WorldWideScience

Sample records for soil nutrient concentrations

  1. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake.

    Science.gov (United States)

    Lentz, R D; Ippolito, J A

    2012-01-01

    Carbon-rich biochar derived from the pyrolysis of biomass can sequester atmospheric CO, mitigate climate change, and potentially increase crop productivity. However, research is needed to confirm the suitability and sustainability of biochar application to different soils. To an irrigated calcareous soil, we applied stockpiled dairy manure (42 Mg ha dry wt) and hardwood-derived biochar (22.4 Mg ha), singly and in combination with manure, along with a control, yielding four treatments. Nitrogen fertilizer was applied when needed (based on preseason soil test N and crop requirements) in all plots and years, with N mineralized from added manure included in this determination. Available soil nutrients (NH-N; NO-N; Olsen P; and diethylenetriaminepentaacetic acid-extractable K, Mg, Na, Cu, Mn, Zn, and Fe), total C (TC), total N (TN), total organic C (TOC), and pH were evaluated annually, and silage corn nutrient concentration, yield, and uptake were measured over two growing seasons. Biochar treatment resulted in a 1.5-fold increase in available soil Mn and a 1.4-fold increase in TC and TOC, whereas manure produced a 1.2- to 1.7-fold increase in available nutrients (except Fe), compared with controls. In 2009 biochar increased corn silage B concentration but produced no yield increase; in 2010 biochar decreased corn silage TN (33%), S (7%) concentrations, and yield (36%) relative to controls. Manure produced a 1.3-fold increase in corn silage Cu, Mn, S, Mg, K, and TN concentrations and yield compared with the control in 2010. The combined biochar-manure effects were not synergistic except in the case of available soil Mn. In these calcareous soils, biochar did not alter pH or availability of P and cations, as is typically observed for acidic soils. If the second year results are representative, they suggest that biochar applications to calcareous soils may lead to reduced N availability, requiring additional soil N inputs to maintain yield targets. Copyright © by the

  2. Litter production and its nutrient concentration in some fuelwood trees grown on sodic soil

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V.K. (National Botanical Research Inst., Lucknow (India))

    1992-01-01

    Litter production was estimated in 8-year-old tree plantations of Acacia nilotica, Prosopis juliflora, Dalbergia sisso, and Terminalia arjuna planted in a monoculture tree cropping system on sodic soils of Lucknow Division, India. Mean annual litter fall of these trees amounted to 5.9, 7.4, 5.0 and 5.4 t ha[sup -1], respectively. Irrespective of tree species, the leaf litter concentrations of N, K and Ca were greater than those of P and Mg. The concentration of nutrients in leaf tissues was negatively correlated for N and Ca, with the magnitude of leaf fall in D. sissoo, but was positively correlated for Ca and Mg in A. nilotica; no such correlations were found in P. juliflora and T. arjuna. The variations in the concentration of leaf litter nutrient did not appear to be species specific but depended on adverse edaphic properties including the fertility status of sodic soil. A. nilotica and P. juliflora with bimodal patterns of litter fall return greater amounts of nutrients to the soil surface than D. sissoo and T. arjuna which have unimodal patterns of litter fall. The study indicated the potential benefit of a mixed plantation system having variable leaf fall patterns among the planted trees so providing constant litter mulch to help in conserving soil moisture. (author).

  3. Source Material and Concentration of Wildfire-Produced Pyrogenic Carbon Influence Post-Fire Soil Nutrient Dynamics

    Directory of Open Access Journals (Sweden)

    Lucas A. Michelotti

    2015-04-01

    Full Text Available Pyrogenic carbon (PyC is produced by the thermal decomposition of organic matter in the absence of oxygen (O. PyC affects nutrient availability, may enhance post-fire nitrogen (N mineralization rates, and can be a significant carbon (C pool in fire-prone ecosystems. Our objectives were to characterize PyC produced by wildfires and examine the influence that contrasting types of PyC have on C and N mineralization rates. We determined C, N, O, and hydrogen (H concentrations and atomic ratios of charred bark (BK, charred pine cones (PC, and charred woody debris (WD using elemental analysis. We also incubated soil amended with BK, PC, and WD at two concentrations for 60 days to measure C and N mineralization rates. PC had greater H/C and O/C ratios than BK and WD, suggesting that PC may have a lesser aromatic component than BK and WD. C and N mineralization rates decreased with increasing PyC concentrations, and control samples produced more CO2 than soils amended with PyC. Soils with PC produced greater CO2 and had lower N mineralization rates than soils with BK or WD. These results demonstrate that PyC type and concentration have potential to impact nutrient dynamics and C flux to the atmosphere in post-fire forest soils.

  4. Soil nutrient assessment for urban ecosystems in Hubei, China.

    Directory of Open Access Journals (Sweden)

    Zhi-Guo Li

    Full Text Available Recent urban landscape vegetation surveys conducted in many cities in China identified numerous plant nutrient deficiencies, especially in newly developed cities. Soil nutrients and soil nutrient management in the cities of Hubei province have not received adequate attention to date. The aims of this study were to characterize the available nutrients of urban soils from nine cities in Hubei province, China, and to assess how soil nutrient status is related to land use type and topography. Soil nutrients were measured in 405 sites from 1,215 soil samples collected from four land use types (park, institutional [including government building grounds, municipal party grounds, university grounds, and garden city institutes], residential, and roadside verges and three topographies (mountainous [142-425 m a.s.l], hilly [66-112 m a.s.l], and plain [26-30 m a.s.l]. Chemical analyses showed that urban soils in Hubei had high pH and lower soil organic matter, available nitrogen (N, available phosphorus (P, and available boron (B concentrations than natural soils. Nutrient concentrations were significantly different among land use types, with the roadside and residential areas having greater concentrations of calcium (Ca, sulfur (S, copper (Cu, manganese (Mn, and zinc (Zn that were not deficient against the recommended ranges. Topographic comparisons showed statistically significant effects for 8 of the 11 chemical variables (p < 0.05. Concentrations of N, Ca, Mg, S, Cu, and Mn in plain cities were greater than those in mountainous cities and show a negative correlation with city elevation. These results provide data on urban soils characteristics in land use types and topography, and deliver significant information for city planners and policy makers.

  5. Temporal Changes in the Spatial Variability of Soil Nutrients

    Energy Technology Data Exchange (ETDEWEB)

    Hoskinson, Reed Louis; Hess, John Richard; Alessi, Randolph Samuel

    1999-07-01

    This paper reports the temporal changes in the spatial variability of soil nutrient concentrations across a field during the growing season, over a four-year period. This study is part of the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. Uniform fertilization did not produce a uniform increase in fertility. During the growing season, several of the nutrients and micronutrients showed increases in concentration although no additional fertilization had occurred. Potato plant uptake did not explain all of these changes. Some soil micronutrient concentrations increased above levels considered detrimental to potatoes, but the plants did not show the effects in reduced yield. All the nutrients measured changed between the last sampling in the fall and the first sampling the next spring prior to fertilization. The soil microbial community may play a major role in the temporal changes in the spatial variability of soil nutrient concentrations. These temporal changes suggest potential impact when determining fertilizer recommendations, and when evaluating the results of spatially varying fertilizer application.

  6. Effects of soil characteristics on grape juice nutrient concentrations and other grape quality parameters in Shiraz

    Science.gov (United States)

    Concepción Ramos, Maria; Romero, Maria Paz

    2017-04-01

    This study investigated the response of grapes to soil properties in the variety Shiraz (SH) cultivated in the Costers de Segre Designation of Origin (NE, Spain). The research was carried out in two areas with differences in vigor, which was examined using the Normalized Difference Vegetation Index (NDVI). Soil properties such as organic matter content, pH, electrical conductivity and nutrients (N, P, K, Ca, Mg, Cu, Zn and Mn) were analysed in the two areas. Soil analyses were limited to the upper 40 cm. Soil N-NO3 was measured in 2M KCl extracts. Assimilable phosphorus was analysed by extraction with 0.5 M NaHCO3 at pH 8.5 using the Olsen method. The available K, Ca and Mg were evaluated in hemaaxinecobalt trichloride extracts and the available fraction of Cu, Zn, Mn and Fe in DTPA- trietanolamine extracts, by spectroscopy atomic emission/absorption. Berry grapes were collected at maturity. Nutrients in grape juice (K, Ca, Mg Cu, Zn, Mn and Fe) were determined after a microwave hydrogen peroxide digestion in a closed vessel microwave digestion system and measured by spectroscopy. Other grape properties that determine grape quality such as pH, berry weight and sugar content were analysed using the methods proposed by the OIV. Differences in soil properties were observed between plots, which determined the differences in vigour. The vines with lower vigour were grown in the soils with higher pH, electrical conductivity and silt content, which had in addition higher Ca, Mg and K available levels as well as higher levels of Fe and Mn than the soil in which vines had higher vigour. However, the available fraction of Cu and Zn was smaller. Similar differences in nutrient concentration in the berry were observed for all nutrients except for Cu. Grape juice pH and total soluble solids (°Brix) were higher in the most vigorous vines. However, the differences in berry weight and total acidity at ripening were not significant. Keywords: acidity; berry weight; nutrients; p

  7. Soil-plant nutrient interactions in two mangrove areas at Southern Brazil

    Directory of Open Access Journals (Sweden)

    Ana Paula Lang Martins Madi

    2016-01-01

    The results exposed that the nutritional state of the mangrove species is different and independent form the soil attributes in which they grow. Few correlations were found among leaf nutrient concentrations and soil attributes, suggesting differential selective nutrient uptake among species.

  8. Effects of Successive Harvests on Soil Nutrient Stocks in Established Tropical Plantation Forests

    Science.gov (United States)

    Mendoza, L.; McMahon, D.; Jackson, R. B.

    2017-12-01

    Large-scale plantation forests in tropical regions alter biogeochemical processes, raising concerns about the long-term sustainability of this land use. Current commercial practices result in nutrient export with removed biomass that may not be balanced by fertilizer application. Consequent changes in a landscape's nutrient distributions can affect the growth of future plantations or other vegetation. Prior studies have reported changes in soil chemical and physical properties when plantation forests replace pastures or native vegetation, but few have examined the impacts of multiple harvest cycles following plantation establishment. This study analyzed macronutrient and carbon content of soil samples from the world's most productive plantation forests, in southeastern Brazil, to understand the long-term effects of plantation forests on soil nutrient stocks and soil fertility. Soil was collected from Eucalyptus plantation sites and adjacent vegetation in 2004 and again in 2016, after at least one full cycle of harvesting and replanting. We found that within surface soil (0-10 cm) Mg and N did not change significantly and C, P, K and Ca concentrations generally increased, but to varying extents within individual management units. This trend of increasing nutrient concentrations suggests that additional harvests do not result in cumulative nutrient depletion. However, large changes in Ca and K concentrations in individual plantation units indicate that added fertilizer does not consistently accumulate in the surface soil. Analysis of deeper soil layers and comparison to unfertilized vegetation will help to determine the fate of fertilizers and native soil nutrients in repeatedly harvested plantations. These results address the necessity of long-term investigation of nutrient changes to better understand and determine the impacts of different types of land use in the tropics.

  9. Major nutrients, heavy metals and PBDEs in soils after long-term sewage sludge application

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Longhua; Li, Zhu; Ren, Jing; Shen, Libo; Wang, Songfeng; Luo, Yongming [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Cheng, Miaomiao [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Chinese Academy of Sciences, Beijing (China). Graduate School; Christie, Peter [Agri-Food and Biosciences Institute, Belfast (United Kingdom). Agri-Environment Branch

    2012-04-15

    Purpose: Two contrasting soils receiving long-term application of commercial sewage sludge fertilizers in China were investigated to determine the concentrations of selected nutrients, heavy metals (HMs) and polybrominated diphenyl ethers (PBDEs) present to evaluate the impact of sewage sludge fertilizer on soil fertility and environmental risk. Materials and methods: Soil samples were collected from Tangshan City, Hebei province and Ningbo City, Zhejiang province and divided into two portions, one of which was air-dried and sieved through 2-, 0.25- and 0.149-mm nylon mesh for determination of nutrients and heavy metals. The other portion was frozen at -20 C, freeze-dried and sieved through 2-mm nylon mesh for PBDE analysis. The concentrations of nutrients, heavy metals and PBDEs were determined in all samples. Results and discussion: Concentrations of nutrients and heavy metals in soils amended with low rates of sewage sludge fertilizer (SSF) and conventional fertilizer were compared. After long-term excessive amendment with SSF from Ningbo City (SSF-N), the concentrations of soil total N, P, aqua regia-extractable HMs and DTPA extractable HMs were higher than the control, especially in the arable layer. Moreover, the concentration of aqua regia-extractable Zn (457 mg kg{sup -1}) exceeded the recommended China Environmental Quality Standard for soils (GB15618-1995). All 8 target PBDE congeners were found in fertilizer SSF-N and soil with excessive amendment with SSF-N for 12 years, but the concentrations of 8 different PBDEs in SSF-N-amended soil were not significantly different from control soil. Conclusions: Both economic and environmental benefits can be obtained by careful application of sewage sludge fertilizer to recycle plant nutrients. Repeated and excessive application rates of sewage sludge fertilizer may pose environmental risk, especially in respect of soil heavy metal and PBDE contamination, and high concentrations of phosphorus may also be

  10. [Correlation analysis of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata].

    Science.gov (United States)

    Wu, Dan; Luo, Shi-qiong; Yang, Zhan-nan; Ma, Jing; Hong, Liang

    2015-04-01

    The relationship of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata were investigated by measuring nutrients, enzyme activity, pH, concentrations of microbe phospholipid fatty acids (PLFAs) in soils, and determining concentrations of polyphenols and total flavonoids of H. cordata. The research is aimed to understand characteristics of the planting soils and improve the quality of cultivated H. cordata. The soils at different sample sites varied greatly in nutrients, enzyme activity, pH, microbic PLFAs and polyphenols and all flavonoids. The content of total PLFAs in sample sites was following: bacteria > fungi > actinomyces > nematode. The content of bacteria PLFAs was 37.5%-65.0% at different sample sites. Activities of polyphenol oxidease, concentrations of available P and content of PLFAs of bacteria, actinomyces and total microorganisms in soils were significantly and positively related to the concentrations of polyphenols and total flavonoids of H. cordata, respectively (P soils was significantly and negatively related to concentrations of polyphenols and total flavonoids of H. cordata, respectively (P soil nutrient, which may be improved due to transformation of soil microorganisms and enzymes to N and P in the soils, was beneficial to adaptation of H. cordata adapted to different soil conditions, and significantly affects metabolic accumulation of polyphenols and flavonoids of H. cordata.

  11. Nutrient Leaching When Soil Is Part of Plant Growth Media

    Directory of Open Access Journals (Sweden)

    Sally D. Logsdon

    2017-07-01

    Full Text Available Soils can serve as sorbents for phosphorus (P, negating the need for artificial sorbents. The purpose of this study was to compare soils with different properties for their effect on nutrient levels in effluent. Four soils were mixed with sand and packed into columns 0.5 m long, with or without compost on the surface. Infiltration and effluent concentrations were measured before and after growing plants [Buffalograss (Buchloe dactyloides (Nutt. Engelm. and bluegrama grasses (Bouteloua gracilis H.B.K. and red clover (Trifolium pratense L.]. The growth media with compost at the surface had higher nutrient levels than the media without the compost, but the final effluent nitrate concentrations post-harvest were significantly lower for columns with the compost blanket (59 vs. 86 mg L−1. All of the nitrate concentrations were high (many >100 mg L−1 due to mineralization and nitrogen fixation. The final effluent P concentrations before planting were significantly higher in the soil with the most sand (0.71 mg L−1, and after harvest in the mixture that contained the high soil P levels (0.58 mg L−1. Some soils (high in aluminum or calcium were adequate sorbents for P without additions of other sorbents, but soils often generated too much nitrate in effluent.

  12. Intercropping of green garlic (Allium sativum L.) induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L.) in a plastic tunnel.

    Science.gov (United States)

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  13. Differential Concentrations of some Nutrient Element in Forage of Corn (Zea mays L. as Affected by Organic Fertilizers and Soil Compaction

    Directory of Open Access Journals (Sweden)

    N. Najafi

    2016-01-01

    Full Text Available Soil compaction is one of the most important limiting factor for normal crop growth, because it reduces absorption by the plant. Application of organic fertilizers in agricultural soils can reduce the detrimental effects of soil compaction on plant growth and also supply some nutrients to plant. Thus, a factorial experiment was carried out in a randomized complete block design with three replications and 14 treatments to evaluate the effects of organic fertilizers in mitigating soil compaction. The first factor in this study was the source and amount of organic fertilizer at seven levels (control, farmyard manure, sewage sludge compost and municipal solid waste compost and each of organic fertilizers at two levels of 15 and 30 g/kg of soil. The second factor was soil compaction at two levels (bulk density of 1.2 and 1.7 g/cm3. To perform this experiment, 10 kg of dry soil was poured into special PVC pots and then seeds of single cross 704 corn were planted. At the end of the growth period, the corn shoot was harvested and concentrations of phosphorus (P, potassium (K, sodium (Na, iron (Fe, zinc (Zn, manganese (Mn, cadmium (Cd and lead (Pb were determined by dry ashing method. The results showed that concentrations of Cd and Pb in the shoot, related to the different treatments, were negligible. Concentrations of P, K, Fe, Mn and Zn in the corn shoot were increased significantly by application of farmyard manure, sewage sludge compost and municipal solid waste compost at both levels of soil compaction. However, Na concentration of shoot did not change significantly. Soil compaction significantly reduced P, Fe, Mn and Zn concentrations of corn shoot, but it affected concentrations of Na and K significantly. Application of organic fertilizers and increasing their levels reduced the negative effects of soil compaction on nutrients uptake by corn plant. This study showed that to improve forage corn nutrition, application of 15 or 30 g of farmyard

  14. Intercropping of Green Garlic (Allium sativum L.) Induces Nutrient Concentration Changes in the Soil and Plants in Continuously Cropped Cucumber (Cucumis sativus L.) in a Plastic Tunnel

    Science.gov (United States)

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic. PMID:23637994

  15. Intercropping of green garlic (Allium sativum L. induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L. in a plastic tunnel.

    Directory of Open Access Journals (Sweden)

    Xuemei Xiao

    Full Text Available A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N, phosphorus (P, potassium (K, calcium (Ca and manganese (Mn in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg concentrations were decreased in the cucumber plants. Shoot iron (Fe concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  16. An Integrated Multimodal Sensor for the On-site Monitoring of the Water Content and Nutrient Concentration of Soil by Measuring the Phase and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Masato FUTAGAWA

    2012-03-01

    Full Text Available We have fabricated a new multimodal sensor chip which is capable of simultaneous on-site measurements of the water content and nutrient concentration. Until now, in agriculture, water content sensors, such as TDR sensors, have been unable to provide accurate measurements, since these sensors are affected by the nutrient concentration in the soil solution. Therefore, tensiometers have generally been used. However, these are large-scale sensors and are not suitable for the precise measurements required in agriculture. Our proposed sensors are the world’s first to enable independent measurements of the water content and nutrient concentration.

  17. Influence of Acacia trees on soil nutrient levels in arid lands

    Science.gov (United States)

    De Boever, Maarten; Gabriels, Donald; Ouessar, Mohamed; Cornelis, Wim

    2014-05-01

    The potential of scattered trees as keystone structures in restoring degraded environments is gaining importance. Scattered trees have strong influence on their abiotic environment, mainly causing changes in microclimate, water budget and soil properties. They often function as 'nursing trees', facilitating the recruitment of other plants. Acacia raddiana is such a keystone species which persists on the edge of the Sahara desert. The study was conducted in a forest-steppe ecosystem in central Tunisia where several reforestation campaigns with Acacia took place. To indentify the impact of those trees on soil nutrients, changes in nutrient levels under scattered trees of three age stages were examined for the upper soil layer (0-10 cm) at five microsites with increasing distance from the trunk. In addition, changes in soil nutrient levels with depth underneath and outside the canopy were determined for the 0-30 cm soil layer. Higher concentrations of organic matter (OM) were found along the gradient from underneath to outside the canopy for large trees compared to medium and small trees, especially at microsites close to the trunk. Levels of soluble K, electrical conductivity (EC), available P, OM, total C and N decreased whereas pH and levels of soluble Mg increased with increasing distance from tree. Levels of soluble Ca and Na remained unchanged along the gradient. At the microsite closest to the trunk a significant decrease in levels of soluble K, EC, OM, available P, total C and N, while a significant increase in pH was found with increasing depth. The concentration of other nutrients remained unchanged or declined not differently underneath compared to outside the canopy with increasing depth. Differences in nutrient levels were largely driven by greater inputs of organic matter under trees. Hence, Acacia trees can affect the productivity and reproduction of understory species with the latter in term an important source of organic matter. This positive feedback

  18. SOIL AND “CERRADO” TREES NUTRIENTS AND METALS IN ADJACENT SANITARY LANDFILL AREA

    Directory of Open Access Journals (Sweden)

    Otacílio Antunes Santana

    2008-09-01

    Full Text Available This research verified the influence of a Sanitary Landfill located at the Jockey Club of the Brasilia City (JCB on the chemical contents in the tree species of “Cerrado”. Six 25 x 500 m blocks were established in the PNB to sample the soil and the trees to chemical analysis. Three blocks were established near the landfill area and three in the control area. Nitrogen, phosphorus, potassium, calcium, lead, chromium, copper and mercury were analyzed. The highest nutrients and metals concentrations in soil were sampled in landfill adjacent area. The significant, crescent and directly proportional relationship (R2 > 0.80; p < 0.001 were observed between the elements concentration analyzed in soil with the leaves tissues. Therefore, the studied landfill presences increased nutrients and metals concentrations in soil and leaf tissue, fact that did not occur in the control area.

  19. Impacts of soil petroleum contamination on nutrient release during litter decomposition of Hippophae rhamnoides.

    Science.gov (United States)

    Zhang, Xiaoxi; Liu, Zengwen; Luc, Nhu Trung; Yu, Qi; Liu, Xiaobo; Liang, Xiao

    2016-03-01

    Petroleum exploitation causes contamination of shrub lands close to oil wells. Soil petroleum contamination affects nutrient release during the litter decomposition of shrubs, which influences nutrient recycling and the maintenance of soil fertility. Hence, this contamination may reduce the long-term growth and stability of shrub communities and consequently, the effects of phytoremediation. Fresh foliar litter of Hippophae rhamnoides, a potential phytoremediating species, was collected for this study. The litter was placed in litterbags and then buried in different petroleum-polluted soil media (the petroleum concentrations were 15, 30, and 45 g kg(-1) dry soil, which were considered as slightly, moderately and seriously polluted soil, respectively) for a decomposition test. The impacts of petroleum contamination on the release of nutrients (including N, P, K, Cu, Zn, Fe, Mn, Ca and Mg) were assessed. The results showed that (1) after one year of decomposition, the release of all nutrients was accelerated in the slightly polluted soil. In the moderately polluted soil, P release was accelerated, while Cu, Zn and Mn release was inhibited. In the seriously polluted soil, Cu and Zn release was accelerated, while the release of the other nutrients was inhibited. (2) The effect of petroleum on nutrient release from litter differed in different periods during decomposition; this was mainly due to changes in soil microorganisms and enzymes under the stress of petroleum contamination. (3) To maintain the nutrient cycling and the soil fertility of shrub lands, H. rhamnoides is only suitable for phytoremediation of soils containing less than 30 g kg(-1) of petroleum.

  20. Effects of forest fire on soil nutrients in Turkish pine (Pinus brutia, Ten) ecosystems.

    Science.gov (United States)

    Yildiz, Oktay; Esen, Derya; Sarginci, Murat; Toprak, Bulent

    2010-01-01

    Fire is a long-standing and poorly understood component of the Mediterranean forestlands in Turkey. Fire can alter plant composition, destroy biomass, alter soil physical and chemical properties and reduce soil nutrient pools. However fire can also promote productivity of certain ecosystems by mineralizing soil nutrients and promoting fast growing nitrogen fixing plant species. Fire effects on soils and ecosystems in Turkey and Mediterranean regions are not well understood. This study uses a retrospective space-for-time substitution to study soil macro-nutrient changes on sites which were burned at different times during the last 8 years. The study sites are in the Fethiye Forest Management Directorate in the western Mediterranean Sea region of Turkey. Our samples show 40% less Soil C, and cation exchange capacity (CEC) at 0-20 cm soil depth two weeks after the fire. Soil C and CEC appear to recover to pre-fire level in one year. Concentrations of Mg were significantly lower on new-burn sites, but returned to pre-fire levels in one year. Total soil N concentrations one and two years after fire were 90% higher than other sites, and total P was 9 times higher on new-burn site than averages from other sites. Some implications of these results for forest managers are discussed.

  1. Concentrations of some macro and micro plant nutrient of cultivated soils in Central and Eastern Blacksea Region and their mapping by inverse distance weighted (IDW method

    Directory of Open Access Journals (Sweden)

    Mehmet Arif Özyazıcı

    2015-11-01

    Full Text Available The aim of this study was to determine plant nutrients content and to in terms of soil variables their soil database and generate maps of their distribution on agricultural land in Central and Eastern Black Sea Region using geographical information system (GIS. In this research, total 3400 soil samples (0-20 cm depth were taken at 2.5 x 2.5 km grid points representing agricultural soils. Total nitrogen, extractable calcium, magnesium, sodium, boron, iron, copper, zinc and manganese contents were analysed in collected soil samples. Analysis results of these samples were classified and evaluated for deficiency, sufficiency or excess with respect to plant nutrients. Afterwards, in terms of GIS, a soil database and maps for current status of the study area were created by using inverse distance weighted (IDW interpolation method. According to this research results, it was determined sufficient plant nutrient elements in terms of total nitrogen, extractable iron, copper and manganese in arable soils of Central and Eastern Blacksea Region while, extractable calcium, magnesium, sodium were found good and moderate level in 66.88%, 81.44% and 64.56% of total soil samples, respectively. In addition, insufficient boron and zinc concentration were found in 34.35% and 51.36% of soil samples, respectively.

  2. Specialization to Extremely Low-Nutrient Soils Limits the Nutritional Adaptability of Plant Lineages.

    Science.gov (United States)

    Verboom, G Anthony; Stock, William D; Cramer, Michael D

    2017-06-01

    Specialization to extreme selective situations promotes the acquisition of traits whose coadaptive integration may compromise evolutionary flexibility and adaptability. We test this idea in the context of the foliar stoichiometry of plants native to the South African Cape. Whereas foliar concentrations of nitrogen, phosphorus (P), potassium (K), calcium, magnesium, and sodium showed strong phylogenetic signal, as did the foliar ratios of these nutrients to P, the same was not true of the corresponding soil values. In addition, although foliar traits were often related to soil values, the coefficients of determination were consistently low. These results identify foliar stoichiometry as having a strong genetic component, with variation in foliar nutrient concentrations, especially [P] and [K], being identified as potentially adaptive. Comparison of stoichiometric variation across 11 similarly aged clades revealed consistently low foliar nutrient concentrations in lineages showing specialization to extremely low-nutrient fynbos heathlands. These lineages also display lower rates of evolution of these traits as well as a reduced tendency for foliar [P] to track soil [P]. Reduced evolutionary lability and adaptability in the nutritional traits of fynbos-specialist lineages may explain the floristic distinctness of the fynbos flora and implies a reduced scope for edaphically driven ecological speciation.

  3. Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil.

    Science.gov (United States)

    Martínez-Sánchez, José Luis

    2005-01-01

    In tropical forests with nutrient-rich soil tree's nutrient resorption from senesced leaves has not always been observed to be low. Perhaps this lack of consistence is partly owing to the nutrient resorption methods used. The aim of the study was to analyse N and P resorption proficiency from tropical rain forest trees in a nutrient-rich soil. It was hypothesised that trees would exhibit low nutrient resorption in a nutrient-rich soil. The soil concentrations of total N and extractable P, among other physical and chemical characteristics, were analysed in 30 samples in the soil surface (10 cm) of three undisturbed forest plots at 'Estaci6n de Biologia Los Tuxtlas' on the east coast of Mexico (18 degrees 34' - 18 degrees 36' N, 95 degrees 04' - 95 degrees 09' W). N and P resorption proficiency were determined from senescing leaves in 11 dominant tree species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid. Soil was rich in total N (0.50%, n = 30) and extractable P (4.11 microg g(-1) n = 30). As expected, trees showed incomplete N (1.13%, n = 11) and P (0.11%, n = 1) resorption. With a more accurate method of nutrient resorption assessment, it is possible to prove that a forest community with a nutrient-rich soil can have low levels of N and P resorption.

  4. Mycorrhiza formation and nutrient concentration in leeks (¤Allium porrum¤) in relation to previous crop and cover crop management on high P soils

    DEFF Research Database (Denmark)

    Sørensen, J.N.; Larsen, J.; Jakobsen, I.

    2005-01-01

    An improved integration of mycorrhizas may increase the sustainability in plant production. Two strategies for increasing the soil inoculum potential of mycorrhizal fungi were investigated in field experiments with leeks: Pre-cropping with mycorrhizal main crops and pre-establishment of mycorrhizal......, increased the colonization of leek roots by mycorrhizal fungi. During early growth stages, this increase was 45-95% relative to no cover crop. However, cover cropping did not significantly increase nutrient concentration or growth. These variables were not influenced by the time of cover crop incorporation...... or tillage treatments. Differences in colonization, nutrient uptake and plant growth diminished during the growing period and at the final harvest date, the effects on plant production disappeared. High soil P level or high soil inoculum level was most likely responsible for the limited response of increased...

  5. Effect of Plant Growth Promoting Rhizobacteria on the Concentration and Uptake of Macro Nutrients by Corn in a Cd-contaminated Calcareous Soil under Drought Stress

    Directory of Open Access Journals (Sweden)

    shahrzad karami

    2017-02-01

    Full Text Available Introduction: Heavy metals such as cadmium (Cd are found naturally in soils, but their amount can be changed by human activities. The study of the uptake and accumulation of heavy metals by plants is done in order to prevent their threats on human and animal’s health.Cadmium is a toxic element for living organisms. Cadmium competes with many of nutrients to be absorbed by the plant and interferes with their biological roles. Water stress affects the cell structure and the food is diverted from its normal metabolic pathway. It also reduces the availability and uptake of nutrients by the plant. One reason for the reduction of plant growth under drought stress is the accumulation of ethylene in plants. There are ways to mitigate the negative effects of drought stress that one of which is the use of Plant Growth Promoting Rhizobacteria(PGPRs to increasing the availability of nutrients. Soil beneficial bacteria play an important role in the biological cycles and have been used to increase plant health and soil fertility over the past few decades.The aim of this study was to investigate theeffect of PGPRson the concentration and uptake of macro nutrients by corn in a Cd-contaminated calcareous soil under drought stress. Materials and Methods: A greenhouse factorial experiment was conducted in a completely randomized design with three replications. The treatments were two levels of bacteria (with and without bacteria, four levels of Cd (5, 10, 20, and 40 mg kg-1, and three levels of drought stress (without stress, 80, and 65% of field capacity. The pots were filled with 3 kg of treated soil. Cd was treated as its sulfate salt in amounts of 5, 10, 20, and 40 mg kg-1. The soil was mixed uniformly with 150 mg N kg-1 as urea, 20 mg P kg-1 as Ca (H2PO42, 5 mg Fe kg-1 as Fe-EDDHA and 10, 10 and 2.5 mg Zn, Mn and Cu kg-1, respectively as their sulfate salt in order to meet plant needs for these nutrients. Six seeds of Zea mays (var. HIDO were planted at

  6. Mass loss and nutrient concentrations of buried wood as a function of organic matter removal, soil compaction, and vegetation control in a regenerating oak-pine forest

    Science.gov (United States)

    Felix Ponder; John M. Kabrick; Mary Beth Adams; Deborah S. Page-Dumroese; Marty F. Jurgensen

    2017-01-01

    Mass loss and nutrient concentrations of northern red oak (Quercus rubra) and white oak (Q. alba) wood stakes were measured 30 months after their burial in the upper 10 cm of soil in a regenerating forest after harvesting and soil disturbance. Disturbance treatments were two levels of organic matter (OM) removal (only...

  7. Nutrient status and plant growth effects of forest soils in the Basin of Mexico

    Science.gov (United States)

    Mark E. Fenn; V.M. Perea-Estrada; L.I. de Bauer; M. Pérez-Suárez; D.R. Parker; V.M. Cetina-Alcalá

    2006-01-01

    The nutrient status of forest soils in the Mexico City Air Basin was evaluated by observing plant growth responses to fertilization with N, P or both nutrients combined. P deficiency was the most frequent condition for soil from two high pollution sites and N deficiency was greatest at a low N deposition site. Concentrations of Pb and Ni, and to a lesser extent Zn and...

  8. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms.

    Science.gov (United States)

    Ohkama-Ohtsu, Naoko; Wasaki, Jun

    2010-08-01

    Mineral nutrients taken up from the soil become incorporated into a variety of important compounds with structural and physiological roles in plants. We summarize how plant nutrients are linked to many metabolic pathways, plant hormones and other biological processes. We also focus on nutrient uptake, describing plant-microbe interactions, plant exudates, root architecture, transporters and their applications. Plants need to survive in soils with mineral concentrations that vary widely. Describing the relationships between nutrients and biological processes will enable us to understand the molecular basis for signaling, physiological damage and responses to mineral stresses.

  9. Nutrient Release from Disturbance of Infiltration System Soils during Construction

    Directory of Open Access Journals (Sweden)

    Daniel P. Treese

    2012-01-01

    Full Text Available Subsurface infiltration and surface bioretention systems composed of engineered and/or native soils are preferred tools for stormwater management. However, the disturbance of native soils, especially during the process of adding amendments to improve infiltration rates and pollutant removal, may result in releases of nutrients in the early life of these systems. This project investigated the nutrient release from two soils, one disturbed and one undisturbed. The disturbed soil was collected intact, but had to be air-dried, and the columns repacked when soil shrinkage caused bypassing of water along the walls of the column. The undisturbed soil was collected and used intact, with no repacking. The disturbed soil showed elevated releases of nitrogen and phosphorus compared to the undisturbed soil for approximately 0.4 and 0.8 m of runoff loading, respectively. For the undisturbed soil, the nitrogen release was delayed, indicating that the soil disturbance accelerated the release of nitrogen into a very short time period. Leaving the soil undisturbed resulted in lower but still elevated effluent nitrogen concentrations over a longer period of time. For phosphorus, these results confirm prior research which demonstrated that the soil, if shown to be phosphorus-deficient during fertility testing, can remove phosphorus from runoff even when disturbed.

  10. Effects of watershed and riparian zone characteristics on nutrient concentrations in the River Scheldt Basin

    Directory of Open Access Journals (Sweden)

    J. Meynendonckx

    2006-01-01

    Full Text Available The relative influence of a set of watershed characteristics on surface water nutrient concentrations was examined in 173 watersheds within two subcatchments (Upper-Scheldt and Nete of the River Scheldt Basin (Flanders, Belgium. Each watershed was described by seasonal rainfall, discharge loading of point sources, morphological characteristics (area, average slope, drainage density, elongation, land use and soil properties (soil texture and drainage. Partial regression analysis revealed that soil drainage variables had the strongest influence on nutrient concentrations. Additional influence was exerted by land use and point source loading variables. Nitrate concentrations were positively correlated with effluent loadings coming from wastewater treatment plants and with the area of agricultural land. Phosphate concentrations were best explained by effluent loadings of industrial point sources and by the area of urban land. Land use close to the river was not a better predictor of nitrate and phosphate concentrations than land use away from the river. This suggests that the mediating impact of riparian zones is rather explained by the hydrologic pathways within the buffer strip.

  11. Microbial respiration per unit microbial biomass increases with carbon-to-nutrient ratios in soils

    Science.gov (United States)

    Spohn, Marie; Chodak, Marcin

    2015-04-01

    The ratio of carbon-to-nutrient in forest floors is usually much higher than the ratio of carbon-to-nutrient that soil microorganisms require for their nutrition. In order to understand how this mismatch affects carbon cycling, the respiration rate per unit soil microbial biomass carbon - the metabolic quotient (qCO2) - was studied. This was done in a field study (Spohn and Chodak, 2015) and in a meta-analysis of published data (Spohn, 2014). Cores of beech, spruce, and mixed spruce-beech forest soils were cut into slices of 1 cm from the top of the litter layer down to 5 cm in the mineral soil, and the relationship between the qCO2 and the soil carbon-to-nitrogen (C:N) and the soil carbon-to-phosphorus (C:P) ratio was analyzed. We found that the qCO2 was positively correlated with soil C:N ratio in spruce soils (R = 0.72), and with the soil C:P ratio in beech (R = 0.93), spruce (R = 0.80) and mixed forest soils (R = 0.96). We also observed a close correlation between the qCO2 and the soil C concentration in all three forest types. Yet, the qCO2 decreased less with depth than the C concentration in all three forest types, suggesting that the change in qCO2 is not only controlled by the soil C concentration. We conclude that microorganisms increase their respiration rate per unit biomass with increasing soil C:P ratio and C concentration, which adjusts the substrate to their nutritional demands in terms of stoichiometry. In an analysis of literature data, I tested the effect of the C:N ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global dataset on the microbial respiration rate per unit microbial biomass C - termed the metabolic quotient (qCO2) - was compiled form literature data. It was found that the qCO2 in the soil litter layers was positively correlated with the litter C:N ratio and negatively related with the litter nitrogen (N) concentration. The positive relation between the qCO2

  12. A New Approach To Soil Sampling For Risk Assessment Of Nutrient Mobilisation.

    Science.gov (United States)

    Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Barber, N.; Benskin, C.; Reaney, S. M.; Haygarth, P.; Quinn, P. F.; Barker, P. A.; Aftab, A.; Burke, S.; Cleasby, W.; Surridge, B.; Perks, M. T.

    2016-12-01

    Traditionally, risks of nutrient and sediment losses from soils are assessed through a combination of field soil nutrient values on soil samples taken over the whole field and the proximity of the field to water courses. The field average nutrient concentration of the soil is used by farmers to determine fertiliser needs. These data are often used by scientists to assess the risk of nutrient losses to water course, though are not really `fit' for this purpose. The Eden Demonstration Test Catchment (http://www.edendtc.org.uk/) is a research project based in the River Eden catchment, NW UK, with the aim of cost effectively mitigating diffuse pollution from agriculture whilst maintaining agricultural productivity. Three instrumented focus catchments have been monitored since 2011, providing high resolution in-stream chemistry and ecological data, alongside some spatial data on soils, land use and nutrient inputs. An approach to mitigation was demonstrated in a small sub-catchment, where surface runoff was identified as the key drivers of nutrient losses, using a suite of runoff attenuation features. Other issues identified were management of hard- standings and soil compaction. A new approach for evaluating nutrient losses from soils is assessed in the Eden DTC project. The Sensitive Catchment Integrated Modelling and Prediction (SCIMAP) model is a risk-mapping framework designed to identify where in the landscape diffuse pollution is most likely to be originating (http://www.scimap.org.uk) and was used to look at the spatial pattern of erosion potential. The aim of this work was to assess if erosion potential identified through the model could be used to inform a new soil sampling strategy, to better assess risk of erosion and risk of transport of sediment-bound phosphorus. Soil samples were taken from areas with different erosion potential. The chemical analysis of these targeted samples are compared to those obtained using more traditional sampling approaches

  13. NUTRIENT BALANCE IN WATER HARVESTING SOILS

    Directory of Open Access Journals (Sweden)

    Díaz, F

    2005-05-01

    Full Text Available Dryland farming on Fuerteventura and Lanzarote (Canary Islands, Spain, which has an annual rainfall of less than 150 mm/year, has been based traditionally on water harvesting techniques (known locally as “gavias”. Periods of high productivity alternate with those of very low yield. The systems are sustainable in that they reduce erosive processes, contribute to soil and soil-water conservation and are largely responsible for maintaining the soil’s farming potential. In this paper we present the chemical fertility status and nutrient balance of soils in five “gavia” systems. The results are compared with those obtained in adjacent soils where this water harvesting technique is not used. The main crops are wheat, barley, maize, lentils and chick-peas. Since neither organic nor inorganic fertilisers are used, nutrients are derived mainly from sediments carried by runoff water. Nutrients are lost mainly through crop harvesting and harvest residues. The soils where water harvesting is used have lower salt and sodium in the exchange complex, are higher in carbon, nitrogen, copper and zinc and have similar phosphorous and potassium content. It is concluded that the systems improve the soil’s natural fertility and also that natural renovation of nutrients occurs thanks to the surface deposits of sediments, which mix with the arable layer. The system helps ensure adequate fertility levels, habitual in arid regions, thus allowing dryland farming to be carried out.

  14. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands

    Science.gov (United States)

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  15. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands.

    Science.gov (United States)

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  16. Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: Implications for nutrient-amended bioremediation

    Science.gov (United States)

    Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.

    1997-01-01

    Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semivolatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition

  17. Identification of Nutrient Deficiencies at Calcareous Soils for Maize

    Directory of Open Access Journals (Sweden)

    Dedi Nursyamsi

    2010-09-01

    Full Text Available A pot experiment was conducted to identify nutrient deficiencies at calcareous soils for maize (Zea mays, L. in green house of Indonesian Soil Research Institute using top soil (0-20 cm samples taken from Bogor (Typic Hapludalfs and Blora (Typic Haplustalfs. The experiment used Randomized Completely Block Design, minus one test with 12 treatments and three replications, as well as maize of P21 variety as plant indicator. The results showed that use of N, P, K, Zn, Cu, Fe, and Mn fertilizers increased soil macro nutrients, i.e.: soil total-N, Olsen-P, HCl-P, and HCl-K, as well as soil micro nutrients, i.e.: soil DTPA-Zn, Cu, Fe, and Mn at both tested soils. Use of maize straw compost increased soil organic-C, total-N, HCl-K, and exchangeable Ca at Typic Hapludalfs and increased only soil organic-C and total-N at Typic Haplustalfs. Use of animal manure compost increased soil organic-C, exchangeable Ca and Mg, and CEC. Use of N, P, K, S, Zn, Cu, Fe, and Mn fertilizers increased each plant nutrients uptake at the soils. Use of both organic matters increased plant N, P, K, and Fe uptake at Typic Hapludalfs as well as increased only plant N, P, and K uptake at Typic Haplustalfs. Identification result showed that maize growth suffered from N, P, and K deficiencies at Typic Hapludalfs as well as N and P deficiencies at Typic Haplustalfs. Beside the nutrients, soil organic matter was also found out as limiting factor for maize growth in the soils.

  18. Tree species and soil nutrient profiles in old-growth forests of the Oregon Coast Range

    Science.gov (United States)

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Old-growth forests of the Pacific Northwest provide a unique opportunity to examine tree species – soil relationships in ecosystems that have developed without significant human disturbance. We characterized foliage, forest floor, and mineral soil nutrients associated with four canopy tree species (Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), western redcedar (Thuja plicata Donn ex D. Don), and bigleaf maple (Acer macrophyllum Pursh)) in eight old-growth forests of the Oregon Coast Range. The greatest forest floor accumulations of C, N, P, Ca, Mg, and K occurred under Douglas-fir, primarily due to greater forest floor mass. In mineral soil, western hemlock exhibited significantly lower Ca concentration and sum of cations (Ca + Mg + K) than bigleaf maple, with intermediate values for Douglas-fir and western redcedar. Bigleaf maple explained most species-based differences in foliar nutrients, displaying high concentrations of N, P, Ca, Mg, and K. Foliar P and N:P variations largely reflected soil P variation across sites. The four tree species that we examined exhibited a number of individualistic effects on soil nutrient levels that contribute to biogeochemical heterogeneity in these ecosystems. Where fire suppression and long-term succession favor dominance by highly shade-tolerant western hemlock, our results suggest a potential for declines in both soil Ca availability and soil biogeochemical heterogeneity in old-growth forests.

  19. LIME REQUIREMENT DETERMINATION AND LIMING IMPACT ON SOIL NUTRIENT STATUS

    Directory of Open Access Journals (Sweden)

    Krunoslav Karalić

    2010-06-01

    Full Text Available The aim of conducted research was to determine the influence of liming, mineral and organic fertilization on soil chemical properties and nutrient availability in the soil, yield height and mineral composition of alfalfa. Results were used to create regression models for prediction of liming impact on soil chemical properties. Liming and fertilization experiment was sat up in 20 L volume plastic pots with two types of acid soils with different texture from two sites. Ten liming and fertilization treatments were applied in four repetitions. Lime treatments increased soil pH values and decreased hydrolytic acidity. Mineral and organic fertilization affected additional soil acidification. Application of lime intensified mineralization and humus decomposition, while organic fertilization raised humus content. The results showed significant increase of AL-P2O5 and K2O availability. The treatments increased soil Ca concentrations, but at the same time decreased exchangeable Mg concentrations. Soil pH increase resulted in lower Fe, Mn, Zn and Cu availability. Soil CEC was increased by applied treatments. Lime rates increased number and height of alfalfa plants, as well as yield of leaf, stalk increased concentrations of N, P, K and Ca in alfalfa leaf and stalk, but decreased leaf Mg and Fe, Mn, Zn and Cu concentrations. Regression computer models predicted with adequate accuracy P, Fe, Mn, Zn and Cu availability and final pH value as a result of liming and fertilization impact.

  20. Nutrient Concentrations and Stable Isotopes of Runoff from a Midwest Tile-Drained Corn Field

    Science.gov (United States)

    Wilkins, B. P.; Woo, D.; Li, J.; Michalski, G. M.; Kumar, P.; Conroy, J. L.; Keefer, D. A.; Keefer, L. L.; Hodson, T. O.

    2017-12-01

    Tile drains are a common crop drainage device used in Midwest agroecosystems. While efficient at drainage, the tiles provide a quick path for nutrient runoff, reducing the time available for microbes to use nutrients (e.g., NO3- and PO43-) and reduce export to riverine systems. Thus, understanding the effects of tile drains on nutrient runoff is critical to achieve nutrient reduction goals. Here we present isotopic and concentration data collected from tile drain runoff of a corn field located near Monticello, IL. Tile flow samples were measured for anion concentrations and stable isotopes of H2O and NO3-, while precipitation was measured for dual isotopes of H2O. Results demonstrate early tile flow from rain events have a low Cl- concentration (60% contribution) in the beginning of the hydrograph. As flow continues H2O isotopic values reflect pre-event water (ground and soil water), and Cl- concentrations increase representing a greater influence by matrix flow (60-90% contribution). Nitrate concentrations change dramatically, especially during the growing season, and do not follow a similar trend as the conservative Cl-, often decreasing days before, which represents missing nitrate in the upper surface portion of the soil. Nitrate isotopic data shows significant changes in 15N (4‰) and 18O (4‰) during individual hydrological events, representing that in addition to plant uptake and leaching, considerate NO3- is lost through denitrification. It is notable, that throughout the season d15N and d18O of nitrate change significantly representing that seasonally, substantial denitrification occurs.

  1. Assessment of Soil Nutrient Status of Identified Soil Units in Selected ...

    African Journals Online (AJOL)

    Journal of Technology and Education in Nigeria ... Assessment of Soil Nutrient Status of Identified Soil Units in Selected Communities in Three Local Government Areas ... Available phosphorus content in the soils is generally high with values ...

  2. Biochar-enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant-parasitic nematodes in excessively fertilized cucumber soils.

    Science.gov (United States)

    Cao, Yune; Gao, Yanming; Qi, Yanbin; Li, Jianshe

    2018-03-01

    Excessive fertilization is a common agricultural practice that has largely reduced soil nutrient retention capacity and led to nutrient leaching in China. To reduce nutrient leaching, in this study, we evaluated the application of biochar, compost, and biochar-compost on soil properties, leaching water quality, and cucumber plant growth in soils with different nutrient levels. In general, the concentrations of nutrients and heavy metals in leaching water were higher under high-nutrient conditions than under low-nutrient conditions. Both biochar and compost efficiently enhanced soil cation exchange capacity (CEC), water holding capacity (WHC), and microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP), reduced the potential leaching of nutrients and heavy metals, and improved plant growth. The efficiency of biochar and compost in soil CEC, WHC, MBC, MBN, and MBP and plant growth was enhanced when applied jointly. In addition, biochar and biochar-enhanced compost efficiently suppressed plant-parasitic nematode infestation in a soil with high levels of both N and P. Our results suggest that biochar-enhanced compost can reduce the potential environmental risks in excessively fertilized vegetable soils.

  3. The role of arbuscular mycorrhizas in reducing soil nutrient loss.

    Science.gov (United States)

    Cavagnaro, Timothy R; Bender, S Franz; Asghari, Hamid R; Heijden, Marcel G A van der

    2015-05-01

    Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), associations of plant roots with fungi that acquire soil nutrients. There is emerging evidence that AM have the ability to reduce nutrient loss from soils by enlarging the nutrient interception zone and preventing nutrient loss after rain-induced leaching events. Until recently, this important ecosystem service of AM had been largely overlooked. Here we review the role of AM in reducing nutrient loss and conclude that this role cannot be ignored if we are to increase global food production in an environmentally sustainable manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Reducing Nutrient Losses with Directed Fertilization of Degraded Soils

    Science.gov (United States)

    Menzies, E.; Walter, M. T.; Schneider, R.

    2016-12-01

    Degraded soils around the world are stunting agricultural productivity in places where people need it the most. In China, hundreds of years of agriculture and human activity have turned large swaths of productive grasslands into expanses of sandy soils where nothing can grow. Returning soils such as these to healthy productive landscapes is crucial to the livelihoods of rural families and to feeding the expanding population of China and the world at large. Buried wood chips can be used to improve the soils' water holding capacity but additional nutrient inputs are crucial to support plant growth and completely restore degraded soils in China and elsewhere. Improperly applied fertilizer can cause large fluxes of soluble nutrients such as nitrogen (N) and phosphorus (P) to pollute groundwater, and reach surface water bodies causing harmful algal blooms or eutrophication. Similarly, fertilization can create increases in nutrient losses in the form of greenhouse gases (GHGs). It is imperative that nutrient additions to this system be done in a way that fosters restoration and a return to productivity, but minimizes nutrient losses to adjacent surface water bodies and the atmosphere. The primary objective of this study is to characterize soluble and gaseous N and P losses from degraded sandy soils with wood chip and fertilizer amendments in order to identify optimal fertilization methods, frequencies, and quantities for soil restoration. A laboratory soil column study is currently underway to begin examining these questions results of this study will be presented at the Fall Meeting.

  5. Soil nutrient content of old-field and agricultural ecosystems exposed to chronic gamma irradiation

    International Nuclear Information System (INIS)

    Armentano, T.V.; Holt, B.R.; Bottino, P.J.

    1975-01-01

    Soil nutrients (extractable P. and NO 3 -N, exchangeable Ca, Mg and K), exchangeable Al, pH and organic matter content were measured over the top six inches of the soils of the seven-year old-field portion and the cultivated portion of the Brookhaven gamma field. Although concentrations of all nutrient elements were higher in the agricultural soil, the distributions of Ca, P, Al, pH and organic matter were similar along the radiation gradient in both fields. There was also a regular reduction in the phosphorus with decreasing exposure, but distribution of other elements was not clearly related to radiation effects. The distribution of all elements except K was significantly correlated with pH in the agricultural soil. In the old-field only Ca, Mg and Al showed this relationship. The most conspicuous effects of nearly 25 yr of chronic irradiation of the site were a reduction in soil organic matter content and an increase in soil P in both fields. (author)

  6. Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields

    Science.gov (United States)

    Kimura, M.

    2004-12-01

    Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were

  7. Soil Nutrient Stocks in Sub-Saharan Africa: Modeling Soil Nutrients Using Machine Learning

    Science.gov (United States)

    Cooper, M. W.; Hengl, T.; Shepherd, K.; Heuvelink, G. B. M.

    2017-12-01

    We present the results of our work modeling 15 target soil nutrients at 250 meter resolution across Sub-Saharan Africa. We used a large stack of GIS layers as covariates, including layers on topography, climate, geology, hydrology and land cover. As training data we used ca. 59,000 soil samples harmonized across a number of projects and datasets, and we modeled each nutrient using an ensemble of random forest and gradient boosting algorithms, implemented using the R packages ranger and xgboost. Using cross validation, we determined that significant models can be produced for organic Carbon, total (organic) Nitrogen, total Phosphorus, and extractable Phosphorous, Potassium, Calcium, Magnesium, Sulfur, Sodium, Iron, Manganese, Zinc, Copper, Aluminum and Boron, with an R-square value between 40 and 95%. The main covariates explaining spatial distribution of nutrients were precipitation and land form parameters. However, we were unable to significantly predict Sulfur, Phosphorus and Boron as these could not be correlated with any environmental covariates we used. Although the accuracy of predictions looks promising, our predictions likely suffer from the significant spatial clustering of the sampling locations, as well as a lack of more detailed data on geology and parent material at a continental scale. These results will contribute to targeting agricultural investments and interventions, as well as targeting restoration efforts and estimating yield potential and yield gaps. These results were recently published in the journal Nutrient Cycling in Agroecosystems (DOI: 10.1007/s10705-017-9870-x) and the maps are available for download under the ODC Open Database License.

  8. Slope position and Soil Lithological Effects on Live Leaf Nitrogen Concentration.

    Science.gov (United States)

    Szink, I.; Adams, T. S.; Orr, A. S.; Eissenstat, D. M.

    2017-12-01

    Soil lithology has been shown to have an effect on plant physiology from the roots to the leaves. Soils at ridgetop positions are typically more shallow and drier than soils at valley floor positions. Additionally, sandy soils tend to have a much lower water holding capacity and can be much harder for plants to draw nutrients from. We hypothesized that leaves from trees in shale derived soil at ridgetop positions will have lower nitrogen concentration than those in valley floor positions, and that this difference will be more pronounced in sandstone derived soils. This is due to the movement of nitrogen through the soil in a catchment, and the holding and exchange capacities of shale and sandstone lithologies. To test this, we collected live leaves using shotgun sampling from two locations in Central Pennsylvania from the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO); one location where soils are underlain by the Rose Hill Shale, and one from where soils are underlain by the Tuscarora Sandstone formation. We then measured, dried, and massed in order to determine specific leaf area (SLA). Afterwards, we powderized the leaves to determined their C:N ratio using a CE Instruments EA 1110 CHNS-O elemental Analyzer based on the "Dumas Method". We found that live leaves of the same species at higher elevations had lower nitrogen concentrations than those at lower elevations, which is consistent with our hypothesis. However, the comparison of leaves from all species in the catchment is not as strong, suggesting that there is a species specific effect on nitrogen concentration within leaves. We are currently processing additional leaves from other shale and sandstone sites. These results highlight the effect of abiotic environments on leaf nutrient concentrations, and the connection between belowground and aboveground tree physiology.

  9. Modification of soil nutrients and micro-climate by tree crowns in a ...

    African Journals Online (AJOL)

    The findings on soil nutrient status are consistent with results from disturbed systems, and challenge the dogma, at least for soil nutrient status, that conservative stocking rates are beneficial. Keywords: botany; crown interception; Matopos Research Station; micro-climate; nutrients; semi-arid; shade-adapted; shading; soil ...

  10. Lead and nutrient allocation in vegetables grown in soil from a battery site

    Directory of Open Access Journals (Sweden)

    Francisco Sousa Lima

    2015-08-01

    Full Text Available The steady growth of the Brazilian automotive industry and the resulting development of the battery market, which represent a large proportion of the lead (Pb used in the country, have made battery recycling one of the main sources of Pb soil contamination in Brazil. Plants cultivated in Pb-contaminated soil can take up this metal, which can affect the plant’s nutritional metabolism. The Pb can also be transferred into the edible parts of plants, thereby imposing threats to human health. This study was conducted to evaluate the concentration of Pb in edible parts of vegetables grown on soil contaminated by battery recycling activities. This study also investigated the effects of Pb on nutrient concentrations in plants. Plant species biomass, Pb concentration, and concentrations of macronutrients (P, K, Ca, Mg and micronutrients (Fe, Mn, Zn, Cu in plant parts were measured. The results showed that Pb concentrations in the edible parts of vegetables grown in contaminated soil were above the threshold acceptable for human consumption. Among the vegetables evaluated, only lettuce dry matter production was reduced because of the high concentration of Pb in soil. The presence of Pb altered the concentration of micronutrients in the edible parts of kale, carrots, and okra, stimulating higher Mn and Cu concentrations in these plants when cultivated in contaminated soil.

  11. Soil Nutrient Availability, Plant Nutrient Uptake, and Wild Blueberry (Vaccinium angustifolium Ait. Yield in Response to N-Viro Biosolids and Irrigation Applications

    Directory of Open Access Journals (Sweden)

    Aitazaz A. Farooque

    2012-01-01

    Full Text Available We compared the impact of surface broadcasted N-Viro biosolids and inorganic fertilizer (16.5% Ammonium sulphate, 34.5% Diammonium phosphate, 4.5% Potash, and 44.5% s and/or clay filler applications on soil properties and nutrients, leaf nutrient concentration, and the fruit yield of lowbush blueberry under irrigated and nonirrigated conditions during 2008-2009 at Debert, NS, Canada. Application rates of N-Viro biosolids were more than double of inorganic fertilizer applied at a recommended N rate of 32 kg ha−1. The experimental treatments NI: N-Viro with irrigation, FI: inorganic fertilizer with irrigation, N: N-Viro without irrigation, and F: inorganic fertilizer without irrigation (control were replicated four times under a randomized complete block design. The NI treatment had the highest OM (6.68% followed by FI (6.32%, N (6.18%, and F (4.43% treatments during the year 2008. Similar trends were observed during 2009 with the highest soil OM values (5.50% for NI treatment. Supplemental irrigation resulted in a 21% increase in the ripe fruit yield. Nonsignificant effect of fertilizer treatments on most of the nutrient concentrations in soil and plant leaves, and on ripe fruits yield reflects that the performance of N-Viro was comparable with that of the inorganic fertilizer used in this study.

  12. Heterogeneity and loss of soil nutrient elements under aeolian processes in the Otindag Desert, China

    Science.gov (United States)

    Li, Danfeng; Wang, Xunming; Lou, Junpeng; Liu, Wenbin; Li, Hui; Ma, Wenyong; Jiao, Linlin

    2018-02-01

    The heterogeneity of the composition of surface soils that are affected by aeolian processes plays important roles in ecological evolution and the occurrence of aeolian desertification in fragile ecological zones, but the associated mechanisms are poorly understood. Using field investigation, wind tunnel experiments, and particle size and element analyses, we discuss the variation in the nutrient elements of surface soils that forms in the presence of aeolian processes of four vegetation species (Caragana microphylla Lam, Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel. and Stipa grandis P. Smirn) growing in the Otindag Desert, China. These four vegetation communities correspond to increasing degrees of degradation. A total of 40 macro elements, trace elements, and oxides were measured in the surface soil and in wind-transported samples. The results showed that under the different degradation stages, the compositions and concentrations of nutrients in surface soils differed for the four vegetation species. Aeolian processes may cause higher heterogeneity and higher loss of soil nutrient elements for the communities of Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel, and Stipa grandis P. Smirn than for the Caragana microphylla Lam community. There was remarkable variation in the loss of nutrients under different aeolian transportation processes. Over the past several decades, the highest loss of soil elements occurred in the 1970s, whereas the loss from 2011 to the present was generally 4.0% of that in the 1970s. These results indicate that the evident decrease in nutrient loss has played an important role in the rehabilitation that has occurred in the region recently.

  13. Nutrient limitation of soil microbial activity during the earliest stages of ecosystem development.

    Science.gov (United States)

    Castle, Sarah C; Sullivan, Benjamin W; Knelman, Joseph; Hood, Eran; Nemergut, Diana R; Schmidt, Steven K; Cleveland, Cory C

    2017-11-01

    A dominant paradigm in ecology is that plants are limited by nitrogen (N) during primary succession. Whether generalizable patterns of nutrient limitation are also applicable to metabolically and phylogenetically diverse soil microbial communities, however, is not well understood. We investigated if measures of N and phosphorus (P) pools inform our understanding of the nutrient(s) most limiting to soil microbial community activities during primary succession. We evaluated soil biogeochemical properties and microbial processes using two complementary methodological approaches-a nutrient addition microcosm experiment and extracellular enzyme assays-to assess microbial nutrient limitation across three actively retreating glacial chronosequences. Microbial respiratory responses in the microcosm experiment provided evidence for N, P and N/P co-limitation at Easton Glacier, Washington, USA, Puca Glacier, Peru, and Mendenhall Glacier, Alaska, USA, respectively, and patterns of nutrient limitation generally reflected site-level differences in soil nutrient availability. The activities of three key extracellular enzymes known to vary with soil N and P availability developed in broadly similar ways among sites, increasing with succession and consistently correlating with changes in soil total N pools. Together, our findings demonstrate that during the earliest stages of soil development, microbial nutrient limitation and activity generally reflect soil nutrient supply, a result that is broadly consistent with biogeochemical theory.

  14. Nutrient concentrations in leachate and runoff from dairy cattle lots with different surface materials

    Science.gov (United States)

    Nitrogen (N) and phosphorus (P) loss from agriculture persists as a water quality issue, and outdoor cattle lots can have a high loss potential. We monitored hydrology and nutrient concentrations in leachate and runoff from dairy heifer lots constructed with three surface materials (soil, sand, bark...

  15. Characterization of biomass residues and their amendment effects on water sorption and nutrient leaching in sandy soil.

    Science.gov (United States)

    Wang, Letian; Tong, Zhaohui; Liu, Guodong; Li, Yuncong

    2014-07-01

    In this study, we evaluated the efficiency of two types of biomass residues (fermentation residues from a bioethanol process, FB; brown mill residues from a papermaking process, BM) as amendments for a sandy soil. The characteristics of these residues including specific surface areas, morphologies and nutrient sorption capacity were measured. The effects of biorefinery residues on water and nutrient retention were investigated in terms of different particle sizes and loadings. The results indicated that bio-based wastes FB and BM were able to significantly improve water and nutrient retention of sandy soil. The residues with larger surface areas had better water and nutrient retention capability. Specifically, in the addition of 10% loading, FB and BM was able to improve water retention by approximately 150% and 300%, while reduce 99% of ammonium and phosphate concentration in the leachate compare to the soil control, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Trace elements and nutrients adsorption onto nano-maghemite in a contaminated-soil solution: A geochemical/statistical approach.

    Science.gov (United States)

    Martínez-Fernández, Domingo; Bingöl, Deniz; Komárek, Michael

    2014-07-15

    Two experiments were carried out to study the competition for adsorption between trace elements (TEs) and nutrients following the application of nano-maghemite (NM) (iron nano-oxide; Fe2O3) to a soil solution (the 0.01molL(-1) CaCl2 extract of a TEs-contaminated soil). In the first, the nutrients K, N, and P were added to create a set of combinations: potential availability of TEs during their interaction with NM and nutrients were studied. In the second, response surface methodology was used to develop predictive models by central composite design (CCD) for competition between TEs and the nutrients K and N for adsorption onto NM. The addition of NM to the soil solution reduced specifically the concentrations of available As and Cd, but the TE-adsorption capacity of NM decreased as the P concentration increased. The CCD provided more concise and valuable information, appropriate to estimate the behavior of NM sequestering TEs: according to the suggested models, K(+) and NH4(+) were important factors for Ca, Fe, Mg, Mn, Na, and Zn adsorption (Radj(2)=95%, except for Zn with Radj(2)=87%). The obtained information and models can be used to predict the effectiveness of NM for the stabilization of TEs, crucial during the phytoremediation of contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation.

    Science.gov (United States)

    Jiang, Ying; Brassington, Kirsty J; Prpich, George; Paton, Graeme I; Semple, Kirk T; Pollard, Simon J T; Coulon, Frédéric

    2016-10-01

    The potential for biotransformation of weathered hydrocarbon residues in soils collected from two commercial oil refinery sites (Soil A and B) was studied in microcosm experiments. Soil A has previously been subjected to on-site bioremediation and it was believed that no further degradation was possible while soil B has not been subjected to any treatment. A number of amendment strategies including bioaugmentation with hydrocarbon degrader, biostimulation with nutrients and soil grinding, were applied to the microcosms as putative biodegradation improvement strategies. The hydrocarbon concentrations in each amendment group were monitored throughout 112 days incubation. Microcosms treated with biostimulation (BS) and biostimulation/bioaugmentation (BS + BA) showed the most significant reductions in the aliphatic and aromatic hydrocarbon fractions. However, soil grinding was shown to reduce the effectiveness of a nutrient treatment on the extent of biotransformation by up to 25% and 20% for the aliphatic and aromatic hydrocarbon fractions, respectively. This is likely due to the disruption to the indigenous microbial community in the soil caused by grinding. Further, ecotoxicological responses (mustard seed germination and Microtox assays) showed that a reduction of total petroleum hydrocarbon (TPH) concentration in soil was not directly correlable to reduction in toxicity; thus monitoring TPH alone is not sufficient for assessing the environmental risk of a contaminated site after remediation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Nutrient Release from Disturbance of Infiltration System Soils during Construction

    OpenAIRE

    Daniel P. Treese; Shirley E. Clark; Katherine H. Baker

    2012-01-01

    Subsurface infiltration and surface bioretention systems composed of engineered and/or native soils are preferred tools for stormwater management. However, the disturbance of native soils, especially during the process of adding amendments to improve infiltration rates and pollutant removal, may result in releases of nutrients in the early life of these systems. This project investigated the nutrient release from two soils, one disturbed and one undisturbed. The disturbed soil was collected i...

  19. Nutrient status and plant growth effects of forest soils in the Basin of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Fenn, M.E. [USDA Forest Service, Pacific Southwest Research Station, Forest Fire Laboratory, 4955 Canyon Crest Dr., Riverside, CA 92507 (United States)]. E-mail: mfenn@fs.fed.us; Perea-Estrada, V.M. [Instituto de Recursos Naturales, Colegio de Postgraduados, CP 56230 Montecillo (Mexico); Bauer, L.I. de [Instituto de Recursos Naturales, Colegio de Postgraduados, CP 56230 Montecillo (Mexico)]. E-mail: libauer@colpos.mx; Perez-Suarez, M. [Instituto de Recursos Naturales, Colegio de Postgraduados, CP 56230 Montecillo (Mexico); Parker, D.R. [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)]. E-mail: david.parker@ucr.edu; Cetina-Alcala, V.M. [Instituto de Recursos Naturales, Colegio de Postgraduados, CP 56230 Montecillo (Mexico)

    2006-03-15

    The nutrient status of forest soils in the Mexico City Air Basin was evaluated by observing plant growth responses to fertilization with N, P or both nutrients combined. P deficiency was the most frequent condition for soil from two high pollution sites and N deficiency was greatest at a low N deposition site. Concentrations of Pb and Ni, and to a lesser extent Zn and Co, were higher at the high pollution sites. However, positive plant growth responses to P and sometimes to N, and results of wheat root elongation bioassays, suggest that heavy metal concentrations were not directly phytotoxic. Further studies are needed to determine if heavy metal toxicity to mycorrhizal symbionts of eucalyptus (Eucalyptus camaldulensis Dehnh.) from high pollution sites may explain the P deficiency and stunted growth. P deficiency is expected to limit the capacity for biotic N retention in N saturated forested watersheds in the Basin of Mexico dominated by Andisols. - Plant response to N deposition may be limited by P limitation in forests growing on Andisol soils in the Basin of Mexico.

  20. Nutrient status and plant growth effects of forest soils in the Basin of Mexico

    International Nuclear Information System (INIS)

    Fenn, M.E.; Perea-Estrada, V.M.; Bauer, L.I. de; Perez-Suarez, M.; Parker, D.R.; Cetina-Alcala, V.M.

    2006-01-01

    The nutrient status of forest soils in the Mexico City Air Basin was evaluated by observing plant growth responses to fertilization with N, P or both nutrients combined. P deficiency was the most frequent condition for soil from two high pollution sites and N deficiency was greatest at a low N deposition site. Concentrations of Pb and Ni, and to a lesser extent Zn and Co, were higher at the high pollution sites. However, positive plant growth responses to P and sometimes to N, and results of wheat root elongation bioassays, suggest that heavy metal concentrations were not directly phytotoxic. Further studies are needed to determine if heavy metal toxicity to mycorrhizal symbionts of eucalyptus (Eucalyptus camaldulensis Dehnh.) from high pollution sites may explain the P deficiency and stunted growth. P deficiency is expected to limit the capacity for biotic N retention in N saturated forested watersheds in the Basin of Mexico dominated by Andisols. - Plant response to N deposition may be limited by P limitation in forests growing on Andisol soils in the Basin of Mexico

  1. Effects of soil applications of micro-nutrients and chelating agent citric acid on mineral nutrients in soybean seeds

    Science.gov (United States)

    Micro-nutrients deficiency in soil result in crop yield loss and poor seed quality. Correcting this deficiency is normally conducted by foliar or soil application. The objective of this research was to determine the effects of soil applications of five micro-nutrients (Mn, Cu, Zn, Mo, and B) with a ...

  2. Alterações no teores de nutrientes em dois solos alagados, com e sem plantas de arroz Nutrients concentration changes in two flooded soils during the rice cycle

    Directory of Open Access Journals (Sweden)

    Leandro Souza da Silva

    2003-06-01

    Full Text Available O alagamento e a presença de plantas alteram as propriedades biológicas e químicas do solo em relação ao ambiente anteriormente oxidado, influenciando a disponibilidade de nutrientes. Foi conduzido um experimento com o objetivo de avaliar as alterações dos teores de alguns nutrientes na solução de um Planossolo e um Gleissolo durante o ciclo do arroz. Os solos foram acondicionados em vasos (50 litros contendo dispositivos para coleta da solução em diferentes profundidades, mantidos sem ou com plantas de arroz. A solução foi coletada aos 10, 19, 44, 77 e 113 dias de alagamento e determinados os teores de P, K, Ca, Mg, Fe e Mn. A concentração dos nutrientes na solução, especialmente o K, variou com a profundidade de coleta e com a presença de plantas, demonstrando a influência desses fatores na disponibilidade dos nutrientes em solos alagados.Flooding a soil and growing plant on it can change its biological and chemistry properties, in comparison with a non-flooded environment. An experiment was conducted in order to study the nutrients dynamics in the solution of two soils (Planossolo and Gleissolo during the rice cycle. Rice plants were cultivated in 50L containers having devices to collect soil solution at several depths (2.5, 5.0, 7.5 and 31cm. In the soil solution, with and without plant, P, K, Ca, Mg, Fe and Mn, were measured at 10, 19, 44, 77, and 113 days after the flooding. Potassium was especially sensible to the rice plant and depth of sampling

  3. Aeolian nutrient fluxes following wildfire in sagebrush steppe: implications for soil carbon storage

    Directory of Open Access Journals (Sweden)

    N. J. Hasselquist

    2011-12-01

    Full Text Available Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C and nitrogen (N fluxes were as high as 235 g C m−1 d−1 and 19 g N m−1 d−1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes.

  4. Calagem em solos de várzea e a disponibilidade de nutrientes na solução do solo após o alagamento Liming in lowland soils and nutrient availability in soil solution after flooding

    Directory of Open Access Journals (Sweden)

    Leandro Souza da Silva

    2005-10-01

    mixed with different lime quantities: zero, ½ SMP to pH 5,5; 1 SMP to pH 5,5; and 1 SMP to pH 6,0. After 90 days of incubation, the samples were placed in plastic pots with a soil solution collector. After flooding, soil solution was collected at 2, 8, 15, 22, 28, 42 and 56 days and Fe, Ca, Mg, K e P concentrations were analyzed. After flooding, the Fe concentration was reduced, the Ca and Mg were increased, and the K and P concentrations were not changed by lime rates. The soil solution nutrient concentrations after liming were different among the three soils types.

  5. Minimal NOx emission by Lysinibacillus sphaericus in nutrient poor soil

    Directory of Open Access Journals (Sweden)

    Melissa Sánchez

    2018-06-01

    Full Text Available The aim of this study was to determine whether nitrogen dioxide emissions by Lysinibacillus sphaericus exist in nutrient poor soil. First, we evaluated the presence of two genes involved in denitrification (nosF and nosD by PCR screening of five strains of L. sphaericus (III (37, OT4b.49, OT4b.25, OT4b.31 and CBAM5. We then applied a bacterial consortium made up by L. sphaericus III (37 and OT4b.49 into closed microcosms of soil and with minimum salts medium (MSM supplemented with ammonia to measure the concentration of produced nitrogen dioxide over time. The assays with closed microcosms showed a minimum level of nitrogen dioxide over time. The nosF and nosD primers amplified the expected fragment for the five strains and the sequenced nosF and nosD PCR product showed an ATPase domain and a copper-binding domain respectively, which was consistent with the function of these genes. The basal emission of nitrogen dioxide by L. sphaericus in soil is coupled to its ability to enhance the nitrogen bioavailability for soils deficient in nutrients. Therefore, our results indicate that this microorganism can be considered as a good candidate to validate the low emission of NOx in field and in the future as an alternative for biofertilization.

  6. Isolation and identification of soil fungi isolates from forest soil for flooded soil recovery

    Science.gov (United States)

    Hazwani Aziz, Nor; Zainol, Norazwina

    2018-04-01

    Soil fungi have been evaluated for their ability in increasing and recovering nitrogen, phosphorus and potassium content in flooded soil and in promoting the growth of the host plant. Host plant was cultivated in a mixture of fertile forest soil (nutrient-rich soil) and simulated flooded soil (nutrient-poor soil) in an optimized soil condition for two weeks. The soil sample was harvested every day until two weeks of planting and was tested for nitrogen, phosphorus and potassium concentration. Soil fungi were isolated by using dilution plating technique and was identified by Biolog’s Microbial Systems. The concentration of nitrogen, phosphorus, and potassium was found to be increasing after two weeks by two to three times approximately from the initial concentration recorded. Two fungi species were identified with probability more than 90% namely Aspergillus aculeatus and Paecilomyces lilacinus. Both identified fungi were found to be beneficial in enhancing plant growth and increasing the availability of nutrient content in the soil and thus recovering the nutrient content in the flooded soil.

  7. Long-term effects of rainforest disturbance on the nutrient composition of throughfall, organic layer percolate and soil solution at Mt. Kilimanjaro.

    Science.gov (United States)

    Schrumpf, Marion; Axmacher, Jan C; Zech, Wolfgang; Lehmann, Johannes; Lyaruu, Herbert V C

    2007-04-15

    At the lower parts of the forest belt at Mt. Kilimanjaro, selective logging has led to a mosaic of mature forest, old secondary forests ( approximately 60 years), and old clearings ( approximately 10 years) covered by shrub vegetation. These variations in the vegetation are reflected by differences in nutrient leaching from the canopy and in both amount and quality of litter reaching the ground, thereby also influencing mineralization rates and the composition of seepage water in litter percolate and soil solution. The aim of this study was to investigate how above- and belowground nutrient dynamics vary between regeneration stages, and if forest regeneration at the clearings is hampered by a deterioration of abiotic site conditions. K, Mg, Ca, Na and N compounds were analysed in rainfall, throughfall, organic layer percolate and the soil solution to a depth of 1.00 m at three clearings, three secondary forest and four mature forest sites. Element fluxes via throughfall showed only small variations among regeneration stages except for K and NO(3)-N. With 57-83 kg ha(-1) a(-1)and 2.6-4.1 kg ha(-1) a(-1) respectively, K and NO(3)-N fluxes via throughfall were significantly higher at the clearings than at the mature forest sites (32-37 and 0.7-1.0 kg ha(-1) a(-1) for K and NO(3)-N). In organic layer percolate and in soil solution at 0.15-m soil depth, concentrations of K, Mg, Ca and N were highest at the clearings. In the organic layer percolate, median K concentrations were e.g. 7.4 mg l(-1) for the clearings but only 1.4 mg l(-1) for the mature forests, and for NO(3)-N, median concentrations were 3.1 mg l(-1) for the clearings but only 0.92 mg l(-1) for the mature forest sites. Still, differences in annual means between clearings and mature forests were not always significant due to a high variability within the clearings. With the exception of NO(3)-N, belowground nutrient concentrations in secondary forests ranged between concentrations in mature forests and

  8. The influence of soil properties and nutrients on conifer forest growth in Sweden, and the first steps in developing a nutrient availability metric

    Science.gov (United States)

    Van Sundert, Kevin; Horemans, Joanna A.; Stendahl, Johan; Vicca, Sara

    2018-06-01

    The availability of nutrients is one of the factors that regulate terrestrial carbon cycling and modify ecosystem responses to environmental changes. Nonetheless, nutrient availability is often overlooked in climate-carbon cycle studies because it depends on the interplay of various soil factors that would ideally be comprised into metrics applicable at large spatial scales. Such metrics do not currently exist. Here, we use a Swedish forest inventory database that contains soil data and tree growth data for > 2500 forests across Sweden to (i) test which combination of soil factors best explains variation in tree growth, (ii) evaluate an existing metric of constraints on nutrient availability, and (iii) adjust this metric for boreal forest data. With (iii), we thus aimed to provide an adjustable nutrient metric, applicable for Sweden and with potential for elaboration to other regions. While taking into account confounding factors such as climate, N deposition, and soil oxygen availability, our analyses revealed that the soil organic carbon concentration (SOC) and the ratio of soil carbon to nitrogen (C : N) were the most important factors explaining variation in normalized (climate-independent) productivity (mean annual volume increment - m3 ha-1 yr-1) across Sweden. Normalized forest productivity was significantly negatively related to the soil C : N ratio (R2 = 0.02-0.13), while SOC exhibited an empirical optimum (R2 = 0.05-0.15). For the metric, we started from a (yet unvalidated) metric for constraints on nutrient availability that was previously developed by the International Institute for Applied Systems Analysis (IIASA - Laxenburg, Austria) for evaluating potential productivity of arable land. This IIASA metric requires information on soil properties that are indicative of nutrient availability (SOC, soil texture, total exchangeable bases - TEB, and pH) and is based on theoretical considerations that are also generally valid for nonagricultural ecosystems

  9. Influence of activated charcoal amendment to contaminated soil on dieldrin and nutrient uptake by cucumbers

    Energy Technology Data Exchange (ETDEWEB)

    Hilber, Isabel [Research Institute of Organic Agriculture, Ackerstrasse, CH-5070 Frick (Switzerland); Wyss, Gabriela S., E-mail: gabriela.wyss@fibl.or [Research Institute of Organic Agriculture, Ackerstrasse, CH-5070 Frick (Switzerland); Maeder, Paul [Research Institute of Organic Agriculture, Ackerstrasse, CH-5070 Frick (Switzerland); Bucheli, Thomas D. [Agroscope Reckenholz-Taenikon Research Station ART, Reckenholzstr. 191, CH-8046 Zuerich (Switzerland); Meier, Isabel; Vogt, Lea; Schulin, Rainer [Institute of Terrestrial Ecosystems, ETH Zuerich, Universitaetstr. 16, CH-8092 Zuerich (Switzerland)

    2009-08-15

    Activated charcoal (AC) amendments have been suggested as a promising, cost-effective method to immobilize organic contaminants in soil. We performed pot experiments over two years with cucumber (Cucumis sativus L.) grown in agricultural soil with 0.07 mg kg{sup -1} of weathered dieldrin and 0, 200, 400, and 800 mg AC per kg soil. Dieldrin fresh weight concentrations in cucumber fruits were significantly reduced from 0.012 to an average of 0.004 mg kg{sup -1}, and total uptake from 2 to 1 mug in the 800 mg kg{sup -1} AC treatment compared to the untreated soil. The treatment effects differed considerably between the two years, due to different meteorological conditions. AC soil treatments did neither affect the availability of nutrients to the cucumber plants nor their yield (total fruit wet weight per pot). Thus, some important prerequisites for the successful application of AC amendments to immobilize organic pollutants in agricultural soils can be considered fulfilled. - The addition of activated charcoal to soil reduced dieldrin residues in cucumbers and did not affect nutrients availability.

  10. Influence of activated charcoal amendment to contaminated soil on dieldrin and nutrient uptake by cucumbers

    International Nuclear Information System (INIS)

    Hilber, Isabel; Wyss, Gabriela S.; Maeder, Paul; Bucheli, Thomas D.; Meier, Isabel; Vogt, Lea; Schulin, Rainer

    2009-01-01

    Activated charcoal (AC) amendments have been suggested as a promising, cost-effective method to immobilize organic contaminants in soil. We performed pot experiments over two years with cucumber (Cucumis sativus L.) grown in agricultural soil with 0.07 mg kg -1 of weathered dieldrin and 0, 200, 400, and 800 mg AC per kg soil. Dieldrin fresh weight concentrations in cucumber fruits were significantly reduced from 0.012 to an average of 0.004 mg kg -1 , and total uptake from 2 to 1 μg in the 800 mg kg -1 AC treatment compared to the untreated soil. The treatment effects differed considerably between the two years, due to different meteorological conditions. AC soil treatments did neither affect the availability of nutrients to the cucumber plants nor their yield (total fruit wet weight per pot). Thus, some important prerequisites for the successful application of AC amendments to immobilize organic pollutants in agricultural soils can be considered fulfilled. - The addition of activated charcoal to soil reduced dieldrin residues in cucumbers and did not affect nutrients availability.

  11. Foliar and soil nutrient distribution in conifer forests of moist temperate areas of himalayan and hindukush region of pakistan: a multivariate approach

    International Nuclear Information System (INIS)

    Ahmad, K.; Khan, Z.I.; Ashfaq, A.

    2014-01-01

    Foliar nutrient concentration for the dominant conifer species (Pinus wallichiana, Abies pindrow and Cedrus deodara) of moist temperate areas of Himalayan and Hindukush region of Pakistan was evaluated. Soils samples and conifer needles were collected from forests at 41 sites in the study area. Six macro and seven micronutrients were analyzed for both soils and tissue. The mean nutrient levels and variability for each species was evaluated. The gradients in tissue nutrients were exposed by means of correspondence analysis (CA) and canonical correspondence (CCA), for each species. The first CA axis of Pinus wallichiana data was significantly correlated with soil N, P and K (p<0.05). The second CA axis was correlated with P, B and Ca, while the third was correlated with K and Mg (p<0.05). The first CA axis of Abies pindrow was not correlated with any soil nutrients, but the second axis showed correlation with soil Ca (p<0.05) and the third with S, Fe and N (p at the most 0.05). Cedrus deodara CA axes were not markedly correlated with soil nutrients. Canonical correspondence analysis (CCA) exposed the correlation structure between tissue nutrient and soil nutrient matrices with similar results thereby supporting the results of CA. (author)

  12. Effects of biochar, compost and biochar-compost on growth and nutrient status of maize in two Mediterranean soils

    Science.gov (United States)

    Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    During the past years, studies have shown that biochar alone or combined with compost, has the potential to improve soil fertility and maize yield mostly on tropical soils whereas experiments on Mediterranean soils are rare. Therefore, the influence of biochar, compost and mixtures of the two, on maize (Zea mays L.) growth and nutrient status were investigated, in this study. Biochars were produced from 2 feedstocks: grape pomace (GP) and rice husks (RH) pyrolyzed at 300°C. Maize was grown for 30 days in a greenhouse pot trial on two Mediterranean soils amended with biochar or/with compost at application rates of 0% and 2% (w/w) (equivalent to 0 and 16 t ha-1) and N fertilization. Total aboveground dry matter yield of maize was significantly improved relative to the control for all organic amendments, with increases in yield 43-60.8%, in sandy loam soil, while, in loam soil a statistically significant increase of 70.6-81.3% was recorded for all the amendments apart from compost. Some morphological traits, such as aboveground height of plants, shoot diameter and belowground dry matter yield were significantly increased by the organic treatments. Aboveground concentration of P was significantly increased from 1.46 mg g-1 at control to 1.69 mg g-1 at 2% GP biochar in sandy loam soil, whereas GP biochar combined with compost gave an increase of 2.03 mg g-1 compared to control 1.23 mg g-1. K and Mn concentrations of above ground tissues were significantly increased only in sandy loam soil, while Fe in both soils. N concentration of aboveground tissues declined for all the amendments in loam soil and in sandy loam soil apart from compost amendment. Significant positive impacts of amended soils on nutrients uptake were observed in both soils as compared to the control related to the improved dry matter yield of plant. The current study demonstrated that maize production could be greatly improved by biochar and compost because of the nutrients they supply and their

  13. Plant response to nutrient availability across variable bedrock geologies

    Science.gov (United States)

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  14. Assessment of mycorrhizal colonisation and soil nutrients in unmanaged fire-impacted soils from two target restoration sites

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J. M.; Oliveira, R. S.; Franco, A. R.; Ritz, K.; Nunan, N.; Castro, P. M. L.

    2010-07-01

    The mycorrhizal colonisation of plants grown in unmanaged soils from two restoration sites with a fire history in Northern Portugal was evaluated from the perspective of supporting restoration programmes. To promote restoration of original tree stands, Quercus ilex L. and Pinus pinaster Ait. were used as target species on two sites, denoted Site 1 and 2 respectively. The aim of the study was to assess whether mycorrhizal propagules that survived fire episodes could serve as in situ inoculum sources, and to analyse the spatial distribution of soil nutrients and mycorrhizal parameters. In a laboratory bioassay, P. pinaster and Q. ilex seedlings were grown on soils from the target sites and root colonisation by ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) fungi was determined. The ECM root colonisation levels found indicated that soil from Site 2 contained sufficient ECM propagules to serve as a primary source of inoculum for P. pinaster. The low levels of ECM and AM colonisation obtained on the roots of plants grown in soil from Site 1 indicated that the existing mycorrhizal propagules might be insufficient for effective root colonisation of Q. ilex. Different ECM morphotypes were found in plants grown in soil from the two sites. At Site 2 mycorrhizal parameters were found to be spatially structured, with significant differences in ECM colonisation and soil P concentrations between regions of either side of an existing watercourse. The spatial distribution of mycorrhizal propagules was related to edaphic parameters (total C and extractable P), and correlations between soil nutrients and mycorrhizal parameters were found. (Author) 31 refs.

  15. Decadal and seasonal trends of nutrient concentration and export from highly managed coastal catchments.

    Science.gov (United States)

    Wan, Yongshan; Wan, Lei; Li, Yuncong; Doering, Peter

    2017-05-15

    Understanding anthropogenic and hydro-climatic influences on nutrient concentrations and export from highly managed catchments often necessitates trend detection using long-term monitoring data. This study analyzed the temporal trend (1979-2014) of total nitrogen (TN) and total phosphorus (TP) concentrations and export from four adjacent coastal basins in south Florida where land and water resources are highly managed through an intricate canal network. The method of integrated seasonal-trend decomposition using LOESS (LOcally weighted regrESSion) was employed for trend detection. The results indicated that long-term trends in TN and TP concentrations (increasing/decreasing) varied with basins and nutrient species, reflecting the influence of basin specific land and water management practices. These long-term trends were intervened by short-term highs driven by high rainfall and discharges and lows associated with regional droughts. Seasonal variations in TP were more apparent than for TN. Nutrient export exhibited a chemostatic behavior for TN from all the basins, largely due to the biogenic nature of organic N associated with the ubiquity of organic materials in the managed canal network. Varying degrees of chemodynamic export was present for TP, reflecting complex biogeochemical responses to the legacy of long-term fertilization, low soil P holding capacity, and intensive stormwater management. The anthropogenic and hydro-climatic influences on nutrient concentration and export behavior had great implications in nutrient loading abatement strategies for aquatic ecosystem restoration of the downstream receiving waterbody. Published by Elsevier Ltd.

  16. Liming and fertilisation in Pinus taeda plantations with severe nutrient deficiency in savanna soils

    Directory of Open Access Journals (Sweden)

    Araína Hulmann Batista

    2014-11-01

    Full Text Available Soils with high acidity and low exchangeable bases may be responsible for low yields of Pinus taeda in a forest plantation at Jaguariaíva, Paraná State, Brazil. The aim of this study was to evaluate the effect of liming and fertilisation, applied over litter, on two selected areas with Pinus taeda plantations. Soil, litter and pine needles were evaluated for K, Ca and Mg concentrations and soil acidity parameters. Seven treatments were applied: (i complete (N, P, K, Zn, Cu, B, Mo, and lime; (ii without N, P, and K; (iii without Zn, Cu, B, and Mo; (iv without K; (v without Zn; (vi without lime; and (vii control (without nutrients and lime. Soil samples were collected at five soil depths (0-5, 5-10, 10-20, 20-40 and 40-60 cm simultaneously with litter samples. Needles were also collected from the first and second pine flushes. Liming induced soil pH, Ca2+, and Mg2+ increases, and the opposite was observed for Al3+ and Al saturation. Fertilisation increased soil exchangeable K+ concentrations and needle and litter K concentrations. The low Ca and Mg concentrations found in the plant needles might be attributable to their low mobility.

  17. Roots bridge water to nutrients: a study of utilizing hydraulic redistribution through root systems to extract nutrients in the dry soils

    Science.gov (United States)

    Yan, J.; Ghezzehei, T. A.

    2017-12-01

    The rhizosphere is the region of soil that surrounds by individual plant roots. While its small volume and narrow region compared to bulk soil, the rhizosphere regulates numerous processes that determine physical structure, nutrient distribution, and biodiversity of soils. One of the most important and distinct functions of the rhizosphere is the capacity of roots to bridge and redistribute soil water from wet soil layers to drier layers. This process was identified and defined as hydraulic lift or hydraulic redistribution, a passive process driven by gradients in water potentials and it has attracted much research attention due to its important role in global water circulation and agriculture security. However, while previous studies mostly focused on the hydrological or physiological impacts of hydraulic redistribution, limited research has been conducted to elucidate its role in nutrient cycling and uptake. In this study, we aim to test the possibility of utilizing hydraulic redistribution to facilitate the nutrient movement and uptake from resource segregated zone. Our overarching hypothesis is that plants can extract nutrients from the drier but nutrient-rich regions by supplying sufficient amounts of water from the wet but nutrient-deficient regions. To test our hypothesis, we designed split-root systems of tomatoes with unequal supply of water and nutrients in different root compartments. More specifically, we transplanted tomato seedlings into sand or soil mediums, and grew them under conditions with alternate 12-h lightness and darkness. We continuously monitored the temperature, water and nutrient content of soils in these separated compartments. The above and below ground biomass were also quantified to evaluate the impacts on the plant growth. The results were compared to a control with evenly supply of water and nutrients to assess the plant growth, nutrient leaching and uptake without hydraulic redistribution.

  18. Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Harrison, Robert; Stupak, Inge

    2016-01-01

    studies on potential release of nutrients due to chemical weathering indicate the importance of root access to deep soil layers. Nutrient release profiles clearly indicate depletion in the top layers and a much higher potential in B and C horizons. Reviewing potential sustainability of nutrient supplies......Roots mobilize nutrients via deep soil penetration and rhizosphere processes inducing weathering of primary minerals. These processes contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long......-term supplies of nutrient elements essential for forest growth and resilience. Research and techniques have significantly advanced since Olof Tamm’s 1934 “base mineral index” for Swedish forest soils, and the basic nutrient budget estimates for whole-tree harvesting systems of the 1970s. Recent research...

  19. Swift recovery of Sphagnum nutrient concentrations after excess supply.

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique M P D

    2008-08-01

    Although numerous studies have addressed the effects of increased N deposition on nutrient-poor environments such as raised bogs, few studies have dealt with to what extent, and on what time-scale, reductions in atmospheric N supply would lead to recovery of the ecosystems in question. Since a considerable part of the negative effects of elevated N deposition on raised bogs can be related to an imbalance in tissue nutrient concentrations of the dominant peat-former Sphagnum, changes in Sphagnum nutrient concentration after excess N supply may be used as an early indicator of ecosystem response. This study focuses on the N and P concentrations of Sphagnum magellanicum and Sphagnum fallax before, during and after a factorial fertilization experiment with N and P in two small peatlands subject to a background bulk deposition of 2 g N m(-2) year(-1). Three years of adding N (4.0 g N m(-2) year(-1)) increased the N concentration, and adding P (0.3 g P m(-2) year(-1)) increased the P concentration in Sphagnum relative to the control treatment at both sites. Fifteen months after the nutrient additions had ceased, N concentrations were similar to the control whereas P concentrations, although strongly reduced, were still slightly elevated. The changes in the N and P concentrations were accompanied by changes in the distribution of nutrients over the capitulum and the stem and were congruent with changes in translocation. Adding N reduced the stem P concentration, whereas adding P reduced the stem N concentration in favor of the capitulum. Sphagnum nutrient concentrations quickly respond to reductions in excess nutrient supply, indicating that a management policy aimed at reducing atmospheric nutrient input to bogs can yield results within a few years.

  20. Illuminating pathways of forest nutrient provision: relative release from soil mineral and organic pools

    Science.gov (United States)

    Hauser, E.; Billings, S. A.

    2017-12-01

    Depletion of geogenic nutrients during soil weathering can prompt vegetation to rely on other sources, such as organic matter (OM) decay, to meet growth requirements. Weathered soils also tend to permit deep rooting, a phenomenon sometimes attributed to vegetation foraging for geogenic nutrients. This study examines the extent to which OM recycling provides nutrients to vegetation growing in soils with diverse weathering states. We thus address the fundamental problem of how forest vegetation obtains sufficient nutrition to support productivity despite wide variation in soils' nutrient contents. We hypothesized that vegetation growing on highly weathered soils relies on nutrients released from OM decay to a greater extent than vegetation growing on less weathered, more nutrient-rich substrates. For four mineralogically diverse Critical Zone Observatories (CZO) and Critical Zone Exploratory Network sites, we calculated weathering indices and approximated vegetation nutrient demand and nutrient release from OM decay. We also measured nutrient release rates from OM decay at each site. We then assessed the relationship between degree of soil weathering and the estimated fraction of nutrient demand satisfied by OM derived nutrients. Results are consistent with our hypothesis. The chemical index of alteration (CIA), a weathering index that increases in value with mineral depletion, varies predictably from 90 at the highly weathered Calhoun CZO to 60 at the Catalina CZO, where soils are more recently developed. Estimates of rates of K release from OM decay increase with CIA values. The highest release rate is 2.4 gK m-2 y-1 at Calhoun, accounting for 30% of annual vegetation K uptake; at Catalina, less than 0.5 gm-2 y-1 K is released, meeting 14% of vegetation demand. CIA also co-varies with rooting depth across sites: the deepest roots at the Calhoun sites are growing in soils with the highest CIA values, while the deepest roots at Catalina sites are growing in soils

  1. Effects of different fertilizers on growth and nutrient uptake of Lolium multiflorum grown in Cd-contaminated soils.

    Science.gov (United States)

    Liu, Mohan; Li, Yang; Che, Yeye; Deng, Shaojun; Xiao, Yan

    2017-10-01

    This study aimed to explore the effects of different fertilizers and their combinations on growth and nutrient and Cd uptake of Lolium multiflorum. Compared with control treatment, chemical fertilizer, organic manure, and their conjunctions with biofertilizer increased shoot biomass. Biofertilizers were found to cause significant reductions in shoot biomass of plants grown in organic manure-treated and control soil. Decreased soil-available N and P and shoot N and K concentrations in biofertilizer amendment treatments indicated that plant growth and nutrient absorption might be negatively affected under nutrient deficiency conditions. Elevated shoot biomasses contributed to the highest shoot Cd contents in chemical fertilizer and chemical fertilizer + biofertilizer treatments among all treatments. But the maximum translocation efficiency occurred in biofertilizer + chemical fertilizer + organic manure treatment, followed by organic manure and chemical fertilizer + organic manure treatments. Based on the results, we can conclude that the application of only the biofertilizer Bacillus subtilis should be avoided in nutrient-limited soils. Chemical fertilizer application could benefit the amount of Cd in shoots, and organic manure application and its combinations could result in the higher translocation efficiency.

  2. Effects of soil nutrient heterogeneity on intraspecific competition in the invasive, clonal plant Alternanthera philoxeroides.

    Science.gov (United States)

    Zhou, Jian; Dong, Bi-Cheng; Alpert, Peter; Li, Hong-Li; Zhang, Ming-Xiang; Lei, Guang-Chun; Yu, Fei-Hai

    2012-03-01

    Fine-scale, spatial heterogeneity in soil nutrient availability can increase the growth of individual plants, the productivity of plant communities and interspecific competition. If this is due to the ability of plants to concentrate their roots where nutrient levels are high, then nutrient heterogeneity should have little effect on intraspecific competition, especially when there are no genotypic differences between individuals in root plasticity. We tested this hypothesis in a widespread, clonal species in which individual plants are known to respond to nutrient heterogeneity. Plants derived from a single clone of Alternanthera philoxeroides were grown in the greenhouse at low or high density (four or 16 plants per 27·5 × 27·5-cm container) with homogeneous or heterogeneous availability of soil nutrients, keeping total nutrient availability per container constant. After 9 weeks, measurements of size, dry mass and morphology were taken. Plants grew more in the heterogeneous than in the homogeneous treatment, showing that heterogeneity promoted performance; they grew less in the high- than in the low-density treatment, showing that plants competed. There was no interactive effect of nutrient heterogeneity and plant density, supporting the hypothesis that heterogeneity does not affect intraspecific competition in the absence of genotypic differences in plasticity. Treatments did not affect morphological characteristics such as specific leaf area or root/shoot ratio. Results indicate that fine-scale, spatial heterogeneity in the availability of soil nutrients does not increase competition when plants are genetically identical, consistent with the suggestion that effects of heterogeneity on competition depend upon differences in plasticity between individuals. Heterogeneity is only likely to increase the spread of monoclonal, invasive populations such as that of A. philoxeroides in China.

  3. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Science.gov (United States)

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Managing soil nutrients with compost in organic farms of East Georgia

    Science.gov (United States)

    Ghambashidze, Giorgi

    2013-04-01

    Soil Fertility management in organic farming relies on a long-term integrated approach rather than the more short-term very targeted solutions common in conventional agriculture. Increasing soil organic matter content through the addition of organic amendments has proven to be a valuable practice for maintaining or restoring soil quality. Organic agriculture relies greatly on building soil organic matter with compost typically replacing inorganic fertilizers and animal manure as the fertility source of choice. In Georgia, more and more attention is paid to the development of organic farming, occupying less than 1% of total agricultural land of the country. Due to increased interest towards organic production the question about soil amendments is arising with special focus on organic fertilizers as basic nutrient supply sources under organic management practice. In the frame of current research two different types of compost was prepared and their nutritional value was studied. The one was prepared from organic fraction municipal solid waste and another one using fruit processing residues. In addition to main nutritional properties both composts were tested on heavy metals content, as one of the main quality parameter. The results have shown that concentration of main nutrient is higher in municipal solid waste compost, but it contains also more heavy metals, which is not allowed in organic farming system. Fruit processing residue compost also has lower pH value and is lower in total salt content being is more acceptable for soil in lowlands of East Georgia, mainly characterised by alkaline reaction. .

  5. Deposition and conversion in soil of acids, acid-forming substances and nutrients

    International Nuclear Information System (INIS)

    Mayer, R.

    1990-01-01

    Balancing of material depositions entries is the basis for their evaluation. The acid depositions must be put in relation to the acid neutralization capacity and to the buffer rate of the soil. Every 'excess' in depositons leads to an acid supply into the sub-soil and/or into the groundwater system. On the one hand, the nutrient depositions are interpreted in relation to the nutrient supplies of the soil and their availability to the plants; and on the other hand with a view to the nutrient depletion through the polants. Excesses can also lead to a (non-desirable) pollution of aquatic systems, or else to an enhanced nutrient supply in the soil. Balancing is therefore a necessary aid for the evaluation of material depositions from the atmosphere. (orig./EF) [de

  6. Determination of zinc nutrient in the soil using isotope technique

    International Nuclear Information System (INIS)

    Suwadji, E.

    1975-01-01

    In this experiment the availability of soil Zn nutrient in various soil conditions (dry and submerged), and the efficiency of the application of Zn fertilizer in rice nutrition were measured in glasshouse using isotope dilution technique. The amount of soil Zn nutrient available to plants can be expressed in 'E' and 'L' values. Submerged conditions generally showed an increase in the 'E' and 'L' value compared to dry conditions. Mixed treatment with ZnSO 4 fertilizer is more efficient for Zn absorption than surface treatment. (author)

  7. Wading bird guano enrichment of soil nutrients in tree islands of the Florida Everglades

    Energy Technology Data Exchange (ETDEWEB)

    Irick, Daniel L. [University of Florida, Soil and Water Science Department, Tropical Research and Education Center, 18905 SW 280th St., Homestead, FL 33031 (United States); Gu, Binhe [University of Florida, Soil and Water Science Department, 2181 McCarty Hall, Gainesville, FL 32611 (United States); Li, Yuncong C., E-mail: yunli@ufl.edu [University of Florida, Soil and Water Science Department, Tropical Research and Education Center, 18905 SW 280th St., Homestead, FL 33031 (United States); Inglett, Patrick W. [University of Florida, Soil and Water Science Department, 2181 McCarty Hall, Gainesville, FL 32611 (United States); Frederick, Peter C. [University of Florida, Department of Wildlife Ecology and Conservation, 110 Newins-Ziegler Hall, PO Box 110430, Gainesville, FL 32611 (United States); Ross, Michael S. [Florida International University, Department of Earth and Environment, Southeast Environmental Research Center, 11200 SW 8th St, Miami, FL 33199 (United States); Wright, Alan L. [University of Florida, Soil and Water Science Department, Everglades Research and Education Center, 3200 E. Palm Beach Rd., Belle Glade, FL 33430 (United States); Ewe, Sharon M.L. [Ecology and Environment, Inc., 12300 South Shore Blvd, Wellington, FL 33414 (United States)

    2015-11-01

    Differential distribution of nutrients within an ecosystem can offer insight of ecological and physical processes that are otherwise unclear. This study was conducted to determine if enrichment of phosphorus (P) in tree island soils of the Florida Everglades can be explained by bird guano deposition. Concentrations of total carbon, nitrogen (N), and P, and N stable isotope ratio (δ{sup 15}N) were determined on soil samples from 46 tree islands. Total elemental concentrations and δ{sup 15}N were determined on wading bird guano. Sequential chemical extraction of P pools was also performed on guano. Guano contained between 53.1 and 123.7 g-N kg{sup −1} and 20.7 and 56.7 g-P kg{sup −1}. Most of the P present in guano was extractable by HCl, which ranged from 82 to 97% of the total P. Total P of tree islands classified as having low or high P soils averaged 0.71 and 40.6 g kg{sup −1}, respectively. Tree island soil with high total P concentration was found to have a similar δ{sup 15}N signature and total P concentration as bird guano. Phosphorus concentrations and δ{sup 15}N were positively correlated in tree island soils (r = 0.83, p < 0.0001). Potential input of guano with elevated concentrations of N and P, and {sup 15}N enriched N, relative to other sources suggests that guano deposition in tree island soils is a mechanism contributing to this pattern. - Highlights: • Tree island soil P concentration and δ{sup 15}N values exceed other Everglades soils. • Characteristics of Everglades tree island soil may indicate guano deposition. • Deposition of stable guano P can exceed other P sources to tree island soil.

  8. Organic amendments and nutrient leaching in soil columns

    Science.gov (United States)

    The lack of nutrient build up in reclaimed coal mine soils would therefore require additional inputs to maintain plant productivity and establishment of a healthy ecosystem. In a greenhouse experiment, reclaimed coal mine soil were amended with fresh and composted poultry manure at the rates based ...

  9. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska.

    Science.gov (United States)

    Sullivan, Patrick F; Ellison, Sarah B Z; McNown, Robert W; Brownlee, Annalis H; Sveinbjörnsson, Bjartmar

    2015-03-01

    The position of the Arctic treeline, which is a key regulator of surface energy exchange and carbon cycling, is widely thought to be controlled by temperature. Here, we present evidence that soil nutrient availability, rather than temperature, may be the proximate control on growth of treeline trees at our study site in northwest Alaska. We examined constraints on growth and allocation of white spruce in three contrasting habitats. The habitats had similar aboveground climates, but soil temperature declined from the riverside terrace to the forest to the treeline. We identified six lines of evidence that conflict with the hypothesis of direct temperature control and/or point to the importance of soil nutrient availability. First, the magnitude of aboveground growth declined from the terrace to the forest to the treeline, along gradients of diminishing soil nitrogen (N) availability and needle N concentration. Second, peak rates of branch extension, main stem radial and fine-root growth were generally not coincident with seasonal air and soil temperature maxima. At the treeline, in particular, rates of aboveground and fine-root growth declined well before air and soil temperatures reached their seasonal peaks. Third, in contrast with the hypothesis of temperature-limited growth, growing season average net photosynthesis was positively related to the sum of normalized branch extension, main stem radial and fine-root growth across trees and sites. Fourth, needle nonstructural carbohydrate concentration was significantly higher on the terrace, where growth was greatest. Fifth, annual branch extension growth was positively related to snow depth, consistent with the hypothesis that deeper snow promotes microbial activity and greater soil nutrient availability. Finally, the tree ring record revealed a large growth increase during late 20th-century climate warming on the terrace, where soil N availability is relatively high. Meanwhile, trees in the forest and at the

  10. Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil

    Directory of Open Access Journals (Sweden)

    José Luis Martínez-Sánchez

    2005-09-01

    Full Text Available In tropical forests with nutrient-rich soil tree’s nutrient resorption from senesced leaves has not always been observed to be low. Perhaps this lack of consistence is partly owing to the nutrient resorption methods used. The aim of the study was to analyse N and P resorption proficiency from tropical rain forest trees in a nutrient-rich soil. It was hypothesised that trees would exhibit low nutrient resorption in a nutrient-rich soil. The soil concentrations of total N and extractable P, among other physical and chemical characteristics, were analysed in 30 samples in the soil surface (10 cm of three undisturbed forest plots at ‘Estación de Biología Los Tuxtlas’ on the east coast of Mexico (18°34’ - 18°36’ N, 95°04’ - 95°09’ W. N and P resorption proficiency were determined from senescing leaves in 11 dominant tree species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid. Soil was rich in total N (0.50%, n = 30 and extractable P (4.11 µg g-1, n = 30. As expected, trees showed incomplete N (1.13%, n = 11 and P (0.11%, n = 11 resorption. With a more accurate method of nutrient resorption assessment, it is possible to prove that a forest community with a nutrient-rich soil can have low levels of N and P resorption. Rev. Biol. Trop. 53(3-4: 353-359. Epub 2005 Oct 3.En las selvas tropicales con suelos fértiles se ha observado que la reabsorción de nutrientes de los arboles de las hojas seniles no siempre es baja. Esta falta de consistencia en el resultado es talvez debida en parte a la metodología de reabsorción de nutrientes utilizada. El objetivo de este estudio fue analizar la reabsorción final de N y P de arboles de la selva húmeda tropical en un suelo rico en nutrientes. La hipótesis planteada fue que en un suelo rico en nutrientes los arboles presentarían una baja reabsorción final de

  11. Seasonal and temporal evolution of nutrient composition of pastures grown on remediated and non remediated soils affected by trace element contamination (Guadiamar Valley, SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Madejon, P.; Dominguez, M. T.; Murillo, J. M.

    2010-07-01

    Elevated trace element concentrations in soils can affect the solubility and uptake of essential elements, resulting in nutrient deficiencies in plant tissues. The present paper deals with nutrient composition of pastures established on polluted and remediated soils (Green Corridor of the Guadiamar river Valley), in order to check the potential nutritional disorders that could derive from the soil pollution. In addition, nutrient composition of a representative grass, Cynodon dactylon, collected in 1999 and 2008 was compared in remediated and non-remediated sites of the polluted area. In general, nutrient concentrations of pastures were similar or even higher in polluted sites compared to control sites. Therefore, the estimated potential ingestion of main nutrients by horses (the most abundant animals in the area) was also greater in the polluted and remediated soils and covered their nutritional requirements (more than 300 (N), 70 (S), 35 (P), 400 (K), 175 (Ca) and 30 (Mg) mg kg{sup -}1 body weight day {sup -}1 in spring and autumn). Temporal evolution of nutrients and physiological ratios (N/S, Ca/P, K/Na, K/Ca+Mg) in C. dactylon showed a significant variation from 1999 to 2008, especially in the non-remediated area, leading to a recovery of the nutritional quality of this grass. The reasonable nutritional quality of pastures and the absence of negative interactions between nutrients and trace elements seem to indicate a stabilisation of soil pollutants in the affected area. (Author) 41 refs.

  12. Variations of leaf N and P concentrations in shrubland biomes across northern China: phylogeny, climate, and soil

    Science.gov (United States)

    Yang, Xian; Chi, Xiulian; Ji, Chengjun; Liu, Hongyan; Ma, Wenhong; Mohhammat, Anwar; Shi, Zhaoyong; Wang, Xiangping; Yu, Shunli; Yue, Ming; Tang, Zhiyao

    2016-08-01

    Concentrations of leaf nitrogen (N) and phosphorus (P) are two key traits of plants for ecosystem functioning and dynamics. Foliar stoichiometry varies remarkably among life forms. However, previous studies have focused on the stoichiometric patterns of trees and grasses, leaving a significant knowledge gap for shrubs. In this study, we explored the intraspecific and interspecific variations of leaf N and P concentrations in response to the changes in climate, soil property, and evolutionary history. We analysed 1486 samples composed of 163 shrub species from 361 shrubland sites in northern China encompassing 46.1° (86.7-132.8° E) in longitude and 19.8° (32.6-52.4° N) in latitude. Leaf N concentrations decreased with precipitation, while leaf P concentrations decreased with temperature and increased with precipitation and soil total P concentrations. Both leaf N and P concentrations were phylogenetically conserved, but leaf P concentrations were less conserved than leaf N concentrations. At the community level, climate explained more interspecific variation of leaf nutrient concentrations, while soil nutrients explained most of the intraspecific variation. These results suggested that leaf N and P concentrations responded to climate, soil, and phylogeny in different ways. Climate influenced the community chemical traits through the shift in species composition, whereas soil directly influenced the community chemical traits. New patterns were discovered using our observations on specific regions and vegetation types, which improved our knowledge of broad biogeographic patterns of leaf chemical traits.

  13. LEAF MINERAL CONCENTRATION OF FIVE OLIVE CULTIVARS GROWN ON CALCAREOUS SOIL

    Directory of Open Access Journals (Sweden)

    Igor Pasković

    2013-12-01

    Full Text Available There are limited numbers of scientific publication regarding genotypic differences which exist among olive cultivars concerning nutrient uptake and translocation. For that purpose, the object of our study was to determine possible differences between leaf mineral content of five selected olive cultivars since leaf nutrient analysis is consider being the best method for diagnosing olive tree nutritional status. Plant material was obtained from an olive collection, grown on calcareous soil maintained at Institute of Adriatic Crops and Karst Reclamation, Split, Croatia. The study was conducted with two Croatian autochthonous olive cultivars (“Istarska bjelica”, “Lastovka”, two Italian cultivars (“Pendolino”, “Leccino” and one Spanish cultivar (“Hojiblanca”. Completely randomized design was applied. This study has shown questionably low Mg concentration in all olive cultivars with exception for “Hojiblanca” cultivar. Also, only Croatian cultivars “Istarska bjelica” and “Lastovka” as well as Spanish cultivar “Hojiblanca” recorded sufficient levels of iron leaf mineral content. Regarding other elements studied (P, K, Ca, Zn, Mn, Cu all cultivars were above literature cited thresholds for possible deficiencies. Selected olive cultivars in our experiment demonstrated different nutrient leaf concentration, which is of particular importance for fertilization requirements and fertilization practice in Croatian orchards grown on calcareous soil.

  14. NPK fertilization effects on concentration of nutrients in Valencia orange leaves

    International Nuclear Information System (INIS)

    Basso, C.; Mielniczuk, J.; Bohnen, H.

    1983-01-01

    The effects of NPK fertilization on the nutrient concentration in the leaves was evaluated in a field experiment of Valencia orange (Citrus sinensis Osbeck) growing in a sandy acid soil, with 4N, 3P and 4K fertilizer levels. N and Cu contents in the leaves were high, while P and Zn levels were low, in all treatments. Increasing the levels of N, P 2 O 5 and K 2 O fertilization resulted in an increase of the N, P and K concentration in the leaves, respectively. Crescent levels of N fertilization raised Mn and decreased Ca concentration in the leaves. P and K contents in the leaves correlated positively. With a great availability and absorption of K, reduction on he foliar contents of Mg and Ca ocurred. (M.A.C.) [pt

  15. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales.

    Science.gov (United States)

    Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A

    2017-07-01

    Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry

  16. Relationships between nutrient composition of flowers and fruit quality in orange trees grown in calcareous soil.

    Science.gov (United States)

    Pestana, Maribela; Beja, Pedro; Correia, Pedro José; de Varennes, Amarilis; Faria, Eugénio Araújo

    2005-06-01

    To determine if flower nutrient composition can be used to predict fruit quality, a field experiment was conducted over three seasons (1996-1999) in a commercial orange orchard (Citrus sinensis (L.) Osbeck cv. 'Valencia Late', budded on Troyer citrange rootstock) established on a calcareous soil in southern Portugal. Flowers were collected from 20 trees during full bloom in April and their nutrient composition determined, and fruits were harvested the following March and their quality evaluated. Patterns of covariation in flower nutrient concentrations and in fruit quality variables were evaluated by principal component analysis. Regression models relating fruit quality variables to flower nutrient composition were developed by stepwise selection procedures. The predictive power of the regression models was evaluated with an independent data set. Nutrient composition of flowers at full bloom could be used to predict the fruit quality variables fresh fruit mass and maturation index in the following year. Magnesium, Ca and Zn concentrations measured in flowers were related to fruit fresh mass estimations and N, P, Mg and Fe concentrations were related to fruit maturation index. We also established reference values for the nutrient composition of flowers based on measurements made in trees that produced large (> 76 mm in diameter) fruit.

  17. Relationships between nutrient-related plant traits and combinations of soil N and P fertility measures.

    Science.gov (United States)

    Fujita, Yuki; van Bodegom, Peter M; Witte, Jan-Philip M

    2013-01-01

    Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility-trait relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1) whether different elements (N or P) have contrasting or shared influences, (2) which timescale of fertility measures (e.g. mineralization rates for one or five years) has better predictive power, and (3) if integrated fertility measures explain trait variation better than individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had element-specific effects on traits related to species composition (e.g. Grime's CSR strategy). The timescale of fertility measures only had a minor impact on fertility-trait relationships. Two integrated fertility measures (one reflecting overall fertility, another relative availability of soil N and P) were related significantly to most plant traits, but were not better in explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations) but largely for others (e.g. 66% for whole-canopy P concentration). The moderate relationships were probably due to complex regulation mechanisms of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared) and divergent (i.e. element-specific and stoichiometric) effects of soil N and P on traits, implying the importance of explicitly

  18. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    Science.gov (United States)

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy.

  19. [Changes of soil nutrient contents after prescribed burning of forestland in Heshan City, Guangdong Province].

    Science.gov (United States)

    Sun, Yu-xin; Wu, Jian-ping; Zhou, Li-xia; Lin, Yong-biao; Fu, Sheng-lei

    2009-03-01

    A comparative study was conducted to analyze the changes of soil nutrient contents in Eucalyptus forestland and in shrubland after three years of prescribed burning. In Eucalyptus forestland, soil organic carbon, total nitrogen, available potassium contents and soil pH decreased significantly; soil available phosphorus and exchangeable magnesium contents, net nitrogen mineralization rate and ammonification rate also decreased but showed no significant difference. In shrubland, soil exchangeable calcium content increased significantly, but the contents of other nutrients had no significant change. The main reason of the lower soil net nitrogen mineralization rate in Eucalyptus forest could be the decrease of available substrates and the uptake of larger amount of soil nutrients by the fast growth of Eucalyptus. The soil nutrients in shrubland had a quick restoration rate after burning.

  20. Characteristic of Soil Nutrients Loss in Beiyunhe Reservoir Under the Simulated Rainfall

    Directory of Open Access Journals (Sweden)

    LIU Cao

    2016-05-01

    Full Text Available Field nutrient loss from soil became the major factor of the water pollution control in countryside in China. Beiyunhe reservoir is located in semiarid zone, where field nutrient loss distributed in summer. To assess the flied nutrient loss in Beiyunhe reservoir, we conducted experiments to study the characteristic of soil nutrients loss by analysis of the content of runoff water, soil nutrients and runoff water sediment under simulated rainfall. The results showed that the runoff happened in the rainstorm. In runoff water, the content of TN was 4.7~11.3 mg·L-1, ammonia nitrogen and nitrate nitrogen accounted for 44.51% of TN; the content of P was 0.66~1.35 mg·L-1, water soluble phosphorus accounted for 54.08% of TP. And the main loss of nutrients was in the surface soil, the loss of TN, NH4+-N, NO3--N, TP and DP were 29.79%, 52.09%, 10.21%, 16.48% and 5.27%, respectively. However, the most of field nutrient loss were in runoff sediment, the content of TN and TP were 0.66~1.27 mg·g-1 and 14.73~20 mg·g-1 in sediment, and TN and TP account for 82.28% and 99.89% of total loss of nutrient. After the rainstorm, the macro-aggregates were reduced 8.8%, and the micro-aggregates increased 9.5%.

  1. Keeping agricultural soil out of rivers: evidence of sediment and nutrient accumulation within field wetlands in the UK.

    Science.gov (United States)

    Ockenden, Mary C; Deasy, Clare; Quinton, John N; Surridge, Ben; Stoate, Chris

    2014-03-15

    Intensification of agriculture has resulted in increased soil degradation and erosion, with associated pollution of surface waters. Small field wetlands, constructed along runoff pathways, offer one option for slowing down and storing runoff in order to allow more time for sedimentation and for nutrients to be taken up by plants or micro-organisms. This paper describes research to provide quantitative evidence for the effectiveness of small field wetlands in the UK landscape. Ten wetlands were built on four farms in Cumbria and Leicestershire, UK. Annual surveys of sediment and nutrient accumulation in 2010, 2011 and 2012 indicated that most sediment was trapped at a sandy site (70 tonnes over 3 years), compared to a silty site (40 tonnes over 3 years) and a clay site (2 tonnes over 3 years). The timing of rainfall was more important than total annual rainfall for sediment accumulation, with most sediment transported in a few intense rainfall events, especially when these coincided with bare soil or poor crop cover. Nutrient concentration within sediments was inversely related to median particle size, but the total mass of nutrients trapped was dependent on the total mass of sediment trapped. Ratios of nutrient elements in the wetland sediments were consistent between sites, despite different catchment characteristics across the individual wetlands. The nutrient value of sediment collected from the wetlands was similar to that of soil in the surrounding fields; dredged sediment was considered to have value as soil replacement but not as fertiliser. Overall, small field wetlands can make a valuable contribution to keeping soil out of rivers. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Effects of nitrogen enrichment on soil organic matter in tropical forests with different ambient nutrient status

    Science.gov (United States)

    Vaughan, E.; Cusack, D. F.; McDowell, W. H.; Marin-Spiotta, E.

    2017-12-01

    Nitrogen (N) enrichment is a widespread and increasingly important human influence on ecosystems globally, with implications for net primary production and biogeochemical processes. Previous research has shown that N enrichment can alter soil carbon (C) cycling, although the direction and magnitude of the changes are not consistent across studies, and may change with time. Inconsistent responses to N additions may be due to differences in ambient nutrient status, and/or variable responses of plant C inputs and microbial decomposition. Although plant production in the tropics is not often limited by N, soil processes may respond differently to N enrichment. Our study uses a 15-year N addition experiment at two different tropical forest sites in the Luquillo Long-Term Ecological Research project site in Puerto Rico to address long-term changes in soil C pools due to fertilization. The two forests differ in elevation and ambient nutrient status. Soil sampling three and five years post-fertilization showed increased soil C concentrations under fertilization, driven by increases in mineral-associated C (Cusack et al. 2011). However, the longer-term trends at these sites are unknown. To this end, soil samples were collected following fifteen years of fertilization. Soils were sampled from 0-10 cm and 10-20 cm. Bulk soil C and N concentrations will be measured and compared to samples collected before fertilization (2002) and three years post fertilization (2005). We are using density fractionation to isolate different soil organic matter pools into a free light, occluded light, and dense, mineral associated fraction. These pools represent different mechanisms of soil organic matter stabilization, and provide more detailed insight into changes in bulk soil C. These data will provide insight into the effects of N enrichment on tropical forest soils, and how those effects may change through time with a unique long-term data set.

  3. Distribution and movement of nutrients and metals in a Pinus radiata forest soil following applications of biosolids

    International Nuclear Information System (INIS)

    McLaren, Ronald G.; Clucas, Lynne M.; Speir, Tom W.; Schaik, Andrew P. van

    2007-01-01

    Samples of biosolids, spiked with increasing amounts of Cu, Ni or Zn were applied to field plots in a Pinus radiata forest, and the nutrient and metal status of the forest litter and underlying mineral soil was monitored over a period of six years following application. The macronutrient status of the forest litter was changed markedly by the biosolids application, with substantial increases in N, P and Ca concentrations, and decreases in Mg and K. The C/N ratio of the litter was also decreased and pH was increased by the biosolids application. The metals applied with the biosolids were retained predominantly in the litter layer, and even with non-metal-spiked biosolids there were substantial increases in litter metal concentrations. There was also firm evidence of some movement of Cu, Ni and Zn into the underlying mineral soil. The potential environmental issues resulting from these changes in nutrient and metal status are discussed. - Biosolids application to forest soils results in substantial build-up of macronutrients and metals in the forest litter layer

  4. Distribution and movement of nutrients and metals in a Pinus radiata forest soil following applications of biosolids

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Ronald G. [Centre for Soil and Environmental Quality, Agriculture and Life Sciences Division, P.O. Box 84, Lincoln University Canterbury (New Zealand)]. E-mail: mclaren@lincoln.ac.nz; Clucas, Lynne M. [Centre for Soil and Environmental Quality, Agriculture and Life Sciences Division, P.O. Box 84, Lincoln University Canterbury (New Zealand); Speir, Tom W. [Institute of Environmental Science and Research Ltd, P.O. Box 50348, Porirua (New Zealand); Schaik, Andrew P. van [Institute of Environmental Science and Research Ltd, P.O. Box 50348, Porirua (New Zealand)

    2007-05-15

    Samples of biosolids, spiked with increasing amounts of Cu, Ni or Zn were applied to field plots in a Pinus radiata forest, and the nutrient and metal status of the forest litter and underlying mineral soil was monitored over a period of six years following application. The macronutrient status of the forest litter was changed markedly by the biosolids application, with substantial increases in N, P and Ca concentrations, and decreases in Mg and K. The C/N ratio of the litter was also decreased and pH was increased by the biosolids application. The metals applied with the biosolids were retained predominantly in the litter layer, and even with non-metal-spiked biosolids there were substantial increases in litter metal concentrations. There was also firm evidence of some movement of Cu, Ni and Zn into the underlying mineral soil. The potential environmental issues resulting from these changes in nutrient and metal status are discussed. - Biosolids application to forest soils results in substantial build-up of macronutrients and metals in the forest litter layer.

  5. Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence

    Science.gov (United States)

    Bullen, Thomas D.; Chadwick, Oliver A.

    2016-01-01

    Nutrient biolifting is an important pedogenic process in which plant roots obtain inorganic nutrients such as phosphorus (P) and calcium (Ca) from minerals at depth and concentrate those nutrients at the surface. Here we use soil chemistry and stable isotopes of the alkaline earth elements Ca, strontium (Sr) and barium (Ba) to test the hypothesis that biolifting of P has been an important pedogenic process across a soil climosequence developed on volcanic deposits at Kohala Mountain, Hawaii. The geochemical linkage between these elements is revealed as generally positive site-specific relationships in soil mass gains and losses, particularly for P, Ba and Ca, using the ratio of immobile elements titanium and niobium (Ti/Nb) to link individual soil samples to a restricted compositional range of the chemically and isotopically diverse volcanic parent materials. At sites where P is enriched in surface soils relative to abundances in deeper soils, the isotope compositions of exchangeable Ca, Sr and Ba in the shallowest soil horizons ( 10 cm depth) at those sites is consistently heavier than the volcanic parent materials. The isotope compositions of exchangeable Ca and Sr trend toward heavier compositions with depth more gradually, reflecting increasing leakiness from these soils in the order Ba < Sr < Ca and downward transfer of light biocycled Ca and Sr to deeper exchange sites. Given the long-term stability of ecosystem properties at the sites where P is enriched in surface soils, a simple box model demonstrates that persistence of isotopically light exchangeable Ca, Sr and Ba in the shallowest soil horizons requires that the uptake flux to plants from those near-surface layers is less than the recycling flux returned to the surface as litterfall. This observation implicates an uptake flux from an additional source which we attribute to biolifting. We view the heavy exchangeable Ba relative to soil parent values in deeper soils at sites where P is enriched in

  6. Yields and nutrient pools in soils cultivated with Tectona grandis and Gmelina arborea in Nigerian rainforest ecosystem

    Directory of Open Access Journals (Sweden)

    V.A.J. Adekunle

    2011-06-01

    Full Text Available This study examined the yield of the two most prominent exotic species in southwest Nigeria and the nutrient status of soils cultivated with these species. The impacts of plantation development on soil nutrients were also examined. The plantations species are Gmelina arborea (Gmelina stands established in 1984, 1988, 1990 and 1994 and Tectona grandis (Teak established in 1990, 1992, 1994, 1996 and 1997. Growth data and composite soil samples from 3 depths (0–15, 15–30 and 30–60 cm were collected from five equal sized plots (20 × 20 m2 randomly located in the plantation of the two species. Also, soil samples were collected from the adjacent natural forest for comparison. The results for both species show that tree growth variables increased substantially with increase in tree age. There was significant difference in number of trees per hectare, dominant diameter, volume/ha and MAI for the Gmelina stands. In the Teak stand, there was significant difference in most of the tree growth variables also. Nutrients required by plants to survive were present in the soil samples from the plantations and the natural forest in different proportions. There was high correlation between percentage sand and most of the tree growth variables for both species. The pH value obtained for the Gmelina stands ranged between 6.47 and 7.47 while that of Teak stands ranged between 5.57 and 8.33. There was also a high and positive relationship between some soil chemical properties and tree growth variables. The highest significant correlation coefficient existed between phosphorus concentration and basal area for stands of both species. The r-values are 0.98 and 0.96 for Gmelina and Teak, respectively. While a high, negative and significant r-value (−0.88 was also obtained between potassium and volume/ha for the Gmelina stands, a high positive r-value was obtained between the potassium and basal area for the Teak stands. Comparison of soil nutrients in the

  7. Linking spatial patterns of soil redistribution traced with 137Cs and soil nutrients in a Mediterranean mountain agroecosystem (NE Spain)

    Science.gov (United States)

    Quijano, Laura; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Mediterranean mountain agroecosystems are prone to soil loss mainly due to the accelerated erosion as a consequence of human induced changes from agriculture and grazing practices over the last centuries and the climatic conditions (i.e. irregular and scarce precipitations and drought periods). Soil erosion leads to soil degradation inducing the loss of soil functions. The progressive decline of soil functions thereof soil quality is associated to a decrease of soil productivity and can threat the sustainability of cultivated soils. The use of fallout 137Cs as a soil movement tracer provides useful data to identify areas where loss and gain of 137Cs occurs and that of soil. This study aims to address soil movement and soil nutrient dynamics closely related to the status of soil degradation. A rain-fed cereal field (1.6 ha) representative of Mediterranean mountain agricultural landscapes (42°25'41''N 1°13'8''W) was selected to examine the effects of soil redistribution processes on the spatial variability of soil organic carbon (SOC) and nitrogen (SON) and their relationships with soil properties and topographic characteristics. From the hydrological point of view, the field is isolated due to the effect of landscape features and man-made structures. Climate is continental Mediterranean with an average annual rainfall of 500 mm and soils are Calcisols. The reference inventories of 137Cs and soil nutrients were established from 21 soil samples collected in nearby undisturbed areas under typical Mediterranean vegetation cover. A total of 156 bulk soil samples (30-50 cm depth) and 156 topsoil samples (5 cm) were collected on a 10 m grid. 137Cs and soil nutrients loss and gain areas were identified by comparing the reference inventories with the values of inventories at the sampling points. A new approach to characterize and measure active (ACF) and stable (SCF) carbon fraction contents by using a dry combustion method based on the oxidation temperature of carbon

  8. Changes in soil carbon and nutrients following 6 years of litter removal and addition in a tropical semi-evergreen rain forest

    Directory of Open Access Journals (Sweden)

    E. V. J. Tanner

    2016-11-01

    Full Text Available Increasing atmospheric CO2 and temperature may increase forest productivity, including litterfall, but the consequences for soil organic matter remain poorly understood. To address this, we measured soil carbon and nutrient concentrations at nine depths to 2 m after 6 years of continuous litter removal and litter addition in a semi-evergreen rain forest in Panama. Soils in litter addition plots, compared to litter removal plots, had higher pH and contained greater concentrations of KCl-extractable nitrate (both to 30 cm; Mehlich-III extractable phosphorus and total carbon (both to 20 cm; total nitrogen (to 15 cm; Mehlich-III calcium (to 10 cm; and Mehlich-III magnesium and lower bulk density (both to 5 cm. In contrast, litter manipulation did not affect ammonium, manganese, potassium or zinc, and soils deeper than 30 cm did not differ for any nutrient. Comparison with previous analyses in the experiment indicates that the effect of litter manipulation on nutrient concentrations and the depth to which the effects are significant are increasing with time. To allow for changes in bulk density in calculation of changes in carbon stocks, we standardized total carbon and nitrogen on the basis of a constant mineral mass. For 200 kg m−2 of mineral soil (approximately the upper 20 cm of the profile about 0.5 kg C m−2 was “missing” from the litter removal plots, with a similar amount accumulated in the litter addition plots. There was an additional 0.4 kg C m−2 extra in the litter standing crop of the litter addition plots compared to the control. This increase in carbon in surface soil and the litter standing crop can be interpreted as a potential partial mitigation of the effects of increasing CO2 concentrations in the atmosphere.

  9. Laboratory and field methods for measurement of hyphal uptake of nutrients in soil

    DEFF Research Database (Denmark)

    Schweiger, P.F.; Jakobsen, I.

    2000-01-01

    Experimental systems for measuring nutrient transport by arbuscular mycorrhizal (AM) fungi in soil are described. The systems generally include two soil compartments that are separated by fine nylon mesh. Both roots and root-external hyphae grow in one compartment, but only hyphae are fine enough...... to grow through the mesh into the other compartment. Application of tracer isotopes to the soil of this hyphal compartment can be used to measure nutrient uptake by plants via AM fungal hyphae. Use of compartmented systems is discussed with particular reference to phosphorus, which is the mineral nutrient...

  10. Nuclear techniques in integrated plant nutrient, water and soil management. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The need to produce sufficient food of acceptable quality in the context of an ever-expanding human population has been recognized as a priority by several international conventions and agreements. Intensification, rather than expansion of agriculture into new areas, will be required if the goal of food security is to become a reality. Problems related to the sustainable production of food, fuel and fibre, both in low input and in high input agricultural systems, are now widely recognized. The overexploitation of the natural resource base has led to serious declines in soil fertility through loss of organic matter, nutrient mining, and soil erosion. The overuse of external inputs of water and manufactured fertilizers has resulted in salinization and pollution of ground and surface waters. Nuclear science has a crucial role to play in supporting research and development of sustainable farming systems. An FAO/IAEA International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water and Soil Management, held in Vienna from 16 to 20 October 2000, was attended by 117 participants representing forty-three countries and five organizations. The purpose was to provide an international forum for a comprehensive review of the state of the art and recent advances made in this specific field, as well as a basis for delineating further research and development needs. The participation of soil, crop and environmental scientists, as well as isotope specialists, ensured an exchange of information and views on recent advances in interdisciplinary and multidisciplinary approaches to addressing problems in sustainable land management. The symposium was organized around seven themes, each represented by a technical session introduced by a keynote speaker: Evaluation and management of natural and manufactured nutrient sources; Soil organic matter dynamics and nutrient cycling; Soil water management and conservation; Plant tolerance to environmental stress; Environmental and

  11. Nuclear techniques in integrated plant nutrient, water and soil management. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    The need to produce sufficient food of acceptable quality in the context of an ever-expanding human population has been recognized as a priority by several international conventions and agreements. Intensification, rather than expansion of agriculture into new areas, will be required if the goal of food security is to become a reality. Problems related to the sustainable production of food, fuel and fibre, both in low input and in high input agricultural systems, are now widely recognized. The overexploitation of the natural resource base has led to serious declines in soil fertility through loss of organic matter, nutrient mining, and soil erosion. The overuse of external inputs of water and manufactured fertilizers has resulted in salinization and pollution of ground and surface waters. Nuclear science has a crucial role to play in supporting research and development of sustainable farming systems. An FAO/IAEA International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water and Soil Management, held in Vienna from 16 to 20 October 2000, was attended by 117 participants representing forty-three countries and five organizations. The purpose was to provide an international forum for a comprehensive review of the state of the art and recent advances made in this specific field, as well as a basis for delineating further research and development needs. The participation of soil, crop and environmental scientists, as well as isotope specialists, ensured an exchange of information and views on recent advances in interdisciplinary and multidisciplinary approaches to addressing problems in sustainable land management. The symposium was organized around seven themes, each represented by a technical session introduced by a keynote speaker: Evaluation and management of natural and manufactured nutrient sources; Soil organic matter dynamics and nutrient cycling; Soil water management and conservation; Plant tolerance to environmental stress; Environmental and

  12. Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff

    Science.gov (United States)

    Leonard F. DeBano; Raymond M. Rice; Conrad C. Eugene

    1979-01-01

    This state-of-the-art report summarizes what is known about the effects of heat on soil during chaparral fires. It reviews the literature on the effects of such fires on soil properties, availabilty and loss of plant nutrients, soil wettability, erosion, and surface runoff. And it reports new data collected during recent prescribed burns and a wildfire in southern...

  13. Managing Soil Biota-Mediated Decomposition and Nutrient Mineralization in Sustainable Agroecosystems

    Directory of Open Access Journals (Sweden)

    Joann K. Whalen

    2014-01-01

    Full Text Available Transformation of organic residues into plant-available nutrients occurs through decomposition and mineralization and is mediated by saprophytic microorganisms and fauna. Of particular interest is the recycling of the essential plant elements—N, P, and S—contained in organic residues. If organic residues can supply sufficient nutrients during crop growth, a reduction in fertilizer use is possible. The challenge is synchronizing nutrient release from organic residues with crop nutrient demands throughout the growing season. This paper presents a conceptual model describing the pattern of nutrient release from organic residues in relation to crop nutrient uptake. Next, it explores experimental approaches to measure the physical, chemical, and biological barriers to decomposition and nutrient mineralization. Methods are proposed to determine the rates of decomposition and nutrient release from organic residues. Practically, this information can be used by agricultural producers to determine if plant-available nutrient supply is sufficient to meet crop demands at key growth stages or whether additional fertilizer is needed. Finally, agronomic practices that control the rate of soil biota-mediated decomposition and mineralization, as well as those that facilitate uptake of plant-available nutrients, are identified. Increasing reliance on soil biological activity could benefit crop nutrition and health in sustainable agroecosystems.

  14. Nutrient leaching when soil is part of plant growth media

    Science.gov (United States)

    Soils can serve as sorbents for phosphorus (P) within plant growth media, negating the need for artificial sorbents. The purpose of this study was to compare soils with different properties, as part of plant growth media, for their effect on nutrient levels in effluent. Four soils were mixed with sa...

  15. Comparison of Surface Runoff Generation, and Soil and Nutrient Loss in Kakhk Treated and Representative Watersheds, Khorasan Razavi Province

    Directory of Open Access Journals (Sweden)

    Davood Davoodi Moghadam

    2017-02-01

    Full Text Available Introduction: It is vital to control land degradation, for conserving precious natural treasures. Quantification of runoff production and soil and nutrient loss from wild lands under different managerial systems is one of the scientific and optimal management in agriculture and natural resources, as a major component of sustainable development. Many researches have been conducted to assess the effects of different land uses on soil erosion and runoff generation throughout the globe. Most of which, mainly verified the detrimental effects of human intervention on land degradation. However, limited comprehensive and comparative studies have been conducted to consider the amount of surface runoff generation, and soil and nutrient loss from watersheds with different management patterns viz. untreated and treated small watersheds. Materials and Methods: The present study aimed to compare surface runoff generation,soil and nutrient loss in Kakhk treated and untreated watersheds with an area ca. 222 ha and precipitation of some 243 mm per annum. Other physical and geological characteristics of the paired watersheds were also similar to allow assessing the effects of study measures on soil, water and nutrient losses. The area under consideration has been located in Khorasan Razavi Province in northeastern Iran. The present study was performed in plots with standard size of 22.1 × 1.8 m in treating and representative areas, with three replicates and on the storm basis occurred during early 2011 and mid-2014. The treated plots were covered by biological measures viz. seeding, bunching and exclusre. The study plots have been situated on eastern,western and northern aspects with respective slope of 55, 40 and 40 %. The entire runoff from study plots were collected in a container in 0.5×1×1 m. The sediment concentration was also measured in 2-liter samples taken from the container after a complete mixing of the entire collected runoff. The sample was

  16. Variability of δ15N in soil and plants at a New Zealand hill country site: correlations with soil chemistry and nutrient inputs

    International Nuclear Information System (INIS)

    Hawke, D.J.

    2000-01-01

    This study investigated 15 N enrichment and nutrient cycling in hill country used for semi-extensive pastoral agriculture, at a site where pre-European seabird breeding occurred. Soil (>15 cm) and plant samples were taken from 18 ridgeline and sideslope transects. Three stock camps (locations which grazing animals frequent) were identified within the study area, two on the ridgeline and one on the sideslope. Soil 15 N enrichment was greatest at stock camps, and lowest where stock input was minimal. Soil natural abundance 15 N (815N) was therefore an index of stock nutrient inputs. Soil δ 15 N increased with decreasing C:N ratio, consistent with N loss through volatilisation and/or nitrate leaching from net mineralisation. Plant δ 15 N from stock camps was lower than its associated soil, implying that 15 N enrichment of plant-available N was lower than that of total soil N. However, the correlation between plant δ 15 N and soil δ 15 N varied between stock camps, indicating differences in N cycling. Olsen P was higher at stock camps, although again differences were found between stock camps. Total P and N were correlated neither with stock camps nor topography, but were higher than expected from parent material concentrations and literature results, respectively. It is postulated that significant contributions of both elements from former seabird breeding remain in the soil. Copyright (2000) CSIRO Publishing

  17. Soil nutrient ecology associated with Acacia sieberana at different ...

    African Journals Online (AJOL)

    Reports on a study conducted on three aspects of soil nutrient ecology in an Acacia sieberana savanna. Information was collected about the effects of a savanna tree species on soil fertility, and the influence of savanna trees on mycorrhizal abundance was investigated. Mycorrhizal dependence of the indigenous African ...

  18. Understanding cassava yield response to soil and fertilizer nutrient supply in West Africa

    NARCIS (Netherlands)

    Ezui, K.S.; Franke, A.C.; Ahiabor, B.D.K.; Tetteh, F.M.; Sogbedji, J.; Janssen, B.H.; Mando, A.; Giller, K.E.

    2017-01-01

    Background and aims: Enhanced understanding of plant and nutrient interactions is key to improving yields. We adapted the model for QUantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) to assess cassava yield response to soil and fertilizer nutrients in West Africa. Methods: Data

  19. Tracer methods to quantify nutrient uptake from plough layer, sub-soil and fertilizer: implications on sustainable nutrient management

    International Nuclear Information System (INIS)

    Haak, E.

    1996-01-01

    Two soils injection methods are presented. The first method consists of homogeneously labelling the whole plough layer with carrier free tracers. this is done in two treatments, (1) a reference treatment without connection with the sub-soil and (2) an experimental treatment where the sub-soil is freely accessible for root penetration. The second method, which is now under development, consists of using isotope labelled fertilizers instead of carrier free tracers. By application of the A-value concept it is possible to quantify (by the first method) the plant uptake of nutrients from plough layer and sub-soil, and from the second method, the uptake of nutrients from the applied fertilizer. A fertilizer strategy for phosphorus is discussed based on data obtained from tracer experiment in the field, and soil survey of specific field sites. (author). 7 refs, 2 figs, 1 tab

  20. Tracer methods to quantify nutrient uptake from plough layer, sub-soil and fertilizer: implications on sustainable nutrient management

    Energy Technology Data Exchange (ETDEWEB)

    Haak, E [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Radioecology

    1996-07-01

    Two soils injection methods are presented. The first method consists of homogeneously labelling the whole plough layer with carrier free tracers. this is done in two treatments, (1) a reference treatment without connection with the sub-soil and (2) an experimental treatment where the sub-soil is freely accessible for root penetration. The second method, which is now under development, consists of using isotope labelled fertilizers instead of carrier free tracers. By application of the A-value concept it is possible to quantify (by the first method) the plant uptake of nutrients from plough layer and sub-soil, and from the second method, the uptake of nutrients from the applied fertilizer. A fertilizer strategy for phosphorus is discussed based on data obtained from tracer experiment in the field, and soil survey of specific field sites. (author). 7 refs, 2 figs, 1 tab.

  1. Effect of soil acidification on root growth, nutrient and water uptake

    International Nuclear Information System (INIS)

    Marschner, H.

    1989-01-01

    Soil acidification poses various types of stress to plants, especially Al and H + toxicity in roots and Mg and Ca deficiency in roots and shoots. The importance of the various types of stress varies with plant species, location and time. Average data of the chemical composition of the bulk soil or of the molar Ca/Al or Mg/Al ratios in the soil solution without consideration of the Al species are of limited value for precise conclusions of the actual, or for predictions of the potential risk of soil-acidity-induced inhibition of root growth and of nutritional imbalances. The root-induced changes in the rhizosphere and the consequences for Al toxicity and nutrient acquisition by plants deserve more attention. Further it should be considered that roots are not only required for anchoring higher plants in the soil and for nutrient and water uptake. Roots are also important sites for synthesis of phytohormones, cytokinins and abscisic acid in particular, which are transported into the shoots and act either as signals for the water status at the soil-root interface (ABA) or as compounds required for growth and development. Inhibition in root growth may therefore affect shoot growth by means other than water and nutrient supply. (orig./vhe)

  2. Vegetation composition and soil nutrients status from polyculture to ...

    African Journals Online (AJOL)

    The findings revealed that the change in micro-environmental conditions as influenced by attitude and seasonality has marked effect on status and release of nutrients in the soil of representative forest stands at markedly difference. The ambient and soil temperature was sharply greater at high altitude (Upper Shillong) and ...

  3. The influence of change of concentration of sum of nutrient elements on uptake 137Cs from inert substrate to the lettuce

    International Nuclear Information System (INIS)

    Alipbekov, O.A.; Dlimbetova, G.K.

    2002-01-01

    Radiation ecology has become the science of applied character after the numbers of great accidents at the nuclear fuel cycle enterprises (United Kingdom, 1957; Russia,1957; Ukraine, 1986). The success of the fight on the consequences liquidations of the uncontrolled fallen artificial radionuclides on the agricultural fields depends a lot on the correct use of accumulated division products in the soil-plant system in the field migration appropriateness. The considerable lowering of radionuclides uptake into the plants from the soil can be achieved by increase of disability of products fastening of soil division. At the same time the addition of the stuff with high sorption and fixing characteristics into the soil, as a rule, gives a considerable effect only in the first period of their use. Later the fixed isotopes can come into ion-exchange process again after the achievement of the balance condition with the soil-absorbing complex, i.e. pass in the more mobile forms. Entering of mineral fertilizers into the soil often leads to the contradictory results, so the search in this direction is going on. The given information emphasizes the actuality of the further studying the methods of regulation of long living radionuclides availability from the soil to the plants with the help of the nutrient mineral elements. The aim of the present work is the study of the influence of concentration of sum of basic nutrient elements (nitrogen, phosphorus, potassium, calcium, magnesium, iron, copper, zinc, manganese, cobalt, molybdenum, boron) on the uptake of 137 Cs from the inert substrate to the Lettuce plants. The vegetation experiments were carried out in one liter polyethylene vascular. One liter of milled quartz sand (size of the fractions was 0.5-1.0 mm) was put into each vascular specially cleaned from admixtures. The nutrient elements were added according to Rinkis. The results of the carried out researches have shown that the decrease of the concentration of sum of macro

  4. Long-term Effects of Nutrient Addition and Phytoremediation on Diesel and Crude Oil Contaminated Soils in subarctic Alaska

    Science.gov (United States)

    Leewis, Mary-Cathrine; Reynolds, Charles M.; Leigh, Mary Beth

    2014-01-01

    Phytoremediation is a potentially inexpensive method of detoxifying contaminated soils using plants and associated soil microorganisms. The remote locations and cold climate of Alaska provide unique challenges associated with phytoremediation such as finding effective plant species that can achieve successful site clean-up despite the extreme environmental conditions and with minimal site management. A long-term assessment of phytoremediation was performed which capitalized on a study established in Fairbanks in 1995. The original study sought to determine how the introduction of plants (Festuca rubra, Lolium multiflorum), nutrients (fertilizer), or their combination would affect degradation of petroleum hydrocarbon (TPH) contaminated soils (crude oil or diesel) over time. Within the year following initial treatments, the plots subjected to both planting and/or fertilization showed greater overall decreases in TPH concentrations in both the diesel and crude oil contaminated soils relative to untreated plots. We re-examined this field site after 15 years with no active site management to assess the long-term effects of phytoremediation on colonization by native and non-native plants, their rhizosphere microbial communities and on petroleum removal from soil. Native and non-native vegetation had extensively colonized the site, with more abundant vegetation found on the diesel contaminated soils than the more nutrient-poor, more coarse, and acidic crude oil contaminated soils. TPH concentrations achieved regulatory clean up levels in all treatment groups, with lower TPH concentrations correlating with higher amounts of woody vegetation (trees & shrubs). In addition, original treatment type has affected vegetation recruitment to each plot with woody vegetation and more native plants in unfertilized plots. Bacterial community structure also varies according to the originally applied treatments. This study suggests that initial treatment with native tree species in

  5. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  6. Assessment of soil nutrient depletion and its spatial variability on smallholders' mixed farming systems in Ethiopia using partial versus full nutrient balances

    NARCIS (Netherlands)

    Haileslassie, A.; Priess, J.; Veldkamp, E.; Teketay, D.; Lesschen, J.P.

    2005-01-01

    Soil fertility depletion in smallholder farms is one of the fundamental biophysical causes for declining per capita food production in Ethiopia. In the present study, we assess soil nutrient depletion and its spatial variability for Ethiopia and its regional states, using nutrient balances as a

  7. Ancient Soils in a Sunburnt Country: Nutrient and Carbon Distributions in an Australian Dryland River System

    Science.gov (United States)

    McIntyre, R. E.; Grierson, P. F.; Adams, M. A.

    2005-05-01

    Riparian systems are hotspots in dryland landscapes for nutrient supply and transformation. Biogeochemical fluxes in riparian systems are closely coupled to hydrological flowpaths, which, in dryland regions, are characterised by catastrophic flooding and long periods of erratic or no flow. Re-wetting of soils stimulates soil microbial processes that drive mineralization of nutrients necessary for plant growth. We present here the first data of a 3-year research project investigating biogeochemical processes in riparian systems in the semi-arid Pilbara region of Western Australia. Spatial patterns of nitrogen, phosphorus and carbon were closely related to topographic zone (across floodplain and channels) and vegetation type. NO3- and PCi concentrations were four-fold higher in channel, bank and riparian soils than in soils of floodplain and riparian-floodplain transition zones. Nitrogen distribution was highly heterogeneous in riparian soils (NO3- CV=102%, NH4+ CV=84%) while phosphorus was particularly heterogeneous in floodplain soils (PCi CV=153%, PCo CV=266%), in comparison to other zones. Phospholipid fatty acid (PLFA) and enzymatic profiles will be used to assess microbial functional groups, combined with mineralisation experiments and stable isotope studies (15N and 13C). These data will improve understanding of biogeochemical cycling in dryland riparian systems, and contribute to improved regional management of water resources.

  8. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  9. Contrasting nutritional acclimation of sugar maple (Acer saccharum Marsh. and red maple (Acer rubrum L. to increasing conifers and soil acidity as demonstrated by foliar nutrient balances

    Directory of Open Access Journals (Sweden)

    Alexandre Collin

    2016-07-01

    Full Text Available Sugar maple (Acer saccharum Marshall, SM is believed to be more sensitive to acidic and nutrient-poor soils associated with conifer-dominated stands than red maple (Acer rubrum L., RM. Greater foliar nutrient use efficiency (FNUE of RM is likely the cause for this difference. In the context of climate change, this greater FNUE could be key in favouring northward migration of RM over SM. We used the concept of foliar nutrient balances to study the nutrition of SM and RM seedlings along an increasing gradient in forest floor acidity conditioned by increasing proportions of conifers (pH values ranging from 4.39 under hardwoods, to 4.29 under mixed hardwood-conifer stands and 4.05 under conifer-dominated stands. Nutrients were subjected to isometric log-ratio (ilr transformation, which views the leaf as one closed system and considers interactions between nutrients. The ilr method eliminates numerical biases and weak statistical inferences based on raw or operationally’’ log-transformed data. We analyzed foliar nutrients of SM and RM seedlings and found that the [Ca,Mg,K|P,N] and [Ca,Mg|K] balances of SM seedlings were significantly different among soil acidity levels, whereas they did not vary for RM seedlings. For SM seedlings, these differences among soil acidity levels were due to a significant decrease in foliar Ca and Mg concentrations with increasing forest floor acidity. Similar differences in foliar balances were also found between healthy and declining SM stands estimated from literature values. Conversely, foliar balances of RM seedlings did not differ among soil acidity levels, even though untransformed foliar nutrient concentrations were significantly different. This result highlights the importance of using ilr transformation, since it provides more sensitive results than standard testing of untransformed nutrient concentrations. The lower nutrient requirements of RM and its greater capacity to maintain nutrient equilibrium are

  10. Soil preparation and nutrient losses by erosion in the culture cucumber

    Directory of Open Access Journals (Sweden)

    Amaral Sobrinho Nelson Moura Brasil do

    2005-01-01

    Full Text Available Minimum tillage reportedly reduce erosion, avoid soil degradation and improve crop productivity. This study aimed to determine how tillage operations may affect either nutrient accumulation or nutrient losses by erosion. The study was, carried out from December, 2000 to March, 2001, in the watershed of the Caetés River, in Rio de Janeiro State, Brazil (22º25'43"S, 43º25'07"W. The experiment was set up in sandy clay Kandiudult soil, 60% slope, under cucumber (Cucumis sativus L. crop. Soil samples were collected before planting and after harvest, on 22.0 X 4.0 m Greeoff plots. After each rainfall, fine sediments carried by runoff were deposited into two collecting tanks in a row, installed at the end of each plot, and were later dried, weighed and stored for analyses. Treatments (n = 4 were characterized by different tillage systems: (i downhill plowing followed by the burning of crop residues (DPB; (ii downhill plowing with no burning of the crop residues (DPNB; (iii animal traction contour plowing, with strips of guinea grass planted at a spacing of 7.0 m (AT; and (iv minimum tillage (MT. Samples of the soil-plowed layer were collected before planting and after harvest, between the rows and from the plants. Total concentration of Ca, Mg, K and P were determined after extraction with nitric perchloride digestion. Labile P and exchangeable K were extracted with the Mehlich 1 extractant solution. The MT system reduced losses of both exchangeable bases (15% and P (8%, and affected the distribution of labile and organic P. Crop residues left on soil surface in the MT system, resulted in increased organic matter content. Downhill plowing, the most used tillage operation in the region, resulted in the greatest losses of Ca, Mg, K, and P.

  11. Forest soil survey and mapping of the nutrient status of the vegetation on Olkiluoto island. Results from the first inventory on the FEH plots

    International Nuclear Information System (INIS)

    Tamminen, P.; Aro, A.; Salemaa, M.

    2007-09-01

    The aim of the inventory was to determine the status of the forest soils and to map the current nutrient status of forest vegetation on Olkiluoto Island in order to create a basis for monitoring future changes in the forests and to provide data for a biospheric description of the island. The study was carried out on 94 FEH plots, which were selected from the forest extensive monitoring network (FET plots) on the basis of the forest site type distribution and tree stand characteristics measured on the island during 2002 - 2004. Forest soils on Olkiluoto are very young and typical of soils along the Finnish coast, i.e. stony or shallow soils overlying bedrock, but with more nutrients than the forest soils inland. In addition to nutrients, the heavy metal concentrations are clearly higher on Olkiluoto than the average values for Finnish forest soils. The soil in the alder stands growing along the seashore is different from the other soils on Olkiluoto and the control soils inland. These soils are less acidic and have large reserves of sodium, magnesium and nitrogen. Macronutrient concentrations in vascular plant species were relatively similar to those reported for Southern Finland. However, it is obvious that the accumulation of particulate material on the vegetation, especially on forest floor bryophytes, has increased due to emissions derived from the construction of roads, drilling and rock crushing, as well as the other industrial activities on Olkiluoto Island. Leaf and needle analysis indicated that the tree stands had, in the main, a good nutrient status on Olkiluoto Island. The surveying methods used on Olkiluoto are better suited to detect systematic changes over a larger area or within a group of sample plots than the changes on individual plots. (orig.)

  12. Doses de N e K no tomateiro sob estresse salino: I. Concentração de nutrientes no solo e na planta Doses of N and K in tomato under saline stress: I. Concentration of nutrients in the soil solution and plant

    Directory of Open Access Journals (Sweden)

    Flávio F. Blanco

    2008-02-01

    Full Text Available Em geral, culturas tolerantes à salinidade geralmente apresentam maiores teores foliares de certos nutrientes, sugerindo que a adubação em culturas sensíveis poderia elevar os teores desses nutrientes nas folhas, aumentando sua tolerância aos sais. Este trabalho teve o objetivo de estudar os efeitos do N e do K na condutividade elétrica, pH e concentração de nutrientes da solução do solo e nos teores de nutrientes e prolina nas folhas do tomateiro irrigado com água salina. Os tratamentos foram compostos da combinação de três níveis de N (7,5; 15,0 e 22,5 g por planta e de K (8, 16 e 24 gK2O por planta aplicados via fertirrigação por gotejamento, no esquema fatorial 3 x 3, com cinco repetições, sendo que à água de irrigação foram adicionados os sais cloreto de sódio e cloreto de cálcio, para obtenção de condutividade elétrica da água de 9,5 dS m-1. As concentrações de NO3 e K na solução do solo e de N e K nas folhas do tomateiro aumentaram com as doses de N e K mas não promoveram redução dos teores de Cl nem de Na nas folhas das plantas. O aumento do teor de prolina com as doses de K e a redução de Cl/N com as doses de N, sugerem que o aumento na adubação potássica e nitrogenada pode ser benéfico para o tomateiro sob condições de salinidade moderada.Crops tolerant to salinity generally present higher concentrations of some nutrients in the leaves, suggesting that the fertilization of sensitive crops could increase the contents of these nutrients in the leaves to increase the crop tolerance to salts. This work had the objective of studying the effects of N and K on electrical conductivity, pH and nutrient concentrations of soil solution and on concentration of nutrients and proline in the leaves of tomatos irrigated with saline water. The treatments were composed of the combination of three levels of N (7.5, 15.0 and 22.5 g per plant and K (8, 16 and 24 g K2O per plant applied by drip fertigation, in a 3

  13. Responses of Wheat Yield, Macro- and Micro-Nutrients, and Heavy Metals in Soil and Wheat following the Application of Manure Compost on the North China Plain

    Science.gov (United States)

    Wang, Fan; Wang, Zhaohui; Kou, Changlin; Ma, Zhenghua; Zhao, Dong

    2016-01-01

    The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn. PMID

  14. THE EFFECT OF ROCK PHOSPHATE ON SOIL NUTRIENT DYNAM ...

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    INTRODUCTION. With the current ..... Table 4: Effect of treatment on dynamics of total nitrogen (%) from. 2004 to 2007 ..... areas in Ghana and constant plant nutrient up- take by the crop. ... maintenance of high organic matter levels in the top soil is ... productivity. The pH of the soil ..... and iron oxides of Oxisols from Ghana.

  15. Evaluation of Karst Soil Erosion and Nutrient Loss Based on RUSLE Model in Guizhou Province

    Science.gov (United States)

    Zeng, Cheng; Li, Yangbing; Bai, Xiaoyong; Luo, Guangjie

    2018-01-01

    Based on GIS technology and RUSLE model, the spatial variation characteristics of soil erosion were analyzed in karst areas, and the relationship between soil erosion and soil nutrient loss was discussed. The results showed that the soil differences in spatial variation between nutrient losses. The results illustrate the total soil erosion in is 10316.31 × 104t • a-1, accounting for 84.95% of the total land area in Guizhou Province. The spatial distribution of soil erosion showing the characteristics of the southeast to the northwest strip. The annual average soil erosion modulu is 691.94 t • km-2 • a-1, of which karst is 720.28t • km-2 • a-1 and non-karst is 689.53 t • km-2 • a-1. The total nutrient losses such as soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) and total potassium (TK) were 596.72 × 104t • a-1 due to soil erosion, and SOC, TN and TP and TK were 38.13, 1.61, 0.41 and 14.70t • km-2 • a-1, respectively. The average amount of loss and total loss are the largest in non-karst, and four kinds of nutrient is the smallest in karst gorge. The spatial variation of soil erosion in the study area is the process of increasing the erosion area with the increase of the erosion rate, and the difference of the spatial distribution of soil erosion determines the spatial distribution of soil nutrient loss.

  16. Comparison of vegetation patterns and soil nutrient relations in an oak-pine forest and a mixed deciduous forest on Long Island, New York

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S.C.; Curtis, P.S.

    1980-11-01

    An analysis of soil nutrient relations in two forest communities on Long Island, NY, yielded a correlation between the fertility of the top-soil and vegetational composition. The oak-pine forest soils at Brookhaven National Laboratory contain lower average concentrations of NH/sub 3/, Ca, K, and organic matter than the mixed deciduous forest soils in the Stony Brook area. The pH of the topsoil is also more acidic at Brookhaven. The observed differences between localities are greater than within-locality differences between the two soil series tested (Plymouth and Riverhead), which are common to both localities. Nutrient concentrations in the subsoil are not consistently correlated with either locality or soil series, although organic matter and NH/sub 3/ show significantly higher concentrations at Stony Brook. Supporting data on density and basal area of trees and coverage of shrubs and herbs also reveals significant variation between the two forest communities. An ordination of the vegetation data shows higher similarity within than between localities, while no obvious pattern of within-locality variation due to soil series treatments is apparent. These data support the hypothesis that fertility gradients may influence forest community composition and structure. This hypothesis is discussed with reference to vegetation-soil interactions and other factors, such as frequency of burning, which may direct the future development of the Brookhaven oak-pine forest.

  17. Influence of Soils, Riparian Zones, and Hydrology on Nutrients, Herbicides, and Biological Relations in Midwestern Agricultural Streams

    Science.gov (United States)

    Porter, S.

    2001-12-01

    Chemical, biological, and habitat conditions were characterized in 70 streams in the upper Mississippi River basin during August 1997, as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The study was designed to evaluate algal and macroinvertebrate responses to high agricultural intensity in relation to nonpoint sources of nutrients and herbicides, characteristics of basin soils, wooded-riparian vegetation, and hydrology. Concentrations and forms of nutrients, herbicides and their metabolites, and seston constituents varied significantly with regional differences in soil properties, ground and surface water relations, density of riparian trees, and precedent rainfall-runoff conditions. Dissolved nitrate concentrations were relatively low in streams with high algal productivity; however, nitrate concentrations increased with basin water yield, which was associated with the regional distribution of rainfall during the month prior to the study. Stream productivity and respiration were positively correlated with seston (phytoplankton) chlorophyll concentrations, which were significantly larger in streams in areas with poorly drained soils and low riparian-tree density. Concentrations of dissolved phosphorus were low in streams where periphyton biomass was high. Periphyton biomass was relatively larger in streams with clear water and low abundance of macroinvertebrates that consume algae. Periphyton biomass decreased rapidly with modest increases in the abundance of scrapers such as snails and certain mayfly taxa. Differences in dissolved oxygen, organic carbon, stream velocity, and precedent hydrologic conditions explained much of the variance in macroinvertebrate community structure. The overall number of macroinvertebrate species and number of mayfly, caddisfly, and stonefly (EPT) taxa that are sensitive to organic enrichment were largest in streams with moderate periphyton biomass, in areas with moderately-well drained soils

  18. Rock Outcrops Redistribute Organic Carbon and Nutrients to Nearby Soil Patches in Three Karst Ecosystems in SW China.

    Directory of Open Access Journals (Sweden)

    Dianjie Wang

    Full Text Available Emergent rock outcrops are common in terrestrial ecosystems. However, little research has been conducted regarding their surface function in redistributing organic carbon and nutrient fluxes to soils nearby. Water that fell on and ran off 10 individual rock outcrops was collected in three 100 × 100 m plots within a rock desertification ecosystem, an anthropogenic forest ecosystem, and a secondary forest ecosystem between June 2013 and June 2014 in Shilin, SW China. The concentrations of total organic carbon (TOC, total nitrogen (N, total phosphorus (P, and potassium (K in the water samples were determined during three seasons, and the total amounts received by and flowing out from the outcrops were calculated. In all three ecosystems, TOC and N, P, and K were found throughout the year in both the water received by and delivered to nearby soil patches. Their concentrations and amounts were generally greater in forested ecosystems than in the rock desertification ecosystem. When rock outcrops constituted a high percentage (≥ 30% of the ground surface, the annual export of rock outcrop runoff contributed a large amount of organic carbon and N, P, and K nutrients to soil patches nearby by comparison to the amount soil patches received via atmospheric deposition. These contributions may increase the spatial heterogeneity of soil fertility within patches, as rock outcrops of different sizes, morphologies, and emergence ratios may surround each soil patch.

  19. Artificial recharge of groundwater through sprinkling infiltration: impacts on forest soil and the nutrient status and growth of Scots pine.

    Science.gov (United States)

    Nöjd, Pekka; Lindroos, Antti-Jussi; Smolander, Aino; Derome, John; Lumme, Ilari; Helmisaari, Heljä-Sisko

    2009-05-01

    We studied the chemical changes in forest soil and the effects on Scots pine trees caused by continuous sprinkling infiltration over a period of two years, followed by a recovery period of two years. Infiltration increased the water input onto the forest soil by a factor of approximately 1000. After one year of infiltration, the pH of the organic layer had risen from about 4.0 to 6.7. The NH(4)-N concentration in the organic layer increased, most probably due to the NH(4) ions in the infiltration water, as the net N mineralization rate did not increase. Sprinkling infiltration initiated nitrification in the mineral soil. Macronutrient concentrations generally increased in the organic layer and mineral soil. An exception, however, was the concentration of extractable phosphorus, which decreased strongly during the infiltration period and did not show a recovery within two years. The NO(3)-N and K concentrations had reverted back to their initial level during the two-year recovery period, while the concentrations of Ca, Mg and NH(4)-N were still elevated. Nutrient concentrations in the pine needles increased on the infiltrated plots. However, the needle P concentration increased, despite the decrease in plant-available P in the soil. Despite the increase in the nutrient status, there were some visible signs of chlorosis in the current-year needles after two years of infiltration. The radial growth of the pines more than doubled on the infiltrated plots, which suggests that the very large increase in the water input onto the forest floor had no adverse effect on the functioning of the trees. However, a monitoring period of four years is not sufficient for detecting potential long term detrimental effects on forest trees.

  20. Plant community development is affected by nutrients and soil biota

    NARCIS (Netherlands)

    De Deyn, G.B.; Raaijmakers, C.E.; Van der Putten, W.H.

    2004-01-01

    1 Plant community development depends to a great extent on the availability of soil nutrients, but recent studies underline the role of symbiotic, herbivorous and pathogenic soil biota. We tested for interactions between these biotic and abiotic factors by studying the effects of additional

  1. Soil Chemical Weathering and Nutrient Budgets along an Earthworm Invasion Chronosequence in a Northern Minnesota Forest

    Science.gov (United States)

    Resner, K. E.; Yoo, K.; Sebestyen, S. D.; Aufdenkampe, A. K.; Lyttle, A.; Weinman, B. A.; Blum, A.; Hale, C. M.

    2011-12-01

    surface area (presumably due to the crystalline iron oxides) in the heavily invaded soils. Water chemistry of lysimeter samples show a similar trend: the heavily invaded soils show a lower solute concentration of Ca but higher concentrations of Fe. These data indicate that exotic earthworms, while significantly affecting chemical weathering processes in the soils, are seriously altering (1) the budgets of inorganic nutrient in these hardwood forests and (2) the minerals' potential capacity to complex carbon on their surface area. Our ongoing work includes the use of optically stimulated luminescence (OSL) dating which may complement the 137-Cs and 210-Pb data in constraining soil mixing. Additionally, we will incorporate leaf litter chemistry and continue water and earthworm sampling to understand the degree that exotic earthworms contribute to chemical weathering in the Great Lakes hardwood ecosystems.

  2. Assessing Soil Nutrient Additions through Different Composting ...

    African Journals Online (AJOL)

    Bheema

    is potentially better growth medium amendment when compared with traditional compost types. The use of vermi-compost is, therefore, very helpful in terms of providing beneficial soil nutrients as compared to other compost types. In contrast to the other chemical and biological properties, the highest pH was recorded in the.

  3. Soil Nutrient Dynamics under Old and Young Cocoa, Coffee and Cashew Plantations at Uhonmora, Edo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Rotimi Rufus Ipinmoroti

    2014-06-01

    Full Text Available A study was conducted to assess nutrient dynamics of soils under old and young cocoa, coffee and cashew plantations and the leaf nutrient contents of the crops at Uhonmora, Edo State, Nigeria for proper cultural and soil fertility management of the plantations. Soil and crop leaf samples were collected from each plantation using a random sampling technique. The samples were analyzed using standard procedures for sand, silt, clay, pH (H2O, electrical conductivity (EC, total N, available P, K, Ca, Mg, Na, and Effective Cation Exchange Capacity (ECEC. Leaf samples were analyzed for N, P, K, Ca, Mg and Na. Data were compared with the corresponding soil and foliar critical nutrient values for each crop. Results indicated that the soils were texturally sandy clay loam and acidic. The soils varied in their nutrient contents, with soil P for the old cocoa, young coffee and cashew plantations far below critical values. The young cashew plot was low in N content but adequate for other plots. However, the soil ECEC increased with the increasing of calcium contents. Leaf N was below critical for all the crops. Leaf K was low for cocoa and coffee plants, leaf Ca was low for the young cashew plants, while leaf Mg was low for the young cocoa and old cashew. The high soil Mg/K ratio of 8.7- 22.3 as against the established value of 2.0 might have resulted in gross nutrient imbalance which must have affected the absorption and utilization of other nutrients. Hence, adequate soil N did not translate the same availability to the crops. The ECEC showed that the soil needs to be improved upon for sustainable productivity. Soil nutrient content variation across the plantations with age of establishment will necessitate the need for consistent routine soil nutrient assessment for proper and balanced soil nutrient supply to the crops, for healthy crop growth and optimum yield. Management practices of soil surface mulching using organic wastes and cover crops under

  4. Assessment of potential soybean cadmium excluder cultivars at different concentrations of Cd in soils.

    Science.gov (United States)

    Zhi, Yang; He, Kangxin; Sun, Ting; Zhu, Yongqiang; Zhou, Qixing

    2015-09-01

    The selection of cadmium-excluding cultivars has been used to minimize the transfer of cadmium into the human food chain. In this experiment, five Chinese soybean plants were grown in three soils with different concentrations of Cd (0.15, 0.75 and 1.12mg/kg). Variations in uptake, enrichment, and translocation of Cd among these soybean cultivars were studied. The results indicated that the concentration of Cd in seeds that grew at 1.12mg/kg Cd in soils exceeded the permitted maximum levels in soybeans. Therefore, our results indicated that even some soybean cultivars grown on soils with permitted levels of Cd might accumulate higher concentrations of Cd in seeds that are hazardous to human health. The seeds of these five cultivars were further assessed for interactions between Cd and other mineral nutrient elements such as Ca, Cu, Fe, Mg, Mn and Zn. High Cd concentration in soil was found to inhibit the uptake of Mn. Furthermore, Fe and Zn accumulations were found to be enhanced in the seeds of all of the five soybean cultivars in response to high Cd concentration. Cultivar Tiefeng 31 was found to fit the criteria for a Cd-excluding cultivar under different concentrations of Cd in soils. Copyright © 2015. Published by Elsevier B.V.

  5. 32P assessed phosphate uptake by tomato plants Hebros in relation to soil nutrient substance supplies

    International Nuclear Information System (INIS)

    Stoyanova, I.; Rankov, V.; Dimitrov, G.

    1978-01-01

    The uptake of phosphates by tomato plants, cv.Hebros, was assessed by 32 P in a vegetation pot experiment. Leached meadow-cinnamon soil was used, taken from a stationary field experiment to which, for a period of eight years, various rates of NPK were applied. As a result of that significant changes occurred in the soil nutrient substance supplies (concerning total and mobile forms of nitrogen, phosphorus, potassium, pH and salts concentration). It was established that the coefficient of phasphate utilization by tomato plants was the highest (19.15%) on soil receiving a N 210 P 210 K 210 fertilizer application. Long-term fertilization with higher rates at a 1:1:1 NPK ratio increased the content of nutrient substances in the soil, but the coefficient of utilization of available phosphate diminished and was lowest (11.40%) in the case when a N 960 P 960 K 720 mineral fertilizer rate was applied. Following prolonged mineral fertilization with growing N rates (from 240 up to 720 kg/ha) at a background of P 720 K 210 , the coefficient of phosphate utilization by tomato plants also diminished from 16.16 to 12.26%. (author)

  6. Soil, water and nutrient losses by interrill erosion from green cane cultivation

    Directory of Open Access Journals (Sweden)

    Gilka Rocha Vasconcelos da Silva

    2012-06-01

    Full Text Available Interrill erosion occurs by the particle breakdown caused by raindrop impact, by particle transport in surface runoff, by dragging and suspension of particles disaggregated from the soil surface, thus removing organic matter and nutrients that are essential for agricultural production. Crop residues on the soil surface modify the characteristics of the runoff generated by rainfall and the consequent particle breakdown and sediment transport resulting from erosion. The objective of this study was to determine the minimum amount of mulch that must be maintained on the soil surface of a sugarcane plantation to reduce the soil, water and nutrient losses by decreasing interrill erosion. The study was conducted in Pradópolis, São Paulo State, in 0.5 x 1.0 m plots of an Oxisol, testing five treatments in four replications. The application rates were based on the crop residue production of the area of 1.4 kg m-2 (T1- no cane trash; T2-25 % of the cane trash; T3- 50 % trash; T4-75 % trash; T5-100 % sugarcane residues on the surface, and simulated rainfall was applied at an intensity of 65 mm h-1 for 60 min. Runoff samples were collected in plastic containers and soon after taken to the laboratory to quantify the losses of soil, water and nutrients. To minimize soil loss by interrill erosion, 75 % of the cane mulch must be maintained on the soil, to control water loss 50 % must be maintained and 25 % trash controls organic matter and nutrient losses. This information can contribute to optimize the use of this resource for soil conservation on the one hand and the production of clean energy in sugar and alcohol industries on the other.

  7. Soil and pasture P concentration in a Fraxinus excelsior L. silvopastoral system fertilised with different types of sewage sludge

    Science.gov (United States)

    Ferreiro-Domínguez, Nuria; Nair, Vimala; Rigueiro-Rodríguez, Antonio; Rosa Mosquera-Losada, María

    2015-04-01

    In Europe, sewage sludge should be stabilised before using as fertiliser in agriculture. Depending on the stabilisation process that is used, sewage sludge has different characteristics, nutrient contents and soil nutrient incorporation rates. Sewage sludge is usually applied on a plant-available N or total metal concentration basic, and therefore, P concentrations can be well above crop needs. Leaching of excess P can threaten surface and ground waters with eutrophication. In this context, recent studies have demonstrated that the implementation of agroforestry systems could reduce the P leaching risk compared with conventional agricultural systems due to the different localisation of tree and crop roots which enhance nutrient uptake. The aim of this study was to evaluate during three consecutive years the effect of municipal sewage sludge stabilised by anaerobic digestion, composting, and pelletisation on concentration of P in soil and pasture compared to control treatments (mineral and no fertilisation) in a silvopastoral system established under Fraxinus excelsior L. in Galicia (Spain). The results showed that at the beginning of the study, the fertilisation with mineral increased more the total and available P in soil than the fertilisation with sewage sludge probably because the sludge nutrient release rate is slower than those from mineral fertilisers. The increment of soil available P caused by the mineral fertiliser implied an improvement of the P concentration in the pasture. However, in the last year of the experiment it was observed a positive effect of the fertilisation with pelletised sludge on the concentration of P in pasture compared with the composted sludge and the mineral fertiliser probably due to the annual application of this type of sludge. Therefore, the establishment of silvopastoral systems and their fertilisation with pelletized sludge should be recommended because the pelletized sludge increases the concentration of P in the pasture and

  8. The elusive role of soil quality in nutrient cycling: a review

    NARCIS (Netherlands)

    Schroder, Jaap; Schulte, R.P.O.; Creamer, R.E.; Delgado, A.; Leeuwen, Van J.; Lehtinen, T.; Rutgers, M.; Spiegel, H.; Staes, J.; Tóth, G.; Wall, D.P.

    2016-01-01

    Cycling of nutrients, including nitrogen and phosphorus, is one of the ecosystem services we expect agricultural soils to deliver. Nutrient cycling incorporates the reuse of agricultural, industrial and municipal organic residues that, misleadingly, are often referred to as ‘wastes’. The present

  9. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L

    International Nuclear Information System (INIS)

    Tu Cong; Ma, Lena Q.

    2005-01-01

    Pteris vittata was the first terrestrial plant known to hyperaccumulate arsenic (As). However, it is unclear how As hyperaccumulation influences nutrient uptake by this plant. P. vittata fern was grown in soil spiked with 0-500 mg As kg -1 in the greenhouse for 24 weeks. The concentrations of essential macro- (P, K, Ca, and Mg) and micro- (Fe, Mn, Cu, Zn, B and Mo) elements in the fronds of different age were examined. Both macro- and micronutrients in the fronds were found to be within the normal concentration ranges for non-hyperaccumulators. However, As hyperaccumulation did influence the elemental distribution among fronds of different age of P. vittata. Arsenic-induced P and K enhancements in the fronds contributed to the As-induced growth stimulation at low As levels. The frond P/As molar ratios of 1.0 can be used as the threshold value for normal growth of P. vittata. Potassium may function as a counter-cation for As in the fronds as shown by the As-induced K increases in the fronds. The present findings not only demonstrate that P. vittata has the ability to maintain adequate concentrations of essential nutrients while hyperaccumulating As from the soil, but also have implications for soil management (fertilization in particular) of P. vittata in As phytoextraction practice

  10. Influence of snow cover distribution on soil temperature and nutrient dynamics in alpine pedoenvironments

    Directory of Open Access Journals (Sweden)

    Ermanno Zanini

    Full Text Available In Alpine sites snow is present on the ground from six to eight months per year in relation to elevation and exposure. Water is therefore immobilized into the solid state for the greater part of the winter season and released to the ground in a short period during spring snowmelt. In these areas, snow distribution exercises a fundamental role in influencing soil temperature and nutrient dynamics, in particular of nitrogen, with great consequences on plant nutrition. The dormant vegetation period, the low temperatures and the persistent snow cover suggest that soil biological activity is only concentrated during summer. As a matter of fact, soils covered with a consistent snow cover are isolated from the air temperature and can not freeze during winter. A snowpack of sufficient thickness, accumulated early in winter, insulates the ground from the surrounding atmosphere maintaining soil temperature closed to 0 °C during the whole winter season. The elevation of the snow line and the shorter permanence of snow on the ground, as a result of global warming (IPCC, 1996, 2001, might reduce the insulation effect of the snowpack, exposing soils of the mountain belt to lower temperatures and to a greater frequency of freeze/thaw cycles, which might alter organic matter dynamics and soil nutrient availability. Such thermal stresses may determine the lysis of microbial cells and the consequent increase of nitrogen and carbon mineralization by the survived microorganisms. Moreover, the freeze/thaw cycles can determine the exposure of exchange surfaces not available before, with release of organic matter of non-microbial origin, which may become available to surviving microorganisms for respiration. The reduced or absent microbial immobilization may cause the accumulation of remarkable amounts of inorganic nitrogen in soil, potentially leachable during spring snowmelt, when plants have not still started the growing season. Changes of snow distribution in

  11. Soil nutrient enhancement by rice husk in smallholder farms of the ...

    African Journals Online (AJOL)

    Soil fertility management is one of the most cherished natural resource that requires being safeguard at all cost. An adequate and better solution to combat soil constraint arising from nutrient depletion has been developed; a low external input technology, amending soils with an organic base fertilizer (rice husk) as it is high ...

  12. Diagnosis & Correction of Soil Nutrient Limitations in Intensively managed southern pine forests

    Energy Technology Data Exchange (ETDEWEB)

    University of Florida

    2002-10-25

    Forest productivity is one manner to sequester carbon and it is a renewable energy source. Likewise, efficient use of fertilization can be a significant energy savings. To date, site-specific use of fertilization for the purpose of maximizing forest productivity has not been well developed. Site evaluation of nutrient deficiencies is primarily based on empirical approaches to soil testing and plot fertilizer tests with little consideration for soil water regimes and contributing site factors. This project uses mass flow diffusion theory in a modeling context, combined with process level knowledge of soil chemistry, to evaluate nutrient bioavailability to fast-growing juvenile forest stands growing on coastal plain Spodosols of the southeastern U.S. The model is not soil or site specific and should be useful for a wide range of soil management/nutrient management conditions. In order to use the model, field data of fast-growing southern pine needed to be measured and used in the validation of the model. The field aspect of the study was mainly to provide data that could be used to verify the model. However, we learned much about the growth and development of fast growing loblolly. Carbon allocation patterns, root shoot relationships and leaf area root relationships proved to be new, important information. The Project Objectives were to: (1) Develop a mechanistic nutrient management model based on the COMP8 uptake model. (2) Collect field data that could be used to verify and test the model. (3) Model testing.

  13. Aerobic mineralization of selected organic nutrient sources for soil ...

    African Journals Online (AJOL)

    Administrator

    food synthesis (Lavelle and Spain, 2001). Multipurpose trees such .... The soil and organic nutrient resource ... treatments. Simple correlation analysis was carried out to measure ..... Germination Ecology of Two Endemic Multipurpose. Species ...

  14. The effect of elevated CO2 and temperature on nutrient uptake by plants grown in basaltic soil

    Science.gov (United States)

    Villasenor Iribe, E.; Dontsova, K.; Juarez, S.; Le Galliard, J. F.; Chollet, S.; Llavata, M.; Massol, F.; Barré, P.; Gelabert, A.; Daval, D.; Troch, P.; Barron-Gafford, G.; Van Haren, J. L. M.; Ferrière, R.

    2017-12-01

    Mineral weathering is an important process in soil formation. The interactions between the hydrologic, geologic and atmospheric cycles often determine the rate at which weathering occurs. Elements and nutrients weathered from the soil by water can be removed from soils in the runoff and seepage, but they can also remain in situ as newly precipitated secondary minerals or in biomass as a result of plant uptake. Here we present data from an experiment that was conducted at the controlled environment facility, Ecotron Ile-de-France (Saint-Pierre-les-Nemours, France) that studied mineral weathering and plant growth in granular basaltic material with high glass content that is being used to simulate soil in large scale Biosphere 2 Landscape Evolution Observatory (LEO) project. The experiment used 3 plant types: velvet mesquite (Prosopis velutina), green spangletop (Leptochloa dubia), and alfalfa (Medicago sativa), which were grown under varying temperature and CO2 conditions. We hypothesized that plants grown under warmer, higher CO2 conditions would have larger nutrient concentrations as more mineral weathering would occur. Results of plant digestions and analysis showed that plant concentrations of lithogenic elements were significantly influenced by the plant type and were different between above- and below-ground parts of the plant. Temperature and CO2 treatment effects were less pronounced, but we observed significant temperature effect on plant uptake. A number of major and trace elements showed increase in concentration with increase in temperature at elevated atmospheric CO2. Effect was observed both in the shoots and in the roots, but more significant differences were observed in the shoots. Results presented here indicate that climate change would have strong effect on plant uptake and mobility of weathered elements during soil formation and give further evidence of interactions between abiotic and biological processes in terrestrial ecosystems.

  15. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem.

    Science.gov (United States)

    Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme

    2000-01-01

    Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...

  16. Nutrient concentration in leaves, a tool for nutritional diagnosis in cocoa.

    Directory of Open Access Journals (Sweden)

    Yina Jazbleidi Puentes-Páramo

    2016-06-01

    Full Text Available The aim of this study was to estimate the foliar concentrations in cocoa farming (Theobroma cacao L as a diagnostic tool of their nutritional status. At the Research Center of the National Federation of Cocoa Producers (Fedecacao located in Miranda-Cauca, Colombia, the study assessed the effect of five doses of NPK fertilization in nutrient concentration in leaves of four cocoa clones CCN-51, TSH-565, ICS-39, and ICS-95 from 20102012. Experimental design was randomized complete block design with five treatments: TR(control, T1(25% NPK, T2(50% NPK, T3(75% NPK, T4(100% NPK and four replicates. The concentration of 11 nutrients (N, P, K+, Ca2+, S, Mg2+, B, Zn2+, Cu2+, Fe2+, Mn2+ and their relation with yield was evaluated for three years. Results showed differences in the foliar concentration of nutrients assessed by effect of treatments, by clone, and by clone*treatment interaction. The foliar concentration used was derived from higher yield-related treatment, whereby, a proposal for nutritional diagnosis in cocoa based on nutrient monitoring was created to evaluate nutrient concentration in leaves.

  17. Isotope-aided studies of nutrient cycling and soil fertility assessment in humid pasture systems

    International Nuclear Information System (INIS)

    Wilkinson, S.R.

    1983-01-01

    Maintenance of primary productivity in grazed ecosystems depends on the orderly cycling of mineral nutrients. Potential applications of nuclear techniques to the study of soil fertility assessment and nutrient cycling are discussed for the plant nutrients N, P, K and S. The bioavailability of extrinsic and intrinsic sources of mineral nutrients are also discussed. With improvements in analytical technology, it appears feasible to use 15 N in grazed pasture ecosystems for N cycling studies. Sulphur cycling in soil/plant/grazing animal systems has been successfully studied, and further opportunities exist using 35 S to study nutrient flows in grazed grassland systems. Opportunities also appear for increased application of tracer technology in the evaluation of mineral intakes and mineral bioavailability to ruminants grazing semi-arid grassland herbage under native soil fertility, with supplemental fertilization, and in the evaluation of mineral supplementation procedures. Root system distribution and function also can be studied advantageously using tracer techniques. (author)

  18. Remote sensing of soybean stress as an indicator of chemical concentration of biosolid amended surface soils

    Science.gov (United States)

    Sridhar, B. B. Maruthi; Vincent, Robert K.; Roberts, Sheila J.; Czajkowski, Kevin

    2011-08-01

    The accumulation of heavy metals in the biosolid amended soils and the risk of their uptake into different plant parts is a topic of great concern. This study examines the accumulation of several heavy metals and nutrients in soybeans grown on biosolid applied soils and the use of remote sensing to monitor the metal uptake and plant stress. Field and greenhouse studies were conducted with soybeans grown on soils applied with biosolids at varying rates. The plant growth was monitored using Landsat TM imagery and handheld spectroradiometer in field and greenhouse studies, respectively. Soil and plant samples were collected and then analyzed for several elemental concentrations. The chemical concentrations in soils and roots increased significantly with increase in applied biosolid concentrations. Copper (Cu) and Molybdenum (Mo) accumulated significantly in the shoots of the metal-treated plants. Our spectral and Landsat TM image analysis revealed that the Normalized Difference Vegetative Index (NDVI) can be used to distinguish the metal stressed plants. The NDVI showed significant negative correlation with increase in soil Cu concentrations followed by other elements. This study suggests the use of remote sensing to monitor soybean stress patterns and thus indirectly assess soil chemical characteristics.

  19. Effect of soil carbohydrates on nutrient availability in natural forests and cultivated lands in Sri Lanka

    Science.gov (United States)

    Ratnayake, R. R.; Seneviratne, G.; Kulasooriya, S. A.

    2013-05-01

    Carbohydrates supply carbon sources for microbial activities that contribute to mineral nutrient production in soil. Their role on soil nutrient availability has not yet been properly elucidated. This was studied in forests and cultivated lands in Sri Lanka. Soil organic matter (SOM) fractions affecting carbohydrate availability were also determined. Soil litter contributed to sugars of plant origin (SPO) in croplands. The negative relationship found between clay bound organic matter (CBO) and glucose indicates higher SOM fixation in clay that lower its availability in cultivated lands. In forests, negative relationships between litter and sugars of microbial origin (SMO) showed that litter fuelled microbes to produce sugars. Fucose and glucose increased the availability of Cu, Zn and Mn in forests. Xylose increased Ca availability in cultivated lands. Arabinose, the main carbon source of soil respiration reduced the P availability. This study showed soil carbohydrates and their relationships with mineral nutrients could provide vital information on the availability of limiting nutrients in tropical ecosystems.

  20. Soil strength and maize yield after topsoil removal and application of nutrient amendments on a gravelly Alfisol toposequence

    International Nuclear Information System (INIS)

    Salako, F.K.; Dada, P.O.; Adejuyigbe, C.O.; Adedire, M.O.; Martins, O.; Akwuebu, C.A.; Williams, O.E.

    2006-04-01

    Vast areas of degraded soils exist in southwestern Nigeria due to topsoil removal by soil erosion and gravel/stone mining operators. The restoration of such soils has become imperative to sustain food production in most rural communities. Therefore, a factorial field experiment was designed in 2003 and 2004 with the factors being slope positions (upper and lower slopes), topsoil removal (0, 15 and 25 cm depths) and nutrient amendments (0, 10 t ha -1 poultry manure and 60:30:30 N: P 2 O 5 : K 2 O as NPK + urea). This was complemented with a laboratory study to determine the effects of soil water, gravel concentration and gravel size on soil strength. Maize was planted. Soil strength was measured with a self-recoding penetrometer at soil depth interval of 2.5 cm up to 50 cm depth. Soil bulk density, water content, maize root and shoot biomass and grain yield were measured. In the laboratory, soil strength decreased from 483-314 kPa as water content increased from 0.05-0.62 cm 3 cm - 3 while it increased from 294-469 kPa as gravel concentration increased from 100-500 g kg -1 . Soil strength was affected more by water content and gravel concentration than gravel size. Under various moist conditions in the field, soil strength increased with soil depth from 1177-5000 kPa at the upper slope and from 526-5000 kPa at the lower slope. Thus, the lower slope had significantly lower soil strength than the upper slope. Soil strength increased with increasing soil depth removal and was significantly reduced by poultry manure. For the 2 years of study, high grain yields were sustained with poultry manure/no topsoil removal (1784-3571 kg ha -1 ) and NPK + urea/no topsoil removal (2371-2600 kPa) at the lower slope. However, soil at the upper slope was more resistant to degradation as 16-67% loss in yield was observed compared to 65-75% for lower slope when no nutrients were applied. Nonetheless, both the upper and lower slope positions were productive with the application of

  1. Nutrient uptake dynamics across a gradient of nutrient concentrations and ratios at the landscape scale

    Science.gov (United States)

    Gibson, Catherine A.; O'Reilly, Catherine M.; Conine, Andrea L.; Lipshutz, Sondra M.

    2015-02-01

    Understanding interactions between nutrient cycles is essential for recognizing and remediating human impacts on water quality, yet multielemental approaches to studying nutrient cycling in streams are currently rare. Here we utilized a relatively new approach (tracer additions for spiraling curve characterization) to examine uptake dynamics for three essential nutrients across a landscape that varied in absolute and relative nutrient availability. We measured nutrient uptake for soluble reactive phosphorous, ammonium-nitrogen, and nitrate-nitrogen in 16 headwater streams in the Catskill Mountains, New York. Across the landscape, ammonium-nitrogen and soluble reactive phosphorus had shorter uptake lengths and higher uptake velocities than nitrate-nitrogen. Ammonium-nitrogen and soluble reactive phosphorus uptake velocities were tightly correlated, and the slope of the relationship did not differ from one, suggesting strong demand for both nutrients despite the high ambient water column dissolved inorganic nitrogen: soluble reactive phosphorus ratios. Ammonium-nitrogen appeared to be the preferred form of nitrogen despite much higher nitrate-nitrogen concentrations. The uptake rate of nitrate-nitrogen was positively correlated with ambient soluble reactive phosphorus concentration and soluble reactive phosphorus areal uptake rate, suggesting that higher soluble reactive phosphorus concentrations alleviate phosphorus limitation and facilitate nitrate-nitrogen uptake. In addition, these streams retained a large proportion of soluble reactive phosphorus, ammonium-nitrogen, and nitrate-nitrogen supplied by the watershed, demonstrating that these streams are important landscape filters for nutrients. Together, these results (1) indicated phosphorus limitation across the landscape but similarly high demand for ammonium-nitrogen and (2) suggested that nitrate-nitrogen uptake was influenced by variability in soluble reactive phosphorus availability and preference for

  2. Risks and benefits of gardening in urban soil; heavy metals and nutrient content in Los Angeles Community Gardens

    Science.gov (United States)

    Clarke, L. W.; Jenerette, D.; Bain, D. J.

    2012-12-01

    The availability of soil nutrients and heavy metals in urban community gardens can influence health of crops and participants. Interactions between garden history, management, and soils are understudied in cities. In July 2011, we collected soil samples from 45 plots at 6 Los Angeles community gardens. For comparison, 3 samples were collected from uncultivated garden soils and 3 more from outside soils. Samples were then tested for major nutrients- Nitrogen(N), Potassium (K), and Phosphorous (P)- and organic matter (SOM). We also measured concentrations of 29 metals in 3 gardens using Inductively Coupled Plasma- Atomic Emission Spectroscopy. Potassium and phosphorus exceeded optimum levels in all plots, with some over twice the maximum recommended levels. Over-fertilized soils may contribute to local watershed pollution and crop micronutrient deficiencies. Low soil SOM was observed in gardens in impoverished neighborhoods, possibly due to low quality amendments. Our metals analysis showed dangerous levels of lead (Pb)-- up to 1700 ppm in outside soils and 150 ppm in garden soils-- near older gardens, indicating lead deposition legacies. California lead safety standards indicate that children should not play near soils with Pb above 200 ppm, indicating need for long term monitoring of lead contaminated gardens. Arsenic (As) levels exceeded federal risk levels (0.3 ppm) and average CA background levels (2 ppm) in all areas, with some gardens exceeding 10 ppm. Heavy metal legacies in gardens may pose risks to participants with prolonged exposure and remediation of soils may be necessary.

  3. Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem

    Science.gov (United States)

    Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah

    2016-10-01

    Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant

  4. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation.

    Science.gov (United States)

    Chikere, Chioma B; Surridge, Karen; Okpokwasili, Gideon C; Cloete, Thomas E

    2012-03-01

    Bacterial population dynamics were examined during bioremediation of an African soil contaminated with Arabian light crude oil and nutrient enrichment (biostimulation). Polymerase chain reaction followed by denaturing gradient gel electrophoresis (DGGE) were used to generate bacterial community fingerprints of the different treatments employing the 16S ribosomal ribonucleic acid (rRNA) gene as molecular marker. The DGGE patterns of the nutrient-amended soils indicated the presence of distinguishable bands corresponding to the oil-contaminated-nutrient-enriched soils, which were not present in the oil-contaminated and pristine control soils. Further characterization of the dominant DGGE bands after excision, reamplification and sequencing revealed that Corynebacterium spp., Dietzia spp., Rhodococcus erythropolis sp., Nocardioides sp., Low G+C (guanine plus cytosine) Gram positive bacterial clones and several uncultured bacterial clones were the dominant bacterial groups after biostimulation. Prominent Corynebacterium sp. IC10 sequence was detected across all nutrient-amended soils but not in oil-contaminated control soil. Total heterotrophic and hydrocarbon utilizing bacterial counts increased significantly in the nutrient-amended soils 2 weeks post contamination whereas oil-contaminated and pristine control soils remained fairly stable throughout the experimental period. Gas chromatographic analysis of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second to the sixth week after contamination whereas no significant reduction in hydrocarbon peaks were seen in the oil-contaminated control soil throughout the 6-week experimental period. Results obtained indicated that nutrient amendment of oil-contaminated soil selected and enriched the bacterial communities mainly of the Actinobacteria phylogenetic group capable of surviving in toxic contamination with concomitant biodegradation of the hydrocarbons. The

  5. Soil nutrient and sediment loss as affected by erosion barriers and nutrient source in semi-arid Burkina Faso

    NARCIS (Netherlands)

    Zougmore, R.; Mando, A.; Stroosnijder, L.

    2009-01-01

    In semi-arid Sahel, soil erosion by water is one major factor accounting for negative nutrient balances in agricultural systems. A field experiment was conducted on a Ferric Lixisol in Burkina Faso to assess the effects of soil and water conservation barriers (stone rows or grass strips of

  6. Potentials and management of nutrient status of soils of Ikwuano ...

    African Journals Online (AJOL)

    The study was carried out to evaluate the nutrient status of the nine farming zones of Ikwuano local government Area of Abia State, to quantify in relation to their cassava crop production potentials. Free survey method was applied in a reconnaissance soil survey to collect soil samples at 0-30cm depth. Nine samples were ...

  7. Rhizosphere priming: a nutrient perspective

    Directory of Open Access Journals (Sweden)

    Feike Auke Dijkstra

    2013-07-01

    Full Text Available Rhizosphere priming is the change in decomposition of soil organic matter (SOM caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P limited. Under P limitation, rhizodeposition may be used for mobilisation of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils.

  8. correlation studies of mineral nutrients' concentrations in soils

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    Samples were labeled and processed for soil and plant laboratory analyses. The parameters analyzed .... crushed with pestle, and mortar into finer particles before subjected to the ..... Economic Botany in the Tropics. Macmillan India. p. 203.

  9. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments.

    Science.gov (United States)

    Ockenden, M C; Deasy, C E; Benskin, C McW H; Beven, K J; Burke, S; Collins, A L; Evans, R; Falloon, P D; Forber, K J; Hiscock, K M; Hollaway, M J; Kahana, R; Macleod, C J A; Reaney, S M; Snell, M A; Villamizar, M L; Wearing, C; Withers, P J A; Zhou, J G; Haygarth, P M

    2016-04-01

    We hypothesise that climate change, together with intensive agricultural systems, will increase the transfer of pollutants from land to water and impact on stream health. This study builds, for the first time, an integrated assessment of nutrient transfers, bringing together a) high-frequency data from the outlets of two surface water-dominated, headwater (~10km(2)) agricultural catchments, b) event-by-event analysis of nutrient transfers, c) concentration duration curves for comparison with EU Water Framework Directive water quality targets, d) event analysis of location-specific, sub-daily rainfall projections (UKCP, 2009), and e) a linear model relating storm rainfall to phosphorus load. These components, in combination, bring innovation and new insight into the estimation of future phosphorus transfers, which was not available from individual components. The data demonstrated two features of particular concern for climate change impacts. Firstly, the bulk of the suspended sediment and total phosphorus (TP) load (greater than 90% and 80% respectively) was transferred during the highest discharge events. The linear model of rainfall-driven TP transfers estimated that, with the projected increase in winter rainfall (+8% to +17% in the catchments by 2050s), annual event loads might increase by around 9% on average, if agricultural practices remain unchanged. Secondly, events following dry periods of several weeks, particularly in summer, were responsible for high concentrations of phosphorus, but relatively low loads. The high concentrations, associated with low flow, could become more frequent or last longer in the future, with a corresponding increase in the length of time that threshold concentrations (e.g. for water quality status) are exceeded. The results suggest that in order to build resilience in stream health and help mitigate potential increases in diffuse agricultural water pollution due to climate change, land management practices should target

  10. Growth and nutrient content of herbaceous seedlings associated with biological soil crusts

    Science.gov (United States)

    R. L. Pendleton; B. K. Pendleton; G. L. Howard; S. D. Warren

    2003-01-01

    Biological soil crusts of arid and semiarid lands contribute significantly to ecosystem stability by means of soil stabilization, nitrogen fixation, and improved growth and establishment of vascular plant species. In this study, we examined growth and nutrient content of Bromus tectorum, Elymus elymoides, Gaillardia pulchella, and Sphaeralcea munroana grown in soil...

  11. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Amtorp, Cecilie

    2015-01-01

    season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic...... Svalbard in two vegetation types spanning three moisture regimes. We measured growing-season availability of ammonium (NH4 (+)), nitrate (NO3 (-)), total dissolved organic carbon (DOC) and nitrogen (TON) in soil; C, N, delta N-15 and chlorophyll content in Salix polaris leaves; and leaf sizes of Salix...

  12. Leaf nutrient contents and morphology of invasive tamarisk in different soil conditions in the lower Virgin River

    Science.gov (United States)

    Imada, S.; Acharya, K.; Tateno, R.; Yamanaka, N.

    2012-12-01

    Invasive plants can alter ecosystem nitrogen (N) cycling. To increase our understanding of nutrient use strategy of invasive tamarisk (Tamarix spp.) on an arid riparian ecosystem, we examined leaf nutrient contents and morphology of Tamarix ramosissima and its relationship with soil properties in the lower Virgin River floodplain, Nevada, U.S. Leaves were collected in three different locations; near the river, near the stand edge (60-70 m from the river edge) and at 30-40 m from the river edge in the summer of 2011. Leaves were analyzed for carbon (C) and N contents, and specific leaf area (SLA). Soil samples at 10-20 cm depths and under the canopy were also collected for soil water, pH, electrical conductivity (EC) and inorganic nitrogen (NO3- and NH4+) analysis. Results suggested that tree size and SLA increased with decreasing distance from the river, whereas C isotope discrimination did not differ among the samples based on distance from the river. Nitrogen content per unit mass and N isotope discrimination (δ15N) were significantly higher in the trees near the river. Soil NO3- and total inorganic N had positive relationships with δ15N in leaves, which suggests that leaf δ15N may be influenced by N concentrations on the soil surface. Negative correlations were found between soil EC and leaf N contents, suggesting that high soil salinity may decrease Tamarix leaf N and thus limit tree growth.

  13. Lodgepole pine site index in relation to synoptic measures of climate, soil moisture and soil nutrients.

    Science.gov (United States)

    G. Geoff Wang; Shongming Huang; Robert A. Monserud; Ryan J. Klos

    2004-01-01

    Lodgepole pine site index was examined in relation to synoptic measures of topography, soil moisture, and soil nutrients in Alberta. Data came from 214 lodgepole pine-dominated stands sampled as a part of the provincial permanent sample plot program. Spatial location (elevation, latitude, and longitude) and natural subregions (NSRs) were topographic variables that...

  14. Soil, water and nutrient conservation in mountain farming systems: case-study from the Sikkim Himalaya.

    Science.gov (United States)

    Sharma, E; Rai, S C; Sharma, R

    2001-02-01

    The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.

  15. Determining Nutrient Requirements For Intensively Managed Loblolly Pine Stands Using the SSAND (Soil Supply and Nutrient Demand) Model

    Science.gov (United States)

    Hector G. Adegbidi; Nicholas B. Comerford; Hua Li; Eric J. Jokela; Nairam F. Barros

    2002-01-01

    Nutrient management represents a central component of intensive silvicultural systems that are designed to increase forest productivity in southern pine stands. Forest soils throughout the South are generally infertile, and fertilizers may be applied one or more times over the course of a rotation. Diagnostic techniques, such as foliar analysis and soil testing are...

  16. Effect of integrated nutrient management on nut production of coconut and soil environment: a review

    International Nuclear Information System (INIS)

    Baloch, P.A.; Rajpar, I.

    2014-01-01

    With the adoption of new technology of intensive cropping with high yielding varieties, there is a considerable demand on soil for supply of nutrients. However, the native fertility of our soils is poor and cannot sustain high yields. Sustainable agricultural production incorporates the idea that natural resources should be used to generate increased output and incomes, without depleting the natural resources. The solution is application of integrated nutrient management (INM). It is the system, which envisages the use of organic wastes, biofertilisers and inorganic fertilizers in judicious combinations to sustain soil productivity. The conjunctive use of organic and inorganic sources improves soil health and helps in maximization production as it involves utilization of local sources and, hence turned to be rational, realistic and economically viable way of supply of nutrients. Coconut is a versatile tree and is the most popular home garden crop in the world. It is very beneficial for health because of its high nutrient management affects on its growth and yield characteristics to a great extent. This paper, therefore, presents a review on various aspects of INM used to improve soil environment, coconut growth and yield characters. (author)

  17. Evaluation of Biostimulation (Nutrients) in hydrocarbons contaminated soils by respirometry

    International Nuclear Information System (INIS)

    Garcia, Erika; Roldan, Fabio; Garzon, Laura

    2011-01-01

    The biostimulation process was evaluated in a hydrocarbon contaminated soil by respirometry after amendment with inorganic compound fertilizer (ICF) (N: P: K 28:12:7) and simple inorganic salts (SIS) (NH 4 NO 3 and K 2 HPO 4 ). The soil was contaminated with oily sludge (40.000 MgTPH/Kgdw). The oxygen uptake was measured using two respirometers (HACH 2173b and OXITOP PF 600) during thirteen days (n=3). Two treatments (ICF and SIS) and three controls (abiotic, reference substance and without nutrients) were evaluated during the study. Physicochemical (pH, nutrients, and TPH) and microbiological analysis (heterotrophic and hydrocarbon-utilizing microorganisms) were obtained at the beginning and at the end of each assay. Higher respiration rates were recorded in sis and without nutrient control. Results were 802.28 and 850.72- 1 d-1, MgO 2 kgps - 1d i n HACH, while in OXITOP were 936.65 and 502.05 MgO 2 Kgps respectively. These data indicate that amendment of nutrients stimulated microbial metabolism. ICF had lower respiration rates (188.18 and 139.87 MgO 2 kgps - 1d - 1 i n HACH and OXITOP, respectively) as well as counts; this could be attributed to ammonia toxicity.

  18. A Comparative Analyses of Granulometry, Mineral Composition and Major and Trace Element Concentrations in Soils Commonly Ingested by Humans

    Directory of Open Access Journals (Sweden)

    Veronica M. Ngole-Jeme

    2015-07-01

    Full Text Available This study compared the granulometric properties, mineralogical composition and concentrations of major and trace element oxides of commonly ingested soils (geophagic soil collected from different countries with a view of understanding how varied they may be in these properties and to understand the possible health implications of ingesting them. Soil samples were collected from three different countries (South Africa, Swaziland and Democratic Republic of Congo (DRC and their granulometric properties, concentrations of major and trace element oxides as well as mineralogical composition determined. Differences were observed in the granulometric properties of geophagic soil from the three different countries with most of them having <20% clay content. The soils also showed varied degrees of weathering with values of Chemical Index of Alteration (CIA and Chemical Index of Weathering (CIW being between 60% and 99.9% respectively. The mineral assemblages of the soils from South Africa and Swaziland were dominated by the primary minerals quartz and feldspar whereas soils from DRC had more of kaolinite, a secondary mineral than primary minerals. Soils from DRC were associated with silt, clay, Al2O3, and CIA unlike most samples from South Africa which were associated with SiO2, sand, K2O, CaO, and MgO. The soils from Swaziland were closely associated with silt, H2O and Fe2O3(t. These associations reflect the mineralogy of the samples. These soils are not likely to serve as nutrient supplements because of the low concentrations of the nutrient elements contained. The coarse texture of the samples may also result in dental destruction during mastication. Sieving of the soils before ingestion to remove coarse particles is recommended to reduce the potential health threat associated with the ingestion of coarse-textured soils.

  19. A Comparative Analyses of Granulometry, Mineral Composition and Major and Trace Element Concentrations in Soils Commonly Ingested by Humans

    Science.gov (United States)

    Ngole-Jeme, Veronica M.; Ekosse, Georges-Ivo E.

    2015-01-01

    This study compared the granulometric properties, mineralogical composition and concentrations of major and trace element oxides of commonly ingested soils (geophagic soil) collected from different countries with a view of understanding how varied they may be in these properties and to understand the possible health implications of ingesting them. Soil samples were collected from three different countries (South Africa, Swaziland and Democratic Republic of Congo (DRC)) and their granulometric properties, concentrations of major and trace element oxides as well as mineralogical composition determined. Differences were observed in the granulometric properties of geophagic soil from the three different countries with most of them having soils also showed varied degrees of weathering with values of Chemical Index of Alteration (CIA) and Chemical Index of Weathering (CIW) being between 60% and 99.9% respectively. The mineral assemblages of the soils from South Africa and Swaziland were dominated by the primary minerals quartz and feldspar whereas soils from DRC had more of kaolinite, a secondary mineral than primary minerals. Soils from DRC were associated with silt, clay, Al2O3, and CIA unlike most samples from South Africa which were associated with SiO2, sand, K2O, CaO, and MgO. The soils from Swaziland were closely associated with silt, H2O and Fe2O3(t). These associations reflect the mineralogy of the samples. These soils are not likely to serve as nutrient supplements because of the low concentrations of the nutrient elements contained. The coarse texture of the samples may also result in dental destruction during mastication. Sieving of the soils before ingestion to remove coarse particles is recommended to reduce the potential health threat associated with the ingestion of coarse-textured soils. PMID:26264010

  20. Do agricultural terraces and forest fires recurrence in Mediterranean afforested micro-catchments alter soil quality and soil nutrient content?

    Science.gov (United States)

    E Lucas-Borja, Manuel; Calsamiglia, Aleix; Fortesa, Josep; García-Comendador, Julián; Gago, Jorge; Estrany, Joan

    2017-04-01

    Bioclimatic characteristics and intense human pressure promote Mediterranean ecosystems to be fire-prone. Afforestation processes resulting from the progressive land abandonment during the last decades led to greater biomass availability increasing the risk of large forest fires. Likewise, the abandonment and lack of maintenance in the terraced lands constitute a risk of land degradation in terms of soil quantity and quality. Despite the effects of fire and the abandonment of terraced lands on soil loss and physico-chemical properties are identified, it is not clearly understood how wildfires and abandonment of terraces affect soil quality and nutrients content. Microbiological soil parameters and soil enzymes activities are biomarkers of the soil microbial communitýs functional ability, which potentially enables them as indicators of change, disturbance or stress within the soil community. The objective of this study was to investigate the effects of terracing (abandoned and non-abandoned) on the soil enzyme activities, microbiological soil parameters and soil nutrients dynamics in three Mediterranean afforested micro-catchments (i.e., fire recurrence in the last 20 years; i.e., unburned areas, burned once and burned twice. The combination of the presence of terraces and the recurrence of forest fire, thirty-six plots of 25 m2 were sampled along the these three micro-catchments collecting four replicas at the corners of each plot. The results elucidated how non-terraced and unburned plots presented the highest values of soil respiration rate and extracellular soil enzymes. Differences between experimental plots with different forest fire recurrence or comparing terraced and unburned plots with burned plots were weaker in relation to biochemical and microbiological parameters. Soil nutrient content showed an opposite trend with higher values in terraced plots, although differences were weaker. We conclude that terraced landscapes present poorer soil quality

  1. Interactions between soil texture, water, and nutrients control patterns of biocrusts abundance and structure

    Science.gov (United States)

    Young, Kristina; Bowker, Matthew; Reed, Sasha; Howell, Armin

    2017-04-01

    Heterogeneity in the abiotic environment structures biotic communities by controlling niche space and parameters. This has been widely observed and demonstrated in vascular plant and other aboveground communities. While soil organisms are presumably also strongly influenced by the physical and chemical dimensions of the edaphic environment, there are fewer studies linking the development, structure, productivity or function of surface soil communities to specific edaphic gradients. Here, we use biological soil crusts (biocrusts) as a model system to determine mechanisms regulating community structure of soil organisms. We chose soil texture to serve as an edaphic gradient because of soil texture's influence over biocrust distribution on a landscape level. We experimentally manipulated texture in constructed soil, and simultaneously manipulated two main outcomes of texture, water and nutrient availability, to determine the mechanism underlying texture's influence on biocrust abundance and structure. We grew biocrust communities from a field-sourced inoculum on four different soil textures, sieved from the same parent soil material, manipulating watering levels and nutrient additions across soil textures in a full-factorial design over a 5-month period of time. We measured abundance and structure of biocrusts over time, and measured two metrics of function, N2 fixation rates and soil stabilization, at the conclusion of the experiment. Our results showed finer soil textures resulted in faster biocrust community development and dominance by mosses, whereas coarser textures grew more slowly and had biocrust communities dominated by cyanobacteria and lichen. Additionally, coarser textured soils contained cyanobacterial filaments significantly deeper into the soil profile than fine textured soils. N2-fixation values increased with increasing moss cover and decreased with increasing cyanobacterial cover, however, the rate of change depended on soil texture and water amount

  2. Effect of Fenton pre-oxidation on mobilization of nutrients and efficient subsequent bioremediation of crude oil-contaminated soil.

    Science.gov (United States)

    Xu, Jinlan; Kong, Fanxing; Song, Shaohua; Cao, Qianqian; Huang, Tinglin; Cui, Yiwei

    2017-08-01

    Fenton pre-oxidation and a subsequent bioremediation phase of 80 days were used to investigate the importance of matching concentration of residual indigenous bacteria and nutrient levels on subsequent bioremediation of crude oil. Experiments were performed using either high (>10 7.7 ± 0.2  CFU/g soil) or low ( 9.8), moderate (C/N:5-9.8), and lacking nutrient level (C/N bioremediation of crude oil. In addition, the biodegradation of long chain molecules (C 26 C 30 ) required a high level of NH 4 + -N. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Mutielemental concentration and physiological responses of Lavandula pedunculata growing in soils developed on different mine wastes.

    Science.gov (United States)

    Santos, Erika S; Abreu, Maria Manuela; Saraiva, Jorge A

    2016-06-01

    This study aimed to: i) evaluate the accumulation and translocation patterns of potentially hazardous elements into the Lavandula pedunculata and their influence in the concentrations of nutrients; and ii) compare some physiological responses associated with oxidative stress (concentration of chlorophylls (Chla, Chlb and total), carotenoids, and total protein) and several components involved in tolerance mechanisms (concentrations of proline and acid-soluble thiols and total/specific activity of catalase (CAT) and superoxide dismutase (SOD)), in plants growing in soils with a multielemental contamination and non-contaminated. Composite samples of soils, developed on mine wastes and/or host rocks, and L. pedunculata (roots and shoots) were collected in São Domingos mine (SE of Portugal) and in a reference area with non-contaminated soils, Corte do Pinto, with the same climatic conditions. São Domingos soils had high total concentrations of several hazardous elements (e.g. As and Pb) but their available fractions were small (mainly Lavandula pedunculata plants are able to survive in soils developed on different mine wastes with multielemental contamination and low fertility showing no symptoms (visible and physiological) of phytotoxicity or deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of soil bunds on runoff, soil and nutrient losses, and crop yield in the Central Highlands of Ethiopia

    NARCIS (Netherlands)

    Adimassu Teferi, Z.; Mekonnen, K.; Yirga, C.; Kessler, A.

    2014-01-01

    The effects of soil bunds on runoff, losses of soil and nutrients, and crop yield are rarely documented in the Central Highlands of Ethiopia. A field experiment was set up consisting of three treatments: (i) barley-cultivated land protected with graded soil bunds (Sb); (ii) fallow land (F); and

  5. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities.

    Science.gov (United States)

    Buck, Joshua R; St Clair, Samuel B

    2012-01-01

    Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO(3) and NH(4) were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.

  6. Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.

    Science.gov (United States)

    Isaac, Marney E; Kimaro, Anthony A

    2011-01-01

    Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  7. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an

  8. Effect of crop rotation on soil nutrient balance and weediness in soddy podzolic organic farming fields

    Science.gov (United States)

    Zarina, Livija; Zarina, Liga

    2017-04-01

    The nutrient balance in different crop rotations under organic cropping system has been investigated in Latvia at the Institute of Agricultural Resources and Economics since 2006. Latvia is located in a humid and moderate climatic region where the rainfall exceeds evaporation (soil moisture coefficient > 1) and the soil moisture regime is characteristic with percolation. The average annual precipitation is 670-850 mm. The average temperature varies from -6.7° C in January to 16.5 °C in July. The growing season is 175 - 185 days. The most widespread are podzolic soils and mainly they are present in agricultural fields in all regions of Latvia. In a wider sense the goal of the soil management in organic farming is a creation of the biologically active flora and fauna in the soil by maintaining a high level of soil organic matter which is good for crops nutrient balance. Crop rotation is a central component of organic farming systems and has many benefits, including growth of soil microbial activity, which may increase nutrient availability. The aim of the present study was to calculate nutrient balance for each crop in the rotations and average in each rotation. Taking into account that crop rotations can limit build-up of weeds, additionally within the ERA-net CORE Organic Plus transnational programs supported project PRODIVA the information required for a better utilization of crop diversification for weed management in North European organic arable cropping systems was summarized. It was found that the nutrient balance was influenced by nutrients uptake by biomass of growing crops in crop rotation. The number of weeds in the organic farming fields with crop rotation is dependent on the cultivated crops and the succession of crops in the crop rotation.

  9. Nutrient Availability and Changes on Chemical Attributes of a Paleudult Soil Amended with Liquid Sewage Sludge and Cropped with Surinam Grass

    International Nuclear Information System (INIS)

    Ceolato, L.C.; Berton, R.S.; Coscione, A.R.

    2011-01-01

    The liquid sewage sludge (LSS) was applied on a field experiment during four years at successive applications to evaluate the changes in soil attributes and on Surinam grass (Brachiaria decumbens) uptake of nutrients. A randomized blocks experimental design, with two treatments (with and without LSS) and three repetitions, was used. Land application of LSS did not alter soil organic matter and exchangeable K until 40 cm depth. However, it increased soil ph, base saturation, labile P, and available Zn and did not change the concentrations of available B (hot water) and Cu, Fe, and Mn (DTPA) at 0-20 cm and 20-40 cm depths and LSS was a source of N, K, P, Ca, Mg, and Zn for the grass, but decreased leaf Mn concentration.

  10. Scale-location specific relations between soil nutrients and topographic factors in the Fen River Basin, Chinese Loess Plateau

    Science.gov (United States)

    Zhu, Hongfen; Bi, Rutian; Duan, Yonghong; Xu, Zhanjun

    2017-06-01

    Understanding scale- and location-specific variations of soil nutrients in cultivated land is a crucial consideration for managing agriculture and natural resources effectively. In the present study, wavelet coherency was used to reveal the scale-location specific correlations between soil nutrients, including soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK), as well as topographic factors (elevation, slope, aspect, and wetness index) in the cultivated land of the Fen River Basin in Shanxi Province, China. The results showed that SOM, TN, AP, and AK were significantly inter-correlated, and that the scales at which soil nutrients were correlated differed in different landscapes, and were generally smaller in topographically rougher terrain. All soil nutrients but TN were significantly influenced by the wetness index at relatively large scales (32-72 km) and AK was significantly affected by the aspect at large scales at partial locations, showing localized features. The results of this study imply that the wetness index should be taken into account during farming practices to improve the soil nutrients of cultivated land in the Fen River Basin at large scales.

  11. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau.

    Science.gov (United States)

    Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin

    2015-01-01

    The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil "fertile islands" were formed, and the "fertile islands" were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous shrub.

  12. Mineralization of alanine enantiomers in soil treated with heavy metals and nutrients

    Directory of Open Access Journals (Sweden)

    Pavel Formánek

    2011-01-01

    Full Text Available This work deals with the determination of the effect of heavy metals and nutrients applied to the soil on alanine enatiomers mineralization with the main focus on evaluating the effect on L/D alanine respiration rate ratio. This study was initiated because previous research works revealed a change in L/D amino acid respiration under acid- or heavy metal-stress in soil. Generally, D-amino acids artificially supplied to soil are less utilized by microorganisms compared with their L-enantiomers. Stress of soil microorganisms cause decreased discrimination of D-amino acids utilization. Also, previous research showed that an application of fertilizers or combinations of fertilizers may affect the mineralization rate of L-amino acids differently, compared with their D-enantiomers. The results of this study show, that the effect of both heavy metals and nutrients on the L/D ratio was not clear, increasing or decreasing this ratio. Further research is necessary to broaden this study.

  13. Growth and nutrient concentrations of maize in pressmud treated saline-sodic soils

    Directory of Open Access Journals (Sweden)

    D. Muhammad

    2009-05-01

    Full Text Available n open-air pot experiment was conducted to investigate effects of pressmud (PM on saline-sodic soil reclamation, mitigating the adverse effects of saline irrigation and increase of maize (Zea mays L. growth. Pressmud was added at the rate of 0, 5, 10 and 20 Mg ha-1 to pots containing 6.8 kg air dried surface (0-20 cm soil collected from two sites. The increasing levels of PM enhanced maize plant height, shoots and roots biomass in both soils. However, the Soil 2, with initial EC and SAR of 5.43 dS m-1 and 18.67(m mol L-11/2, respectively, produced comparatively more biomass at all PM levels than Soil 1 [silty-clay loam, EC = 6.22 dS m-1, SAR = 20.72 (m mol L- 1 1/2]. The [P] in shoots was maximum at the highest PM in both the soils but the [K] increased with PM levels in Soil 1 and decreased in Soil 2 due to the dilution effect. The Soil 1 maintained several folds more [Na] in shoots and consequently lower K:Na ratio than Soil 2. The post harvest soil pH, Na, Ca+Mg and SAR in saturation extracts decreased with increasing levels of PM as compared to control. Soil 2 released more volume of leachate as compared to Soil 1 but the leachate EC and [Na] were comparable while [Ca+Mg] were relatively higher in Soil 2. The higher removal of total salts from Soil 2 resulted in lower soil pH, EC and SAR in this soil as compared to Soil 1. The increases in crop growth with each increment of PM up to 20 Mg ha-1 in the present study proved the benefits of PM in increasing crop yields and suggested that doses higher than 20 Mg PM ha-1 could be applied to the saline-sodic soils ofthe area to get maximum possible crop yields depending on soil and water quality

  14. Temperature sensitivity of extracellular enzyme kinetics in subtropical wetland soils under different nutrient and water level conditions

    Science.gov (United States)

    Goswami, S.; Inglett, K.; Inglett, P.

    2012-12-01

    Microbial extracellular enzymes play an important role in the initial steps of soil organic matter decomposition and are involved in regulating nutrient cycle processes. Moreover, with the recent concern of climate change, microbial extracellular enzymes may affect the functioning (C losses, C sequestration, greenhouse gas emissions, vegetation changes) of different ecosystems. Hence, it is imperative to understand the biogeochemical processes that may be climate change sensitive. Here, we have measured the Michaelis Menten Kinetics [maximal rate of velocity (Vmax) and half-saturation constant (Km)] of 6 enzymes involved in soil organic matter decomposition (phosphatase, phosphodiesterase, β-D-glucosidase, cellobiohydrolase, leucine aminopeptidase, N-Acetyl-β-D glucosaminidase) in different nutrient(P) concentration both aerobically and anaerobically in Everglade water conservation area 2A (F1, F4-slough and U3-slough). Temperature sensitivity of different enzymes is assessed within soil of different P concentrations. We hypothesized that the temperature sensitivity of the enzyme changes with the biogeochemical conditions including water level and nutrient condition. Furthermore, we have tested specific hypothesis that higher P concentration will initiate more C demand for microbes leading to higher Vmax value for carbon processing enzymes in high P site. We found temperature sensitivity of all enzymes for Vmax and Km under both aerobic and anaerobic condition ranges from 0.6 to 3.2 for Vmax and 0.5 to 2.5 for Km. Q10 values of Km for glucosidase indicate more temperature sensitivity under anaerobic condition. Under aerobic condition higher temperature showed significant effect on Vmax for bisphosphatase between high P and low P site. Decreasing P concentration from F1 site to U3-S site had showed significant effect in all temperature on carbon processing enzyme. This suggests that in high P site, microbes will use more carbon-processing enzyme to get more carbon

  15. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties.

    Science.gov (United States)

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  16. Enhancing Bioremediation of Oil-contaminated Soils by Controlling Nutrient Transport using Dual Characteristics of Soil Pore Structure

    Science.gov (United States)

    Mori, Y.; Suetsugu, A.; Matsumoto, Y.; Fujihara, A.; Suyama, K.; Miyamoto, T.

    2012-12-01

    Soil structure is heterogeneous with cracks or macropores allowing bypass flow, which may lead to applied chemicals avoiding interaction with soil particles or the contaminated area. We investigated the bioremediation efficiency of oil-contaminated soils by applying suction at the bottom of soil columns during bioremediation. Unsaturated flow conditions were investigated so as to avoid bypass flow and achieve sufficient dispersion of chemicals in the soil column. The boundary conditions at the bottom of the soil columns were 0 kPa and -3 kPa, and were applied to a volcanic ash soil with and without macropores. Unsaturated flow was achieved with -3 kPa and an injection rate of 1/10 of the saturated hydraulic conductivity. The resultant biological activities of the effluent increased dramatically in the unsaturated flow with macropores condition. Unsaturated conditions prevented bypass flow and allowed dispersion of the injected nutrients. Unsaturated flow achieved 60-80% of saturation, which enhanced biological activity in the soil column. Remediation results were better for unsaturated conditions because of higher biological activity. Moreover, unsaturated flow with macropores achieved uniform remediation efficiency from upper through lower positions in the column. Finally, taking the applied solution volume into consideration, unsaturated flow with -3 kPa achieved 10 times higher efficiency when compared with conventional saturated flow application. These results suggest that effective use of nutrients or remediation chemicals is possible by avoiding bypass flow and enhancing biological activity using relatively simple and inexpensive techniques.

  17. Response of the soil microbial community and soil nutrient bioavailability to biomass harvesting and reserve tree retention in northern Minnesota aspen-dominated forests

    Science.gov (United States)

    Tera E. Lewandowski; Jodi A. Forrester; David J. Mladenoff; Anthony W. D' Amato; Brian J. Palik

    2016-01-01

    Intensive forest biomass harvesting, or the removal of harvesting slash (woody debris from tree branches and tops) for use as biofuel, has the potential to negatively affect the soil microbial community (SMC) due to loss of carbon and nutrient inputs from the slash, alteration of the soil microclimate, and increased nutrient leaching. These effects could result in...

  18. Nutrient stocks of short-term fallows on high base status soils in the humid tropics of Papua New Guinea

    NARCIS (Netherlands)

    Hartemink, A.E.

    2004-01-01

    In order to understand nutrient dynamics in tropical farming systems with fallows, it is necessary to assess changes in nutrient stocks in plants, litter and soils. Nutrient stocks (soil, above ground biomass, litter) were assessed of one-year old fallows with Piper aduncum, Gliricidia sepium and

  19. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  20. Dependency of soil activity concentration on soil -biota concentration ratio of radionuclides for earthworm

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Kim, Byeong Ho; Jun, In; Lim, Kwang Muk; Choi, Yong Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The transfer of radionuclides to wildlife (non-human biota) is normally quantified using an equilibrium concentration ratio (CR{sub eq}), defined as the radionuclide activity concentration in the whole organism (fresh weight) divided by that in the media (dry weight for soil). The present study describes the effect of soil radionuclide activity concentration on the transfer of {sup 137}Cs, {sup 85}Sr and {sup 65}Zn to a functionally important wildlife group, annelids, using a commonly studied experimental worm (E.andrei). Time-dependent whole body concentration ratios of {sup 137}Cs, {sup 85}Sr and {sup 65}Zn for the earthworm were experimentally measured for artificially contaminated soils with three different activity concentrations for each radionuclide which were considerably higher than normal background levels. Two parameters of a first order kinetic model, the equilibrium concentration ratio (CR{sub eq}) and the effective loss rate constant (k), were estimated by comparison of experimental CR results with the model prediction

  1. Evaluation of the soil health nutrient tool for corn nitrogen recommendations across the Midwest

    Science.gov (United States)

    Use and development of soil biological tests for estimating soil N availability and subsequently corn (Zea mays L.) fertilizer N recommendations is garnering considerable interest. The objective of this research was to evaluate relationships between the Soil Health Nutrient Tool (SHNT), also known a...

  2. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.; Kirk, G. J. D.; Jones, D. L.; Wissuwa, M.; Roose, T.

    2011-01-01

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional 'single porosity' models, this 'dual porosity' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  3. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.

    2011-08-09

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional \\'single porosity\\' models, this \\'dual porosity\\' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  4. Concentrations of rare elements in some Australian soils

    International Nuclear Information System (INIS)

    Diatloff, E.; Smith, F.W.; Asher, C.J.

    1996-01-01

    Total, exchangeable, and soil solution concentrations were measured for 15 rare earth elements (REEs) in 9 soils from Queensland and New South Wales. In a further 10 acid soils, effects of amendment with CaCO 3 or CaSO 4 . 2H 2 O were measured on the concentrations of REEs in soil solution. The total concentration of the REEs in soil solutions from unamended soils ranged from below the detection limit (0.007 μM) to 0.64 μM. Lanthanum (La) and cerium (Ce) were the REEs present in the greatest concentrations, the highest concentrations measured in the diverse suite of soils being 0.13 μM La and 0.51 μM Ce. Rare earth elements with higher atomic numbers were present in very low concentrations. Exchangeable REEs accounted for 0.07 to 12.6% of the total REEs measured in the soils. Addition of CaCO 3 increased soil solution pH and decreased REE concentrations in soil solution, whilst CaSO 4 . 2H 2 O decreased soil solution pH and increased the concentrations of REEs in soil solution. Solubility calculations suggest that CePO 4 may be the phase controlling the concentration of Ce in soil solution. 33 refs., 6 tabs., 2 figs

  5. Establishing a Multi-spatial Wireless Sensor Network to Monitor Nitrate Concentrations in Soil Moisture

    Science.gov (United States)

    Haux, E.; Busek, N.; Park, Y.; Estrin, D.; Harmon, T. C.

    2004-12-01

    The use of reclaimed wastewater for irrigation in agriculture can be a significant source of nutrients, in particular nitrogen species, but its use raises concern for groundwater, riparian, and water quality. A 'smart' technology would have the ability to measure wastewater nutrients as they enter the irrigation system, monitor their transport in situ and optimally control inputs with little human intervention, all in real-time. Soil heterogeneity and economic issues require, however, a balance between cost and the spatial and temporal scales of the monitoring effort. Therefore, a wireless and embedded sensor network, deployed in the soil vertically across the horizon, is capable of collecting, processing, and transmitting sensor data. The network consists of several networked nodes or 'pylons', each outfitted with an array of sensors measuring humidity, temperature, precipitation, soil moisture, and aqueous nitrate concentrations. Individual sensor arrays are controlled by a MICA2 mote (Crossbow Technology Inc., San Jose, CA) programmed with TinyOS (University of California, Berkeley, CA) and a Stargate (Crossbow Technology Inc., San Jose, CA) base-station capable of GPRS for data transmission. Results are reported for the construction and testing of a prototypical pylon at the benchtop and in the field.

  6. Correlation studies of mineral nutrients' concentrations in soils and ...

    African Journals Online (AJOL)

    Ananas comosus) plants growth and development in the southern agricultural zone of Cross River State. Fields experiment were conducted to evaluate the relationships existing between mineral nqutrients in the soils and pineapple plants.

  7. Nutrient Availability and Changes on Chemical Attributes of a Paleudult Soil Amended with Liquid Sewage Sludge and Cropped with Surinam Grass

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Ceolato

    2011-01-01

    Full Text Available The liquid sewage sludge (LSS was applied on a field experiment during four years at successive applications to evaluate the changes in soil attributes and on Surinam grass (Brachiaria decumbens uptake of nutrients. A randomized blocks experimental design, with two treatments (with and without LSS and three repetitions, was used. Land application of LSS did not alter soil organic matter and exchangeable K until 40 cm depth. However, it increased soil pH, base saturation, labile P, and available Zn and did not change the concentrations of available B (hot water and Cu, Fe, and Mn (DTPA at 0–20 cm and 20–40 cm depths and LSS was a source of N, K, P, Ca, Mg, and Zn for the grass, but decreased leaf Mn concentration.

  8. evaluation of nutrients status of soils under rice cultivation in cross ...

    African Journals Online (AJOL)

    CULTIVATION IN CROSS RIVER STATE, NIGERIA. I. N. ONYEKWERE, A. G. ... KEYWORDS: Evaluation, Nutrient status, Soils, Cross River. ... countries like India, Japan, Taiwan and South Korea. ... which the rice culture can be established.

  9. Recent land cover history and nutrient retention in riparian wetlands

    Science.gov (United States)

    Hogan, D.M.; Walbridge, M.R.

    2009-01-01

    Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus]. ?? 2009 Springer Science+Business Media, LLC.

  10. Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants.

    Science.gov (United States)

    Wilson, Susan C; Leech, Calvin D; Butler, Leo; Lisle, Leanne; Ashley, Paul M; Lockwood, Peter V

    2013-10-15

    The effects of nutrient and lime additions on antimony (Sb) and arsenic (As) accumulation by native Australian and naturalised plants growing in two contaminated mine site soils (2,735 mg kg(-1) and 4,517 mg kg(-1) Sb; 826 mg kg(-1) and 1606 As mgkg(-1)) was investigated using a glasshouse pot experiment. The results indicated an increase in soil solution concentrations with nutrient addition in both soils and also with nutrient+lime addition for Sb in one soil. Metalloid concentrations in plant roots were significantly greater than concentrations in above ground plant parts. The metalloid transfer to above ground plant parts from the roots and from the soil was, however, low (ratio of leaf concentration/soil concentration≪1) for all species studied. Eucalyptus michaeliana was the most successful at colonisation with lowest metalloid transfer to above ground plant parts. Addition of nutrients and nutrients+lime to soils, in general, increased plant metalloid accumulation. Relative As accumulation was greater than that of Sb. All the plant species studied were suitable for consideration in the mine soil phytostabilisation strategies but lime additions should be limited and longer term trials also recommended. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Limiting nutrient emission from a cut rose closed system by high-flux irrigation and low nutrient concentrations?

    NARCIS (Netherlands)

    Baas, R.; Berg, van der D.

    2004-01-01

    A two-year project was aimed at decreasing nutrient emission from closed nutrient systems by using high irrigation rates in order to allow lower EC levels in the presence of accumulated Na and Cl. Experimental variables were growing media, irrigation frequencies, EC and NaCl concentrations for cut

  12. Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities

    Science.gov (United States)

    Nutrient use overlap among sympatric Streptomyces populations is correlated with pathogen inhibitory capacity, yet there is little information on either the factors that influence nutrient use overlap among coexisting populations or the diversity of nutrient use among soil Streptomyces. We examined ...

  13. Effect of organic and inorganic fertilizers on nutrient concentrations ...

    African Journals Online (AJOL)

    Effect of organic and inorganic fertilizers on nutrient concentrations in plantain ( Musa spp.) ... Fruit parameters measured were fruit weight, edible proportion and pulp dry matter content; also, the concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe) and zinc (Zn) in fruits were determined.

  14. Study on the determination of nutrient status of NTRI tea gardens soils

    International Nuclear Information System (INIS)

    Ahmad, F.; Waheed, A.; Zaman, Q.U.

    2011-01-01

    The study was conducted at National Tea Research Institute (NTRI), Shinkiari, District Mansehra, during year 2006-07 with the objective to find out nutrient status of NTRI tea garden soils to formulate and optimize use of fertilizer doses. Soil Samples were collected from mature tea garden, young tea garden and fallow land up to the depth of 45 cm with an interval of 15 cm, i.e., 0-15, 15-30 and 30-45 cm. The laboratory analysis of soil samples showed that the pH value of soil under mature tea garden was more acidic (5.1,5.2 and 5.4) as compared to the soil under young tea garden ( 6.2, 6.4 and 6.2 ) and fallow land (6.3, 6.3 and 6.2) at the given three depths, respectively. The soil of mature tea garden showed maximum amount of organic matter ( 1.52, 1.21 and 1.18 % ) while it was lowest in fallow land (0.5, 0.53 and 0.66%, respectively). Total soluble salts ranged from 0.02 to 0.04% in all sites under the present investigation. Mature tea garden soils at depth of 0-15 cm showed highest N %age (0.1) while the lowest (0.025%) was recorded in fallow land at the depth of 30-45 cm. Phosphorus was found in adequate amount in all the sites. It ranged from 13.60 mg kg/sup- 1/ (fallow land) to 61.25 mg kg/sup -1/ (mature tea garden). Mature tea garden soils also recorded the highest amount of potassium concentration (300.52 mg kg/sup -1) compared to the soils of young tea garden and fallow land. (author)

  15. Seasonality of nutrients in leaves and fruits of apple trees

    Directory of Open Access Journals (Sweden)

    Nachtigall Gilmar Ribeiro

    2006-01-01

    Full Text Available The nutrient accumulation curves of apple trees are good indicators of plant nutrient demand for each developmental stage. They are also a useful tool to evaluate orchard nutritional status and to estimate the amount of soil nutrient removal. This research aimed at evaluating the seasonality of nutrients in commercial apple orchards during the agricultural years of 1999, 2000, and 2001. Therefore, apple tree leaves and fruits of three cultivars 'Gala', 'Golden Delicious' and 'Fuji' were weekly collected and evaluated for fresh and dry matter, fruit diameter and macronutrient (N, P, K, Ca and Mg and micronutrient (B, Cu, Fe, Mn, and Zn concentrations. Leaf and fruit sampling started one or two weeks after full bloom, depending on the cultivar, and ended at fruit harvest or four weeks later (in the case of leaf sampling. In general, leaf concentrations of N, P, K, Cu, and B decreased; Ca increased; and Mg, Fe, Mn, and Zn did vary significantly along the plant vegetative cycle. In fruits, the initial nutrient concentrations decreased quickly, undergoing slow and continuous decreases and then remaining almost constant until the end of fruit maturation, indicating nutrient dilution, once the total nutrient accumulation increased gradually with fruit growth. Potassium was the nutrient present in highest quantities in apple tree fruits and thus, the most removed from the soil.

  16. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients

  17. [Mechanism of nutrient preservation and supply by soil and its regulation. IV. Fertility regulation and improvement of brown earth type vegetable garden soil and their essence].

    Science.gov (United States)

    Chen, L; Zhou, L

    2000-08-01

    Pot experiment studies on the fertility regulation and improvement of fertile and infertile brown earth type vegetable garden soils and their functionary essence show that under conditions of taking different soil fertility improvement measures, the nutrient contents in fertile and infertile soils were not always higher than the controls, but the aggregation densities of soil microaggregates were increased, and the proportion of different microaggregates was more rational. There was no significant relationship between soil productivity and soil microaggregates proportion. It is proved that the essence of soil fertility improvement consists in the ultimate change of the preservation and supply capacities of soil nutrients, and the proportion of soil microaggregates could be an integrative index to evaluate the level of soil fertility and the efficiency of soil improvement.

  18. An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media

    DEFF Research Database (Denmark)

    Aagot, N.; Nybroe, O.; Nielsen, P.

    2001-01-01

    We designed five Pseudomonas-selective soil extract NAA media containing the selective properties of trimethoprim and sodium lauroyl sarcosine and 0 to 100% of the amount of Casamino Acids used in the classical Pseudomonas-selective Gould's S1 medium. All of the isolates were confirmed to be Pseu......We designed five Pseudomonas-selective soil extract NAA media containing the selective properties of trimethoprim and sodium lauroyl sarcosine and 0 to 100% of the amount of Casamino Acids used in the classical Pseudomonas-selective Gould's S1 medium. All of the isolates were confirmed....... Several of these analyses showed that the amount of Casamino Acids significantly influenced the diversity of the recovered Pseudomonas isolates. Furthermore, the data suggested that specific Pseudomonas subpopulations were represented on the nutrient-poor media. The NAA 1:100 medium, containing ca. 15 mg...... of organic carbon per liter, consistently gave significantly higher Pseudomonas CFU counts than Gould's S1 when tested on four Danish soils. NAA 1:100 may, therefore, be a better medium than Gould's S1 for enumeration and isolation of Pseudomonas from the low-nutrient soil environment....

  19. Chloride Concentration in the Soil Polluted with Bishophit Used in Winter and its Effect on Herbaceous Plants

    Directory of Open Access Journals (Sweden)

    Asta Strėlkutė

    2014-10-01

    Full Text Available For road maintenance in winter, various chemical reagents, considering their physical and chemical properties, are chosen taking into account economic indicators. After a long winter season, large amounts of chemical reagents are used. During the winter season, dusting chlorides, first of all, fall on the roadway and a part of those reach roadsides where directly pollute the soil of the buffer zone and affect vegetation during the growing season. Chloride content in soil reduces the absorption of nutrients, which hinders the development of plants. It also has an effect on the metabolism of soil organisms, and therefore the loss of soil fertility. Due to high chloride content, land becomes unsuitable for plant growth. Studies used different concentrations (9 ml, 12 ml and 46 ml of bishophit. Chloride concentration in soil extract has been determined applying the volumetric method and employing silver nitrate titration. It has been determined that the amount of chloride in the soil contaminated with 9 ml makes 89.21 mg/kg, 12 ml – 94, 25 mg/kg and 164.32 mg/kg.

  20. Economic benefits of combining soil and water conservation measures with nutrient management in semiarid Burkina Faso

    NARCIS (Netherlands)

    Zougmoré, R.; Mando, A.; Stroosnijder, L.; Ouédraogo, E.

    2004-01-01

    Nutrient limitation is the main cause of per capita decline in crop production in the Sahel, where water shortage also limits an efficient use of available nutrients. Combining soil and water conservation measures with locally available nutrient inputs may optimize crop production and economic

  1. Human skin condition and its associations with nutrient concentrations in serum and diet

    NARCIS (Netherlands)

    Boelsma, E.; Vijver, L.P.L. van de; Goldbohm, R.A.; Klöpping-Ketelaars, I.A.A.; Hendriks, H.F.J.; Roza, L.

    2003-01-01

    Background: Nutritional factors exert promising actions on the skin, but only scant information is available on the modulating effects of physiologic concentrations of nutrients on the skin condition of humans. Objective: The objective was to evaluate whether nutrient concentrations in serum and

  2. Bioremediation of soils contaminated with fuel oils

    International Nuclear Information System (INIS)

    Baker, K.H.; Herson, D.S.; Vercellon-Smith, P.; Cronce, R.C.

    1991-01-01

    A utility company discovered soils in their plant contaminated with diesel fuel and related fuel oils (300-450 ppm). The soils were excavated and removed to a concrete pad for treatment. The authors conducted laboratory studies to determine if biostimulation or bioaugmentation would be appropriate for treating the soils. Microbial numbers and soil respiration were monitored in microcosms supplemented with: (1) organic nutrients, (2) inorganic nutrients, and (3) inorganic nutrients plus additional adapted microorganisms. Their studies indicated that biostimulation via the addition of inorganic nutrients would be appropriate at this site. Treatment cells for the contaminated soils were constructed. Initial data indicates that a 35% reduction in the concentration of contaminants has occurred within the first month of operation

  3. Soil dioxin concentrations in Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    Wolf, D.

    1993-01-01

    Soil dioxin levels in Baden-Wuerttemberg are generally low. Where high dioxin concentrations have been reported like in Rastatt, Rheinfelden, Crailsheim-Maulach and Eppingen these phenomena are local. Already at less than 100 metres distance, drastically lower concentrations are measured. At 1500 to 2000 metres distance the values are back to the ordinary background level. A programme for detecting sources of emission in the entire state revealed no further sites of heavy contamination. For this assessment of soil dioxin concentrations in Baden-Wuerttemberg 1275 soil samples were used, which is a vast amount also in comparison with nation-wide surveys. The average dioxin content in farmland is about 1 ng I-TEq/kg m T . Soil dioxin concentrations are the higher the greater the density of settlements and industry. In cities they are about three to five times higher than the ubiquitous background concentration. The highest concentrations measured were 5-20 ng I-TE/kg in garden soils in cities. Sewage sludge may be a significant source of dioxin contamination for farmland, far beyond the ubiquitous background concentration. Automobile exhaust gas caused higher soil contamination within 10 m along both sides of the roads as a function of traffic. Because scavengers in gasoline are now prohibited and catalysts are becoming more and more common the rate of additional dioxin and furan contamination due to traffic will decrease. Currently, traffic-related emissions in Baden-Wuerttemberg are well below 2 g I-TEq. (orig./EF) [de

  4. Effect of humic acid on the growth, yield, nutrient composition, photosynthetic pigment and total sugar contents of peas (pisum sativum l)

    International Nuclear Information System (INIS)

    Khan, A.; Khan, M.Z.; Hussain, F.; Akhtar, M.E.; Gurmani, A.R.; Khan, S.

    2013-01-01

    Summary: A pot experiment was conducted to evaluate the effects of humic acid (HA) applied as soil and foliar at 15, 30 and 45 ppm on the growth, biochemical content, nutrient concentrations and yield of peas. Soil as well as foliar application of HA increased the plant growth and grain yield of peas; however magnitude of increase was higher in soil application than foliar. Highest plant growth and grain yield was achieved with soil application of 15 ppm HA followed by 30 ppm and foliar application of 45 ppm HA respectively. Percentage increase in dry grain yield due to 15 ppm was 37%, with 30 ppm was 29% and foliar application of 45 ppm was 25%. Nutrient concentrations (P, K, Fe, Zn, Mn and Cu) were increased with soil and foliar application of HA. The concentrations of nutrients were relatively higher in shelf than grain. Maximum concentration of P, K and Fe was obtained with the soil application of HA at 15 ppm. Humic acid applied at 15, 30 as soil as well as foliar application at 45 ppm significantly increased chlorophyll, carotenoid and total sugar content. Our results indicate that soil application of HA at 15 and 30 ppm, while foliar application at 45 ppm can increase growth, nutrients concentration, chlorophyll content and yield of Peas in calcareous soil conditions. (author)

  5. The Concentration of Nutrients in Tissues of Plantation-Grown Eastern Cottonwood (Populus deltoides Bart.)

    Science.gov (United States)

    M. G. Shelton; L. E. Nelson; G. L. Switzer; B. G. Blackmon

    1981-01-01

    Nutrient concentrations were determined for 10 tissues from each of 24 cottonwood trees that ranged in age from four to 16 years. Highest concentrations occurred in the most physiologically active tissues; i.e., stemtips, current branches and foliage. Tree age had little influence on the variation in nutrient concentration of tissues. Some differences in concentrations...

  6. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil

    KAUST Repository

    Keuskamp, Joost A.

    2013-02-01

    Mangrove forests are sites of intense carbon and nutrient cycling, which result in soil carbon sequestration on a global scale. Currently, mangrove forests receive increasing quantities of exogenous nutrients due to coastal development. The present paper quantifies the effects of nutrient loading on microbial growth rates and the mineralisation of soil organic carbon (SOC) in two mangrove soils contrasting in carbon content. An increase in SOC mineralisation rates would lead to the loss of historically sequestered carbon and an enhanced CO2 release from these mangrove soils.In an incubation experiment we enriched soils from Avicennia and Rhizophora mangrove forests bordering the Red Sea with different combinations of nitrogen, phosphorus and glucose to mimic the effects of wastewater influx. We measured microbial growth rates as well as carbon mineralisation rates in the natural situation and after enrichment. The results show that microbial growth is energy limited in both soils, with nitrogen as a secondary limitation. Nitrogen amendment increased the rate at which labile organic carbon was decomposed, while it decreased SOC mineralisation rates. Such an inhibitory effect on SOC mineralisation was not found for phosphorus enrichment.Our data confirm the negative effect of nitrogen enrichment on the mineralisation of recalcitrant carbon compounds found in other systems. Based on our results it is not to be expected that nutrient enrichment by itself will cause degradation of historically sequestered soil organic carbon in nitrogen limited mangrove forests. © 2012 Elsevier Ltd.

  7. Soil solution Ni concentrations over which Kd is constant in Japanese agricultural soils

    International Nuclear Information System (INIS)

    Kamei-Ishikawa, Nao; Uchida, Shigeo; Tagami, Keiko; Satta, Naoya

    2011-01-01

    The soil-soil solution distribution coefficient (K d ) is one of the most important parameters required by the models used for radioactive waste disposal environmental impact assessment. The models are generally based on the assumption that K d is independent of the element concentration in soil solution. However, at high soil solution concentrations, this assumption is not valid. Since the sorption of most radionuclides in soil is influenced by their stable isotope concentrations, it is necessary to consider if the range in the naturally occurring stable isotope concentrations in the soil solution is within the range over which K d is valid. The objective of this study was to determine if the K d for nickel (Ni) can be assumed to be constant over the ranges of stable Ni concentration in five main Japanese agricultural soil types. To obtain Ni sorption isotherms for five Japanese soils, two types of batch sorption tests were carried out using radioactive 63 Ni as a tracer. The concentration at which the relationship between soil and soil solution concentration became nonlinear was determined using the two types of sorption isotherms: the Langmuir and Henry isotherms. The result showed that the Ni concentration in the soil solution at which the assumption of a constant K d becomes valid is at least ten times higher than the natural Ni concentrations in solutions of Japanese agricultural soils. This value is sufficient to treat K d for Ni as constant for environmental impact assessment models for the disposal of radioactive waste. (author)

  8. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    Science.gov (United States)

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.

  9. Nutrient Infiltrate Concentrations from Three Permeable Pavement Types

    Science.gov (United States)

    While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha...

  10. Farmers' Perception of Integrated Soil Fertility and Nutrient Management for Sustainable Crop Production: A Study of Rural Areas in Bangladesh

    Science.gov (United States)

    Farouque, Md. Golam; Takeya, Hiroyuki

    2007-01-01

    This study aimed to determine farmers' perception of integrated soil fertility and nutrient management for sustainable crop production. Integrated soil fertility (ISF) and nutrient management (NM) is an advanced approach to maintain soil fertility and to enhance crop productivity. A total number of 120 farmers from eight villages in four districts…

  11. Recovering greater fungal diversity from pristine and diesel fuel contaminated Sub-Antarctic soil through cultivation using a high and a novel low nutrient approach

    Directory of Open Access Journals (Sweden)

    Belinda Carlene Ferrari

    2011-11-01

    Full Text Available Novel cultivation strategies for bacteria are widespread and are well described for recovering greater diversity from the hitherto unculturable majority. While similar approaches have not been demonstrated for fungi it has been suggested that of the 1.5 million estimated species less than 5% have been recovered into pure culture. Fungi are known to be involved in many degradative processes, including the breakdown of hydrocarbons, and it has been speculated that in Polar Regions they contribute significantly to bioremediation of soils contaminated with hydrocarbons. Given the biotechnological potential of fungi there is a need to increase efforts for greater species recovery, particularly from extreme environments such as sub-Antarctic Macquarie Island. In this study, like the hitherto unculturable bacteria, high concentrations of nutrients selected for predominantly different species to that recovered using low nutrient media. By combining both approaches to cultivation from contaminated and non-contaminated soils, 99 fungal species were recovered, including 42 yet unidentified species, several of which were isolated from soils containing high concentrations of diesel fuel. These novel species will now be characterized for their potential role in hydrocarbon degradation.

  12. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude

    Directory of Open Access Journals (Sweden)

    Krystal de Alcantara Notaro

    2014-04-01

    Full Text Available Agroforestry systems are an alternative option for sustainable production management. These systems contain trees that absorb nutrients from deeper layers of the soil and leaf litter that help improve the soil quality of the rough terrain in high altitude areas, which are areas extremely susceptible to environmental degradation. The aim of this study was to characterize the stock and nutrients in litter, soil activity and the population of microorganisms in coffee (Coffea arabica L. plantations under high altitude agroforestry systems in the semi-arid region of the state of Pernambuco, Brazil. Samples were collected from the surface litter together with soil samples taken at two depths (0-10 and 10-20 cm from areas each subject to one of the following four treatments: agroforestry system (AS, native forest (NF, biodynamic system (BS and coffee control (CT.The coffee plantation had been abandoned for nearly 15 years and, although there had been no management or harvesting, still contained productive coffee plants. The accumulation of litter and mean nutrient content of the litter, the soil nutrient content, microbial biomass carbon, total carbon, total nitrogen, C/N ratio, basal respiration, microbial quotient, metabolic quotient and microbial populations (total bacteria, fluorescent bacteria group, total fungi and Trichoderma spp. were all analyzed. The systems thatwere exposed to human intervention (A and BS differed in their chemical attributes and contained higher levels of nutrients when compared to NF and CT. BS for coffee production at high altitude can be used as a sustainable alternative in the high altitude zones of the semi-arid region in Brazil, which is an area that is highly susceptible to environmental degradation.

  13. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient

    Science.gov (United States)

    Anderson, T. Michael; Griffith, Daniel M.; Grace, James B.; Lind, Eric M.; Adler, Peter B.; Biederman, Lori A.; Blumenthal, Dana M.; Daleo, Pedro; Firn, Jennifer; Hagenah, Nicole; Harpole, W. Stanley; MacDougall, Andrew S.; McCulley, Rebecca L.; Prober, Suzanne M.; Risch, Anita C.; Sankaran, Mahesh; Schütz, Martin; Seabloom, Eric W.; Stevens, Carly J.; Sullivan, Lauren; Wragg, Peter; Borer, Elizabeth T.

    2018-01-01

    Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites.

  14. Nutrient concentration age dynamics of teak (Tectona grandis L.f.) plantations in Central America

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Moya, J.; Murillo, R.; Portuguez, E.; Fallas, J. L.; Rios, V.; Kottman, F.; Verjans, J. M.; Mata, R.; Alvarado, A.

    2013-05-01

    Aim of study. Appropriate knowledge regarding teak (Tectona grandis L.f.) nutrition is required for a better management of the plantations to attain high productivity and sustainability. This study aims to answer the following questions: How can it be determined if a teak tree suffers a nutrient deficiency before it shows symptoms? Are nutrient concentration decreases in older trees associated with age-related declines in forest productivity? Area of study. Costa Rica and Panama. Material and Methods. Nutrient concentration in different tree tissues (bole, bark, branches and foliage) were measured at different ages using false-time-series in 28 teak plantations Research highlights. Foliar N concentration decreases from 2.28 in year 1 to 1.76% in year 19. Foliar Mg concentration increases from 0.23 in year 1 to 0.34% in year 19. The foliar concentrations of the other nutrients are assumed to be constant with tree age: 1.33% Ca, 0.88% K, 0.16% P, 0.12% S, 130 mg kg{sup -}1 Fe, 43 mg kg{sup -}1 Mn, 11 mg kg{sup -}1 Cu, 32 mg kg{sup -}1 Zn and 20 mg kg{sup -}1 B. The nutrient concentration values showed can be taken as a reference to evaluate the nutritional status of similar teak plantations in the region. The concentrations of K, Mg and N could be associated with declines in teak plantation productivity as the plantation becomes older. Whether age-related changes in nutrient concentrations are a cause or a consequence of age-related declines in productivity is an issue for future research with the aim of achieving higher growth rates throughout the rotation period. (Author) 35 refs.

  15. Effects of interplanted legumes with maize on major soil nutrients ...

    African Journals Online (AJOL)

    A field experiment was carried out at the Teaching and Research Farm of the University of Ibadan, in early 2004 and 2005 to evaluate the effects of interplanted legumes with maize on major soil nutrients and performance of maize. The experiment laid out in a randomized complete block design, with four levels of crop ...

  16. Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture.

    Science.gov (United States)

    Maguire, Timothy J; Wellen, Christopher; Stammler, Katie L; Mundle, Scott O C

    2018-08-15

    Greenhouse production of vegetables is a growing global trade. While greenhouses are typically captured under regulations aimed at farmland, they may also function as a point source of effluent. In this study, the cumulative impacts greenhouse effluents have on riverine macronutrient and trace metal concentrations were examined. Water samples were collected Bi-weekly for five years from 14 rivers in agriculturally dominated watersheds in southwestern Ontario. Nine of the watersheds contained greenhouses with their boundaries. Greenhouse influenced rivers had significantly higher concentrations of macronutrients (nitrogen, phosphorus, and potassium) and trace metals (copper, molybdenum, and zinc). Concentrations within greenhouse influenced rivers appeared to decrease over the 5-year study while concentrations within non-greenhouse influenced river remained constant. The different temporal pattern between river types was attributed to increased precipitation during the study period. Increases in precipitation diluted concentrations in greenhouse influenced rivers; however, non-influenced river runoff proportionally increased nutrient mobility and flow, stabilizing the observed concentrations of non-point sources. Understanding the dynamic nature of environmental releases of point and non-point sources of nutrients and trace metals in mixed agricultural systems using riverine water chemistry is complicated by changes in climatic conditions, highlighting the need for long-term monitoring of nutrients, river flows and weather data in assessing these agricultural sectors. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition

    Science.gov (United States)

    He, Ping; Wan, Song-Ze; Fang, Xiang-Min; Wang, Fang-Chao; Chen, Fu-Sheng

    2016-01-01

    It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and 15N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the coupling effects of non-N nutrients, C addition and N deposition on forest floor decomposition in subtropical China. The results indicated that N deposition inhibited soil organic matter and litter decomposition by 66% and 38%, respectively. Soil immobilized 15N following N addition was lowest among treatments. Litter 15N immobilized following N addition was significantly higher and lower than that of combined treatments during the early and late decomposition stage, respectively. Both soil and litter extractable mineral N were lower in combined treatments than in N addition treatment. Since soil N immobilization and litter N release were respectively enhanced and inhibited with elevated non-N nutrient and C resources, it can be speculated that the N leaching due to N deposition decreases with increasing nutrient and C resources. This study should advance our understanding of how forests responds the elevated N deposition. PMID:27020048

  18. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield.

    Directory of Open Access Journals (Sweden)

    Xiaofei Tian

    Full Text Available Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0-100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0-15.8%, 9.3-13.9%, and 9.2-21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N, and available K content of the 0-20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching.

  19. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield.

    Science.gov (United States)

    Tian, Xiaofei; Li, Chengliang; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0-100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0-15.8%, 9.3-13.9%, and 9.2-21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0-20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching.

  20. Effect of Fertilization on Soil Fertility and Nutrient Use Efficiency at Potatoes

    Science.gov (United States)

    Neshev, Nesho; Manolov, Ivan

    2016-04-01

    The effect of fertilization on soil fertility, yields and nutrient use efficiency of potatoes grown under field experimental conditions was studied. The trail was conducted on shallow brown forest soil (Cambisols-coarse) during the vegetation periods of 2013 to 2015. The variants of the experiment were: control, N140; P80; K100; N140P80; N140K100; P80K100; N140P80K100; N140P80K100Mg33. The applied fertilization slightly decreased soil's pH after the harvest of potatoes compared to the soil pH their planting. Decreasing of pH was more severe at variant N (from 5,80 to 4,19 in 2014). The mineral nitrogen content in the soil after the harvest of potatoes was lower for the variants P, K and PK. The positive effect of fertilization on soil fertility after the end of the trails was more pronounced at variants NPK and NPKMg. The content of available nitrogen, phosphorus and potassium forms for these variants was the highest for each year. The highest content of mineral nitrogen was observed in 2013 (252,5 and 351,1 mg/1000g, respectively for variants NPK and NPKMg). It was due to extremely dry weather conditions during the vegetation in this year. Soil content of mineral N for the next two years was lower. The same tendency was observed for phosphorus and potassium was observed. In 2013 the P2O5 and K2O content in soil was the highest for the variants with full mineral fertilization - NPK (64,4 and 97,6 mg 100g-1 respectively for P2O5 and K2O) and NPKMg (65,2 and 88,0 mg 100g-1 respectively for P2O5 and K2O). The highest yields were recorded at variants NPK and NPKMg - 24,21 and 22,01 t ha-1, average for the studied period. The yield of variant NPK was 25 % higher than the yield from variant NP and 68 % higher than control. The partial factor productivity (PFPN, PFPP and PFPK) of the applied fertilizers was the highest at variant NPK. The PFPN (80,10 kg kg-1) for the yields of variant N was 57 % lower than the PFPN at variant NPK (180,36 kg kg-1). The PFPP and PFPK at

  1. Groundwater Availability Alters Soil-plant Nutrient Cycling in a Stand of Invasive, N-fixing Phreatophytes

    Science.gov (United States)

    Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.

    2013-12-01

    N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact

  2. Evaluation of the Haney Soil Health Nutrient Tool for corn nitrogen recommendations across eight Midwest states

    Science.gov (United States)

    Use and development of soil biological tests for estimating soil N availability and subsequently corn (Zea mays L.) fertilizer N recommendations is garnering considerable interest. The objective of this research was to evaluate relationships between the Soil Health Nutrient Tool (SHNT), also known a...

  3. Nutrient dynamics and tree growth of silvopastoral systems: impact of poultry litter.

    Science.gov (United States)

    Blazier, Michael A; Gaston, Lewis A; Clason, Terry R; Farrish, Kenneth W; Oswald, Brian P; Evans, Hayden A

    2008-01-01

    Fertilizing pastures with poultry litter has led to an increased incidence of nutrient-saturated soils, particularly on highly fertilized, well drained soils. Applying litter to silvopastures, in which loblolly pine (Pinus taeda L.) and bahiagrass (Paspalum notatum) production are integrated, may be an ecologically desirable alternative for upland soils of the southeastern USA. Integrating subterranean clover (Trifolium subterraneum) into silvopastures may enhance nutrient retention potential. This study evaluated soil nutrient dynamics, loblolly pine nutrient composition, and loblolly pine growth of an annually fertilized silvopasture on a well drained soil in response to fertilizer type, litter application rate, and subterranean clover. Three fertilizer treatments were applied annually for 4 yr: (i) 5 Mg litter ha(-1) (5LIT), (ii) 10 Mg litter ha(-1) (10LIT), and (iii) an inorganic N, P, K pasture blend (INO). Litter stimulated loblolly pine growth, and neither litter treatment produced soil test P concentrations above runoff potential threshold ranges. However, both litter treatments led to accumulation of several nutrients (notably P) in upper soil horizons relative to INO and unfertilized control treatments. The 10LIT treatment may have increased N and P leaching potential. Subterranean clover kept more P sequestered in the upper soil horizon and conferred some growth benefits to loblolly pine. Thus, although these silvopasture systems had a relatively high capacity for nutrient use and retention at this site, litter should be applied less frequently than in this study to reduce environmental risks.

  4. Biochar soil amendment for waste-stream diversion, nutrient holding capacity, and carbon sequestration in two contrasting soils

    Science.gov (United States)

    Deem, L. M.; Crow, S. E.; Deenik, J. L.; Penton, C. R.; Yanagida, J.

    2013-12-01

    Biochar is organic matter that has been pyrolized under low oxygen conditions for use as a soil amendment. Currently biochar is viewed as a way to improve soil quality (e.g., increased nutrient and water holding capacity) and increase in soil carbon (C) sequestration. The use of biochar in soil is not new, yet little is known about the underlying mechanisms that control the interactions between biochar and soil following amendment. In the past, the effects of biochar addition on crop yields, soil properties and greenhouse gas (GHG) fluxes in both in-situ and controlled experiments have produced inconsistent results. These discrepancies may be uncovered in part by chemical and physical characterization of the biochar prior to amendment and identification of soil- and biochar-specific interactions. Furthermore, a more holistic consideration of the system may demonstrate the virtues of biochar amendment beyond the typical considerations of yield and gas flux. We expect that as the differences between the physical and chemical properties of the biochar and the soil increase, the impact on the soil quality metrics will also increase. For this study, we used a waste product (i.e., anaerobic digester sludge) biochar with 81.5% C, pH of 10.44, pH-independent charge for anion exchange capacity (AEC) and a pH-dependent charge for cation exchange capacity (CEC), 4.14% moisture content and 25.75 cmol¬c /kg exchangeable base cations. This biochar was incorporated into both a low and a high fertility Hawaiian field soil to quantitate biochar effects on crop yield, soil pH, CEC, AEC, hot and cold water extractable C and nitrogen, bulk density, phosphorus, soil microbial ecology, and GHG flux in varying soil conditions. Compared to the higher fertility soil, we hypothesized that the low fertility soil would demonstrate a greater increase in soil quality, including higher pH, CEC and water holding capacity. Two crop management practices were included with each soil: traditional

  5. Biochar can be used to recapture essential nutrients from dairy wastewater and improve soil quality

    Science.gov (United States)

    Ghezzehei, T. A.; Sarkhot, D. V.; Berhe, A. A.

    2014-04-01

    Recently, the potential for biochar use to recapture excess nutrients from dairy wastewater has been a focus of a growing number of studies. It is suggested that biochar produced from locally available waste biomass can be important in reducing release of excess nutrient elements from agricultural runoff, improving soil productivity, and long-term carbon (C) sequestration. Here we present a review of a new approach that is showing promise for the use of biochar for nutrient capture. Using batch sorption experiments, it has been shown that biochar can adsorb up to 20 to 43% of ammonium and 19-65% of the phosphate in flushed dairy manure in 24 h. These results suggest a potential of biochar for recovering essential nutrients from dairy wastewater and improving soil fertility if the enriched biochar is returned to soil. Based on the sorption capacity of 2.86 and 0.23 mg ammonium and phosphate, respectively, per gram of biochar and 10-50% utilization of available excess biomass, in the state of California (US) alone, 11 440 to 57 200 t of ammonium-N and 920-4600 t of phosphate can be captured from dairy waste each year while at the same time disposing up to 8-40 million tons of waste biomass.

  6. Isotope technology as applied to studies of soil fertility, nutrient availability and fertilizer use on flooded rice soils

    International Nuclear Information System (INIS)

    Patnaik, S.; Mohanty, S.K.; Dash, R.N.

    1979-01-01

    Research is reviewed on soil fertility and nutrient availability in relation to fertilizer efficiency, especially o stimulated the mineralization of soil N. Losses of added N from oxidation, leaching, denitrification and volatilization could be minimized through placement of N fertilizer in the reduced zone or by the addition of rice straw for rapid immobilization of added N. Fe-P and, to some extent, Al-P provided P to the rice plants, particularly in P-deficient soils. Added phosphates were converted to these forms which, under waterlogged soil conditions, released more P into the soil solution through reductive solubilization of Fe-P and hydrolytic dissolution of Al-P. The rice plants generally absorbed fertilizer N during the vegetative growth period and N mineralized from soil organic matter during the reproductive growth period. 15 N studies indicated higher grain yield and utilization of applied N through fractional application of 70-80% during the vegetative growth period, and the remaining 20-30% top-dressed at the panicle initiation stage. Ammonia-containing and -forming (urea) fertilizers were superior to the nitrate form of N. In field tests, however, the crop recovery of applied N was relatively low. Phosphatic fertilizers were best applied at puddling. In general, water-soluble phosphates were superior to citrate-soluble or insoluble phosphates. The latter could be made as efficient as the water-soluble phosphate, at comparable low rates, by applying to the moist aerobic acid soil 2-3 weeks before flooding and transplanting rice. Tracer studies have been used to evaluate the nutrient-supplying capacity of the soil from the 'A' value concept. 'A' values varied with varying conditions of soil, rate, time and form of fertilizer application. Zn nutrition of the rice plant and fertilizer use with 65 Zn have been studied relatively little. Some lines of future work are suggested

  7. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.R.; Li, Y.C.; Klassen, W. [University of Florida, Homestead, FL (United States). Center for Tropical Research & Education

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

  8. Ultraviolet-B radiation and nitrogen affect nutrient concentrations and the amount of nutrients acquired by above-ground organs of maize.

    Science.gov (United States)

    Correia, Carlos M; Coutinho, João F; Bacelar, Eunice A; Gonçalves, Berta M; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE) were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  9. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    Directory of Open Access Journals (Sweden)

    Carlos M. Correia

    2012-01-01

    Full Text Available UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  10. [Changes in bio-availability of immobilized Cu and Zn bound to phosphate in contaminated soils with different nutrient addition].

    Science.gov (United States)

    Xu, Ming-Gang; Zhang, Qian; Sun, Nan; Shen, Hua-Ping; Zhang, Wen-Ju

    2009-07-15

    Bio-availability of Cu and Zn fixed by phosphate in contaminated soils with application of nutrients were measured by pot experiment. It was simulated for the third national standardization of copper and zinc polluted soils by adding copper and zinc nitrate into red and paddy soils, respectively and together. Phosphate amendment was added to the soils to fix Cu and Zn, then added KCl and NH4Cl or K2SO4 and (NH4)2SO4 fertilizers following to plant Ryegrass, which was harvested after 40 d. Available Cu/Zn content in soils and biomass, Cu/Zn content in the shoot of Ryegrass were determined. Results showed that, compared with no nutrient application, adding KCl and NH4 Cl/K2SO4 and (NH4)2SO4 to polluted red and paddy soils increased the available Cu and Zn content in red soil significantly. The increasing order was KCl and NH4 Cl > K2SO4 and (NH4)2SO4. Especially in single Zn polluted red soil, the available Zn content increased by 133.4% in maximum. Although adding K2SO4 and (NH4)2SO4 could promote the growth of Ryegrass on red soil, and the largest increasing was up to 22.2%, it increased Cu and Zn content in the shoot of Ryegrass for 21.5%-112.6% remarkably. These nutrient effects on available Cu and Zn were not significantly in paddy soil. It was suggested that application of nitrogen and potassium fertilizers to soils could change the bioavailability of Cu/Zn. So it is necessary to take full account of the nutrient influence to the heavy metal stability which fixed by phosphate in contaminated soils when consider contaminated soils remediation by fertilization.

  11. Evaluation of nutrients status of soils under rice cultivation in cross ...

    African Journals Online (AJOL)

    Nutrients status of soils under rice cultivation in Cross River State Nigeria was evaluated to ascertain the present status and suggest management practices needed for an increased rice production. A reconnaissance survey of the entire State was undertaken. A total number of eight Local Government Areas, namely ...

  12. Transformation mechanism of nutrient elements in the process of biochar preparation for returning biochar to soil

    Institute of Scientific and Technical Information of China (English)

    Shuangshuang Tian; Zhongxin Tan; Alfreda Kasiulienė; Ping Ai

    2017-01-01

    Returning biochar to soil is a heavily researched topic because biochar functions well for soil improvement. There is a significant loss of nutrients, which occurs during biochar preparation before biochar is returned to soil, thereby seriously undermining biochar's efficacy. Therefore, the transformation mechanisms of biochar pH, mass, nutrients and metals during pyrolysis under different atmospheres and temperatures were studied such that the best method for biochar preparation could be developed. Several conclusions can be reached: (1) a CO2 atmosphere is better than a N2 atmosphere for biochar preparation, although preparation in a CO2 atmosphere is not a common practice for biochar producers; (2) 350 ℃ is the best temperature for biochar preparation because the amount of nutrient loss is notably low based on the premise of straw transferred into biochar; and (3) transforming mechanisms of pH, N, P and K are also involved in the biochar preparation process.

  13. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield

    Science.gov (United States)

    Tian, Xiaofei; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0–100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0–15.8%, 9.3–13.9%, and 9.2–21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0–20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching. PMID:29324750

  14. The texture, structure and nutrient availability of artificial soil on cut slopes restored with OSSS - Influence of restoration time.

    Science.gov (United States)

    Huang, Zhiyu; Chen, Jiao; Ai, Xiaoyan; Li, Ruirui; Ai, Yingwei; Li, Wei

    2017-09-15

    Outside soil spray seeding (OSSS) is widely used to restore cut slopes in southwest of China, and artificial soil is often sprayed onto cut slopes to establish a soil layer for revegetation. The stability of artificial soil layer and its supply of water and nutrients for plants is crucial for successful restoration. To evaluate the long-term effectiveness of OSSS, the texture, structure and nutrient availability of artificial soil were studied, various soil samples were obtained from three cut slopes with different restoration time (restored with OSSS in 1996, 2003 and 2007 respectively) and one natural developed slope (NS). The properties measured including soil particle size distribution (PSD), texture, fractal dimension of PSD (D m ), the bias (C S ) and peak convex (C E ) coefficients of aggregate size distribution, structure failure rate, bulk density, moisture, pH, soil organic carbon (SOC), calcium carbonate content, Available nitrogen (N A ), Available phosphorus (P A ), and Available potassium (K A ). The results showed that different restoration time resulted in significant differences in soil PSD, D m , C S , C E , structure failure rate, bulk density, moisture, pH, N A , and K A . And these properties improved with increasing restoration age. However, there is still a huge disparity in soil texture, structure, and the availability of nutrients and moisture between the cut slopes and NS over a restoration period of up to 17 years, and this is caused by the little fine particles and the lack of slow release fertilizers and organic fertilizers in the artificial soil, resulting in poorer soil structure stability, retention and availability of moisture and nutrients on the cut slopes. Overall, the OSSS technique shows a long-term effectiveness in southwest of China, but there is still room for improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mapping of trophic states based on nutrients concentration and phytoplankton abundance in Jatibarang Reservoir

    Science.gov (United States)

    Rudiyanti, Siti; Anggoro, Sutrisno; Rahman, Arif

    2018-02-01

    Jatibarang Reservoir is one of the Indonesian Reservoirs, which used for human activities such as tourism and agriculture. These activities will provide input of organic matter and nutrients into the water. These materials will impact water quality and eutrophication process. Eutrophication is the water enrichment by nutrients, especially nitrogen and phosphorus which can promote the growth of phytoplankton. Some indicators of eutrophication are increasing nutrients, trophic states, and change of phytoplankton composition. The relationship between water quality and phytoplankton community can be used as an indicator of trophic states in Jatibarang Reservoir. The aim of this study was to analyze the effect of nutrients concentration and phytoplankton abundance to the trophic states and mapping trophic states based on nutrients concentration and phytoplankton in Jatibarang Reservoir. This study was conducted in June and July 2017 at 9 stations around Jatibarang Reservoir. The results showed that average concentration of nitrate, phosphate, and chlorophyll-a in Jatibarang Reservoir was 0.69 mg/L, 0.27 mg/L, and 1.66 mg/m3, respectively. The phytoplankton abundance ranged 16-62,200 cells/L, consists of 21 genera of four classes, i.e. Chlorophyceae, Cyanophyceae, Bacillariophyceae, and Dinophyceae. Cyanophyceae was a dominant phytoplankton group based on the composition of abundance (>80%). High nutrient concentrations and phytoplankton dominated by Anabaena (Cyanophyceae) which indicated that the waters in Jatibarang Reservoir were eutrophic.

  16. International symposium on nuclear techniques in integrated plant nutrient, water and soil management. Book of extended synopses

    International Nuclear Information System (INIS)

    2000-10-01

    This document contains extended synopsis of 92 papers presented at the International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water, and Soil Management held in Vienna, Austria, 16-20 October 2000. The efficient use of plant nutrient and fertilizer using carbon 13 and nitrogen 15 tracers; plant water use using oxygen 18 and moisture gauges, as well as soil and plant radioactivity monitoring, are some of the major subjects covered by these papers

  17. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil

    KAUST Repository

    Keuskamp, Joost A.; Schmitt, Heike; Laanbroek, Hendrikus J.; Verhoeven, Jos T.A.; Hefting, Mariet M.

    2013-01-01

    Mangrove forests are sites of intense carbon and nutrient cycling, which result in soil carbon sequestration on a global scale. Currently, mangrove forests receive increasing quantities of exogenous nutrients due to coastal development. The present

  18. Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil

    Science.gov (United States)

    J.S. Norman; J.E. Barrett

    2014-01-01

    Ammonia-oxidizing microbes control the rate-limiting step of nitrification, a critical ecosystem process, which affects retention and mobility of nitrogen in soil ecosystems. This study investigated substrate (NH4þ) and nutrient (K and P) limitation of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in temperate forest soils at Coweeta Hydrologic...

  19. Detecting terrestrial nutrient limitation: a global meta-analysis of foliar nutrient concentrations after fertilization

    Directory of Open Access Journals (Sweden)

    Rebecca eOstertag

    2016-03-01

    Full Text Available Examining foliar nutrient concentrations after fertilization provides an alternative method for detecting nutrient limitation of ecosystems, which is logistically simpler to measure than biomass change. We present a meta-analysis of response ratios of foliar nitrogen and phosphorus (RRN, RRP after addition of fertilizer of nitrogen (N, phosphorus (P, or the two elements in combination, in relation to climate, ecosystem type, life form, family, and methodological factors. Results support other meta-analyses using biomass, and demonstrate there is strong evidence for nutrient limitation in natural communities. However, because N fertilization experiments greatly outnumber P fertilization trials, it is difficult to discern the absolute importance of N vs. P vs. co-limitation across ecosystems. Despite these caveats, it is striking that results did not follow conventional wisdom that temperate ecosystems are N-limited and tropical ones are P-limited. In addition, the use of ratios of N-to-P rather than response ratios also are a useful index of nutrient limitation, but due to large overlap in values, there are unlikely to be universal cutoff values for delimiting N vs. P limitation. Differences in RRN and RRP were most significant across ecosystem types, plant families, life forms, and between competitive environments, but not across climatic variables.

  20. Contaminant immobilization and nutrient release by carbonized biomass in water and soils

    Science.gov (United States)

    Chars contain functional surface groups such as carboxylic, phenolic, hydroxyl, carbonyl, and quinones, in addition to porous structures that can impact essential soil properties such as cation exchange capacity (CEC), pH, and retention of water, nutrients, and pesticides. Physical and chemical pro...

  1. Utilization of oil palm empty bunches waste as biochar-microbes for improving availibity of soil nutrients

    Directory of Open Access Journals (Sweden)

    G . I . Ichriani

    2016-01-01

    Full Text Available There are about 23% waste oil palm empty fruit bunches (OPEFB of total waste generated from the production of crude palm oil in oil palm plantations. Pyrolysis technology can be used to convert waste into biochar and further can be utilized for the improvement of soil. Biochar-microbes of OPEFB are biochar from OPEFB biomass that enriched with soil microbes. Biochar-microbes is expected to be used for the improvement of the soil and plants. Therefore the purpose of this research was to study the ability of biochar-microbes OPEFB to increase availability of the nutrients in sandy soils. The process of making biochar done by using slow pyrolysis technology by heating 300oC and 400oC for 2 and 3 hours, and with sizes 40 and 80 mesh, as well as indigenous microbial Bulkhorderia nodosa G.52.Rif1 and Trichoderma sp. added. The biochar production and research were conducted in the Department of Forestry Laboratory and in the Department of Agronomy Laboratory, Faculty of Agriculture, Palangka Raya University. In general, the study showed that biochar-microbes could maintain the soil pH value and tends to increase the soil pH, increasing the holding capacity of sandy soil to the elements of P and K as well as increasing the availability of nutrients N, P and K. Furthermore, this study showed that the biochar process by 400oC heating for 3 hours and 40 mesh with microbes or without microbes were the best effect on the improvement of the quality of holding capacity and the nutrients supply in sandy soils.

  2. SPATIAL UNCERTAINTY OF NUTRIENT LOSS BY EROSION IN SUGARCANE HARVESTING SCENARIOS

    Directory of Open Access Journals (Sweden)

    Patrícia Gabarra Mendonça

    2015-08-01

    Full Text Available The assessment of spatial uncertainty in the prediction of nutrient losses by erosion associated with landscape models is an important tool for soil conservation planning. The purpose of this study was to evaluate the spatial and local uncertainty in predicting depletion rates of soil nutrients (P, K, Ca, and Mg by soil erosion from green and burnt sugarcane harvesting scenarios, using sequential Gaussian simulation (SGS. A regular grid with equidistant intervals of 50 m (626 points was established in the 200-ha study area, in Tabapuã, São Paulo, Brazil. The rate of soil depletion (SD was calculated from the relation between the nutrient concentration in the sediments and the chemical properties in the original soil for all grid points. The data were subjected to descriptive statistical and geostatistical analysis. The mean SD rate for all nutrients was higher in the slash-and-burn than the green cane harvest scenario (Student’s t-test, pMg>K>P. The SD rate was highest in areas with greater slope. Lower uncertainties were associated to the areas with higher SD and steeper slopes. Spatial uncertainties were highest for areas of transition between concave and convex landforms.

  3. Early root overproduction not triggered by nutrients decisive for competitive success belowground.

    Directory of Open Access Journals (Sweden)

    Francisco M Padilla

    Full Text Available Theory predicts that plant species win competition for a shared resource by more quickly preempting the resource in hotspots and by depleting resource levels to lower concentrations than its competitors. Competition in natural grasslands largely occurs belowground, but information regarding root interactions is limited, as molecular methods quantifying species abundance belowground have only recently become available.In monoculture, the grass Festuca rubra had higher root densities and a faster rate of soil nitrate depletion than Plantago lanceolata, projecting the first as a better competitor for nutrients. However, Festuca lost in competition with Plantago. Plantago not only replaced the lower root mass of its competitor, but strongly overproduced roots: with only half of the plants in mixture than in monoculture, Plantago root densities in mixture were similar or higher than those in its monocultures. These responses occurred equally in a nutrient-rich and nutrient-poor soil layer, and commenced immediately at the start of the experiment when root densities were still low and soil nutrient concentrations high.Our results suggest that species may achieve competitive superiority for nutrients by root growth stimulation prior to nutrient depletion, induced by the presence of a competitor species, rather than by a better ability to compete for nutrients per se. The root overproduction by which interspecific neighbors are suppressed independent of nutrient acquisition is consistent with predictions from game theory. Our results emphasize that root competition may be driven by other mechanisms than is currently assumed. The long-term consequences of these mechanisms for community dynamics are discussed.

  4. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas.

    Directory of Open Access Journals (Sweden)

    Ting Wei

    Full Text Available Soil infertility is the main barrier to dryland agricultural production in China. To provide a basis for the establishment of a soil amelioration technical system for rainfed fields in the semiarid area of northwest China, we conducted a four-year (2007-2011 field experiment to determine the effects of wheat straw incorporation on the arid soil nutrient levels of cropland cultivated with winter wheat after different straw incorporation levels. Three wheat straw incorporation levels were tested (H: 9000 kg hm(-2, M: 6000 kg hm(-2, and L: 3000 kg hm(-2 and no straw incorporation was used as the control (CK. The levels of soil nutrients, soil organic carbon (SOC, soil labile organic carbon (LOC, and enzyme activities were analyzed each year after the wheat harvest. After straw incorporation for four years, the results showed that variable straw amounts had different effects on the soil fertility indices, where treatment H had the greatest effect. Compared with CK, the average soil available N, available P, available K, SOC, and LOC levels were higher in the 0-40 cm soil layers after straw incorporation treatments, i.e., 9.1-30.5%, 9.8-69.5%, 10.3-27.3%, 0.7-23.4%, and 44.4-49.4% higher, respectively. On average, the urease, phosphatase, and invertase levels in the 0-40 cm soil layers were 24.4-31.3%, 9.9-36.4%, and 42.9-65.3% higher, respectively. Higher yields coupled with higher nutrient contents were achieved with H, M and L compared with CK, where these treatments increased the crop yields by 26.75%, 21.51%, and 7.15%, respectively.

  5. Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus.

    Science.gov (United States)

    Ruiz, J; Arbib, Z; Alvarez-Díaz, P D; Garrido-Pérez, C; Barragán, J; Perales, J A

    2014-05-20

    This work was aimed at studying the effect of light-darkness and high-low biomass concentrations in the feasibility of removing nitrogen and phosphorus from urban treated wastewater by the microalga Scenedesmus obliquus. Laboratory experiments were conducted in batch, where microalgae were cultured under different initial biomass concentrations (150 and 1500mgSSl(-1)) and light conditions (dark or illuminated). Nutrient uptake was more dependent on internal nutrient content of the biomass than on light presence or biomass concentration. When a maximum nitrogen or phosphorus content in the biomass was reached (around 8% and 2%, respectively), the removal of that nutrient was almost stopped. Biomass concentration affected more than light presence on the nutrient removal rate, increasing significantly with its increase. Light was only required to remove nutrients when the maximum nutrient storage capacity of the cells was reached and further growth was therefore needed. Residence times to maintain a stable biomass concentration, avoiding the washout of the reactor, were much higher than those needed to remove the nutrients from the wastewater. This ability to remove nutrients in the absence of light could lead to new configurations of reactors aimed to wastewater treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Nutrient Enrichment Mediates the Relationships of Soil Microbial Respiration with Climatic Factors in an Alpine Meadow

    Directory of Open Access Journals (Sweden)

    Ning Zong

    2015-01-01

    Full Text Available Quantifying the effects of nutrient additions on soil microbial respiration (Rm and its contribution to soil respiration (Rs are of great importance for accurate assessment ecosystem carbon (C flux. Nitrogen (N addition either alone (coded as LN and HN or in combination with phosphorus (P (coded as LN + P and HN + P were manipulated in a semiarid alpine meadow on the Tibetan Plateau since 2008. Either LN or HN did not affect Rm, while LN + P enhanced Rm during peak growing periods, but HN + P did not affect Rm. Nutrient addition also significantly affected Rm/Rs, and the correlations of Rm/Rs with climatic factors varied with years. Soil water content (Sw was the main factor controlling the variations of Rm/Rs. During the years with large rainfall variations, Rm/Rs was negatively correlated with Sw, while, in years with even rainfall, Rm/Rs was positively correlated with Sw. Meanwhile, in N + P treatments the controlling effects of climatic factors on Rm/Rs were more significant than those in CK. Our results indicate that the sensitivity of soil microbes to climatic factors is regulated by nutrient enrichment. The divergent effects of Sw on Rm/Rs suggest that precipitation distribution patterns are key factors controlling soil microbial activities and ecosystem C fluxes in semiarid alpine meadow ecosystems.

  7. Can We Manage Nonpoint-Source Pollution Using Nutrient Concentrations during Seasonal Baseflow?

    Directory of Open Access Journals (Sweden)

    James A. McCarty

    2016-05-01

    Full Text Available Nationwide, a substantial amount of resources has been targeted toward improving water quality, particularly focused on nonpoint-source pollution. This study was conducted to evaluate the relationship between nutrient concentrations observed during baseflow and runoff conditions from 56 sites across five watersheds in Arkansas. Baseflow and stormflow concentrations for each site were summarized using geometric mean and then evaluated for directional association. A significant, positive correlation was found for NO–N, total N, soluble reactive P, and total P, indicating that sites with high baseflow concentrations also had elevated runoff concentrations. Those landscape factors that influence nutrient concentrations in streams also likely result in increased runoff, suggesting that high baseflow concentrations may reflect elevated loads from the watershed. The results highlight that it may be possible to collect water-quality data during baseflow to help define where to target nonpoint-source pollution best management practices within a watershed.

  8. Assessment of nutrient retention by Natete wetland Kampala, Uganda

    Science.gov (United States)

    Kanyiginya, V.; Kansiime, F.; Kimwaga, R.; Mashauri, D. A.

    Natete wetland which is located in a suburb of Kampala city in Uganda is dominated by C yperus papyrus and covers an area of approximately 1 km 2. The wetland receives wastewater and runoff from Natete town which do not have a wastewater treatment facility. The main objective of this study was to assess nutrient retention of Natete wetland and specifically to: determine the wastewater flow patterns in the wetland; estimate the nutrient loads into and out of the wetland; determine the nutrient retention by soil, plants and water column in the wetland; and assess the above and belowground biomass density of the dominant vegetation. Soil, water and plant samples were taken at 50 m intervals along two transects cut through the wetland; soil and water samples were taken at 10 cm just below the surface. Physico-chemical parameters namely pH, electrical conductivity and temperature were measured in situ. Water samples were analyzed in the laboratory for ammonium-nitrogen, nitrate-nitrogen, total nitrogen, orthophosphate and total phosphorus. Electrical conductivity ranged between 113 μS/cm and 530 μS/cm and the wastewater flow was concentrated on the eastern side of the wetland. pH varied between 6 and 7, temperature ranged from 19 °C to 24 °C. NH 4-N, NO 3-N, and TN concentrations were retained by 21%, 98%, and 35% respectively. Phosphorus concentration was higher at the outlet of the wetland possibly due to release from sediments and leaching. Nutrient loads were higher at the inlet (12,614 ± 394 kgN/day and 778 ± 159 kgP/day) than the outlet (2368 ± 425 kgN/day and 216 ± 56 kgP/day) indicating retention by the wetland. Plants stored most nutrients compared to soil and water. The belowground biomass of papyrus vegetation in the wetland was higher (1288.4 ± 8.3 gDW/m 2) than the aboveground biomass (1019.7 ± 13.8 gDW/m 2). Plant uptake is one of the important routes of nutrient retention in Natete wetland. It is recommended that harvesting papyrus can be an

  9. Spatio-temporal patterns of groundwater depths and soil nutrients in a small watershed in the Ethiopian highlands: Topographic and land-use controls

    Science.gov (United States)

    Guzman, Christian D.; Tilahun, Seifu A.; Dagnew, Dessalegn C.; Zimale, Fasikaw A.; Zegeye, Assefa D.; Boll, Jan; Parlange, Jean-Yves; Steenhuis, Tammo S.

    2017-12-01

    Soil and water conservation structures, promoted by local and international development organizations throughout rural landscapes, aim to increase recharge and prevent degradation of soil surface characteristics. This study investigates this unexamined relationship between recharge, water table depths, and soil surface characteristics (nutrients) in a small sub-watershed in the northwestern Ethiopian highlands. These highland watersheds have high infiltration rates (mean 70 mm hr-1, median 33 mm hr-1), recharging the shallow unconfined hillslope aquifer with water transport occurring via subsurface pathways down the slope. The perched water tables reflect the subsurface flux and are deep where this flux is rapid in the upland areas (138 cm below surface). Soil saturation and overland flow occur when the subsurface flux exceeds the transport capacity of the soil in the lower downslope areas near the ephemeral stream (19 cm below surface). Land use is directly related to the water table depth, corresponding to grazing and fallowed (saturated) land in the downslope areas and cultivated (unsaturated) land in the middle and upper parts where the water table is deeper. Kjeldahl Total Nitrogen (TN), Bray II available phosphorus (AP), and exchangeable potassium (K+) averages exhibit different behaviors across slope, land use transects, or saturation conditions. TN was moderate to low (0.07% ± 0.04) in various land uses and slope regions. Bray II AP had very low concentrations (0.25 mg kg-1 ± 0.26) among the different slope regions with no significant differences throughout (p > .05). The exchangeable cation (K+, Ca2+, Mg2+) concentrations and pH, however, were greater in non-cultivated (seasonally saturated) lands and in a downslope direction (p < .001, p < .005, p < .05, and p < .005, respectively). These results show that the perched groundwater plays an important role in influencing land use, the amount of water seasonally available for crop growth, and exchangeable

  10. Sample sizes to control error estimates in determining soil bulk density in California forest soils

    Science.gov (United States)

    Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber

    2016-01-01

    Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...

  11. Attenuation of bulk organic matter, nutrients (N and P), and pathogen indicators during soil passage: Effect of temperature and redox conditions in simulated soil aquifer treatment (SAT)

    KAUST Repository

    Abel, Chol D T

    2012-07-22

    Soil aquifer treatment (SAT) is a costeffective natural wastewater treatment and reuse technology. It is an environmentally friendly technology that does not require chemical usage and is applicable to both developing and developed countries. However, the presence of organic matter, nutrients, and pathogens poses a major health threat to the population exposed to partially treated wastewater or reclaimed water through SAT. Laboratory-based soil column and batch experiments simulating SAT were conducted to examine the influence of temperature variation and oxidation-reduction (redox) conditions on removal of bulk organic matter, nutrients, and indicator microorganisms using primary effluent. While an average dissolved organic carbon (DOC) removal of 17.7 % was achieved in soil columns at 5 °C, removal at higher temperatures increased by 10 % increments with increase in temperature by 5 °C over the range of 15 to 25 °C. Furthermore, soil column and batch experiments conducted under different redox conditions revealed higher DOC removal in aerobic (oxic) experiments compared to anoxic experiments. Aerobic soil columns exhibited DOC removal 15 % higher than that achieved in the anoxic columns, while aerobic batch showed DOC removal 7.8 % higher than the corresponding anoxic batch experiments. Ammonium-nitrogen removal greater than 99 % was observed at 20 and 25 °C, while 89.7 % was removed at 15 °C, but the removal substantially decreased to 8.8 % at 5 °C. While ammonium-nitrogen was attenuated by 99.9 % in aerobic batch reactors carried out at room temperature, anoxic experiments under similar conditions revealed 12.1 % ammonium-nitrogen reduction, corresponding to increase in nitrate-nitrogen and decrease in sulfate concentration. © Springer Science+Business Media B.V. 2012.

  12. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    Science.gov (United States)

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.

  13. Dry soil diurnal quasi-periodic oscillations in soil 222Rn concentrations

    International Nuclear Information System (INIS)

    Tommasone Pascale, F.; De Francesco, S.; Carbone, P.; Cuoco, E.; Tedesco, D.

    2014-01-01

    222 Rn concentrations have been monitored during the dry season in August 2009 and August 2010, in a reworked alluvial-pyroclastic soil of the Pietramelara Plain, in Southern Italy, with the aim of determining the role of atmospheric factors in producing the quasi-periodic oscillations in soil 222 Rn concentrations reported in the literature. In this study we present the results of a detailed analysis and matching of soil 222 Rn concentrations, meteorological and solar parameters where the observed oscillations feature a characteristic behavior with second order build-up and depletion limbs, separated by a daily maximum and minimum. All these features are clearly shown to be tied to sunrise and sunset timings and environmental radiative flux regimes. Furthermore, a significant, and previously unreported, second order correlation (r 2  = 0.73) between daily maximum hourly global radiation and the daily range of soil 222 Rn concentrations has been detected, allowing estimates of the amplitude of these oscillations to be made from estimated or measured solar radiation data. The correlation has been found to be valid even in the presence of persistent patchy daytime cloudiness. In this case a daytime prolongation of the night-time build up stage and an attenuation or even suppression of daytime depletion is observed (a previously unreported effect). Neither soil cracking, nor precipitation, both suggested in some studies as causative factors for these oscillations, during the dry season appear to be necessary in explaining their occurrence. We also report the results of an artificial shading experiment, conducted in August 2009, that further support this conclusion. As soil 222 Rn concentrations during the dry season show a characteristic daily cycle, radon monitoring in soils under these conditions necessarily has to be gauged to the timings of the daily maximum and minimum, as well as to the eventual occurrence of cloudiness and to its related effects, in order to

  14. Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.

    Science.gov (United States)

    Nkana, J C Voundi; Demeyer, A; Verloo, M G

    2002-12-01

    The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment.

  15. Soil Chemical Properties and Nutrient Uptake of Cocoa as Affected by Application of Different Organic Matters and Phosphate Fertilizers

    Directory of Open Access Journals (Sweden)

    Sugiyanto Sugiyanto

    2008-07-01

    Full Text Available Effort repair of land quality better be done by simultan namely with application of organic matters and inorganic fertilization. The objective of this research is to study the effect of varied organic matters source and phosphate fertilizers on the chemicals soil characteristic and cocoa nutrient uptake. The experiment was laid experimentally in split-plot design and environmentally in randomized complete block design. The main plot was source of P consisted of, control, SP 36 and rock phosphate in dosage of 200 mg P2O5 per kg of air dry soil. Source of organic matter as sub-plot consisted of control (no organic matter, cow dung, cocoa pod husk compost and sugar cane filter cake, each in dosage of 2.5 and 5.0%. Result of this experiment showed application of cow dung, cocoa pod husk compost and sugar cane filter cake increased content of C, N, Ca exchangeable, Fe available, and pH in soil, and SP 36 increased availability of P in soil. Application of sugar cane filter cake increased N, K, Ca, Mg, and SO4 uptake but did not increase Cl uptake, application of cow dung in dosage 5% increased N, K, and Cl uptake and cocoa pod husk compost dosage 5% increased N and K uptake of cocoa. SP 36 increased Mg uptake of cocoa but rock phosphate did not increase it. They were not interaction between organic matters and phosphate fertilizers to nutrient uptake of cocoa. Nutrient soil content as affected by organic matters correlated with nutrient uptake of cocoa.Key words : soil chemical properties, nutrient uptake, cocoa, organic matter, phosphate fertlizers.

  16. Soil Fertility and Electrical Conductivity Affected by Organic Waste Rates and Nutrient Inputs

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT The composition of organic waste (OW and its effect on soil processes may change soil fertility and electrical conductivity (EC. The side effects of waste use in crop fertilization are poorly understood for Brazilian soils. This study examined the effect of the addition of 15 different organic wastes to Oxisols and a Neosol on pH, base saturation, EC, cation exchange capacity (CEC at pH 7, and the availability of Al, macro (P, K, Ca2+, Mg2+ and S and micronutrients (B, Fe2+, Mn2+, Cu2+ and Zn2+. Soil samples (150 g were treated with chicken, pig, horse, cattle, and quail manures, sewage sludge 1 and 2, eucalyptus sawdust, plant substrate, coconut fiber, pine bark, coffee husk, peat, limed compost, and biochar. Wastes were added considering a fixed amount of C (2 g kg-1, which resulted in waste rates ranging from 2.5 to 25.6 Mg ha-1. The soil-waste mixtures were incubated for 330 days in laboratory conditions. The waste liming or acidification values were soil-dependent. The use of some manures and compost increased the pH to levels above of those considered adequate for plant growth. The soil EC was slightly increased in the Neosol and in the medium textured Oxisol, but it was sharply changed (from 195 to 394 µS cm-1 by the addition of organic wastes in the clayey Oxisol, although the EC values were below the range considered safe for plant growth. Changes in the soil availability of P, K+, Ca2+ and Zn2+ were highly related to the inputs of these nutrients by the wastes, and other factors in soil changed due to waste use. Organic waste use simultaneously affects different soil fertility attributes; thus, in addition to the target nutrient added to the soil, the soil acidity buffering capacity and the waste liming and agronomic value must be taken into account in the waste rate definition.

  17. Studies on nutrient interaction in some soils of egypt using radioactive isotopes

    International Nuclear Information System (INIS)

    El-Degwy, S.M.A.

    1994-01-01

    With increasing cultivation of improved plant varieties, and the progressive use of high - analysis fertilizers, zinc deficiency in plants is believed to become a common cause for low crop yields, particularly with high application of fertilizer P in many soils of arid and semi - arid regions. Relationships and mechanisms relating phosphorus and zinc are gaining attention and there is still no agreement as to whether the interaction between the two elements is one of antagonizing or augmentation. Some investigators consider the interaction in terms of effect of phosphorus on zinc absorption in roots and / or zinc translocation through the plant. Although fertilizer P may increase plant growth, plants may become deficient in Zn. In such cases, the total uptake of Zn by crop may increases, but its concentration decreases to the deficiency level. lack of Zn in the plant may reduce yield of fruits or grains (Olsen,1972). On the other hand, plants may absorb large amount of Zn rendering its concentration reaching excessive or toxic levels. This would interfere with the normal metabolic function of other nutrients . Excessive uptake of Zn by plants may disturb the metabolic function of Fe, and the plant may suffer from Fe chlorosis even though Fe may be present at normal concentration in plant

  18. Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils.

    Science.gov (United States)

    Degryse, Fien; Smolders, Erik; Oliver, Ian; Zhang, Hao

    2003-09-01

    The technique of diffusive gradients in thin films (DGT) has been suggested to sample an available fraction of metals in soil. The objectives of this study were to compare DGT measurements with commonly measured fractions of Zn in soil, viz, the soil solution concentration and the total Zn concentration. The DGT technique was used to measure fluxes and interfacial concentrations of Zn in three series of field-contaminated soils collected in transects toward galvanized electricity pylons and in 15 soils amended with ZnCl2 at six rates. The ratio of DGT-measured concentration to pore water concentration of Zn, R, varied between 0.02 and 1.52 (mean 0.29). This ratio decreased with decreasing distribution coefficient, Kd, of Zn in the soil, which is in agreement with the predictions of the DGT-induced fluxes in soils (DIFS) model. The R values predicted with the DIFS model were generally larger than the observed values in the ZnCl2-amended soils at the higher Zn rates. A modification of the DIFS model indicated that saturation of the resin gel was approached in these soils, despite the short deployment times used (2 h). The saturation of the resin with Zn did not occur in the control soils (no Zn salt added) or the field-contaminated soils. Pore water concentration of Zn in these soils was predicted from the DGT-measured concentration and the total Zn content. Predicted values and observations were generally in good agreement. The pore water concentration was more than 5 times underpredicted for the most acid soil (pH = 3) and for six other soils, for which the underprediction was attributed to the presence of colloidal Zn in the soil solution.

  19. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance.

    Science.gov (United States)

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-06-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future.

  20. Do chemical gradients within soil aggregates reflect plant/soil interactions?

    Science.gov (United States)

    Krüger, Jaane; Hallas, Till; Kinsch, Lena; Stahr, Simon; Prietzel, Jörg; Lang, Friederike

    2016-04-01

    As roots and hyphae often accumulate at the surface of soil aggregates, their formation and turnover might be related to the bioavailability especially of immobile nutrients like phosphorus. Several methods have been developed to obtain specific samples from aggregate surfaces and aggregate cores and thus to investigate differences between aggregate shell and core. However, these methods are often complex and time-consuming; therefore most common methods of soil analysis neglect the distribution of nutrients within aggregates and yield bulk soil concentrations. We developed a new sequential aggregate peeling method to analyze the distribution of different nutrients within soil aggregates (4-20 mm) from four forest sites (Germany) differing in concentrations of easily available mineral P. Aggregates from three soil depths (Ah, BwAh, Bw) were isolated, air-dried, and peeled with a sieving machine performing four sieving levels with increasing sieving intensity. This procedure was repeated in quadruplicate, and fractions of the same sample and sieving level were pooled. Carbon and N concentration, citric acid-extractable PO4 and P, as well as total element concentrations (P, K, Mg, Ca, Al, Fe) were analyzed. Additionally, synchrotron-based P K-edge XANES spectroscopy was applied on selected samples to detect P speciation changes within the aggregates. The results reveal for most samples a significantly higher C and N concentration at the surface compared to the interior of the aggregates. Carbon and N gradients get more pronounced with increasing soil depth and decreasing P status of study sites. This might be explained by lower aggregate turnover rates of subsoil horizons and intense bioturbation on P-rich sites. This assumption is also confirmed by concentrations of citric acid-extractable PO4 and P: gradients within aggregates are getting more pronounced with increasing soil depth and decreasing P status. However, the direction of these gradients is site

  1. Investigation of some Macro and Micro Elements in Soil and Sugarcane Plant in Elguneid Scheme

    International Nuclear Information System (INIS)

    Hassona, R.K.

    1996-09-01

    The contents of some macro nutrients(N,Mg,P,K and Ca), micro nutrients(Mn,Fe,Cu,Zn and Mo) and other elements in sugarcane plant and soil samples in Elguneid scheme were evaluated in this study.During this study soil and plant samples were taken from different depths and different sites.Plant samples were collected from the same sites at 6 and 10 months age.The objectives of this work were to determine the nutrient contents of soil and sugarcane plant, to relate the nutrient contents of soil with that of plant and to compare the average elemental content of soil and plant with the available literature.To achieve the above mentioned goals,atomic absorption spectrometry(AAS), X-ray fluorescence,flame photometry,kjeldahl method and colorimetry were used for the elemental analysis of soil and plant samples. It was found that the elemental concentration decreases with soil depth increase.There were no seasonal variations in the elemental in soil and plant samples.The data obtained in this work for soil and plant samples were comparable to those reported in litreature in other areas.Using the elemental concentration ratios in soil and plant samples referred to the concentration of iron which is an indicator of soil as a source. The enrichment factor for some nutrients was calculated that N, P, and K have some sources other than soil, such as fertilizers and pesticides. (Author)

  2. Investigation of some Macro and Micro Elements in Soil and Sugarcane Plant in Elguneid Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Hassona, R K [Sudan Atomic Energy Commission, Khartoum (Sudan)

    1996-09-01

    The contents of some macro nutrients(N,Mg,P,K and Ca), micro nutrients(Mn,Fe,Cu,Zn and Mo) and other elements in sugarcane plant and soil samples in Elguneid scheme were evaluated in this study.During this study soil and plant samples were taken from different depths and different sites.Plant samples were collected from the same sites at 6 and 10 months age.The objectives of this work were to determine the nutrient contents of soil and sugarcane plant, to relate the nutrient contents of soil with that of plant and to compare the average elemental content of soil and plant with the available literature.To achieve the above mentioned goals,atomic absorption spectrometry(AAS), X-ray fluorescence,flame photometry,kjeldahl method and colorimetry were used for the elemental analysis of soil and plant samples. It was found that the elemental concentration decreases with soil depth increase.There were no seasonal variations in the elemental in soil and plant samples.The data obtained in this work for soil and plant samples were comparable to those reported in litreature in other areas.Using the elemental concentration ratios in soil and plant samples referred to the concentration of iron which is an indicator of soil as a source. The enrichment factor for some nutrients was calculated that N, P, and K have some sources other than soil, such as fertilizers and pesticides. (Author). 85 refs., 27 tabs., 20 figs.

  3. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Soil fertility and crop nutrient management practice standard. 205.203 Section 205.203 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT...

  4. Effect of soil salinity and nutrient levels on the community structure of the root-associated bacteria of the facultative halophyte, Tamarix ramosissima, in southwestern United States.

    Science.gov (United States)

    Taniguchi, Takeshi; Imada, Shogo; Acharya, Kumud; Iwanaga, Fumiko; Yamanaka, Norikazu

    2015-01-01

    Tamarix ramosissima is a tree species that is highly resistant to salt and drought. The Tamarix species survives in a broad range of environmental salt levels, and invades major river systems in southwestern United States. It may affect root-associated bacteria (RB) by increasing soil salts and nutrients. The effects of RB on host plants may vary even under saline conditions, and the relationship may be important for T. ramosissima. However, to the best of our knowledge, there have been no reports relating to T. ramosissima RB and its association with salinity and nutrient levels. In this study, we have examined this association and the effect of arbuscular mycorrhizal colonization of T. ramosissima on RB because a previous study has reported that colonization of arbuscular mycorrhizal fungi affected the rhizobacterial community (Marschner et al., 2001). T. ramosissima roots were collected from five locations with varying soil salinity and nutrient levels. RB community structures were examined by terminal restriction fragment (T-RF) length polymorphism, cloning, and sequencing analyses. The results suggest that RB richness, or the diversity of T. ramosissima, have significant negative relationships with electrical conductivity (EC), sodium concentration (Na), and the colonization of arbuscular mycorrhizal fungi, but have a significant positive relationship with phosphorus in the soil. However, at each T-RF level, positive correlations between the emergence of some T-RFs and EC or Na were observed. These results indicate that high salinity decreased the total number of RB species, but some saline-tolerant RB species multiplied with increasing salinity levels. The ordination scores of nonmetric multidimensional scale analysis of RB community composition show significant relationships with water content, calcium concentration, available phosphorus, and total nitrogen. These results indicate that the RB diversity and community composition of T. ramosissima are affected

  5. Ideal and saturated soil fertility as bench marks in nutrient management; 1 outline of the framework

    NARCIS (Netherlands)

    Janssen, B.H.; Willigen, de P.

    2006-01-01

    This paper presents a framework for nutrient management that takes sustainable soil fertility, environmental protection and balanced plant nutrition as starting points, and integrates concepts from plant physiology, soil chemistry and agronomy. The framework is meant as a tool that can be applied

  6. Two tales of legacy effects on stream nutrient behaviour

    Science.gov (United States)

    Bieroza, M.; Heathwaite, A. L.

    2017-12-01

    Intensive agriculture has led to large-scale land use conversion, shortening of flow pathways and increased loads of nutrients in streams. This legacy results in gradual build-up of nutrients in agricultural catchments: in soil for phosphorus (biogeochemical legacy) and in the unsaturated zone for nitrate (hydrologic legacy), controlling the water quality in the long-term. Here we investigate these effects on phosphorus and nitrate stream concentrations using high-frequency (10-5 - 100 Hz) sampling with in situ wet-chemistry analysers and optical sensors. Based on our 5 year study, we observe that storm flow responses differ for both nutrients: phosphorus shows rapid increases (up to 3 orders of magnitude) in concentrations with stream flow, whereas nitrate shows both dilution and concentration effects with increasing flow. However, the range of nitrate concentrations change is narrow (up to 2 times the mean) and reflects chemostatic behaviour. We link these nutrient responses with their dominant sources and flow pathways in the catchment. Nitrate from agriculture (with the peak loading in 1983) is stored in the unsaturated zone of the Penrith Sandstone, which can reach up to 70 m depth. Thus nitrate legacy is related to a hydrologic time lag with long travel times in the unsaturated zone. Phosphorus is mainly sorbed to soil particles, therefore it is mobilised rapidly during rainfall events (biogeochemical legacy). The phosphorus stream response will however depend on how well connected is the stream to the catchment sources (driven by soil moisture distribution) and biogeochemical activity (driven by temperature), leading to both chemostatic and non-chemostatic responses, alternating on a storm-to-storm and seasonal basis. Our results also show that transient within-channel storage is playing an important role in delivery of phosphorus, providing an additional time lag component. These results show, that consistent agricultural legacy in the catchment (high

  7. Arbuscular Mycorrhizal Fungi Community Structure, Abundance and Species Richness Changes in Soil by Different Levels of Heavy Metal and Metalloid Concentration

    Science.gov (United States)

    Krishnamoorthy, Ramasamy; Kim, Chang-Gi; Subramanian, Parthiban; Kim, Ki-Yoon; Selvakumar, Gopal; Sa, Tong-Min

    2015-01-01

    Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity. PMID:26035444

  8. Relation of nutrient concentrations, nutrient loading, and algal production to changes in water levels in Kabetogama Lake, Voyageurs National Park, northern Minnesota, 2008-09

    Science.gov (United States)

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2011-01-01

    Nutrient enrichment has led to excessive algal growth in Kabetogama Lake, Voyageurs National Park, northern Minnesota. Water- and sediment-quality data were collected during 2008-09 to assess internal and external nutrient loading. Data collection was focused in Kabetogama Lake and its inflows, the area of greatest concern for eutrophication among the lakes of Voyageurs National Park. Nutrient and algal data were used to determine trophic status and were evaluated in relation to changes in Kabetogama Lake water levels following changes to dam operation starting in 2000. Analyses were used to estimate external nutrient loading at inflows and assess the potential contribution of internal phosphorus loading. Kabetogama Lake often was mixed vertically, except for a few occasionally stratified areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, combined with larger bottom-water nutrient concentrations, larger sediment phosphorus concentrations, and estimated phosphorus release rates from sediment cores indicate that Lost Bay may be one of several areas that may be contributing substantially to internal loading. Internal loading is a concern because nutrients may cause excessive algal growth including potentially toxic cyanobacteria. The cyanobacterial hepatotoxin, microcystin, was detected in 7 of 14 cyanobacterial bloom samples, with total concentrations exceeding 1.0 microgram per liter, the World Health Organization's guideline for finished drinking water for the congener, microcystin-LR. Comparisons of the results of this study to previous studies indicate that chlorophyll-a concentrations and trophic state indices have improved since 2000, when the rules governing dam operation changed. However, total-phosphorus concentrations have not changed significantly since 2000.

  9. Residual effect of applying composted sewage sludge to the majority nutrients in an alive grove soil; Efecto residual de la aplicacion de un lodo de depuradora compostado sobre los nutrientes mayoritarios de un suelo de olivar

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez Fernandez, R.; Aguilar Torres, M. A.; Gonzalez Fernandez, P.

    2002-07-01

    The agricultural reuse of sewage sludge is an excellent management option because in addition to the elimination of the residue, from the environment an appreciable amount of nitrogen, phosphorus and some micronutrients are added to the soil. During two successive years 20 Mgha-1of composted sewage sludge was applied to a clay soil of the Campina de Cordoba cropped with olive trees. The concentrations of some of the main nutrients like phosphorus and potassium increased after the amendment. The phosphorus content in the surface soil horizon increased from 2.3 to 9.3 ppm whereas the potassium content increased from 239 to 320 ppm in the same horizon for the same two years period. These results are encouraging for the organic amendment use. (Author)

  10. Nutrient concentrations in a Littorella uniflora community at higher CO2 concentrations and reduced light intensities

    DEFF Research Database (Denmark)

    Andersen, T.; Pedersen, O.; Andersen, F. Ø.

    2005-01-01

    laboratory experiments with isoetid vegetation (Littorella uniflora) where water column CO2 and light could be manipulated in order to test whether (i) light and CO2 availability affect nutrient concentrations in isoetid vegetation, and (ii) if changes in light and CO2 climate affect fluxes of inorganic...... nitrogen (N) and phosphorus (P) from sediment to water column, which potentially could result in increased growth of epiphytic algae. 3. The results showed that the standing stocks of phosphorus and nitrogen in the L. uniflora vegetation were significantly influenced by CO2 concentration and light...... intensity. Both standing stocks of P and N were significantly higher in the mesocosm treatments with high CO2 concentration than in those at low CO2 concentration. Similarly, standing stocks of P and N enhanced with increasing light intensity. 4. Measurements of nutrient fluxes both in the field...

  11. Soil C dynamics under intensive oil palm plantations in poor tropical soils

    Science.gov (United States)

    Guillaume, Thomas; Ruegg, Johanna; Quezada, Juan Carlos; Buttler, Alexandre

    2017-04-01

    Oil palm cultivation mainly takes place on heavily-weathered tropical soils where nutrients are limiting factors for plant growth and microbial activity. Intensive fertilization and changes of C input by oil palms strongly affects soil C and nutrient dynamics, challenging long-term soil fertility. Oil palm plantations management offers unique opportunities to study soil C and nutrients interactions in field conditions because 1) they can be considered as long-term litter manipulation experiments since all aboveground C inputs are concentrated in frond pile areas and 2) mineral fertilizers are only applied in specific areas, i.e. weeded circle around the tree and interrows, but not in harvest paths. Here, we determined impacts of mineral fertilizer and organic matter input on soil organic carbon dynamics and microbial activity in mature oil palm plantation established on savanna grasslands. Rates of savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC net stabilization were determined using changes in isotopic signature of in C input following a shift from C4 (savanna) to C3 (oil palm) vegetation. Application of mineral fertilizer alone did not affect savanna-derived SOC decomposition or oil palm-derived SOC stabilization rates, but fertilization associated with higher C input lead to an increase of oil palm-derived SOC stabilization rates, with about 50% of topsoil SOC derived from oil palm after 9 years. High carbon and nutrients inputs did not increase microbial biomass but microorganisms were more active per unit of biomass and SOC. In conclusion, soil organic matter decomposition was limited by C rather than nutrients in the studied heavily-weathered soils. Fresh C and nutrient inputs did not lead to priming of old savanna-derived SOC but increased turnover and stabilization of new oil palm-derived SOC.

  12. Perdas de solo e nutrientes em área de Caatinga decorrente de diferentes alturas pluviométricas. = Soil and nutrient losses in Caatinga Forest due to rainfall depths.

    Directory of Open Access Journals (Sweden)

    Ana Célia Maia Meireles

    2009-12-01

    Full Text Available Objetivou-se com este estudo avaliar as perdas de solo e nutrientes por erosão hídrica em quatro áreas sob vegetação de Caatinga com diferentes coberturas vegetal em três alturas pluviométricas. Foram instalados 24 coletores de solo distribuídos em quatro microbacias (A, B, C e D localizadas em uma área de caatinga no município de Iguatu, Ceará. Os coletores eram espaçados 3 m entre si e cada um representava uma área de 30 m2. As coletas foram realizadas a cada 24 horas no período de janeiro a maio de 2008 (período chuvoso. O solo coletado era conduzido ao Laboratório de Solos do Instituto Federal de Educação, Ciência e Tecnologia (IFCE, campus Iguatu, seco em estufa e agrupados de acordo com os seguintes intervalosde altura pluviométrica como se segue: 51 mm. Para quantificar os nutrientes perdidos, foram feitas análises químicas do solo no Laboratório de Água e Solo da Embrapa Agroindústria Tropical. Os elementos analisados foram: Ca, Mg, K, Na, P, Fe, Mn, N e matéria orgânica (MO. Os resultados mostraram que a cobertura rasteira mostrou maior eficiência na redução das perdas de solo e nutrientes, visto que as áreas que apresentavam apenas cobertura rasteira tiveram menores perdas; a cobertura vegetal mostrou-se mais importante no controle do processo de erosão e as maiores perdas registradas foram da matéria orgânica. = The aim of this study was to evaluate the losses of soil and nutrients due to rainfall erosion in the Caatinga Forest by investigating three different rainfall depths. The cover vegetation effect on the soil losses was also analyzed. Twenty-four soil collectors were installed in four small watersheds (A, B, C, and D located in the city og Iguatu, Ceará, Brazil. The distance bewteen each other collectors was 3 and each was representative of an area of 30 m2. Samples were collected at intervals of 24 hours duirng January-May/2008 (rainy season. The soil samples were forced dried by air oven in

  13. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil

    International Nuclear Information System (INIS)

    Bengtsson, Goeran; Toerneman, Niklas; Yang Xiuhong

    2010-01-01

    Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13 C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass. - Hotspots of PAH biodegradation in a creosote contaminated soil do not coincide with hotspots of PAH concentration, microbial biomass and respiration.

  14. The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California

    Science.gov (United States)

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Bullen, T.D.; Fitzpatrick, J.

    2012-01-01

    Biotic/abiotic interactions between soil mineral nutrients and annual grassland vegetation are characterized for five soils in a marine terrace chronosequence near Santa Cruz, California. A Mediterranean climate, with wet winters and dry summers, controls the annual cycle of plant growth and litter decomposition, resulting in net above-ground productivities of 280-600gm -2yr -1. The biotic/abiotic (A/B) interface separates seasonally reversible nutrient gradients, reflecting biological cycling in the shallower soils, from downward chemical weathering gradients in the deeper soils. The A/B interface is pedologically defined by argillic clay horizons centered at soil depths of about one meter which intensify with soil age. Below these horizons, elevated solute Na/Ca, Mg/Ca and Sr/Ca ratios reflect plagioclase and smectite weathering along pore water flow paths. Above the A/B interface, lower cation ratios denote temporal variability due to seasonal plant nutrient uptake and litter leaching. Potassium and Ca exhibit no seasonal variability beneath the A/B interface, indicating closed nutrient cycling within the root zone, whereas Mg variability below the A/B interface denotes downward leakage resulting from higher inputs of marine aerosols and lower plant nutrient requirements.The fraction of a mineral nutrient annually cycled through the plants, compared to that lost from pore water discharge, is defined their respective fluxes F j,plants=q j,plants/(q j,plants+q j,discharge) with average values for K and Ca (F K,plants=0.99; F Ca,plants=0.93) much higher than for Mg and Na (F Mg,plants 0.64; F Na,plants=0.28). The discrimination against Rb and Sr by plants is described by fractionation factors (K Sr/Ca=0.86; K Rb/K=0.83) which are used in Rayleigh fractionation-mixing calculations to fit seasonal patterns in solute K and Ca cycling. K Rb/K and K24Mg/22Mg values (derived from isotope data in the literature) fall within fractionation envelopes bounded by inputs from

  15. Effects of Chromolaena and Tithonia Mulches on Soil Properties

    African Journals Online (AJOL)

    User

    2 Department of Crop, Soil and Pest Management, Federal University of Technology, P.M.B. ... Chromolaena mulch produced higher values of soil chemical properties, leaf nutrient concentrations, ..... increased activities of beneficial soil fauna.

  16. Analyzing silver concentration in soil using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Prasetyo, S.; Isnaeni; Zaitun; Mitchell, K.; Suliyanti, M. M.; Herbani, Y.

    2018-03-01

    Determination of concentration of heavy metal ions in soil, such as silver, is very important to study soil pollution levels. Several techniques have been developed to determine silver ion concentration in soil. In this paper, we utilized laser-induced breakdown spectroscopy (LIBS) to study silver concentration in soil. We used four different data analysis methods to calculate silver concentration. In this case, we prepared soil samples with different silver ion concentrations from 400 ppm to 1000 ppm. Our analysis was focused on the 843.15 nm silver atomic absorption line. We found that plasma intensity increased as silver concentration increased. Our findings were based on our analysis using four different analysis methods. We believe that these analysis methods are able to calculate silver concentration in soil using LIBS.

  17. Eco-restoration: Simultaneous nutrient removal from soil and water in a complex residential-cropland area

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yonghong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 Beijing East Road, Nanjing 210008 (China); Graduate Schools, Chinese Academy of Sciences, Beijing 100049 (China); Kerr, Philip G. [School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678 (Australia); Hu Zhengyi [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 Beijing East Road, Nanjing 210008 (China); Graduate Schools, Chinese Academy of Sciences, Beijing 100049 (China); Yang Linzhang, E-mail: lzyang@issas.ac.c [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 Beijing East Road, Nanjing 210008 (China)

    2010-07-15

    An eco-restoration system to remove excess nutrients and restore the agricultural ecosystem balance was proposed and applied from August 2006 to August 2008 in a residential-cropland complex area (1.4 x 10{sup 5} m{sup 2}) in Kunming, western China, where the self-purifying capacity of the agricultural ecosystem had been lost. The proposed eco-restoration system examined includes three main foci: farming management, bioremediation, and wastewater treatment. The results showed that the removal efficiencies of total phosphorus (TP) and total nitrogen (TN) from the complex wastewater were 83% and 88%, respectively. The Simpson's diversity indices of macrophytes and zoobenthos indicated that the system had increased macrophyte and zoobenthic diversity as well as improved growth conditions of the plankton habitats. The results demonstrated that the proposed eco-restoration system is a promising approach for decreasing the output of nutrients from soil, improving agricultural ecosystem health, and minimizing the downstream eutrophication risk for surface waters. - A promising and environmentally benign integrated eco-restoration technology has proven highly effective for simultaneously removing nutrients from soil and water, decreasing the output of nutrient, and reducing eutrophic risk of surface waters.

  18. Eco-restoration: Simultaneous nutrient removal from soil and water in a complex residential-cropland area

    International Nuclear Information System (INIS)

    Wu Yonghong; Kerr, Philip G.; Hu Zhengyi; Yang Linzhang

    2010-01-01

    An eco-restoration system to remove excess nutrients and restore the agricultural ecosystem balance was proposed and applied from August 2006 to August 2008 in a residential-cropland complex area (1.4 x 10 5 m 2 ) in Kunming, western China, where the self-purifying capacity of the agricultural ecosystem had been lost. The proposed eco-restoration system examined includes three main foci: farming management, bioremediation, and wastewater treatment. The results showed that the removal efficiencies of total phosphorus (TP) and total nitrogen (TN) from the complex wastewater were 83% and 88%, respectively. The Simpson's diversity indices of macrophytes and zoobenthos indicated that the system had increased macrophyte and zoobenthic diversity as well as improved growth conditions of the plankton habitats. The results demonstrated that the proposed eco-restoration system is a promising approach for decreasing the output of nutrients from soil, improving agricultural ecosystem health, and minimizing the downstream eutrophication risk for surface waters. - A promising and environmentally benign integrated eco-restoration technology has proven highly effective for simultaneously removing nutrients from soil and water, decreasing the output of nutrient, and reducing eutrophic risk of surface waters.

  19. Determination of some metals and nutrients in water, sediment and soil of River Nsaki in the Densu Basin at Pokuase, Ghana

    International Nuclear Information System (INIS)

    Arthur, J.K.

    2010-01-01

    Using the Atomic Absorption Spectrometer and UV/Visible Spectrophotometer, elemental (Fe, Cd, Cr and Pb) and nutrient (SO 4 2- , NO 3 - , PO 4 3 ) analyses were respectively carried out on water, sediment and soil samples collected from River Nsaki which is the main source of drinking water for the people of Pokuase and communities along the river in the Densu basin in Ghana. Samples were collected during the dry season at sites A (upstream), B (midstream; Pokuase town) and C (downstream). Physico-chemical parameters of water being pH, Total Dissolved Solutes (TDS), Electrical Conductivity (EC), Alkalinity (ALK) and Salinity (SAL) were investigated. pH ranged from 7.01 to 7.12, which is within the natural background level of 6.5 to 8.5. The TDS and EC values ranged respectively from 122.78 to 125.46 mg/L and 258 to 342.0 μS/cm, which are below the WHO recommended value of 1000 mg/L and 700 μS/cm respectively. SAL and ALK values ranged from 0.08 to 0.14ppt and 67.4 to 80.8mg/l respectively. Maximum concentrations of metals were recorded in water as Cd in site A, Fe, Pb and Cr in site B. in sediment, it was Fe in site A, Cd, Cr and Pb in site C and and in soil as Cd in site A, Fe, Cr and Pb in site C. Maximum concentrations of nutrients were recorded in water as PO 4 3- , in site C, SO 4 2- and NO 3 - in site A. In sediments it was NO 3 - in site A, SO 4 2- and PO 4 3- at site B and in soil as NO 3 - in site A, SO 4 2- and PO 4 3- in site B. Pollution Load Index (PLI) values of the metals in the river sediment column ranged from 0.02 to 0.17, indicatiog no pollution status ( 4 in sites A and C are significantly higher in soil than that in sediment in the respective sites. With the exception of Cr, all the analytes (metals and nutrients ) in water exceeded the GWCL and WHO standards. Thus the river is polluted and requires intervention. (au)

  20. A comparative study on nutrient cycling in wet heathland ecosystems : II. Litter decomposition and nutrient mineralization.

    Science.gov (United States)

    Berendse, Frank; Bobbink, Roland; Rouwenhorst, Gerrit

    1989-03-01

    The concept of the relative nutrient requirement (L n ) that was introduced in the first paper of this series is used to analyse the effects of the dominant plant population on nutrient cycling and nutrient mineralization in wet heathland ecosystems. A distinction is made between the effect that the dominant plant species has on (1) the distribution of nutrients over the plant biomass and the soil compartment of the ecosystem and (2) the recirculation rate of nutrients. The first effect of the dominant plant species can be calculated on the basis of the δ/k ratio (which is the ratio of the relative mortality to the decomposition constant). The second effect can be analysed using the relative nutrient requirement (L n ). The mass loss and the changes in the amounts of N and P in decomposing above-ground and below-ground litter produced by Erica tetralix and Molinia caerulea were measured over three years. The rates of mass loss from both above-ground and below-ground litter of Molinia were higher than those from Erica litter. After an initial leaching phase, litter showed either a net release or a net immobilization of nitrogen or phosphorus that depended on the initial concentrations of these nutrients. At the same sites, mineralization of nitrogen and phosphorus were measured for two years both in communities dominated by Molinia and in communities dominated by Erica. There were no clear differences in the nitrogen mineralization, but in one of the two years, phosphate mineralization in the Molinia-community was significantly higher. On the basis of the theory that was developed, mineralization rates and ratios between amounts of nutrients in plant biomass and in the soil were calculated on the basis of parameters that were independently measured. There was a reasonable agreement between predicted and measured values in the Erica-communities. In the Molinia-communities there were large differences between calculated and measured values, which was explained by the

  1. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    Science.gov (United States)

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil

  3. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis.

    Science.gov (United States)

    Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun

    2017-01-01

    Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.

  4. Soil properties and not inputs control carbon, nitrogen, phosphorus ratios in cropped soils in the long-term

    Science.gov (United States)

    Frossard, E.; Buchmann, N.; Bünemann, E. K.; Kiba, D. I.; Lompo, F.; Oberson, A.; Tamburini, F.; Traoré, O. Y. A.

    2015-09-01

    Stoichiometric approaches have been applied to understand the relationship between soil organic matter dynamics and biological nutrient transformations. However, very few studies explicitly considered the effects of agricultural management practices on soil C : N : P ratio. The aim of this study was to assess how different input types and rates would affect the C : N : P molar ratios of bulk soil, organic matter and microbial biomass in cropped soils in the long-term. Thus, we analysed the C, N and P inputs and budgets as well as soil properties in three long-term experiments established on different soil types: the Saria soil fertility trial (Burkina Faso), the Wagga Wagga rotation/stubble management/soil preparation trial (Australia), and the DOK cropping system trial (Switzerland). In each of these trials, there was a large range of C, N and P inputs which had a strong impact on element concentrations in soils. However, although C : N : P ratios of the inputs were highly variable, they had only weak effects on soil C : N : P ratios. At Saria, a positive correlation was found between the N : P ratio of inputs and microbial biomass, while no relation was observed between the nutrient ratios of inputs and soil organic matter. At Wagga Wagga, the C : P ratio of inputs was significantly correlated to total soil C : P, N : P and C : N ratios, but had no impact on the elemental composition of microbial biomass. In the DOK trial, a positive correlation was found between the C budget and the C to organic P ratio in soils, while the nutrient ratios of inputs were not related to those in the microbial biomass. We argue that these responses are due to differences in soil properties among sites. At Saria, the soil is dominated by quartz and some kaolinite, has a coarse texture, a fragile structure and a low nutrient content. Thus, microorganisms feed on inputs (plant residues, manure). In contrast, the soil at Wagga Wagga contains illite and haematite, is richer in clay and

  5. Soil properties and not inputs control carbon : nitrogen : phosphorus ratios in cropped soils in the long term

    Science.gov (United States)

    Frossard, Emmanuel; Buchmann, Nina; Bünemann, Else K.; Kiba, Delwende I.; Lompo, François; Oberson, Astrid; Tamburini, Federica; Traoré, Ouakoltio Y. A.

    2016-02-01

    Stoichiometric approaches have been applied to understand the relationship between soil organic matter dynamics and biological nutrient transformations. However, very few studies have explicitly considered the effects of agricultural management practices on the soil C : N : P ratio. The aim of this study was to assess how different input types and rates would affect the C : N : P molar ratios of bulk soil, organic matter and microbial biomass in cropped soils in the long term. Thus, we analysed the C, N, and P inputs and budgets as well as soil properties in three long-term experiments established on different soil types: the Saria soil fertility trial (Burkina Faso), the Wagga Wagga rotation/stubble management/soil preparation trial (Australia), and the DOK (bio-Dynamic, bio-Organic, and "Konventionell") cropping system trial (Switzerland). In each of these trials, there was a large range of C, N, and P inputs which had a strong impact on element concentrations in soils. However, although C : N : P ratios of the inputs were highly variable, they had only weak effects on soil C : N : P ratios. At Saria, a positive correlation was found between the N : P ratio of inputs and microbial biomass, while no relation was observed between the nutrient ratios of inputs and soil organic matter. At Wagga Wagga, the C : P ratio of inputs was significantly correlated to total soil C : P, N : P, and C : N ratios, but had no impact on the elemental composition of microbial biomass. In the DOK trial, a positive correlation was found between the C budget and the C to organic P ratio in soils, while the nutrient ratios of inputs were not related to those in the microbial biomass. We argue that these responses are due to differences in soil properties among sites. At Saria, the soil is dominated by quartz and some kaolinite, has a coarse texture, a fragile structure, and a low nutrient content. Thus, microorganisms feed on inputs (plant residues, manure). In contrast, the soil at

  6. Integrated nutrient management, soil fertility, and sustainable agriculture: Current issues and future challenges

    OpenAIRE

    Goletti, F.; Gruhn, P.; Yudelman, M.

    2000-01-01

    Metadata only record The challenge for agriculture over the coming decades will be to meet the world's increasing demand for food in a sustainable way. Declining soil fertility and mismanagement of plant nutrients have made this task more difficult. In their 2020 Vision discussion paper, Peter Gruhn, Francesco Goletti, and Montague Yudelman point out that as long as agriculture remains a soil-based industry, major increases in productivity are unlikely to be attained without ensuring that ...

  7. Measured soil water concentrations of cadmium and zinc in plant pots and estimated leaching outflows from contaminated soils

    DEFF Research Database (Denmark)

    Holm, P.E.; Christensen, T.H.

    1998-01-01

    Soil water concentrations of cadmium and zinc were measured in plant pots with 15 contaminated soils which differed in origin, texture, pH (5.1-7.8) and concentrations of cadmium (0.2-17 mg Cd kg(-1)) and zinc (36-1300 mg Zn kg(-1)). The soil waters contained total concentrations of 0.5 to 17 mu g...... to 0.1% per year of the total soil content of cadmium and zinc. The measured soil water concentrations of cadmium and zinc did not correlate linearly with the corresponding soil concentrations but correlated fairly well with concentrations measured in Ca(NO(3))(2) extracts of the soils and with soil...... water concentrations estimated from soil concentrations and pH. Such concentration estimates may be useful for estimating amounts of cadmium and zinc being leached from soils....

  8. Metal(loid) allocation and nutrient retranslocation in Pinus halepensis trees growing on semiarid mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Parraga-Aguado, Isabel, E-mail: isabel.parraga@upct.es [Universidad Politecnica de Cartagena, Departamento de Ciencia y Tecnología Agraria Paseo Alfonso XIII, Cartagena 48. 30203 (Spain); Querejeta, Jose-Ignacio [Water and Soil Conservation Department, Centro de Edafología y Biología Aplicada del Segura CEBAS-CSIC Campus Universitario de Espinardo, PO Box 164, Espinardo-Murcia ES-30100 (Spain); González-Alcaraz, María Nazaret; Conesa, Hector M. [Universidad Politecnica de Cartagena, Departamento de Ciencia y Tecnología Agraria Paseo Alfonso XIII, Cartagena 48. 30203 (Spain)

    2014-07-01

    The goal of this study was to evaluate internal metal(loid) cycling and the risk of metal(loid) accumulation in litter from Pinus halepensis trees growing at a mine tailing disposal site in semiarid Southeast Spain. Internal nutrient retranslocation was also evaluated in order to gain insight into the ability of pine trees to cope with the low-fertility soil conditions at the tailings. We measured metal(loid) concentrations in the foliage (young and old needles), woody stems and fresh leaf litter of pine trees growing on tailings. The nutrient status and stable isotope composition of pine foliage (δ{sup 13}C, δ{sup 15}N, δ{sup 18}O as indicators of photosynthesis and water use efficiency) were also analyzed. Tailing soil properties in vegetation patches and in adjacent bare soil patches were characterized as well. Significant amounts of metal(loid)s such us Cd, Cu, Pb and Sb were immobilized in the woody stems of Pinus halepensis trees growing on tailings. Leaf litterfall showed high concentrations of As, Cd, Sb, Pb and Zn, which thereby return to the soil. However, water extractable metal(loid) concentrations in tailing soils were similar between vegetation patches (mineral soil under the litter layer) and bare soil patches. The pines growing on mine tailings showed very low foliar P concentrations in all leaf age classes, which suggests severe P deficiency. Young (current year) needles showed lower accumulation of metal(loid)s, higher nutrient concentrations (P and K), and higher water use efficiency (as indicated by and δ{sup 13}C and δ{sup 18}O data) than older needles. Substantial nutrient resorption occurred before leaf litterfall, with 46% retranslocation efficiency for P and 89% for K. In conclusion, phytostabilization of semiarid mine tailings with Pinus halepensis is feasible but would require careful monitoring of the trace elements released from litterfall, in order to assess the long term risk of metal(loid) transfer to the food chain

  9. Metal(loid) allocation and nutrient retranslocation in Pinus halepensis trees growing on semiarid mine tailings

    International Nuclear Information System (INIS)

    Parraga-Aguado, Isabel; Querejeta, Jose-Ignacio; González-Alcaraz, María Nazaret; Conesa, Hector M.

    2014-01-01

    The goal of this study was to evaluate internal metal(loid) cycling and the risk of metal(loid) accumulation in litter from Pinus halepensis trees growing at a mine tailing disposal site in semiarid Southeast Spain. Internal nutrient retranslocation was also evaluated in order to gain insight into the ability of pine trees to cope with the low-fertility soil conditions at the tailings. We measured metal(loid) concentrations in the foliage (young and old needles), woody stems and fresh leaf litter of pine trees growing on tailings. The nutrient status and stable isotope composition of pine foliage (δ 13 C, δ 15 N, δ 18 O as indicators of photosynthesis and water use efficiency) were also analyzed. Tailing soil properties in vegetation patches and in adjacent bare soil patches were characterized as well. Significant amounts of metal(loid)s such us Cd, Cu, Pb and Sb were immobilized in the woody stems of Pinus halepensis trees growing on tailings. Leaf litterfall showed high concentrations of As, Cd, Sb, Pb and Zn, which thereby return to the soil. However, water extractable metal(loid) concentrations in tailing soils were similar between vegetation patches (mineral soil under the litter layer) and bare soil patches. The pines growing on mine tailings showed very low foliar P concentrations in all leaf age classes, which suggests severe P deficiency. Young (current year) needles showed lower accumulation of metal(loid)s, higher nutrient concentrations (P and K), and higher water use efficiency (as indicated by and δ 13 C and δ 18 O data) than older needles. Substantial nutrient resorption occurred before leaf litterfall, with 46% retranslocation efficiency for P and 89% for K. In conclusion, phytostabilization of semiarid mine tailings with Pinus halepensis is feasible but would require careful monitoring of the trace elements released from litterfall, in order to assess the long term risk of metal(loid) transfer to the food chain. - Highlights: • Significant

  10. Toxic metabolities of disulfoton: behavior in bean-seedlings, in soil, and in nutrient solution

    International Nuclear Information System (INIS)

    Andrea, M.M. de

    1986-10-01

    The absorption, translocation and degradation in bean-seedlings of three toxic metabolites of the pesticide 14 C- disulfoton from nutrient solution or three different types of Brazilian soils is studied. (M.A.C.) [pt

  11. Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties

    Science.gov (United States)

    Ghezzehei, T. A.; Sarkhot, D. V.; Berhe, A. A.

    2014-09-01

    Recently, the potential for biochar use to recapture excess nutrients from dairy wastewater has been a focus of a growing number of studies. It is suggested that biochar produced from locally available excess biomass can be important in reducing release of excess nutrient elements from agricultural runoff, improving soil productivity, and long-term carbon (C) sequestration. Here we present a review of a new approach that is showing promise for the use of biochar for nutrient capture. Using batch sorption experiments, it has been shown that biochar can adsorb up to 20-43% of ammonium and 19-65% of the phosphate in flushed dairy manure in 24 h. These results suggest a potential of biochar for recovering essential nutrients from dairy wastewater and improving soil fertility if the enriched biochar is returned to soil. Based on the sorption capacity of 2.86 and 0.23 mg ammonium and phosphate, respectively, per gram of biochar and 10-50% utilization of available excess biomass, in the state of California (US) alone, 11 440 to 57 200 tonnes of ammonium-N and 920-4600 tonnes of phosphate can be captured from dairy waste each year while at the same time disposing up to 8-40 million tons of excess biomass.

  12. Nitrate concentrations in soil solutions below Danish forests

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Raulund-Rasmussen, Karsten; Gundersen, Per

    1999-01-01

    leaching in relation to land-use, a national monitoring programme has established sampling routines in a 7x7 km grid including 111 points in forests. During winters of 1986-1993, soil samples were obtained from a depth of 0-25, 25-50, 50-75 and 75-100 cm. Nitrate concentrations in soil solutions were...... species. A few sites deviated radically from the general pattern of low concentrations. The elevated concentrations recorded there were probably caused by high levels of N deposition due to emission from local sources or temporal disruptions of the N cycle. The nitrate concentration in the soil solution...

  13. Changes in liquid water alter nutrient bioavailability and gas diffusion in frozen antarctic soils contaminated with petroleum hydrocarbons.

    Science.gov (United States)

    Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2012-02-01

    Bioremediation has been used to remediate petroleum hydrocarbon (PHC)-contaminated sites in polar regions; however, limited knowledge exists in understanding how frozen conditions influence factors that regulate microbial activity. We hypothesized that increased liquid water (θ(liquid) ) would affect nutrient supply rates (NSR) and gas diffusion under frozen conditions. If true, management practices that increase θ(liquid) should also increase bioremediation in polar soils by reducing nutrient and oxygen limitations. Influence of θ(liquid) on NSR was determined using diesel-contaminated soil (0-8,000 mg kg(-1)) from Casey Station, Antarctica. The θ(liquid) was altered between 0.007 and 0.035 cm(3) cm(-3) by packing soil cores at different bulk densities. The nutrient supply rate of NH 4+ and NO 3-, as well as gas diffusion coefficient, D(s), were measured at two temperatures, 21°C and -5°C, to correct for bulk density effects. Freezing decreased NSR of both NH 4+ and NO 3-, with θ(liquid) linked to nitrate and ammonia NSR in frozen soil. Similarly for D(s), decreases due to freezing were much more pronounced in soils with low θ(liquid) compared to soils with higher θ(liquid) contents. Additional studies are needed to determine the relationship between degradation rates and θ(liquid) under frozen conditions. Copyright © 2011 SETAC.

  14. Effects of wood chip ash fertilization on soil chemistry in a Norway spruce plantation on a nutrient-poor soil

    DEFF Research Database (Denmark)

    Ingerslev, Morten; Hansen, Mette; Pedersen, Lars Bo

    2014-01-01

    of wood chip ash application on soil chemistry in a 44-year-old Norway spruce (Picea abies) plantation on a nutrient-poor soil in Denmark and to investigate the effect of applying different ash types and doses. Soil samples were collected and analyzed 2.5years (3 growing seasons) after ash application....... This study shows that, regardless of ash formulation, preparation or dose, application of wood ash to forest soil has a liming effect in the O-horizon manifested as an increase in CECe, BS and pH. This effect was not seen in the mineral soil within the time frame of this study. At the same time, an increase...... in Cd was found in the O-horizon, corresponding to the amount added in the ashes. Generally, no other increase in soil contents of the heavy metals was seen. Hardening of the wood ash did not decrease the chemical impact on the soil chemistry as compared to non-treated ash whereas an increase in ash...

  15. [Effect of long-term application of NPK fertilizer on maize yield and yellow soil nutrients sustainability in Guizhou, China].

    Science.gov (United States)

    Liu, Yan Ling; Li, Yu; Zhang, Ya Rong; Huang, Xing Cheng; Zhang, Wen An; Jiang, Tai Ming

    2017-11-01

    A long-term fertilization field experiment was conducted to investigate the effect of nitrogen (N), phosphorus (P), and potassium (K) fertilizer on maize relative yield, yield-increasing effect and the changes of nutrients in yellow soil in Guizhou Province. Five fertilizer combinations were evaluated, including balanced fertilization (NPK) and nutrient deficiency treatments (N, NK, NP, and PK). The maize relative yield, contribution efficiency of N, P, K fertilizer application, sustainability index of soil N, P, K nutrients, and other indicators were measured. The results revealed that the balanced fertilization (NPK) significantly increased maize yield, and the average yield under each treatment ranked as: NPK>NP>NK>PK>CK. The contribution efficiency and agronomic efficiency of N, P, K fertilizer application was N>P>K. The fertilization dependence was ranked as: combined application of N, P and K>N>P>K. But in the lack of P treatment (NK), the maize relative yield significantly decreased at a speed of 1.4% per year, with the contribution efficiency and fertilization dependence of applied P significantly increasing at a speed of 2.3% per year and 1.4% per year, respectively. Over time, the effect of P fertilizer on maize yield gradually became equal to that of N fertilizer. The pH and soil organic matter content were the lowest in the P-lack treatment (NK), while they were higher in the N-lack treatment (PK). The application of chemical P significantly improved the sustainability index of soil P, but the application of chemical N and K did not significantly change the sustainability index of soil N and K nutrients compared to the N- and K-lack treatments, respectively. In summary, the use of balanced fertilizer application is critical for achieving high maize yield in typical yellow soil regions in Guizhou Province. P and N fertilizers are equally important for improving maize yield, and long-term application of unbalanced chemical fertilizer, especially the lack

  16. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance

    Science.gov (United States)

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-01-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future. PMID:23389106

  17. Transport of biologically important nutrients by wind in an eroding cold desert

    Science.gov (United States)

    Sankey, Joel B.; Germino, Matthew J.; Benner, Shawn G.; Glenn, Nancy F.; Hoover, Amber N.

    2012-01-01

    Wind erosion following fire is an important landscape process that can result in the redistribution of ecologically important soil resources. In this study we evaluated the potential for a fire patch in a desert shrubland to serve as a source of biologically important nutrients to the adjacent, downwind, unburned ecosystem. We analyzed nutrient concentrations (P, K, Ca, Mg, Cu, Fe, Mn, Al) in wind-transported sediments, and soils from burned and adjacent unburned surfaces, collected during the first to second growing seasons after a wildfire that burned in 2007 in Idaho, USA in sagebrush steppe; a type of cold desert shrubland. We also evaluated the timing of potential wind erosion events and weather conditions that might have contributed to nutrient availability in downwind shrubland. Findings indicated that post-fire wind erosion resulted in an important, but transient, addition of nutrients on the downwind shrubland. Aeolian sediments from the burned area were enriched relative to both the up- and down-wind soil and indicated the potential for a fertilization effect through the deposition of the nutrient-enriched sediment during the first, but not second, summer after wildfire. Weather conditions that could have produced nutrient transport events might have provided increased soil moisture necessary to make nutrients accessible for plants in the desert environment. Wind transport of nutrients following fire is likely important in the sagebrush steppe as it could contribute to pulses of resource availability that might, for example, affect plant species differently depending on their phenology, and nutrient- and water-use requirements.

  18. Effects of vegetation structure on soil carbon, nutrients and greenhouse gas exchange in a savannah ecosystem of Mount Kilimanjaro Region

    Science.gov (United States)

    Becker, J.

    2015-12-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. The canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine spatial trends and changes of soil parameters and relate their variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass C and N, Natural δ13C, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as root biomass and -density, soil temperature and soil water content. Concentrations and stocks of C and N fractions, CEC and K+ decreased up to 50% outside the crown covered area. Microbial C:N ratio and CO2 efflux was about 30% higher outside the crown. This indicates N limitation and low C use efficiency in soil outside the crown area. We conclude that the spatial structure of aboveground biomass in savanna ecosystems leads to a spatial variance in nutrient limitation. Therefore, the capability of a savanna ecosystem

  19. Concentrations of the Allelochemical (+/-)-catechin IN Centaurea maculosa soils.

    Science.gov (United States)

    Perry, Laura G; Thelen, Giles C; Ridenour, Wendy M; Callaway, Ragan M; Paschke, Mark W; Vivanco, Jorge M

    2007-12-01

    The phytotoxin (+/-)-catechin has been proposed to mediate invasion and autoinhibition by the Eurasian plant Centaurea maculosa (spotted knapweed). The importance of (+/-)-catechin to C. maculosa ecology depends in part on whether sufficient catechin concentrations occur at appropriate times and locations within C. maculosa soil to influence neighboring plants. Previous research on catechin in C. maculosa soils has yielded conflicting results, with some studies finding high soil catechin concentrations and other, more recent studies finding little or no catechin in field soils. Here, we report the most extensive study of soil catechin concentrations to date. We examined soil catechin concentrations in 402 samples from 11 C. maculosa sites in North America sampled in consecutive months over 1 yr, excluding winter months. One site was sampled on seven dates, another was sampled twice, and the remaining nine sites were each sampled once on a range of sampling dates. Methods used were similar to those with which we previously measured high soil catechin concentrations. We detected catechin only in the site that was sampled on seven dates and only on one sampling date in that site (May 16 2006), but in all samples collected on that date. The mean soil catechin concentration on that date was 0.65 +/- 0.45 (SD) mg g(-1), comparable to previously reported high concentrations. There are a number of possible explanations for the infrequency with which we detected soil catechin in this work compared to previous studies. Differences in results could reflect spatial and temporal variation in catechin exudation or degradation, as we examined different sites in a different year from most previous studies. Also, large quantities of catechin were detected in blanks for two sampling periods in the present study, leading us to discard those data. This contamination suggests that previous reports of high catechin concentrations that did not include blanks should be viewed with caution

  20. Electrochemical attributes and availability of nutrients, toxic elements, and heavy metals in tropical soils Atributos eletroquímicos e disponibilidade de nutrientes, elementos tóxicos e metais pesados em solos tropicais

    Directory of Open Access Journals (Sweden)

    Mauricio Paulo Ferreira Fontes

    2006-12-01

    Full Text Available Electrochemical properties of soils are very important for the understanding of the physico-chemical phenomena which affect soil fertility and the availability of nutrients for plants. This review highlights the electrochemical properties of tropical soils, the behavior and the availability of nutrients, toxic elements and heavy metals in the soil, especially for soils with predominant variable charge minerals. Availability of the elements is related to ionic exchange, solution speciation, and electrostatic and specific adsorptive soil properties. Empirical and surface complexation models are briefly described, and some results of their application in tropical soils are presented. A better understanding of the role of the double diffuse layer of charges and CEC on nutrient cation availability for highly weathered soils is required, as well as a solid comprehension of surface complexation models, in order to improve the knowledge regarding the behavior of anions in soils. More studies have to be conducted to generate results that enable the use of chemical speciation concepts and calculation of several constants used in surface complexation models, especially for highly weathered soils from the humid tropics. There has to be a continuing development and use of computer softwares that have already incorporated the concepts of chemical speciation and adsorption models in the study of nutrients, toxic elements and heavy metal availability in the soil-plant system.As propriedades eletroquímicas dos solos tropicais são muito importantes para entendimento dos fenômenos físico-químicos que afetam a fertilidade do solo e a disponibilidade dos nutrientes das plantas. Essa revisão destaca os atributos eletroquímicos de solos e o comportamento e a disponibilidade de nutrientes, elementos tóxicos e metais pesados no solo, especialmente aqueles com predominância de minerais com cargas variáveis. A disponibilidade dos elementos é relacionada com a

  1. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies.

    Science.gov (United States)

    Wernerehl, Robert W; Givnish, Thomas J

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis' continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward "drier" sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500-1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward "wetter" sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the

  2. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies

    Science.gov (United States)

    Wernerehl, Robert W.; Givnish, Thomas J.

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis’ continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward “drier” sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500–1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward “wetter” sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This

  3. Modelling trends in soil solution concentrations under five forest-soil combinations in the Netherlands

    NARCIS (Netherlands)

    Salm, van der C.; Vries, de W.; Kros, J.

    1996-01-01

    The influence of forest and soil properties on changes in soil solution concentration upon a reduction deposition was examined for five forest-soil combinations with the dynamic RESAM model. Predicted concentrations decreased in the direction Douglas fir - Scotch pine - oak, due to decreased

  4. Influence of harvest managements on biomass nutrient concentrations and removal rates of festulolium and tall fescue from a poorly drained nutrient-rich fen peatland

    DEFF Research Database (Denmark)

    Kandel, Tanka; Elsgaard, Lars; Lærke, Poul Erik

    2017-01-01

    This study was designed to show the effects of harvest time and frequency on biomass nutrient concentrations (total ash, N, P, K, Ca, Mg, Fe, Mn, Cu and Zn) as well as total nutrient removal potential by festulolium and tall fescue cultivated on a nutrient-rich fen peatland. The harvest managemen...

  5. NUTRIENTS CONCENTRATION AND RETRANSLOCATION IN THE Pinus taeda L. NEEDLES

    Directory of Open Access Journals (Sweden)

    Márcio Viera

    2010-03-01

    Full Text Available Aiming at evaluating nutrients concentration and retranslocation in the Pinus taeda L. needles, this study was developed in two stands, in native grass area and in second rotation area, with same species and same age (7.5 years old in Cambará do Sul, RS. The needles were collected in plants in four orthogonal points (South, North, East and West, sampled new needles, mature needles and old needles. The material was dried in a stove, milled and chemically analyzed (macro and micronutrients. The concentrations of N, P, K, B, Cu and Zn had decreased, of Ca, Fe and Mn increased, and the Mg and S have remained constant with the age of the needles. The retranslocation rate (old-new needles was more than 50% for most nutrients, except for Mn and Fe, showed that cumulative effect and the Ca reference element.

  6. Deciphering relationships between in-stream travel times, nutrient concentrations, and uptake through analysis of hysteretic and non-hysteretic kinetic behavior

    Science.gov (United States)

    Covino, T. P.; Bowden, W. B.; Gooseff, M. N.; Wollheim, W. M.; McGlynn, B. L.; Whittinghill, K. A.; Wlostowski, A. N.; Herstand, M. R.

    2012-12-01

    Understanding the relationship between solute travel time, concentration, and nutrient uptake remains a central question in watershed hydrology and biogeochemistry. Theoretical understanding predicts that nutrient uptake should increase as in-stream solute travel time lengthens and/or as concentration increases; however, results from field-based studies have been contradictory. We used a newly developed approach, Tracer Additions for Spiraling Curve Characterization (TASCC), to investigate relationships between solute travel time, nutrient concentration, and nutrient uptake across a range of stream types. This approach allows us to quantify in-stream nutrient uptake across a range of travel times and nutrient concentrations using single instantaneous injections (slugs) of conservative and non-conservative tracers. In some systems we observed counter-clockwise hysteresis loops in the relationship between nutrient uptake and concentration. Greater nutrient uptake on the falling limb of tracer breakthrough curves indicates stronger uptake for a given concentration at longer travel times. However, in other systems we did not observe hysteresis in these relationships. Lack of hysteresis indicates that nutrient uptake kinetics were not influenced by travel time travel time. Here we investigate the potential roles of travel time and in-stream flowpaths that could be responsible for hysteretic behavior.

  7. Nutrient uptake and biomass accumulation for eleven different field crops

    Directory of Open Access Journals (Sweden)

    K. HAKALA

    2008-12-01

    Full Text Available Oil hemp (Cannabis sativa L., quinoa (Chenopodium quinoa Willd., false flax (Camelina sativa (L. Crantz, caraway (Carum carvi L., dyer’s woad (Isatis tinctoria L., nettle (Urtica dioica L., reed canary grass (RCG (Phalaris arundinacea L., buckwheat (Fagopyrum esculentum Moench, linseed (Linum usitatissimum L., timothy (Phleum pratense L. and barley (Hordeum vulgare L. were grown under uniform conditions in pots containing well fertilised loam soil. Dry matter (DM accumulation was measured repeatedly, and contents of minerals N, P, K, Ca and Mg at maturity. Annual crops accumulated above-ground biomass faster than perennials, while perennials had higher DM accumulation rates below ground. Seeds had high concentrations of N and P, while green biomass had high concentrations of K and Ca. Stems and roots had low concentrations of minerals. Concentrations of K and P were high in quinoa and caraway, and that of P in buckwheat. Hemp and nettle had high Ca concentrations, and quinoa had high Mg concentration. N and P were efficiently harvested with seed, Ca and K with the whole biomass. Perennials could prevent soil erosion and add carbon to the soil in the long term, while annuals compete better with weeds and prevent erosion during early growth. Nutrient balances in a field could be modified and nutrient leaching reduced by careful selection of the crop and management practices.;

  8. Establishment of five cover crops and total soil nutrient extraction in a humid tropical soil in the Peruvian Amazon

    Science.gov (United States)

    In order to evaluate the establishment of five cover crops and their potential to increase soil fertility through nutrient extraction, an experiment was installed in the Research Station of Choclino, San Martin, Peru. Five cover crops were planted: Arachis pintoi Krapov. & W.C. Greg, Calopogonium m...

  9. Soil-to-plant concentration factors for radiological assessments

    International Nuclear Information System (INIS)

    Ng, Y.C.; Thompson, S.E.; Colsher, C.S.

    1982-09-01

    This report presents the results of a literature review to derive soil-to-plant concentration factors to predict the concentration of a radionuclide in plants from that in soil. The concentration factor, B/sub v/ is defined as the ratio of the concentration of a nuclide in the edible plant part to that in dry soil. CR (the concentration ratio) is similarly defined to denote the concentration factor for dry feed consumed by livestock. B/sub v/ and CR values are used to assess the dose from radionuclides deposited onto soil and transferred into crop plants via roots. Approaches for deriving B/sub v/ and CR values are described, and values for food and feed are tabulated for individual elements. The sources of uncertainty are described, and the factors that contribute to the inherent variability of the B/sub v/ and CR values are discussed. Summary tables of elemental B/sub v/ and CR values and statistical parameters that characterize their distributions provide a basis for a systematic updating of many of the B/sub v/ values in Regulatory Guide 1.109. They also provide a basis for selecting B/sub v/ and CR values for other applications that involve the use of equilibrium models to predict the concentration of radionuclides in plants from that in soil

  10. [Effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter in soil solution in a young Cunninghamia lanceolata plantation.

    Science.gov (United States)

    Yuan, Xiao Chun; Chen, Yue Min; Yuan, Shuo; Zheng, Wei; Si, You Tao; Yuan, Zhi Peng; Lin, Wei Sheng; Yang, Yu Sheng

    2017-01-01

    To study the effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter (DOM) in the forest soil solution from the subtropical Cunninghamia lanceolata plantation, using negative pressure sampling method, the dynamics of DOM in soil solutions from 0-15 and 15-30 cm soil layer was monitored for two years and the spectroscopic features of DOM were analyzed. The results showed that nitrogen deposition significantly reduced the concentration of dissolved organic carbon (DOC), and increased the aromatic index (AI) and the humic index (HIX), but had no significant effect on dissolved organic nitrogen (DON) concentration in both soil layers. There was obvious seasonal variation in DOM concentration of the soil solution, which was prominently higher in summer and autumn than in spring and winter.Fourier-transform infrared (FTIR) absorption spectrometry indicated that the DOM in forest soil solution had absorption peaks in the similar position of six regions, being the highest in wave number of 1145-1149 cm -1 . Three-dimensional fluorescence spectra indicated that DOM was mainly consisted of protein-like substances (Ex/Em=230 nm/300 nm) and microbial degradation products (Ex/Em=275 nm/300 nm). The availability of protein-like substances from 0-15 cm soil layer was reduced in the nitrogen treatments. Nitrogen deposition significantly reduced the concentration of DOC in soil solution, maybe largely by reducing soil pH, inhibiting soil carbon mineralization and stimulating plant growth. In particular, the decline of DOC concentration in the surface layer was due to the production inhibition of the protein-like substances and carboxylic acids. Short-term nitrogen deposition might be beneficial to the maintenance of soil fertility, while the long-term accumulation of nitrogen deposition might lead to the hard utilization of soil nutrients.

  11. Variation and control of soil organic carbon and other nutrients in permafrost regions on central Qinghai-Tibetan Plateau

    International Nuclear Information System (INIS)

    Liu, Wenjie; Chen, Shengyun; Zhao, Qian; Ren, Jiawen; Qin, Dahe; Sun, Zhizhong

    2014-01-01

    The variation and control of soil organic carbon (SOC) and other nutrients in permafrost regions are critical for studying the carbon cycle and its potential feedbacks to climate change; however, they are poorly understood. Soil nutrients samples at depths of 0–10, 10–20, 20–30, and 30–40 cm, were sampled eight times in 2009 in alpine swamp meadow, alpine meadow and alpine steppe in permafrost regions of the central Qinghai-Tibetan Plateau. SOC and total nitrogen (TN) in the alpine swamp meadow and meadow decreased with soil depth, whereas the highest SOC content in the alpine steppe was found at depths of 20–30 cm. The vertical profiles of total and available phosphorus (P) and potassium (K) were relatively uniform for all the three grassland types. Correlation and linear regression analyses showed that soil moisture (SM) was the most important parameter for the vertical variation of SOC and other soil nutrients, and that belowground biomass (BGB) was the main source of SOC and TN. The spatial variations (including seasonal variation) of SOC and TN at plot scale were large. The relative deviation of SOC ranged from 7.18 to 41.50 in the alpine swamp meadow, from 2.88 to 35.91 in the alpine meadow, and from 9.33 to 68.38 in the alpine steppe. The spatial variations in the other soil nutrients varied among different grassland types. The most important factors for spatial variations (including seasonal variation) of SOC, TN, total P, available P, and both total and available K were: SM, SM and temperature, SM, air temperature, and SM and BGB, respectively. The large variation in the three grassland types implies that spatial variation at plot scale should be considered when estimating SOC storage and its dynamics. (letter)

  12. Bioremediation of petroleum hydrocarbon contaminated soils using soil vapor extraction: Case study

    International Nuclear Information System (INIS)

    Roth, R.J.; Peterson, R.M.

    1994-01-01

    Soils contaminated with petroleum hydrocarbons are being remediated in situ at a site in Lakewood, New Jersey by bioremediation in conjunction with soil vapor extractions (SVE) and nutrient addition. The contaminants were from hydraulic oils which leaked from subsurface hydraulic lifts, waste oil from leaking underground storage tanks (USTs), an aboveground storage tank, and motor oil from a leaking UST. The oils contaminated subsurface soils at the site to a depth of 25 feet. Approximately 900 cubic yards of soil were contaminated. Soil sample analyses showed total petroleum hydrocarbon (TPH) concentrations up to 31,500 ppm. The design of the remedial system utilized the results of a treatability study which showed that TPH degrading microorganisms, when supplied with oxygen and nutrients, affected a 14% reduction in TPH in 30 days. A SVE system was installed which used three wells, each installed to a depth of 25 feet below grade. The SVE system was operated to achieve an extracted air flow of approximately 20 to 30 scfm from each well. Bioremediation of the TPH was monitored by measuring CO 2 and O 2 concentrations at the wellheads and vapor monitoring probes. After four months of remediation, CO 2 concentrations were at a minimum, at which point the subsurface soils were sampled and analyzed for TPH. The soil analyses showed a removal of TPH by biodegradation of up to 99.8% after four months of remediation

  13. Predicting soil-to-plant transfer of radionuclides with a mechanistic model (BioRUR)

    Energy Technology Data Exchange (ETDEWEB)

    Casadesus, J. [Servei de Camps Experimentals, Universitat de Barcelona, Avda Diagonal 645, 08028 Barcelona (Spain); Sauras-Yera, T. [Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 645, 08028 Barcelona (Spain)], E-mail: msauras@ub.edu; Vallejo, V.R. [Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 645, 08028 Barcelona (Spain); Centro de Estudios Ambientales del Mediterraneo, Charles Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain)

    2008-05-15

    BioRUR model has been developed for the simulation of radionuclide (RN) transfer through physical and biological compartments, based on the available information on the transfer of their nutrient analogues. The model assumes that radionuclides are transferred from soil to plant through the same pathways as their nutrient analogues, where K and Ca are the analogues of Cs and Sr, respectively. Basically, the transfer of radionuclide between two compartments is calculated as the transfer of nutrient multiplied by the ratio of concentrations of RN to nutrient, corrected by a selectivity coefficient. Hydroponic experiments showed the validity of this assumption for root uptake of Cs and Sr and reported a selectivity coefficient around 1.0 for both. However, the application of this approach to soil-to-plant transfer raises some questions on which are the effective concentrations of RN and nutrient detected by the plant uptake mechanism. This paper describes the evaluation of two configurations of BioRUR, one which simplifies the soil as an homogeneous pool, and the other which considers that some concentration gradients develop around roots and therefore ion concentrations at the root surface are different from those of the bulk soil. The results show a good fit between the observed Sr transfer and the mechanistic simulations, even when a homogeneous soil is considered. On the other hand, Cs transfer is overestimated by two orders of magnitude if the development of a decreasing K profile around roots is not taken into account.

  14. Predicting soil-to-plant transfer of radionuclides with a mechanistic model (BioRUR)

    International Nuclear Information System (INIS)

    Casadesus, J.; Sauras-Yera, T.; Vallejo, V.R.

    2008-01-01

    BioRUR model has been developed for the simulation of radionuclide (RN) transfer through physical and biological compartments, based on the available information on the transfer of their nutrient analogues. The model assumes that radionuclides are transferred from soil to plant through the same pathways as their nutrient analogues, where K and Ca are the analogues of Cs and Sr, respectively. Basically, the transfer of radionuclide between two compartments is calculated as the transfer of nutrient multiplied by the ratio of concentrations of RN to nutrient, corrected by a selectivity coefficient. Hydroponic experiments showed the validity of this assumption for root uptake of Cs and Sr and reported a selectivity coefficient around 1.0 for both. However, the application of this approach to soil-to-plant transfer raises some questions on which are the effective concentrations of RN and nutrient detected by the plant uptake mechanism. This paper describes the evaluation of two configurations of BioRUR, one which simplifies the soil as an homogeneous pool, and the other which considers that some concentration gradients develop around roots and therefore ion concentrations at the root surface are different from those of the bulk soil. The results show a good fit between the observed Sr transfer and the mechanistic simulations, even when a homogeneous soil is considered. On the other hand, Cs transfer is overestimated by two orders of magnitude if the development of a decreasing K profile around roots is not taken into account

  15. The Role of Teak Leaves (Tectona grandis), Rhizobium, and Vesicular-Arbuscular Mycorrhizae on Improving Soil Structure and Soil Nutrition

    Science.gov (United States)

    Yuliani; Rahayu, Y. S.

    2018-01-01

    Calcium is the largest mineral in calcareous soils. High levels of calcium carbonate lead to phosphate deposition. Nutrient deficiencies in calcareous soil (mainly Phosphate and Nitrogen) resulted only certain crops with a wide range of tolerances that can grow. Meanwhile, dynamics nutrient in calcareous soils also depend on the topography and decomposition of the litter in the growing vegetation. The purpose of this study was to describe the pattern of nutrient enhancement and soil-texture structures on calcareous soils after littering the teak leaves, Rhizobium and Vesicular Arbuscular Mycorrhiza. The research parameters were the concentration of N, P, K; C/N ratio, humid acid content, and soil structure, which measured at days 30, 60, and 85 of soil decomposition process. The results showed that at days 30, the texture and structure of the soil tend to be stable (porosity 31.2, DMR 1.93, moisture content 0.36, sandy clay) while at days 85 has been very stable (porosity 49.8; Water content 0.28, sandy clay). While C and N organic, N and K concentration at days 30 showed low value (C organic 1.03, N 0.12, K 0.49, C / N ratio 9). This condition is almost unchanged at days 85. While the P value shows very high value (60.53) at days 30 although after 60 days the P content showed a decrease.

  16. Effects of rhizobial bacteria on K, Ca and Na concentration of wheat (Triticum aestivum L. in saline soils

    Directory of Open Access Journals (Sweden)

    S homayoon

    2016-05-01

    Full Text Available Introduction Soil salinity is one of the major agricultural problems and it is limiting crop productivity in many parts of the cultivated areas all over the world. Saline soils are differentiated by the presence of great ratios of Na/Ca, Na/K, Ca2+, Mg2+, and Cl/NO3 (Gratan & Catherine, 1993 and high levels of neutral salts in the surface layers, which are resulting from the capillary action (Al-Falih, 2002. Osmotic stress occurs when soluble salts increase in the soils and then results in specific ion toxicity (Agarwal & Ahmad, 2010. Therefore, one of the most important side effects of salinity is nutritional disorders. High concentration of NaCl in the root medium usually reduces nutrients uptake and affects the transportation of potassium and calcium ions in plant. (Gratan & Catherine, 1993 reported that the salinity of soils changes ionic strength of the substrate and it can influence mineral nutrient uptake and translocation. Salinity also changes the mineral nutrient availability and disrupts the mineral relations of plants. Hence, the main purpose of this research is to evaluate the effects of rhizobial bacteria inoculation on K, Ca and Na concentration of wheat (Triticum aestivum L. in saline soils. Material and methods Soil sample was collected from Astan Ghodse Razavi farm, Mashhad Iran, and then was dried and passed through a 12-mesh (approximately 2 mm screen. Soil sample was divided into three parts and then was placed into three containers. Each container was watered by a different proportion of saline water (EC= 10 dS.m-1. Salinity of soils was regularly monitored until three salinities (2, 6 and 10 dS.m-1 came out. Then, a completely randomized design with a factorial arrangement was carried out in a greenhouse condition. The experimental factors included four levels of inoculation (Sinorhizobium meliloti, Bradyrhizobium japonicum and Rhizobium leguminosarum and control and three levels of soil salinity (2, 6 and 10 dS.m-1 with

  17. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine(Pinus nigra Ar. ssp. salzmannii) Forest.

    Science.gov (United States)

    Lucas-Borja, M E; Hedo, J; Cerdá, A; Candel-Pérez, D; Viñegla, B

    2016-08-15

    This study aimed to investigate the effects that stand age and forest structure have on microbiological soil properties, enzymatic activities and nutrient content. Thirty forest compartments were randomly selected at the Palancares y Agregados managed forest area (Spain), supporting forest stands of five ages; from 100 to 80years old to compartments with trees that were 19-1years old. Forest area ranging from 80 to 120years old and without forest intervention was selected as the control. We measured different soil enzymatic activities, soil respiration and nutrient content (P, K, Na, Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pb and Ca) in the top cm of 10 mineral soils in each compartment. Results showed that the lowest forest stand age and the forest structure created by management presented lower values of organic matter, soil moisture, water holding capacity and litterfall and higher values of C/N ratio in comparison with the highest forest stand age and the related forest structure, which generated differences in soil respiration and soil enzyme activities. The forest structure created by no forest management (control plot) presented the highest enzymatic activities, soil respiration, NH4(+) and NO3(-). Results did not show a clear trend in nutrient content comparing all the experimental areas. Finally, the multivariate PCA analysis clearly clustered three differentiated groups: Control plot; from 100 to 40years old and from 39 to 1year old. Our results suggest that the control plot has better soil quality and that extreme forest stand ages (100-80 and 19-1years old) and the associated forest structure generates differences in soil parameters but not in soil nutrient content. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Relationships Between Land Use and Stream Nutrient Concentrations in a Highly Urbanized Tropical Region of Brazil: Thresholds and Riparian Zones.

    Science.gov (United States)

    Tromboni, F; Dodds, W K

    2017-07-01

    Nutrient enrichment in streams due to land use is increasing globally, reducing water quality and causing eutrophication of downstream fresh and coastal waters. In temperate developed countries, the intensive use of fertilizers in agriculture is a main driver of increasing nutrient concentrations, but high levels and fast rates of urbanization can be a predominant issue in some areas of the developing world. We investigated land use in the highly urbanized tropical State of Rio de Janeiro, Brazil. We collected total nitrogen, total phosphorus, and inorganic nutrient data from 35 independent watersheds distributed across the State and characterized land use at a riparian and entire watershed scales upstream from each sample station, using ArcGIS. We used regression models to explain land use influences on nutrient concentrations and to assess riparian protection relationships to water quality. We found that urban land use was the primary driver of nutrient concentration increases, independent of the scale of analyses and that urban land use was more concentrated in the riparian buffer of streams than in the entire watersheds. We also found significant thresholds that indicated strong increases in nutrient concentrations with modest increases in urbanization reaching maximum nutrient concentrations between 10 and 46% urban cover. These thresholds influenced calculation of reference nutrient concentrations, and ignoring them led to higher estimates of these concentrations. Lack of sewage treatment in concert with urban development in riparian zones apparently leads to the observation that modest increases in urban land use can cause large increases in nutrient concentrations.

  19. Short communication: A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil

    Directory of Open Access Journals (Sweden)

    GAURAV MISHRA

    2016-04-01

    Full Text Available Abstract. Mishra G, Giri K, Dutta A, Hazarika S and Borgohain P. 2015. A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil. Nusantara Bioscience 8: 5-7. Plant litter or residues can be used as soil amendment to maintain the carbon stock and soil fertility. The amount and rate of mineralization depends on biochemical composition of plant litter. Alnus nepalensis (Alder is known for its symbiotic nitrogen fixation and capability to restore fertility of degraded lands. A laboratory incubation experiment was conducted for 60 days under controlled conditions to validate the carbon and nutrients mineralization potential of alder litter. Soil fertility indicators, i.e. soil organic carbon (SOC, available nitrogen (N, available phosphorus (P, and available potassium (K were analyzed using standard procedures. Significant differences were observed in the soil properties after addition of litter. Nutrient composition of alder litter was found superior by providing significantly higher organic matter and helped in better nutrient cycling. Therefore, alder based land use system may be replicated in other degraded lands or areas for productivity enhancement which is important for sustaining biodiversity and soil fertility.

  20. Effects of thermal discharges on the seasonal patterns of nutrient concentrations in brackish water

    International Nuclear Information System (INIS)

    Nitchals, D.

    1985-05-01

    Massiv quantities of water are used in power plant cooling systems, especially nuclear power plants, and are often returned to the donor ecosystem at significantly elevated temperatures. Few studies of the environmental effects of such a situation have looked extensively at the effects on nutrients in the water. The present study examined the effects of cooling water discharges from a nuclear power plant on the seasonal nutrient patterns within and outside a brackish water, research artificial lake, the 0.9 km 2 Biotest Basin on Sweden's east coast. The lack of ice cover in winter is the most apparent effect. In a portion of the lake with a relatively long water residence time, on the order of a few days, the vernal nutrient depletion of phosphate, nitrate, and nitrite apparently began sooner than outside the lake. Benthic influence on nutrient concentrations in the free water mass may be very significant in coastal areas receiving heat inputs. This study's data apparently support the conclusion by other researchers that phosphorus may be the nutrient limiting algal growth in the spring in this area of the central Baltic Sea. Determination of a nutrient budget for the Basin was unachievable because inlet and outlet nutrient concentrations were insufficiently different to override experimental variation. Implications for management of heat inputs to coastal ecosystems include avoidance of areas with high nutrient content, rich organic sediment, or poor flushing. (author)

  1. Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus deficiency

    International Nuclear Information System (INIS)

    Cheyns, Karlien; Peeters, Sofie; Delcourt, Dorien; Smolders, Erik

    2012-01-01

    This study was set up to relate lead (Pb) bioavailability with its toxicity to plants in soils. Tomato and barley seedlings were grown in six different PbCl 2 spiked soils (pH: 4.7–7.4; eCEC: 4.2–41.7 cmol c /kg). Soils were leached and pH corrected after spiking to exclude confounding factors. Plant growth was halved at 1600–6500 mg Pb/kg soil for tomato and at 1900–8300 mg Pb/kg soil for barley. These soil Pb threshold were unrelated to soil pH, organic carbon, texture or eCEC and neither soil solution Pb nor Pb 2+ ion activity adequately explained Pb toxicity among soils. Shoot phosphorus (P) concentrations significantly decreased with increasing soil Pb concentrations. Tomato grown in hydroponics at either varying P supply or at increasing Pb (equal initial P) illustrated that shoot P explained growth response in both scenarios. The results suggest that Pb toxicity is partially related to Pb induced P deficiency, likely due to lead phosphate precipitation. - Highlights: ► Tomato and barley shoot growth was affected by Pb toxicity in six different soils. ► Soil properties did not explain differences in plant Pb toxicity among soils. ► Neither soil solution Pb nor Pb 2+ ion activity explained Pb toxicity among soils. ► Shoot phosphorus concentration decreased with increasing soil Pb concentrations. ► Lead induced a P deficiency in plants, likely due to lead phosphate precipitation. - Soil properties did not explain differences in plant lead toxicity among different soils. Shoot phosphorus concentration decreased with increasing soil lead concentrations.

  2. Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system.

    Science.gov (United States)

    Fan, Fangling; Xie, Deti; Wei, Chaofu; Ni, Jiupai; Yang, John; Tang, Zhenya; Zhou, Chuan

    2015-09-01

    Sloping croplands could result in soil erosion, which leads to non-point source pollution of the aquatic system in the Three Gorges Reservoir Region. Mulberry, a commonly grown cash plant in the region, is traditionally planted in contour hedgerows as an effective management practice to control soil erosion and non-point source pollution. In this field study, surface runoff and soil N and P loss on sloping land under crop-mulberry management were investigated. The experiments consisted of six crop-mulberry treatments: Control (no mulberry hedgerow with mustard-corn rotation); T1 (two-row contour mulberry with mustard-corn rotation); T2 (three-row contour mulberry with mustard-corn rotation); T3 (border mulberry and one-row contour mulberry with mustard-corn rotation); T4 (border mulberry with mustard-corn rotation); T5 (two-row longitudinal mulberry with mustard). The results indicated that crop-mulberry systems could effectively reduce surface runoff and soil and nutrient loss from arable slope land. Surface runoff from T1 (342.13 m(3) hm(-2)), T2 (260.6 m(3) hm(-2)), T3 (113.13 m(3) hm(-2)), T4 (114 m(3) hm(-2)), and T5 (129 m(3) hm(-2)) was reduced by 15.4, 35.6, 72.0, 71.8, and 68.1%, respectively, while soil loss from T1 (0.21 t hm(-2)), T2 (0.13 t hm(-2)), T3 (0.08 t hm(-2)), T4 (0.11 t hm(-2)), and T5 (0.12 t hm(-2)) was reduced by 52.3, 70.5, 81.8, 75.0, and 72.7%, respectively, as compared with the control. Crop-mulberry ecosystem would also elevate soil N by 22.3% and soil P by 57.4%, and soil nutrient status was contour-line dependent.

  3. [Dynamic observation, simulation and application of soil CO2 concentration: a review].

    Science.gov (United States)

    Sheng, Hao; Luo, Sha; Zhou, Ping; Li, Teng-Yi; Wang, Juan; Li, Jie

    2012-10-01

    Soil CO2 concentration is the consequences of biological activities in above- and below-ground, and its fluctuation may significantly affect the future atmospheric CO2 concentration and the projected climate change. This paper reviewed the methodologies for measuring the soil CO2 concentration in situ as well as their advantages and disadvantages, analyzed the variation patterns and controlling factors of soil CO2 concentration across the temporal (diurnal, several days, seasonal and inter-annual) and spatial (soil profile, site and landscape) scales, introduced the primary empirical and mechanical models for estimating and predicting soil CO2 concentration, and summarized the applications and constraints of soil CO2 concentration gradient in determining soil respiration. Four research priorities were proposed, i. e., to develop new techniques for collecting and determining the soil CO2 in severe soil conditions (e. g., flooding, lithoso and others), to approach the responses of soil CO2 concentration to weather change and related regulation mechanisms, to strengthen the researches on the spatial heterogeneity of soil CO2 concentration, and to expand the applications of soil CO2 concentration gradient in the measurement of tropical-subtropical soil respiration.

  4. Nutrients, Trace Elements and Water Deficit in Greek Soils Cultivated with Olive Trees

    Directory of Open Access Journals (Sweden)

    Theodore Karyotis

    2014-11-01

    Full Text Available The studied soils consist of alluvial and/or colluvial deposits  located in the Prefecture of Messinia, Western Peloponnese (Greece. A total number of 263 surface soil layers were selected and analysed for the main properties. Minimum and maximum values and  the distribution of soil properties varied greatly and can be attributed mainly to various fertilization practices adopted by  farmers, inputs of nutrients by irrigation water and differences due to inherent soil conditions. Lower variability was recorded for the parameters pH, Cation Exchange Capacity (CEC, total soil nitrogen (N and soil organic matter (SOM, while coefficients of variation for properties that can be affected easily by human activities such as available phosphorus and micronutrients, are much higher. Minor content for trace elements was observed in the following order:Zinc (Zn>Manganese (Mn>Boron (B>Iron (Fe. During the dry period, irrigation of olive trees is recommended and the appropriate irrigation demands were defined, taking into account rainfall and  water requirements.

  5. Managed nutrient reduction impacts on nutrient concentrations, water clarity, primary production, and hypoxia in a north temperate estuary

    Science.gov (United States)

    Oviatt, Candace; Smith, Leslie; Krumholz, Jason; Coupland, Catherine; Stoffel, Heather; Keller, Aimee; McManus, M. Conor; Reed, Laura

    2017-12-01

    Except for the Providence River and side embayments like Greenwich Bay, Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s. The input reduction was reflected in standing stock nutrients resulting in a statistically significant 60% reduction in concentration. In the Providence River estuary, total nitrogen decreased from 100 μm to about 40 μm, for example. We tested four environmental changes that might be associated with the nitrogen reduction. System apparent production was significantly decreased by 31% and 45% in the upper and mid Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have been significantly lower than before the reduction. The impact on the Bay will continue to evolve over the next few years and be a natural experiment for other temperate estuaries that will be experiencing nitrogen reduction. To provide perspective we review factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude that, as in Narragansett Bay, physical factors can be as important as nutrients. On a positive note managed nutrient reduction has mitigated further deterioration in most estuaries.

  6. Seasonal variations and effects of nutrient applications on N and P and microbial biomass under two temperate heathland plants

    DEFF Research Database (Denmark)

    Nielsen, Pia Lund; Andresen, Louise Christoffersen; Michelsen, Anders

    2009-01-01

    . The microbial biomass on the other hand was positively related to soil water content in fertilized plots indicating that this was due to an indirect effect of enhanced nutrient availability. Microbial N and P pools were respectively 1000 and 100 times higher than the pool of inorganic N and P, and microbes...... this process. In this study the soil properties under two dominant heathland plants, the dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa, were investigated, with focus on nutrient content in the organic top soil and soil microbes during the main growing season and effects of nutrient amendments...... therefore may play an important role in regulating plant nutrient supply. Judged from responses of inorganic and microbial N and P concentrations to added N and P, N seemed to limit C. vulgaris and soil microbes below while P seemed to limit D. flexuosa and soil microbes below this species. There were lower...

  7. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    Science.gov (United States)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse

  8. Response of Soil Biogeochemistry to Freeze-thaw Cycles: Impacts on Greenhouse Gas Emission and Nutrient Fluxes

    Science.gov (United States)

    Rezanezhad, F.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2014-12-01

    Freeze-thaw is an abiotic stress applied to soils and is a natural process at medium to high latitudes. Freezing and thawing processes influence not only the physical properties of soil, but also the metabolic activity of soil microorganisms. Fungi and bacteria play a crucial role in soil organic matter degradation and the production of greenhouse gases (GHG) such as CO2, CH4 and N2O. Production and consumption of these atmospheric trace gases are the result of biological processes such as photosynthesis, aerobic respiration (CO2), methanogenesis, methanotrophy (CH4), nitrification and denitrification (N2O). To enhance our understanding of the effects of freeze-thaw cycles on soil biogeochemical transformations and fluxes, a highly instrumented soil column experiment was designed to realistically simulate freeze-thaw dynamics under controlled conditions. Pore waters collected periodically from different depths of the column and solid-phase analyses on core material obtained at the initial and end of the experiment highlighted striking geochemical cycling. CO2, CH4 and N2O production at different depths within the column were quantified from dissolved gas concentrations in pore water. Subsequent emissions from the soil surface were determined by direct measurement in the head space. Pulsed CO2 emission to the headspace was observed at the onset of thawing, however, the magnitude of the pulse decreased with each subsequent freeze-thaw cycle indicating depletion of a "freeze-thaw accessible" carbon pool. Pulsed CO2 emission was due to a combination of physical release of gases dissolved in porewater and entrapped below the frozen zone and changing microbial respiration in response to electron acceptor variability (O2, NO3-, SO42-). In this presentation, we focus on soil-specific physical, chemical, microbial factors (e.g. redox conditions, respiration, fermentation) and the mechanisms that drive GHG emission and nutrient cycling in soils under freeze-thaw cycles.

  9. Decomposition and nutrient release from fresh and dried pine roots under two fertilizer regimes

    Science.gov (United States)

    Kim H. Ludovici; Lance W. Kress

    2006-01-01

    Root decomposition and nutrient release are typically estimated from dried root tissues; however, it is unlikely that roots dehydrate prior to decomposing. Soil fertility and root diameter may also affect the rate of decomposition. This study monitored mass loss and nutrient concentrations of dried and fresh roots of two size classes (

  10. Sediment Enrichment Ratio and Nutrient Leached by Runoff and Soil Erosion on Cacao Plantation

    Directory of Open Access Journals (Sweden)

    Oteng Haridjaja

    2012-01-01

    Full Text Available Soil consevation management system is an activity for diminishing sediment enrichment ratio and nutrient leachedsby water run off and soil erosion processes. The research was aimed to study sediment enrichment ratio and nutrientleached by run off and soil erosion on cacao plantations. Arachis pintoi with strips parallel contour and multiplestrip cropping of upland rice or soybean (Glycine max were planted to improve soil physical characterictic oncacao plantation as a main plant. The expriment were conducted with treatments as 10-15% and 40-45% slopes, 5-7months and 25-27 months cacao ages (as main plants. As sub plots are T1 as a monoculture which to be cleaningunder the plant canopy, T2 as a multiple strip cropping of upland rice or soybean, T3 as a combination of T2 and A.Pintoi strip. The results showed that total N, P2O5, and K2O and organic-C contents in water run off and soilsediments indicated that T3 >T2 >T1 treatment, with the contents of each nutrient: T3 (total N 0.18%; 24.87 mg 100g-1 P2O5: K2O 15.16 mg 100 g-1, T1 (total N 0.16%, 22.39 mg 100g-1 P2O5, K2O 11.50 mg 100g-1. The total N, P2O5, K2Oand organic-C soil contents 1.

  11. Use of alkaline flyash-based products to amend acid soils: Plant growth response and nutrient uptake

    Energy Technology Data Exchange (ETDEWEB)

    Spark, K.M.; Swift, R.S. [University of Queensland, Gatton, Qld. (Australia)

    2008-07-01

    Vast quantities of flyash are generated annually by the burning of coal in the power industry, with most of this material being stockpiled with little prospect of being utilised at present. Two alkaline flyash-based products (FAP) for use as soil amendments (FAP1 and FAP2) have been assessed using glasshouse pot trials to determine the suitability of using these products to treat acid soils. The products both contain about 80% flyash which originated from coal-fired electricity generation. The acid soils used in the study were 2 Podsols and a Ferrosol, all originating from south-east Queensland and ranging in pH (1 : 5 suspension in water) from 4 to 5.5. The flyash products when applied to the soil significantly enhanced growth of maize plants (Zea mays L.), with optimal application rates in the range 1.25-5% w/w. The FAP/soil mixtures and plants were analysed using a range of methods including extraction with DTPA, and plant biomass (aboveground dry matter). The results indicate that in addition to the liming effect, the flyash in the alkaline flyash products may enhance plant growth as a result of increasing the uptake of micro-nutrients such as copper, zinc, and manganese. The study suggests that flyash has the potential to be used as a base material in the production of soil amendment materials that can change soil pH and act as a fertiliser for certain soil micro-nutrients such as Cu, Mn, and Zn.

  12. Filter Membrane Effects on Water-Extractable Phosphorus Concentrations from Soil.

    Science.gov (United States)

    Norby, Jessica; Strawn, Daniel; Brooks, Erin

    2018-03-01

    To accurately assess P concentrations in soil extracts, standard laboratory practices for monitoring P concentrations are needed. Water-extractable P is a common analytical test to determine P availability for leaching from soils, and it is used to determine best management practices. Most P analytical tests require filtration through a filter membrane with 0.45-μm pore size to distinguish between particulate and dissolved P species. However, filter membrane type is rarely specified in method protocols, and many different types of membranes are available. In this study, three common filter membrane materials (polyether sulfone, nylon, and nitrocellulose), all with 0.45-μm pore sizes, were tested for analytical differences in total P concentrations and dissolved reactive P (DRP) concentrations in water extracts from six soils sampled from two regions. Three of the extracts from the six soil samples had different total P concentrations for all three membrane types. The other three soil extracts had significantly different total P results from at least one filter membrane type. Total P concentration differences were as great as 35%. The DRP concentrations in the extracts were dependent on filter type in five of the six soil types. Results from this research show that filter membrane type is an important parameter that affects concentrations of total P and DRP from soil extracts. Thus, membrane type should be specified in soil extraction protocols. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Soil redistribution and nutrient delivery in a Mediterranean rain-fed agro-ecosystem with different crops and management: environmental and economic aspects

    Science.gov (United States)

    López-Vicente, Manuel; Álvarez, Sara

    2017-04-01

    Mediterranean agro-ecosystems are characterised by fragmented fields and patched vegetation. This shape governs the spatial patterns of water, soil and nutrient redistribution. Rainfall parameters, human infrastructures, crop management, support practices, and land use changes (set aside crops, land abandonment) control the magnitude of these processes. Under rain-fed water supply conditions, runoff generation and soil water content are two important factors in determining crop yield. Soil erosion and nutrient delivery are two of the factors which limit crop yield and thus, the gross earning of the landowner. In hilly landscapes, farmers usually supply extra soil to fill in the ephemeral gullies, and nutrient replenishment with fertilizers is a common practice. The aim of this study is to evaluate the environmental (runoff yield, soil erosion and nutrient delivery) and economic (replenishment of soil and nutrient losses with new soil and fertilizers) consequences of different conventional and conservative practices (fallow/crop rotation, cover crops, land abandonment, buffer strips) in a Mediterranean rain-fed agro-ecosystem (27 ha) with vineyards, cereal crops, cultivated and abandoned olive orchards, several trails and patches of natural vegetation. The five winter cereal fields (wheat and barley) follow fallow/crop rotation. The four vineyards are devoted to the Garnacha variety: one planted in 2007 with white wine grapes, and three planted in 2008 with red wine grapes. The inter-crop strips are managed with a mixture of plant species as cover crop (CC), including: i) spontaneous vegetation, and ii) plantation of common sainfoin (Onobrychis viciifolia). The maintenance of the CC includes one mowing pass at the end of spring, between May and June. The appearance and development of ephemeral gullies and the deposition of soil at the bottom of the hillslope are two of the main concerns of the landowners. In some places, the accumulation of soil complicates grape

  14. Carbon and nutrient contents in soils from the Kings River Experimental Watersheds, Sierra Nevada Mountains, California

    Science.gov (United States)

    D.W. Johnson; C.T. Hunsaker; D.W. Glass; B.M. Rau; B.A. Roath

    2011-01-01

    Soil C and nutrient contents were estimated for eight watersheds in two sites (one high elevation, Bull, and one low elevation, Providence) in the Kings River Experimental Watersheds in the western Sierra Nevada Mountains of California. Eighty-seven quantitative pits were dug to measure soil bulk density and total rock content, while three replicate surface samples...

  15. Effect of Litter Fall on Soil Nutrient Content and pH, and its Consequences in View of Climate Change (Síkf

    OpenAIRE

    TÓTH, János Attila; NAGY, Péter Tamás; KRAKOMPERGER, Zsolt; VERES, Zsuzsa; KOTROCZÓ, Zsolt; KINCSES, Sándorné; FEKETE, István; PAPP, Mária; LAJTHA, Kate

    2011-01-01

    In the DIRT (Detritus Input and Removal Treatment) field experiments established at theSíkfkút Site (North Hungary) in October 2000, an experiment was initiated to study the long-termeffects of litter quality and quantity on pH and nutrient content (organic carbon, N forms, PO43–, K+,Mg2+, Ca2+) of soil in a Quercetum petraeae-cerris forest. An eight-year litter manipulationdemonstrated a close connection between the changes in pH and Mg2+ and Ca2+ concentration. Thedecline of litter producti...

  16. Effects of Long-term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion

    Science.gov (United States)

    Tan, Chunjian; Cao, Xue; Yuan, Shuai; Wang, Weiyu; Feng, Yongzhong; Qiao, Bo

    2015-12-01

    Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.

  17. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian; Roostalu, H

    2012-01-01

    is appropriate if the study design has a hierarchical structure as in our scenario. We used the Estonian National Soil Monitoring data on arable lands to predict SOC concentrations of mineral soils. Subsequently, the model with the best prediction accuracy was applied to the Estonian digital soil map...

  18. Space-time quantitative source apportionment of soil heavy metal concentration increments.

    Science.gov (United States)

    Yang, Yong; Christakos, George; Guo, Mingwu; Xiao, Lu; Huang, Wei

    2017-04-01

    Assessing the space-time trends and detecting the sources of heavy metal accumulation in soils have important consequences in the prevention and treatment of soil heavy metal pollution. In this study, we collected soil samples in the eastern part of the Qingshan district, Wuhan city, Hubei Province, China, during the period 2010-2014. The Cd, Cu, Pb and Zn concentrations in soils exhibited a significant accumulation during 2010-2014. The spatiotemporal Kriging technique, based on a quantitative characterization of soil heavy metal concentration variations in terms of non-separable variogram models, was employed to estimate the spatiotemporal soil heavy metal distribution in the study region. Our findings showed that the Cd, Cu, and Zn concentrations have an obvious incremental tendency from the southwestern to the central part of the study region. However, the Pb concentrations exhibited an obvious tendency from the northern part to the central part of the region. Then, spatial overlay analysis was used to obtain absolute and relative concentration increments of adjacent 1- or 5-year periods during 2010-2014. The spatial distribution of soil heavy metal concentration increments showed that the larger increments occurred in the center of the study region. Lastly, the principal component analysis combined with the multiple linear regression method were employed to quantify the source apportionment of the soil heavy metal concentration increments in the region. Our results led to the conclusion that the sources of soil heavy metal concentration increments should be ascribed to industry, agriculture and traffic. In particular, 82.5% of soil heavy metal concentration increment during 2010-2014 was ascribed to industrial/agricultural activities sources. Using STK and SOA to obtain the spatial distribution of heavy metal concentration increments in soils. Using PCA-MLR to quantify the source apportionment of soil heavy metal concentration increments. Copyright © 2017

  19. Water and nutrient productivity in melon crop by fertigation under subsurface drip irrigation and mulching in contrasting soils

    Directory of Open Access Journals (Sweden)

    Rodrigo Otávio Câmara Monteiro

    2014-01-01

    Full Text Available Cropping intensification and technical, economic and environmental issues require efficient application of production factors to maintain the soil productive capacity and produce good quality fruits and vegetables. The production factors, water and NPK nutrients, are the most frequent limiting factors to higher melon yields. The objective of the present study was to identify the influence of subsurface drip irrigation and mulching in a protected environment on the water and NPK nutrients productivity in melon cropped in two soil types: sandy loam and clay. The melon crop cultivated under environmental conditions with underground drip irrigation at 0.20m depth, with mulching on sandy loam soil increased water and N, P2O5 and K use efficiency.

  20. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients

    NARCIS (Netherlands)

    Meisner, A.; De Boer, W.; Cornelissen, J.H.C.; Van der Putten, W.H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to

  1. Validation of predicted exponential concentration profiles of chemicals in soils

    International Nuclear Information System (INIS)

    Hollander, Anne; Baijens, Iris; Ragas, Ad; Huijbregts, Mark; Meent, Dik van de

    2007-01-01

    Multimedia mass balance models assume well-mixed homogeneous compartments. Particularly for soils, this does not correspond to reality, which results in potentially large uncertainties in estimates of transport fluxes from soils. A theoretically expected exponential decrease model of chemical concentrations with depth has been proposed, but hardly tested against empirical data. In this paper, we explored the correspondence between theoretically predicted soil concentration profiles and 84 field measured profiles. In most cases, chemical concentrations in soils appear to decline exponentially with depth, and values for the chemical specific soil penetration depth (d p ) are predicted within one order of magnitude. Over all, the reliability of multimedia models will improve when they account for depth-dependent soil concentrations, so we recommend to take into account the described theoretical exponential decrease model of chemical concentrations with depth in chemical fate studies. In this model the d p -values should estimated be either based on local conditions or on a fixed d p -value, which we recommend to be 10 cm for chemicals with a log K ow > 3. - Multimedia mass model predictions will improve when taking into account depth dependent soil concentrations

  2. Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe

    Institute of Scientific and Technical Information of China (English)

    Willis Gwenzi; Moreblessing Muzava; Farai Mapanda; Tonny P Tauro

    2016-01-01

    Soil application of biochar from sewage could potentialy enhance carbon sequestration and close urban nutrient balances. In sub-Saharan Africa, comparative studies investigating plant growth effect and nutrients uptake on tropical soils amended with sewage sludge and its biochar are very limited. A pot experiment was conducted to investigate the effects of sewage sludge and its biochar on soil chemical properties, maize nutrient and heavy metal uptake, growth and biomass partitioning on a tropical clayey soil. The study compared three organic amendments; sewage sludge (SS), sludge biochar (SB) and their combination (SS+SB) to the unamended control and inorganic fertilizers. Organic amendments were applied at a rate of 15 t ha–1 for SS and SB, and 7.5 t ha–1 each for SS and SB. Maize growth, biomass production and nutrient uptake were signiifcantly improved in biochar and sewage sludge amendments compared to the unamended control. Comparable results were observed with F, SS and SS+SB on maize growth at 49 d of sowing. Maize growth for SB, SS, SS+SB and F increased by 42, 53, 47, and 49%, respectively compared to the unamended control. Total biomass for SB, SS, SS+SB, and F increased by 270, 428, 329, and 429%, respectively compared with the unamended control. Biochar amendments reduced Pb, Cu and Zn uptakes by about 22% compared with sludge alone treatment in maize plants. However, there is need for future research based on the current pot experiment to determine whether the same results can be produced under ifeld conditions.

  3. Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil.

    Directory of Open Access Journals (Sweden)

    Muhammad Arslan

    Full Text Available Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination.

  4. Nutrients Can Enhance the Abundance and Expression of Alkane Hydroxylase CYP153 Gene in the Rhizosphere of Ryegrass Planted in Hydrocarbon-Polluted Soil

    Science.gov (United States)

    Arslan, Muhammad; Afzal, Muhammad; Amin, Imran; Iqbal, Samina; Khan, Qaiser M.

    2014-01-01

    Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K) in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum) was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination. PMID:25360680

  5. Plant assemblage composition and soil P concentration differentially affect communities of AM and total fungi in a semi-arid grassland.

    Science.gov (United States)

    Klabi, Rim; Bell, Terrence H; Hamel, Chantal; Iwaasa, Alan; Schellenberg, Mike; Raies, Aly; St-Arnaud, Marc

    2015-01-01

    Adding inorganic P- and N-fixing legumes to semi-arid grasslands can increase forage yield, but soil nutrient concentrations and plant cover may also interact to modify soil fungal populations, impacting short- and long-term forage production. We tested the effect of plant assemblage (seven native grasses, seven native grasses + the domesticated N-fixing legume Medicago sativa, seven native grasses + the native N-fixing legume Dalea purpurea or the introduced grass Bromus biebersteinii + M. sativa) and soil P concentration (addition of 0 or 200 P2O5 kg ha(-1) at sowing) on the diversity and community structure of arbuscular mycorrhizal (AM) fungi and total fungi over two consecutive years, using 454-pyrosequencing of 18S rDNA and ITS amplicons. Treatment effects were stronger in the wet year (2008) than the dry year (2009). The presence of an N-fixing legume with native grasses generally increased AM fungal diversity, while the interaction between soil P concentration and plant assemblage modified total fungal community structure in 2008. Excluding interannual variations, which are likely driven by moisture and plant productivity, AM fungal communities in semi-arid grasslands appear to be primarily affected by plant assemblage composition, while the composition of other fungi is more closely linked to soil P. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. On nutrients and trace metals: Effects from Enhanced Weathering

    Science.gov (United States)

    Amann, T.; Hartmann, J.

    2015-12-01

    The application of rock flour on suitable land ("Enhanced Weathering") is one proposed strategy to reduce the increase of atmospheric CO2 concentrations. At the same time it is an old and established method to add fertiliser and influence soil properties. Investigations of this method focused on the impact on the carbonate system, as well as on engineering aspects of a large-scale application, but potential side effects were never discussed quantitatively. We analysed about 120,000 geochemically characterised volcanic rock samples from the literature. Applying basic statistics, theoretical release rates of nutrients and potential contaminants by Enhanced Weathering were evaluated for typical rock types. Applied rock material can contain significant amounts of essential or beneficial nutrients (potassium, phosphorus, micronutrients). Their release can partly cover the demand of major crops like wheat, rice or corn, thereby increasing crop yield on degraded soils. However, the concentrations of considered elements are variable within a specific rock type, depending on the geological setting. High heavy metal concentrations are found in (ultra-) basic rocks, the class with the highest CO2 drawdown potential. More acidic rocks contain less or no critical amounts, but sequester less CO2. Findings show that the rock selection determines the capability to supply significant amounts of nutrients, which could partly substitute industrial mineral fertiliser usage. At the same time, the release of harmful trace element has to be considered. Through careful selection of regionally available rocks, benefits could be maximised and drawbacks reduced. The deployment of Enhanced Weathering to sequester CO2 and to ameliorate soils necessitates an ecosystem management, considering the release and fate of weathered elements in plants, soils and water. Cropland with degraded soils would benefit while having a net negative CO2 effect, while other carbon dioxide removal strategies, like

  7. Nutrient Concentrations of Bush Bean (Phaseolus vulgaris L. and Potato (Solanum tuberosum L. Cultivated in Subarctic Soils Managed with Intercropping and Willow (Salix spp. Agroforestry

    Directory of Open Access Journals (Sweden)

    Meaghan J. Wilton

    2017-12-01

    Full Text Available To ease food insecurities in northern Canada, some remote communities started gardening initiatives to gain more access to locally grown foods. Bush beans (Phaseolus vulgaris L. and potatoes (Solanum tuberosum L. were assessed for N, P, K, Mg, and Ca concentrations of foliage as indicators of plant nutrition in a calcareous silty loam soil of northern Ontario James Bay lowlands. Crops were grown in sole cropping and intercropping configurations, with comparisons made between an open field and an agroforestry site enclosed with willow (Salix spp. trees. Foliage chemical analysis of the sites revealed an abundance of Ca, adequacies for Mg and N, and deficiencies in P and K. Intercropping bean and potato did not show significant crop–crop facilitation for nutrients. The agroforestry site showed to be a superior management practice for the James Bay lowland region, specifically for P. The agroforestry site had significantly greater P for bean plant (p = 0.024 and potato foliage (p = 0.002 compared to the open site. It is suspected that the presence of willows improve plant available P to bean and potatoes by tree root—crop root interactions and microclimate enhancements.

  8. Nutrient depletion from rhizosphere solution by maize grown in soil with long-term compost amendment

    Science.gov (United States)

    Improved understanding of rhizosphere chemistry will enhance our ability to model nutrient dynamics and on a broader scale, to develop effective management strategies for applied plant nutrients. With a controlled-climate study, we evaluated in situ changes in macro-nutrient concentrations in the rh...

  9. Can we predict uranium bioavailability based on soil parameters? Part 1: Effect of soil parameters on soil solution uranium concentration

    International Nuclear Information System (INIS)

    Vandenhove, H.; Hees, M. van; Wouters, K.; Wannijn, J.

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for 238 U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K d , L kg -1 ) and the organic matter content (R 2 = 0.70) and amorphous Fe content (R 2 = 0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH = 6, log(K d ) was linearly related with pH [log(K d ) = - 1.18 pH + 10.8, R 2 = 0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex. - Uranium solubility in soil can be predicted from organic matter or amorphous iron content and pH or with complex multilinear models considering several soil parameters

  10. Effect of tree species and soil properties on nutrient immobilization in the forest floor

    DEFF Research Database (Denmark)

    Raulund-Rasmussen, Karsten; Vejre, Henrik

    1995-01-01

    of ammonium, nitrate and phosphate in the soil solution was much higher at the loamy site under all species showing a stronger microbial activity. It is therefore hypothesized that the differences in accumulation rates were, at least partly, caused by differences in the mineralization regimes. Strong root...... infiltration in the forest floors at the sandy site compared to almost none at the loamy site, is probably responsible for the differences in mineralization rate due to competition between the organic matter decomposers and the tree-roots/mycorrhiza for nutrients. Author Keywords: EFFECTS OF ROOTS; NUTRIENT...

  11. Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil solution in view of ecotoxicological effects.

    Science.gov (United States)

    de Vries, Wim; Lofts, Steve; Tipping, Ed; Meili, Markus; Groenenberg, Jan E; Schütze, Gudrun

    2007-01-01

    Risk assessment for metals in terrestrial ecosystems, including assessments of critical loads, requires appropriate critical limits for metal concentrations in soil and soil solution. This chapter presents an overview of methodologies used to derive critical (i) reactive and total metal concentrations in soils and (ii) free metal ion and total metal concentrations in soil solution for Cd, Pb, Cu, Zn, and Hg, taking into account the effect of soil properties related to ecotoxicological effects. Most emphasis is given to the derivation of critical free and total metal concentrations in soil solution, using available NOEC soil data and transfer functions relating solid-phase and dissolved metal concentrations. This approach is based on the assumption that impacts on test organisms (plants, microorganisms, and soil invertebrates) are mainly related to the soil solution concentration (activity) and not to the soil solid-phase content. Critical Cd, Pb, Cu, Zn, and Hg concentrations in soil solution vary with pH and DOC level. The results obtained are generally comparable to those derived for surface waters based on impacts to aquatic organisms. Critical soil metal concentrations, related to the derived soil solution limits, can be described as a function of pH and organic matter and clay content, and varying about one order of magnitude between different soil types.

  12. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    Science.gov (United States)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  13. Effects of macro nutrient concentration on biological N2 fixation by Azotobacter vinelandii ATCC 12837

    International Nuclear Information System (INIS)

    Liew Pauline Woan Ying; Nazalan Najimudin; Jong Bor Chyan; Latiffah Noordin; Khairuddin Abdul Rahim; Amir Hamzah Ahmad Ghazali

    2010-01-01

    The dynamic changes of biological N 2 fixation by Azotobacter vinelandii ATCC 12837 under the influence of various macro nutrients, specifically phosphorus (P) and potassium (K), was investigated. In this attempt, Oryza sativa L. var. MR 219 was used as the model plant. Results obtained showed changes in the biological N 2 fixation activities with different macro nutrient(s) manipulations. The research activity enables optimisation of macro nutrients concentration for optimal/ enhanced biological N 2 fixation by A. vinelandii ATCC 12837. (author)

  14. LBA-ECO ND-06 Land Use Effects on Soil Nutrients: A Review of Studies 1950-2001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides measurements of soil properties compiled from 39 studies on nutrient dynamics in natural forests and forest-derived land uses (pasture,...

  15. LBA-ECO ND-06 Land Use Effects on Soil Nutrients: A Review of Studies 1950-2001

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides measurements of soil properties compiled from 39 studies on nutrient dynamics in natural forests and forest-derived land uses...

  16. Impact of multiple soil nutrients on distribution patterns of shrubs in an arid valley, in southwest china

    International Nuclear Information System (INIS)

    Song, C.J.; Yishui, T.; Zao, L.X.

    2014-01-01

    Shrubs play key roles in arid regions and multiple interacting resources limit their distribution patterns. Identifying limiting resources and their coupling effects on shrubs is essential for developing restoration theory and practice. A survey of shrub composition, soil properties and topography was conducted in fifty-seven 15-m * 15-m plots in an arid valley of the upper Minjiang River, Southwest China. With quantitative classification method and ordination technique, 48 shrubs species were classified into four clusters and two categories along soil gradient. Cluster I and II composed Category I and had a significantly higher percentage of dominant legume shrubs than in Cluster III and Cluster IV, which made up Category II. Correlation analysis indicated that both multi-resource limitation and single resource limitation were coexisting simultaneously in this arid area, the extent of which was functional cluster-specific and also quantified hierarchical structure of multiple resource limitation: soil water played a primary limitation role, available nitrogen the next, and available phosphorus the third at community scale. Moreover, this study affirmed that both soil pH and soil texture could effectively regulate retention of soil moisture and available nutrients, respectively. Distinguishing critical limiting resources and their regulators is very meaningful to clarify couplings and controlling mechanisms in restoration practices. Therefore, decreasing soil pH and increasing soil clay content should be conducted thoroughly in plantation sites to remain abundant soil moisture and available nutrients in native restoration projects. (author)

  17. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.)

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Hooijdonk, van J.

    1999-01-01

    Radish (Raphanus sativus L.) plants were grown at five soil salinity levels (1, 2, 4, 9 and 13 dS m-1) to analyse the effects on growth, dry matter partitioning, leaf expansion and water and nutrient use. Salinity was varied by proportionally changing the concentration of all macro nutrients. When

  18. Nutrient critical levels and availability in soils cultivated with peach palm (Bactris gasipaes Kunth. in Santo Domingo de Los Tsáchilas, Ecuador

    Directory of Open Access Journals (Sweden)

    Carlos Julio Quezada Crespo

    2017-04-01

    Full Text Available Ecuador is the most important exporter of canned peach palm, however, to date ideal soil fertility characteristics for peach palm growers remain unknown. The aim of this research was to determine optimal levels of soil nutrients for the cultivation of peach palm, specifically with regards to soil cation exchange capacity in order to obtain higher yields. We worked with 20 farmsteads and their soils from the province of Santo Domingo de los Tsáchilas during the second half of 2014. Fields were evaluated based on a relative yield and extractable (modified Olsen nutrient contents in each soil were determined using regression modeling to determine critical levels of each nutrient and specifically to determine the ideal soil cation exchange capacity under peach palm cultivation. Our analysis established critical levels of soil pH (6.3; OM 6.5%; P 12.3 mg.dm-3; K 0.67 cmol.dm-3 K; Ca 5.1 cmol.dm-3 ; Mg 0.97 cmol.dm-3; and S 7.5 mg.dm-3. The ideal Ca: Mg: K soil cation exchange capacity was determined to be 76:14:10.

  19. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration.

    Science.gov (United States)

    Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.

  20. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient

    Energy Technology Data Exchange (ETDEWEB)

    Notten, M.J.M. [Institute of Ecological Science, Department of Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam (Netherlands)]. E-mail: martje.notten@ecology.falw.vu.nl; Oosthoek, A.J.P. [Institute of Ecological Science, Department of Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam (Netherlands); Rozema, J. [Institute of Ecological Science, Department of Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam (Netherlands); Aerts, R. [Institute of Ecological Science, Department of Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam (Netherlands)

    2005-11-15

    We investigated concentrations of Zn, Cu, Cd and Pb in the compartments of a soil-plant (Urtica dioica)-snail (Cepaea nemoralis) food chain in four polluted locations in the Biesbosch floodplains, the Netherlands, and two reference locations. Total soil metal concentrations in the polluted locations were 4-20 times higher than those in the reference locations. Positive relationships between the generally low leaf concentrations and the soil concentrations were found for Zn only (r {sup 2} = 0.20). Bioaccumulation of Zn, Cu and Cd was observed in the snail tissues. We found positive relationships between the snail and leaf concentrations for all metals (range r {sup 2} = 0.19-0.46). The relationships between soil and snail concentrations were also positive, except for Cu (range r {sup 2} = 0.15-0.33). These results suggest transfer of metals to C. nemoralis snails from U. dioica leaves and from the soil. Metal transfer from polluted leaves to C. nemoralis is more important than transfer from the soil. - Bioaccumulation and positive snail-leaf relationships suggest metal transfer from Urtica dioica leaves to Cepaea nemoralis snails.

  1. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient

    International Nuclear Information System (INIS)

    Notten, M.J.M.; Oosthoek, A.J.P.; Rozema, J.; Aerts, R.

    2005-01-01

    We investigated concentrations of Zn, Cu, Cd and Pb in the compartments of a soil-plant (Urtica dioica)-snail (Cepaea nemoralis) food chain in four polluted locations in the Biesbosch floodplains, the Netherlands, and two reference locations. Total soil metal concentrations in the polluted locations were 4-20 times higher than those in the reference locations. Positive relationships between the generally low leaf concentrations and the soil concentrations were found for Zn only (r 2 = 0.20). Bioaccumulation of Zn, Cu and Cd was observed in the snail tissues. We found positive relationships between the snail and leaf concentrations for all metals (range r 2 = 0.19-0.46). The relationships between soil and snail concentrations were also positive, except for Cu (range r 2 = 0.15-0.33). These results suggest transfer of metals to C. nemoralis snails from U. dioica leaves and from the soil. Metal transfer from polluted leaves to C. nemoralis is more important than transfer from the soil. - Bioaccumulation and positive snail-leaf relationships suggest metal transfer from Urtica dioica leaves to Cepaea nemoralis snails

  2. Nutrient flows in international trade: Ecology and policy issues

    International Nuclear Information System (INIS)

    Grote, Ulrike; Craswell, Eric; Vlek, Paul

    2005-01-01

    Impacts of increasing population pressure on food demand and land resources has sparked interest in nutrient balances and flows at a range of scales. West Asia/North Africa, China, and sub-Saharan Africa are net importers of NPK in agricultural commodities. These imported nutrients do not, however, redress the widely recognized declines in fertility in sub-Saharan African soils, because the nutrients imported are commonly concentrated in the cities, creating waste disposal problems rather than alleviating deficiencies in rural soils. Countries with a net loss of NPK in agricultural commodities are the major food exporting countries-the United States, Australia, and some Latin American countries. In the case of the United States, exports of NPK will increase from 3.1 Tg in 1997 to 4.8 Tg in 2020. The results suggest that between 1997 and 2020, total international net flows of NPK in traded agricultural commodities will double to 8.8 million tonnes. Against this background, the paper analyses the impact of different policy measures on nutrient flows and balances. This includes not only the effects of agricultural trade liberalization and the reduction of subsidies, but also the more direct environmental policies like nutrient accounting schemes, eco-labeling, and nutrient trading. It finally stresses the need for environmental costs to be factored into the debate on nutrient management and advocates more inter-disciplinary research on these important problems

  3. Dependence of the concentrations of "1"3"7Cs and potassium in extracted soil solutions on soil humidity before centrifugation

    International Nuclear Information System (INIS)

    Prorok, V.V.; Datsenko, O.Yi.; Bulavyin, L.A.; Zlens'kij, S.Je.; Melnichenko, L.Yu.; Rozuvan, S.G.; Poperenko, L.V.; White, P.J.

    2017-01-01

    Concentrations of 137Cs and potassium in solutions extracted by centrifugation from soils selected at some experimental sites in the 10-km Exclusion Zone of Chornobyl Nuclear Plant were determined. The results showed that for the majority of investigated soils, the concentration of 137Cs in soil solution depends on the humidity of the soil before centrifugation. It is possible to explain the dependence of the concentration of 137Cs in the soil solution on soil humidity from the dependence of the concentrations of molecules of different molecular-gravimetric fractions in soil solution on soil humidity. Considerable amount of 137Cs in soil solution is associated with these molecules, that is why the concentration of 137Cs in the extracted soil solution changes with the humidity of soil. These dependences differ between soils. For the majority of investigated soils the concentration of 137Cs in the extracted soil solution increases with increasing humidity of the soil. By contrast, soil humidity had no effect on the potassium concentration in the extracted soil solution for any soil investigated. It is concluded, that potassium is practically not associated with molecules of different molecular-gravimetric fractions in the extracted soil solutions

  4. Soil pH and nutrient uptake in cauliflower (Brassica oleracea L. var. botrytis) and Broccoli (Brassica oleracea L. var. italica) in Northern Sweden. Multielement studies by means of plant and soil analyses

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Margareta [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Agricultural Research for Northern Sweden

    2000-07-01

    To reveal nutrient element deficiencies or imbalances limiting vegetable production in northern Sweden, multielement soil and plant analyses were performed in cauliflower and broccoli during the period 1989 to 1996. The pH range of the soils was 4.4-8. 1. The results were evaluated with the multivariate statistical methods PCA (Principal Component Analysis) and PLS (Partial Least Squares Projection to Latent Structures). The major yield-limiting elements were Mg, B, Mn, Zn, Fe and Cu. This was a result of high soil pH and large content of Ca in the soil. The reason for B deficiency was also low B content in the soil. Applications of green mulch increased yield on soils with a pH below 6.0. It also increased the uptake and concentration in the plants of B, Ba, Cl, Cu, K, Mg, Mn, N, P, Se and Zn, and decreased the uptake and concentration of Al, Cs and Tl. The mineral fertilizer applied, NPK 11-5-18 micro, decreased soil pH. This has resulted in larger uptake and higher concentrations in the plants of Co and Mn, in comparison to where cattle manure was applied. This fertilizer strongly decreased uptake of Mo, as a result of both the acidifying effect and the large S content. Repeated applications of nitrate of lime in combination with the NPK 11-5-18 strongly increased the uptake of Cs by the plants. The results in this investigation, together with the literature reviews, strongly indicate that a relatively low soil pH (5.0-5.5) is favourable when organic fertilizers are used and that harmful effects of very low soil pH (<5.0), are ameliorated by organic materials but aggravated by mineral fertilizers. The main purpose of lime is to counteract the acidity and increased leaching created by mineral fertilizers. Because of the historical context in which the lime requirements were established, the dangers of acid soils appear to have been strongly overestimated.

  5. Estimating soil zinc concentrations using reflectance spectroscopy

    Science.gov (United States)

    Sun, Weichao; Zhang, Xia

    2017-06-01

    Soil contamination by heavy metals has been an increasingly severe threat to nature environment and human health. Efficiently investigation of contamination status is essential to soil protection and remediation. Visible and near-infrared reflectance spectroscopy (VNIRS) has been regarded as an alternative for monitoring soil contamination by heavy metals. Generally, the entire VNIR spectral bands are employed to estimate heavy metal concentration, which lacks interpretability and requires much calculation. In this study, 74 soil samples were collected from Hunan Province, China and their reflectance spectra were used to estimate zinc (Zn) concentration in soil. Organic matter and clay minerals have strong adsorption for Zn in soil. Spectral bands associated with organic matter and clay minerals were used for estimation with genetic algorithm based partial least square regression (GA-PLSR). The entire VNIR spectral bands, the bands associated with organic matter and the bands associated with clay minerals were incorporated as comparisons. Root mean square error of prediction, residual prediction deviation, and coefficient of determination (R2) for the model developed using combined bands of organic matter and clay minerals were 329.65 mg kg-1, 1.96 and 0.73, which is better than 341.88 mg kg-1, 1.89 and 0.71 for the entire VNIR spectral bands, 492.65 mg kg-1, 1.31 and 0.40 for the organic matter, and 430.26 mg kg-1, 1.50 and 0.54 for the clay minerals. Additionally, in consideration of atmospheric water vapor absorption in field spectra measurement, combined bands of organic matter and absorption around 2200 nm were used for estimation and achieved high prediction accuracy with R2 reached 0.640. The results indicate huge potential of soil reflectance spectroscopy in estimating Zn concentrations in soil.

  6. Perdas de solo e nutrientes num latossolo vermelho-amarelo ácrico típico, com diferentes sistemas de preparo e sob chuva natural Soil and nutrient losses under different tillage systems in a clayey oxisol under natural rainfall

    Directory of Open Access Journals (Sweden)

    Marcelo Henrique Siqueira Leite

    2009-06-01

    harrow and one passage of leveling harrow and contour seeding (CNiv; tillage with two passages of leveling harrow and contour seeding (NA and no tillage and contour seeding (CMN. The soil losses were determined by the direct method during the cotton crop cycle, from December 2005 to June 2006. Along each runoff sampling, soil samples were withdrawn to quantify the losses of N, P, K and organic carbon (C-org in the sediments. Decreasing soil tillage lessened the losses of sediments, nutrients and organic carbon, indicating that the CMN treatment was the most efficient. The trends for N, P, K and C-org losses in the sediments were similar to the soil losses. N, P and K varied according to the fertilizers used. The constituent with the highest concentration in the sediment was C in organic compounds. The basic infiltration rate differed among the treatments in the following order: CMA CNiv NA < CMN, indicating that tillage systems that reduced soil revolving and increased organic C, increased the basic infiltration rate and decreased soil erosion.

  7. Assessment of Water and Nitrate-N deep percolation fluxes in soil as affected by irrigation and nutrient management practices

    Science.gov (United States)

    Tsehaye, Habte; Ceglie, Francesco; Mimiola, Giancarlo; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Many farming practices can result in contamination of groundwater, due to the downward migration of fertilizers and pesticides through the soil profile. The detrimental effects of this contamination are not limited to deterioration of chemical and physical properties of soils and waters, but also constitute a real risk to human and ecosystem health. Groundwater contamination may come from a very large array of chemicals. Nevertheless, on a global scale the main cause of pollution is a high nitrate concentration in the aquifer water. Nitrate concentrations of groundwater have constantly increased during the last decades, and the widespread use of commercial N fertilizers has been implicated as the main causative factor. It is often claimed that nutrient management in organic farming is more environmentally sustainable than its conventional counterpart. It is commonly presumed that organic agriculture causes only minimal environmental pollution. There is scientific evidence that organic management may enhance some soil physical and biological properties. In particular, soil fertility management strategies can affect soil properties and the related hydrological processes. It is thus crucial to quantify and predict management effects on soil properties in order to evaluate the effects of soil type, natural processes such as decomposition of organic matter, irrigation applications and preferential flow on the deep percolation fluxes of water and nitrates to the groundwater. In this study, we measured the water fluxes and the quality of water percolating below the root zone, underlying organic agriculture systems in greenhouse. Specifically, the aim was to examine the effects of application time and type of organic matter in the soil on the nitrate-N deep percolation fluxes under the following three organic soil fertility strategies in greenhouse tomato experiment: i. Organic input Substitution (which will be hereafter denoted SUBST) is represented as typical

  8. Improving Lowland Rice (O. sativa L. cv. MR219 Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    Directory of Open Access Journals (Sweden)

    Perumal Palanivell

    2015-01-01

    Full Text Available High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1. Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1 significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1 and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  9. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    Science.gov (United States)

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  10. Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China

    Directory of Open Access Journals (Sweden)

    Jiguang Zhang

    2016-07-01

    Full Text Available To determine the effects of straw incorporation on soil nutrients, enzyme activity, and aggregates in tobacco fields, we conducted experiments with different amounts of wheat and maize straw in Zhucheng area of southeast Shandong province for three years (2010–2012. In the final year of experiment (2012, straw incorporation increased soil organic carbon (SOC and related parameters, and improved soil enzyme activity proportionally with the amount of straw added, except for catalase when maize straw was used. And maize straw incorporation was more effective than wheat straw in the tobacco field. The percentage of aggregates >2 mm increased with straw incorporation when measured by either dry or wet sieving. The mean weight diameter (MWD and geometric mean diameter (GMD in straw incorporation treatments were higher than those in the no-straw control (CK. Maize straw increased soil aggregate stability more than wheat straw with the same incorporation amount. Alkaline phosphatase was significantly and negatively correlated with soil pH. Sucrase and urease were both significantly and positively correlated with soil alkali-hydrolysable N. Catalase was significantly but negatively correlated with soil extractable K (EK. The MWD and GMD by dry sieving had significantly positive correlations with SOC, total N, total K, and EK, but only significantly correlated with EK by wet sieving. Therefore, soil nutrients, metabolic enzyme activity, and aggregate stability might be increased by increasing the SOC content through the maize or wheat straw incorporation. Moreover, incorporation of maize straw at 7500 kg·hm−2 was the best choice to enhance soil fertility in the tobacco area of Eastern China.

  11. Monitoring Stream Nutrient Concentration Trends in a Mixed-Land-Use Watershed

    Science.gov (United States)

    Zeiger, S. J.; Hubbart, J. A.

    2014-12-01

    Mixed-land use watersheds are often a complex patchwork of forested, agricultural, and urban land-uses where differential land-use mediated non-point source pollution can significantly impact water quality. Stream nitrogen and phosphorus concentrations serve as important variables for quantifying land use effects on non-point source pollution in receiving waters and relative impacts on aquatic biota. The Hinkson Creek Watershed (HCW) is a representative mixed land use urbanizing catchment (231 km2) located in central Missouri, USA. A nested-scale experimental watershed study including five permanent hydroclimate stations was established in 2009 to provide quantitative understanding of multiple land use impacts on nutrient loading. Spectrophotometric analysis was used to quantify total inorganic nitrogen (TIN) and total phosphorus (TP as PO4) regimes. Results (2010 - 2013) indicate average nitrate (NO3-) concentration (mg/l) range of 0.28 to 0.46 mg/l, nitrite (NO2-) range of 0.02 to 0.03 mg/l, ammonia (NH3) ranged from 0.04 to 0.08 mg/l, and TP range of 0.26 to 0.39 mg/l. With n=858, NO3-, NO2-, NH3, and TP concentrations were significantly (CI=95%, p=0.00) higher in the subbasin with the greatest percent cumulative agricultural land use (57%). NH3 and TP concentrations were significantly (CI=95%, p=0.00) higher (with the exception of the agricultural subbasin) in the subbasin with the greatest percent cumulative urban land use (26%). Results from multiple regression analyses showed percent cumulative agricultural and urban land uses accounted for 85% and 96% of the explained variance in TIN loading (CI=95%, p=0.08) and TP loading (CI=95%, p=0.02), respectively, between gauging sites. These results improve understanding of agricultural and urban land use impacts on nutrient concentrations in mixed use watersheds of the Midwest and have implications for nutrient reduction programs in the Mississippi River Basin and hypoxia reductions in the Gulf of Mexico, USA.

  12. Major and trace element geochemistry and background concentrations for soils in Connecticut

    Science.gov (United States)

    Brown, Craig; Thomas, Margaret A.

    2014-01-01

    Soil samples were collected throughout Connecticut (CT) to determine the relationship of soil chemistry with the underlying geology and to better understand background concentrations of major and trace elements in soils. Soil samples were collected (1) from the upper 5 cm of surficial soil at 100 sites, (2) from the A horizon at 86 of these sites, and (3) from the deeper horizon, typically the C horizon, at 79 of these sites. The Ca, Fe, K, Na, and Ti, but element concentrations showed a relatively similar pattern in A-horizon and surficial soil samples among the underlying geologic provinces. Trace element concentrations, including Ba, W, Ga, Ni, Cs, Rb, Sr, Th, Sc, and U, also were higher in C-horizon soil samples than in overlying soil samples. Concentrations of Mg, and several trace elements, including Mn, P, As, Nb, Sn, Be, Bi, Hg, Se, Sb, La, Co, Cr, Pb, V, Y, Cu, Pb, and Zn were highest in some A-horizon or surficial soils, and indicate possible contributions from anthropogenic sources. Because element concentrations in soils above the C horizon are more likely to be affected by anthropogenic factors, concentration ranges in C-horizon soils and their spatially varying geologic associations should be considered when estimating background concentrations of elements in CT soils.

  13. Disentangling the long-term effects of disturbance on soil biogeochemistry in a wet tropical forest ecosystem.

    Science.gov (United States)

    Gutiérrez Del Arroyo, Omar; Silver, Whendee L

    2018-04-01

    Climate change is increasing the intensity of severe tropical storms and cyclones (also referred to as hurricanes or typhoons), with major implications for tropical forest structure and function. These changes in disturbance regime are likely to play an important role in regulating ecosystem carbon (C) and nutrient dynamics in tropical and subtropical forests. Canopy opening and debris deposition resulting from severe storms have complex and interacting effects on ecosystem biogeochemistry. Disentangling these complex effects will be critical to better understand the long-term implications of climate change on ecosystem C and nutrient dynamics. In this study, we used a well-replicated, long-term (10 years) canopy and debris manipulation experiment in a wet tropical forest to determine the separate and combined effects of canopy opening and debris deposition on soil C and nutrients throughout the soil profile (1 m). Debris deposition alone resulted in higher soil C and N concentrations, both at the surface (0-10 cm) and at depth (50-80 cm). Concentrations of NaOH-organic P also increased significantly in the debris deposition only treatment (20-90 cm depth), as did NaOH-total P (20-50 cm depth). Canopy opening, both with and without debris deposition, significantly increased NaOH-inorganic P concentrations from 70 to 90 cm depth. Soil iron concentrations were a strong predictor of both C and P patterns throughout the soil profile. Our results demonstrate that both surface- and subsoils have the potential to significantly increase C and nutrient storage a decade after the sudden deposition of disturbance-related organic debris. Our results also show that these effects may be partially offset by rapid decomposition and decreases in litterfall associated with canopy opening. The significant effects of debris deposition on soil C and nutrient concentrations at depth (>50 cm), suggest that deep soils are more dynamic than previously believed, and can serve as

  14. Soil, water, and nutrient losses from management alternatives for degraded pasture in Brazilian Atlantic Rainforest biome.

    Science.gov (United States)

    Rocha Junior, Paulo Roberto da; Andrade, Felipe Vaz; Mendonça, Eduardo de Sá; Donagemma, Guilherme Kangussú; Fernandes, Raphael Bragança Alves; Bhattharai, Rabin; Kalita, Prasanta Kumar

    2017-04-01

    The objective of this study was to evaluate sediment, water and nutrient losses from different pasture managements in the Atlantic Rainforest biome. A field study was carried out in Alegre Espiríto Santo, Brazil, on a Xanthic Ferralsol cultivated with braquiaria (Brachiaria brizantha). The six pasture managements studied were: control (CON), chisel (CHI), fertilizer (FER), burned (BUR), plowing and harrowing (PH), and integrated crop-livestock (iCL). Runoff and sediment samples were collected and analyzed for calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P) and organic carbon contents. Soil physical attributes and above and below biomass were also evaluated. The results indicated that higher water loss was observed for iCL (129.90mm) and CON (123.25mm) managements, and the sediment losses were higher for CON (10.24tha -1 ) and BUR (5.20tha -1 ) managements when compared to the other managements. Majority of the nutrients losses occurred in dissolved fraction (99% of Ca, 99% of Mg, 96% of K, and 65% of P), whereas a significant fraction of organic carbon (80%) loss occurred in a particulate form. Except for P, other nutrients (Ca, Mg and K) and organic carbon losses were higher in coarse sediment compared to fine sediment. The greater losses of sediment, organic carbon, and nutrients were observed for CON followed by BUR management (plosses from various practices, to reduce pasture degradation, farmers should adopt edaphic practices by applying lime and fertilize to improve pasture growth and soil cover, and reducing soil erosion in the hilly Brazilian Atlantic Rainforest biome. Copyright © 2016. Published by Elsevier B.V.

  15. MOTOR 2.0: module for transformation of organic matter and nutrients in soil; user guide and technical documentation

    NARCIS (Netherlands)

    Assinck, F.B.T.; Rappoldt, C.

    2004-01-01

    MOTOR is a MOdule describing the Transformation of Organic matteR and nutrients in soil. It calculates the transformations between pools of organic matter and mineral nitrogen in soil. Pools are characterized by a carbon and nitrogen content and can be labelled. MOTOR is a flexible tool because the

  16. Liming Influences Growth and Nutrient Balances in Sugar Maple (Acer saccharum) Seedlings on an Acidic Forest Soil

    Science.gov (United States)

    Dudley J. Raynal

    1998-01-01

    Forests in the northeastern US have been limed to mitigate soil acidification and the acidity of surface waters and to improve soil base cation status. Much of the area considered for liming is within the range of sugar maple (Acer saccharum), but there is a poor understanding of how liming influences growth and nutrient balance of this species on...

  17. Effect of Plant Growth Promoting Rhizobacteria on the Concentration and Uptake of Macro Nutrients by Corn in a Cd-contaminated Calcareous Soil under Drought Stress

    OpenAIRE

    shahrzad karami; mehdi zarei; jafar yasrebi; najafali karimian; s.Ali Akbar Moosavi

    2017-01-01

    Introduction: Heavy metals such as cadmium (Cd) are found naturally in soils, but their amount can be changed by human activities. The study of the uptake and accumulation of heavy metals by plants is done in order to prevent their threats on human and animal’s health.Cadmium is a toxic element for living organisms. Cadmium competes with many of nutrients to be absorbed by the plant and interferes with their biological roles. Water stress affects the cell structure and the food is diverted fr...

  18. Including spatial data in nutrient balance modelling on dairy farms

    Science.gov (United States)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies

  19. A Dataset for Three-Dimensional Distribution of 39 Elements Including Plant Nutrients and Other Metals and Metalloids in the Soils of a Forested Headwater Catchment.

    Science.gov (United States)

    Wu, B; Wiekenkamp, I; Sun, Y; Fisher, A S; Clough, R; Gottselig, N; Bogena, H; Pütz, T; Brüggemann, N; Vereecken, H; Bol, R

    2017-11-01

    Quantification and evaluation of elemental distribution in forested ecosystems are key requirements to understand element fluxes and their relationship with hydrological and biogeochemical processes in the system. However, datasets supporting such a study on the catchment scale are still limited. Here we provide a dataset comprising spatially highly resolved distributions of 39 elements in soil profiles of a small forested headwater catchment in western Germany () to gain a holistic picture of the state and fluxes of elements in the catchment. The elements include both plant nutrients and other metals and metalloids that were predominately derived from lithospheric or anthropogenic inputs, thereby allowing us to not only capture the nutrient status of the catchment but to also estimate the functional development of the ecosystem. Soil samples were collected at high lateral resolution (≤60 m), and element concentrations were determined vertically for four soil horizons (L/Of, Oh, A, B). From this, a three-dimensional view of the distribution of these elements could be established with high spatial resolution on the catchment scale in a temperate natural forested ecosystem. The dataset can be combined with other datasets and studies of the TERENO (Terrestrial Environmental Observatories) Data Discovery Portal () to reveal elemental fluxes, establish relations between elements and other soil properties, and/or as input for modeling elemental cycling in temperate forested ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Mathematical modelling of the influenced of diffusion rate on macro nutrient availability in paddy field

    Science.gov (United States)

    Renny; Supriyanto

    2018-04-01

    Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.

  1. Spatial patterns of soil nutrients and groundwater levels within the Debre Mawi watershed of the Ethiopian highlands

    Science.gov (United States)

    Guzman, Christian; Tilahun, Seifu; Dagnew, Dessalegn; Zegeye, Assefe; Tebebu, Tigist; Yitaferu, Birru; Steenhuis, Tammo

    2015-04-01

    Persistent patterns of erosion have emerged in the Ethiopian highlands leading to soil and water conservation practices being implemented throughout the countryside. A common concern is the loss of soil fertility and loss of soil water. This study investigates the spatial patterns of soil nutrients and water table depths in a small sub-watershed in the northwestern Ethiopian highlands. NPK, a particularly important group of nutrients for inorganic fertilizer considerations, did not follow a consistent trend as a group along and across slope and land use transects. Whereas nitrogen content was greatest in the upslope regions (~0.1% TN), available phosphorus had comparably similar content in the different slope regions throughout the watershed (~2.7 mg/kg). The exchangeable cations (K, Ca, Mg) did increase in content in a downslope direction (in most cases though, they were highest in the middle region) but not consistently later in the season. On average, calcium (40 cmol/kg), magnesium (5 cmol/kg), and potassium (0.5 cmol/kg) were orders of magnitudes different in content. The perched water table in different areas of the watershed showed a very distinct trend. The lower part of the sub-watershed had shallower levels of water table depths (less than 10 cm from the surface) than did the upper parts of the sub-watershed (usually greater than 120 cm from the surface). The middle part of the sub-watershed had water table depths located at 40 to 70 cm below the surface. These results show how the landscape slope position and land use may be important for planning where and when soil nutrients and water would be expected to be appropriately "conserved" or stored.

  2. New Culture Medium Containing Ionic Concentrations of Nutrients Similar to Concentrations Found in the Soil Solution †

    Science.gov (United States)

    Angle, J. Scott; McGrath, Stephen P.; Chaney, Rufus L.

    1991-01-01

    A new growth medium which closely approximates the composition of the soil solution is presented. This soil solution equivalent (SSE) medium contains the following components (millimolar): NO3, 2.5; NH4, 2.5; HPO4, 0.005; Na, 2.5; Ca, 4.0; Mg, 2.0; K, 0.503; Cl, 4.0; SO4, 5.0; ethylenediamine-di(o-hydroxyphenylacetic acid), 0.02; and MES [2-(N-morpholino)ethanesulfonic acid] (to maintain the pH at 6.0), 10, plus 0.1% arabinose. The advantages of the SSE medium are discussed. PMID:16348614

  3. Spatially Resolved Carbon Isotope and Elemental Analyses of the Root-Rhizosphere-Soil System to Understand Below-ground Nutrient Interactions

    Science.gov (United States)

    Denis, E. H.; Ilhardt, P.; Tucker, A. E.; Huggett, N. L.; Rosnow, J. J.; Krogstad, E. J.; Moran, J.

    2017-12-01

    The intimate relationships between plant roots, rhizosphere, and soil are fostered by the release of organic compounds from the plant (through various forms of rhizodeposition) into soil and the simultaneous harvesting and delivery of inorganic nutrients from the soil to the plant. This project's main goal is to better understand the spatial controls on bi-directional nutrient exchange through the rhizosphere and how they impact overall plant health and productivity. Here, we present methods being developed to 1) spatially track the release and migration of plant-derived organics into the rhizosphere and soil and 2) map the local inorganic geochemical microenvironments within and surrounding the rhizosphere. Our studies focused on switchgrass microcosms containing soil from field plots at the Kellogg Biological Station (Hickory Corners, Michigan), which have been cropped with switchgrass for nearly a decade. We used a 13CO2 tracer to label our samples for both one and two diel cycles and tracked subsequent movement of labeled organic carbon using spatially specific δ13C analysis (with 50 µm resolution). The laser ablation-isotope ratio mass spectrometry (LA-IRMS) approach allowed us to map the extent of 13C-label migration into roots, rhizosphere, and surrounding soil. Preliminary results show the expected decrease of organic exudates with distance from a root and that finer roots (<0.1 mm) incorporated more 13C-label than thicker roots, which likely correlates to specific root growth rates. We are adapting both laser induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to spatially map inorganic nutrient content in the exact same samples used for LA-IRMS analysis. Both of these methods provide rapid surface mapping of a wide range of elements (with high dynamic range) at 150 μm spatial resolution. Preliminary results show that, based on elemental content, we can distinguish between roots, rhizosphere

  4. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  5. Characterization and nutrient release from silicate rocks and influence on chemical changes in soil

    Directory of Open Access Journals (Sweden)

    Douglas Ramos Guelfi Silva

    2012-06-01

    Full Text Available The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O, supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste. The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol, which was incubated for 100 days, at 70 % (w/w moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB were the silicate rocks that most influenced soil pH, while the mining byproduct (MB led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.

  6. The potential use of treated brewery effluent as a water and nutrient source in irrigated crop production

    Directory of Open Access Journals (Sweden)

    Richard P. Taylor

    2018-06-01

    Full Text Available Brewery effluent (BE needs to be treated before it can be released into the environment, reused or used in down-stream activities. This study demonstrated that anaerobic digestion (AD followed by treatment in an integrated tertiary effluent treatment system transformed BE into a suitable solution for crop irrigation. Brewery effluent can be used to improve crop yields: Cabbage (Brassica oleracea cv. Star 3301, grew significantly larger when irrigated with post-AD, post-primary-facultative-pond (PFP effluent, compared with those irrigated with post-constructed-wetland (CW effluent or tap water only (p < 0.0001. However, cabbage yield when grown using BE was 13% lower than that irrigated with a nutrient-solution and fresh water; the electrical conductivity of BE (3019.05 ± 48.72 µs/cm2 may have been responsible for this. Post-CW and post-high-rate-algal-pond (HRAP BE was least suitable due to their higher conductivity and lower nutrient concentration. After three months, soils irrigated with post-AD and post-PFP BE had a significantly higher sodium concentration and sodium adsorption ratio (3919 ± 94.77 & 8.18 ± 0.17 mg/kg than soil irrigated with a commercial nutrient-solution (920.58 ± 27.46 & 2.20 ± 0.05 mg/kg. However, this was not accompanied by a deterioration in the soil's hydro-physical properties, nor a change in the metabolic community structure of the soil. The benefits of developing this nutrient and water resource could contribute to cost-reductions at the brewery, more efficient water, nutrient and energy management, and job creation. Future studies should investigate methods to reduce the build-up of salt in the soil when treated BE is used to irrigate crops. Keywords: Wastewater irrigation, Nutrient recovery, Agriculture, Brewery effluent

  7. Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N.

    Science.gov (United States)

    Li, Shuailin; Liang, Chutao; Shangguan, Zhouping

    2017-12-31

    The incorporation of biochar into soil has been proposed as a strategy for enhancing soil fertility and crop productivity. However, there is limited information regarding the responses of soil respiration and the C, N and P cycles to the addition of apple branch biochar at different rates to soil with different levels of N. A 108-day incubation experiment was conducted to investigate the effects of the rate of biochar addition (0, 1, 2 and 4% by mass) on soil respiration and nutrients and the activities of enzymes involved in C, N and P cycling under two levels of N. Our results showed that the application of apple branch biochar at rates of 2% and 4% increased the C-mineralization rate, while biochar amendment at 1% decreased the C-mineralization rate, regardless of the N level. The soil organic C and microbial biomass C and P contents increased as the rate of biochar addition was increased to 2%. The biochar had negative effects on β-glucosidase, N-acetyl-β-glucosaminidase and urease activity in N-poor soil but exerted a positive effect on all of these factors in N-rich soil. Alkaline phosphatase activity increased with an increase in the rate of biochar addition, but the available P contents after all biochar addition treatments were lower than those obtained in the treatments without biochar. Biochar application at rates of 2% and 4% reduced the soil nitrate content, particularly in N-rich soil. Thus, apple branch biochar has the potential to sequester C and improve soil fertility, but the responses of soil C mineralization and nutrient cycling depend on the rate of addition and soil N levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Concentrations and geographic distribution of selected organic pollutants in Scottish surface soils

    International Nuclear Information System (INIS)

    Rhind, S.M.; Kyle, C.E.; Kerr, C.; Osprey, M.; Zhang, Z.L.; Duff, E.I.; Lilly, A.; Nolan, A.; Hudson, G.; Towers, W.; Bell, J.; Coull, M.; McKenzie, C.

    2013-01-01

    Concentrations of selected persistent organic pollutants (POPs) representing three chemical classes (polycyclic aromatic hydrocarbons (PAH), polybrominated diphenyl ethers (PBDE) and polychlorinated biphenyls (PCB) and the organic pollutant diethylhexyl phthalate (DEHP), were determined in surface soil samples (0–5 cm) collected at 20 km grid intersects throughout Scotland over a three-year period. Detectable amounts of all chemical classes and most individual congeners were present in all samples. There were no consistent effects of soil or vegetation type, soil carbon content, pH, altitude or distance from centres of population on concentrations which exhibited extreme variation, even in adjacent samples. It is concluded that soil POPs and DEHP concentrations and associated rates of animal and human exposure were highly variable, influenced by multiple, interacting factors, and not clearly related to local sources but possibly related to wet atmospheric deposition and the organic carbon content of the soil. -- Highlights: •Concentrations of selected organic pollutants in Scottish soils were determined. •Concentrations were highly variable. •There were few effects of soil or vegetation type, soil carbon, pH or altitude. •Distance from cities was not an important determinant of concentrations. •Atmospheric deposition and soil organic carbon content may affect concentrations. -- Soil concentrations of anthropogenic persistent organic pollutants are not clearly related to soil type or pH, vegetation, altitude, or distance from pollutant sources

  9. Composting of biochars improves their sorption properties, retains nutrients during composting and affects greenhouse gas emissions after soil application

    Science.gov (United States)

    Biochar application to soils has been suggested to elevate nutrient sorption, improve soil fertility and reduce net greenhouse gas (GHG) emissions. We examined the impact of composting biochar together with a biologically active substrate (i.e., livestock manure-straw mixture). We hypothesized that ...

  10. Effect of subalpine canopy removal on snowpack, soil solution, and nutrient export, Fraser Experimental Forest, CO

    Science.gov (United States)

    Stottlemyer, R.; Troendle, C.A.

    1999-01-01

    proportionally greater than water flux. Increased subsurface flow accounted for most of the increase in non-limiting nutrient loss. For limiting nutrients, loss of plant uptake and increased shallow subsurface flow accounted for the greater loss. Seasonal ion concentration patterns in streamwater and subsurface flow were similar.Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca

  11. Vegetation patterns and nutrients in relation to grazing pressure and ...

    African Journals Online (AJOL)

    A major challenge confronting managers of extensive grazing systems is uneven use of erbaceous forage plants by livestock. The concentration of grazing in preferred areas or around foci points (e.g. water points) eventually results in adverse impacts in soil nutrients, vegetation structure, production and composition.

  12. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation.

    Science.gov (United States)

    Pogrzeba, Marta; Rusinowski, Szymon; Sitko, Krzysztof; Krzyżak, Jacek; Skalska, Aleksandra; Małkowski, Eugeniusz; Ciszek, Dorota; Werle, Sebastian; McCalmont, Jon Paul; Mos, Michal; Kalaji, Hazem M

    2017-06-01

    Crop growth and development can be influenced by a range of parameters, soil health, cultivation and nutrient status all play a major role. Nutrient status of plants can be enhanced both through chemical fertiliser additions (e.g. N, P, K supplementation) or microbial fixation and mobilisation of naturally occurring nutrients. With current EU priorities discouraging the production of biomass on high quality soils there is a need to investigate the potential of more marginal soils to produce these feedstocks and the impacts of soil amendments on crop yields within them. This study investigated the potential for Miscanthus x giganteus to be grown in trace element (TE)-contaminated soils, ideally offering a mechanism to (phyto)manage these contaminated lands. Comprehensive surveys are needed to understand plant-soil interactions under these conditions. Here we studied the impacts of two fertiliser treatments on soil physico-chemical properties under Miscanthus x giganteus cultivated on Pb, Cd and Zn contaminated arable land. Results covered a range of parameters, including soil rhizosphere activity, arbuscular mycorrhization (AM), as well as plant physiological parameters associated with photosynthesis, TE leaf concentrations and growth performance. Fertilization increased growth and gas exchange capacity, enhanced rhizosphere microbial activity and increased Zn, Mg and N leaf concentration. Fertilization reduced root colonisation by AMF and caused higher chlorophyll concentration in plant leaves. Microbial inoculation seems to be a promising alternative for chemical fertilizers, especially due to an insignificant influence on the mobility of toxic trace elements (particularly Cd and Zn). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biomass and nutrient allocation strategies in a desert ecosystem in the Hexi Corridor, northwest China.

    Science.gov (United States)

    Zhang, Ke; Su, YongZhong; Yang, Rong

    2017-07-01

    The allocation of biomass and nutrients in plants is a crucial factor in understanding the process of plant structures and dynamics to different environmental conditions. In this study, we present a comprehensive scaling analysis of data from a desert ecosystem to determine biomass and nutrient (carbon (C), nitrogen (N), and phosphorus (P)) allocation strategies of desert plants from 40 sites in the Hexi Corridor. We found that the biomass and levels of C, N, and P storage were higher in shoots than in roots. Roots biomass and nutrient storage were concentrated at a soil depth of 0-30 cm. Scaling relationships of biomass, C storage, and P storage between shoots and roots were isometric, but that of N storage was allometric. Results of a redundancy analysis (RDA) showed that soil nutrient densities were the primary factors influencing biomass and nutrient allocation, accounting for 94.5% of the explained proportion. However, mean annual precipitation was the primary factor influencing the roots biomass/shoots biomass (R/S) ratio. Furthermore, Pearson's correlations and regression analyses demonstrated that although the biomass and nutrients that associated with functional traits primarily depended on soil conditions, mean annual precipitation and mean annual temperature had greater effects on roots biomass and nutrient storage.

  14. Soil fertility status and nutrients provided to spring barley (Hordeum distichon L. by pig slurry

    Directory of Open Access Journals (Sweden)

    Melisa Gómez-Garrido

    2014-03-01

    Full Text Available Nutrient recycling using pig slurry is a common agricultural practice to manage the ever-increasing amounts of wastes from the pig industry. This study was conducted in the southeast of Spain to quantify the enrichments in major (N, P, K, Mg and minor (Zn, Fe, Cu, and Mn nutrients in soils amended with D1-170 kg N ha-1 (European Union legislated dose or D2-340 kg N ha-1, and understand the influence of pig slurry on yield and nutrient uptake in two crop seasons of spring barley (Hordeum distichon L. Compared to control, D2 increased NO3--N by 11.4X to 109 mg kg-1, Olsen-P by 6.9X to 423 mg kg-1, exchange K (2.5X to 1.6 cmol+ kg-1, Mg (1.7X to 1.8 cmol+ kg-1, diethylene-triamine pentaacetic acid (DTPA-Zn (94X to 18.2 mg kg-1, and Fe (2X to 11.3 mg kg-1. Available NO3--N, Olsen-P, and DTPA-Zn have the best correlations with crop yield and nutrient uptake. These results indicate that the assessment of soil fertility status at 1-mo after pig slurry addition provides a good indicator for potential yield and uptake of barley. However, it is suggested that leachates should be monitored to effectively manage potential releases of nitrate and phosphate into the environment.

  15. Dependence of soil-to-plant transfer factors of elements on their concentrations in soil

    International Nuclear Information System (INIS)

    Tsukada, Hirofumi; Watabe, Teruhisa.

    1996-01-01

    Transfer factors (TFs) of 31 stable elements from soil to plant were determined by neutron activation analysis. Soil and plant samples were collected from 112 farm fields in Aomori prefecture, Japan. The elements described are those that could be detected by this method, which include essential elements for plant growth and nonessential elements. Several of these elements were divided into two groups, each having different TF characteristics. In the first group of elements there was an inverse correlation between the TFs and the soil concentrations of the elements, especially for Cl, K and Ca. The concentrations of these elements in plants were independent of their soil concentrations. However, in the second group, especially Sc and Co, the TFs were independent of the soil concentrations of the elements. The fluctuation of TFs observed in this study was smaller than that previously reported. This may be attributed to the relatively narrow geographic area of the present study. In addition, the TFs for the stable elements in this study were generally one to three orders of magnitude lower than those compiled for radioactive isotopes in previous publications. (author)

  16. Nutrient inputs in soil cultivated with coffee crop fertigated with domestic sewage

    Directory of Open Access Journals (Sweden)

    Mario Tauzene Afonso Matangue

    2011-12-01

    Full Text Available Fertigation with wastewaters is a great option for reuse of effluents in agriculture. Domestic effluent can be reused after primary treatment, reducing treatment costs and pollution, also providing water and nutrients to crops. This work aimed to quantify the nutrients income in coffee crop fertigated with domestic sewage. Five treatments were used. T1 received only clean water, and treatments T2, T3, T4 e T5 received 180, 350, 480 and 638 mm of sewage, respectively, during four months. Monthly soil analyses allowed to quantify nutrient inputs of 67.45 kg ha-1 of N, 81.89 kg ha-1 of P, 33.34 kg ha-1 of K+, 173.24 kg ha-1 of Ca2+, 49.18 kg ha-1 of Mg2+, 161.56 kg ha-1 of Na+ and 116.19 kg ha-1 of S. Even though the treatments promoted reductions in fertilization and liming, it was still necessary to complement fertilization of coffee crop fertigated with domestic sewage.

  17. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    Science.gov (United States)

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  18. Fungi benefit from two decades of increased nutrient availability in tundra heath soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid......If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which...... (PLFA) and neutral lipid fatty acid (NLFA) profiles. The function of the microbial community was also differently affected, as indicated by stable isotope probing of PLFA and NLFA. We demonstrate that two decades of fertilization have favored fungi relative to bacteria, and increased the turnover...

  19. Soil Heavy Metal Concentrations in Green Space of Mobarake Steel Complex

    Directory of Open Access Journals (Sweden)

    vahid Moradinasab

    2017-01-01

    Full Text Available Introduction: Water shortage in arid and semiarid regions of the world is a cause of serious concerns. The severe water scarcity urges the reuse of treated wastewater effluent and marginal water as a resource for irrigation. Mobarake Steel Complex has been using treated industrial wastewater for drip-irrigation of trees in about 1350 ha of its green space. However, wastewater may contain some amounts of toxic heavy metals, which create problems. Excessive accumulation of heavy metals in agricultural soils through wastewater irrigation may not only result in soil contamination, but also affect food quality and safety. Improper irrigation management, however, can lead to the loss of soil quality through such processes as contamination and salination. Soil quality implies its capacity to sustain biological productivity, maintain environmental quality, and enhance plants, human and animal health. Soil quality assessment is a tool that helps managers to evaluate short-term soil problems and appropriate management strategies for maintaining soil quality in the long time. Mobarakeh Steel Complex has been using treated wastewater for irrigation of green space to combat water shortage and prevent environmental pollution. This study was performed to assess the impact of short- middle, and long-term wastewater irrigation on soil heavy metal concentration in green space of Mobarake Steel complex. Materials and Methods: The impacts of wastewater irrigation on bioavailable and total heavy metal concentrations in the soils irrigated with treated wastewater for 2, 6 and 18 years as compared to those in soils irrigated with groundwater and un-irrigated soils. Soils were sampled from the wet bulb produced by under-tree sprinklers in three depths (0-20, 20-40 and 40-60 cm. Soil samples were air-dried, and crushed to pass through a 2-mm sieve. Plant-available metal concentrations were extracted from the soil with diethylenetriaminepentaacetic acid-CaCl2

  20. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Soil Science and Global Issues

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Sustainable management of soil is integral to any rational approach to addressing global issues of the 21st century. A high quality soil is essential to: i) advancing food and nutritional security, ii) mitigating and adapting to climate change, iii) improving quality and renewability of water, iv) enriching biodiversity, v) producing biofuel feedstocks for reducing dependence on fossil fuel, and vi) providing cultural, aesthetical and recreational opportunities. Being the essence of all terrestrial life, soil functions and ecosystem services are essential to wellbeing of all species of plants and animals. Yet, soil resources are finite, unequally distributed geographically, and vulnerable to degradation by natural and anthropogenic perturbations. Nonetheless, soil has inherent resilience, and its ecosystem functions and services can be restored over time. However, soil resilience depends on several key soil properties including soil organic carbon (SOC) concentration and pool, plant-available water capacity (PWAC), nutrient reserves, effective rooting depth, texture and clay mineralogy, pH, cation exchange capacity (CEC) etc. There is a close inter-dependence among these properties. For example, SOC concentration strongly affects, PWAC, nutrient reserve, activity and species diversity of soil flora and fauna, CEC etc. Thus, judicious management of SOC concentration to maintain it above the threshold level (~1.5-2%) in the root zone is critical to sustaining essential functions and ecosystem services. Yet, soils of some agroecosystems (e.g., those managed by resources-poor farmers and small landholders in the tropics and sub-tropics) are severely depleted of their SOC reserves. Consequently. Agronomic productivity and wellbeing of people dependent on degraded soils is jeopardized. The ecosystem C pool of the terrestrial biosphere has been mined by extractive practices, the nature demands recarbonization of its biosphere for maintenance of its functions and

  2. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  3. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed conifer forest

    Science.gov (United States)

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  4. Soil quality succession of mudflat in coastal area of China under different types of man-made land uses

    Science.gov (United States)

    Lu, Haiying; Shao, Hongbo; Xu, Zhaolong; Peng, Cheng

    2017-04-01

    Marshy reclamation in coastal area is becoming an important strategy for food safety security and economic development in China. After the reclamation of mudflat, the nutrient concentration in soil is one of the dominated factors restricting the development of marshy agriculture. However, little information is available for soil nutrient dynamics and its driving mechanisms under different types of man-made land uses. In this review, we summarized the soil nutrient dynamics under different types of man-made land uses (bare mudflat soil, rice-wheat rotation soil, aquaculture soil, and forest soil), including the change of physical and chemical features of the reclaimed soil; ii) the dynamics of soil organic matters and its driving mechanism in marshy land; iii) the migration of N, P, and K in marshy soil; and iv) the oriented cultivation and improvement for soil nutrient in marshy soil. This study contributes not only to understanding the soil nutrient cycling in marshy land, but also to providing valuable information for the sustainable development of salt-soil agriculture in marshy land along seaside cities of China.

  5. Variation in nutrient characteristics of surface soils from the Luquillo Experimental Forest of Puerto Rico: A multivariate perspective.

    Science.gov (United States)

    S. B. Cox; M. R. Willig; F. N. Scatena

    2002-01-01

    We assessed the effects of landscape features (vegetation type and topography), season, and spatial hierarchy on the nutrient content of surface soils in the Luquillo Experimental Forest (LEF) of Puerto Rico. Considerable spatial variation characterized the soils of the LEF, and differences between replicate sites within each combination of vegetation type (tabonuco vs...

  6. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans

    International Nuclear Information System (INIS)

    NareshKumar, R.; Nagendran, R.

    2008-01-01

    Studies were carried out to assess changes in nitrogen, phosphorus and potassium contents in soil during bioleaching of heavy metals from soil contaminated by tannery effluents. Indigenous sulfur oxidizing bacteria Acidithiobacillus thiooxidans isolated from the contaminated soil were used for bioremediation. Solubilization efficiency of chromium, cadmium, copper and zinc from soil was 88, 93, 92 and 97%, respectively. However, loss of nitrogen, phosphorus and potassium from the soil was 30, 70 and 68%, respectively. These findings indicate that despite its high potential for removal of heavy metals from contaminated soils, bioleaching results in undesirable dissolution/loss of essential plant nutrients. This aspect warrants urgent attention and detailed studies to evaluate the appropriateness of the technique for field application

  7. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans

    Energy Technology Data Exchange (ETDEWEB)

    NareshKumar, R. [Centre for Environmental Studies, Anna University, Chennai 600025 (India)], E-mail: nareshkrish@hotmail.com; Nagendran, R. [Centre for Environmental Studies, Anna University, Chennai 600025 (India)

    2008-08-15

    Studies were carried out to assess changes in nitrogen, phosphorus and potassium contents in soil during bioleaching of heavy metals from soil contaminated by tannery effluents. Indigenous sulfur oxidizing bacteria Acidithiobacillus thiooxidans isolated from the contaminated soil were used for bioremediation. Solubilization efficiency of chromium, cadmium, copper and zinc from soil was 88, 93, 92 and 97%, respectively. However, loss of nitrogen, phosphorus and potassium from the soil was 30, 70 and 68%, respectively. These findings indicate that despite its high potential for removal of heavy metals from contaminated soils, bioleaching results in undesirable dissolution/loss of essential plant nutrients. This aspect warrants urgent attention and detailed studies to evaluate the appropriateness of the technique for field application.

  8. Effects of different mechanized soil fertilization methods on corn nutrient accumulation and yield

    Science.gov (United States)

    Shi, Qingwen; Bai, Chunming; Wang, Huixin; Wu, Di; Song, Qiaobo; Dong, Zengqi; Gao, Depeng; Dong, Qiping; Cheng, Xin; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Aim: Experiments for mechanized corn soil fertilization were conducted in Faku demonstration zone. On this basis, we studied effects on corn nutrient accumulation and yield traits at brown soil regions due to different mechanized soil fertilization measures. We also evaluated and optimized the regulation effects of mechanized soil fertilization for the purpose of crop yield increase and production efficiency improvement. Method: Based on the survey of soil background value in the demonstration zone, we collected plant samples during different corn growth periods to determine and make statistical analysis. Conclusions: Decomposed cow dung, when under mechanical broadcasting, was able to remarkably increase nitrogen and potassium accumulation content of corns at their ripe stage. Crushed stalk returning combined with deep tillage would remarkably increase phosphorus accumulation content of corn plants. When compared with top application, crushed stalk returning combined with deep tillage would remarkably increase corn thousand kernel weight (TKW). Mechanized broadcasting of granular organic fertilizer and crushed stalk returning combined with deep tillage, when compared with surface application, were able to boost corn yield in the in the demonstration zone.

  9. How do controlled burns modify soil nutrients under the global change?

    Directory of Open Access Journals (Sweden)

    E. Marcos

    2013-05-01

    Full Text Available The increased deposition of nutrients from the atmosphere has contributed to widespread changes in heathland ecosystems throughout Europe. Management measures, as a prescribed burning, are nowadays considered a tool with which to mitigate impacts of atmospheric nutrient loads by reducing nutrient stores in the above-ground biomass and soils. In this study we want to determine if prescribed burning is an adequate tool to maintain low nutrient levels (mainly nitrogen in heathlands in the Cantabrian Mountain which are affected by atmospheric nitrogen deposition. Three heathlands sites dominated by Calluna vulgaris were selected. In June 2005, three plots (20 x 20 m per site were established. One of them was used as a control, the second was burned and the third was burned plus fertilized with ammonium nitrate (56 kg N ha–1 yr–1 to simulated atmospheric deposition. Our results show that prescribed burning resulted in an important decrease in nitrogen and an increase in phosphorous immediately after burning. Five years later, nitrogen recovered around 80% in the burning + fertilized plot, 40% in burned plot and 77% in control plot. However, an important decreased in phosphorous were detected mainly in burning + fertilized plot (63% and burning plot (34%, while losses were lower in control plots (13%. These results suggest that heaths managed by prescribed burning will accumulate nitrogen in the long term which will affect to the surviving of this type of heathlands.

  10. Elemental Concentrations in Urban Green Stormwater Infrastructure Soils.

    Science.gov (United States)

    Kondo, Michelle C; Sharma, Raghav; Plante, Alain F; Yang, Yunwen; Burstyn, Igor

    2016-01-01

    Green stormwater infrastructure (GSI) is designed to capture stormwater for infiltration, detention, evapotranspiration, or reuse. Soils play a key role in stormwater interception at these facilities. It is important to assess whether contamination is occurring in GSI soils because urban stormwater drainage areas often accumulate elements of concern. Soil contamination could affect hydrologic and ecosystem functions. Maintenance workers and the public may also be exposed to GSI soils. We investigated soil elemental concentrations, categorized as macro- and micronutrients, heavy metals, and other elements, at 59 GSI sites in the city of Philadelphia. Non-GSI soil samples 3 to 5 m upland of GSI sites were used for comparison. We evaluated differences in elemental composition in GSI and non-GSI soils; the comparisons were corrected for the age of GSI facility, underlying soil type, street drainage, and surrounding land use. Concentrations of Ca and I were greater than background levels at GSI sites. Although GSI facilities appear to accumulate Ca and I, these elements do not pose a significant human health risk. Elements of concern to human health, including Cd, Hg, and Pb, were either no different or were lower in GSI soils compared with non-GSI soils. However, mean values found across GSI sites were up to four times greater than soil cleanup objectives for residential use. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen.

    Science.gov (United States)

    Whitaker, Briana K; Rúa, Megan A; Mitchell, Charles E

    2015-08-01

    Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. A precision nutrient variability study of an experimental plot in ...

    African Journals Online (AJOL)

    DR F O ADEKAYODE

    reported (Sadeghi et al., 2006; Shah et al., 2013). The objective of the research was to use the GIS kriging technique to produce precision soil nutrient concentration and fertility maps of a 2.5-ha experimental land in Mukono Agricultural Research and Development. Institute Mukono, Uganda. MATERIALS AND METHODS.

  13. Impacts of industrial waste resources on maize (Zea mays L.) growth, yield, nutrients uptake and soil properties.

    Science.gov (United States)

    Singh, Satnam; Young, Li-Sen; Shen, Fo-Ting; Young, Chiu-Chung

    2014-10-01

    Discharging untreated highly acidic (pH10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5±0.1) with PW and lime (treatments represented as MW+PW and MW+Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha(-1). Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear(-1) and 100-kernel weight were higher in MW+Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW+Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW+PW. The MW+PW and MW+Lime treatments exhibited comparable r