Air Force Base since 1991. The feasibility study evaluated different methods of heating soils to maintain biodegradation rates through the winter. Results from this study were used to optimize the design of a full-scale bioventing system that incorporated a soil heating system. The system installed consists of the typical components of a bioventing system including an air injection blower, a system to distribute air in the vadose zone, and a monitoring system. To maintain biodegradation at a constant rate throughout the year, soil heating and temperature monitoring systems were also installed. Results to date indicate that summer soil temperatures and biodegradation of hydrocarbons have been maintained through the winter

  16. Benchmarking LSM root-zone soil mositure predictions using satellite-based vegetation indices

    Science.gov (United States)

    The application of modern land surface models (LSMs) to agricultural drought monitoring is based on the premise that anomalies in LSM root-zone soil moisture estimates can accurately anticipate the subsequent impact of drought on vegetation productivity and health. In addition, the water and energy ...

  17. The forming of the complexes of soil mezofauna in the zone of radioactive contamination

    International Nuclear Information System (INIS)

    Maksimova, S.L.

    2002-01-01

    We carried out the pedobiological research in the different biogeocenoses in the zone of radioactive contamination. Based on the obtained data we can conclude a direct correlation between the viability of the soil invertebrates and the background gamma-radiation intensity. All the facts indicate that soil animal complexes in biogeocenoses exposed to radiation for a long time impact clearly noticeable suppression

  18. The Erosion of expansive soils through a zoning of Taza (Morocco)

    Science.gov (United States)

    Demehati, A.; Abidi, A.; El Qandil, M.

    2018-05-01

    Like other cities in the region of Fez-Meknes, Taza undergoes the phenomena of erosion of soils facing the builder in general and the town planner in particular. This type of aggression of the land is sometimes amplified by the swelling-withdrawal of soils. In effect the marl clay layers are considered as unstable soils because of their volumetric changes depending on the duration and intensity of extreme climate changes (weather, droughts, ventilation.). This phenomenon, which is part directly or indirectly so-called natural disasters, can lead to significant costly damage and particularly intense (soil erosion, landslides, obstruction of the course of the water, hydraulic works and sanitation networks, cracks of the constructions and their annexes’, deformations of pavements, etc.). The knowledge and mastery of this phenomenon are essential to prevent, limit or remedy the consequences and damage related to their impacts. We focus as well our contribution on the geotechnical characteristics of the soils of the city of Taza with highlighting of the hazards in susceptibility to erosion of soils in particular through their potential of swelling-removing and this for the benefit geotechnical zoning of Taza.

  19. Pedotransfer functions for isoproturon sorption on soils and vadose zone materials.

    Science.gov (United States)

    Moeys, Julien; Bergheaud, Valérie; Coquet, Yves

    2011-10-01

    Sorption coefficients (the linear K(D) or the non-linear K(F) and N(F)) are critical parameters in models of pesticide transport to groundwater or surface water. In this work, a dataset of isoproturon sorption coefficients and corresponding soil properties (264 K(D) and 55 K(F)) was compiled, and pedotransfer functions were built for predicting isoproturon sorption in soils and vadose zone materials. These were benchmarked against various other prediction methods. The results show that the organic carbon content (OC) and pH are the two main soil properties influencing isoproturon K(D) . The pedotransfer function is K(D) = 1.7822 + 0.0162 OC(1.5) - 0.1958 pH (K(D) in L kg(-1) and OC in g kg(-1)). For low-OC soils (OC isoproturon sorption in soils in unsampled locations should rely, whenever possible, and by order of preference, on (a) site- or soil-specific pedotransfer functions, (b) pedotransfer functions calibrated on a large dataset, (c) K(OC) values calculated on a large dataset or (d) K(OC) values taken from existing pesticide properties databases. Copyright © 2011 Society of Chemical Industry.

  20. An injected gamma-tracer method for soil-moisture movement investigations in arid zones

    International Nuclear Information System (INIS)

    Nair, A.R.; Navada, S.V.; Rao, S.M.

    1980-01-01

    A method for the in-situ determination of soil-moisture transport rates using K 3 60 Co(CN) 6 is discussed. The tracer compares well with tritiated water in laboratory investigations and the results obtained in limited field studies are very encouraging. The method promises to be of specific interest in arid-zone investigations where the soil-moisture fluxes in liquid and vapour phases could cause complications for tritium tracer data interpretation. (author)

  1. Estimation of Soil Water Retention Curve Using Fractal Dimension ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-01

    Dec 1, 2017 ... ABSTRACT: The soil water retention curve (SWRC) is a fundamental hydraulic property majorly used to study flow transport in soils and calculate ... suitable to model the heterogeneous soil structure with tortuous pore space (Rieu ... so, soil texture determined according to the USDA texture classification.

  2. Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux

    Science.gov (United States)

    Akbariyeh, Simin; Bartelt-Hunt, Shannon; Snow, Daniel; Li, Xu; Tang, Zhenghong; Li, Yusong

    2018-04-01

    Contamination of groundwater from nitrogen fertilizers in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have considered a controlled field work to investigate the influence of soil heterogeneity and groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. In this work, a numerical model was developed to simulate nitrate-N transport and transformation beneath a center pivot-irrigated corn field on Nebraska Management System Evaluation area over a three-year period. The model was based on a realistic three-dimensional sediment lithology, as well as carefully controlled irrigation and fertilizer application plans. In parallel, a homogeneous soil domain, containing the major sediment type of the site (i.e. sandy loam), was developed to conduct the same water flow and nitrate-N leaching simulations. Simulated nitrate-N concentrations were compared with the monitored nitrate-N concentrations in 10 multi-level sampling wells over a three-year period. Although soil heterogeneity was mainly observed from top soil to 3 m below the surface, heterogeneity controlled the spatial distribution of nitrate-N concentration. Soil heterogeneity, however, has minimal impact on the total mass of nitrate-N in the domain. In the deeper saturated zone, short-term variations of nitrate-N concentration correlated with the groundwater level fluctuations.

  3. Long-term influence of tillage and fertilization on net carbon dioxide exchange rate on two soils with different textures.

    Science.gov (United States)

    Feiziene, Dalia; Feiza, Virginijus; Slepetiene, Alvyra; Liaudanskiene, Inga; Kadziene, Grazina; Deveikyte, Irena; Vaideliene, Asta

    2011-01-01

    The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Modelling soil-water dynamics in the rootzone of structured and water-repellent soils

    Science.gov (United States)

    Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent

    2018-04-01

    In modelling the hydrology of Earth's critical zone, there are two major challenges. The first is to understand and model the processes of infiltration, runoff, redistribution and root-water uptake in structured soils that exhibit preferential flows through macropore networks. The other challenge is to parametrise and model the impact of ephemeral hydrophobicity of water-repellent soils. Here we have developed a soil-water model, which is based on physical principles, yet possesses simple functionality to enable easier parameterisation, so as to predict soil-water dynamics in structured soils displaying time-varying degrees of hydrophobicity. Our model, WEIRDO (Water Evapotranspiration Infiltration Redistribution Drainage runOff), has been developed in the APSIM Next Generation platform (Agricultural Production Systems sIMulation). The model operates on an hourly time-step. The repository for this open-source code is https://github.com/APSIMInitiative/ApsimX. We have carried out sensitivity tests to show how WEIRDO predicts infiltration, drainage, redistribution, transpiration and soil-water evaporation for three distinctly different soil textures displaying differing hydraulic properties. These three soils were drawn from the UNSODA (Unsaturated SOil hydraulic Database) soils database of the United States Department of Agriculture (USDA). We show how preferential flow process and hydrophobicity determine the spatio-temporal pattern of soil-water dynamics. Finally, we have validated WEIRDO by comparing its predictions against three years of soil-water content measurements made under an irrigated alfalfa (Medicago sativa L.) trial. The results provide validation of the model's ability to simulate soil-water dynamics in structured soils.

  5. Stabilization of Organic Matter by Biochar Application in Compost-amended Soils with Contrasting pH Values and Textures

    Directory of Open Access Journals (Sweden)

    Shih-Hao Jien

    2015-09-01

    Full Text Available Food demand and soil sustainability have become urgent concerns because of the impacts of global climate change. In subtropical and tropical regions, practical management that stabilizes and prevents organic fertilizers from rapid decomposition in soils is necessary. This study conducted a short-term (70 days incubation experiment to assess the effects of biochar application on the decomposition of added bagasse compost in three rural soils with different pH values and textures. Two rice hull biochars, produced through slow pyrolization at 400 °C (RHB-400 and 700 °C (RHB-700, with application rates of 1%, 2%, and 4% (w/w, were separately incorporated into soils with and without compost (1% (w/w application rate. Experimental results indicated that C mineralization rapidly increased at the beginning in all treatments, particularly in those involving 2% and 4% biochar. The biochar addition increased C mineralization by 7.9%–48% in the compost-amended soils after 70 days incubation while the fractions of mineralized C to applied C significantly decreased. Moreover, the estimated maximum of C mineralization amount in soils treated with both compost and biochar were obviously lower than expectation calculated by a double exponential model (two pool model. Based on the micromorphological observation, added compost was wrapped in the soil aggregates formed after biochar application and then may be protected from decomposing by microbes. Co-application of compost with biochar may be more efficient to stabilize and sequester C than individual application into the studied soils, especially for the biochar produced at high pyrolization temperature.

  6. Fast determination of soil behavior in the capillary zone using simple laboratory tests.

    Science.gov (United States)

    2012-12-01

    Frost heave and thaw weakening are typical problems for engineers building in northern regions. These unsaturated-soil behaviors are : caused by water flowing through the capillary zone to a freezing front, where it forms ice lenses. Although suction...

  7. Environmental drivers of soil microbial community structure and function at the Avon River Critical Zone Observatory.

    Science.gov (United States)

    Gleeson, Deirdre; Mathes, Falko; Farrell, Mark; Leopold, Matthias

    2016-11-15

    The Critical Zone is defined as the thin, permeable layer from the tops of the trees to the bottom of the bedrock that sustains terrestrial life on Earth. The geometry and shape of the various weathering zones are known as the critical zone architecture. At the centre of the Critical Zone are soils and the microorganisms that inhabit them. In Western Australia, the million-year-old stable weathering history and more recent lateral erosion during the past hundreds of thousands of years have created a geomorphic setting where deep weathering zones are now exposed on the surface along the flanks of many lateritic hills. These old weathering zones provide diverse physical and chemical properties that influence near surface pedologic conditions and thus likely shape current surface microbiology. Here, we present data derived from a small lateritic hill on the UWA Farm Ridgefield. Spatial soil sampling revealed the contrasting distribution patterns of simple soil parameters such as pH (CaCl2) and electric conductivity. These are clearly linked with underlying changes of the critical zone architecture and show a strong contrast with low values of pH3.3 at the top of the hill to pH5.3 at the bottom. These parameters were identified as major drivers of microbial spatial variability in terms of bacterial and archaeal community composition but not abundance. In addition, we used sensitive (14)C labelling to assess turnover of three model organic nitrogen compounds - an important biogeochemical functional trait relating to nutrient availability. Though generally rapid and in the order of rates reported elsewhere (t½10h). In conclusion, we have shown that the weathering and erosion history of ancient Western Australia affects the surface pedology and has consequences for microbial community structure and function. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... conductivity parameters. A larger data set (1618 horizons) with a broader textural range was used in the development of PTFs to predict the van Genuchten parameters. The PTFs using either three or seven textural classes combined with soil organic mater and bulk density gave the most reliable predictions...

  9. Mapping Soil hydrologic features in a semi-arid irrigated area in Spain

    Science.gov (United States)

    Jiménez-Aguirre, M.° Teresa; Isidoro, Daniel; Usón, Asunción

    2016-04-01

    Haploxerept (C), Typic Xerorthent (D), and Typic Xerofluvent (E)] and six particle size families [Fine (1), Fine-silty (2), Fine-loamy (3), Coarse-loamy (4), Loamy Superficial (5) and Loamy-skeletal (6)]. Two great soil zones were defined: the more calcic glacis (A and B subgroups) dominated by coarse textures (4-6); and the more gypsic, fine textured valley floors (C, D and E) (1-2-3) with the exception of the superficial gypsic high lands (D5). In all the soils in VID Calcium Carbonate Equivalent (CCE) was high (though lower in the valleys) and silt was the main textural fraction. The coarser textured glacis had low Gypsum Content (GC), lower WHC and higher Ks while the valley bottoms had high GC, fine textures and lower Ks. The soil water retention properties (FC and WP) could be calculated from textural properties (clay, and fine silt fractions) and the Ks could be related to sand and GC by means of meaningful PTF's. The use of disaggregated soil information (combined with distributed irrigation data) may lead to improved water balance calculations and suggest management options for a better water use in VID.

  10. From soil water to surface water – how the riparian zone controls element transport from a boreal forest to a stream

    Directory of Open Access Journals (Sweden)

    F. Lidman

    2017-06-01

    Full Text Available Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr and other parameters such as sulfate and total organic carbon (TOC. The results showed that the concentrations of most investigated elements increased substantially (up to 60 times as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the

  11. Investigating the Effect of Soil Texture and Fertility on Evapotranspiration and Crop Coefficient of Maize Forage

    Directory of Open Access Journals (Sweden)

    M. Ghorbanian Kerdabadi

    2017-02-01

    Full Text Available Introduction: Crop coefficient varies in different environmental conditions, such as deficit irrigation, salinity and intercropping. The effect of soil fertility and texture of crop coefficient and evapotranspiration of maize was investigated in this study. Low soil fertility and food shortages as a stressful environment for plants that makes it different evapotranspiration rates of evapotranspiration calculation is based on the FAO publication 56. Razzaghi et al. (2012 investigate the effect of soil type and soil-drying during the seed-filling phase on N-uptake, yield and water use, a Danish-bred cultivar (CV. Titicaca was grown in field lysimeters with sand, sandy loam and sandy clay loam soil. Zhang et al (2014 were investigated the Effect of adding different amounts of nitrogen during three years (from 2010 to 2012 on water use efficiency and crop evapotranspiration two varieties of winter wheat. The results of their study showed. The results indicated the following: (1 in this dry land farming system, increased N fertilization could raise wheat yield, and the drought-tolerant Changhan No. 58 showed a yield advantage in drought environments with high N fertilizer rates; (2 N application affected water consumption in different soil layers, and promoted wheat absorbing deeper soil water and so increased utilization of soil water; and (3 comprehensive consideration of yield and WUE of wheat indicated that the N rate of 270 kg/ha for Changhan No. 58 was better to avoid the risk of reduced production reduction due to lack of precipitation; however, under conditions of better soil moisture, the N rate of 180 kg/ha was more economic. Materials and Methods: The study was a factorial experiment in a completely randomized design with three soil texture treatment, including silty clay loam, loam and sandy-loam soil and three fertility treatment, including without fertilizer, one and two percent fertilizer( It was conducted at the experimental farm in

  12. Leaching of hexazinone and mixture hexazinone + diuron in columns of soils with distinct textures. = Lixiviação do hexazinone e da mistura hexazinone + diuron em colunas de solos com texturas distintas.

    Directory of Open Access Journals (Sweden)

    Kassio Ferreira Mendes

    2013-08-01

    Full Text Available Objective to evaluate the leaching of the hexazinone and admixed with diuron, in soil of contrasting textures, in soil columns under different rainfall. The following soils were used: Red Latosol - LV, of clay texture and Quartzarenic Neosol - NQ, sandy texture. The experimental units were constituted by PVC columns filled with soil, at rates of hexazinone (LV - 375 g ha -1 and NQ - 225 g ha -1 and hexazinone + diuron (LV - 396 + 1,404 g ha -1 and NQ - 264 + 936 g ha-1 . The factorial 6 x 6 in randomized block design, with three replications was adopted. Factor A evaluated the precipitation of 0, 20, 40, 60, 80, and 100 mm; factor B analyzed the depths (0-5, 5-10, 10-15, 15-20, 20-25 and 25-30 cm column. Posteriorly the rain simulation the columns were longitudinally opened and along these were sown Cucumis sativus. Independent of soil texture, the hexazinoneand mixture hexazinone + diuron did not exceed 10-15 cm layer of soil, the layer of 0 mm. The hexazinone and diuron + hexazinone mixture showed phytotoxicity of species bioindicator in the layer of 20-25 cm in LV, and reaching up to 25-30 cm in NQ, the greatest layer simulated. It was concluded that there was no difference in leaching potential of hexazinone when mixture with diuron in soils with distinct textures, however the clay textural composition, organic matter content of soil and rainfall influenced the leaching. = Objetivou-se avaliar a lixiviação do hexazinone isoladamente e da mistura com o diuron, em solos de texturas contrastantes, em colunas de solos sob diferentes precipitações. Utilizou-se um Latossolo Vermelho – LV, de textura argilosa e um Neossolo Quartzarênico – NQ, de textura arenosa. As unidades experimentais foram constituídas por colunas de PVC preenchidas com solos, nas doses de hexazinone (LV - 375 g ha -1 e NQ - 225 g ha -1 e hexazinone + diuron (LV - 396 + 1.404 g ha -1 e NQ - 264 + 936 g ha -1 . Adotou-se o esquema fatorial 6 x 6 no delineamento em

  13. [Transfer characteristic and source identification of soil heavy metals from water-level-fluctuating zone along Xiangxi River, three-Gorges Reservoir area].

    Science.gov (United States)

    Xu, Tao; Wang, Fei; Guo, Qiang; Nie, Xiao-Qian; Huang, Ying-Ping; Chen, Jun

    2014-04-01

    Transfer characteristics of heavy metals and their evaluation of potential risk were studied based on determining concentration of heavy metal in soils from water-level-fluctuating zone (altitude:145-175 m) and bank (altitude: 175-185 m) along Xiangxi River, Three Gorges Reservoir area. Factor analysis-multiple linear regression (FA-MLR) was employed for heavy metal source identification and source apportionment. Results demonstrate that, during exposing season, the concentration of soil heavy metals in water-level-fluctuation zone and bank showed the variation, and the concentration of soil heavy metals reduced in shallow soil, but increased in deep soil at water-level-fluctuation zone. However, the concentration of soil heavy metals reduced in both shallow and deep soil at bank during the same period. According to the geoaccumulation index,the pollution extent of heavy metals followed the order: Cd > Pb > Cu > Cr, Cd is the primary pollutant. FA and FA-MLR reveal that in soils from water-level-fluctuation zone, 75.60% of Pb originates from traffic, 62.03% of Cd is from agriculture, 64.71% of Cu and 75.36% of Cr are from natural rock. In soils from bank, 82.26% of Pb originates from traffic, 68.63% of Cd is from agriculture, 65.72% of Cu and 69.33% of Cr are from natural rock. In conclusion, FA-MLR can successfully identify source of heavy metal and compute source apportionment of heavy metals, meanwhile the transfer characteristic is revealed. All these information can be a reference for heavy metal pollution control.

  14. Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States

    Science.gov (United States)

    Green, C.T.; Fisher, L.H.; Bekins, B.A.

    2008-01-01

    The main physical and chemical controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Indiana, Maryland, Nebraska, and Washington from 2004 to 2005. Sites included irrigated and nonirrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 1 to 22 m. Chemical analyses of water from lysimeters and shallow wells indicate that advective transport of nitrate is the dominant process affecting the flux of N below the root zone. Vertical profiles of (i) nitrogen species, (ii) stable isotopes of nitrogen and oxygen, and (iii) oxygen, N, and argon in unsaturated zone air and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. As a result, physical factors, such as N application rate, water inputs, and evapotranspiration, control the differences in concentrations among the sites. Concentrations of N in shallow lysimeters exhibit seasonal variation, whereas concentrations in lysimeters deeper than a few meters are relatively stable. Based on concentration and recharge estimates, fluxes of N through the deep unsaturated zone range from 7 to 99 kg ha-1 yr-1. Vertical fluxes of N in ground water are lower due to spatial and historical changes in N inputs. High N fluxes are associated with coarse sediments and high N application rates. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  15. Sea-floor texture and physiographic zones of the inner continental shelf from Salisbury to Nahant, Massachusetts, including the Merrimack Embayment and Western Massachusetts Bay

    Science.gov (United States)

    Pendleton, Elizabeth E.; Barnhardt, Walter A.; Baldwin, Wayne E.; Foster, David S.; Schwab, William C.; Andrews, Brian D.; Ackerman, Seth D.

    2015-10-26

    A series of maps that describe the distribution and texture of sea-floor sediments and physiographic zones of Massachusetts State waters from Nahant to Salisbury, Massachusetts, including western Massachusetts Bay, have been produced by using high-resolution geophysical data (interferometric and multibeam swath bathymetry, lidar bathymetry, backscatter intensity, and seismic reflection profiles), sediment samples, and bottom photographs. These interpretations are intended to aid statewide efforts to inventory and manage coastal and marine resources, link with existing data interpretations, and provide information for research focused on coastal evolution and environmental change. Marine geologic mapping of the inner continental shelf of Massachusetts is a statewide cooperative effort of the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management.

  16. Using Multispectral and Elevation Data to Predict Soil Properties for a Better Management of Fertilizers at Field Scale

    Science.gov (United States)

    Drouin, Ariane; Michaud, Aubert; Sylvain, Jean-Daniel; N'Dayegamiye, Adrien; Gasser, Marc-Olivier; Nolin, Michel; Perron, Isabelle; Grenon, Lucie; Beaudin, Isabelle; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    This project aims at developing and validating an operational integrated management and localized approach at field scale using remote sensing data. It is realized in order to support the competitiveness of agricultural businesses, to ensure soil productivity in the long term and prevent diffuse contamination of surface waters. Our intention is to help agrienvironmental advisors and farmers in the consideration of spatial variability of soil properties in the management of fields. The proposed approach of soil properties recognition is based on the combination of elevation data and multispectral satellite imagery (Landsat) within statistical models. The method is based on the use of the largest possible number of satellite images to cover the widest range of soil moisture variability. Several spectral indices are calculated for each image (normalized brightness index, soil color index, organic matter index, etc.). The assignation of soils is based on a calibration procedure making use of the spatial soil database available in Canada. It includes soil profile point data associated to a database containing the information collected in the field. Three soil properties are predicted and mapped: A horizon texture, B horizon texture and drainage class. All the spectral indices, elevation data and soil data are combined in a discriminant analysis that produces discriminant functions. These are then used to produce maps of soil properties. In addition, from mapping soil properties, management zones are delineated within the field. The delineation of management zones with relatively similar soil properties is created to enable farmers to manage their fertilizers by taking greater account of their soils. This localized or precision management aims to adjust the application of fertilizer according to the real needs of soils and to reduce costs for farmers and the exports of nutrients to the stream. Mapping of soil properties will be validated in three agricultural regions in

  17. Dynamics of Physical and Physicochemical Properties of Urban Soils under the Effect of Ice-Melting Salts

    Science.gov (United States)

    Azovtseva, N. A.; Smagin, A. V.

    2018-01-01

    Physical (water content, density, and air and water regimes) and physicochemical (electrical conductivity, pH, and SAR) properties of urban soils were investigated on test plots of Moscow to evaluate their dynamics under anthropogenic impact. The wilting point and the dependence of the capillary-sorption and total water potentials of the soil water content were determined in laboratory experiments with natural and artificially saline soil samples to evaluate the effect of salt antifreeze substances on water availability for plants under conditions of active application of deicing reagents. Seasonal dynamics of these parameters were investigated. It was found that electrolytes display a steady tendency for the accumulation and redistribution in the root zone rather than for their deep leaching despite humid climatic conditions in Moscow megalopolis. In summer, regular droughts result in drying of the root zone to critical values and to the concentration of electrolytes up to the values that make the total water potential of soil unsuitable for water uptake by roots. The key factor of soil degradation under the impact of electrolytes is the soil dispersity: the finer the texture, the higher the soil salinization and solonetzicity and the stronger irreversible changes in the soil water retention capacity and physical properties.

  18. Interpretation of zircon coronae textures from metapelitic granulites of the Ivrea–Verbano Zone, northern Italy: two-stage decomposition of Fe–Ti oxides

    Directory of Open Access Journals (Sweden)

    E. Kovaleva

    2017-07-01

    Full Text Available In this study, we report the occurrence of zircon coronae textures in metapelitic granulites of the Ivrea–Verbano Zone. Unusual zircon textures are spatially associated with Fe–Ti oxides and occur as (1 vermicular-shaped aggregates 50–200 µm long and 5–20 µm thick and as (2 zircon coronae and fine-grained chains, hundreds of micrometers long and ≤ 1 µm thick, spatially associated with the larger zircon grains. Formation of such textures is a result of zircon precipitation during cooling after peak metamorphic conditions, which involved: (1 decomposition of Zr-rich ilmenite to Zr-bearing rutile, and formation of the vermicular-shaped zircon during retrograde metamorphism and hydration; and (2 recrystallization of Zr-bearing rutile to Zr-depleted rutile intergrown with quartz, and precipitation of the submicron-thick zircon coronae during further exhumation and cooling. We also observed hat-shaped grains that are composed of preexisting zircon overgrown by zircon coronae during stage (2. Formation of vermicular zircon (1 preceded ductile and brittle deformation of the host rock, as vermicular zircon is found both plastically and cataclastically deformed. Formation of thin zircon coronae (2 was coeval with, or immediately after, brittle deformation as coronae are found to fill fractures in the host rock. The latter is evidence of local, fluid-aided mobility of Zr. This study demonstrates that metamorphic zircon can nucleate and grow as a result of hydration reactions and mineral breakdown during cooling after granulite-facies metamorphism. Zircon coronae textures indicate metamorphic reactions in the host rock and establish the direction of the reaction front.

  19. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  20. Heavy metal concentrations and distribution in surface soils of the Bassa Industrial Zone 1, Douala, Cameroon

    International Nuclear Information System (INIS)

    Asaah, Victor A.; Abimbola, Akinlolu F.; Suh, Cheo E.

    2006-01-01

    Partial extraction was carried out on 33 soil samples collected from the Bassa Industrial Zone 1, Douala, Cameroon. From the samples analyzed the following metal concentrations (range) were obtained (in ppm): Ag (0-1.3), As (0-64), Cd(0-7.3), Co(0-31), Cr(34-423), Cu(12-909), Mn(55-3282), Mo(0-81.6), Ni(9-284), Pb (0-3320), Sb (0-30), Sc (0.6-7.5), V (26-110), Zn (30-3782) and Fe (in wt%) (1.50-47.31). Results obtained reveal background and anomalous populations for most of the metals except Sc and V, which have only background populations. Multi-element geochemical anomalies occur within the vicinity of industries, waste dump sites, metal workshops and mechanical workshops. R-mode factor analysis reveals three element associations and two singular elements (As, Cd) accounting for 94% of the total data variance. The three associations are: Ag-Cu-Cr-Fe-Mn-Mo-Ni-Sb; Co-Cu-Pb-Sb-Zn and Sc-V. The geoaccumulation indices show that soils in the Bassa Industrial Zone are moderately to very highly pollute. These metal-laden soils constitute a major health risk to the local population and a cause for concern. This study successfully relates the concentration and distribution of toxic metals in the soils of Bassa Industrial Zone to urban effluents generated mainly from industrial activities. (author)

  1. Soil processes and functions across an international network of critical zone observations: introduction to experimental methods and initial results

    NARCIS (Netherlands)

    Banwart, S.; Menon, M.; Bernasconi, S.M.; Bloem, J.; Ruiter, de P.C.; Weng, L.P.

    2012-01-01

    Growth in human population and demand for wealth creates ever-increasing pressure on global soils, leading to soil losses and degradation worldwide. Critical Zone science studies the impact linkages between these pressures, the resulting environmental state of soils, and potential interventions to

  2. Tillage-induced changes to soil structure and organic carbon fractions in New Zealand soils

    International Nuclear Information System (INIS)

    Shepherd, T. G.; Saggar, S.; Ross, C. W.; Dando, J. L.; Newman, R. H.

    2001-01-01

    The effects of increasing cropping and soil compaction on aggregate stability and dry-sieved aggregate-size distribution, and their relationship to total organic C (TOC) and the major functional groups of soil organic carbon, were investigated on 5 soils of contrasting mineralogy. All soils except the allophanic soil showed a significant decline in aggregate stability under medium- to long-term cropping. Mica-rich, fine-textured mineral and humic soils showed the greatest increase in the mean weight diameter (MWD) of dry aggregates, while the oxide-rich soils, and particularly the allophanic soils, showed only a slight increase in the MWD after long-term cropping. On conversion back to pasture, the aggregate stability of the mica-rich soils increased and the MWD of the aggregate-size distribution decreased, with the humic soil showing the greatest recovery. Aggregate stability and dry aggregate-size distribution patterns show that soil resistance to structural degradation and soil resilience increased from fine-textured to coarse-textured to humic mica-rich soils to oxide-rich soils to allophanic soils. Coarse- and fine-textured mica-rich and oxide-rich soils under pasture contained medium amounts of TOC, hot-water soluble carbohydrate (WSC), and acid hydrolysable carbohydrate (AHC), all of which declined significantly under cropping. The rate of decline varied with soil type in the initial years of cropping, but was similar under medium- and long-term cropping. TOC was high in the humic mica-rich and allophanic soils, and levels did not decline appreciably under medium- and long-term cropping. 13 C-nuclear magnetic resonance evidence also indicates that all major functional groups of soil organic carbon declined under cropping, with O-alkyl C and alkyl C showing the fastest and slowest rate of decline, respectively. On conversion back to pasture, both WSC and AHC returned to levels originally present under long-term pasture. TOC recovered to original pasture

  3. Comparing the performance of various digital soil mapping approaches to map physical soil properties

    Science.gov (United States)

    Laborczi, Annamária; Takács, Katalin; Pásztor, László

    2015-04-01

    Spatial information on physical soil properties is intensely expected, in order to support environmental related and land use management decisions. One of the most widely used properties to characterize soils physically is particle size distribution (PSD), which determines soil water management and cultivability. According to their size, different particles can be categorized as clay, silt, or sand. The size intervals are defined by national or international textural classification systems. The relative percentage of sand, silt, and clay in the soil constitutes textural classes, which are also specified miscellaneously in various national and/or specialty systems. The most commonly used is the classification system of the United States Department of Agriculture (USDA). Soil texture information is essential input data in meteorological, hydrological and agricultural prediction modelling. Although Hungary has a great deal of legacy soil maps and other relevant soil information, it often occurs, that maps do not exist on a certain characteristic with the required thematic and/or spatial representation. The recent developments in digital soil mapping (DSM), however, provide wide opportunities for the elaboration of object specific soil maps (OSSM) with predefined parameters (resolution, accuracy, reliability etc.). Due to the simultaneous richness of available Hungarian legacy soil data, spatial inference methods and auxiliary environmental information, there is a high versatility of possible approaches for the compilation of a given soil map. This suggests the opportunity of optimization. For the creation of an OSSM one might intend to identify the optimum set of soil data, method and auxiliary co-variables optimized for the resources (data costs, computation requirements etc.). We started comprehensive analysis of the effects of the various DSM components on the accuracy of the output maps on pilot areas. The aim of this study is to compare and evaluate different

  4. Defoliation and Soil Compaction Jointly Drive Large-Herbivore Grazing Effects on Plants and Soil Arthropods on Clay Soil

    NARCIS (Netherlands)

    van Klink, R.; Schrama, M.; Nolte, S.; Bakker, J. P.; WallisDeVries, M. F.; Berg, M. P.

    In addition to the well-studied impacts of defecation and defoliation, large herbivores also affect plant and arthropod communities through trampling, and the associated soil compaction. Soil compaction can be expected to be particularly important on wet, fine-textured soils. Therefore, we

  5. Defoliation and Soil Compaction Jointly Drive Large-Herbivore Grazing Effects on Plants and Soil Arthropods on Clay Soil

    NARCIS (Netherlands)

    van Klink, R.; Schrama, M.; Nolte, S.; Bakker, Jan P.; WallisDeVries, M.F.; Berg, M.P.

    2015-01-01

    In addition to the well-studied impacts of defecation and defoliation, large herbivores also affect plant and arthropod communities through trampling, and the associated soil compaction. Soil compaction can be expected to be particularly important on wet, fine-textured soils. Therefore, we

  6. Deformation of textural characteristics and sedimentology along micro-tidal estuarine beaches

    Digital Repository Service at National Institute of Oceanography (India)

    Dora, G.U.; SanilKumar, V.; Philip, C.S.; Johnson, G.

    Indian Journal of Geo Marine Sciences Vol. 45 (11), November 2016, pp. 1432-1444 *Corresponding author Deformation of textural characteristics and sedimentology along micro- tidal estuarine beaches G. Udhaba Dora, V. Sanil Kumar*, C... sediment is a foremost parameter for a coastal researcher/engineer/designer due to its various applications for sorting out a coastal environment. Sedimentary process at foreshore zone is a highly dynamical whereas textural characteristics...

  7. Nexus Thinking on Soil Carbon Dynamics and Soil Health

    Science.gov (United States)

    Lal, R.

    2016-12-01

    Anthropocene is driven by global population of 7.5 billion in 2016, increasing annually by 80 million and projected to be 9.7 billion by 2050. The ecological impact (I=PAT, where P is population, A is affluence, and T is technology) of the population is similar to that of a geological force. Thus, humanity's impact is driven by demands for food, water, energy, and services derived from soil. Soil health, its capacity to function as a vital living system, is determined by quantity and quality of soil organic carbon (SOC) in the root zone ( 50cm). Maintenance of SOC at above the threshold level (1.5 to 2.0% by weight in the root zone) is critical to performing numerous ecosystem services for human wellbeing and nature conservancy. These services and functions strongly depend on nexus or inter-connectivity of biological processes within the pedosphere. The nexus is strongly governed by coupled biogeochemical cycling of water (H2O), carbon (C), nitrogen (N), phosphorus (P) and sulfur (S). Further, it is the nexus between pedological and biological processes that renews and purifies water by denaturing and filtering pollutants; circulates C among biotic and abiotic pools in close association with other elements (N, P, S); provides habitat and energy source for soil biota (macro, meso, and micro flora and fauna), facilitates exchanges of gases between soil and the atmosphere and moderates climate, and creates favorable rhizospheric processes that promote plant growth and enhance net primary productivity. Soil health, governed by SOC quality and quantity, determines the provisioning of numerous ecosystem services and the importance of nexus thinking is highlighted by the truism that "health of soil, plants, animals, human and ecosystem is one and indivisible." The sequestration of SOC depends on land use and soil management strategies which create a positive C budget. Thus, input of biomass-C into the soil must exceed the losses by erosion, mineralization and leaching

  8. Deformation processes and weakening mechanisms within the frictional viscous transition zone of major crustal-scale faults: insights from the Great Glen Fault Zone, Scotland

    Science.gov (United States)

    Stewart, M.; Holdsworth, R. E.; Strachan, R. A.

    2000-05-01

    The Great Glen Fault Zone (GGFZ), Scotland, is a typical example of a crustal-scale, reactivated strike-slip fault within the continental crust. Analysis of intensely strained fault rocks from the core of the GGFZ near Fort William provides a unique insight into the nature of deformation associated with the main phase of (sinistral) movements along the fault zone. In this region, an exhumed sequence of complex mid-crustal deformation textures that developed in the region of the frictional-viscous transition (ca. 8-15 km depth) is preserved. Fault rock fabrics vary from mylonitic in quartzites to cataclastic in micaceous shear zones and feldspathic psammites. Protolith mineralogy exerted a strong control on the initial textural development and distribution of the fault rocks. At lower strains, crystal-plastic deformation occurred in quartz-dominated lithologies to produce mylonites simultaneously with widespread fracturing and cataclasis in feldspar- and mica-dominated rocks. At higher strains, shearing appears to increasingly localise into interconnected networks of cataclastic shear zones, many of which are strongly foliated. Textures indicative of fluid-assisted diffusive mass transfer mechanisms are widespread in such regions and suggest that a hydrous fluid-assisted, grainsize-controlled switch in deformation behaviour followed the brittle comminution of grains. The fault zone textural evolution implies that a strain-induced, fluid-assisted shallowing and narrowing of the frictional-viscous transition occurred with increasing strain. It is proposed that this led to an overall weakening of the fault zone and that equivalent processes may occur along many other long-lived, crustal-scale dislocations.

  9. The nature and classification of Australian soils affected by sodium

    Science.gov (United States)

    Murphy, Brian; Greene, Richard; Harms, Ben

    2017-04-01

    Large areas of Australia are affected by the processes of salinity and sodicity and they are important processes to understand as they can result in the degradation of agricultural lands used for both intensive cropping and extensive grazing practices. Sodic soils are defined as those having ESP of at least 6% in Australia. Northcote and Skene (1972) estimated that of Australia's total area of 770 M ha, 39 M ha was affected by salinity and 193-257 M ha by sodicity. However, in a more recent publication, Rengasamy (2006), quoted the areas of saline and sodic soils as 66 M ha and 340 M ha respectively. The soils affected by sodium in Australia include a large group of contrasting soils (Northcote and Skene 1972). Based on the Australian soil classification, included are: • Alkaline strongly sodic to sodic clay soils with uniform texture profiles - largely Vertosols 666 400 km2 • Alkaline strongly sodic to sodic coarse and medium textured soils with uniform and gradational texture profiles - largely Calcarosols 600 700 km2 • Alkaline strongly sodic to sodic texture contrast soils - largely Sodosols 454 400 km2 • Non-alkaline sodic and strongly sodic neutral texture contrast soils - largely Sodosols 134 700 km2 • Non-alkaline sodic acid texture contrast soils - Sodosols and Kurosols 140 700 km2 Many Australian sodic soils have not developed by the traditional solonetz process of leaching of a solonchak, but rather have developed by the accumulation of sodium on the cation exchange complex in preference to the other exchangeable cations without any recognisable intermediate saline phase occurring. This is especially the case for the sodic, non-alkaline texture contrast soils or Sodosols. The major sodic soil group in WRB is the Solonetz soils. These require the presence of a Natric horizon which has to contain illuviated clay and at least 15% ESP. However, there is provision for Sodic qualifiers with at least 6% ESP for many other reference Soil Groups

  10. Application of a very detailed soil survey method in viticultural zoning in Catalonia, Spain

    Directory of Open Access Journals (Sweden)

    Josep Miquel Ubalde

    2009-06-01

    Significance and impact of study: This study showed how very detailed soil maps, which can be difficult to interpret and put into practice, can be valorised as viticultural zoning maps by means of a simple methodology.

  11. Water repellency of two forest soils after biochar addition

    Science.gov (United States)

    D. S. Page-Dumroese; P. R. Robichaud; R. E. Brown; J. M. Tirocke

    2015-01-01

    Practical application of black carbon (biochar) to improve forest soil may be limited because biochar is hydrophobic. In a laboratory, we tested the water repellency of biochar application (mixed or surface applied) to two forest soils of varying texture (a granitic coarse-textured Inceptisol and an ash cap fine-textured Andisol) at four different application rates (0...

  12. Correlation indices physical space of soil and productivity of fruit tomato industry

    Directory of Open Access Journals (Sweden)

    Danilo Gomes de Oliveira

    2017-12-01

    Full Text Available With mechanization at all stages of crop management, the soil began to receive a higher surface load, which causes changes in its physical properties with possible production impacts. Thus, the objective of this work was to evaluate the variability and spatial correlation of the physical attributes of a Red Latosol with the productivity of industrial tomatoes. For this, a sample mesh was assembled using a global receiver positioning system (GPS, with 84 pairs of spaced apart 80 x 80 m points. After the mesh construction, samples in the 0.00-0.20 m layer were collected in the field to measure the physical attributes of the soil and plant data. The variables measured were: soil density (Ds, soil penetration resistance (PR, soil texture and tomato productivity. The values obtained were analyzed using geostatistics, and were classified according to the degree of spatial dependence. Then, using the ordinary kriging interpolation method and ordinary cokriging, the values for nonsampled sites were estimated, allowing the mapping of isovalues and the definition of management zones in the field. The spatial correlation of the physical attributes with the production components by the ordinary Cokriging method verified spatial correlation only between attributes (soil x soil density and sand content. The use of geostatistics and the construction of the maps by means of kriging and ordinary cokrigation allowed to identify different management zones, that is, the variability of soil attributes and productivity.

  13. Soil contamination in the impact zone of mining enterprises in the Bashkir Transural region

    Science.gov (United States)

    Opekunova, M. G.; Somov, V. V.; Papyan, E. E.

    2017-06-01

    The results of long-term studies of the contents of bulk forms of metals (Cu, Zn, Fe, Ni, Pb, Mn, Co, and Cd) and their mobile compounds in soils of background and human-disturbed areas within the Krasnoural'sk-Sibai-Gai copper-zinc and Baimak-Buribai mixed copper mineralization zones in the Bashkir Transural region are discussed. It is shown that soils of the region are characterized by abnormally high natural total contents of heavy metals (HMs) typomorphic for ore mineralization: Cu, Zn, and Fe for the Sibai province and Cu, Zn, and Ni for the Baimak province. In the case of a shallow depth of the ores, the concentrations of HMs in the soils are close to or higher than the tentative permissible concentration values. The concentrations of mobile HM compounds in soils of background areas and their percentage in the total HM content strongly vary from year to year in dependence on weather conditions, position in the soil catenas, species composition of vegetation, and distance from the source of technogenic contamination. The high natural variability in the content of mobile HM compounds in soils complicates the reliable determination of the regional geochemical background and necessitates annual estimation of background parameters for the purposes of the ecological monitoring of soils. The bulk content of Cu and Zn content in soils near mining enterprises exceeds the regional geochemical background values by 2-12 times and the tentative permissible concentrations of these metals by 2-4 times. Anthropogenic contamination results in a sharp rise in the content of mobile HM compounds in soils. Their highest concentrations exceed the maximum permissible concentrations by 26 times for Cu, 18 times for Zn, and 2 times for Pb. Soil contamination in the impact zone of mining enterprises is extremely dangerous or dangerous. However, because of the high temporal variability in the migration and accumulation of HMs in the soils, the recent decline in the ore mining

  14. Hydrologic and Soil Science in a Mediterranean Critical Zone Observatory: Koiliaris River Basin

    Science.gov (United States)

    Nikolaidis, Nikolaos; Stamati, Fotini; Schnoor, Jerald; Moraetis, Daniel; Kotronakis, Manolis

    2010-05-01

    -available carbon and nitrogen pools, where as much as half of the total OM loss could take place during the first year after the conversion of grassland to cropland. We have shown by physical fractionation and spectroscopic techniques in croplands and set-aside fields that most of the SOM decline in croplands has been attributed to the breakup of macroaggregates and the oxidation of particulate organic matter despite the climatic or textural conditions. However, lower decomposition rates and higher silt-clay content of Greek soil create more stable aggregates and facilitate OM stabilization. Studies on Koiliaris River highland de-vegetated grazing lands suggested decline of soil biochemical quality compared to native vegetated lands. The size of soluble mineral nitrogen and organic carbon pools have also decreased. The composition of the soluble OM pool had significantly lower DOC aromaticity and was nitrogen enriched compared with the naturally vegetated lands. The DON Aromaticity Index was shown to be a promising sensitive indicator of de-vegetation effect on the soluble pool of OM. The partitioning coefficients of the potential soluble organic nitrogen increased with increasing DON aromaticity for the de-vegetated lands, indicating that the lower the aromaticity, the more prone soils are to leaching DON and potentially affect water quality. The land-use load apportionment analysis revealed that the river export load of dissolved organic nitrogen (DON) is linearly correlated with the normalized, livestock derived, DON load input from pasture suggesting that increasing livestock grazing in a watershed would result in higher DON export in river. DON aromaticity could serve as a simple indicator of soil biochemical quality and aggregate disturbance in soils and therefore SOM stability. We have conducted a stratified soil sampling intending to validate the utility of the examined indices for the quantification of the effects of agricultural pressures to soil quality and the

  15. Source zone remediation by ZVI-clay soil-mixing: Reduction of tetrachloroethene mass and mass discharge at a Danish DNAPL site

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Binning, Philip John

    2012-01-01

    The presence of chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality. The remediation of Dense Non-Aqueous Phase Liquid (DNAPL) sites is especially challenging and the development of innovative remediation technologies is needed. Zero-valent iron (ZVI......) technologies have proven effective for remediation of chlorinated compounds. ZVI-Clay soil-mixing is a new remediation technology, which combines abiotic degradation (via ZVI addition) and immobilization (via soil-mixing and clay addition), whereby a great potential for reduction of both contaminant mass....... The concentrations of chlorinated ethenes were monitored via soil sampling at the source zone and groundwater sampling at a control plane with multilevel samplers covering the entire contaminated plume down-gradient (3 m) of the source zone. The results showed a significant mass depletion of PCE (2-3 orders...

  16. Transport assessment - arid: measurement and prediction of water movement below the root zone

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.

    1984-01-01

    The amount of water transported below the root-zone and available for drainage (recharge) must be known in order to quantify the potential for leaching at low-level waste sites. Under arid site conditions, we quantified drainage by using weighing lysimeters containing sandy soil and measured 6 and 11 cm of drainage for a 1-yr period (June 1983-May 1984) from grass-covered and bare-soil surfaces, respectively. Precipitation during this period at our test site near Richland, Washington, was 25 cm. Similar drainage values were estimated from neutron probe measurements of water content profile changes in an adjacent grass-covered site. These data suggest that significant amounts of drainage can occur at arid sites when soils are coarse textured and precipitation occurs during fall and winter months. Model simulations predicted drainage values comparable to those measured with our weighing lysimeters. Long-term, 500- to 1000-yr predictions of leaching are possible with our model simulations. However, additional studies are needed to evaluate the effect of soil variability and stochastic rainfall inputs on drainage estimates, particularly for arid sites

  17. Composition and structure of aggregates from compacted soil horizons in the southern steppe zone of European Russia

    Science.gov (United States)

    Sorokin, A. S.; Abrosimov, K. N.; Lebedeva, M. P.; Kust, G. S.

    2016-03-01

    The composition and structure of aggregates from different agrogenic soils in the southern steppe zone of European Russia have been studied. It is shown that the multi-level study (from the macro- to microlevel) of these horizons makes it possible to identify soil compaction caused by different elementary soil processes: solonetz-forming, vertisol-forming, and mechanical (wheel) compaction in the rainfed and irrigated soils. The understanding of the genesis of the compaction of soil horizons (natural or anthropogenic) is important for the economic evaluation of soil degradation. It should enable us to make more exact predictions of the rates of degradation processes and undertake adequate mitigation measures. The combined tomographic and micromorphological studies of aggregates of 1-2 and 3-5 mm in diameter from compacted horizons of different soils have been performed for the first time. Additional diagnostic features of negative solonetz- forming processes (low open porosity of aggregates seen on tomograms and filling of a considerable part of the intraped pores with mobile substance) and the vertisol-forming processes (large amount of fine intraaggregate pores seen on tomograms and a virtual absence of humus-clay plasma in the intraped zone)—have been identified. It is shown that the combination of microtomographic and micromorphological methods is helpful for studying the pore space of compacted horizons in cultivated soils.

  18. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.

    Science.gov (United States)

    Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T

    2010-02-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.

  19. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.

    2010-01-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  20. Impact of bimodal textural heterogeneity and connectivity on flow and transport through unsaturated mine waste rock

    Science.gov (United States)

    Appels, Willemijn M.; Ireson, Andrew M.; Barbour, S. Lee

    2018-02-01

    Mine waste rock dumps have highly variable flowpaths caused by contrasting textures and geometry of materials laid down during the 'plug dumping' process. Numerical experiments were conducted to investigate how these characteristics control unsaturated zone flow and transport. Hypothetical profiles of inner-lift structure were generated with multiple point statistics and populated with hydraulic parameters of a finer and coarser material. Early arrival of water and solutes at the bottom of the lifts was observed after spring snowmelt. The leaching efficiency, a measure of the proportion of a resident solute that is flushed out of the rock via infiltrating snowmelt or rainfall, was consistently high, but modified by the structure and texture of the lift. Under high rates of net percolation during snowmelt, preferential flow was generated in coarse textured part of the rock, and solutes in the fine textured parts of the rock remained stagnant. Under lower rates of net percolation during the summer and fall, finer materialswere flushed too, and the spatial variability of solute concentration in the lift was reduced. Layering of lifts leads to lower flow rates at depth, minimizing preferential flow and increased leaching of resident solutes. These findings highlight the limited role of large scale connected geometries on focusing flow and transport under dynamic surface net percolation conditions. As such, our findings agree with recent numerical results from soil studies with Gaussian connected geometries as well as recent experimental findings, emphasizing the dominant role of matrix flow and high leaching efficiency in large waste rock dumps.

  1. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China

    Science.gov (United States)

    Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi

    2018-03-01

    The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.

  2. Impacts of terracing on soil erosion control and crop yield in two agro-ecological zones of Rwanda

    Science.gov (United States)

    Rutebuka, Jules; Ryken, Nick; Uwimanzi, Aline; Nkundwakazi, Olive; Verdoodt, Ann

    2017-04-01

    Soil erosion remains a serious limiting factor to the agricultural production in Rwanda. Terracing has been widely adopted in many parts of the country in the past years, but its effectiveness is not yet known. Besides the standard radical (bench) terraces promoted by the government, also progressive terraces (with living hedges) become adopted mainly by the farmers. The aim of this study was to measure short-term (two consecutive rainy seasons 2016A and 2016B) run-off and soil losses for existing radical (RT) and progressive (PT) terraces versus non-protected (NP) fields using erosion plots installed in two agro-ecological zones, i.e. Buberuka highlands (site Tangata) and Eastern plateau (site Murehe) and determine their impacts on soil fertility and crop production. The erosion plot experiment started with a topsoil fertility assessment and during the experiment, maize was grown as farmer's cropping preference in the area. Runoff data were captured after each rainfall event and the collected water samples were dried to determine soil loss. Both erosion control measures reduced soil losses in Tangata, with effectiveness indices ranging from 43 to 100% when compared to the NP plots. RT showed the highest effectiveness, especially in season A. In Murehe, RT minimized runoff and soil losses in both seasons. Yet, the PT were largely inefficient, leading to soil losses exceeding those on the NP plots (ineffectiveness index of -78% and -65% in season A and B, respectively). Though topsoil fertility assessment in the erosion plots showed that the soil quality parameters were significantly higher in RT and NP plots compared to the PT plots on both sites, maize grain yield was not correlated with the physical effectiveness of the erosion control measures. Finally, the effectiveness of soil erosion control measures as well as their positive impacts on soil fertility and production differ not only by terracing type but also by agro-ecological zone and the management or

  3. Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils

    International Nuclear Information System (INIS)

    Conte, Pellegrino; Agretto, Anna; Spaccini, Riccardo; Piccolo, Alessandro

    2005-01-01

    The remediation of the highly contaminated site around the former chemical plant of ACNA (near Savona) in Northern Italy is a top priority in Italy. The aim of the present work was to contribute in finding innovative and environmental-friendly technology to remediate soils from the ACNA contaminated site. Two soils sampled from the ACNA site (A and B), differing in texture and amount and type of organic contaminants, were subjected to soil washings by comparing the removal efficiency of water, two synthetic surfactants, sodium dodecylsulphate (SDS) and Triton X-100 (TX100), and a solution of a natural surfactant, a humic acid (HA) at its critical micelle concentration (CMC). The extraction of pollutants by sonication and soxhlet was conducted before and after the soil washings. Soil A was richer in polycyclic aromatic hydrocarbons, whereas soil B had a larger content of thiophenes. Sonication resulted more analytically efficient in the fine-textured soil B. The coarse-textured soil A was extracted with a general equal efficiency also by soxhlet. Clean-up by water was unable to exhaustively remove contaminants from the two soils, whereas all the organic surfactants revealed very similar efficiencies (up to 90%) in the removal of the contaminants from the soils. Hence, the use of solutions of natural HAs appears as a better choice for soil washings of highly polluted soils due to their additional capacity to promote microbial activity, in contrast to synthetic surfactants, for a further natural attenuation in washed soils. - Solutions of natural humic acids appear to be a better choice for washing highly polluted soils

  4. [Transportation and risk assessment of heavy metal pollution in water-soil from the Riparian Zone of Daye Lake, China].

    Science.gov (United States)

    Zhang, Jia-quan; Li, Xiu; Zhang, Quan-fa; Li, Qiong; Xiao, Wen-sheng; Wang, Yong-kui; Zhang, Jian-chun; Gai, Xi-guang

    2015-01-01

    Each 20 water samples and soil samples (0-10 cm, 10-20 cm) were collected from the riparian zone of Daye Lake in dry season during March 2013. Heavy metals (Cu, Ph, Cd, Zn) have been detected by flame atomic absorption spectrometric (FAAS). The results showed that the average concentrations of Cu, Pb, Cd, Zn in the water were 7.14, 25.94, 15.72 and 37.58 microg x L(-1), respectively. The concentration of Cu was higher than the five degree of the surface water environment quality standard. The average concentrations of Cu, Pb, Cd, Zn in soil(0-10 cm) were 108.38, 53.92, 3.55, 139.26 mg x kg(-1) in soil (10-20 cm) were 93.00, 51.72, 2.08, 171.00 mg x kg(-1), respectively. The Cd concentrations were higher than the three grade value of the national soil environment quality standard. The transportation of Pb from soil to water was relatively stable, and Zn was greatly influenced by soil property and the surrounding environment from soil to water. The transformation of heavy metal in west riparian zone was higher than that of east riparian zone. The potential environmental risk was relatively high. Cu, Pb, Cd, Zn were dominated by residue fraction of the modified BCR sequential extraction method. The overall migration order of heavy metal element was: Pb > Cu > Cd > Zn. There were stronger transformation and higher environmental pollution risk of Cu, Pb. The index of assessment and potential ecological risk coefficient indicated that heavy metal pollution in soil (0-10 cm) was higher than the soil (10-20 cm), Cd was particularly serious.

  5. Microstructure and crystallographic texture evolution during TIG welding of zircaloy-2 material

    International Nuclear Information System (INIS)

    Jha, S.K.; Singh, R.P.; Singh, V.K.; Ramanathan, R.; Samjdar, I.; Srivastava, D.; Tewari, R.; Dey, G.K.

    2005-01-01

    Zirconium and its alloys are extensively used as structural materials in nuclear reactors, because of better neutron economy, good corrosion resistance in water and good mechanical properties at operating temperature. Zircaloy-2 and zircaloy-4 are widely used in both pressurized water reactors (PWR) and boiling water reactors (BWR) as fuel cladding materials and as calandria tube and pressure tube materials in pressurized heavy water reactors (PHWR). The satisfactory performance and the life of the reactor components depend mainly upon their mechanical properties, corrosion properties and dimensional stability in the reactor condition, which are strong function of metallurgical parameters such as microstructure and texture. Therefore, for best performance of the reactor components these parameters are optimized during their fabrication. The microstructure and texture of the zircaloy-2 components are expected to get modified during the welding of the components. In this study the evolution of the microstructure and texture has been investigated as a function of the welding parameters. Heat input was varied the current and welding time. A variety of analytical techniques have been applied for the study on microstructure and texture of the welds. Optical microscopy and electron microscopy were used to evaluate the detailed microstructure. X-ray diffraction (XRD) was used investigate the crystallographic textures among the base metal, heat affected zone and fusion zone. Particular attention was focused on the determination of microtexture in weld by using electron backscatter diffraction (EBSD) technique. After that, an effort was put to compare the results of X-ray macro-texture and EBS-microtexture. (author)

  6. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements

    NARCIS (Netherlands)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas J.; Jones, Lucas A.; Kimball, John S.; Koster, Randal D.; Mahanama, Sarith P.; Smith, Edmond B.; Berg, Aaron; Bircher, Simone; Bosch, David; Caldwell, Todd G.; Cosh, Michael; Holifield Collins, Chandra D.; Jensen, Karsten H.; Livingston, Stan; Lopez-baeza, Ernesto; Martínez-fernández, José; Mcnairn, Heather; Moghaddam, Mahta; Pacheco, Anna; Pellarin, Thierry; Prueger, John; Rowlandson, Tracy; Seyfried, Mark; Starks, Patrick; Su, Bob; Thibeault, Marc; Van Der Velde, Rogier; Walker, Jeffrey; Wu, Xiaoling; Zeng, Yijian

    2017-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present

  7. Combining different frequencies for electrical heating of saturated and unsaturated soil zones

    Energy Technology Data Exchange (ETDEWEB)

    Roland, U.; Holzer, F.; Kopinke, F.D. [Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Leipzig (Germany)

    2011-10-15

    In situ electrical heating of soil was studied applying different frequencies: low-frequency energy for resistive heating and radio-frequency energy for dielectric heating. Steep temperature gradients were observed for each heating mode under the condition of the coexistence of saturated and unsaturated soil zones. By combining the two heating modes, this undesired effect can be avoided, thus allowing efficient soil remediation especially when organic phases are accumulated at the capillary fringe. A parallel application of both frequencies was demonstrated as the most suitable method to reduce temperature gradients. By using electronic filters, both electric fields can be established by only one electrode array. This innovative concept is especially applicable for optimizing thermal remediation of light non-aqueous phase liquid contaminations or realizing thermally-enhanced electrokinetic removal of heavy metals. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Response of three soil water sensors to variable solution electrical conductivity in different soils

    Science.gov (United States)

    Commercial dielectric soil water sensors may improve management of irrigated agriculture by providing continuous field soil water information. Use of these sensors is partly limited by sensor sensitivity to variations in soil salinity and texture, which force expensive, time consuming, soil specific...

  9. Dynamics of mobile form of plutonium isotopes in soils within 10-km zone of Chernobyl NPP

    International Nuclear Information System (INIS)

    Shuktomova, I.I.

    1996-01-01

    The dynamics of the mobile forms of plutonium isotopes depending on the time of there presence in environment were studied on samples of five soil varieties within the limits of the 10-km zone of Chernobyl NPP. Seasonal dynamic study of the extracted plutonium isotopes showed the increase (5-10 fold) in the amount of mobile forms of radionuclides in all soil samples. Studying the dynamics of total sum of mobile forms of isotopes in soils showed their decrease in general

  10. Coastal plain soils and geomorphology: a key to understanding forest hydrology

    Science.gov (United States)

    Thomas M. Williams; Devendra M. Amatya

    2016-01-01

    In the 1950s, Coile published a simple classification of southeastern coastal soils using three characteristics: drainage class, sub-soil depth, and sub-soil texture. These ideas were used by Warren Stuck and Bill Smith to produce a matrix of soils with drainage class as one ordinate and subsoil texture as the second for the South Carolina coastal plain. Soils...

  11. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest

    International Nuclear Information System (INIS)

    Koarashi, Jun; Iida, Takao; Asano, Tomohiro

    2005-01-01

    To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ( 14 C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of 14 C abundances showed that (1) bomb-derived 14 C has penetrated the first 16 cm mineral soil at least; (2) Δ 14 C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived 14 C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived 14 C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales

  12. Methods of soil organic carbon determination in Brazilian savannah soils

    Directory of Open Access Journals (Sweden)

    Juliana Hiromi Sato

    2014-08-01

    Full Text Available Several methods exist for determining soil organic carbon, and each one has its own advantages and limitations. Consequently, a comparison of the experimental results obtained when these methods are employed is hampered, causing problems in the comparison of carbon stocks in soils. This study aimed at evaluating the analytical procedures used in the determination of carbon and their relationships with soil mineralogy and texture. Wet combustion methods, including Walkley-Black, Mebius and Colorimetric determination as well as dry combustion methods, such as Elemental and Gravimetric Analysis were used. Quantitative textural and mineralogical (kaolinite, goethite and gibbsite analyses were also carried out. The wet digestion methods underestimated the concentration of organic carbon, while the gravimetric method overestimated. Soil mineralogy interfered with the determination of carbon, with emphasis on the gravimetric method that was greatly influenced by gibbsite.

  13. The postglacial Stuoragurra Fault, North Norway - A textural and mineralogical study.

    Science.gov (United States)

    Roaldset, E.

    2012-04-01

    The postglacial Stuoragurra Fault, North Norway - A textural and mineralogical study Elen Roaldset(1), Mari Åm (2), and Oddleiv Olesen(3) 1) Natural History Museum, University of Oslo, P.O.Box 1172 Blindern, 0318 Oslo, Norway 2) Statoil R &D, P. O. Box 2470, 7005 Trondheim, Norway 3) Norwegian Geological Survey, P.O.Box 6315 Sluppen, 7491 Trondheim, Norway The Stuoragurra Fault is part of the Lapland province of postglacial faults and was identified in 1983 during a colloborative project between the Geological Surveys of Finland Norway and Sweden. The Stuoragurra Fault is an 80 km long fault zone which contains three main segments of eastward dipping faults (30-55 deg.) with up to 10 m of reverse displacement and a 7 m high escarpment. It cross-cuts glaciofluvial deposits and consequently being younger than 10.000 years. The postglacial fault segments follow to a large extent older fault zones represented by lithified breccias and diabases of Proterozoic age. In this paper we will present textural and mineralogical study of a 135 m continous core drilled across the fault zone. The investigation methods include quality assessments by rock quality designation methods (RQD and Q- methods), textural and petrological descriptions visually and by thin section microscopy, and mineralogical analysis by X-ray diffraction. Special attention is drawn to neoformed and/or degraded minerals like clay minerals and iron oxides/hydroxides. The quality assessments of the cored material reflect the degree of rock deformation and fragmentation and show the quality of the bedrock generally to be of very poor (about 60%) to poor quality" (25%) The main minerals in the fresh rock are quarts, feldspar, mica and iron oxides (magnetite and ilmenite). Throughout the cored borehole products of weathering have formed on fissures, fractures and in strongly deformed, gravelly, zones. The neoformed minerals include kaolinite, smectite, and vermiculite, as well as goethite. The mineralogical

  14. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jacques, D.; Jessen, S.

    2014-01-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying...... mechanisms. Carbon dioxide partial pressure in the soil gas (pCO(2)), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO(2), alkalinity and the water flux...... to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 +/- 0.07 and 4.9 +/- 0.07 mu mol Cm-2 s(-1), respectively...

  15. Geochemical and Radiological Characteristics of Harvested Rainwater and Surficial Soil in El-Alamein-Alam El-Rum area, Western Mediterranean Coastal Zone, Egypt

    International Nuclear Information System (INIS)

    El-Sayed, S.A.; Ramadan, A.A.; Salama, M.H.; Diab, M.

    2015-01-01

    This study deals with investigating the geochemical and radiological properties of surficial soil and harvested rainwater in Al-Alamein-Alam El-Rum area located in the western Mediterranean coastal zone of Egypt. Forty five water and soil samples were investigated. The surficial soil has heterogeneous physical, chemical and radiological properties and the texture was dominated by sand clayey loam and sandy loam. The salinities were varied from non-saline (EC=1.25 dS/m) to strongly saline (EC=38 dS/m) and the pH ranged from slightly alkaline (7.6) to strongly alkaline (8.95). The major part of soil samples has chemical composition dominated by Na + and Cl - ions and occasionally Mg2 + and SO 4 2 - ions indicating the existence of different chemical facies. The radioactivity level indicated the dominance of 40 K followed by 226 Ra and 232 Th radionuclides and the average radioactivities in the surficial soil samples were 16.59, 11.75, 290.80 and 1.79 Bq/kg for 226 Ra, 232 Th, 40 K and 137 Cs, respectively. The heterogeneity in major ion and radioactivity concentrations were attributed to the variation in chemical and radionuclide compositions of the exposed rocks in the area where the soils are originated. The harvested rainwater is fresh (EC ranged from 0.24 to 0.83 dS/m) and has alkalinity nature varied between slightly alkaline (pH=7.27) and alkaline (pH=8.69). Its chemical composition was prevailed by Na + and HCO 3 - ions and sometimes Ca 2+ and/or Mg 2+ and SO 4 2 - ions reflecting the presence of various hydrochemical facies. It shows the same trend of radionuclide dominance of soils ( 40 K > 226 Ra > 232 Th). The radioactivity concentrations in harvested water samples were 19, 1.01 and 14.0 Bq/l for 226 Ra, 232 Th and 40 K, respectively, while the water samples have 137 Cs concentrations under the detection limit and the water rocks interaction is the main reason causing the variation in major ions and radionuclide concentrations. The obtained chemical and

  16. Comparative assessment of fungal augmentation treatments of a fine-textured and historically oil-contaminated soil.

    Science.gov (United States)

    Covino, Stefano; Stella, Tatiana; D'Annibale, Alessandro; Lladó, Salvador; Baldrian, Petr; Čvančarová, Monika; Cajthaml, Tomas; Petruccioli, Maurizio

    2016-10-01

    The removal of aged hydrophobic contaminants from fine-textured soils is a challenging issue in remediation. The objective of this study was to compare the efficacy of augmentation treatments to that of biostimulation in terms of total aliphatic hydrocarbon (TAH) and toxicity removal from a historically contaminated clay soil and to assess their impact on the resident microbial community. To this aim, Pleurotus ostreatus, Botryosphaeria rhodina and a combination of both were used as the inoculants while the addition of a sterilized lignocellulose mixture to soil (1:5, w/w) was used as a biostimulation approach. As opposed to the non-amended control soil, where no changes in TAH concentration and residual toxicity were observed after 60days, the activation of specialized bacteria was found in the biostimulated microcosms resulting in significant TAH removal (79.8%). The bacterial community structure in B. rhodina-augmented microcosms did not differ from the biostimulated microcosms due to the inability of the fungus to be retained within the resident microbiota. Best TAH removals were observed in microcosms inoculated with P. ostreatus alone (Po) and in binary consortium with B. rhodina (BC) (86.8 and 88.2%, respectively). In these microcosms, contaminant degradation exceeded their bioavailability thresholds determined by sequential supercritical CO2 extraction. Illumina metabarcoding of 16S rRNA gene showed that the augmentation with Po and BC led to lower relative abundances of Gram(+) taxa, Actinobacteria in particular, than those in biostimulated microcosms. Best detoxification, with respect to the non-amended incubation control, was found in Po microcosms where a drop in collembola mortality (from 90 to 22%) occurred. At the end of incubation, in both Po and BC, the relative abundances of P. ostreatus sequences were higher than 60% thus showing the suitability of this fungus in bioaugmentation-based remediation applications. Copyright © 2016 Elsevier B.V. All

  17. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated

  18. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation

    International Nuclear Information System (INIS)

    Zhang, Yuping; Sallach, J. Brett; Hodges, Laurie; Snow, Daniel D.; Bartelt-Hunt, Shannon L.; Eskridge, Kent M.; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. - Highlights: • Higher sand content in soil caused higher internalization of sulfamethoxazole and Salmonella in lettuce. • Drought

  19. Recrystallization texture in nickel heavily deformed by accumulative roll bonding

    DEFF Research Database (Denmark)

    Mishin, O. V.; Zhang, Y. B.; Godfrey, A.

    2017-01-01

    particle deformation zones around fragments of the steel wire brush used to prepare the surface for bonding. Sample-scale gradients are also observed, manifested as differences between the subsurface, intermediate and central layers, where the distributions of texture components are different...

  20. [Nutrient Characteristics and Nitrogen Forms of Rhizosphere Soils Under Four Typical Plants in the Littoral Zone of TGR].

    Science.gov (United States)

    Wang, Xiao-feng; Yuan, Xing-zhong; Liu, Hong; Zhang, Lei; Yu, Jian-jun; Yue, Jun-sheng

    2015-10-01

    The Three Gorges Reservoir (TGR), which is the largest water conservancy project ever built in tne world, produced a drawdown area of about 348.93 km2 because of water level control. The biological geochemical cycle of the soil in the drawdown zone has been changed as the result of long-term winter flooding and summer drought and vegetation covering. The loss of soil nitrogen in the drawdown zone poses a threat to the water environmental in TGR. Pengxi river, is an important anabranch, which has the largest drawdown area has been selected in the present study. The four typical vegetation, contained Cynodon dactylon, Cyperus rotundus, Anthium sibiricum and Zea mays L. as the control, were studied to measure nutrient characteristics and nitrogen forms of rhizosphere and non-rhizosphere soils in three distribution areas with different soil types (paddy soil, purple soil and fluvo-aquic soils). The variables measured included organic matter (OM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), hydrolysis N, available P and available K, pH, ion-exchangeable N (IEE-N), weak acid extractable N (CF-N) , iron-manganese oxides N (IMOF-N), organic matter sulfide N (OSF-N), added up four N forms for total transferable N (TF-N) and TN minus TF-N for non-transferable N (NTF-N). The results showed: (1) pH of rhizosphere soil was generally lower than that of non-rhizosphere soil under different vegetation in different type soils because the possible organic acid and H+ released form plant roots and cation absorption differences, and the OM, TP, TN and hydrolysis N of rhizosphere soil were generally higher than those of non-rhizosphere soil, and that the enrichment ratio (ER) of all the four nutrient indicators showed Cyperus rotundus > Cynodon dactylon > Zea mays L. > Anthium sibiricum. Available P showed enrichment in the rhizosphere of three natural vegetations but lose under corn, and available K, TK showed different ER in different conditions. (2) IEF-N CF

  1. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Ahmadi, Seyed Hamid; Lærke, Poul Erik

    2008-01-01

    Experiments were conducted in lysimeters with sandy soil under an automatic rain-out shelter to study the effects of subsurface drip irrigation treatments, full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD), on nitrogen (N) dynamics in the soil-plant system of potatoes...

  2. Variabilidade espacial de classes de textura, salinidade e condutividade hidráulica de solos em planície aluvial Spatial variability of textural classes, salinity and hydraulic conductivity of soil in an alluvial plain

    Directory of Open Access Journals (Sweden)

    Abelardo A. A. Montenegro

    2006-03-01

    Full Text Available Visando-se avaliar a distribuição de classes texturais e sua correlação espacial com a infiltrabilidade e salinidade de uma área aluvial, no Agreste de Pernambuco, utilizou-se a geoestatística indicadora segundo uma distribuição binária baseada na presença/ausência de solos francos. Considerando-se pontos de amostragem e de testes de infiltração dispostos ao longo do eixo principal do aluvião, e aleatoriamente distribuídos, analisou-se a variabilidade espacial das classes de solo predominantes, da velocidade de infiltração básica (condutividade hidráulica saturada e da condutividade elétrica do extrato de saturação da camada subsuperficial, cujos alcances dos semi-variogramas ajustados foram de 333, 320 e 520 m, respectivamente. Verificou-se que a geoestatística indicadora preservou a correlação espacial entre a textura e a condutividade hidráulica, e entre a textura e a condutividade elétrica. Deste modo, as classes de solo predominantes podem ser usadas para representar distintos padrões no tocante ao potencial de lixiviação e à susceptibilidade de salinização. A metodologia indicadora mostra-se promissora para estudo da variabilidade espacial de propriedades físicas de solos aluviais onde predominam classes contrastantes.Aiming to evaluate the soil textural classes distribution and the spatial correlation between the soil textural classes and both infiltration rate and salinity in an alluvial area, in Pernambuco State "agreste" region, indicator geostatistics has been applied, adopting a binary distribution based on the presence/absence of loam soils. Considering sampling points and test locations along the main longitudinal transect in the valley, as well as randomly distributed locations, the spatial variability of the main soil classes, the infiltration rate, and the electrical conductivity of the saturated extract have been analyzed, for the subsurface soil layer. The fitted semivariogram ranges were 333

  3. Root distribution of paddy and wheat grown on differing soil and water conditions

    International Nuclear Information System (INIS)

    Jha, M.N.; Subbiah, B.V.

    1977-01-01

    Two varieties of paddy and one variety of wheat were grown on two soil texture types - paddy on silty clay loam and wheat on sandy loam. Wheat crop was grown on a well drained plot and given normally scheduled irrigation while paddy was given normal and restricted irrigation. The root distribution pattern of these crops was determined. Under normal irrigation, NP 130 showed greater proportion of roots in a soil zone of 16 cm depth and 16.5 cm lateral distance. In case of Padma, the trend was similar to NP 130. More roots were found in a soil zone of 8 cm depth and 22.5 cm lateral distance. Under restricted irrigation, NP 130 showed greater proportion upto 16 cm depth and 22.5 cm lateral distance. In case of Padma, larger proportion of roots was found to be in a soil zone of 8 cm depth and 16.5 cm lateral distance. The root distribution of wheat described almost cylindrical geometry with little overall lateral growth. Regardless of treatments, roots showed a tendency to describe a cylindrical geometry (of about 1.5 cm dia and 32 cm depth). Water stress does effect the root distribution pattern of crops. Other conditions remaining the same, the narrow root cylinder described by the crops of paddy and wheat could possibly be a genetically controlled behaviour. 32 P plant injection technique was used in the study. (author)

  4. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9 (Canada)

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  5. Termite Infestation Associated with Type of Soil in Pulau Pinang, Malaysia (Isoptera: Rhinotermitidae)

    OpenAIRE

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-01-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.

  6. Termite infestation associated with type of soil in pulau pinang, malaysia (isoptera: rhinotermitidae).

    Science.gov (United States)

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-12-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.

  7. The Ecological Perspective of Landslides at Soils with High Clay Content in the Middle Bogowonto Watershed, Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Junun Sartohadi

    2018-01-01

    Full Text Available The clay layers at hilly regions in the study area were very thick. The presence of very thick clay caused several difficulties in terms of environmental management, particularly in reducing georisk due to landslide. However, initial observations proved that areas of active landslides had better vegetation cover. The objective of this study was to find out ecological roles of landslides in livelihood in the Middle Bogowonto Watershed. The ecological roles of landslide were examined through field empirical evidences. Texture, bulk density, permeability, structure, and index plasticity were conducted for analyses of soil physical properties. Stepwise interpretation was made using 1 : 100,000–1 : 25,000 Indonesian topographic maps and remote sensing images of 30 m–<10 m spatial resolution. The results showed that landslides formed three landform zones: residual, erosional, and depositional zones. The area that did not slid, the residual zone, had massive soil structure and very hard consistency. Crops cultivated in this zone did not grow well. In the areas of active landslide, the environmental conditions seemed to be more favorable for living creatures. The landslides resulted in depositional zones with gentle slopes (4° to 15°, higher water availability, and easier soil management. The landslides also acted as the rearrangement process of landforms for better living environment.

  8. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    Science.gov (United States)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68

  9. Computer Texture Mapping for Laser Texturing of Injection Mold

    Directory of Open Access Journals (Sweden)

    Yongquan Zhou

    2014-04-01

    Full Text Available Laser texturing is a relatively new multiprocess technique that has been used for machining 3D curved surfaces; it is more flexible and efficient to create decorative texture on 3D curved surfaces of injection molds so as to improve the surface quality and achieve cosmetic surface of molded plastic parts. In this paper, a novel method of laser texturing 3D curved surface based on 3-axis galvanometer scanning unit has been presented to prevent the texturing of injection mold surface from much distortion which is often caused by traditional texturing processes. The novel method has been based on the computer texture mapping technology which has been developed and presented. The developed texture mapping algorithm includes surface triangulation, notations, distortion measurement, control, and numerical method. An interface of computer texture mapping has been built to implement the algorithm of texture mapping approach to controlled distortion rate of 3D texture math model from 2D original texture applied to curvature surface. Through a case study of laser texturing of a high curvature surface of injection mold of a mice top case, it shows that the novel method of laser texturing meets the quality standard of laser texturing of injection mold.

  10. Applying Nitrogen Site-Specifically Using Soil Electrical Conductivity Maps and Precision Agriculture Technology

    Directory of Open Access Journals (Sweden)

    E.D. Lund

    2001-01-01

    Full Text Available Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS-referenced mapping of bulk soil electrical conductivity (EC has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  11. Effects of radioactive fallout on soil animal populations in the 30 km zone of the Chernobyl atomic power station

    International Nuclear Information System (INIS)

    Krivolutzkij, D.A.; Pokarzhevskij, A.D.

    1992-01-01

    Studies were carried out during July and September 1986, April 1987 and October 1988. Radioactive fallout after the Chernobyl atomic power station (APS) accident induced catastrophic effects on populations of small pine-litter faunae within the 30km zone around the station. Effects on soil faunae were not so marked due to shielding by the soil, or on litter faunae at the edge of the 30km zone due to distance from the source. Thirty-gray doses did not directly affect adult animals in the soil and litter, but impacted their eggs and juveniles. Resident populations recovered slowly during the first year after the accident. Insect migration into the contaminated area was the primary source of soil animal population recovery. After 2-2.5 year, marked differences between populations in the contaminated and control areas were no longer found. (author). 5 refs.; 6 tabs

  12. What is the effect of local controls on the temporal stability of soil water contents?

    Science.gov (United States)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.; Vanderlinden, K.; Hardelauf, H.; Herbst, M.

    2012-04-01

    Temporal stability of soil water content (TS SWC) reflects the spatio-temporal organization of SWC. Factors and their interactions that control this organization, are not completely understood and have not been quantified yet. It is understood that these factors should be classified into groups of local and non-local controls. This work is a first attempt to evaluate the effects of soil properties at a certain location as local controls Time series of SWC were generated by running water flow simulations with the HYDRUS6 code. Bare and grassed sandy loam, loam and clay soils were represented by sets of 100 independent soil columns. Within each set, values of saturated hydraulic conductivity (Ks) were generated randomly assuming for the standard deviation of the scaling factor of ln Ks a value ranging from 0.1 to 1.0. Weather conditions were the same for all of the soil columns. SWC at depths of 0.05 and 0.60 m, and the average water content of the top 1 m were analyzed. The temporal stability was characterized by calculating the mean relative differences (MRD) of soil water content. MRD distributions from simulations, developed from the log-normal distribution of Ks, agreed well with the experimental studies found in the literature. Generally, Ks was the leading variable to define the MRD rank for a specific location. Higher MRD corresponded to the lowest values of Ks when a single textural class was considered. Higher MRD were found in the finer texture when mixtures of textural classes were considered and similar values of Ks were compared. The relationships between the spread of the MRD distributions and the scaling factor of ln Ks were nonlinear. Variation in MRD was higher in coarser textures than in finer ones and more variability was seen in the topsoil than in the subsoil. Established vegetation decreased variability of MRD in the root zone and increased variability below. The dependence of MRD on Ks opens the possibility of using SWC sensor networks to

  13. Ion-beam texturing of uniaxially textured Ni films

    International Nuclear Information System (INIS)

    Park, S.J.; Norton, D.P.; Selvamanickam, Venkat

    2005-01-01

    The formation of biaxial texture in uniaxially textured Ni thin films via Ar-ion irradiation is reported. The ion-beam irradiation was not simultaneous with deposition. Instead, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux, which differs from conventional ion-beam-assisted deposition. The uniaxial texture is established via a nonion beam process, with the in-plane texture imposed on the uniaxial film via ion beam bombardment. Within this sequential ion beam texturing method, grain alignment is driven by selective etching and grain overgrowth

  14. Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James R.; Coplen, Amy K

    2005-11-01

    Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of waste water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program

  15. Geophysical surveys combined with laboratory soil column experiments to identify and explore risk areas for soil and water pollution in feedlots

    Science.gov (United States)

    Espejo-Pérez, Antonio Jesus; Sainato, Claudia Mabel; Jairo Márquez-Molina, John; Giráldez, Juan Vicente; Vanderlinden, Karl

    2014-05-01

    Changes of land use without a correct planning may produce its deterioration with their social, economical and environmental irreversible consequences over short to medium time range. In Argentina, the expansion of soybean fields induced a reduction of the area of pastures dedicated to stockbreeding. As cattle activity is being progressively concentrated on small pens, at feedlots farms, problems of soil and water pollution, mainly by nitrate, have been detected. The characterization of the spatial and temporal variability of soil water content is very important because the mostly advective transport of solutes. To avoid intensive soil samplings, very expensive, one has to recur to geophysical exploration methods. The objective of this work was to identify risk areas within a feedlot of the NW zone of Buenos Aires Province, in Argentina through geophysical methods. The surveys were carried out with an electromagnetic induction profiler EMI-400 (GSSI) and a Time domain Reflectometry (TDR) survey of depth 0-0.10 m with soil sampling and measurement of moisture content with gravimetric method (0-1.0 m). Several trenches were dug inside the pens and also at a test site, where texture, apparent density, saturated hydraulic conductivity (Ks), electrical conductivity of the saturation paste extract and organic matter content (OM) were measured. The water retention curves for these soils were also determined. At one of the pens undisturbed soil columns were extracted at 3 locations. Laboratory analysis for 0-1.0 m indicated that soil texture was classified as sandy loam, average organic matter content (OM) was greater than 2.3% with low values of apparent density in the first 10 cm. The range of spatial dependence of data suggested that the number of soil samples could be reduced. Soil apparent electrical conductivity (ECa) and soil moisture were well correlated and indicated a clear spatial pattern in the corrals. TDR performance was acceptable to identify the spatial

  16. Revamping of entisol soil physical characteristics with compost treatment

    Science.gov (United States)

    Sumono; Loka, S. P.; Nasution, D. L. S.

    2018-02-01

    Physical characteristic of Entisol soil is an important factor for the growth of plant. The aim of this research was to know the effect of compost application on physical characteristics of Entisol soil. The research method used was experimental method with 6 (six) treatments and 3 replications of which K1 = 10 kg Entisol soil without compost, K2 = 9 Kg Entisol soil with 1 kg compost, K3 = 8 kg Entisol soil with 2 kg compost, K4 = 7 kg Entisol soilwith3 kg compost, K5 = 6 kg Entisol soil with 4 kg compost and K6 = 5 kg Entisol soil with 5 kg compost. The observed parameters were soil texture, soil organic matter, soil thickness, porosity, soil pore size, soil permeability and water availability. The results showed that the Entisol soil texture was loamy sand texture, the value of soil organic matter ranged from 0.74% to 4.69%, soil thickness ranged from 13.83 to 20.16 cm, porosity ranged from16% to 37%, soil pore size ranged from 2.859 to 5.493 µm, permeability ranged from 1.24 to 5.64 cm/hour and water availability ranged from 6.67% to 9.12% by each treatment.

  17. Genotype, soil type, and locale effects on reciprocal transplant vigor, endophyte growth, and microbial functional diversity of a narrow sagebrush hybrid zone in Salt Creek Canyon, Utah

    Science.gov (United States)

    Miglia, K.J.; McArthur, E.D.; Redman, R.S.; Rodriguez, R.J.; Zak, J.C.; Freeman, D.C.

    2007-01-01

    When addressing the nature of ecological adaptation and environmental factors limiting population ranges and contributing to speciation, it is important to consider not only the plant's genotype and its response to the environment, but also any close interactions that it has with other organisms, specifically, symbiotic microorganisms. To investigate this, soils and seedlings were reciprocally transplanted into common gardens of the big sagebrush hybrid zone in Salt Creek Canyon, Utah, to determine location and edaphic effects on the fitness of parental and hybrid plants. Endophytic symbionts and functional microbial diversity of indigenous and transplanted soils and sagebrush plants were also examined. Strong selection occurred against the parental genotypes in the middle hybrid zone garden in middle hybrid zone soil; F1 hybrids had the highest fitness under these conditions. Neither of the parental genotypes had superior fitness in their indigenous soils and habitats; rather F1 hybrids with the nonindigenous maternal parent were superiorly fit. Significant garden-by-soil type interactions indicate adaptation of both plant and soil microorganisms to their indigenous soils and habitats, most notably in the middle hybrid zone garden in middle hybrid zone soil. Contrasting performances of F1 hybrids suggest asymmetrical gene flow with mountain, rather than basin, big sagebrush acting as the maternal parent. We showed that the microbial community impacted the performance of parental and hybrid plants in different soils, likely limiting the ranges of the different genotypes.

  18. Soil erosion from shifting cultivation and other smallholder land use in Sarawak, Malaysia

    DEFF Research Database (Denmark)

    Neergaard, Andreas de; Magid, Jakob; Mertz, Ole

    2008-01-01

    to compare soil erosion from three land use types in a shifting cultivation system, namely upland rice, pepper gardens and native forest. We used two sample sites within the humid tropical lowland zone in Sarawak, Malaysia. Both areas had steep slopes between 25° and 50°, and were characterised by a mosaic...... land use of native forest, secondary re-growth, upland rice fields and pepper gardens. Soil samples were collected to 90 cm depth from all three land use types, and analysed for various chemical parameters, including texture, total organic matter and 137Cs content. 137Cs is a radioactive isotope...... in the upper soil layers, are unlikely to change the carbon inventory dramatically. 137Cs content in the soil profile indicated largest retention of original topsoil in the native forest plots, and a loss of 18 and 35% of topsoil from upland rice and pepper gardens, respectively, over the past 40 years. When...

  19. Transport assessment - arid: measurement and prediction of water movement below the root zone

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.

    1984-09-01

    The amount of water transported below the root-zone and available for drainage (recharge) must be known in order to quantify the potential for leaching at low-level waste sites. Under arid site conditions, we quantified drainage by using weighing lysimeters containing sandy soil and measured 6 and 11 cm of drainage for a 1-yr period (June 1983-May 1984) from grass-covered and bare-soil surfaces, respectively. Precipitation during this period at our test site near Richland, Washington, was 25 cm. Similar drainage values were estimated from neutron probe measurements of water content profile changes in an adjacent grass-covered site. These data suggest that significant amounts of drainage can occur at arid sites when soils are coarse textured and precipitation occurs during fall and winter months. Model simulations predicted drainage values comparable to those measured with our weighing lysimeters. Long-term, 500- to 1000-yr predictions of leaching are possible with our model simulations. However, additional studies are needed to evaluate the effect of soil variability and stochastic rainfall inputs on drainage estimates, particularly for arid sites. 15 references, 9 figures, 1 table

  20. Intelligent estimation of spatially distributed soil physical properties

    Science.gov (United States)

    Iwashita, F.; Friedel, M.J.; Ribeiro, G.F.; Fraser, Stephen J.

    2012-01-01

    Spatial analysis of soil samples is often times not possible when measurements are limited in number or clustered. To obviate potential problems, we propose a new approach based on the self-organizing map (SOM) technique. This approach exploits underlying nonlinear relation of the steady-state geomorphic concave-convex nature of hillslopes (from hilltop to bottom of the valley) to spatially limited soil textural data. The topographic features are extracted from Shuttle Radar Topographic Mission elevation data; whereas soil textural (clay, silt, and sand) and hydraulic data were collected in 29 spatially random locations (50 to 75. cm depth). In contrast to traditional principal component analysis, the SOM identifies relations among relief features, such as, slope, horizontal curvature and vertical curvature. Stochastic cross-validation indicates that the SOM is unbiased and provides a way to measure the magnitude of prediction uncertainty for all variables. The SOM cross-component plots of the soil texture reveals higher clay proportions at concave areas with convergent hydrological flux and lower proportions for convex areas with divergent flux. The sand ratio has an opposite pattern with higher values near the ridge and lower values near the valley. Silt has a trend similar to sand, although less pronounced. The relation between soil texture and concave-convex hillslope features reveals that subsurface weathering and transport is an important process that changed from loss-to-gain at the rectilinear hillslope point. These results illustrate that the SOM can be used to capture and predict nonlinear hillslope relations among relief, soil texture, and hydraulic conductivity data. ?? 2011 Elsevier B.V.

  1. Generalization of some results of a vertical radionuclide migration study in soils of 30-km zone

    International Nuclear Information System (INIS)

    Ziborov, A.M.; Sadol'ko, I.V.; Sushchik, Yu.Ya.; Tikhanov, Eh.K.; Proskuryakov, A.G.; Kuz'michev, V.N.; Shcheglov, A.I.

    1992-01-01

    Results of radionuclide distribution study in a vertical profile of soils are presented under different landscape geochemical conditions in 1989-1991. It is ascertained that radionuclide migration process in geochemical profile of soils of 30-km zone is in early stage of development. More than 90% of radioactivity concentrates in the upper 5-10 cm layer whereas measurable radioactivity fixes at a depth up to 1 m. The process of deepening of radioactivity reserve center takes place in the surface soil layer. Now it equals 1,5-3 cm. Peculiarities of the vertical radionuclide distribution haven't brightly pronounced character depending on soil types and are at the formation stage. 12 figs.; 2 tabs

  2. Root zone effects on tracer migration in arid zones

    International Nuclear Information System (INIS)

    Tyler, S.W.; Walker, G.R.

    1994-01-01

    The study of groundwater recharge and soil water movement in arid regions has received increased attention in the search for safe disposal sites for hazardous wastes. In passing through the upper 1 to 2 m of most soil profiles, tracers indicative of recharge such as Cl, 2 H, 18 O, Br, 3 H, and 56 Cl are subjected to a wide range of processes not encountered deeper in the profile. This transition zone, where water enters as precipitation and leaves as recharge, is often ignored when environmental tracers are used to estimate deep soil water flux and recharge, yet its effect may be profound. In this work, we reexamine the processes of root extraction and its effect on the velocity and distribution of tracers. Examples are presented for idealized conditions, which show clearly the relation between the root zone processes and the deep drainage or recharge. The results indicate that, when recharge is small and root zone processes are not accounted for, tracer techniques can significantly overestimate recharge until the tracer has moved well below the root zone. By incorporating simple models of root zone processes, a clearer understanding of tracer distributions and a more accurate estimate of recharge can then be made. 11 refs., 9 figs

  3. Functionality of extrusion--texturized whey proteins.

    Science.gov (United States)

    Onwulata, C I; Konstance, R P; Cooke, P H; Farrell, H M

    2003-11-01

    Whey, a byproduct of the cheesemaking process, is concentrated by processors to make whey protein concentrates (WPC) and isolates (WPI). Only 50% of whey proteins are used in foods. In order to increase their usage, texturizing WPC, WPI, and whey albumin is proposed to create ingredients with new functionality. Extrusion processing texturizes globular proteins by shearing and stretching them into aligned or entangled fibrous bundles. In this study, WPC, WPI, and whey albumin were extruded in a twin screw extruder at approximately 38% moisture content (15.2 ml/min, feed rate 25 g/min) and, at different extrusion cook temperatures, at the same temperature for the last four zones before the die (35, 50, 75, and 100 degrees C, respectively). Protein solubility, gelation, foaming, and digestibility were determined in extrudates. Degree of extrusion-induced insolubility (denaturation) or texturization, determined by lack of solubility at pH 7 for WPI, increased from 30 to 60, 85, and 95% for the four temperature conditions 35, 50, 75, and 100 degrees C, respectively. Gel strength of extruded isolates increased initially 115% (35 degrees C) and 145% (50 degrees C), but gel strength was lost at 75 and 100 degrees C. Denaturation at these melt temperatures had minimal effect on foaming and digestibility. Varying extrusion cook temperature allowed a new controlled rate of denaturation, indicating that a texturized ingredient with a predetermined functionality based on degree of denaturation can be created.

  4. Residual effect of mixture of glyphosate and 2,4-D in winter maize in different soil textures

    Directory of Open Access Journals (Sweden)

    Schaianne A. Gomes

    Full Text Available ABSTRACT To increase the efficiency in the control of weeds, it is common the use of a mixture of the herbicides glyphosate and 2,4-D in the desiccation. This paper aimed to evaluate the residual effect of these two herbicides on the development of maize plants, in soils of different textures. The experiment was conducted in a greenhouse, in 2015, in a completely randomized design in a 2 x 2 x 7 factorial scheme, corresponding to two soils (Red Yellow Latosol and Quartzarenic Neosol, two herbicide application times (5 and 10 days before maize sowing and seven doses of herbicides (recommended dose of glyphosate, recommended dose of 2,4-D; mixing the recommended doses of glyphosate and 2,4-D; two, ten and fifty times the recommended doses in admixture; and one control, with 4 replicates. After emergence of maize plants, the following variables were evaluated: phytotoxicity, plant height, chlorophyll a and chlorophyll b, shoot fresh and dry matter and root dry matter. In general, there was lower residual effect on the Red Yellow Latosol at all the doses of the herbicides and in the interval of 10 days between the desiccation and sowing.

  5. Discomfort due to skin humidity with different fabric textures and materials

    DEFF Research Database (Denmark)

    Toftum, Jørn; Rasmussen, Leif Winsnes; Mackeprang, Jørgen

    2000-01-01

    This study investigated the possible effects of material and texture of the inner clothing layer on human comfort. A highly hygroscopic material (cotton) and a material of low hygroscopicity (polyester) were tested. Also, it was tested whether fabric texture (knitted/woven) influenced the perceived...... due to humid skin or clothing for persons engaged in office work, wearing woven or knitted inner layers made of polyester or cotton. The model allows upper limits for air humidity to be determined for indoor environments. In the comfort zone of temperatures, the model predicts only a moderate...

  6. ON THE DIVISION OF NORTH BOUNDARY OF SUBTROPICAL ZONE ACCORDING TO THE COMPOSITIONS AND PROPERTIES OF SOIL HUMUS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper predecessors′ achievements about the division between subtropical zone and warm temperate zone on the south slope of Funiu Mountain are firstly summarized, and the cause why these viewpoints about the division are different also has been presented. Seven soil profiles at different heights above sea level are dug along the south slope of Funiu Mountain. Many compositions and properties of soil humus have been analyzed in laboratory. A comprehensive study has been made about the division according to the compositions and properties of soil humus with mathematical method. During the analysis process eight indexes have been used, such as altitude, organic carbon, humic acid (HA), fulvic acid (FA), the ratio of humic acid and fulvic acid (HA/FA), two extinction coefficients (E4,E6), and their ratio (E4/E6).The result indicates that the boundary is at about 1000 meters above sea level.

  7. ON THE DIVISION OF NORTH BOUNDARY OF SUBTROPICAL ZONE ACCORDING TO THE COMPOSITIONS AND PROPERTIES OF SOIL HUMUS

    Institute of Scientific and Technical Information of China (English)

    MAJian-hua; ZHAOQing-liang; 等

    2002-01-01

    In this paper predecessorsˊ achievements about the division between subtropical zone and warm temperate zone on the south slope of Funiu Mountain are firstly summarized,and the cause why these viewpoints about the division are different also has been presented.Seven soil profiles at different heights above sea level are dug along the south slope of Funiu Mountain.Many compositions and properties of soil humus have been analyzed in laboratory.A comprehensive study has been made about the division according to the compositions and properties of soil humus with mathematical method.During the analysis process eitht indexes have been used,such as altitude,organic carbon,humic acid(HA),fulvic acid(FA),the ratio of humic acid and fulvic acid(HA/FA),two extinction coefficients(E4,E6), and their ratio (E4/E6).The result indicates that the boundary is at about 1000 meters above sea level.

  8. Six-phase soil heating accelerates VOC extraction from clay soil

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Roberts, J.S.; Bergsman, T.M.; Caley, S.M.; Heath, W.O.; Miller, M.C.; Moss, R.W.; Schalla, R.; Jarosch, T.R.; Eddy-Dilek, C.A.

    1994-08-01

    Six-Phase Soil Heating (SPSH) was demonstrated as a viable technology for heating low permeability soils containing volatile organic contaminants. Testing was performed as part of the Volatile Organic Compounds in Non-Arid Soils Integrated Demonstration (VOC Non-Arid ID) at the Savannah River Site. The soil at the integrated demonstration site is contaminated with perchloroethylene (PCE) and trichloroethylene (TCE); the highest soil contamination occurs in clay-rich zones that are ineffectively treated by conventional soil vapor extraction due to the very low permeability of the clay. The SPSH demonstration sought to heat the clay zone and enhance the performance of conventional soil vapor extraction. Thermocouples at thirty locations quantified the areal and vertical heating within the treated zone. Soil samples were collected before and after heating to quantify the efficacy of heat-enhanced vapor extraction of PCE and TCE from the clay soil. Samples were taken (essentially every foot) from six wells prior to heating and adjacent to these wells after heating. Results show that contaminant removal from the clay zone was 99.7% (median) within the electrode array. Outside the array where the soil was heated, but to only 50 degrees C, the removal efficiency was 93%, showing that heating accelerated the removal of VOCs from the clay soil. The accelerated remediation resulted from effective heating of the contaminated clay zone by SPSH. The temperature of the clay zone increased to 100 degrees C after 8 days of heating and was maintained near 100 degrees C for 17 days. Electrical heating removed 19,000 gal of water from the soil as steam, with peak removal rate of 1,500 gpd of condensed steam

  9. A trench study to assess transfer of pesticides in subsurface lateral flow for a soil with contrasting texture on a sloping vineyard in Beaujolais.

    Science.gov (United States)

    Peyrard, X; Liger, L; Guillemain, C; Gouy, V

    2016-01-01

    Subsurface lateral flow in both texture-contrast soils and catchments with shallow bedrock is suspected to be a non-point source of contamination of watercourses by pesticides used in agriculture. As a case study, the north of the Beaujolais region (eastern France) provides a favorable environment for such contamination due to its agro-pedo-climatic conditions. Environments seen in the Beaujolais region include intense viticulture, permeable and shallow soils, steep hillslopes, and storms that occur during the periods of pesticide application. Watercourse contamination by pesticides has been widely observed in this region, and offsite pesticide transport by subsurface lateral flow is suspected to be involved in diffuse and chronic presence of pesticides in surface water. In order to confirm and quantify the potential role of such processes in pesticide transfer, an automated trench system has been designed. The trench was set up on a steep farmed hillslope in a texture-contrast soil. It was equipped with a tipping bucket flow meter and an automatic sampler to monitor pesticide concentrations in lateral flow at fine resolution, by means of a flow-dependent sampling strategy. Four pesticides currently used in vine growing were studied to provide a range of mobility properties: one insecticide (chlorpyrifos-methyl) and three fungicides (spiroxamine, tebuconazole, and dimethomorph). With this system, it was possible to study pesticide concentration dynamics in the subsurface lateral flow, generated by substantial rainfall events following pesticide applications. The experimental design ascertained to be a suitable method in which to monitor subsurface lateral flow and related transfer of pesticides.

  10. Soil Science and Global Issues

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Sustainable management of soil is integral to any rational approach to addressing global issues of the 21st century. A high quality soil is essential to: i) advancing food and nutritional security, ii) mitigating and adapting to climate change, iii) improving quality and renewability of water, iv) enriching biodiversity, v) producing biofuel feedstocks for reducing dependence on fossil fuel, and vi) providing cultural, aesthetical and recreational opportunities. Being the essence of all terrestrial life, soil functions and ecosystem services are essential to wellbeing of all species of plants and animals. Yet, soil resources are finite, unequally distributed geographically, and vulnerable to degradation by natural and anthropogenic perturbations. Nonetheless, soil has inherent resilience, and its ecosystem functions and services can be restored over time. However, soil resilience depends on several key soil properties including soil organic carbon (SOC) concentration and pool, plant-available water capacity (PWAC), nutrient reserves, effective rooting depth, texture and clay mineralogy, pH, cation exchange capacity (CEC) etc. There is a close inter-dependence among these properties. For example, SOC concentration strongly affects, PWAC, nutrient reserve, activity and species diversity of soil flora and fauna, CEC etc. Thus, judicious management of SOC concentration to maintain it above the threshold level (~1.5-2%) in the root zone is critical to sustaining essential functions and ecosystem services. Yet, soils of some agroecosystems (e.g., those managed by resources-poor farmers and small landholders in the tropics and sub-tropics) are severely depleted of their SOC reserves. Consequently. Agronomic productivity and wellbeing of people dependent on degraded soils is jeopardized. The ecosystem C pool of the terrestrial biosphere has been mined by extractive practices, the nature demands recarbonization of its biosphere for maintenance of its functions and

  11. Colour and texture associations in voice-induced synaesthesia

    Directory of Open Access Journals (Sweden)

    Anja eMoos

    2013-09-01

    Full Text Available Voice-induced synaesthesia, a form of synaesthesia in which synaesthetic perceptions are induced by the sounds of people’s voices, appears to be relatively rare and has not been systematically studied. In this study we investigated the synaesthetic colour and visual texture perceptions experienced in response to different types of voice quality (e.g. nasal, whisper, falsetto. Experiences of three different groups – self-reported voice synaesthetes, phoneticians and controls – were compared using both qualitative and quantitative analysis in a study conducted online. Whilst, in the qualitative analysis, synaesthetes used more colour and texture terms to describe voices than either phoneticians or controls, only weak differences, and many similarities, between groups were found in the quantitative analysis. Notable consistent results between groups were the matching of higher speech fundamental frequencies with lighter and redder colours, the matching of whispery voices with smoke-like textures and the matching of harsh and creaky voices with textures resembling dry cracked soil. These data are discussed in the light of current thinking about definitions and categorizations of synaesthesia, especially in cases where individuals apparently have a range of different synaesthetic inducers.

  12. Color and texture associations in voice-induced synesthesia

    Science.gov (United States)

    Moos, Anja; Simmons, David; Simner, Julia; Smith, Rachel

    2013-01-01

    Voice-induced synesthesia, a form of synesthesia in which synesthetic perceptions are induced by the sounds of people's voices, appears to be relatively rare and has not been systematically studied. In this study we investigated the synesthetic color and visual texture perceptions experienced in response to different types of “voice quality” (e.g., nasal, whisper, falsetto). Experiences of three different groups—self-reported voice synesthetes, phoneticians, and controls—were compared using both qualitative and quantitative analysis in a study conducted online. Whilst, in the qualitative analysis, synesthetes used more color and texture terms to describe voices than either phoneticians or controls, only weak differences, and many similarities, between groups were found in the quantitative analysis. Notable consistent results between groups were the matching of higher speech fundamental frequencies with lighter and redder colors, the matching of “whispery” voices with smoke-like textures, and the matching of “harsh” and “creaky” voices with textures resembling dry cracked soil. These data are discussed in the light of current thinking about definitions and categorizations of synesthesia, especially in cases where individuals apparently have a range of different synesthetic inducers. PMID:24032023

  13. Poly-use multi-level sampling system for soil-gas transport analysis in the vadose zone.

    Science.gov (United States)

    Nauer, Philipp A; Chiri, Eleonora; Schroth, Martin H

    2013-10-01

    Soil-gas turnover is important in the global cycling of greenhouse gases. The analysis of soil-gas profiles provides quantitative information on below-ground turnover and fluxes. We developed a poly-use multi-level sampling system (PMLS) for soil-gas sampling, water-content and temperature measurement with high depth resolution and minimal soil disturbance. It is based on perforated access tubes (ATs) permanently installed in the soil. A multi-level sampler allows extraction of soil-gas samples from 20 locations within 1 m depth, while a capacitance probe is used to measure volumetric water contents. During idle times, the ATs are sealed and can be equipped with temperature sensors. Proof-of-concept experiments in a field lysimeter showed good agreement of soil-gas samples and water-content measurements compared with conventional techniques, while a successfully performed gas-tracer test demonstrated the feasibility of the PMLS to determine soil-gas diffusion coefficients in situ. A field application of the PMLS to quantify oxidation of atmospheric CH4 in a field lysimeter and in the forefield of a receding glacier yielded activity coefficients and soil-atmosphere fluxes well in agreement with previous studies. With numerous options for customization, the presented tool extends the methodological choices to investigate soil-gas transport in the vadose zone.

  14. Influence of welding parameter on texture distribution and plastic deformation behavior of as-rolled AZ31 Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Renlong, E-mail: rlxin@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing (China); State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing (China); Liu, Dejia; Shu, Xiaogang; Li, Bo; Yang, Xiaofang; Liu, Qing [College of Materials Science and Engineering, Chongqing University, Chongqing (China)

    2016-06-15

    Friction stir welding (FSW) has promising application potential for Mg alloys. However, softening was frequently occurred in FSW Mg joints because of the presence of a β-type fiber texture. The present study aims to understand the influence of texture distribution in stir zone (SZ) on deformation behavior and joint strength of FSW Mg welds. AZ31 Mg alloy joints were obtained by FSW with two sets of welding speed and rotation rate. Detailed microstructure and texture evolutions were examined on Mg welds by electron backscatter diffraction (EBSD) techniques. It was found that the changes of welding parameters can affect texture distribution and the characteristic of texture in the transition region between SZ and thermal-mechanical affected zone (TMAZ). As a consequence, the activation ability of basal slip and extension twinning was changed, which therefore influenced joint strength, inhomogeneous plastic deformation and fracture behaviors. The present work provided some insights into understanding the texture–property relationship in FSW Mg welds and indicated that it is effective to tailor the joint performance by texture control. - Highlights: • Welding parameters largely affect the inclination angle of SZ/TMAZ boundary. • Fracture morphology is associated with the characteristic of SZ/TMAZ boundary. • The characteristic of plastic deformation is explained from the activation of basal slip.

  15. Identification of Soil Properties and Organophosphate Residues From Agricultural Land in Wanasari Sub-District, Brebes, Indonesia

    Science.gov (United States)

    Joko, Tri; Anggoro, Sutrisno; Sunoko, Henna Rya; Rachmawati, Savitri

    2018-02-01

    Organophosphates have been used to eradicate pests and prevent losses from harvest failures caused by pest attack. It is undeniable that the organophosphate persist in soil. This study aims to identify the organophosphate residue and soil properties include pH, soil texture, and permeability. The soil samples were taken from cropland in 10 villages, Wanasari sub-district, Brebes, Indonesia. Organophosphate residue determined by gas chromatography using Flame Photometric Detector. Soil texture was determined by soil texture triangle from NRCS USDA, and the permeability value was determined by falling head method. The mean value of chlorpyrifos, profenofos, diazinon were 0.0078; 0.0388; 0.2271 mg/l respectively. The soil texture varies from clay, silt clay, loam, silt loam, and silt clay loam with permeability value at 10-7 with the soil pH value between 6.4 - 8.1. The results showed that organophosphate residues found in the soil and its potential affect the soil fertility decline. We recommend to conduct routine soil quality analysis to prevent soil damage in the agricultural environment.

  16. Soil macrofauna community structure along a gradient of land use intensification in the humid forest zone of southern Cameroon.

    NARCIS (Netherlands)

    Madong à Birang,

    2004-01-01

    The impact of land use systems on soil macrofauna community structures is described as well as their relationships with the vegetation and soil parameters in the humid forest zone of southernCameroon

  17. Do Soils affect Brown Hare (Lepus europaeus abundance in agricultural habitats?

    Directory of Open Access Journals (Sweden)

    Francesco Santilli

    2008-07-01

    Full Text Available Abstract In recent years, much research on brown hare (Lepus europaeus, Pallas 1778 ecology has been conducted in Europe to identify habitat-species relationships and the reasons for the decline in hare populations that have occurred since the 1960s. However, very few studies have considered the influence of soil texture on the abundance of this species in agricultural habitats. In this paper we examine the relationship between winter brown hare density in protected areas (game refuges in four provinces of the Tuscany region (central Italy and soil texture. Results show that hares reach higher densities in areas characterized by "loam" soils compared to areas where soils are richer in clay. Although this relationship is probably complex, soil texture may indirectly affect brown hare populations by influencing the temperature and moisture of the ground and influencing the timing of farming operations (tillage. Riassunto Il suolo influenza l’abbondanza della lepre Lepus europaeus negli ambienti agricoli? Negli ultimi anni sono state effettuate numerose ricerche sull’ecologia della lepre europea Lepus europaeus, al fine di evidenziare le relazioni fra questa specie ed il tipo di habitat e di comprendere i motivi del declino avvenuto a partire dagli anni ’60. Ciononostante pochi studi hanno preso in considerazione l’influenza del tipo di suolo sulla consistenza di questo lagomorfo negli ambienti agricoli. Nel presente lavoro viene esaminata la relazione fra la densità invernale della lepre all’interno delle zone di ripopolamento e cattura di quattro province toscane e la tessitura del suolo di queste aree. E’ stato riscontrato che le lepri raggiungono densità più elevate in aree dove predominano i suoli franchi rispetto ad aree dove risultano più argillosi. Sebbene questa relazione sia probabilmente complessa, la tessitura del suolo potrebbe influenzare

  18. Soil Phosphorus status in Chinese greenhouse vegetable production system

    DEFF Research Database (Denmark)

    Kianpoor Kalkhajeh, Yusef

    -1 were found in the leachates from P rich coarse-textured Tongshan soils. In contrast, DRP leaching from fine-textured Guli soils rarely exceeded the suggested environmental P threshold of 0.1 mg L-1. In accordance, a change-point Olsen P value above 41 mg kg-1 led to susbtantial DRP leaching from...

  19. Stochastic Modeling Of Field-Scale Water And Solute Transport Through The Unsaturated Zone Of Soils

    DEFF Research Database (Denmark)

    Loll, Per

    were previously thought not to pose a leaching threat. Thus, a reevaluation of our understanding of the mechanisms governing chemical fate in the unsaturated zone of soils has been necessary, in order for us to make better decisions regarding widely different issues such as agricultural management...... of pesticides and nutrients, and risk identification and assessment at polluted (industrial) sites. One of the key factors requiring our attention when we are trying to predict field-scale chemical leaching is spatial variability of the soil and the influence it exerts on both water and chemical transport...

  20. Spatial structure of soil properties at different scales of Mt. Kilimanjaro, Tanzania

    Science.gov (United States)

    Kühnel, Anna; Huwe, Bernd

    2013-04-01

    Soils of tropical mountain ecosystems provide important ecosystem services like water and carbon storage, water filtration and erosion control. As these ecosystems are threatened by global warming and the conversion of natural to human-modified landscapes, it is important to understand the implications of these changes. Within the DFG Research Unit "Kilimanjaro ecosystems under global change: Linking biodiversity, biotic interactions and biogeochemical ecosystem processes", we study the spatial heterogeneity of soils and the available water capacity for different land use systems. In the savannah zone of Mt. Kilimanjaro, maize fields are compared to natural savannah ecosystems. In the lower montane forest zone, coffee plantations, traditional home gardens, grasslands and natural forests are studied. We characterize the soils with respect to soil hydrology, emphasizing on the spatial variability of soil texture and bulk density at different scales. Furthermore soil organic carbon and nitrogen, cation exchange capacity and the pH-value are measured. Vis/Nir-Spectroscopy is used to detect small scale physical and chemical heterogeneity within soil profiles, as well as to get information of soil properties on a larger scale. We aim to build a spectral database for these soil properties for the Kilimanjaro region in order to get rapid information for geostatistical analysis. Partial least square regression with leave one out cross validation is used for model calibration. Results for silt and clay content, as well as carbon and nitrogen content are promising, with adjusted R² ranging from 0.70 for silt to 0.86 for nitrogen. Furthermore models for other nutrients, cation exchange capacity and available water capacity will be calibrated. We compare heterogeneity within and across the different ecosystems and state that spatial structure characteristics and complexity patterns in soil parameters can be quantitatively related to biodiversity and functional diversity

  1. Material dynamics in polluted soils with different structures - comparative investigations of general soil and aggregates

    International Nuclear Information System (INIS)

    Taubner, H.

    1992-01-01

    In structured soils, a small-scale heterogeneity of physical and chemical properties will develop which results in a reduced availability of the reaction sites of the soil matrix. In view of the lack of knowledge on the conditions within the individual aggregates were carried out for characterizing the aggregates and comparing them with the soil in, general soil samples were taken from natural structure of a podzolic soil and a podazolic brown earth from two sites in the Fichtelgebirge mountains as well as a parabraun earth from East Holstein. The horizons differed with regard to their texture and structure; silty material tends to have a subpolyhedral structure and calyey material a polyhedral structure. The general soil samples and aggregate samples from the three B horizons were subjected, with comparable experimental conditions, to percolation experiments inducing a multiple acid load. The soil solution from the secondary pore system and aggregate pore system is more heterogeneus for the higher-structured subpolyhedral texture of the perdzolic soil than for the less strongly aggregated subpolyhedral structured of the podzolic brown earth. (orig.) [de

  2. Environmental isotope profiles of the soil water in loess unsaturated zone in semi-arid areas of china

    International Nuclear Information System (INIS)

    Lin Ruifen; Wei Keqin

    2001-01-01

    According to the IAEA Research Contract No. 9402, soil cores CHN/97 and CHN/98 were taken from loess deposits of China in Inner-Mongolia and Shanxi Province, respectively. Isotope and chemical constituents of the interstitial water from these cores, compared with data obtained from the same places before, were used for estimating the infiltration rate. Tritium profiles from the loess unsaturated zone show clearly defined peaks of 1963 fallout. It implies that piston-flow model is the dominant process for soil water movement in the highly homogeneous loess deposits. It has been shown from this study that vertical infiltration through the unsaturated zone accounts for 12%-13% of the annual precipitation and perhaps is not the main mechanism of groundwater recharge in semi-arid loess areas. (author)

  3. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    Science.gov (United States)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  4. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above

  5. PRINCIPAL COMPONENT ANALYSIS OF FACTORS DETERMINING PHOSPHATE ROCK DISSOLUTION ON ACID SOILS

    Directory of Open Access Journals (Sweden)

    Yusdar Hilman

    2016-10-01

    Full Text Available Many of the agricultural soils in Indonesia are acidic and low in both total and available phosphorus which severely limits their potential for crops production. These problems can be corrected by application of chemical fertilizers. However, these fertilizers are expensive, and cheaper alternatives such as phosphate rock (PR have been considered. Several soil factors may influence the dissolution of PR in soils, including both chemical and physical properties. The study aimed to identify PR dissolution factors and evaluate their relative magnitude. The experiment was conducted in Soil Chemical Laboratory, Universiti Putra Malaysia and Indonesian Center for Agricultural Land Resources Research and Development from January to April 2002. The principal component analysis (PCA was used to characterize acid soils in an incubation system into a number of factors that may affect PR dissolution. Three major factors selected were soil texture, soil acidity, and fertilization. Using the scores of individual factors as independent variables, stepwise regression analysis was performed to derive a PR dissolution function. The factors influencing PR dissolution in order of importance were soil texture, soil acidity, then fertilization. Soil texture factors including clay content and organic C, and soil acidity factor such as P retention capacity interacted positively with P dissolution and promoted PR dissolution effectively. Soil texture factors, such as sand and silt content, soil acidity factors such as pH, and exchangeable Ca decreased PR dissolution.

  6. [Distribution and risk assessment of mercury species in soil of the water-level-fluctuating zone in the Three Gorges Reservoir].

    Science.gov (United States)

    Zhang, Cheng; Chen, Hong; Wang, Ding-Yong; Sun, Rong-Guo; Zhang, Jin-Yang

    2014-03-01

    To investigate pollution level and ecological risk of mercury in soils of the water-level-fluctuating zone in the Three Gorges Reservoir Region, 192 surface soil samples from 14 counties (districts) in Chongqing were obtained. Concentrations of THg and Hg species, bioavailable Hg were analyzed and discussed. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index (E(r)) were applied to assess the pollution status and potential ecological risk of THg and Hg species, respectively. The results showed that significant differences in the concentration of THg were found in soils of water-level-fluctuating zone in the Three Gorges Reservoir. The THg concentration ranged from 22.4 to 393.5 microg x kg(-1), with an average of (84.2 +/- 54.3) microg x kg(-1). 76.6% of the samples' THg content was higher than the soil background value in the Three Gorges Reservoir Region. The percentage of five mercury species (water-soluble Hg, HCl-soluble Hg, KOH-soluble Hg, H2O2-soluble Hg, residue Hg) in soils were 4.1%, 15.5%, 18.3%, 10.9%, 51.3%, respectively. The average concentrations of bioavailable mercury varied between 19.7-36.6 microg x kg(-1), and the percentage of bioavailable Hg was 22.1%-51.6% of THg. According to the geoaccumulation index, the soils were lightly polluted by Hg. Håkanson single potential ecological risk index evaluation showed that Hg species had a low potential ecological risk, moreover, soils of water-level-fluctuating zone in the Three Gorges Reservoir were at low ecological risk levels as evaluated by bioavailable Hg. While, the assessment results based on THg of soils was much higher than that based on the Hg species. Two methods of evaluation showed that the I(geo) and E(r) values calculated based on the Hg species better reflected the actual pollution levels of soils and its hazard to aquatic organisms.

  7. Visual soil evaluation - future research requirements

    Science.gov (United States)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Ball, Bruce; Holden, Nick

    2017-04-01

    A review of Visual Soil Evaluation (VSE) techniques (Emmet-Booth et al., 2016) highlighted their established utility for soil quality assessment, though some limitations were identified; (1) The examination of aggregate size, visible intra-porosity and shape forms a key assessment criterion in almost all methods, thus limiting evaluation to structural form. The addition of criteria that holistically examine structure may be desirable. For example, structural stability can be indicated using dispersion tests or examining soil surface crusting, while the assessment of soil colour may indirectly indicate soil organic matter content, a contributor to stability. Organic matter assessment may also indicate structural resilience, along with rooting, earthworm numbers or shrinkage cracking. (2) Soil texture may influence results or impeded method deployment. Modification of procedures to account for extreme texture variation is desirable. For example, evidence of compaction in sandy or single grain soils greatly differs to that in clayey soils. Some procedures incorporate separate classification systems or adjust deployment based on texture. (3) Research into impacts of soil moisture content on VSE evaluation criteria is required. Criteria such as rupture resistance and shape may be affected by moisture content. It is generally recommended that methods are deployed on moist soils and quantification of influences of moisture variation on results is necessary. (4) Robust sampling strategies for method deployment are required. Dealing with spatial variation differs between methods, but where methods can be deployed over large areas, clear instruction on sampling is required. Additionally, as emphasis has been placed on the agricultural production of soil, so the ability of VSE for exploring structural quality in terms of carbon storage, water purification and biodiversity support also requires research. References Emmet-Booth, J.P., Forristal. P.D., Fenton, O., Ball, B

  8. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

    2008-02-04

    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

  9. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer, E-mail: odahan@bgu.ac.il; Ronen, Zeev, E-mail: zeevrone@bgu.ac.il

    2017-02-15

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10{sup 5} to 10{sup 7} copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  10. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    International Nuclear Information System (INIS)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-01-01

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10"5 to 10"7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  11. [Heavy Metals Accmultio in the Caofeidian Reclamation Soils: Indicated by Soil Magnetic Susceptibility].

    Science.gov (United States)

    Xue, Yong; Zhou, Qian; Li, Yuan; Zhang, Hai-bo; Hu, Xue-feng; Luo, Yong-ming

    2016-04-15

    The environmental magnetism method has been widely applied to identify soil heavy metal pollution, which is characterized by simplicity, efficiency, non-destructivity and sensitivity. The present study used magnetic susceptibility to assess the accumulation of heavy metals in soils of the Caofeidian industrial zone which is a typical reclamation area in northern China. The study area was divided into three sub-zones based on the function, including industrial zone, living zone, natural tidal flat and wetland. A total of 35 topsoil samples (0-10 cm) and 3 soil profiles were collected from the three sub-zones. Magnetic susceptibility (X(lf)), iron oxide (Fe2O3) contents and heavy metals contents (Cr, Ni, Cu, Zn, As, Pb, Mn and V) of the samples were analyzed. The results showed that X(lf) values and heavy metals contents exhibited higher spatial variability in the top soil of the industrial zone, indicating the severe impacts of industrial activities. In the soil profiles of the industrial and living zones, all heavy metals were enriched to different degrees in the upper layer (0-20 cm). However, there was no significant change of heavy metal contents in the soil profiles of tidal flat which was far from the industrial area. The X(lf) value was significantly (P soil. This indicated that X(lf) could be used as an indicator for heavy metal accumulation in the industrial zone. However, the X(lf) value was not suitable to be an indicator to show the heavy metal accumulation in the soils of living zone and natural tidal flat. This might be associated with the different sources of magnetic materials among the different sub-zones and the special characteristics of the soils in the tidal flat and wetland.

  12. Turnover of texture in low rate sputter-deposited nanocrystalline molybdenum films

    International Nuclear Information System (INIS)

    Druesedau, T.P.; Klabunde, F.; Loehmann, M.; Hempel, T.; Blaesing, J.

    1997-01-01

    The crystallite size and orientation in molybdenum films prepared by magnetron sputtering at a low rate of typical 1 (angstrom)s and a pressure of 0.45 Pa was investigated by X-ray diffraction and texture analysis. The surface topography was studied using atomic force microscopy. Increasing the film thickness from 20 nm to 3 microm, the films show a turnover from a (110) fiber texture to a (211) mosaic-like texture. In the early state of growth (20 nm thickness) the development of dome-like structures on the surface is observed. The number of these structures increases with film thickness, whereas their size is weakly influenced. The effect of texture turnover is reduced by increasing the deposition rate by a factor of six, and it is absent for samples mounted above the center of the magnetron source. The effect of texture turnover is related to the bombardment of the films with high energetic argon neutrals resulting from backscattering at the target under oblique angle and causing resputtering. Due to the narrow angular distribution of the reflected argon, bombardment of the substrate plane is inhomogeneous and only significant for regions close to the erosion zone of the magnetron

  13. VADOSE ZONE STUDIES AT AN INDUSTRIAL CONTAMINATED SITE: THE VADOSE ZONE MONITORING SYSTEM AND CROSS-HOLE GEOPHYSICS

    OpenAIRE

    Fernandez de Vera, Natalia; Beaujean, Jean; Jamin, Pierre; Nguyen, Frédéric; Dahan, Ofer; Vanclooster, Marnik; Brouyère, Serge

    2014-01-01

    In situ vadose zone characterization is essential to improve risk characterization and remediation measures for soil and groundwater contamination. However, most available technologies have been developed in the context of agricultural soils. Most of these methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, they are applicable only in the first meters of soils, leaving deeper vadose zones with lack of informatio...

  14. Soil and soil cover changes in spruce forests after final logging

    Directory of Open Access Journals (Sweden)

    E. M. Lapteva

    2015-10-01

    Full Text Available Soil cover transformation and changes of morphological and chemical properties of Albeluvisols in clear-cuttings of middle taiga spruce forests were studied. The observed changes in structure and properties of podzolic texturally-differentiated soils at cuttings of spruce forests in the middle taiga subzone do not cause their transition to any other soil type. Soil cover of secondary deciduous-coniferous forests which replace cut forests are characterized with a varied soil contour and a combination of the main type of podzolic soils under undisturbed spruce forests. The increased surface hydromorphism in cut areas causes formation of complicated sub-types of podzolic texturally differentiated soils (podzolic surface-gley soils with microprofile of podzol and enlarges their ratio (up to 35–38 % in soil cover structure. Temporary soil over-wetting at the initial (5–10 years stage of after-cutting self-restoring vegetation succession provides for soil gleyzation, improves yield and segregation of iron compounds, increases the migratory activity of humic substances. Low content and resources of total nitrogen in forest litters mark anthropogenic transformation processes of podzolic soils at this stage. Later (in 30–40 years after logging, soils in cut areas still retain signs of hydromorphism. Forest litters are denser, less acidic and thick with a low weight ratio of organic carbon as compared with Albeluvisols of undisturbed spruce forest. The upper mineral soil horizons under secondary deciduous-coniferous forests contain larger amounts of total iron, its mobile (oxalate-dissolvable components, and Fe-Mn-concretions.

  15. Effects of watershed and riparian zone characteristics on nutrient concentrations in the River Scheldt Basin

    Directory of Open Access Journals (Sweden)

    J. Meynendonckx

    2006-01-01

    Full Text Available The relative influence of a set of watershed characteristics on surface water nutrient concentrations was examined in 173 watersheds within two subcatchments (Upper-Scheldt and Nete of the River Scheldt Basin (Flanders, Belgium. Each watershed was described by seasonal rainfall, discharge loading of point sources, morphological characteristics (area, average slope, drainage density, elongation, land use and soil properties (soil texture and drainage. Partial regression analysis revealed that soil drainage variables had the strongest influence on nutrient concentrations. Additional influence was exerted by land use and point source loading variables. Nitrate concentrations were positively correlated with effluent loadings coming from wastewater treatment plants and with the area of agricultural land. Phosphate concentrations were best explained by effluent loadings of industrial point sources and by the area of urban land. Land use close to the river was not a better predictor of nitrate and phosphate concentrations than land use away from the river. This suggests that the mediating impact of riparian zones is rather explained by the hydrologic pathways within the buffer strip.

  16. Assessment of soil GHG emission in different functional zones of Moscow urbanized areas

    Science.gov (United States)

    Vizirskaya, Maria; Epikhina, Anna; Vasenev, Ivan; Valentini, Riccardo; Mazirov, Il'ya

    2014-05-01

    Atmospheric greenhouse-gas concentrations are increasing rapidly, causing global climate changes. Growing concentrations of CO2, CH4 and N2O are occurring not only as a result of industry activity, but also from changes in land use and type of land management due to urbanization. Up to now there were not so many studies in Russia that dealt with urbanization effects (functional zoning, land-use type, soil contamination etc.) on GHG emission from the soil in spatial-temporal variability at the local and regional scale. The aim of our study is to provide the analysis of soil CO2, N2O and CH4 efflux's response to different biotic and abiotic factors, as well as to management activities and anthropogenic impact in different functional zones of the city. The principal objects of our study are representative urban landscapes with different land-use practices, typical for urbanized area. The varieties of urban ecosystems are represented by urban forest, green lawns with different functional subzoning and agro landscapes (16 sites in total). Forest sites have been studied during 7 years and they are differing in mezorelief (small hill summit and two slopes). Green lawns vary in level of human impact (normal, medium and high) and are represented by managed and non-managed lawns. Agro landscapes are represented by two crop types: barley and grass mixture (oats and vetch) with till and no-till cultivation. In each plot we measured: soil respiration in field conditions using system based on IR-gas analyzer Li- COR 820, CH4 and N2O emission using the method of exposition chamber. Samples were taken from soil exposition chamber by syringe, and then analyzed on gas chromatograph. The measurements with Li-COR have been done on 10 days base since June till October 2013, and till September by exposition chamber in 5 replicas per plot. The conducted research have shown high spatial and temporal variability of CO2, CH4 and N2O fluxes due to functional zoning, slope, vegetation type

  17. Evidence of linked biogeochemical and hydrological processes in homogeneous and layered vadose zone systems

    Science.gov (United States)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2010-12-01

    Understanding chemical fate and transport in the vadose zone is critical to protect groundwater resources and preserve ecosystem health. However, prediction can be challenging due to the dynamic hydrologic and biogeochemical nature of the vadose zone. Additional controls on hydrobiogeochemical processes are added by subsurface structural heterogeneity. This study uses repacked soil column experiments to quantify linkages between microbial activity, geochemical cycling and hydrologic flow. Three “short” laboratory soil columns were constructed to evaluate the effects of soil layering: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. In addition, two “long” columns were constructed using either gamma-irradiated (sterilized) or untreated sediments to evaluate the effects of both soil layers and the presence of microorganisms. The long columns were packed identically; a medium-grained sand matrix with two vertically separated and horizontally offset lenses of organic-rich loam. In all 5 columns, downward and upward infiltration of water was evaluated to simulate rainfall and rising water table events respectively. In-situ colocated probes were used to measure soil water content, matric potential, Eh, major anions, ammonium, Fe2+, and total sulfide. Enhanced biogeochemical cycling was observed in the short layered column versus the short, homogeneous columns, and enumerations of iron and sulfate reducing bacteria were 1-2 orders of magnitude greater. In the long columns, microbial activity caused mineral bands and produced insoluble gases that impeded water flow through the pores of the sediment. Capillary barriers, formed around the lenses due to soil textural differences, retarded water flow rates through the lenses. This allowed reducing conditions to develop, evidenced by the production of Fe2+ and S2-. At the fringes of the lenses, Fe2+ oxidized to form Fe(III)-oxide bands that further retarded water

  18. Monitoring soil bacteria with community-level physiological profiles using Biolog™ ECO-plates in the Netherlands and Europe

    DEFF Research Database (Denmark)

    Rutgers, Michiel; Wouterse, Marja; Drost, Sytske M.

    2016-01-01

    Soil samples were analyzed with community-level physiological profiles (CLPP) using Biolog™ ECO-plates in the Netherlands Soil Monitoring Network (NSMN; 704 samples) and in a European-wide transect (73 samples). The selection of sites was based on a representative sample of major soil texture types...... of the bacterial inoculum. The CLPP in Dutch and European soil samples appeared to be reproducible and sensitive to land use and/or soil texture. Although the method is selective, CLPP based parameters correlated well with other microbial parameters and soil characteristics. Consistent patterns in CLPP and soil...... habitat characteristics are emerging, as brought about by environmental disturbances, land management and soil texture. The applicability of CLPP analysis in monitoring systems is discussed....

  19. Soil remediation process and system

    International Nuclear Information System (INIS)

    Monlux, K.J.

    1992-01-01

    This patent describes a process for remediation of soil containing up to about 30,000 ppm hydrocarbon contaminants. It comprises: providing hydrocarbon-contaminated soil in a divided condition of minus 1 1/2 double-prime to a first confined zone where it is exposed to an open flame; heating while agitating the contaminated soil in an oxidizing atmosphere in the first zone to a temperature below soil ignition within a range of from about 375 degrees F. to about 750 degrees F. for a time sufficient to drive off as vapors a substantial percentage of the hydrocarbon contaminates from the soil; passing hot gases containing the hydrocarbon contaminates from the soil; passing hot gases containing the hydrocarbon vapors from the first zone to a second zone; recovering heat from the hot gases in the second zone to condense a substantial percentage of the hydrocarbon vapors as liquid hydrocarbons; recovering the liquid hydrocarbons; and removing the soil from the first zone as remediated soil having below about 1000 ppm hydrocarbon contaminants

  20. Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal

    Science.gov (United States)

    Thapa, Raju; Gupta, Srimanta; Guin, Shirshendu; Kaur, Harjeet

    2017-11-01

    Remote sensing and GIS play a vital role in exploration and assessment of groundwater and has wide application in detection, monitoring, assessment, conservation and various other fields of groundwater-related studies. In this research work, delineation of groundwater potential zone in Birbhum district has been carried out. Various thematic layers viz. geology, geomorphology, soil type, elevation, lineament and fault density, slope, drainage density, land use/land cover, soil texture, and rainfall are digitized and transformed into raster data in ArcGIS 10.3 environment as input factors. Thereafter, multi-influencing factor (MIF) technique is employed where ranks and weights, assigned to each factor are computed statistically. Finally, groundwater potential zones are classified into four categories namely low, medium, high and very high zone. It is observed that 18.41% (836.86 km2) and 34.41% (1563.98 km2) of the study area falls under `low' and `medium' groundwater potential zone, respectively. Approximately 1601.19 km2 area accounting for 35.23% of the study area falls under `high' category and `very high' groundwater potential zone encompasses an area of 542.98 km2 accounting for 11.95% of the total study area. Finally, the model generated groundwater potential zones are validated with reported potential yield data of various wells in the study area. Success and prediction rate curve reveals an accuracy achievement of 83.03 and 78%, respectively. The outcome of the present research work will help the local authorities, researchers, decision makers and planners in formulating better planning and management of groundwater resources in the study area in future perspectives.

  1. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation

    Energy Technology Data Exchange (ETDEWEB)

    Torri, Silvana, E-mail: torri@agro.uba.ar [Catedra de Fertilidad y Fertilizantes, Facultad de Agronomia, UBA, Avda San Martin 4453, Buenos Aires (C1417 DSE) (Argentina); Lavado, Raul [Catedra de Fertilidad y Fertilizantes, Facultad de Agronomia, UBA, Avda San Martin 4453, Buenos Aires (C1417 DSE) (Argentina)

    2009-07-30

    The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.

  2. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation

    International Nuclear Information System (INIS)

    Torri, Silvana; Lavado, Raul

    2009-01-01

    The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.

  3. Spatial and temporal variability of soil moisture in a restored reach of an Alpine river

    Science.gov (United States)

    Luster, Jörg

    2010-05-01

    replicates for each FPZ and depth. At all monitoring locations the occurrence of water saturation in a given soil layer could be related to river discharge and additional soil moisture peaks in topsoil to rain events. However, absolute soil moisture levels during unsatured conditions exhibited strong spatial variability in all FPZ, probably mainly due to variability in soil texture and plant cover. In addition, in the grass zone the major summer floodings changed conditions at least temporarily. On one hand, the soil's field capacity apparently increased stepwise with each flooding, which may be explained either by fresh input of fine sediments or by retarded wetting of hydrophobic microsites rich in soil organic matter. On the other hand, the dominant canary reed grass was irreversibly flattened by each flood and replaced by a new generation of small seedlings. Processes and events as those described before complicate predictions of soil moisture in highly dynamic and biologically active systems like colonized gravel bars. In addition, it has consequences for the rate of sensitive biogeochemical processes such as denitrification which is strongly affected by soil moisture.

  4. Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel

    Science.gov (United States)

    Rahimi, S.; Wynne, B. P.; Baker, T. N.

    2017-01-01

    The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the center of stirred zone reached a temperature between Ac1 and Ac3 during FSW, resulting in a dual-phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac1. The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool shows the dominance of simple shear components across the whole weld. The austenite texture at Ac1 - Ac3 is dominated by the B { {1bar{1}2} }D2 { {11bar{2}} }< 111rangle simple shear texture components. The formation of ultrafine equiaxed ferrite with submicron grain size has been observed in the overlapped area between the first and second weld pass. This is due to continuous dynamic strain-induced recrystallization as a result of simultaneous severe shear deformation and drastic undercooling.

  5. Use of digital image analysis combined with fractal theory to determine particle morphology and surface texture of quartz sands

    Directory of Open Access Journals (Sweden)

    Georgia S. Araujo

    2017-12-01

    Full Text Available The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a tool to quantify the particle morphology and surface texture of two types of quartz sands widely used in the region of Vitória, Espírito Santo, southeast of Brazil. The two investigated sands are sampled from different locations. The purpose of this paper is to present a simple, straightforward, reliable and reproducible methodology that can identify representative sandy soil texture parameters. The test results of the soil samples of the two sands separated by sieving into six size fractions are presented and discussed. The main advantages of the adopted methodology are its simplicity, reliability of the results, and relatively low cost. The results show that sands from the coastal spit (BS have a greater degree of roundness and a smoother surface texture than river sands (RS. The values obtained in the test are statistically analyzed, and again it is confirmed that the BS sand has a slightly greater degree of sphericity than that of the RS sand. Moreover, the RS sand with rough surface texture has larger specific surface area values than the similar BS sand, which agree with the obtained roughness fractal dimensions. The consistent experimental results demonstrate that image analysis combined with fractal theory is an accurate and efficient method to quantify the differences in particle morphology and surface texture of quartz sands.

  6. Salinity management using an anionic polymer in a pecan field with calcareous-sodic soil.

    Science.gov (United States)

    Ganjegunte, Girisha K; Sheng, Zhuping; Braun, Robert J

    2011-01-01

    Soil salinity and sodicity have long been recognized as the major concerns for irrigated agriculture in the Trans-Pecos Basin, where fields are being flood irrigated with Rio Grande River water that has elevated salinity. Reclamation of these salt-affected lands is difficult due to fine-texture, high shrink-swell soils with low permeability. Conventional practice of subsoiling to improve soil permeability is expensive and has had limited success on the irrigated soils that have appreciable amounts of readily weatherable Ca minerals. If these native Ca sources can be effectively used to counter sodicity, it can improve soil permeability and reduce amelioration costs. This study evaluated the effects of 3 yr of polyacrylamide (PAM) application at 10 mg L concentration during the first irrigation of the season to evaluate soil permeability, in situ Ca mineral dissolution, and leaching of salts from the effective root zone in a pecan field of El Paso County, TX. Results indicated that PAM application improved water movement throughout the effective root zone that resulted in Na leaching. Polymer application significantly decreased CaCO (estimated based on inorganic C analysis) concentrations in the top 45 cm compared with baseline levels, indicating solubilization and redistribution of calcite. The PAM application also reduced soil electrical conductivity (EC) in the top 60 cm (4.64-2.76 dS m) and sodium adsorption ratio (SAR) from 13.1 to 5.7 mmol L in the top 75-cm depths. As evidence of improved soil conditions, pecan nut yields increased by 34% in PAM-treated fields over the control. Results suggested that PAM application helped in effective use of native Ca sources present in soils of the study site and reduced Na by improving soil permeability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. THE NATURE OF THE CHANGE OF ACID- BASE PROPERTIES OF SOILS IN THE ZONE OF TECHNOGENESIS (ON THE EXAMPLE OF THE KRASNOURAL’SKIY INDUSTRIAL CENTER

    Directory of Open Access Journals (Sweden)

    M. V. Shabanov

    2018-03-01

    Full Text Available Intensive anthropogenic load of non-ferrous metallurgy enterprises leads to significant changes in landscape complexes. There is a structural transformation of soil cover and physicochemical characteristics, which require detailed study. This determines the relevance of the work. The purpose of the present research is to study the changes in the acidbase properties of soils under middle-taiga Subboreal humid landscapes on the example of the Krasnoural’sk industrial hub. Methodology. The studies of the soil cover were conducted. The areas of redistribution and spreading of the acid agent with the distance from the source of emission were highlighted. The main components characterizing the environment in the 0-30-centimeter soil thickness were determined. Results. In the course of the work completed, the three zones were identified: the impact zone, the buffer zone, and the background zone. The main sources of anthropogenic load in the researched area are the industrial discharges of the plant. Those discharges consist of both aerosol and soot particles. The parameters of their influence on natural and territorial complexes were determined by the wind patterns which were being analyzed over a long period of time. They also took into consideration the precipitation and temperature regimen of the area. As a result of the circulation of atmospheric flows, it was determined particles were being distributed over considerable distances from the flare zone. It was also determined that when precipitation interacts with the main accompanying gases of copper smelting production, acid rains are formed. This rain changes the environment of the soil composition. Summary. In the soil, acid hydrolysis processes occur with the destruction of its mineral part. The main ions of the soil-absorbing complex undergo transformation and become involved in the geochemical cycle. The processes of accumulation and translocation affect the general physical and chemical

  8. Validation of SMAP Root Zone Soil Moisture Estimates with Improved Cosmic-Ray Neutron Probe Observations

    Science.gov (United States)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Franz, T.; Jones, S. B.

    2017-12-01

    Soil Moisture Active Passive (SMAP) soil moisture products are commonly validated based on point-scale reference measurements, despite the exorbitant spatial scale disparity. The difference between the measurement depth of point-scale sensors and the penetration depth of SMAP further complicates evaluation efforts. Cosmic-ray neutron probes (CRNP) with an approximately 500-m radius footprint provide an appealing alternative for SMAP validation. This study is focused on the validation of SMAP level-4 root zone soil moisture products with 9-km spatial resolution based on CRNP observations at twenty U.S. reference sites with climatic conditions ranging from semiarid to humid. The CRNP measurements are often biased by additional hydrogen sources such as surface water, atmospheric vapor, or mineral lattice water, which sometimes yield unrealistic moisture values in excess of the soil water storage capacity. These effects were removed during CRNP data analysis. Comparison of SMAP data with corrected CRNP observations revealed a very high correlation for most of the investigated sites, which opens new avenues for validation of current and future satellite soil moisture products.

  9. Basic exchangeable cations in Finnish mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1972-09-01

    Full Text Available The content of exchangeable Ca, Mg, K and Na replaced by neutral ammonium acetate was determined in 470 samples of mineral soils from various parts of Finland, except from Lapland. The amount of all these cations tended to increase with an increase in the clay content, but variation within each textural class was large, and the ranges usually overlapped those of the other classes. The higher acidity of virgin surface soils was connected with a lower average degree of saturation by Ca as compared with the corresponding textural classes of cultivated soils. No significant difference in the respective contents of other cations was detected. The samples of various textural groups from deeper layers were usually poorer in exchangeable Ca and K than the corresponding groups of plough layer. The mean content of exchangeable Mg was equal or even higher in the samples from deeper layers than in the samples from plough layer, except in the group of sand soils. The percentage of Mg of the effective CEC increased, as an average, from 9 in the sand and fine sand soils of plough layer to 30 in the heavy clay soils; in the heavy clay soils from deeper layers its mean value was 38 ± 4 %. In the samples of plough layer, the mean ratio of Ca to Mg in sand and fine sand soils was about 9, in silt and loam soils about 6, in the coarser clay soils about 4, and in heavy clay about 2.

  10. Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy

    International Nuclear Information System (INIS)

    Wang Shuncai; Starink, Marco J.; Gao Nong; Qiao Xiaoguang; Xu Cheng; Langdon, Terence G.

    2008-01-01

    The evolution of texture was examined during equal-channel angular pressing (ECAP) of an Al-Zn-Mg-Cu alloy having a strong initial texture. An analysis of the local texture using electron backscatter diffraction demonstrates that shear occurs on two shear planes: the main shear plane (MSP) equivalent to the simple shear plane, and a secondary shear plane which is perpendicular to the MSP. Throughout most regions of the ECAP billet, the MSP is close to the intersection plane of the two channels but with a small (5 deg.) deviation. Only the {1 1 1} and {0 0 1} shear systems were activated and there was no experimental evidence for the existence of other shear systems. In a small region at the bottom edge of the billet that passed through the zone of intersection of the channels, the observed textures were fully consistent with the rolling textures of Copper and Goss

  11. Estimating Soil and Root Parameters of Biofuel Crops using a Hydrogeophysical Inversion

    Science.gov (United States)

    Kuhl, A.; Kendall, A. D.; Van Dam, R. L.; Hyndman, D. W.

    2017-12-01

    Transpiration is the dominant pathway for continental water exchange to the atmosphere, and therefore a crucial aspect of modeling water balances at many scales. The root water uptake dynamics that control transpiration are dependent on soil water availability, as well as the root distribution. However, the root distribution is determined by many factors beyond the plant species alone, including climate conditions and soil texture. Despite the significant contribution of transpiration to global water fluxes, modelling the complex critical zone processes that drive root water uptake remains a challenge. Geophysical tools such as electrical resistivity (ER), have been shown to be highly sensitive to water dynamics in the unsaturated zone. ER data can be temporally and spatially robust, covering large areas or long time periods non-invasively, which is an advantage over in-situ methods. Previous studies have shown the value of using hydrogeophysical inversions to estimate soil properties. Others have used hydrological inversions to estimate both soil properties and root distribution parameters. In this study, we combine these two approaches to create a coupled hydrogeophysical inversion that estimates root and retention curve parameters for a HYDRUS model. To test the feasibility of this new approach, we estimated daily water fluxes and root growth for several biofuel crops at a long-term ecological research site in Southwest Michigan, using monthly ER data from 2009 through 2011. Time domain reflectometry data at seven depths was used to validate modeled soil moisture estimates throughout the model period. This hydrogeophysical inversion method shows promise for improving root distribution and transpiration estimates across a wide variety of settings.

  12. Boundary between Soil and Saprolite in Alisols in the South of Brazil

    Directory of Open Access Journals (Sweden)

    Fabrício de Araújo Pedron

    2015-06-01

    Full Text Available Despite numerous studies conducted on the lower limit of soil and its contact with saprolite layers, a great deal of work is left to standardize identification and annotation of these variables in the field. In shallow soils, the appropriately noting these limits or contacts is essential for determining their behavior and potential use. The aims of this study were to identify and define the field contact and/or transition zone between soil and saprolite in profiles of an Alisol derived from fine sandstone and siltstone/claystone in subtropical southern Brazil and to subsequently validate the field observations through a multivariate analysis of laboratory analytical data. In the six Alisol profiles evaluated, the sequence of horizons found was A, Bt, C, and Cr, where C was considered part of the soil due to its pedogenetic structure, and Cr was considered saprolite due to its rock structure. The morphological properties that were determined in the field and that were different between the B and C horizons and the Cr layer were color, structure, texture, and fragments of saprolite. According to the test of means, the properties that support the inclusion of the C horizon as part of the soil are sand, clay, water-dispersible clay, silt/clay ratio, macroporosity, total porosity, resistance to penetration, cation exchange capacity, Fe extracted by DCB, Al, H+Al, and cation exchange capacity of clay. The properties that support the C horizon as a transition zone are silt, Ca, total organic C, and Fe extracted by ammonium oxalate. Discriminant analysis indicated differences among the three horizons evaluated.

  13. Analyzing the Sand-fixing Effect of Feldspathic Sandstone from the Texture Characteristics

    Science.gov (United States)

    Zhang, lu; Ban, Jichang

    2018-01-01

    The purpose of this research was aimed to study the sand fixing effect of feldspathic sandstone in Mu Us Sandy Land, to provide a scienticic basis for desertification control, soil and water conservation and development of farming there. Methods of mixing feldspathic sandstone and aeolian sandy soil according to 1: 0, 1: 1, 1: 2, 1: 5, and 0: 1 mass ratioes, the graded composition and characteristics were studied with laser particle size analyzer. The result showed that these features of sand-based, loosely structured, easy to wind erosion of aeolian sandy soil were changed before feldspathic sandstone and aeolian sandy soil compounding. The <0.05 mm particle mass increased with feldspathic sandstone mass increasing. The texture presented this kind of change from sand to sandy loam to loam to silt loam. The small particle size distribution, good homogeneity and other features of aeolian sandy soil were improved to a certain degree, and the particle size distribution became broad before feldspathic sandstone and aeolian sandy soil compounding. The particle grading was continuous, and the grading characteristic was good when m(F): m(S) was 1: 5(Cu was 54.71 and Cc was 2.54) or when m(F): m(S) was 1: 2(Cu was 76.21, Cc was 1.12). The conclusion is that feldspathic sandstone has sand-fixing effect in texture characteristics, which heightens with feldspathic sandstone mass increasing, and when the mass ratio of feldspathic sandstone: aeolian sandy soil is 1: 2 or 1: 5 which compound better.

  14. The Biomantle-Critical Zone Model

    Science.gov (United States)

    Johnson, D. L.; Lin, H.

    2006-12-01

    It is a fact that established fields, like geomorphology, soil science, and pedology, which treat near surface and surface processes, are undergoing conceptual changes. Disciplinary self examinations are rife. New practitioners are joining these fields, bringing novel and interdisciplinary ideas. Such new names as "Earth's critical zone," "near surface geophysics," and "weathering engine" are being coined for research groups. Their agendas reflect an effort to integrate and reenergize established fields and break new ground. The new discipline "hydropedology" integrates soil science with hydrologic principles, and recent biodynamic investigations have spawned "biomantle" concepts and principles. One force behind these sea shifts may be retrospectives whereby disciplines periodically re-invent themselves to meet new challenges. Such retrospectives may be manifest in the recent Science issue on "Soils, The Final Frontier" (11 June, 2004), and in recent National Research Council reports that have set challenges to science for the next three decades (Basic Research Opportunities in Earth Science, and Grand Challenges for the Environmental Sciences, both published in 2001). In keeping with such changes, we advocate the integration of biomantle and critical zone concepts into a general model of Earth's soil. (The scope of the model automatically includes the domain of hydropedology.) Our justification is that the integration makes for a more appealing holistic, and realistic, model for the domain of Earth's soil at any scale. The focus is on the biodynamics of the biomantle and water flow within the critical zone. In this general model the biomantle is the epidermis of the critical zone, which extends to the base of the aquifer. We define soil as the outer layer of landforms on planets and similar bodies altered by biological, chemical, and/or physical agents. Because Earth is the only planet with biological agents, as far as we know, it is the only one that has all

  15. The Application of Soil-Agroclimatic Index for Assessing the Agronomic Potential of Arable Lands in the Forest-Steppe Zone of Russia

    Science.gov (United States)

    Bulgakov, D. S.; Rukhovich, D. I.; Shishkonakova, E. A.; Vil'chevskaya, E. V.

    2018-04-01

    An assessment of the agronomic potential of arable lands in the forest-steppe zone of Russia (by the example of separate soil-agronomic districts) on the basis of the soil-agroclimatic index developed under the supervision of I.I. Karmanov is considered. The agricultural areas (64) separated on the territory of Russia and characterizing soil-agroclimatic conditions for cultivation of major and accompanying crops are differentiated into soil-agronomic districts (SADs) with due account for the administrative division of the country. A large diversity of agroclimatic and agronomical conditions creates the prerequisites for the inclusion of administrative regions into different SADs. The SADs concept implies a detailed analysis of information on the soil properties, geomorphic conditions, and farming conditions. The agronomic potential for major crops in the key SADs in the forest-steppe zone of the East European Plain (Voronezh and Penza oblasts) is high, though it is 25-30% lower than that in the North Caucasus (for winter wheat, sugar beet, sunflower, and spring barley) and in Kaliningrad oblast (for oats). In Western Siberia (Tyumen, Omsk, and Novosibirsk oblasts) and Eastern Siberia (Krasnoyarsk region and Irkutsk oblast), the agronomic potential of spring crops (wheat, barley, and oats) is only utilized by 35-45% in comparison with their European analogues. In the Far East with its monsoon climate and soil conditions (meadow podbels, brown forest soils), the crops characteristic of the European forest-steppe (soybean, rice, sugar beet) and the Trans-Ural forest-steppe (spring wheat) are cultivated. Their biological potential is utilized by only 50-60% in comparison with the European analogues. The materials of this study give us information on the degree of correspondence between the soilagroclimatic potential of the territory and the biological potential of cultivated crops. This is important in the context of improving the natural-agricultural zoning of Russia

  16. Benzo(a)pyrene accumulation in soils of technogenic emission zone by subcritical water extraction method

    Science.gov (United States)

    Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun

    2016-04-01

    The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds

  17. Regional and Detailed Survey for Radon Activities in Soil-Gas and Groundwater in the Okchon Zone, Korea

    Science.gov (United States)

    Je, H.-K.; Chon, H.-T.

    2012-04-01

    The Okchon zone in Korea provides a typical example of natural geological materials enriched in potentially toxic elements including uranium which is parent nuclide for radon gas. For the purpose of radon radioactivity risk assessment, making the map of radon risk grade from Okchon zone, regional and detailed field surveys were carried out during 3 years. The study area is located in the central part of Korea, called the Okchon zone (about 5,100 km2), which occur in a 80km wide, northeast-trending belt that extends across the Korean Peninsula. The Okchon zone is underlain by metasedimentary rocks of unknown age that are composed mainly of black slate, phyllite, shale, and limestone. The three research areas (defined as Boeun, Chungju, and Nonsan) for detailed survey were selected from the results of regional survey. Results of detailed radon survey indicated a wide range of radon activities for soil-gases (148-1,843 pCi/L) and ground waters (23-5,540 pCi/L). About 15 percent of soil-gas samples exceeded 1,000 pCi/L and 84 percent of ground water samples exceeded the MCL (maximum contaminant level) of drinking water, 300 pCi/L, which proposed by U.S. Environmental Protection Agency in 1999. For detailed survey, radon activities of soil-gas and ground water were classified as bedrock geology, based on 1/50,000 geological map and field research. For soil-gas measurements, mean values of radon activity from black slate-shale (789 pCi/L) were highest among the other base rocks. And for groundwater measurements, mean value of radon activities were decreased in the order of granite (1,345 pCi/L) > black shale-slate (915 pCi/L) > metasediments (617 pCi/L). Result of indoor radon measurement from detailed survey areas showed that about 50% of houses exceeded the indoor guideline, 4 pCi/L. For the radon risk assessment in indoor environment showed that probability of lung cancer risk from the houses located on the granite base rock (3.0×10-2) was highest among the other

  18. LOCAL TEXTURE DESCRIPTION FRAMEWORK FOR TEXTURE BASED FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    R. Reena Rose

    2014-02-01

    Full Text Available Texture descriptors have an important role in recognizing face images. However, almost all the existing local texture descriptors use nearest neighbors to encode a texture pattern around a pixel. But in face images, most of the pixels have similar characteristics with that of its nearest neighbors because the skin covers large area in a face and the skin tone at neighboring regions are same. Therefore this paper presents a general framework called Local Texture Description Framework that uses only eight pixels which are at certain distance apart either circular or elliptical from the referenced pixel. Local texture description can be done using the foundation of any existing local texture descriptors. In this paper, the performance of the proposed framework is verified with three existing local texture descriptors Local Binary Pattern (LBP, Local Texture Pattern (LTP and Local Tetra Patterns (LTrPs for the five issues viz. facial expression, partial occlusion, illumination variation, pose variation and general recognition. Five benchmark databases JAFFE, Essex, Indian faces, AT&T and Georgia Tech are used for the experiments. Experimental results demonstrate that even with less number of patterns, the proposed framework could achieve higher recognition accuracy than that of their base models.

  19. Oil migration through unsaturated soils and its effect on the Vadose Zone Interactive Processes (VIP) model output

    International Nuclear Information System (INIS)

    Joseph, A.T.; Grenney, W.J.; Stevens, D.K.

    1994-01-01

    The VIP model, which simulates the concentration profiles of the hazardous compounds in the soil, water, and the air phases, assumes a fixed oily phase. The purpose of this study was to measure oil migration in soil systems and to determine its effect on the VIP model output. Experiments were conducted to demonstrate the mobility of an oil through the unsaturated zone of the soil. The studies were conducted in laboratory scale glass columns. A light petroleum oil and two types of soil were used. The experiments demonstrated that oil migrates down significantly through the soil columns. The extent of migration depended on the volume of oil applied and the type of soil. However, the applied oil was completely immobilized in the columns. The model was modified to incorporate oil migration. The modified model can be expected to produce more realistic contaminant concentration profiles during land treatment of oily wastes when compared to that produced by the present version of the VIP model. (Author)

  20. Relationships between soil erosion risk, soil use and soil properties in Mediterranean areas. A comparative study of three typical sceneries

    Science.gov (United States)

    Gil, Juan; Priego-Navas, Mercedes; Zavala, Lorena M.; Jordán, Antonio

    2013-04-01

    . Regarding soil properties, the analysis shows that organic matter from soils under minimum tillage or no-till is strongly related with runoff, the amount of sediments in runoff and soil loss. In soils from olive groves, the amount of sediments in runoff was significantly related to soil pH. Moreover, for olive-cropped soils under conventional tillage, soil loss is strongly related with clayey texture, which is characteristic of these soils. Concerning this, the relationship between soil loss and coarse sand contents is highly significant, and shows that medium-sized soil particles are most prone to detachment and transport by runoff. Thus, the average content of these fractions in soils under conventional management is more than two times that from olive groves under minimal or no tillage, which are more coarsely textured. In fine-textured soils, hydraulic conductivity is reduced, thus increasing soil erosion risk. In addition, in sandy and silty soils with low clay content, infiltration rates are high even when soil sealing is observed. At the scale of this experiment, runoff generation and soil erosion risk decrease significantly in areas under natural vegetation, with lower clay contents

  1. Physical and water properties of selected Polish heavy soils of various origins

    Directory of Open Access Journals (Sweden)

    Kaczmarek Zbigniew

    2015-12-01

    Full Text Available The paper presents the characteristics of selected physical, chemical, and water properties of four mineral arable soils characterized with heavy and very heavy texture. Soil samples from genetic horizons of black earths from areas near Kętrzyn, Gniew and Kujawy, and alluvial soils from Żuławy were used. The following properties were determined in the samples of undisturbed and disturbed structure: texture, particle density, bulk density, porosity, natural and hygroscopic moistures, maximal hygroscopic capacity, saturated hydraulic conductivity, potential of water bonding in soil, total and readily available water, total retention in the horizon of 0–50 cm, drainage porosity, content of organic carbon and total nitrogen Parent rocks of these soils were clays, silts and loams of various origin. High content of clay fraction strongly influenced the values of all the analyzed properties. All the examined soils had high content of organic carbon and total nitrogen and reaction close to neutral or alkaline. High content of mineral and organic colloids and, what follows, beneficial state of top horizons’ structure, determined – apart from heavy texture – low soil bulk density and high porosity. The investigated soils were characterized by high field water capacity and wide scopes of total and readily available water. The saturated hydraulic conductivity was low and characteristic to heavy mineral arable soils. The parameter which influenced the variability of analyzed parameters most was texture.

  2. Dynamics of the agrochemical fertility parameters of arable soils in the southwestern region of Central Chernozemic zone of Russia

    Science.gov (United States)

    Lukin, S. V.

    2017-11-01

    Data of the agrochemical survey of arable soils in Belgorod oblast during the period from 1964 to 2014 have been analyzed. The soil cover mainly consists of typical chernozems (Haplic Chernozems) and leached chernozems (Luvic Chernozems) in the forest-steppe zone and ordinary chernozems (Calcic Chernozems) in the steppe zone. Under long-term agricultural use (from 1964 to 2014), the content of mobile phosphorus in arable soils of the region under study has increased from 55 to 137 mg/kg, and the content of mobile potassium has increased from 105 to 147 mg/kg. During the period of 1976-2014, the share of acid soils has increased from 22.8 to 45.8%, including medium-acid soils from 1.5 to 12.6%. No significant changes in the weighted average content of soil organic matter are revealed for the period from 1985 to 2014. The value of this parameter is within the range of 4.8-5.0%. In the 2010-2014, 95.0% of arable soils belonged to the category of low supplied with mobile sulfur; 99.2, 96.9, 94.1, and 54.4% of soils were poorly supplied with zinc, copper, cobalt, and manganese, respectively. During the same period, the maximum average productivity of the crop area (3710 f. u./ha) was noted at the application of 4.8 t/ha organic fertilizers and 97.9 kg/ha organic fertilizers on the average. The maximum long-term yields of sugar beet (36.8 t/ha) and corn grain (4.97 t/ha) were obtained at the application of relatively low fertilizer rates.

  3. Soil Taxonomy and land evaluation for forest establishment

    Science.gov (United States)

    Haruyoshi Ikawa

    1992-01-01

    Soil Taxonomy, the United States system of soil classification, can be used for land evaluation for selected purposes. One use is forest establishment in the tropics, and the soil family category is especially functional for this purpose. The soil family is a bionomial name with descriptions usually of soil texture, mineralogy, and soil temperature classes. If the...

  4. Automated Soil Physical Parameter Assessment Using Smartphone and Digital Camera Imagery

    Directory of Open Access Journals (Sweden)

    Matt Aitkenhead

    2016-12-01

    Full Text Available Here we present work on using different types of soil profile imagery (topsoil profiles captured with a smartphone camera and full-profile images captured with a conventional digital camera to estimate the structure, texture and drainage of the soil. The method is adapted from earlier work on developing smartphone apps for estimating topsoil organic matter content in Scotland and uses an existing visual soil structure assessment approach. Colour and image texture information was extracted from the imagery. This information was linked, using geolocation information derived from the smartphone GPS system or from field notes, with existing collections of topography, land cover, soil and climate data for Scotland. A neural network model was developed that was capable of estimating soil structure (on a five-point scale, soil texture (sand, silt, clay, bulk density, pH and drainage category using this information. The model is sufficiently accurate to provide estimates of these parameters from soils in the field. We discuss potential improvements to the approach and plans to integrate the model into a set of smartphone apps for estimating health and fertility indicators for Scottish soils.

  5. Weed infestation of crops in different soils in the protective zone of Roztocze National Park. Part I. Winter and spring cereals

    Directory of Open Access Journals (Sweden)

    Marta Ziemińska-Smyk

    2013-12-01

    Full Text Available The study on weed infestation of crops in different soils in the protective zone of RPN was conducted in the years 1991-1995. The characterization of weed infestation of winter and spring cereals was based on 306 phytosociological records. made with the use of Braun-Blanquet method. The degree of weed infestation in the fields in the protective zone of RPN depended on environment conditions. Both winter and spring cereals in majority of soils were most infested by: Cenaturea cyanus, Apera spica-venti and Vicia hirsta. In the lightest podsolic soils, made of loose sand and slightly loamy sand. winter and spring cereals were additionally infested by Equisetum arvense and two acidophylic species: Seleranthus annuus and Spergula arvensis. The crops in brown loess soil were infested by Matricaria maritima subsp. inodora. The most difficult weed species in brown soil formed from gaizes and limestone soil were: Convolvulus arvensis, Papaver rhoeas and Galium aparine. Moreover winter cercals in limestone soil showed high or medium infestation with Consolida regalis, Aethusa cynapium, Lathyrus tuberosus and low infestation with Apera spica-venti and Centaurea cyanus. Spring cereals were less infested than winter cereals. Apera spica-venti and Centaurea cyanus were less common with spring cereals than with winter cereals. Also, spring cereals showed high or medium infestation with Convolvulus arvensis. Spring cereals in some soil units were infested by Chenopodium album and Stellaria media. There was also higher infestation of spring cereals in limestone soils with Avena fatua, Veronica persica, Sinapis arvensis and Sonchus arvensis, compared to winter cereals in limestone soils.

  6. Ion beam texturing

    Science.gov (United States)

    Hudson, W. R.

    1977-01-01

    A microscopic surface texture was created by sputter-etching a surface while simultaneously sputter-depositing a lower sputter yield material onto the surface. A xenon ion-beam source was used to perform the texturing process on samples as large as 3-cm diameter. Textured surfaces have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, stainless steel, Au, and Ag. A number of texturing parameters are studied including the variation of texture with ion-beam powder, surface temperature, and the rate of texture growth with sputter etching time.

  7. Transformations of humus and soil mantle in the urbanized areas of the Chernobyl NPP exclusion zone

    International Nuclear Information System (INIS)

    Tyutyunnik, Yu.G.; Bednaya, S.M.

    1998-01-01

    Presented are investigations into the demutation processes of the towns plant community in the Chernobyl NPP exclusion zone (Pripyat, Chernobyl, Chernobyl-2). Demonstrated is the specific nature of the reduction of humus and soil mantle in the abandoned towns under the impact of the natural factors. 21 refs., 5 tab., 7 figs

  8. Sensitivity of the biosphere-atmosphere transfer scheme (BATS) to the inclusion of variable soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.F.; Henderson-Sellers, A.; Dickinson, R.E.; Kennedy, P.J.

    1987-03-01

    The soils data of Wilson and Henderson-Sellers have been incorporated into the land-surface parameterization scheme of the NCAR Community Climate Model after Dickinson. A stand-alone version of this land-surface scheme, termed the Biosphere-Atmosphere Transfer Scheme (BATS), has been tested in a series of sensitivity experiments designed to assess the sensitivity of the scheme to the inclusion of variable soil characteristics. The cases investigated were for conditions designed to represent a low-latitude, evergreen forest; a low-latitude sand desert; a high-latitude coniferous forest; high-latitude tundra; and prairie grasslands, each for a specified time of year. The tundra included spring snowmelt and the grassland incorporated snow accumulation. The sensitivity experiments included varying the soil texture from a coarse texture typical of sand through a medium texture typical of loam to a fine texture typical of clay. The sensitivity of the formation to the specified total and upper soil column depth and the response to altering the parameterization of the soil albedo dependence upon soil wetness and snow-cover were also examined. The biosphere-atmosphere transfer scheme showed the greatest sensitivity to the soil texture variation, particularly to the associated variation in the hydraulic conductivity and diffusivity parameters. There was only a very small response to the change in the soil albedo dependence on wetness and, although the sensitivity to the snow-covered soil albedo via the response to roughness length/snowmasking depth was significant, the results were predictable. Soil moisture responses can also be initiated by changes in vegetation characteristics such as the stomatal resistance through changed canopy interaction which modify the radiation and water budgets of the soil surface.

  9. Vertical Migration of Radionuclides in Soils on the Chernobyl Nuclear Power Plant (ChNPP) Exclusion Zone (1987-2007)

    Science.gov (United States)

    Jannik, G. T.; Ivanov, Y. A.; Kashparov, V. A.; Levchuk, S. E.; Bondarkov, M. D.; Maksymenko, A. M.; Farfan, E. B.; Marra, J. C.

    2009-12-01

    In 1986-1987, a set of experimental sites for studies of vertical migration of radionuclides released from the ChNPP was established in the ChNPP Exclusion Zone for various fallout plumes. The sites were selected considering local terrain and geo-chemical conditions, as well as physical and chemical characteristics of the fallout. The experimental sites included grasslands, and pre-Chernobyl cultivated meadows and croplands. Vertical migration of radionuclides in the ChNPP Exclusion Zone grasslands was evaluated. Parameters of 137Cs, 90Sr, and 239,240Pu transfer were calculated and the periods during which these radionuclides reach their ecological half-life in the upper 5 cm soil layer were estimated. Migration capabilities of these radionuclides in the grassland soils tend to decrease as follows: 90Sr >137Cs ≥ 239,240Pu. A significant retardation of the 137Cs vertical migration was shown in the grasslands long after the Chernobyl accident. During the 21st year after the fallout, average Tecol values for 137Cs (the period of time it takes in the environment for 137Cs to reach half the value of its original concentration in the upper 5 cm soil layer, regardless of physical decay) are as follows: 180 - 320 years for grassland containing automorphous mineral soils of a light granulometric composition; and 90 - 100 years for grassland containing hydromorphous organogenic soils. These values are significantly higher than those estimated for the period of 6-9 years after the fallout: 60 - 150 years and 11 - 20 years, respectively. The absolute 137Cs Tecol values are by factors of 3-7 higher than 137Cs radiological decay values long after the accident. Changes in the exposure dose resulting from the soil deposited 137Cs only depend on its radiological decay. This factor should necessarily be considered for development of predictive assessments, including dose exposures for the hypothetical population in case of their re-evacuation to the exclusion areas. The obtained

  10. Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pfleging, Wilhelm [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Pl. 1, 76344 Egg.-Leopoldshafen (Germany); Kumari, Renu [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India); Besser, Heino [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Scharnweber, Tim [Karlsruhe Institute of Technology, IBG-1, P.O. Box 3640, 76021 Karlsruhe (Germany); Majumdar, Jyotsna Dutta, E-mail: jyotsna@metal.iitkgp.ernet.in [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India)

    2015-11-15

    Highlights: • Texturing of Ti–6Al–4V with linear and dimple patterns are developed with ArF laser. • Linear textures have width of 25 μm and are at an interval of 20 μm. • Dimple textures are equi-spaced and have a diameter of 60 μm. • Significant refinement of microstructure in textured zone as compared to substrate. • Increased wettability of the textured surface against simulated body fluid. - Abstract: In the present study, a detailed study of the characterization of laser-surface textured titanium alloy (Ti–6Al–4V) with line and dimple geometry developed by using an ArF excimer laser operating at a wavelength of 193 nm with a pulse length of 5 ns is undertaken. The characterization of the textured surface (both the top surface and cross section) is carried out by scanning electron microscopy, electron back scattered diffraction (EBSD) technique and X-ray diffraction techniques. There is refinement of microstructure along with presence of titanium oxides (rutile, anatase and few Ti{sub 2}O{sub 3} phase) in the textured surface as compared to as-received one. The area fractions of linear texture and dimple texture measured by image analysis software are 45% and 20%, respectively. The wettability is increased after laser texturing. The total surface energy is decreased due to linear (29.6 mN/m) texturing and increased due to dimple (67.6 mN/m) texturing as compared to as-received Ti–6Al–4V (37 mN/m). The effect of polar component is more in influencing the surface energy of textured surface.

  11. Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Kumari, Renu; Besser, Heino; Scharnweber, Tim; Majumdar, Jyotsna Dutta

    2015-01-01

    Highlights: • Texturing of Ti–6Al–4V with linear and dimple patterns are developed with ArF laser. • Linear textures have width of 25 μm and are at an interval of 20 μm. • Dimple textures are equi-spaced and have a diameter of 60 μm. • Significant refinement of microstructure in textured zone as compared to substrate. • Increased wettability of the textured surface against simulated body fluid. - Abstract: In the present study, a detailed study of the characterization of laser-surface textured titanium alloy (Ti–6Al–4V) with line and dimple geometry developed by using an ArF excimer laser operating at a wavelength of 193 nm with a pulse length of 5 ns is undertaken. The characterization of the textured surface (both the top surface and cross section) is carried out by scanning electron microscopy, electron back scattered diffraction (EBSD) technique and X-ray diffraction techniques. There is refinement of microstructure along with presence of titanium oxides (rutile, anatase and few Ti_2O_3 phase) in the textured surface as compared to as-received one. The area fractions of linear texture and dimple texture measured by image analysis software are 45% and 20%, respectively. The wettability is increased after laser texturing. The total surface energy is decreased due to linear (29.6 mN/m) texturing and increased due to dimple (67.6 mN/m) texturing as compared to as-received Ti–6Al–4V (37 mN/m). The effect of polar component is more in influencing the surface energy of textured surface.

  12. Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS

    Directory of Open Access Journals (Sweden)

    K. J. Tobin

    2017-09-01

    Full Text Available This study applied the exponential filter to produce an estimate of root-zone soil moisture (RZSM. Four types of microwave-based, surface satellite soil moisture were used. The core remotely sensed data for this study came from NASA's long-lasting AMSR-E mission. Additionally, three other products were obtained from the European Space Agency Climate Change Initiative (CCI. These datasets were blended based on all available satellite observations (CCI-active, CCI-passive, and CCI-combined. All of these products were 0.25° and taken daily. We applied the filter to produce a soil moisture index (SWI that others have successfully used to estimate RZSM. The only unknown in this approach was the characteristic time of soil moisture variation (T. We examined five different eras (1997–2002; 2002–2005; 2005–2008; 2008–2011; 2011–2014 that represented periods with different satellite data sensors. SWI values were compared with in situ soil moisture data from the International Soil Moisture Network at a depth ranging from 20 to 25 cm. Selected networks included the US Department of Energy Atmospheric Radiation Measurement (ARM program (25 cm, Soil Climate Analysis Network (SCAN; 20.32 cm, SNOwpack TELemetry (SNOTEL; 20.32 cm, and the US Climate Reference Network (USCRN; 20 cm. We selected in situ stations that had reasonable completeness. These datasets were used to filter out periods with freezing temperatures and rainfall using data from the Parameter elevation Regression on Independent Slopes Model (PRISM. Additionally, we only examined sites where surface and root-zone soil moisture had a reasonably high lagged r value (r > 0. 5. The unknown T value was constrained based on two approaches: optimization of root mean square error (RMSE and calculation based on the normalized difference vegetation index (NDVI value. Both approaches yielded comparable results; although, as to be expected, the optimization approach generally

  13. The brass-type texture and its deviation from the copper-type texture

    DEFF Research Database (Denmark)

    Leffers, Torben; Ray, R.K.

    2009-01-01

    Our basic aim with the present review is to address the classical problem of the “fcc rolling texture transition” – the fact that fcc materials may, depending on material parameters and rolling conditions, develop two different types of rolling textures, the copper-type texture and the brass...... the subject and sketch our approach for dealing with it. We then recapitulate the decisive progress made during the nineteen sixties in the empirical description of the fcc rolling texture transition and in lining up a number of possible explanations. Then follows a section about experimental investigations...... of the brass-type texture after the nineteen sixties covering texture measurements and microstructural investigations. The main observations are: (1) The brass-type texture deviates from the copper-type texture from an early stage of texture development. (2) Deformation twinning has a decisive effect...

  14. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    Science.gov (United States)

    Sagapuram, Dinakar

    Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for

  15. Crescimento de soja em solos em resposta a doses de Boro, calagem e textura do solo Soybean growth in response to boron dosages, liming and soil texture

    Directory of Open Access Journals (Sweden)

    Rodinei Facco Pegoraro

    2008-08-01

    Full Text Available Neste trabalho, objetivou-se quantificar a produção de matéria seca e os conteúdos de B, Ca e Mg na cultura da soja cultivada em solos com diferentes texturas que receberam doses crescentes de B e calagem, e correlacionar o conteúdo de B absorvido pela planta com o teor de B recuperado com água e CaCl2 ferventes sob influência de doses de boro e a calagem aplicadas em três solos distintos. O experimento foi conduzido em casa de vegetação em esquema fatorial 3 x 2 x 6, consistindo de três solos: textura arenosa (RQ, textura média (LVA1 e textura argilosa (LVA2, com e sem calagem, e seis doses de B (0; 1,5; 3; 6; 9 e 15 mg dm-3, em blocos casualizados com três repetições. Determinou-se o teor de B no solo extraível com água e CaCl2 ferventes após 45 dias da adição das doses de B aos solos, massa de matéria seca da parte aérea e os teores de B, Ca e Mg na soja. Os teores de B recuperado, tanto pela água fervente, quanto pelo CaCl2 fervente foram semelhantes nos três solos estudados e, apresentaram altas correlações com o conteúdo de B e o peso de matéria seca. As doses de B adicionadas aumentaram a sua absorção pelas plantas, mas causaram redução na produção de matéria seca da parte aérea nos solos RQ (textura arenosa, LVA1 (textura média e o LVA2 (textura argilosa com calagem, neste último solo, o efeito é minimizado na presença de maior teor de argila.This work aimed to quantify the dry matter production and the contents of B, Ca and Mg in soybean plants grown in soils with different textures, which received increasing doses of B, and liming. Additionally, it was correlated the B contents in the plants with the B recovered from the soil with boiling water and CaCl2. The experiment was carried out in a greenhouse in a factorial 3 x 2 x 6 (three soils: sand texture (RQ, loamy sand (LVA1 and clayey (LVA2 textures; with and without liming; and six B doses: 0; 1,5; 3; 6; 9 and 15 mg dm-3 arranged in a entirely

  16. Precision of commercial soil testing practice for phosphorus fertilizer recommendations in Finland

    Directory of Open Access Journals (Sweden)

    T. PELTOVUORI

    2008-12-01

    Full Text Available Implementation of the Agri-Environmental Program in 1995 has emphasized the role of advisory soil testing in phosphorus (P input planning and markedly expanded the market for commercial soil testing in Finland. A small precision experiment (5 laboratories and a simulation study on soil sampling were conducted to evaluate the current precision of the soil testing practice for P. The observed values of reproducibility (95% probability of soil P determination were 42-61% of the mean P concentration for three soils. This approximately corresponds to a maximum error of one P class in a seven-step classification system. Soil texture and organic matter content are used as secondary variables in P fertilization planning. In commercial soil testing these are both determined by finger assessment and the results have significant errors in most laboratories. Erroneous texture determinations are more likely to lead to errors in P fertilizer recommendations than soil P analysis itself. In this study the largest deviation from a correct P fertilization recommendation was +10 kg ha-1. In soil sampling simulation, stratified random sampling in areas of differing texture gave the most consistent results with geostatistical analysis of the soil test data, as compared with random, systematic, and judgment sampling strategies.;

  17. Water movement through a shallow unsaturated zone in an inland arid region: Field drip irrigation experiment under matrix potential control

    Science.gov (United States)

    Zhou, T.; Han, D.; Song, X.

    2017-12-01

    It is vital to study soil water movement in unsaturated zone for evaluating and improving current irrigation mode for prevention and control of soil secondary salinization, especially in inland arid area, where is characterized by strong evaporation, poor drainage system and shallow water table depth. In this study, we investigated the applicability of drip irrigation under matrix potential control during cotton growth seasons in an inland arid region of northwest China. Combined physical observation with stable isotopes tracing method, we studied soil water flow system and recharge sources of shallow groundwater in heavy (Pilot 1) and light (Pilot 2) saline-alkali cotton fields. Evaporation depths (about 50-60 cm) are about the same for both pilots, but infiltration depths (about 60 cm for Pilot 1 and 150 cm for Pilot 2) are very different due to different soil texture, soil structure and soil salt content. Middle layer (about 100 cm thick) is a critical barrier for water exchange between surface and deep layer. Irrigation water is the major source (about 79.6% for Pilot 1 and 81.6% for Pilot 2), while evapotranspiration is the major sink (about 80.7% for Pilot 1 and 83.1% for Pilot 2) of unsaturated zone. The increase of soil water storage is not enough to make up the water shortage of middle layer and thus drip irrigation water doesn't recharge into groundwater for both pilots. Water table rise (about 60 cm for Pilot 1 and 50 cm for Pilot 2) could be caused by lateral groundwater flow instead of vertical infiltration. This irrigation mode could retard the water table rise in this region. However, improving horizontal drainage system may be indispensable for sustainable agriculture development. The study can provide important basis for soil secondary salinization prevention and agricultural water management in inland arid areas.

  18. Biological Soil Crusts from Coastal Dunes at the Baltic Sea: Cyanobacterial and Algal Biodiversity and Related Soil Properties.

    Science.gov (United States)

    Schulz, Karoline; Mikhailyuk, Tatiana; Dreßler, Mirko; Leinweber, Peter; Karsten, Ulf

    2016-01-01

    Biological soil crusts (BSCs) are known as "ecosystem-engineers" that have important, multifunctional ecological roles in primary production, in nutrient and hydrological cycles, and in stabilization of soils. These communities, however, are almost unstudied in coastal dunes of the temperate zone. Hence, for the first time, the biodiversity of cyanobacterial and algal dominated BSCs collected in five dunes from the southern Baltic Sea coast on the islands Rügen and Usedom (Germany) was investigated in connection with physicochemical soil parameters. The species composition of cyanobacteria and algae was identified with direct determination of crust subsamples, cultural methods, and diatom slides. To investigate the influence of soil properties on species composition, the texture, pH, electrical conductivity, carbonate content, total contents of carbon, nitrogen, phosphorus, and the bioavailable phosphorus-fraction (PO4 (3-)) were analyzed in adjacent BSC-free surface soils at each study site. The data indicate that BSCs in coastal dunes of the southern Baltic Sea represent an ecologically important vegetation form with a surprisingly high site-specific diversity of 19 cyanobacteria, 51 non-diatom algae, and 55 diatoms. All dominant species of the genera Coleofasciculus, Lyngbya, Microcoleus, Nostoc, Hydrocoryne, Leptolyngbya, Klebsormidium, and Lobochlamys are typical aero-terrestrial cyanobacteria and algae, respectively. This first study of coastal sand dunes in the Baltic region provides compelling evidence that here the BSCs were dominated by cyanobacteria, algae, or a mixture of both. Among the physicochemical soil properties, the total phosphorus content of the BSC-free sand was the only factor that significantly influenced the cyanobacterial and algal community structure of BSCs in coastal dunes.

  19. Evaluation of the effect of initial texture on the development of deformation texture

    DEFF Research Database (Denmark)

    Leffers, Torben; Juul Jensen, Dorte

    1986-01-01

    The authors describe a computer procedure which allows them to introduce experimental initial textures as starting conditions for texture simulation (instead of a theoretical random texture). They apply the procedure on two batches of copper with weak initial textures and on fine-grained and coarse......-grained aluminium with moderately strong initial textures. In copper the initial texture turns out to be too weak to have any significant effect. In aluminium the initial texture has a very significant effect on the simulated textures-similar to the effect it has on the experimental textures. However......, there are differences between the simulated and the experimental aluminium textures that can only be explained as a grain-size effect. Possible future applications of the procedure are discussed...

  20. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    Science.gov (United States)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  1. Crop yield monitoring in the Sahel using root zone soil moisture anomalies derived from SMOS soil moisture data assimilation

    Science.gov (United States)

    Gibon, François; Pellarin, Thierry; Alhassane, Agali; Traoré, Seydou; Baron, Christian

    2017-04-01

    West Africa is greatly vulnerable, especially in terms of food sustainability. Mainly based on rainfed agriculture, the high variability of the rainy season strongly impacts the crop production driven by the soil water availability in the soil. To monitor this water availability, classical methods are based on daily precipitation measurements. However, the raingauge network suffers from the poor network density in Africa (1/10000km2). Alternatively, real-time satellite-derived precipitations can be used, but they are known to suffer from large uncertainties which produce significant error on crop yield estimations. The present study proposes to use root soil moisture rather than precipitation to evaluate crop yield variations. First, a local analysis of the spatiotemporal impact of water deficit on millet crop production in Niger was done, from in-situ soil moisture measurements (AMMA-CATCH/OZCAR (French Critical Zone exploration network)) and in-situ millet yield survey. Crop yield measurements were obtained for 10 villages located in the Niamey region from 2005 to 2012. The mean production (over 8 years) is 690 kg/ha, and ranges from 381 to 872 kg/ha during this period. Various statistical relationships based on soil moisture estimates were tested, and the most promising one (R>0.9) linked the 30-cm soil moisture anomalies from mid-August to mid-September (grain filling period) to the crop yield anomalies. Based on this local study, it was proposed to derive regional statistical relationships using 30-cm soil moisture maps over West Africa. The selected approach was to use a simple hydrological model, the Antecedent Precipitation Index (API), forced by real-time satellite-based precipitation (CMORPH, PERSIANN, TRMM3B42). To reduce uncertainties related to the quality of real-time rainfall satellite products, SMOS soil moisture measurements were assimilated into the API model through a Particular Filter algorithm. Then, obtained soil moisture anomalies were

  2. Combining fine texture and coarse color features for color texture classification

    Science.gov (United States)

    Wang, Junmin; Fan, Yangyu; Li, Ning

    2017-11-01

    Color texture classification plays an important role in computer vision applications because texture and color are two fundamental visual features. To classify the color texture via extracting discriminative color texture features in real time, we present an approach of combining the fine texture and coarse color features for color texture classification. First, the input image is transformed from RGB to HSV color space to separate texture and color information. Second, the scale-selective completed local binary count (CLBC) algorithm is introduced to extract the fine texture feature from the V component in HSV color space. Third, both H and S components are quantized at an optimal coarse level. Furthermore, the joint histogram of H and S components is calculated, which is considered as the coarse color feature. Finally, the fine texture and coarse color features are combined as the final descriptor and the nearest subspace classifier is used for classification. Experimental results on CUReT, KTH-TIPS, and New-BarkTex databases demonstrate that the proposed method achieves state-of-the-art classification performance. Moreover, the proposed method is fast enough for real-time applications.

  3. Soil physical criteria for evaluating irrigation suitability of Okija ...

    African Journals Online (AJOL)

    Suitability of upland soils of Anigbo Okija for irrigation was assessed using soil physical criteria of texture, depth, pore type, slope percent colour and soil structure for the purpose of estimating season farming and rainy season drought. Soils were classified using Soil Taxonomy and FAO/UNESCO legend. Mapping was ...

  4. Complex linkage between soil, soil water, atmosphere and Eucalyptus Plantations

    Science.gov (United States)

    Shukla, C.; Tiwari, K. N.

    2017-12-01

    Eucalyptus is most widely planted genus grown in waste land of eastern region of India to meet the pulp industry requirements. Sustainability of these plantations is of concern because in spite of higher demand water and nutrients of plantations, they are mostly planted on low-fertility soils. This study has been conducted to quantify effect of 25 years old, a fully established eucalyptus plantations on i.) Alteration in physico-chemical and hydrological properties of soil of eucalyptus plantation in comparison to soil of natural grassland and ii.) Spatio-temporal variation in soil moisture under eucalyptus plantations. Soil physico-chemical properties of two adjacent plots covered with eucatuptus and natural grasses were analyzed for three consecutive depths (i.e. 0-30 cm, 30-60 cm and 60-90 cm) with five replications in each plot. Soil infiltration rate and saturated hydraulic conductivity (Ks) were measured in-situ to incorporate the influence of macro porosity caused due to roots of plantations. Daily soil moisture at an interval of 10 cm upto 160 cm depth with 3 replications and Leaf Area Index (LAI) at an interval of 15 days with 5 replications were recorded over the year. Significant variations found at level of 0.05 between soil properties of eucalyptus and natural grass land confirm the effect of plantations on soil properties. Comparative results of soil properties show significant alteration in soil texture such as percent of sand, organic matter and Ks found more by 20%, 9% and 22% respectively in eucalyptus plot as compare to natural grass land. Available soil moisture (ASM) was found constantly minimum in top soil excluding rainy season indicate upward movement of water and nutrients during dry season. Seasonal variation in temperature (T), relative humidity (RH) and leaf area index (LAI) influenced the soil moisture extraction phenomenon. This study clearly stated the impact of long term establishment of eucalyptus plantations make considerable

  5. Multi-Scale Soil Moisture Monitoring and Modeling at ARS Watersheds for NASA's Soil Moisture Active Passive (SMAP) Calibration/Validation Mission

    Science.gov (United States)

    Coopersmith, E. J.; Cosh, M. H.

    2014-12-01

    NASA's SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networks. This can be achieved via the integration of NLDAS precipitation data to perform calibration of models at each ­in-situ gauge. In turn, these models and the gauges' volumetric estimations are used to generate soil moisture estimates at a 500m scale throughout a given test watershed by leveraging, at each location, the gauge-calibrated models deemed most appropriate in terms of proximity, calibration efficacy, soil-textural similarity, and topography. Four ARS watersheds, located in Iowa, Oklahoma, Georgia, and Arizona are employed to demonstrate the utility of this approach. The South Fork watershed in Iowa represents the simplest case - the soil textures and topography are relative constants and the variability of soil moisture is simply tied to the spatial variability of precipitation. The Little Washita watershed in Oklahoma adds soil textural variability (but remains topographically simple), while the Little River watershed in Georgia incorporates topographic classification. Finally, the Walnut Gulch watershed in Arizona adds a dense precipitation network to be employed for even finer-scale modeling estimates. Results suggest RMSE values at or below the 4% volumetric standard adopted for the SMAP mission are attainable over the desired spatial scales via this integration of modeling efforts and existing in-situ networks.

  6. Correlation between Soil Organic Matter, Total Organic Matter and ...

    African Journals Online (AJOL)

    Michael Horsfall

    carbon (TOC) content, water content and soils texture for industrial area at Pengkalan Chepa, township of Kota ... soil erosion and geologic deposition processes (Tan et al., 2004). .... infiltration rate and consist of soils with layer that impedes ...

  7. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  8. Ammonia-Oxidizing Archaea Show More Distinct Biogeographic Distribution Patterns than Ammonia-Oxidizing Bacteria across the Black Soil Zone of Northeast China.

    Science.gov (United States)

    Liu, Junjie; Yu, Zhenhua; Yao, Qin; Sui, Yueyu; Shi, Yu; Chu, Haiyan; Tang, Caixian; Franks, Ashley E; Jin, Jian; Liu, Xiaobing; Wang, Guanghua

    2018-01-01

    Black soils (Mollisols) of northeast China are highly productive and agriculturally important for food production. Ammonia-oxidizing microbes play an important role in N cycling in the black soils. However, the information related to the composition and distribution of ammonia-oxidizing microbes in the black soils has not yet been addressed. In this study, we used the amoA gene to quantify the abundance and community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) across the black soil zone. The amoA abundance of AOA was remarkably larger than that of AOB, with ratios of AOA/AOB in the range from 3.1 to 91.0 across all soil samples. The abundance of AOA amoA was positively correlated with total soil C content ( p 0.05). In contrast, the abundance of AOB amoA positively correlated with soil pH ( p = 0.009) but not with total soil C. Alpha diversity of AOA did not correlate with any soil parameter, however, alpha diversity of AOB was affected by multiple soil factors, such as soil pH, total P, N, and C, available K content, and soil water content. Canonical correspondence analysis indicated that the AOA community was mainly affected by the sampling latitude, followed by soil pH, total P and C; while the AOB community was mainly determined by soil pH, as well as total P, C and N, water content, and sampling latitude, which highlighted that the AOA community was more geographically distributed in the black soil zone of northeast China than AOB community. In addition, the pairwise analyses showed that the potential nitrification rate (PNR) was not correlated with alpha diversity but weakly positively with the abundance of the AOA community ( p = 0.048), whereas PNR significantly correlated positively with the richness ( p = 0.003), diversity ( p = 0.001) and abundance ( p < 0.001) of the AOB community, which suggested that AOB community might make a greater contribution to nitrification than AOA community in the black soils when

  9. Impacts of Different Soil Texture and Organic Content on Hydrological Performance of Bioretention

    Science.gov (United States)

    Gülbaz, Sezar; Melek Kazezyilmaz Alhan, Cevza

    2015-04-01

    The land development and increase in urbanization in a watershed has adverse effects such as flooding and water pollution on both surface water and groundwater resources. Low Impact Development (LID) Best Management Practices (BMPs) such as bioretentions, vegetated rooftops, rain barrels, vegetative swales and permeable pavements have been implemented in order to diminish adverse effects of urbanization. LID-BMP is a land planning method which is used to manage storm water runoff by reducing peak flows as well as simultaneously improving water quality. The aim of this study is developing a functional experimental setup called as Rainfall-Watershed-Bioretention (RWB) System in order to investigate and quantify the hydrological performance of bioretention. RWB System is constructed on the Istanbul University Campus and includes an artificial rainfall system, which allows for variable rainfall intensity, drainage area, which has controllable size and slope, and bioretention columns with different soil ratios. Four bioretention columns with different soil textures and organic content are constructed in order to investigate their effects on water quantity. Using RWB System, the runoff volume, hydrograph, peak flow rate and delay in peak time at the exit of bioretention columns may be quantified under various rainfalls in order to understand the role of soil types used in bioretention columns and rainfall intensities. The data obtained from several experiments conducted in RWB System are employed in establishing a relation among rainfall, surface runoff and flow reduction after bioretention. Moreover, the results are supported by mathematical models in order to explain the physical mechanism of bioretention. Following conclusions are reached based on the analyses carried out in this study: i) Results show that different local soil types in bioretention implementation affect surface runoff and peak flow considerably. ii) Rainfall intensity and duration affect peak flow

  10. Parameterization of a bucket model for soil-vegetation-atmosphere modeling under seasonal climatic regimes

    Directory of Open Access Journals (Sweden)

    N. Romano

    2011-12-01

    Full Text Available We investigate the potential impact of accounting for seasonal variations in the climatic forcing and using different methods to parameterize the soil water content at field capacity on the water balance components computed by a bucket model (BM. The single-layer BM of Guswa et al. (2002 is employed, whereas the Richards equation (RE based Soil Water Atmosphere Plant (SWAP model is used as a benchmark model. The results are analyzed for two differently-textured soils and for some synthetic runs under real-like seasonal weather conditions, using stochastically-generated daily rainfall data for a period of 100 years. Since transient soil-moisture dynamics and climatic seasonality play a key role in certain zones of the World, such as in Mediterranean land areas, a specific feature of this study is to test the prediction capability of the bucket model under a condition where seasonal variations in rainfall are not in phase with the variations in plant transpiration. Reference is made to a hydrologic year in which we have a rainy period (starting 1 November and lasting 151 days where vegetation is basically assumed in a dormant stage, followed by a drier and rainless period with a vegetation regrowth phase. Better agreement between BM and RE-SWAP intercomparison results are obtained when BM is parameterized by a field capacity value determined through the drainage method proposed by Romano and Santini (2002. Depending on the vegetation regrowth or dormant seasons, rainfall variability within a season results in transpiration regimes and soil moisture fluctuations with distinctive features. During the vegetation regrowth season, transpiration exerts a key control on soil water budget with respect to rainfall. During the dormant season of vegetation, the precipitation regime becomes an important climate forcing. Simulations also highlight the occurrence of bimodality in the probability distribution of soil moisture during the season when plants are

  11. Deep Soil Carbon in the Critical Zone: Amount and Nature of Carbon in Weathered Bedrock, and its Implication for Soil Carbon Inventory

    Science.gov (United States)

    Moreland, K. C.; Tian, Z.; Berhe, A. A.; O'Geen, A. T.

    2017-12-01

    Globally, soils store more carbon (C) than the vegetation and the atmosphere combined. Up to 60-80% of the C stored in soils is found in below 30cm soil depth, but there is little data on C storage in weathered bedrock or saprolite. Deep soil organic matter (SOM) can be a mixture of new and old SOM; that is rendered relatively stable due to burial, aggregation, its disconnection from decomposers, and chemical association that organic matter forms with soil minerals. The limited data available on deep SOM dynamics suggests that stock, distribution, and composition of deep SOM are strongly correlated to climate. The overall objective of this research is to investigate how climate regulates OM storage, composition, stability, and stabilization mechanisms. Expecting that the amount of OM stored in deep soil and the stability are a function of soil thickness and availability of weathering products (i.e. reactive minerals), the stock and stability of deep SOM is expected to follow a similar relationship with climate, as does the intensity of weathering. This research is conducted in the NSF funded Southern Sierra Critical Zone Observatories that is located along a climosequence, the western slopes of the Sierra Naevada Mountains of California. Here we will present results derived from characterization of soils and weathered bedrock using elemental and stable isotope elemental analysis, and Fourier Transformed Infrared Spectroscopy to determine OM concentration and functional group level composition of bulk SOM. Our findings show that adding in subsoil and weathered bedrock C stocks increases estimates of soil C stock by 1/3rd to 2/3rd.

  12. Soil mechanics and analysis of soils overlying cavitose bedrock

    International Nuclear Information System (INIS)

    Drumm, E.C.

    1987-08-01

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs

  13. Downscaling Satellite Data for Predicting Catchment-scale Root Zone Soil Moisture with Ground-based Sensors and an Ensemble Kalman Filter

    Science.gov (United States)

    Lin, H.; Baldwin, D. C.; Smithwick, E. A. H.

    2015-12-01

    Predicting root zone (0-100 cm) soil moisture (RZSM) content at a catchment-scale is essential for drought and flood predictions, irrigation planning, weather forecasting, and many other applications. Satellites, such as the NASA Soil Moisture Active Passive (SMAP), can estimate near-surface (0-5 cm) soil moisture content globally at coarse spatial resolutions. We develop a hierarchical Ensemble Kalman Filter (EnKF) data assimilation modeling system to downscale satellite-based near-surface soil moisture and to estimate RZSM content across the Shale Hills Critical Zone Observatory at a 1-m resolution in combination with ground-based soil moisture sensor data. In this example, a simple infiltration model within the EnKF-model has been parameterized for 6 soil-terrain units to forecast daily RZSM content in the catchment from 2009 - 2012 based on AMSRE. LiDAR-derived terrain variables define intra-unit RZSM variability using a novel covariance localization technique. This method also allows the mapping of uncertainty with our RZSM estimates for each time-step. A catchment-wide satellite-to-surface downscaling parameter, which nudges the satellite measurement closer to in situ near-surface data, is also calculated for each time-step. We find significant differences in predicted root zone moisture storage for different terrain units across the experimental time-period. Root mean square error from a cross-validation analysis of RZSM predictions using an independent dataset of catchment-wide in situ Time-Domain Reflectometry (TDR) measurements ranges from 0.060-0.096 cm3 cm-3, and the RZSM predictions are significantly (p < 0.05) correlated with TDR measurements [r = 0.47-0.68]. The predictive skill of this data assimilation system is similar to the Penn State Integrated Hydrologic Modeling (PIHM) system. Uncertainty estimates are significantly (p < 0.05) correlated to cross validation error during wet and dry conditions, but more so in dry summer seasons. Developing an

  14. Diversity and dynamics of rhizobial populations in acidic soils with aluminum and manganese toxicities in forest zones

    Directory of Open Access Journals (Sweden)

    Linda Manet

    2016-12-01

    Full Text Available Soil acidity in the humid forest zones of Cameroon is one of the major constraints to agricultural productivity. This study was carried out to assess the rhizobial communities of two acidic soils; with aluminum toxicity (Nkoemvone and manganese toxicity (Nkolbisson for their potential to improve soil fertility in Cameroon. These two soils were used to inoculate to the host plants cowpea and siratro. At harvest, 120 rhizobacterial isolates were extracted from the nodules of these two hosts and subjected to morphological characterization. Twenty isolates per site were selected and analyzed for their 16S rDNA genetic profile following restrictions with endonucleases of PCR products and electrophoresis. The restriction patterns of the 16S rDNA of the 40 isolates showed 12 different profiles. Eight occurred in both types of soils, where as 4 were specific to the manganese-toxic-acidic soil. While the Al toxicity reduced the nodulation and growth of both plants, the Mn toxicity mostly affect the cowpea. This study ascertained the distribution of rhizobia based on soil characteristics. Further molecular analyses would allow the identification of the isolates recovered as well as their phylogenetical relationships.

  15. Toward a standardized soil carbon database platform in the US Critical Zone Observatory Network

    Science.gov (United States)

    Filley, T. R.; Marini, L.; Todd-Brown, K. E.; Malhotra, A.; Harden, J. W.; Kumar, P.

    2017-12-01

    Within the soil carbon community of the US Critical Zone Observatory (CZO) Network, efforts are underway to promote network-level data syntheses and modeling projects and to identify barriers to data intercomparability. This represents a challenging goal given the diversity of soil carbon sampling methodologies, spatial and vertical resolution, carbon pool isolation protocols, subsequent measurement techniques, and matrix terminology. During the last annual meeting of the CZO SOC Working Group, Dec 11, 2016, it was decided that integration with, and potentially adoption of, a widely used, active, and mature data aggregation, archival, and visualization platform was the easiest route to achieve this ultimate goal. Additionally, to assess the state of deep and shallow soil C data among the CZO sites it was recommended that a comprehensive survey must be undertaken to identify data gaps and catalog the various soil sampling and analysis methodologies. The International Soil Carbon Network (ISCN) has a long history of leadership in the development of soil C data aggregation, archiving, and visualization tools and currently houses data for over 70,000 soil cores contributed from international soil carbon community. Over the past year, members of the CZO network and the ISCN have met to discuss logistics of adopting the ISCN template within the CZO. Collaborative efforts among all of the CZO site data managers, led by the Intensively Managed Landscapes CZO, will evaluate feasibility of adoption of the ISCN template, or some modification thereof, and distribution to the appropriate soil scientists for data upload and aggregation. Partnering with ISCN also ensures that soil characteristics from the US CZO are placed in a developing global soil context and paves the way for future integration of data from other international CZO networks. This poster will provide an update of this overall effort along with a summary of data products, partnering networks, and recommendations

  16. Evaluation of factors affecting soil carbon sequestration services of stormwater wet retention ponds in varying climate zones.

    Science.gov (United States)

    Merriman, L S; Moore, T L C; Wang, J W; Osmond, D L; Al-Rubaei, A M; Smolek, A P; Blecken, G T; Viklander, M; Hunt, W F

    2017-04-01

    The carbon sequestration services of stormwater wet retention ponds were investigated in four different climates: U.S., Northern Sweden, Southern Sweden, and Singapore, representing a range of annual mean temperatures, growing season lengths and rainfall depths: geographic factors that were not statistically compared, but have great effect on carbon (C) accumulation. A chronosequence was used to estimate C accumulations rates; C accumulation and decomposition rates were not directly measured. C accumulated significantly over time in vegetated shallow water areas (0-30cm) in the USA (78.4gCm -2 yr -1 ), in vegetated temporary inundation zones in Sweden (75.8gCm -2 yr -1 ), and in all ponds in Singapore (135gCm -2 yr -1 ). Vegetative production appeared to exert a stronger influence on relative C accumulation rates than decomposition. Comparing among the four climatic zones, the effects of increasing rainfall and growing season lengths (vegetative production) outweighed the effects of higher temperature on decomposition rates. Littoral vegetation was a significant source to the soil C pool relative to C sources draining from watersheds. Establishment of vegetation in the shallow water zones of retention ponds is vital to providing a C source to the soil. Thus, the width of littoral shelves containing this vegetation along the perimeter may be increased if C sequestration is a design goal. This assessment establishes that stormwater wet retention ponds can sequester C across different climate zones with generally annual rainfall and lengths of growing season being important general factors for C accumulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Petrology and geochemistry at the Lower zone-Middle zone transition of the Panzhihua intrusion, SW China: Implications for differentiation and oxide ore genesis

    Directory of Open Access Journals (Sweden)

    Kwan-Nang Pang

    2013-09-01

    Full Text Available A sequence of gabbros showing isotropic, layered and fine-grained textures is exposed in the Nalaqing mine at the southern tip of the ∼260 Ma Panzhihua intrusion, SW China. The field relations, structure, texture and mineralogy of the rocks indicate that the sequence represents the transition between the Lower zone and Middle zone of the intrusion. Isotropic gabbros characteristic of the Lower zone pass upward to layered gabbros of the Middle zone through a ∼5 m-thick microgabbro sheet, within and close to which small-scaled, concordant Fe-Ti oxide ore horizons are identified. Strong fractionation between HFSE and REE in a subset of samples is ascribed to cumulus titanomagnetite into which HFSE are preferentially incorporated over REE, as reflected in the parallel relations between Nb/La, Hf/Sm and Ti/Ti*. Both the isotropic and layered gabbros display cumulate textures and have similar mineral compositions (Mg# of clinopyroxene = ∼76–79 and An59–61, isotopic compositions [(87Sr/86Sri = 0.7044–0.7045 and εNd(t = +2.4 to +3.9] and trapped liquid contents inferred from Zr abundance (∼17–34 ppm. However, there are substantial variations in elemental abundances (V, Cr and PGE and ratios (Ti/V, La/Yb, Ba/Y and Cu/Pd between the two types of gabbros, features that cannot be explained by cumulate formation from a common magma in a closed system. The microgabbros generally resemble high-Ti Emeishan basalts in major element compositions, but their low trace element abundances indicate some lost of residual liquid is inevitable despite rapid nucleation and cooling. Combined with available data and observations, we propose a model involving in-situ crystallization, followed by magma recharge and closed-system fractionation to explain the formation of texturally distinctive gabbros at Nalaqing and the evolution of the lower part of the Panzhihua intrusion.

  18. Estimating fate and transport of multiple contaminants in the vadose zone using a multi-layered soil column and three-phase equilibrium partitioning model

    International Nuclear Information System (INIS)

    Rucker, Gregory G.

    2007-01-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)

  19. Vadose zone studies at an industrial contaminated site: the vadose zone monitoring system and cross-hole geophysics

    Science.gov (United States)

    Fernandez de Vera, Natalia; Beaujean, Jean; Jamin, Pierre; Nguyen, Frédéric; Dahan, Ofer; Vanclooster, Marnik; Brouyère, Serge

    2014-05-01

    In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, most technologies are applicable only in the first meters of soils, leaving deeper vadose zones with lack of information, in particular on field scale heterogeneity. In order to overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in Belgium. Industrial activities carried out on site left a legacy of soil and groundwater contamination in BTEX, PAH, cyanide and heavy metals. The experiment comprises the combination of two techniques: the Vadose Zone Monitoring System (VMS) and cross-hole geophysics. The VMS allows continuous measurements of water content and temperature at different depths of the vadose zone. In addition, it provides the possibility of pore water sampling at different depths. The system is formed by a flexible sleeve containing monitoring units along its depth which is installed in a slanted borehole. The flexible sleeve contains three types of monitoring units in the vadose zone: Time Domain Transmissometry (TDT), which allows water content measurements; Vadose Sampling Ports (VSP), used for collecting water samples coming from the matrix; the Fracture Samplers (FS), which are used for retrieving water samples from the fractures. Cross-hole geophysics techniques consist in the injection of an electrical current using electrodes installed in vertical boreholes. From measured potential differences, detailed spatial patterns about electrical properties of the subsurface can be inferred. Such spatial patterns are related with subsurface heterogeneities, water content and solute concentrations. Two VMS were

  20. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    International Nuclear Information System (INIS)

    Moya Riffo, A.; Vicente Alvarez, M.A.; Santisteban, J.R.; Vizcaino, P.; Limandri, S.; Daymond, M.R.; Kerr, D.; Okasinski, J.; Almer, J.; Vogel, S.C.

    2017-01-01

    This work presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory. In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α(hcp) to β(bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β−>α transformation, while slow cooling rates and fine β grains result in strong variant selection.

  1. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    Energy Technology Data Exchange (ETDEWEB)

    Moya Riffo, A., E-mail: alvaromoya@cab.cnea.gov.ar [Neutron Physics Department, Centro Atómico Bariloche, CNEA-CONICET (Argentina); Vicente Alvarez, M.A.; Santisteban, J.R. [Neutron Physics Department, Centro Atómico Bariloche, CNEA-CONICET (Argentina); Vizcaino, P. [Zirconium Technology Department, Centro Atómico Ezeiza, CNEA-CONICET (Argentina); Limandri, S. [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba (Argentina); Daymond, M.R.; Kerr, D. [Dept. Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario (Canada); Okasinski, J.; Almer, J. [Advanced Photon Source, Argonne National Laboratory, Argonne (United States); Vogel, S.C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2017-05-15

    This work presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory. In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α(hcp) to β(bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β−>α transformation, while slow cooling rates and fine β grains result in strong variant selection.

  2. TEXTURAL FRACTOGRAPHY

    Directory of Open Access Journals (Sweden)

    Hynek Lauschmann

    2011-05-01

    Full Text Available The reconstitution of the history of a fatigue process is based on the knowledge of any correspondences between the morphology of the crack surface and the velocity of the crack growth (crack growth rate - CGR. The textural fractography is oriented to mezoscopic SEM magnifications (30 to 500x. Images contain complicated textures without distinct borders. The aim is to find any characteristics of this texture, which correlate with CGR. Pre-processing of images is necessary to obtain a homogeneous texture. Three methods of textural analysis have been developed and realized as computational programs: the method based on the spectral structure of the image, the method based on a Gibbs random field (GRF model, and the method based on the idealization of light objects into a fibre process. In order to extract and analyze the fibre process, special methods - tracing fibres and a database-oriented analysis of a fibre process - have been developed.

  3. Interaction of Brilliant Blue dye solution with soil and its effect on mobility of compounds around the zones of preferenial flows at spruce stand

    Directory of Open Access Journals (Sweden)

    Bebej Juraj

    2017-06-01

    Full Text Available We performed field experiment with 10 g l−1 concentration of Brilliant Blue solutes in 100 l of water sprinkling on 1 × 1 m surface of the Dystric Cambisol. Consequently, four vertical profiles were exposed at experimental plot after 2 hours (CUT 2, 24 hours (CUT 24, 27 hours (CUT 27 and after 504 hours (CUT 504 in order to analyse spatiotemporal interactions among the BB solution (Na-salts, soil exchangeable complex and fine earth soil (% samples extracted from both the high and low coloured zones located around the optically visualised macropore preferred flow (PF zones. The concentration changes were quantifying via soil profiles not affected by BB (termed as REF located in the close vicinity of experimental plot. Observed changes in pH (H2O, chemical composition of fineearth soil, as well as in concentration of Na+ in soil exchangeable complex to suggest, the BB dye solution didn’t represent an inert tracer, but compounds strongly involved in reaction with surrounding soils. Recorded chemical trends seems to be the result both the competitive processes between the Na+ of BB dye solution and composition of surrounding soil exchangeable complex, as well and the spatial-temporal controlled mechanism of dye solution transfer in soil.

  4. PM10 emission efficiency for agricultural soils: Comparing a wind tunnel, a dust generator, and the open-air plot

    Science.gov (United States)

    Avecilla, Fernando; Panebianco, Juan E.; Mendez, Mariano J.; Buschiazzo, Daniel E.

    2018-06-01

    The PM10 emission efficiency of soils has been determined through different methods. Although these methods imply important physical differences, their outputs have never been compared. In the present study the PM10 emission efficiency was determined for soils through a wide range of textures, using three typical methodologies: a rotary-chamber dust generator (EDG), a laboratory wind tunnel on a prepared soil bed, and field measurements on an experimental plot. Statistically significant linear correlation was found (p < 0.05) between the PM10 emission efficiency obtained from the EDG and wind tunnel experiments. A significant linear correlation (p < 0.05) was also found between the PM10 emission efficiency determined both with the wind tunnel and the EDG, and a soil texture index (%sand + %silt)/(%clay + %organic matter) that reflects the effect of texture on the cohesion of the aggregates. Soils with higher sand content showed proportionally less emission efficiency than fine-textured, aggregated soils. This indicated that both methodologies were able to detect similar trends regarding the correlation between the soil texture and the PM10 emission. The trends attributed to soil texture were also verified for two contrasting soils under field conditions. However, differing conditions during the laboratory-scale and the field-scale experiments produced significant differences in the magnitude of the emission efficiency values. The causes of these differences are discussed within the paper. Despite these differences, the results suggest that standardized laboratory and wind tunnel procedures are promissory methods, which could be calibrated in the future to obtain results comparable to field values, essentially through adjusting the simulation time. However, more studies are needed to extrapolate correctly these values to field-scale conditions.

  5. Transfer of reactive solutes in the unsaturated zone of soils at several observation scales

    International Nuclear Information System (INIS)

    Limousin, G.

    2006-10-01

    The transfer of contaminants in the unsaturated zone of soils is driven by numerous mechanisms. Field studies are sometimes difficult to set up, and so the question is raised about the reliability of laboratory measurements for describing a field situation. The nuclear power plant at Brennilis (Finistere, France) has been chosen to study the transfer of strontium, cobalt and inert tracers in the soil of this industrial site. Several observation scales have been tested (batch, stirred flow-through reactor, sieved-soil column, un-repacked or repacked soil-core lysimeter, field experiments) in order to determine, at each scale, the factors that influence the transfer of these contaminants, then to verify the adequacy between the different observation scales and their field representativeness. Regarding the soil hydrodynamic properties, the porosity, the water content in the field, the pore water velocity at the water content in the field, the saturation hydraulic conductivity and the dispersion coefficient of this embanked soil are spatially less heterogeneous than those of agricultural or non-anthropic soils. The results obtained with lysimeter and field experiments suggest that hydrodynamics of this unstructured soil can be studied on a repacked sample if the volume is high compared to the rare big-size stones. Regarding the chemical soil-contaminant interactions, cobalt and strontium isotherms are non-linear at concentration higher than 10 -4 mol.L -1 , cobalt adsorption and desorption are fast and independent on pH. On the contrary, at concentration lower than 3.5 x 10 -6 mol.L -1 , cobalt and strontium isotherms are linear, cobalt desorption is markedly slower than adsorption and both cobalt partition coefficient at equilibrium and its reaction kinetics are highly pH-dependent. For both elements, the results obtained with batch, stirred flow-through reactor and sieved-soil column are in adequacy. However, strontium batch adsorption measurements at equilibrium do

  6. Patterns of zone management uncertainty in cotton using tarnished plant bug distributions, NDVI, soil EC, yield and thermal imagery

    Science.gov (United States)

    Management zones for various crops have been delineated using NDVI (Normalized Difference Vegetation Index), apparent bulk soil electrical conductivity (ECa - Veris), and yield data; however, estimations of uncertainty for these data layers are equally important considerations. The objective of this...

  7. Vadose zone characterisation at industrial contaminated sites

    OpenAIRE

    Fernandez de Vera, Natalia; Dahan, Ofer; Dassargues, Alain; Vanclooster, Marnik; Nguyen, Frédéric; Brouyère, Serge

    2015-01-01

    In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. To overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in ...

  8. Specific features of 137Cs migration and accumulation in chernozem soils of forest ecosystems in the zone contaminated due to the Chornobyl accident

    International Nuclear Information System (INIS)

    Tsvetnova, O.B.; Shcheglov, A.I.; Orlov, A.A.

    2005-01-01

    A number of factors influencing 137 Cs fate and biological availability in chernozem soils under the forest vegetation were assessed for various climatic zones. The migration rates of 137 Cs in the profile of chernozem soils were shown to depend primary on forest litter composition and structure. In the absence of forest litter the soil mineralogical composition and humus content become the most influential factors of caesium mobility

  9. Differential effect of soil and environment on metabolic expression of turmeric (Curcuma longa cv. Roma).

    Science.gov (United States)

    Sandeep, I S; Sanghamitra, Nayak; Sujata, Mohanty

    2015-06-01

    Curcuma longa (Zingiberaceae) is known for its uses in medicine, cosmetics, food flavouring and textile industries. The secondary metabolites of turmeric like essential oil, oleoresin and curcumin are important for its multipurpose uses. These traits of turmeric vary from place to place due to the influence of environment, soil and agro-climatic conditions. Here, we analyzed turmeric from different agroclimatic regions for influence of various factors on its growth and yield of important phytochemicals. A high curcumin yielding cultivar i.e., Roma was collected from high altitude research station, Koraput (HARS) and planted in nine agroclimatic regions of Odisha. Analysis of soil texture, pH, organic carbon, micro and macro nutrients were done from all the studied zones up to 2nd generation. Plants grown in their released station i.e., Eastern Ghat High Land showed 5% of curcumin and were taken as control. Plants grown in different agroclimatic zones showed a range of 1.4-5% of curcumin and 0.3-0.7% of rhizome essential oil and 0.3-1% of leaf essential oil content. Gas chromatography and mass spectra analysis showed tumerone and alpha phellandrene as the major compounds in all the zones with 10-20% variation. The present study will be immensely helpful for standardization and management of environmental and ecological factors for high phytochemical yield in turmeric plant.

  10. When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, Frederic [Centre for Resource Management and Efficiency, Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield MK43 0AL (United Kingdom); Al Awadi, Mohammed; Cowie, William [Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU (United Kingdom); Mardlin, David [Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU (United Kingdom); Remedios Limited, Campus 3, Unit E2, Aberdeen Science and Technology Park, Aberdeen AB22 8GW (United Kingdom); Pollard, Simon [Centre for Resource Management and Efficiency, Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield MK43 0AL (United Kingdom); Cunningham, Colin [CLARRC, John Muir Building, The Kings Buildings, University of Edinburgh, Edinburgh EH9 3LJ (United Kingdom); Risdon, Graeme [TES Bretby, Bretby Business Park, Ashby Road, Burton upon Trent DE15 0YZ (United Kingdom); Arthur, Paul [Remedios Limited, Campus 3, Unit E2, Aberdeen Science and Technology Park, Aberdeen AB22 8GW (United Kingdom); Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.u [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Paton, Graeme I. [Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU (United Kingdom); Remedios Limited, Campus 3, Unit E2, Aberdeen Science and Technology Park, Aberdeen AB22 8GW (United Kingdom)

    2010-10-15

    A six month field scale study was carried out to compare windrow turning and biopile techniques for the remediation of soil contaminated with bunker C fuel oil. End-point clean-up targets were defined by human risk assessment and ecotoxicological hazard assessment approaches. Replicate windrows and biopiles were amended with either nutrients and inocula, nutrients alone or no amendment. In addition to fractionated hydrocarbon analysis, culturable microbial characterisation and soil ecotoxicological assays were performed. This particular soil, heavy in texture and historically contaminated with bunker fuel was more effectively remediated by windrowing, but coarser textures may be more amendable to biopiling. This trial reveals the benefit of developing risk and hazard based approaches in defining end-point bioremediation of heavy hydrocarbons when engineered biopile or windrow are proposed as treatment option. - Windrows outperform biopiles in the bioremediation of bunker oil contaminated soils.

  11. When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial

    International Nuclear Information System (INIS)

    Coulon, Frederic; Al Awadi, Mohammed; Cowie, William; Mardlin, David; Pollard, Simon; Cunningham, Colin; Risdon, Graeme; Arthur, Paul; Semple, Kirk T.; Paton, Graeme I.

    2010-01-01

    A six month field scale study was carried out to compare windrow turning and biopile techniques for the remediation of soil contaminated with bunker C fuel oil. End-point clean-up targets were defined by human risk assessment and ecotoxicological hazard assessment approaches. Replicate windrows and biopiles were amended with either nutrients and inocula, nutrients alone or no amendment. In addition to fractionated hydrocarbon analysis, culturable microbial characterisation and soil ecotoxicological assays were performed. This particular soil, heavy in texture and historically contaminated with bunker fuel was more effectively remediated by windrowing, but coarser textures may be more amendable to biopiling. This trial reveals the benefit of developing risk and hazard based approaches in defining end-point bioremediation of heavy hydrocarbons when engineered biopile or windrow are proposed as treatment option. - Windrows outperform biopiles in the bioremediation of bunker oil contaminated soils.

  12. ASPECTS REGARDING LEGAL PROTECTION OF SOIL RESOURCES

    OpenAIRE

    Cristian Popescu

    2012-01-01

    Along with specialty items used for the development and implementation of sustainable development, protection and conservation of the environment, legal protection component of soil resources play an essential role. Legal and institutional framework provides a much protection of soil resources. Soil is the thin layer of organic and inorganic materials that covers the Earth's rocky surface. A soil pollutant is any factor which deteriorates the quality, texture and mineral content of the soil ...

  13. Implementing a physical soil water flow model with minimal soil characteristics and added value offered by surface soil moisture measurements assimilation.

    Science.gov (United States)

    Chanzy, André

    2010-05-01

    Soil moisture is a key variable for many soil physical and biogeochemical processes. Its dynamic results from water fluxes in soil and at its boundaries, as well as soil water storage properties. If the water flows are dominated by diffusive processes, modelling approaches based on the Richard's equation or the Philip and de Vries coupled heat and water flow equations lead to a satisfactory representation of the soil moisture dynamic. However, It requires the characterization of soil hydraulic functions, the initialisation and the boundary conditions, which are expensive to obtain. The major problem to assess soil moisture for decision making or for representing its spatiotemporal evolution over complex landscape is therefore the lack of information to run the models. The aim of the presentation is to analyse how a soil moisture model can be implemented when only climatic data and basic soil information are available (soil texture, organic matter) and what would be the added of making a few soil moisture measurements. We considered the field scale, which is the key scale for decision making application (the field being the management unit for farming system) and landscape modelling (field size being comparable to the computation unit of distributed hydrological models). The presentation is limited to the bare soil case in order to limit the complexity of the system and the TEC model based on Philip and De Vries equations is used in this study. The following points are addressed: o the within field spatial variability. This spatial variability can be induced by the soil hydraulic properties and/or by the amount of infiltrated water induced by water rooting towards infiltration areas. We analyse how an effective parameterization of soil properties and boundary conditions can be used to simulate the field average moisture. o The model implementation with limited information. We propose strategies that can be implemented when information are limited to soil texture and

  14. Climate variability and vadose zone controls on damping of transient recharge

    Science.gov (United States)

    Corona, Claudia R.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Maurer, Edwin P.

    2017-01-01

    Increasing demand on groundwater resources motivates understanding of the controls on recharge dynamics so model predictions under current and future climate may improve. Here we address questions about the nonlinear behavior of flux variability in the vadose zone that may explain previously reported teleconnections between global-scale climate variability and fluctuations in groundwater levels. We use hundreds of HYDRUS-1D simulations in a sensitivity analysis approach to evaluate the damping depth of transient recharge over a range of periodic boundary conditions and vadose zone geometries and hydraulic parameters that are representative of aquifer systems of the conterminous United States (U.S). Although the models were parameterized based on U.S. aquifers, findings from this study are applicable elsewhere that have mean recharge rates between 3.65 and 730 mm yr–1. We find that mean infiltration flux, period of time varying infiltration, and hydraulic conductivity are statistically significant predictors of damping depth. The resulting framework explains why some periodic infiltration fluxes associated with climate variability dampen with depth in the vadose zone, resulting in steady-state recharge, while other periodic surface fluxes do not dampen with depth, resulting in transient recharge. We find that transient recharge in response to the climate variability patterns could be detected at the depths of water levels in most U.S. aquifers. Our findings indicate that the damping behavior of transient infiltration fluxes is linear across soil layers for a range of texture combinations. The implications are that relatively simple, homogeneous models of the vadose zone may provide reasonable estimates of the damping depth of climate-varying transient recharge in some complex, layered vadose zone profiles.

  15. Catchment organisation, free energy dynamics and network control on critical zone water flows

    Science.gov (United States)

    Zehe, E.; Ehret, U.; Kleidon, A.; Jackisch, C.; Scherer, U.; Blume, T.

    2012-04-01

    as that these flow structures organize and dominate flows of water, dissolved matter and sediments during rainfall driven conditions at various scales: - Surface connected vertical flow structures of anecic worm burrows or soil cracks organize and dominated vertical flows at the plot scale - this is usually referred to as preferential flow; - Rill networks at the soil surface organise and dominate hillslope scale overland flow response and sediment yields; - Subsurface pipe networks at the bedrock interface organize and dominate hillslope scale lateral subsurface water and tracer flows; - The river net organizes and dominates flows of water, dissolved matter and sediments to the catchment outlet and finally across continental gradients to the sea. Fundamental progress with respect to the parameterization of hydrological models, subscale flow networks and to understand the adaptation of hydro-geo ecosystems to change could be achieved by discovering principles that govern the organization of catchments flow networks in particular at least during steady state conditions. This insight has inspired various scientists to suggest principles for organization of ecosystems, landscapes and flow networks; as Bejans constructural law, Minimum Energy Expenditure , Maximum Entropy Production. In line with these studies we suggest that a thermodynamic/energetic treatment of the catchment is might be a key for understanding the underlying principles that govern organisation of flow and transport. Our approach is to employ a) physically based hydrological model that address at least all the relevant hydrological processes in the critical zone in a coupled way, behavioural representations of the observed organisation of flow structures and textural elements, that are consistent with observations in two well investigated research catchments and have been tested against distributed observations of soil moisture and catchment scale discharge; to simulate the full concert of hydrological

  16. Using boosted regression trees to predict the near-saturated hydraulic conductivity of undisturbed soils

    Science.gov (United States)

    Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas

    2015-04-01

    The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine

  17. Uncertainties and Solutions Related to Use of WRB (2007) in the Boreo-nemoral zone, Case of Latvia

    Science.gov (United States)

    Kasparinskis, Raimonds; Nikodemus, Olgerts; Rolavs, Nauris

    2014-05-01

    Relatively high diversity of soils groups according to the WRB (2007) classification is observed in forest ecosystems in the boreo-nemoral zone in Latvia. This is due to the geological genesis of area and environmental conditions (Kasparinskis, Nikodemus, 2012), as well as historical land use and management (Nikodemus et al., 2013). Due to the relatively young soils, Albic, Spodic and Cambic horizons are relatively weakly expressed in many cases. Relatively well developed Albic horizons occur in sandy forest soils, but unusually well expressed Spodic features are observed. In some cases there is a Cambic horizon, however location of Cambisols in the WRB (2007) soil classification sequence does not provide an opportunity to classify these soils as Cambisols, but they are classified as Arenosols. This sequence does not reflect the logical sheme of soil development, and therefore raises the question about location of Podzols, Arenosols and Cambisols in the sequence of WRB (2007) soil classification. Soils with two parent materials (abrupt textural change) are relatively common in Latvia, where conceptually on the small scale mapping results in classification as the soil group Planosols, but in many cases there is occurrence of Fluvic materials, as parent material in the upper part of the soil profile is formed by Baltic Ice lake sandy sediments - this leads to question about the location of Fluvisols and Planosols in the sequence of the WRB (2007) soil classification. Soil research has found cases, where a relatively well developed Spodic horizon was established as the result of ground water table depth in areas of abrupt textural change. In this case the profile corresponds to the soil group of Podzols, however in some cases - Gleysols not Planosols due to a high ground water table. Therefore there is a need for discussion also about the location of Podzols and Planosols in the sequence of the WRB (2007) soil classification. The above mentioned questions raise

  18. Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario.

    Science.gov (United States)

    Marquès, Montse; Mari, Montse; Audí-Miró, Carme; Sierra, Jordi; Soler, Albert; Nadal, Martí; Domingo, José L

    2016-04-01

    The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical Mediterranean soils, either coarse- or fine-textured, was here investigated. Soil samples, spiked with the 16 US EPA priority PAHs, were incubated in a climate chamber at stable conditions of temperature (20 °C) and light (9.6 W m(-2)) for 28 days, simulating a climate change base scenario. PAH concentrations in soils were analyzed throughout the experiment, and correlated with data obtained by means of Microtox(®) ecotoxicity test. Photodegradation was found to be dependent on exposure time, molecular weight of each hydrocarbon, and soil texture. Fine-textured soil was able to enhance sorption, being PAHs more photodegraded than in coarse-textured soil. According to the EC50 values reported by Microtox(®), a higher detoxification was observed in fine-textured soil, being correlated with the outcomes of the analytical study. Significant photodegradation rates were detected for a number of PAHs, namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly used as an indicator for PAH pollution, was completely removed after 7 days of light exposure. In addition to the PAH chemical analysis and the ecotoxicity tests, a hydrogen isotope analysis of benzo(a)pyrene was also carried out. The degradation of this specific compound was associated to a high enrichment in (2)H, obtaining a maximum δ(2)H isotopic shift of +232‰. This strong isotopic effect observed in benzo(a)pyrene suggests that compound-specific isotope analysis (CSIA) may be a powerful tool to monitor in situ degradation of PAHs. Moreover, hydrogen isotopes of benzo(a)pyrene evidenced a degradation process of unknown origin occurring in the darkness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The soil-water characteristic curve at low soil-water contents: Relationships with soil specific surface area and texture

    DEFF Research Database (Denmark)

    Resurreccion, A C; Møldrup, Per; Tuller, M

    2011-01-01

    dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were...

  20. Predicting neo-adjuvant chemotherapy response and progression-free survival of locally advanced breast cancer using textural features of intratumoral heterogeneity on F-18 FDG PET/CT and diffusion-weighted MR imaging.

    Science.gov (United States)

    Yoon, Hai-Jeon; Kim, Yemi; Chung, Jin; Kim, Bom Sahn

    2018-03-30

    Predicting response to neo-adjuvant chemotherapy (NAC) and survival in locally advanced breast cancer (LABC) is important. This study investigated the prognostic value of tumor heterogeneity evaluated with textural analysis through F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) and diffusion-weighted imaging (DWI). We enrolled 83 patients with LABC who had completed NAC and curative surgery. Tumor texture indices from pretreatment FDG PET and DWI were extracted from histogram analysis and 7 different parent matrices: co-occurrence matrix, the voxel-alignment matrix, neighborhood intensity difference matrix, intensity size-zone matrix (ISZM), normalized gray-level co-occurrence matrix (NGLCM), neighboring gray-level dependence matrix (NGLDM), and texture spectrum matrix. The predictive values of textural features were tested regarding both pathologic NAC response and progression-free survival. Among 83 patients, 46 were pathologic responders, while 37 were nonresponders. The PET texture indices from 7 parent matrices, DWI texture indices from histogram, and 1 parent matrix (NGLCM) showed significant differences according to NAC response. On multivariable analysis, number nonuniformity of PET extracted from the NGLDM was an independent predictor of pathologic response (P = .009). During a median follow-up period of 17.3 months, 14 patients experienced recurrence. High-intensity zone emphasis (HIZE) and high-intensity short-zone emphasis (HISZE) from PET extracted from ISZM were significant textural predictors (P = .011 and P = .033). On Cox regression analysis, only HIZE was a significant predictor of recurrence (P = .027), while HISZE showed borderline significance (P = .107). Tumor texture indices are useful for NAC response prediction in LABC. Moreover, PET texture indices can help to predict disease recurrence. © 2018 Wiley Periodicals, Inc.

  1. Characterization and Classification of Soils along the ...

    African Journals Online (AJOL)

    Muler

    along east and west facing toposequences that formed a catena and classified according to the Soil Taxonomy and the. WRB Legend ..... Morphological features and physical properties of the soils along the toposequences at Kindo Koye watershed. Horizon. Depth. (cm). Color (moist). Field texture. Structure*. Consistence.

  2. Effect of Irrigation Water Type on Infiltration Rates of Sandy Soil

    International Nuclear Information System (INIS)

    Al-Omran, A.M.; Al-Matrood, S.M.; Choudhary, M.I.

    2004-01-01

    A laboratory experiment was conducted to test the effect of three water types (tap water, well water and sewage water) on the infiltration rate of three soils varying in texture (sand. loamy sand and sandy loam). A stationary rainfall simulator dispensing water at a rate of 45 mm h-1, connected to the different sources of water, was used to measure the infiltration rates. A total of 5 runs were carried out using each water quality. The volume of runoff against the time was recorded at each 5 minute interval. The infiltration rate was calculated as the difference between the water applied and the excesses water measured as surface runoff. Infiltration rate at first run were rapid in all the three soils and then progressively declined as the number of runs increased. The same trend was observed for each water quality tested. The reduction in infiltration rate with increasing number of runs for prewetted surface than for the initial dry surface was attributed to break down and settling of fine particles that took place earlier during prewetting. The infiltration curves for all the three soils when irrigared with different qualities of water was not distinguishable. The relationship between infiltration rate as function of time for the treatments applied were tested using Kostiakov equation I=bt-n. The infiltration data gave a coefficient of determination R2 >0.90 for all the treatments. The infiltration parameters B, and n varied strongly with respect to soil texture. Values of B decreased with changing soil textures, being highest for the sandy soil, and lowest for the sandy loamy soil, whereas n values showed the opposite trend. It was concluded that effect of soil texture on the infiltration rate was very pronounced while water qualities showed a little effect. (author)

  3. Water Footprint of Industrial Tomato Cultivations in the Pinios River Basin: Soil Properties Interactions

    Directory of Open Access Journals (Sweden)

    Eleftherios Evangelou

    2016-11-01

    Full Text Available Industrial tomatoes are cultivated in about 4000 ha of the Pinios river basin (central Greece, providing significant income to the farmers. In this study, the water footprint (WF of industrial tomatoes between planting and harvest was estimated in 24 different farms for three consecutive years. The selected farms were representative of the main agro-climatic zones and soil textural classes within the river basin. Green, blue and grey WF calculations were based on datasets of the experimental plots for each farm, including irrigation water volume, meteorological, soil, and crop yield data. The results showed that the WF of tomatoes ranged from 37 to 131 m3 water/ton tomatoes with an average of 61 m3/ton. The WF variation depended mainly on crop yield, local agro-climatic and soil conditions. The green, blue, and grey WF components averaged 13, 27 and 21 m3/ton, respectively. The results reveal the importance of WF in understanding how tomato production relates to the sustainable use of freshwater and pollution at local level.

  4. The role of soil pH on soil carbonic anhydrase activity

    Science.gov (United States)

    Sauze, Joana; Jones, Sam P.; Wingate, Lisa; Wohl, Steven; Ogée, Jérôme

    2018-01-01

    Carbonic anhydrases (CAs) are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O) of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2-H2O isotopic exchange rate (kiso) in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content) affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content) played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation) that varied with soil texture. The reasons for this offset are still unknown.

  5. The role of soil pH on soil carbonic anhydrase activity

    Directory of Open Access Journals (Sweden)

    J. Sauze

    2018-01-01

    Full Text Available Carbonic anhydrases (CAs are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2–H2O isotopic exchange rate (kiso in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation that varied with soil texture. The reasons for this offset are still unknown.

  6. Spatial distribution of soil moisture in precision farming using integrated soil scanning and field telemetry data

    Science.gov (United States)

    Kalopesas, Charalampos; Galanis, George; Kalopesa, Eleni; Katsogiannos, Fotis; Kalafatis, Panagiotis; Bilas, George; Patakas, Aggelos; Zalidis, George

    2015-04-01

    Mapping the spatial variation of soil moisture content is a vital parameter for precision agriculture techniques. The aim of this study was to examine the correlation of soil moisture and conductivity (EC) data obtained through scanning techniques with field telemetry data and to spatially separate the field into discrete irrigation management zones. Using the Veris MSP3 model, geo-referenced data for electrical conductivity and organic matter preliminary maps were produced in a pilot kiwifruit field in Chrysoupoli, Kavala. Data from 15 stratified sampling points was used in order to produce the corresponding soil maps. Fusion of the Veris produced maps (OM, pH, ECa) resulted on the delineation of the field into three zones of specific management interest. An appropriate pedotransfer function was used in order to estimate a capacity soil indicator, the saturated volumetric water content (θs) for each zone, while the relationship between ECs and ECa was established for each zone. Validation of the uniformity of the three management zones was achieved by measuring specific electrical conductivity (ECs) along a transect in each zone and corresponding semivariograms for ECs within each zone. Near real-time data produced by a telemetric network consisting of soil moisture and electrical conductivity sensors, were used in order to integrate the temporal component of the specific management zones, enabling the calculation of time specific volumetric water contents on a 10 minute interval, an intensity soil indicator necessary to be incorporated to differentiate spatially the irrigation strategies for each zone. This study emphasizes the benefits yielded by fusing near real time telemetric data with soil scanning data and spatial interpolation techniques, enhancing the precision and validity of the desired results. Furthermore the use of telemetric data in combination with modern database management and geospatial software leads to timely produced operational results

  7. the use of integrated soil fertility approach in the improvement of soil

    African Journals Online (AJOL)

    Sammy

    improvement of soil texture and structure, thus boosters food production in the ecological region. ... the farm (Strainer 1984, Nicholaida et al 1985, Juo 1987, Renand et al 1997, ... degraded each year, due principally to water and wind erosion.

  8. Relationship between the Temporal Changes in Positron-Emission-Tomography-Imaging-Based Textural Features and Pathologic Response and Survival in Esophageal Cancer Patients.

    Science.gov (United States)

    Yip, Stephen S F; Coroller, Thibaud P; Sanford, Nina N; Mamon, Harvey; Aerts, Hugo J W L; Berbeco, Ross I

    2016-01-01

    Although change in standardized uptake value (SUV) measures and PET-based textural features during treatment have shown promise in tumor response prediction, it is unclear which quantitative measure is the most predictive. We compared the relationship between PET-based features and pathologic response and overall survival with the SUV measures in esophageal cancer. Fifty-four esophageal cancer patients received PET/CT scans before and after chemoradiotherapy. Of these, 45 patients underwent surgery and were classified into complete, partial, and non-responders to the preoperative chemoradiation. SUVmax and SUVmean, two cooccurrence matrix (Entropy and Homogeneity), two run-length matrix (RLM) (high-gray-run emphasis and Short-run high-gray-run emphasis), and two size-zone matrix (high-gray-zone emphasis and short-zone high-gray emphasis) textures were computed. The relationship between the relative difference of each measure at different treatment time points and the pathologic response and overall survival was assessed using the area under the receiver-operating-characteristic curve (AUC) and Kaplan-Meier statistics, respectively. All Textures, except Homogeneity, were better related to pathologic response than SUVmax and SUVmean. Entropy was found to significantly distinguish non-responders from the complete (AUC = 0.79, p = 1.7 × 10(-4)) and partial (AUC = 0.71, p = 0.01) responders. Non-responders can also be significantly differentiated from partial and complete responders by the change in the run-length and size-zone matrix textures (AUC = 0.71-0.76, p ≤ 0.02). Homogeneity, SUVmax, and SUVmean failed to differentiate between any of the responders (AUC = 0.50-0.57, p ≥ 0.46). However, none of the measures were found to significantly distinguish between complete and partial responders with AUC textures significantly discriminated patients with good and poor survival (log-rank p textures and survival were poorly related

  9. Correlation between Soil Organic Matter, Total Organic Matter and ...

    African Journals Online (AJOL)

    A total of four sites distributed in different soils of Kelantan State, Malaysia was identified for the study. Soils were collected by depth interval of 0-10cm, 10-20cm and 20-30cm. The correlation of soil organic matter (SOM) content, total organic carbon (TOC) content, water content and soils texture for industrial area at ...

  10. 78 FR 60218 - Safety Zone; Old Mormon Slough, Stockton, CA

    Science.gov (United States)

    2013-10-01

    ... decontaminate soil, groundwater, and sediment in Old Mormon Slough and the surrounding basin. This safety zone... decontamination. This safety zone reduces human health and environmental risks associated with clean up efforts at... safety zone in Old Mormon Slough to further the efforts of the EPA to rehabilitate soil, sediment, and...

  11. High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History

    Science.gov (United States)

    Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri; Field, David P.

    2018-01-01

    Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.

  12. Symmetric textures

    International Nuclear Information System (INIS)

    Ramond, P.

    1993-01-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures

  13. Assessing soil carbon lability by near infrared spectroscopy and NaOCL oxidation

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Bruun, Sander; Jensen, Lars Stoumann

    2009-01-01

    The feasibility of near infrared (NIR) spectroscopy for quantifying labile organic matter (OM) in arable soils and for predicting soil refractory OM fractions was tested on 37 soils varying in texture and soil carbon (C) content. Three sets of arable soils (0-20 cm depth) were sampled from 1) long......-term field experiments with different OM inputs, 2) individual sites with inherent with-in field gradients in soil texture and/or C content, and 3) from a range of different sites covering variations in management and geological origin. The labile OM fraction was defined by the CO2 evolved from the soils...... incubated for 34 weeks while refractory OM was obtained by NaOCl oxidation. The labile fraction of the soil C accounted for 2-12% of the total soil C content. No systematic relationship between labile C content and total soil C or clay was found, but NIR spectra could be correlated well with the labile C...

  14. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  15. Influence of Femtosecond Laser Parameters and Environment on Surface Texture Characteristics of Metals and Non-Metals - State of the Art

    Science.gov (United States)

    Bharatish, A.; Soundarapandian, S.

    2018-04-01

    Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.

  16. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling

    KAUST Repository

    Schillaci, Calogero

    2017-06-02

    SOC is the most important indicator of soil fertility and monitoring its space-time changes is a prerequisite to establish strategies to reduce soil loss and preserve its quality. Here we modelled the topsoil (0–0.3m) SOC concentration of the cultivated area of Sicily in 1993 and 2008. Sicily is an extremely variable region with a high number of ecosystems, soils, and microclimates. We studied the role of time and land use in the modelling of SOC, and assessed the role of remote sensing (RS) covariates in the boosted regression trees modelling. The models obtained showed a high pseudo-R2 (0.63–0.69) and low uncertainty (s.d.<0.76gCkg−1 with RS, and <1.25gCkg−1 without RS). These outputs allowed depicting a time variation of SOC at 1arcsec. SOC estimation strongly depended on the soil texture, land use, rainfall and topographic indices related to erosion and deposition. RS indices captured one fifth of the total variance explained, slightly changed the ranking of variance explained by the non-RS predictors, and reduced the variability of the model replicates. During the study period, SOC decreased in the areas with relatively high initial SOC, and increased in the area with high temperature and low rainfall, dominated by arables. This was likely due to the compulsory application of some Good Agricultural and Environmental practices. These results confirm that the importance of texture and land use in short-term SOC variation is comparable to climate. The present results call for agronomic and policy intervention at the district level to maintain fertility and yield potential. In addition, the present results suggest that the application of RS covariates enhanced the modelling performance.

  17. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling.

    Science.gov (United States)

    Schillaci, Calogero; Acutis, Marco; Lombardo, Luigi; Lipani, Aldo; Fantappiè, Maria; Märker, Michael; Saia, Sergio

    2017-12-01

    SOC is the most important indicator of soil fertility and monitoring its space-time changes is a prerequisite to establish strategies to reduce soil loss and preserve its quality. Here we modelled the topsoil (0-0.3m) SOC concentration of the cultivated area of Sicily in 1993 and 2008. Sicily is an extremely variable region with a high number of ecosystems, soils, and microclimates. We studied the role of time and land use in the modelling of SOC, and assessed the role of remote sensing (RS) covariates in the boosted regression trees modelling. The models obtained showed a high pseudo-R 2 (0.63-0.69) and low uncertainty (s.d.<0.76gCkg -1 with RS, and <1.25gCkg -1 without RS). These outputs allowed depicting a time variation of SOC at 1arcsec. SOC estimation strongly depended on the soil texture, land use, rainfall and topographic indices related to erosion and deposition. RS indices captured one fifth of the total variance explained, slightly changed the ranking of variance explained by the non-RS predictors, and reduced the variability of the model replicates. During the study period, SOC decreased in the areas with relatively high initial SOC, and increased in the area with high temperature and low rainfall, dominated by arables. This was likely due to the compulsory application of some Good Agricultural and Environmental practices. These results confirm that the importance of texture and land use in short-term SOC variation is comparable to climate. The present results call for agronomic and policy intervention at the district level to maintain fertility and yield potential. In addition, the present results suggest that the application of RS covariates enhanced the modelling performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Slip Zone versus Damage Zone Micromechanics, Arima-Takasuki Tectonic Line, Japan

    Science.gov (United States)

    White, J. C.; Lin, A.

    2017-12-01

    The Arima-Takasuki Tectonic Line (ATTL) of southern Honshu, Japan is defined by historically active faults and multiple splays producing M7 earthquakes. The damage zone of the ATTL comprises a broad zone of crushed, comminuted and pulverized granite/rhyolite1,2containing cm-scale slip zones and highly comminuted injection veins. In this presentation, prior work on the ATTL fault rocks is extending to include microstructural characterization by transmission electron microscopy (TEM) from recent trenching of the primary slip zone, as well as secondary slip zones. This is necessary to adequately characterize the extremely fine-grained material (typically less than 1mm) in both damage and core zones. Damage zone material exhibits generally random textures3 whereas slip zones are macroscopically foliated, and compositionally layered, notwithstanding a fairly homogeneous protolith. The latter reflects fluid-rock interaction during both coseismic and interseismic periods. The slip zones are microstructurally heterogeneous at all scales, comprising not only cataclasites and phyllosilicate (clay)-rich gouge zones, but Fe/Mn pellets or clasts that are contained within gouge. These structures appear to have rolled and would suggest rapid recrystallization and/or growth. A central question related to earthquake recurrence along existing faults is the nature of the gouge. In both near-surface exposures and ongoing drilling at depth, "plastic" or "viscous" gouge zones comprise ultra-fine-grained clay-siliciclastic particles that would not necessarily respond in a simple frictional manner. Depending on whether the plastic nature of these slip zones develops during or after slip, subsequent focusing of slip within them could be complicated. 1 Mitchell, T.A., Ben-Zion, Y., Shimamoto, T., 2011. Ear. Planet. Sci. Lett. 308, 284-297. 2 Lin, A., Yamashita, K, Tanaka, M. J., 2013. Struc. Geol. 48, 3-13. 3 White, J.C., Lin, A. 2016. Proc. AGU Fall Mtg., T42-02 San Francisco.

  19. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    Science.gov (United States)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  20. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    Science.gov (United States)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  1. The use of high vacuum soil vapor extraction to improve contaminant recovery from ground water zones of low transmissivity

    International Nuclear Information System (INIS)

    Brown, A.; Farrow, J.R.C.; Burgess, W.

    1996-01-01

    This study examines the potential for enhancing hydrocarbon contaminant mass recovery from ground water using high vacuum soil vapor extraction (SVE). The effectiveness of this form of remediation is compared with the effectiveness of conventional pump-and-treat. This study focuses on the performance of a high vacuum SVE system at two ground water monitoring wells (MW-17 and MW-65b) at a site in Santa Barbara, California, US. The site is a highly characterized site with vadose zone and ground water petroleum hydrocarbon contamination (gasoline). The ground water wells are located beyond a defined area of vadose zone soil contamination. Ground water hydrocarbon contamination [light non-aqueous phase liquid (LNAPL) and dissolved phase] is present at each of the wells. the ground water wells have been part of a low-flow, pump-and-treat, ground water treatment system (GWTS) since August, 1986. The low transmissivity of the aquifer sediments prevent flow rates above approximately 0.02 gpm (0.01 l/min) per well

  2. In-situ hydrodynamic characterization of a soil by means of an infiltration experiment. Application to a sandy soil in the central zone of Senegal

    International Nuclear Information System (INIS)

    Haverkamp, R.; Hamon, G.; Vauclin, M.; Vachaud, G.

    1979-01-01

    A new method is presented for predicting the hydraulic conductivity curve of an unsaturated soil from the relation between effective pressure and water content and the law of cumulative infiltration. With this method, which is based on the conceptual model proposed by Mualem (1976), it is possible to determine the parameter n as a function of the type of soil by fitting the cumulative infiltration law obtained numerically by solution of the Richards equation to that obtained experimentally. This approach is tested on experimental results obtained using the internal drainage method on sandy soil in the Central Zone of Senegal. It is shown that the moisture profiles calculated with the aid of the predicted hydraulic conductivity curve are in very good agreement with the measured profiles. This method seems well suited for studying the spatial variability of hydrodynamic characteristics since it is simple to set up and precise, and a large number of experiments can be performed in a short space of time. (author)

  3. Buffer Zone Requirements for Soil Fumigant Applications

    Science.gov (United States)

    Updated pesticide product labels require fumigant users to establish a buffer zone around treated fields to reduce risks to bystanders. Useful information includes tarp testing guidance and a buffer zone calculator.

  4. Soil respiration in the cold desert environment of the Colorado Plateau (USA): Abiotic regulators and thresholds

    Science.gov (United States)

    Fernandez, D.P.; Neff, J.C.; Belnap, J.; Reynolds, R.L.

    2006-01-01

    Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether the inverse-texture hypothesis applies to decomposition. Within our study site, the effect of texture on moisture, as described by the inverse texture hypothesis, was evident, but its effect on decomposition was not. Our results show temperature and moisture to be the dominant abiotic controls of soil respiration. Specifically, temporal offsets in temperature and moisture conditions appear to have a strong control on soil respiration, with the highest fluxes occurring in spring when temperature and moisture were favorable. These temporal offsets resulted in decomposition rates that were controlled by soil moisture and temperature thresholds. The highest fluxes of CO2 occurred when soil temperature was between 10 and 16??C and volumetric soil moisture was greater than 10%. Decomposition-cloth results, which integrate decomposition processes across several months, support the soil-respiration results and further illustrate the seasonal patterns of high respiration rates during spring and low rates during summer and fall. Results from this study suggest that the parameters used to predict soil respiration in mesic ecosystems likely do not apply in cold-desert environments. ?? Springer 2006.

  5. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    Science.gov (United States)

    Cai, Gaochao; Vanderborght, Jan; Langensiepen, Matthias; Schnepf, Andrea; Hüging, Hubert; Vereecken, Harry

    2018-04-01

    How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil-plant-atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes-Jarvis (FJ) model and the physically based Couvreur (C) model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC), water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities. The impact of differences in

  6. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2008-12-01

    Full Text Available A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content, the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.

  7. MAPPING SPATIAL MOISTURE CONTENT OF UNSATURATED AGRICULTURAL SOILS WITH GROUND-PENETRATING RADAR

    Directory of Open Access Journals (Sweden)

    O. Shamir

    2016-06-01

    Full Text Available Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf, common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf, common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1–5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  8. Extraction methods for determination of Pu and Am contents in soil samples from the Chernobyl' NPP 30-km zone

    International Nuclear Information System (INIS)

    Shvetsov, I.K.; Yakovlev, N.G.; Kalinichenko, B.S.; Kulakov, V.M.; Kulazhko, V.G.; Vlasov, M.M.; Shubko, V.M.; Pchelkin, V.A.; Rodionov, Yu.F.; Lisin, S.K.

    1989-01-01

    The possibilities for decreasing the time of soil sample analysis for Pu, Am, Cm isotope concentrations with simultaneous increasing the sensitivity and analysis representativity are demonstrated. It is achieved due to changing the total sample break-down by oxidizing leaching, and the procedure of ion-exchange separation by single extraction using trioctylamine. Experience in the method applications for analysis of soil samples in the Chernobyl' NPP 30-km zone aimed at determination of correlation coefficients for Pu/Ce-144 and Pu/Am-241 is generalized. 4 refs.; 4 figs.; 1 tab

  9. Profiles of traditional farms: soil texture, total inorganic N and bacteria-producing estate

    Directory of Open Access Journals (Sweden)

    Yuni Puji Hastuti

    2010-07-01

    Full Text Available Pond traditional system is the pond in still activity with a symple management system.  This activity indicated by low technology and relatively low production level.  Aquaculture activities in traditional pond not loss from nitrification and denitrification prosess, however this process is more low production rather than semiintensive and intensive system. This study aims to observe abundance of bacteria nitrification along with changes soil texture, and N-organic in the soil of traditional pond. Chemical and biological analyses were done using spectroscopy and Most Probable Number methods to determine the amount of nitrite and ammonium production of bacteria.  Based of the result, each stratum traditional ponds have relatively similar abundance in nitrite producing bacteria of 7.08-7.47 Log CFU/g.  Increasing abundance in ammonium producing bacteria was found in all stratum, range from 5.63 Log cfu/g to 8.12 Log cfu/g. From the first day of preparation, traditional ponds have a lot of nitrite and ammonium producing bacteria.Keywords: traditional, pond, nitrification, abundance of bacteri. ABSTRAKTambak sistem tradisional merupakan tambak yang dalam kegiatannya masih menggunakan sistem manajemen sederhana.  Hal ini ditandai dengan penerapan teknologi sederhana, dan tingkat produksi relatif rendah.  Kegiatan budidaya di tambak tradisional tidak akan terlepas dari proses nitrifikasi dan denitrifikasi, namun demikian proses ini relatif lebih rendah aktivitasnya daripada tambak sistem semiintensif dan intensif.  Tujuan dari penelitian ini adalah mempelajari kelimpahan bakteri penghasil senyawa nitrit, amonium seiring dengan perubahan tekstur tanah, dan N-organik pada tanah tambak tradisional. Media pertumbuhan bakteri dikondisikan bebas oksigen (oxygen free nitrogen/OFN method , sedangkan kelimpahan bakteri dianalisis dengan rumus most porbable number (MPN. Berdasarkan hasil, setiap strata tanah tambak tradisional memiliki jumlah bakteri

  10. Can we trust the calculation of texture indices of CT images? A phantom study.

    Science.gov (United States)

    Caramella, Caroline; Allorant, Adrien; Orlhac, Fanny; Bidault, Francois; Asselain, Bernard; Ammari, Samy; Jaranowski, Patricia; Moussier, Aurelie; Balleyguier, Corinne; Lassau, Nathalie; Pitre-Champagnat, Stephanie

    2018-04-01

    Texture analysis is an emerging tool in the field of medical imaging analysis. However, many issues have been raised in terms of its use in assessing patient images and it is crucial to harmonize and standardize this new imaging measurement tool. This study was designed to evaluate the reliability of texture indices of CT images on a phantom including a reproducibility study, to assess the discriminatory capacity of indices potentially relevant in CT medical images and to determine their redundancy. For the reproducibility and discriminatory analysis, eight identical CT acquisitions were performed on a phantom including one homogeneous insert and two close heterogeneous inserts. Texture indices were selected for their high reproducibility and capability of discriminating different textures. For the redundancy analysis, 39 acquisitions of the same phantom were performed using varying acquisition parameters and a correlation matrix was used to explore the 2 × 2 relationships. LIFEx software was used to explore 34 different parameters including first order and texture indices. Only eight indices of 34 exhibited high reproducibility and discriminated textures from each other. Skewness and kurtosis from histogram were independent from the six other indices but were intercorrelated, the other six indices correlated in diverse degrees (entropy, dissimilarity, and contrast of the co-occurrence matrix, contrast of the Neighborhood Gray Level difference matrix, SZE, ZLNU of the Gray-Level Size Zone Matrix). Care should be taken when using texture analysis as a tool to characterize CT images because changes in quantitation may be primarily due to internal variability rather than from real physio-pathological effects. Some textural indices appear to be sufficiently reliable and capable to discriminate close textures on CT images. © 2018 American Association of Physicists in Medicine.

  11. Tree Coring as a Complement to Soil Gas Screening to Locate PCE and TCE Source Zones and Hot Spots

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen; Trapp, Stefan; Rehne Jensen, Pernille

    2015-01-01

    ) or trichloroethylene (TCE) to evaluate their ability to locate source zones and contaminant hot spots. One test site represented a relatively homogeneous sandy soil and aquifer, and the second a more heterogeneous geology with both sandy and less permeable clay till layers overlying a chalk aquifer. Tree cores from...

  12. Effect of long-term irrigation patterns on phosphorus forms and distribution in the brown soil zone.

    Directory of Open Access Journals (Sweden)

    Chang Liu

    Full Text Available Continuous application of P fertilizers under different irrigation patterns can change soil phosphorus (P chemical behavior and increase soil P levels that are of environmental concern. To assess the effect of long-term different irrigation patterns on soil P fractions and availability, this study examined sequential changes in soil organic P and inorganic P from furrow irrigation (FI, surface drip irrigation (SUR, and subsurface drip irrigation (SDI in the brown soil zone (0-60 cm during 1998 to 2011. Analyses of soil P behavior showed that the levels of total P are frequently high on top soil layers. The total P (TP contents of the entire soil profiles under three irrigation treatments were 830.2-3180.1 mg/kg. The contents of available P (AP were 72.6-319.3 mg P/kg soil through soil profiles. The greatest TP and AP contents were obtained within the upper soil layers in FI. Results of Hedley's P fractionation indicate that HCl-P is a dominant form and the proportion to TP ranges from 29% to 43% in all three methods. The contents of various fractions of P were positively correlated with the levels of total carbon (TC, total inorganic carbon (TIC, and calcium (Ca, whereas the P fractions had negative correlation with pH in all soil samples. Regression models proved that NaHCO3-Po was an important factor in determining the amount of AP in FI. H2O-Po, NaHCO3-Po, and NaOH-Pi were related to available P values in SUR. NaHCO3-Po and NaOH-Po played important roles in SDI. The tomato yield under SUR was higher than SDI and FI. The difference of P availability was also controlled by the physicochemical soil properties under different irrigation schedule. SUR was a reasonable irrigation pattern to improve the utilization efficiency of water and fertilizer.

  13. Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties.

    Science.gov (United States)

    Adhikari, Gopi; Bhattacharyya, Krishna G

    2015-03-01

    The present study was carried out to evaluate the impact of the effluents and the solid wastes generated by a giant pulp and paper mill in the northeastern part of India on soil mineralogy of the area. The impacts were monitored by analysis of soil samples from seven sites located in the potential impact zone and a control site where any kind of effluent discharge or solid waste dumping was absent. The soil belonged to medium texture type (sandy clay loam, sandy loam, loamy sand, and silt loam), and the soil aggregate analysis indicated higher levels of organic carbon, pH, electrical conductivity, effective cation exchange capacity, and mean weight diameter at sites receiving effluents and solid wastes from the pulp and paper mill. Depletion in soil silica level and in feldspar and quartz contents and rise in iron and calcium contents at the sites receiving effluents from the pulp and paper mill indicated significant influence on soil mineralogy. The soil contained a mixture of minerals consisting of tectosilicates (with silicate frameworks as in quartz or feldspar), phylosilicates (layered clays like kaolinite, smectite, chlorite, illite, etc.), and carbonates. Absence of pure clay minerals indicated a state of heterogeneous intermediate soil clay transformation. The significance of the mixed mineralogy in relation to the disposal of effluents and dumping of solid wastes is discussed in details.

  14. Complete release from regulatory control via the density of radioactive contamination of soil of the Chornobyl exclusion zone

    International Nuclear Information System (INIS)

    Bondarenko, Oleg; Fadeev, Mykhaylo; Kireev, Serhiy; Proskura, Mykola

    2008-01-01

    Full text: In this work a general procedure of establishment the criterion of complete release from regulatory control via the density of radioactive contamination of soil of alone areas of the Chornobyl exclusion zone is represented by the following three stages, namely: 1) Justification of the dose criterion of complete release by applying the fundamental approaches of regulating the prolonged exposure of the public on a basement of ICRP Publication No. 82; 2) Justification of a procedure for establishment of dose constraint through evaluation of the statistical distribution of a controlled radiation value through determination of the high boundary of the confidence interval; 3) Generalization of conversion coefficients (via the density of radioactive contamination of soil) and coverage coefficients for the dose forming factors of the public (inhalation intake of transuranium radionuclides both at natural and technogenic dust resuspension, peroral intake of 137 Cs and 90 Sr via food stuff, external exposure from 137 Cs); on a basis of these coefficients average doses and dose constraint of a critical group of the public are calculated. As it is shown in the work, the generalized criterion of complete release from regulatory control via the density of radioactive contamination of soil of the Chornobyl exclusion zone can be defined by dividing the recommended ICRP dose clearance level for situation of the post-accidental prolonged exposure of a critical group of the public, namely, 0.3 mSv·year -1 to the dose conversion coefficient (i.e. transfer from the superficial soil contamination of radioactivity to the dose constraint for the Chornobyl exclusion zone), namely, 12.9 μSv·year -1 /((kBq·M -2 ). Thus, a level of the density of radioactive contamination of soil, that provides the complete release from regulatory control makes 23.3 kBq·M -2 . For completion of the work on justification of the criterion of complete territory release in the conditions of

  15. Evaluating the role of soil variability on groundwater pollution and recharge at regional scale by integrating a process-based vadose zone model in a stochastic approach

    Science.gov (United States)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi

    2013-04-01

    Interpreting and predicting the evolution of water resources and soils at regional scale are continuing challenges for natural scientists. Examples include non-point source (NPS) pollution of soil and surface and subsurface water from agricultural chemicals and pathogens, as well as overexploitation of groundwater resources. The presence and build up of NPS pollutants may be harmful for both soil and groundwater resources. The accumulation of salts and trace elements in soils can significantly impact crop productivity, while loading of salts, nitrates, trace elements and pesticides into groundwater supplies can deteriorate a source of drinking and irrigation water. Consequently, predicting the spatial distribution and fate of NPS pollutants in soils at applicative scales is now considered crucial for maintaining the fragile balance between crop productivity and the negative environmental impacts of NPS pollutants, which is a basis of sustainable agriculture. Soil scientists and hydrologists are regularly asked to assist state agencies to understand these critical environmental issues. The most frequent inquiries are related to the development of mathematical models needed for analyzing the impacts of alternative land-use and best management use and management of soil and water resources. Different modelling solutions exist, mainly differing on the role of the vadose zone and its horizontal and vertical variability in the predictive models. The vadose zone (the region from the soil surface to the groundwater surface) is a complex physical, chemical and biological ecosystem that controls the passage of NPS pollutants from the soil surface where they have been deposited or accumulated due to agricultural activities, to groundwater. Physically based distributed hydrological models require the internal variability of the vadose zone be explored at a variety of scales. The equations describing fluxes and storage of water and solutes in the unsaturated zone used in these

  16. Emerging organic pollutants in the vadose zone of a soil aquifer treatment system: Pore water extraction using positive displacement.

    Science.gov (United States)

    Sopilniak, Alexander; Elkayam, Roy; Rossin, Anna Voloshenko; Lev, Ovadia

    2018-01-01

    Trace organic compounds in effluents, water streams and aquifers are amply reported. However, the mobile pool of Emerging Organic Contaminants (EOCs) in the deep parts of the vadose zone is hard to estimate, due to difficulties in extraction of sufficient quantity of pore water. Here, we present a new methodology for depth profiling of EOCs in pore water by Positive Displacement Extraction (PDE): Pore water extraction from unsaturated soil samples is carried out by withdrawal of soil cores by direct-push drilling and infiltrating the core by organics free water. We show that EOC concentrations in the water eluted in the plateau region of the inverse breakthrough curve is equal to their pore water concentrations. The method was previously validated for DOC extraction, and here the scope of the methodology is extended to pore water extraction for organic pollutants analysis. Method characteristics and validation were carried out with atrazine, simazine, carbamazepine, venlafaxine, O-desmethylvenlafaxine and caffeine in the concentration range of several ng to several μg/liter. Validation was carried out by laboratory experiments on three different soils (sandy, sandy-clayey and clayey). Field studies in the vadose zone of a SAT system provided 27 m deep EOC profiles with less than 1.5 m spatial resolution. During the percolation treatment, carbamazepine remained persistent, while the other studied EOCs were attenuated to the extent of 50-99%.The highest degradation rate of all studied EOCs was in the aerobic zone. EOC levels based on PDE and extraction by centrifugation were compared, showing a positive bias for centrifugation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Modeling Soil-Landscape Relations in the Sonoran Desert, Arizona, USA

    Science.gov (United States)

    Regmi, N. R.; Rasmussen, C.

    2015-12-01

    Digital soil mapping (DSM) techniques that integrate remotely sensed surface topography and reflectance, and map soil-landscape associations have the potential in improve understanding of critical zone evolution and landscape processes. The goal of this study was to understand the soil-geomorphic evolution of Quaternary alluvial and eolian deposits in the Sonoran Desert using a data-driven DSM technique and mapping of soil-landscape relationships. An iterative principal component analysis (iPCA) data reduction routine was developed and implemented for a set of LiDAR elevation- and Landsat ETM+-derived environmental covariates that characterize soil-landscape variability. Principal components that explain more than 95% of the soil-landscape variability were then integrated and classified based on an ISODATA (Iterative Self-Organizing Data) unsupervised technique. The classified map was then segmented based on a region growing algorithm and multi-scale maps of soil-landscape relations were developed, which then compared with maps of major arid-region landforms that can be identified on aerial photographs and satellite images by their distinguishing tone and texture, and in the field by their distinguishing surface and sub-surface soil physical, chemical and biological properties. The approach identified and mapped the soil-landscape variability of alluvial and eolian landscapes, and illustrated the applicability of coupling covariate selection and integration by iPCA, ISODATA classifications of integrated layers, and image segmentation for effective spatial prediction of soil-landscape characteristics. The approach developed here is data-driven, cost- and time-effective, applicable for multi-scale mapping, allows incorporation of wide variety of covariates, and provides accurate quantitative prediction of wide range of soil-landscape attributes that are necessary for hydrologic models, land and ecosystem management decisions, and hazard assessment.

  18. Semantic attributes based texture generation

    Science.gov (United States)

    Chi, Huifang; Gan, Yanhai; Qi, Lin; Dong, Junyu; Madessa, Amanuel Hirpa

    2018-04-01

    Semantic attributes are commonly used for texture description. They can be used to describe the information of a texture, such as patterns, textons, distributions, brightness, and so on. Generally speaking, semantic attributes are more concrete descriptors than perceptual features. Therefore, it is practical to generate texture images from semantic attributes. In this paper, we propose to generate high-quality texture images from semantic attributes. Over the last two decades, several works have been done on texture synthesis and generation. Most of them focusing on example-based texture synthesis and procedural texture generation. Semantic attributes based texture generation still deserves more devotion. Gan et al. proposed a useful joint model for perception driven texture generation. However, perceptual features are nonobjective spatial statistics used by humans to distinguish different textures in pre-attentive situations. To give more describing information about texture appearance, semantic attributes which are more in line with human description habits are desired. In this paper, we use sigmoid cross entropy loss in an auxiliary model to provide enough information for a generator. Consequently, the discriminator is released from the relatively intractable mission of figuring out the joint distribution of condition vectors and samples. To demonstrate the validity of our method, we compare our method to Gan et al.'s method on generating textures by designing experiments on PTD and DTD. All experimental results show that our model can generate textures from semantic attributes.

  19. rhizosphere and non-rhizosphere soil mycoflora of corchorus olitorius

    African Journals Online (AJOL)

    Olahan et. al

    11.24% (percentage moisture content), 0.29ml/g (water holding ... into two types, namely rhizosphere soil and non-rhizosphere soil. ... α-tocopherol equivalent to vitamin E (Oyedele et al., 2006). The ... Ilorin and stored in a sterile polythene bag prior to use. ... Organic matter content, texture and water holding capacity of soil.

  20. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  1. Deciduous Forest Zone of Ghana

    African Journals Online (AJOL)

    carbon, nitrogen and phosphorus contents, soil reaction and base saturation with highest values in the topsoil due to the .... These soils occur extensively in the. Zone ... tion with 6M sulphuric acid. .... which will lead to removal of topsoil litter,.

  2. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    Directory of Open Access Journals (Sweden)

    G. Cai

    2018-04-01

    Full Text Available How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil–plant–atmosphere system. Physically based root water uptake (RWU models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes–Jarvis (FJ model and the physically based Couvreur (C model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC, water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities

  3. Cleanup Verification Package for the 118-H-6:2, 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils; the 118-H-6:3, 105-H Reactor Fuel Storage Basin and Underlying Soils; the 118-H-6:6 Fuel Storage Basin Deep Zone Side Slope Soils; the 100-H-9, 100-H-10, and 100-H-13 French Drains; the 100-H-11 and 100-H-12 Expansion Box French Drains; and the 100-H-14 and 100-H-31 Surface Contamination Zones

    International Nuclear Information System (INIS)

    Appel, M.J.

    2006-01-01

    This cleanup verification package documents completion of removal actions for the 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils (subsite 118-H-6:2); 105-H Reactor Fuel Storage Basin and Underlying Soils (118-H-6:3); and Fuel Storage Basin Deep Zone Side Slope Soils. This CVP also documents remedial actions for the following seven additional waste sties: French Drain C (100-H-9), French Drain D (100-H-10), Expansion Box French Drain E (100-H-11), Expansion Box French Drain F (100-H-12), French Drain G (100-H-13), Surface Contamination Zone H (100-H-14), and the Polychlorinated Biphenyl Surface Contamination Zone (100-H-31)

  4. The Use of a Geographic Information System and Remote Sensing Technology for Monitoring Land Use and Soil Carbon Change in the Subtropical Dry Forest Life Zone of Puerto Rico

    Science.gov (United States)

    Velez-Rodriguez, Linda L. (Principal Investigator)

    1996-01-01

    Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.

  5. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    Science.gov (United States)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  6. Effect of soil metal contamination on glyphosate mineralization: role of zinc in the mineralization rates of two copper-spiked mineral soils.

    Science.gov (United States)

    Kim, Bojeong; Kim, Young Sik; Kim, Bo Min; Hay, Anthony G; McBride, Murray B

    2011-03-01

    A systematic investigation into lowered degradation rates of glyphosate in metal-contaminated soils was performed by measuring mineralization of [(14)C]glyphosate to (14)CO(2) in two mineral soils that had been spiked with Cu and/or Zn at various loadings. Cumulative (14)CO(2) release was estimated to be approximately 6% or less of the amount of [(14)C]glyphosate originally added in both soils over an 80-d incubation. For all but the highest Cu treatments (400 mg kg(-1)) in the coarse-textured Arkport soil, mineralization began without a lag phase and declined over time. No inhibition of mineralization was observed for Zn up to 400 mg kg(-1) in either soil, suggesting differential sensitivity of glyphosate mineralization to the types of metal and soil. Interestingly, Zn appeared to alleviate high-Cu inhibition of mineralization in the Arkport soil. The protective role of Zn against Cu toxicity was also observed in the pure culture study with Pseudomonas aeruginosa, suggesting that increased mineralization rates in high Cu soil with Zn additions might have been due to alleviation of cellular toxicity by Zn rather than a mineralization specific mechanism. Extensive use of glyphosate combined with its reduced degradation in Cu-contaminated, coarse-textured soils may increase glyphosate persistence in soil and consequently facilitate Cu and glyphosate mobilization in the soil environment. Copyright © 2010 SETAC.

  7. Geochemical controls on the composition of soil pore waters beneath a mixed waste disposal site in the unsaturated zone

    International Nuclear Information System (INIS)

    Rawson, S.A.; Hubbell, J.M.

    1989-01-01

    Soil pore waters are collected routinely to monitor a thick unsaturated zone that separates a mixed waste disposal site containing transuranic and low-level radioactive wastes from the Snake River Plain aquifer. The chemistry of the soil pore waters has been studied to evaluate the possible control on the water composition by mineral equilibria and determine the extent, if any, of migration of radionuclides from the disposal site. Geochemical codes were used to perform speciation calculations for the waters. The results of speciation calculations suggest that the installation of the lysimeters affects the observed silica contents of the soil pore waters. The results also establish those chemical parameters that are controlled by secondary mineral precipitation. 15 refs., 6 figs., 1 tab

  8. Investigation of the material flow and texture evolution in friction-stir welded aluminum alloy

    Science.gov (United States)

    Kang, Suk Hoon; Han, Heung Nam; Oh, Kyu Hwan; Cho, Jae-Hyung; Lee, Chang Gil; Kim, Sung-Joon

    2009-12-01

    The material flow and crystallographic orientation in aluminum alloy sheets joined by friction stir welding (FSW) were investigated by electron back scattered diffraction (EBSD). The microstructure and microtexture of the material near the stir zone was found to be influenced by the rotational behavior of the tool pin. It was found that, during FSW, the forward movement of the tool pin resulted in loose contact between the tool pin and the receding material at the advancing side. This material behavior inside the joined aluminum plates was also observed by an X-ray micrograph by inlaying a gold marker into the plates. As the advancing speed of the tool increases at a given rotation speed, the loose contact region widens. As the microtexture of the material near the stir zone is very close to the simple shear texture on the basis of the frame of the tool pin in the normal and tangent directions, the amount of incompletely rotated material due to the loose contact could be estimated from the tilt angle of the shear texture in the pole figure around the key hole.

  9. [Fractions and adsorption characteristics of phosphorus on sediments and soils in water level fluctuating zone of the Pengxi River, a tributary of the Three Gorges Reservoir].

    Science.gov (United States)

    Sun, Wen-Bin; Du, Bin; Zhao, Xiu-Lan; He, Bing-Hui

    2013-03-01

    The sediment, one of the key factors leading to the eutrophication of water bodies, is an important ecological component of natural water body. In order to investigate the morphological characteristics and moving-transiting rule of phosphorus in the sediments of the Pengxi River, a tributary of the Three Gorges Reservoir, the distributions of different phosphorus forms on the three cross-section in the sediments and three soil types of riparian zone were investigated using the sequential extraction method. The characteristics of phosphorus adsorption on the sediments were also investigated by batch experiments. The equilibrium phosphorus concentrations at zero adsorption (EPC0) on those sediments were estimated using the Henry linear models. The results show that the total phosphorus (TP) contents of these sediments and soils of riparian zone were 0.80-1.45 g x kg(-1) and 0.65-1.16 g x kg(-1), respectively. Phosphorus in sediments and soils were divided into inorganic phosphorus (IP) and organic phosphorus (Or-P), and the inorganic phosphorus was the dominant component of TP. Of the inorganic phosphorus fractions, the percentages of phosphorus bounded to calcium (Ca-P) and occluded phosphorus (O-P) from sediments were higher than 80%, implying that the contents of phosphorus were mainly influenced by their bedrocks and the sedimentary environmental conditions, not by the activities of human beings. The fractions of Ca-P and O-P were the dominant components of inorganic phosphorus in alluvial soil and purple soil, while the fraction of O-P was the highest in the paddy soil. The EPC0 values of the sediments from the sections of Huangshi, Shuangjiang and Gaoyang were 0.08, 0.13 and 0.11 mg x L(-1) respectively, but the EPC0 values of the alluvial soil, purple soil and paddy soil located in riparian zone were 0.08, 0.09 and 0.04 mg x L(-1), respectively. Correlation analysis shows that the values of EPC0 positively related to the contents of total phosphorus and clay

  10. Microstructure development and texture evolution of aluminum multi-port extrusion tube during the porthole die extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.H. [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Tang, D., E-mail: tangding@sjtu.edu.cn [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Fang, W.L.; Li, D.Y.; Peng, Y.H. [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-08-15

    Aluminum multi-port extrusion tube is processed by the porthole die extrusion and the internal tube walls are welded through the solid state metallurgical bonding. In order to observe the development of grains and their orientations under severe plastic deformation and solid state welding, the extrusion butt together with the die is quenched immediately after extrusion to preserve the grain structure in the processing. The forming histories of selected material points are obtained by analyzing the optical microscopy graph. The evolution of the microstructure along the forming path is characterized by electro backscattered diffraction. It is found that geometrical dynamic recrystallization happens in the process. Grains are elongated, scattered at the transition zone and shear intensive zone, and then pinched off when they are pushed out from the die orifice. The shear-type orientations are predominant at the surface layer on the longitudinal section of the tube web and have penetrated into the intermediate layer. The rolling-type orientations are formed at the central layer. Texture gradient through the thickness of the tube web is observed. And cube orientated grains are found at the seam weld region. - Highlights: •Microstructure of extrusion butt is preserved after the micro scale porthole die extrusion. •Grain morphology history along forming path is investigated. •Texture evolutions on three material flows are present. •Texture gradient exists on the longitudinal section of the internal wall of profile. •Rolling-type and cube textures are found at the solid state welding region.

  11. Mechanical impedance of soil crusts and water content in loamy soils

    Science.gov (United States)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows

  12. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans.

    Science.gov (United States)

    Lohmann, Philipp; Stoffels, Gabriele; Ceccon, Garry; Rapp, Marion; Sabel, Michael; Filss, Christian P; Kamp, Marcel A; Stegmayr, Carina; Neumaier, Bernd; Shah, Nadim J; Langen, Karl-Josef; Galldiks, Norbert

    2017-07-01

    We investigated the potential of textural feature analysis of O-(2-[ 18 F]fluoroethyl)-L-tyrosine ( 18 F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic 18 F-FET PET. Tumour-to-brain ratios (TBRs) of 18 F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR mean alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR max alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR max . Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic 18 F-FET PET scans. • Textural feature analysis provides quantitative information about tumour heterogeneity • Textural features help improve discrimination between brain metastasis recurrence and radiation injury • Textural features might be helpful to further understand tumour heterogeneity • Analysis does not require a more time consuming dynamic PET acquisition.

  13. Influence of rolling and annealing conditions on texture and mechanical properties of zirconium (1960); Influence des conditions de laminage et de recuit sur la texture et les proprietes mecaniques du zirconium (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Orssaud, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-06-15

    Rolling and annealing textures of KROLL zirconium samples at several rolling rates were studied by pole figures with an automatic recorder versus the position in the sheet thickness. Tensile tests, hardness measurements and micrographic examinations allowed to study the evolution of the recrystallization and the variation of the mechanical properties after rolling and/or annealing. Annealing textures slightly varies with the annealing temperature. Annealing at 500 deg. C gives several peculiarities. This temperature seems characteristic in the study of zirconium. (author) [French] Les textures de laminage et de recuit d'echantillons de zirconium KROLL lamine a divers taux ont ete etudiees en tracant des diagrammes de figures de poles en divers points de l'epaisseur des toles, a l'aide d'un appareil a enregistrement automatique. Des essais de traction et des mesures de duretes ainsi que des micrographies ont permis de suivre l'evolution de la recristallisation et les variations des caracteristiques mecaniques au divers stades du laminage et du recuit. La texture de recuit parait varier avec la temperature utilisee. De nombreuses particularites qui apparaissent apres recuit vers 500 deg. C montrent l'importance de cette zone de temperature dans l'etude du zirconium. (auteur)

  14. Sorção do imazapyr em solos com diferentes texturas Imazapyr sorption in soils with different textures

    Directory of Open Access Journals (Sweden)

    L.E. Firmino

    2008-06-01

    Full Text Available O conhecimento do comportamento de herbicidas no ambiente, sobretudo no solo, permite a predição de possíveis impactos do seu uso em sistemas agrícolas. Com o intuito de avaliar a sorção do herbicida imazapyr no solo, foi realizado um experimento, utilizando sorgo (Sorghum bicolor como planta bioindicadora. A sorção do imazapyr foi avaliada em areia lavada e em três solos, com as seguintes texturas: muito argilosa, franco-argilo-arenosa e areia-franca, provenientes, respectivamente, das cidades de Sete Lagoas, João Pinheiro e Rio Casca, em Minas Gerais. Foram determinados: o valor de I50 (dose que inibiu 50% no acúmulo de massa seca da planta-teste e a relação de sorção [RS = (I50 solo -I 50 areia/I50 areia]. Os valores de I50 observados foram: 29,41; 10,20 e 7,33 mg kg-1, e a relação de sorção (RS: 9,77; 2,73 e 1,68, respectivamente para os solos muito argiloso, franco-argilo-arenoso e areia franca. O herbicida imazapyr apresentou a seguinte ordem de sorção nos substratos: muito argiloso > franco-argilo-arenoso > areia-franca > areia lavada. Em solos arenosos e com baixos teores de matéria orgânica, a baixa sorção do imazapyr predispõe o produto à lixiviação no perfil do solo, podendo contaminar mananciais de águas subterrâneas.Knowledge about herbicide behavior in the environment, especially in soil, allows predicting possible impacts caused by its use in agricultural systems. An experiment using Sorghum bicolor as a bio-indicator was carried out to evaluate imazapyr sorption in soil. Sorption was evaluated in washed sand and in soils of 3 different textures: very clayed, sandy clayed loam and sandy loam, respectively from Sete Lagoas, João Pinheiro and Rio Casca - Minas Gerais. The value of I50, which inhibits 50% of dry biomass accumulation of the test-plant, and sorption relation (SR = I50 soil - I50 sand/I50 sand were determined. I50 values observed were 29.41, 10.20 and 7.33 mg kg-1 and SR values were 9

  15. Soil uses during the sugarcane fallow period: influence on soil chemical and physical properties and on sugarcane productivity

    Directory of Open Access Journals (Sweden)

    Roniram Pereira da Silva

    2014-04-01

    Full Text Available The planting of diversified crops during the sugarcane fallow period can improve the chemical and physical properties and increase the production potential of the soil for the next sugarcane cycle. The primary purpose of this study was to assess the influence of various soil uses during the sugarcane fallow period on soil chemical and physical properties and productivity after the first sugarcane harvest. The experiment was conducted in two areas located in Jaboticabal, São Paulo State, Brazil (21º 14' 05'' S, 48º 17' 09'' W with two different soil types, namely: an eutroferric Red Latosol (RLe with high-clay texture (clay content = 680 g kg-1 and an acric Red Latosol (RLa with clayey texture (clay content = 440 g kg-1. A randomized block design with five replications and four treatments (crop sequences was used. The crop sequences during the sugarcane fallow period were soybean/millet/soybean, soybean/sunn hemp/soybean, soybean/fallow/soybean, and soybean. Soil use was found not to affect chemical properties and sugarcane productivity of RLe or RLa. The soybean/millet/soybean sequence improved aggregation in the acric Latosol.

  16. Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone

    Science.gov (United States)

    Johnson, Kristofer D.; Harden, Jennifer W.; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew O.

    2013-09-01

    Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF), OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow (OLT increase in shallow OLT soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. Across the MAT gradient, PF in sandy soils varied little, but PF in loamy and silty soils decreased substantially from cooler to warmer temperatures. The change in OLT was more heterogeneous across soil texture types—in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened at warmer locations. Furthermore, when soil organic carbon was estimated using a relationship with thickness, the average increase in carbon in OLTd soils was almost four times greater compared to the average decrease in carbon in OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.

  17. Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: an incubation study with temperate grassland and forest soils in northern China.

    Science.gov (United States)

    Ding, Fan; Huang, Yao; Sun, Wenjuan; Jiang, Guangfu; Chen, Yue

    2014-01-01

    It is widely recognized that global warming promotes soil organic carbon (SOC) decomposition, and soils thus emit more CO2 into the atmosphere because of the warming; however, the response of SOC decomposition to this warming in different soil textures is unclear. This lack of knowledge limits our projection of SOC turnover and CO2 emission from soils after future warming. To investigate the CO2 emission from soils with different textures, we conducted a 107-day incubation experiment. The soils were sampled from temperate forest and grassland in northern China. The incubation was conducted over three short-term cycles of changing temperature from 5°C to 30°C, with an interval of 5°C. Our results indicated that CO2 emissions from sand (>50 µm), silt (2-50 µm), and clay (soils. The temperature sensitivity of the CO2 emission from soil particles, which is expressed as Q10, decreased in the order clay>silt>sand. Our study also found that nitrogen availability in the soil facilitated the temperature dependence of SOC decomposition. A further analysis of the incubation data indicated a power-law decrease of Q10 with increasing temperature. Our results suggested that the decomposition of organic carbon in fine-textured soils that are rich in clay or silt could be more sensitive to warming than those in coarse sandy soils and that SOC might be more vulnerable in boreal and temperate regions than in subtropical and tropical regions under future warming.

  18. Functional homogeneous zones (fHZs) in viticultural zoning procedure: an Italian case study on Aglianico vine

    Science.gov (United States)

    Bonfante, A.; Agrillo, A.; Albrizio, R.; Basile, A.; Buonomo, R.; De Mascellis, R.; Gambuti, A.; Giorio, P.; Guida, G.; Langella, G.; Manna, P.; Minieri, L.; Moio, L.; Siani, T.; Terribile, F.

    2015-06-01

    This paper aims to test a new physically oriented approach to viticulture zoning at farm scale that is strongly rooted in hydropedology and aims to achieve a better use of environmental features with respect to plant requirements and wine production. The physics of our approach are defined by the use of soil-plant-atmosphere simulation models, applying physically based equations to describe the soil hydrological processes and solve soil-plant water status. This study (part of the ZOVISA project) was conducted on a farm devoted to production of high-quality wines (Aglianico DOC), located in southern Italy (Campania region, Mirabella Eclano, AV). The soil spatial distribution was obtained after standard soil survey informed by geophysical survey. Two homogeneous zones (HZs) were identified; in each one a physically based model was applied to solve the soil water balance and estimate the soil functional behaviour (crop water stress index, CWSI) defining the functional homogeneous zones (fHZs). For the second process, experimental plots were established and monitored for investigating soil-plant water status, crop development (biometric and physiological parameters) and daily climate variables (temperature, solar radiation, rainfall, wind). The effects of crop water status on crop response over must and wine quality were then evaluated in the fHZs. This was performed by comparing crop water stress with (i) crop physiological measurement (leaf gas exchange, chlorophyll a fluorescence, leaf water potential, chlorophyll content, leaf area index (LAI) measurement), (ii) grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and (iii) wine quality (aromatic response). This experiment proved the usefulness of the physically based approach, also in the case of mapping viticulture microzoning.

  19. Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone

    International Nuclear Information System (INIS)

    Lecomte-Pradines, C.; Bonzom, J.-M.; Della-Vedova, C.; Beaugelin-Seiller, K.; Villenave, C.; Gaschak, S.; Coppin, F.; Dubourg, N.; Maksimenko, A.; Adam-Guillermin, C.; Garnier-Laplace, J.

    2014-01-01

    In radioecology, the need to understand the long-term ecological effects of radioactive contamination has been emphasised. This requires that the health of field populations is evaluated and linked to an accurate estimate of received radiological dose. The aim of the present study was to assess the effects of current radioactive contamination on nematode assemblages at sites affected by the fallout from the Chernobyl accident. First, we estimated the total dose rates (TDRs) absorbed by nematodes, from measured current soil activity concentrations, Dose Conversion Coefficients (DCCs, calculated using EDEN software) and soil-to-biota concentration ratios (from the ERICA tool database). The impact of current TDRs on nematode assemblages was then evaluated. Nematodes were collected in spring 2011 from 18 forest sites in the Chernobyl Exclusion Zone (CEZ) with external gamma dose rates, measured using radiophotoluminescent dosimeters, varying from 0.2 to 22 μGy h −1 . These values were one order of magnitude below the TDRs. A majority of bacterial-, plant-, and fungal-feeding nematodes and very few of the disturbance sensitive families were identified. No statistically significant association was observed between TDR values and nematode total abundance or the Shannon diversity index (H′). The Nematode Channel Ratio (which defines the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR, suggesting that radioactive contamination may influence nematode assemblages either directly or indirectly by modifying their food resources. A greater Maturity Index (MI), usually characterising better soil quality, was associated with higher pH and TDR values. These results suggest that in the CEZ, nematode assemblages from the forest sites were slightly impacted by chronic exposure at a predicted TDR of 200 μGy h −1 . This may be imputable to a dominant proportion of pollutant resistant nematodes in all sites. This might

  20. Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Pradines, C., E-mail: catherine.lecomte-pradines@irsn.fr [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Bonzom, J.-M. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Della-Vedova, C. [Magelis, 6, rue Frederic Mistral, 84160 Cadenet (France); Beaugelin-Seiller, K. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LM2E, Building 159, Cadarache 13115 Saint Paul lez Durance cedex (France); Villenave, C. [ELISOL Environment, Building 12, Campus de la Gaillarde, 2 place Viala, 34060 Montpellier cedex 2 (France); Gaschak, S. [Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych (Ukraine); Coppin, F. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, L2BT, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Dubourg, N. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, GARM Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Maksimenko, A. [Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych (Ukraine); Adam-Guillermin, C. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Garnier-Laplace, J. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, Building 159, Cadarache 13115 Saint Paul lez Durance cedex (France)

    2014-08-15

    In radioecology, the need to understand the long-term ecological effects of radioactive contamination has been emphasised. This requires that the health of field populations is evaluated and linked to an accurate estimate of received radiological dose. The aim of the present study was to assess the effects of current radioactive contamination on nematode assemblages at sites affected by the fallout from the Chernobyl accident. First, we estimated the total dose rates (TDRs) absorbed by nematodes, from measured current soil activity concentrations, Dose Conversion Coefficients (DCCs, calculated using EDEN software) and soil-to-biota concentration ratios (from the ERICA tool database). The impact of current TDRs on nematode assemblages was then evaluated. Nematodes were collected in spring 2011 from 18 forest sites in the Chernobyl Exclusion Zone (CEZ) with external gamma dose rates, measured using radiophotoluminescent dosimeters, varying from 0.2 to 22 μGy h{sup −1}. These values were one order of magnitude below the TDRs. A majority of bacterial-, plant-, and fungal-feeding nematodes and very few of the disturbance sensitive families were identified. No statistically significant association was observed between TDR values and nematode total abundance or the Shannon diversity index (H′). The Nematode Channel Ratio (which defines the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR, suggesting that radioactive contamination may influence nematode assemblages either directly or indirectly by modifying their food resources. A greater Maturity Index (MI), usually characterising better soil quality, was associated with higher pH and TDR values. These results suggest that in the CEZ, nematode assemblages from the forest sites were slightly impacted by chronic exposure at a predicted TDR of 200 μGy h{sup −1}. This may be imputable to a dominant proportion of pollutant resistant nematodes in all sites

  1. Steam stripping of the unsaturated zone of contaminated sub-soils: the effect of diffusion/dispersion in the start-up phase

    NARCIS (Netherlands)

    Brouwers, Jos; Gilding, B.H.

    2006-01-01

    The unsteady process of steam stripping of the unsaturated zone of soils contaminated with volatile organic compounds (VOCs) is addressed. A model is presented. It accounts for the effects of water and contaminants remaining in vapour phase, as well as diffusion and dispersion of contaminants in

  2. Determination of degradation rates of organic substances in the unsaturated soil zone depending on the grain size fractions of various soil types

    Science.gov (United States)

    Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora

    2015-04-01

    Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes

  3. When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial.

    Science.gov (United States)

    Coulon, Frédéric; Al Awadi, Mohammed; Cowie, William; Mardlin, David; Pollard, Simon; Cunningham, Colin; Risdon, Graeme; Arthur, Paul; Semple, Kirk T; Paton, Graeme I

    2010-10-01

    A six month field scale study was carried out to compare windrow turning and biopile techniques for the remediation of soil contaminated with bunker C fuel oil. End-point clean-up targets were defined by human risk assessment and ecotoxicological hazard assessment approaches. Replicate windrows and biopiles were amended with either nutrients and inocula, nutrients alone or no amendment. In addition to fractionated hydrocarbon analysis, culturable microbial characterisation and soil ecotoxicological assays were performed. This particular soil, heavy in texture and historically contaminated with bunker fuel was more effectively remediated by windrowing, but coarser textures may be more amendable to biopiling. This trial reveals the benefit of developing risk and hazard based approaches in defining end-point bioremediation of heavy hydrocarbons when engineered biopile or windrow are proposed as treatment option. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Soil physical properties regulate lethal heating during burning of woody residues

    Science.gov (United States)

    Matt Busse; Carol Shestak; Ken Hubbert; Eric Knapp

    2010-01-01

    Temperatures well in excess of the lethal threshold for roots (60°C) have been measured in forest soils when woody fuels are burned. Whether this heat pulse is strongly moderated by soil moisture or soil texture is not fully understood, however. We measured soil heat profi les during 60 experimental burns, identifying changes in maximum soil temperature and heat...

  5. Implications of soil mixing for NAPL source zone remediation: Column studies and modeling of field-scale systems.

    Science.gov (United States)

    Olson, Mitchell R; Sale, Tom C

    2015-01-01

    Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (>96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to >99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Soil manganese redox cycling in suboxic zones: Effects on soil carbon stability

    Science.gov (United States)

    Suboxic soil environments contain a disproportionately higher concentration of highly reactive free radicals relative to the surrounding soil matrix, which may have significant implications for soil organic matter cycling and stabilization. This study investigated how Mn-ozidizin...

  7. The Role of Teak Leaves (Tectona grandis), Rhizobium, and Vesicular-Arbuscular Mycorrhizae on Improving Soil Structure and Soil Nutrition

    Science.gov (United States)

    Yuliani; Rahayu, Y. S.

    2018-01-01

    Calcium is the largest mineral in calcareous soils. High levels of calcium carbonate lead to phosphate deposition. Nutrient deficiencies in calcareous soil (mainly Phosphate and Nitrogen) resulted only certain crops with a wide range of tolerances that can grow. Meanwhile, dynamics nutrient in calcareous soils also depend on the topography and decomposition of the litter in the growing vegetation. The purpose of this study was to describe the pattern of nutrient enhancement and soil-texture structures on calcareous soils after littering the teak leaves, Rhizobium and Vesicular Arbuscular Mycorrhiza. The research parameters were the concentration of N, P, K; C/N ratio, humid acid content, and soil structure, which measured at days 30, 60, and 85 of soil decomposition process. The results showed that at days 30, the texture and structure of the soil tend to be stable (porosity 31.2, DMR 1.93, moisture content 0.36, sandy clay) while at days 85 has been very stable (porosity 49.8; Water content 0.28, sandy clay). While C and N organic, N and K concentration at days 30 showed low value (C organic 1.03, N 0.12, K 0.49, C / N ratio 9). This condition is almost unchanged at days 85. While the P value shows very high value (60.53) at days 30 although after 60 days the P content showed a decrease.

  8. Soil Physical and Environmental Conditions Controlling Patterned-Ground Variability at a Continuous Permafrost Site, Svalbard

    DEFF Research Database (Denmark)

    Watanabe, Tatsuya; Matsuoka, Norikazu; Christiansen, Hanne Hvidtfeldt

    2017-01-01

    properties and principal component analysis indicate that the distribution of patterned ground depends primarily on soil texture, soil moisture and the winter ground thermal regime associated with snow cover. Mudboils and composite patterns (mudboils surrounded by small polygons) occupy well-drained areas...... composed of clay-rich aeolian sediments. Compared to mudboils, composite patterns show a sharper contrast in soil texture between barren centres and vegetated rims. Hummocks filled with organic materials develop on poorly drained lowlands associated with a shallow water table. Ice-wedge polygons...

  9. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    Science.gov (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  10. Aesthetic Perception of Visual Textures: A Holistic Exploration using Texture Analysis, Psychological Experiment and Perception Modeling

    Directory of Open Access Journals (Sweden)

    Jianli eLiu

    2015-11-01

    Full Text Available Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and nonlinear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.

  11. Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish; Stenchikov, Georgiy L.; Tao, Weichun; Yapici, Tahir; Warsama, Bashir H.; Engelbrecht, Johann

    2016-01-01

    , because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably

  12. Study on the change law of soil in subsidence area of horizontal coal seam

    Science.gov (United States)

    Li, Pengfeng; Wang, Shugang; Liu, Wei

    2017-11-01

    In order to provide theoretical basis for land reclamation in subsidence area, the mining subsidence area is divided into three areas: zone I (stretching zone), zone II (compression zone) and zone III (neutral zone). On this basis, the change characteristics of the soil in the three areas of the horizontal coal seam mining subsidence area are studied. The results show that: due to stretching, soil of zone I cracks was developed, the soil continuity damage, poor integrity, serious leakage of soil Water Leakage fertilizer, the area shows the soil water holding capacity decreased, the decline of soil fertility, soil coarsening and barren trend. The soil mass in zone II is compressed and the soil structure is relatively complete, but the soil bulk density increases correspondingly, while the soil porosity decreases gradually and the permeability decreases. The main soil layer in the zone III is vertical deformation, and the soil integrity is better. But the influence of mined out area leads to the movement of water and nutrients to the lower part of the soil. This paper suggests that in the land reclamation process should adopt corresponding reclamation method based on the variation law of the three soil area of reclamation area of mining subsidence, for improving soil physicochemical properties, so as to achieve the purpose of effective reclamation.

  13. Carbon storage, soil carbon dioxide efflux and water quality in three widths of piedmont streamside management zones

    Science.gov (United States)

    Erica F. Wadl; William Lakel; Michael Aust; John Seiler

    2010-01-01

    Streamside management zones (SMZs) are used to protect water quality. Monitoring carbon pools and fluxes in SMZs may a good indicator of the SMZ’s overall function and health. In this project we evaluated some of these pools and fluxes from three different SMZ widths (30.5, 15.3, and 7.6 m) in the Piedmont of Virginia. We quantified carbon storage in the soil (upper 10...

  14. [Visual Texture Agnosia in Humans].

    Science.gov (United States)

    Suzuki, Kyoko

    2015-06-01

    Visual object recognition requires the processing of both geometric and surface properties. Patients with occipital lesions may have visual agnosia, which is impairment in the recognition and identification of visually presented objects primarily through their geometric features. An analogous condition involving the failure to recognize an object by its texture may exist, which can be called visual texture agnosia. Here we present two cases with visual texture agnosia. Case 1 had left homonymous hemianopia and right upper quadrantanopia, along with achromatopsia, prosopagnosia, and texture agnosia, because of damage to his left ventromedial occipitotemporal cortex and right lateral occipito-temporo-parietal cortex due to multiple cerebral embolisms. Although he showed difficulty matching and naming textures of real materials, he could readily name visually presented objects by their contours. Case 2 had right lower quadrantanopia, along with impairment in stereopsis and recognition of texture in 2D images, because of subcortical hemorrhage in the left occipitotemporal region. He failed to recognize shapes based on texture information, whereas shape recognition based on contours was well preserved. Our findings, along with those of three reported cases with texture agnosia, indicate that there are separate channels for processing texture, color, and geometric features, and that the regions around the left collateral sulcus are crucial for texture processing.

  15. Ion leaching and soil solution acidification in a vadose zone under soil treated with sewage sludge for agriculture.

    Science.gov (United States)

    Borba, Ricardo Perobelli; Ribeirinho, Victor Sanches; de Camargo, Otávio Antonio; de Andrade, Cristiano Alberto; Kira, Carmen Silvia; Coscione, Aline Reneé

    2018-02-01

    In this study, we performed monitoring of the soil solution (SS) over 10 years on a loamy/clayey-textured Dark Red Dystroferric Oxisol that received sewage sludge for agricultural purposes. The SS was obtained by lysimeters installed along the walls of a well at 1 m, 2 m, 3 m, 4 m and 5 m in depth. The major ions found in the SS were NO 3 - , SO 4 2- , Cl - , Ca 2+ , Mg 2+ , Al 3+ , Pb 2+ , Cd 2+ and Zn 2+ , and the pH level ranged from 4 to 6.5 along the profile. Throughout the first three years of monitoring, the pH to a 3-m depth became more acidic, and in the last year, this trend reached 5 m. At the 5-m depth, the pH decreased from 6.5 to 4.5 from the first to the last monitoring. The SS acidification was provoked by both nitrite oxidation and ion leaching. The leaching of H + or the possible ion exchange/desorption of H + due to the leached cations (Ca 2+ and Mg 2+ ) at the 4-m and 5-m depth caused the pH decrease. The ionic strength (IS) of the solution controlled the ion leaching. The sludge application increased the IS to 3 m, increasing the density of the soil charges and its ability to absorb ions. After the sludge application was completed, there was a decrease in IS of the SS as well as a decrease in ion absorption and retention abilities, which promoted leaching to greater depths. During the entire monitoring process, NO 3 - , Cd and Pb remained above the potability limit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Geology mineralogy, structure and texture of Agh-Otagh base- precious metal mineralization (North Takab

    Directory of Open Access Journals (Sweden)

    Nahid Rahmati

    2017-07-01

    Full Text Available The Agh-Otagh mineralization area in the north of Takab, was formed within the andesistic tuffaceous rocks of the Oligo- Miocene age. Mineralization include polymetallic (Cu-Pb-Zn-Au-Ag quartz veins and silicified zones, which occurred as breccia and vein- veinlets with comb, cockade and disseminated textures. Chalcopyrite, pyrite, galena and sphalerite are common ore minerals. Alteration zones consist of silicification, sericitization, argillitic, propelitic and carbonatization. Cu-Au mineralization is associated with silicification and sericitization. Analytical results of the samples from the ore- bearing quartz veins and the silicified zones indicate that the highest grade for Au is 664 ppb (ave.181 ppb. The highest and the average grades for Ag, Cu, Pb, and Zn are 120 ppm (300 ppm, 1.3 % (0.38 %, 5.5 % (0.06 % and 4.5 % (0.28 %, respectively. The investigations indicate that the Agh-Otagh mineralization was formed in four stages. In the first stage or the pre-mineralization stage, the host rock, as a result of hydrothermal process, underwent brecciation and some quartz veins and siliceous cap were formed. In the second stage or the mineralization stage the sulfide minerals formed within the quartz veins and silicification zones developed at the third stage, some unmineralized quartz, barite and carbonate vein- veinlets crosscut the previous stages. The last stage of mineralization related to supergene processes. Based on geological, mineralogical, alteration, structural and textural evidences, the Agh-Otagh base- precious metal mineralization is similar to the medium sulfidation epithermal deposits.

  17. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  18. Reduction of root-knot nematode, Meloidogyne javanica, and ozone mass transfer in soil treated with ozone.

    Science.gov (United States)

    Qiu, Jinya Jack; Westerdahl, Becky B; Pryor, Alan

    2009-09-01

    Ozone gas (O₃) is a reactive oxidizing agent with biocidal properties. Because of the current phasing out of methyl bromide, investigations on the use of ozone gas as a soil-fumigant were conducted. Ozone gas was produced at a concentration of 1% in air by a conventional electrical discharge O₃ generator. Two O₃ dosages and three gas flow rates were tested on a sandy loam soil collected from a tomato field that had a resident population of root knot nematodes, Meloidogyne javanica. At dosages equivalent to 50 and 250 kg of O₃/ha, M. javanica were reduced by 24% and 68%, and free-living nematodes by 19% and 52%, respectively. The reduction for both M. javanica and free-living nematodes was dosage dependent and flow rate independent. The rates of O₃ mass transfer (OMT) through three soils of different texture were greater at low and high moisture levels than at intermediate ones. At any one soil moisture level, the OMT rate varied with soil texture and soil organic matter content. Results suggest that soil texture, moisture, and organic matter content should be considered in determining O₃ dosage needed for effective nematode control.

  19. Parallel-Sequential Texture Analysis

    NARCIS (Netherlands)

    van den Broek, Egon; Singh, Sameer; Singh, Maneesha; van Rikxoort, Eva M.; Apte, Chid; Perner, Petra

    2005-01-01

    Color induced texture analysis is explored, using two texture analysis techniques: the co-occurrence matrix and the color correlogram as well as color histograms. Several quantization schemes for six color spaces and the human-based 11 color quantization scheme have been applied. The VisTex texture

  20. Feature-aware natural texture synthesis

    KAUST Repository

    Wu, Fuzhang

    2014-12-04

    This article presents a framework for natural texture synthesis and processing. This framework is motivated by the observation that given examples captured in natural scene, texture synthesis addresses a critical problem, namely, that synthesis quality can be affected adversely if the texture elements in an example display spatially varied patterns, such as perspective distortion, the composition of different sub-textures, and variations in global color pattern as a result of complex illumination. This issue is common in natural textures and is a fundamental challenge for previously developed methods. Thus, we address it from a feature point of view and propose a feature-aware approach to synthesize natural textures. The synthesis process is guided by a feature map that represents the visual characteristics of the input texture. Moreover, we present a novel adaptive initialization algorithm that can effectively avoid the repeat and verbatim copying artifacts. Our approach improves texture synthesis in many images that cannot be handled effectively with traditional technologies.