WorldWideScience

Sample records for soil management options

  1. The Dynamics of Social Capital in Influencing Use of Soil Management Options in the Chinyanja Triangle of Southern Africa

    Directory of Open Access Journals (Sweden)

    Jemimah M. Njuki

    2008-12-01

    Full Text Available Social capital has become a critical issue in agricultural development as it plays an important role in collective action, such as, management of common resources and collective marketing. Whilst literature exists on the role of social capital in the use and adoption of improved agricultural technology, such literature is fraught with issues of the measurement of social capital beyond membership of farmers in groups. We hypothesized that different types of social capital influence the adoption of soil management options differently. This study looked at the measurement of social capital, differentiating between the main types of social capital and employed factor analysis to aggregate indicators of social capital into bonding, bridging, and linking social capital. Using logit analysis, the role of these types of capitals on influencing use of different soil management options was analyzed. The study found that bonding, bridging, and linking social capital all influence the adoption and use of different soil management options differently, a trend that might be similar for other agricultural technologies as well. The study recommends more research investments in understanding the differentiated outcomes of these forms of social capital on use and adoption of technologies to further guide agricultural interventions.

  2. Characteristics and management options of crusting soils in a ...

    African Journals Online (AJOL)

    ... to control the crusting. The relationship between crust thickness and soil physical and chemical properties and management practices were assessed using stepwise regression analysis. Soil crusting was largely related to soil aggregation, infiltration, fine sand fraction, cotton monocropping and crop residue incorporation.

  3. Climate Strategic Soil Management

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2014-02-01

    Full Text Available The complex and strong link between soil degradation, climate change and food insecurity is a global challenge. Sustainable agricultural systems must be integral to any agenda to address climate change and variability, improve renewable fresh water supply and quality, restore degraded soils and ecosystems and advance food security. These challenges are being exacerbated by increasing population and decreasing per capita arable land area and renewable fresh water supply, the increasing frequency of extreme events, the decreasing resilience of agroecosystems, an increasing income and affluent lifestyle with growing preference towards meat-based diet and a decreasing soil quality and use efficiency of inputs. Reversing these downward spirals implies the implementation of proven technologies, such as conservation agriculture, integrated nutrient management, precision agriculture, agroforestry systems, etc. Restoration of degraded soil and desertified ecosystems and the creation of positive soil and ecosystem C budgets are important. Urban agriculture and green roofs can reduce the energy footprint of production chains for urban and non-urban areas and enhance the recycling of by-products. Researchable priorities include sustainable land use and soil/water management options, judicious soil governance and modus operandi towards payments to land managers for the provisioning of ecosystem services.

  4. Soil Management Plan for the Y-12 Plant

    International Nuclear Information System (INIS)

    1993-01-01

    Construction activities at the US Department of Energy (DOE) Y-12 Plant have often required the excavation or other management of soil within the facility. Because some of this soil may be contaminated, Martin Marietta Energy Systems, Inc. (Energy Systems) adopted specific policies to ensure the proper management of contaminated or potentially contaminated soil at the plant. Five types of contaminated or potentially contaminated soil are likely to be present at the Y-12 Plant: Soil that is within the boundaries of a Comprehensive Response, Compensation, and Liability Act (CERCLA) Area of Contamination (AOC) or Operable Unit (OU); Soil that contains listed hazardous wastes; Soil that is within the boundaries of a RCRA Solid Waste Management Unit (SWMU); Soil that contains polychlorinated biphenyls (PCBS); Soil that contains low-level radioactive materials. The regulatory requirements associated with the five types of contaminated soil listed above are complex and will vary according to site conditions. This Soil Management Plan provides a standardized method for managers to determine the options available for selecting soil management scenarios associated with construction activities at the Y-12 Plant

  5. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soil

    NARCIS (Netherlands)

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil)

  6. Management options to increase soil organic matter and nitrogen availability in cultivated drylands

    International Nuclear Information System (INIS)

    Grace, P.R.

    1998-01-01

    Cropping of dryland soils in marginal regions with an emphasis on economic rather than ecological sustainability has generally led to decline in soil organic matter reserves and hence nutrient availability. Outputs commonly exceed inputs, with degradation of soil structure, reduction in infiltration and increase in runoff. Biological productivity is severely affected, leading to a vicious cycle of events usually culminating in decreased N release, excessive soil loss and ultimately desertification. Reducing the incidence of bare fallow, increasing crop-residue retention, strategic N-fertilizer application and shifting to cereal-legume rotations (as opposed to monocultures) and intercropping can slow the spiral. Simulation models such as DSSAT and SOCRATES provide suitable and easy-to-use platforms to evaluate these management strategies in terms of soil organic matter accumulation and yield performance. Through the linkage of these models to global information systems and the use of spatial-characterization software to identify zones of similarity, it is now possible to examine the transportability and risk of a particular management strategy under a wide range of climatic and soil conditions. (author)

  7. Options to improve family income, labor input and soil organic matter balances by soil management and maize–livestock interactions. Exploration of farm-specific options for a region in Southwest Mexico

    NARCIS (Netherlands)

    Flores Sanchez, D.; Groot, J.C.J.; Lantinga, E.A.; Kropff, M.J.; Rossing, W.A.H.

    2015-01-01

    Farming systems in the Costa Chica region in Mexico face limitations linked to low yields and soil fertility degradation. Several alternative maize-based cropping systems have been proposed to improve current limitations. These field-level options need to be evaluated at farm level in order to

  8. Management Options For Reducing The Release Of Antibiotics And Antibiotic Resistance Genes To The Environment

    Science.gov (United States)

    Background: There is growing concern worldwide about the role of polluted soil and water - 77 environments in the development and dissemination of antibiotic resistance. 78 Objective: To identify management options for reducing the spread of antibiotics and 79 antibiotic resist...

  9. From Process Understanding Via Soil Functions to Sustainable Soil Management - A Systemic Approach

    Science.gov (United States)

    Wollschlaeger, U.; Bartke, S.; Bartkowski, B.; Daedlow, K.; Helming, K.; Kogel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; Wiesmeier, M.; Rabot, E.; Vogel, H. J.

    2017-12-01

    Fertile soils are central resources for the production of biomass and the provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for both, food and bio-energy, which requires preserving and improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes that are not yet sufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing. Hence, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management to finally be able to develop site-specific options for sustainable soil management. We present an integrated modeling approach that investigates the influence of soil management on the ensemble of soil functions. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. As the evidence base required for feeding the model is for the most part stored in the existing scientific literature, another central component of our work is to set up a public "knowledge-portal" providing the infrastructure for a community effort towards a comprehensive knowledge base on soil processes as a basis for model developments. The connection to the socio-economic system is established using the Drivers-Pressures-Impacts-States-Responses (DPSIR) framework where our improved understanding about soil ecosystem processes is linked to ecosystem services and resource efficiency via the soil functions.

  10. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment

    DEFF Research Database (Denmark)

    Pruden, Amy; Larsson, D.G. Joakim; Amézquita, Alejandro

    2013-01-01

    Background: There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance. Objective: Our aim in this study was to identify management options for reducing the spread of antibiotics and antibiotic resistance...

  11. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  12. Implications of observed and simulated soil carbon sequestration for management options in corn-based rotations

    Science.gov (United States)

    Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, a...

  13. Implications of observed and simulated soil carbon sequestration for management options in corn-based rotations

    Science.gov (United States)

    Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, ...

  14. Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO).

    Science.gov (United States)

    Kumpiene, Jurate; Bert, Valérie; Dimitriou, Ioannis; Eriksson, Jan; Friesl-Hanl, Wolfgang; Galazka, Rafal; Herzig, Rolf; Janssen, Jolien; Kidd, Petra; Mench, Michel; Müller, Ingo; Neu, Silke; Oustriere, Nadège; Puschenreiter, Markus; Renella, Giancarlo; Roumier, Pierre-Hervé; Siebielec, Grzegorz; Vangronsveld, Jaco; Manier, Nicolas

    2014-10-15

    During the past decades a number of field trials with gentle remediation options (GRO) have been established on trace element (TE) contaminated sites throughout Europe. Each research group selects different methods to assess the remediation success making it difficult to compare efficacy between various sites and treatments. This study aimed at selecting a minimum risk assessment battery combining chemical and ecotoxicological assays for assessing and comparing the effectiveness of GRO implemented in seven European case studies. Two test batteries were pre-selected; a chemical one for quantifying TE exposure in untreated soils and GRO-managed soils and a biological one for characterizing soil functionality and ecotoxicity. Soil samples from field studies representing one of the main GROs (phytoextraction in Belgium, Sweden, Germany and Switzerland, aided phytoextraction in France, and aided phytostabilization or in situ stabilization/phytoexclusion in Poland, France and Austria) were collected and assessed using the selected test batteries. The best correlations were obtained between NH4NO3-extractable, followed by NaNO3-extractable TE and the ecotoxicological responses. Biometrical parameters and biomarkers of dwarf beans were the most responsive indicators for the soil treatments and changes in soil TE exposures. Plant growth was inhibited at the higher extractable TE concentrations, while plant stress enzyme activities increased with the higher TE extractability. Based on these results, a minimum risk assessment battery to compare/biomonitor the sites phytomanaged by GROs might consist of the NH4NO3 extraction and the bean Plantox test including the stress enzyme activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Agricultural land management options following large-scale environmental contamination - evaluation for Fukushima affected agricultural land

    International Nuclear Information System (INIS)

    Vandenhove, Hildegarde

    2013-01-01

    The accident at the Fukushima Daiichi Nuclear Power Plant has raised questions about the accumulation of radionuclides in soils, the transfer in the food chain and the possibility of continued restricted future land use. This paper summarizes what is generally understood about the application of agricultural countermeasures as a land management option to reduce the radionuclides transfer in the food chain and to facilitate the return of potentially affected soils to agricultural practices in areas impacted by a nuclear accident. (authors)

  16. Agricultural land management options following large-scale environmental contamination - evaluation for Fukushima affected agricultural land

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, Hildegarde [Biosphere Impact Studies, Belgian Nuclear Research Center SCK-CEN, Mol (Belgium)

    2013-07-01

    The accident at the Fukushima Daiichi Nuclear Power Plant has raised questions about the accumulation of radionuclides in soils, the transfer in the food chain and the possibility of continued restricted future land use. This paper summarizes what is generally understood about the application of agricultural countermeasures as a land management option to reduce the radionuclides transfer in the food chain and to facilitate the return of potentially affected soils to agricultural practices in areas impacted by a nuclear accident. (authors)

  17. Characteristics and management options of crusting soils in a ...

    African Journals Online (AJOL)

    water infiltration and accelerated soil erosion resulting from soil crusting ... in a smallholder farming area of the Zambezi metamorphic belt in northern Zimbabwe ...... beans (Ricinus communi L.) in the northeastern region of Brazil. Soil and ...

  18. Integrating removal actions and remedial actions: Soil and debris management at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Goidell, L.C.; Hagen, T.D.; Strimbu, M.J.; Dupuis-Nouille, E.M.; Taylor, A.C.; Weese, T.E.; Yerace, P.J.

    1996-01-01

    Since 1991, excess soil and debris generated at the Fernald Environmental management Project (FEMP) have been managed in accordance with the principles contained in a programmatic Removal Action (RvA) Work Plan (WP). This plan provides a sitewide management concept and implementation strategy for improved storage and management of excess soil and debris over the period required to design and construct improved storage facilities. These management principles, however, are no longer consistent with the directions in approved and draft Records of Decision (RODs) and anticipated in draft RODs other decision documents. A new approach has been taken to foster improved management techniques for soil and debris that can be readily incorporated into remedial design/remedial action plans. Response, Compensation and Liability Act (CERCLA) process. This paper describes the methods that were applied to address the issues associated with keeping the components of the new work plan field implementable and flexible; this is especially important as remedial design is either in its initial stages or has not been started and final remediation options could not be precluded

  19. Management options in the food chain for accidental radionuclide deposition

    International Nuclear Information System (INIS)

    Rantavaara, A.

    2005-12-01

    households. The stakeholder experts appreciated management options which can be used to ensure the safety of foodstuffs as early as possible in the production chain preferably on farms. They considered protection of agricultural soil, and timing of implementation according to normal rotation, normal slaughtering times of domestic animals, and the use of normal production methods and industrial processes. Production of foodstuffs to be disposed of as waste has to be avoided. This implies preparedness of stakeholders of the food supply chain for sudden implementation of certain management options. During the FARMING project the Finnish stakeholder group made initiatives to improve the preparedness for accidental contamination of the food production systems in practice. The group supported provision of sufficient capacity for the measurement of activity concentrations in foodstuffs to demonstrate the acceptability of foodstuffs and effectiveness of management options. The group suggested that the content of agricultural advice to farms should be extended to also cover the planning of management options for accidental contamination of rural areas, and the training of local farmers. Also advice to households could include issues of preparedness, particularly since this effectively networked field reaches a considerable number of people. The availability of information on the content of preparedness to consumers has to be continuously improved. Further, the group would like to clarify how the use of a caesium binding feed additive AFCF (ferric (III) ammonium hexacyanoferrate (II)), acceptable in the European Union, can be implemented at a short notice in Finland. The group also suggested a study on the effectiveness of current water treatment methods for removal of fallout radionuclides from surface water. Another research initiative, already realised during the FARMING project, dealt with costs for clean feeding in known milk production conditions. The Finnish stakeholder group

  20. Equity Portfolio Management Using Option Price Information

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Pan, Xuhui (Nick)

    We survey the recent academic literature that uses option-implied information to construct equity portfolios. Studies show that equity managers can earn a positive alpha by using information in individual equity options, by using stocks' exposure to information in market index options, and by using...... stocks' exposure to crude oil option information. Option-implied information can also help construct better mean-variance portfolios and better estimates of market beta....

  1. Soil water management

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Cassel, D.K.

    1984-01-01

    The use of radiation and tracer techniques in investigations into soil water management in agriculture, hydrology etc. is described. These techniques include 1) neutron moisture gauges to monitor soil water content and soil water properties, 2) gamma radiation attenuation for measuring the total density of soil and soil water content, 3) beta radiation attenuation for measuring changes in the water status of crop plants and 4) radioactive and stable tracers for identifying pathways, reactions and retention times of the constituents in soils and groundwater aquifers. The number and spacing of soil observations that should be taken to represent the management unit are also considered. (U.K.)

  2. Equity Portfolio Management Using Option Price Information

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Pan, Xuhui (Nick)

    We survey the recent academic literature that uses option-implied information to construct equity portfolios. Studies show that equity managers can earn a positive alpha by using information in individual equity options, by using stocks' exposure to information in market index options, and by usi...

  3. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation.

    NARCIS (Netherlands)

    Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.K.; Kibunja, C.N.; Pulleman, M.M.

    2011-01-01

    Maintenance of soil organic matter through integrated soil fertility management is important for soil quality and agricultural productivity, and for the persistence of soil faunal diversity and biomass. Little is known about the interactive effects of soil fertility management and soil macrofauna

  4. Proceedings of the Management options information seminar

    International Nuclear Information System (INIS)

    2002-01-01

    This seminar was held in order to provide an opportunity to participants to broaden their knowledge concerning the numerous management options that are available when dealing with emissions generated by the electric power sector. It also represented an opportunity to gather information with regard to a host of different options to support the Electricity Project Team. The presentations centred on topics such as assessment, design and development of management options for the emissions of the electric power industry in Alberta. The legal, economic, social and environmental aspects were considered by the speakers for the options, and the perspectives included experience gained from hands on projects and initiatives. The reasons underlying the selection of options were revealed and lessons learned examined. Of the 14 presentations and the closing remarks speech, two presentations were included in this database. refs., tabs., figs

  5. Nitrate leaching affected by management options with respect to urine-affected areas and groundwater levels for grazed grassland

    NARCIS (Netherlands)

    Hack-ten Broeke, M.J.D.; Putten, van der A.H.J.

    1997-01-01

    Simulations were performed to quantify the effects of management options on nitrate leaching to the groundwater in grazed pastures. At the experimental farm for sustainable dairy farming ‘De Marke’, experimental data on soil water and nitrates were gathered for two fields during the years 1991–1995.

  6. Hazardous landfill management, control options

    International Nuclear Information System (INIS)

    Corbin, M.H.; Lederman, P.B.

    1982-01-01

    The land disposal of hazardous wastes has been a common practice over the last half century. The industrial and environmental communities, as well as the public, have an immediate challenge to control the contaminants that may be released from waste land disposal facilities. At the same time, land disposal continues to be, in many cases, the only available disposal technique that can be utilized in the next five years. Thus, it is extremely important that environmentally sound landfill management and control techniques be utilized, both for inactive and active sites. There are a number of key steps in developing a sound management and control plan. These include problem definition, personnel safety, characterization, evaluation of control options, cost-effectiveness analysis and development of an integrated control plan. A number of control options, including diversion, regrading, sealing, and leachate treatment are available and more cost effective in most cases than waste removal. These and other options, as well as the methodology to develop an integrated control plan, are discussed, together with examples. (Auth.)

  7. Review of options for managing iodine-125 wastes

    International Nuclear Information System (INIS)

    Lock, P.J.; Wakerley, M.W.

    1991-01-01

    Data on the nature, radioactive content and management options used for I-125 wastes that are produced in England and Wales and fall within the provisions of the Radioactive Substances Act 1960 have been collated. The options for, and impacts of the disposal of these wastes have been reviewed and discussed. In addition storage for decay has been reviewed. The necessary storage requirements and methods of storage for the various waste forms have been examined. Conclusions are drawn with respect to the potential/suitability of the various waste management options. (author)

  8. Options analysis of managed care contracting and regulation: theory and evidence.

    Science.gov (United States)

    McLean, R A; Magiera, F T

    2000-08-01

    Managed care contracts can be represented as bundles of options. In particular, the managed care provider is short a call option. To hedge the risk involved in such contracts, managed care contractors can construct several types of virtual put options, among them the ownership of facilities. Agency theory and options theory suggest that for-profit managed care plans, in the presence of debt, will engage in less hedging activity than will other managed care plans. Here, the authors test that hypothesis, using data for Florida HMOs in 1995, and they reject the null hypothesis. That managed care organizations act as if they are short a call option raises interesting regulatory issues, including the possibility of using a hedge-based regulatory scheme in place of a net-worth-based scheme.

  9. Soil Management for Hardwood Production

    Science.gov (United States)

    W. M. Broadfoot; B. G. Blackmon; J. B. Baker

    1971-01-01

    Soil management is the key to successful hardwood management because soil properties are probably the most important determinants of forest productivity. Because of the lack of soil uniformity, however, many foresters have become frustrated with attempts to relate soil to satisfactory growth. Since soil scientists have been unable to predict site quality for trees in...

  10. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  11. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ''Can mixed waste be managed out of existence?'' That study found that most, but not all, of the Nation's mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation's mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ''Which mixed waste has no treatment option?'' Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology

  12. A multi-criteria decision analysis assessment of waste paper management options

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, Deirdre [Department of Design, Development, Environment and Materials, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Department of Design, Development, Environment and Materials, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Cooke, David [Department of Design, Development, Environment and Materials, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom)

    2013-03-15

    Highlights: ► Isolated communities have particular problems in terms of waste management. ► An MCDA tool allowed a group of non-experts to evaluate waste management options. ► The group preferred local waste management solutions to export to the mainland. ► Gasification of paper was the preferred option followed by recycling. ► The group concluded that they could be involved in the decision making process. - Abstract: The use of Multi-criteria Decision Analysis (MCDA) was investigated in an exercise using a panel of local residents and stakeholders to assess the options for managing waste paper on the Isle of Wight. Seven recycling, recovery and disposal options were considered by the panel who evaluated each option against seven environmental, financial and social criteria. The panel preferred options where the waste was managed on the island with gasification and recycling achieving the highest scores. Exporting the waste to the English mainland for incineration or landfill proved to be the least preferred options. This research has demonstrated that MCDA is an effective way of involving community groups in waste management decision making.

  13. A multi-criteria decision analysis assessment of waste paper management options

    International Nuclear Information System (INIS)

    Hanan, Deirdre; Burnley, Stephen; Cooke, David

    2013-01-01

    Highlights: ► Isolated communities have particular problems in terms of waste management. ► An MCDA tool allowed a group of non-experts to evaluate waste management options. ► The group preferred local waste management solutions to export to the mainland. ► Gasification of paper was the preferred option followed by recycling. ► The group concluded that they could be involved in the decision making process. - Abstract: The use of Multi-criteria Decision Analysis (MCDA) was investigated in an exercise using a panel of local residents and stakeholders to assess the options for managing waste paper on the Isle of Wight. Seven recycling, recovery and disposal options were considered by the panel who evaluated each option against seven environmental, financial and social criteria. The panel preferred options where the waste was managed on the island with gasification and recycling achieving the highest scores. Exporting the waste to the English mainland for incineration or landfill proved to be the least preferred options. This research has demonstrated that MCDA is an effective way of involving community groups in waste management decision making

  14. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  15. Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions.

    Science.gov (United States)

    Mohankumar Sajeev, Erangu Purath; Winiwarter, Wilfried; Amon, Barbara

    2018-01-01

    Farm livestock manure is an important source of ammonia and greenhouse gases. Concerns over the environmental impact of emissions from manure management have resulted in research efforts focusing on emission abatement. However, questions regarding the successful abatement of manure-related emissions remain. This study uses a meta-analytical approach comprising 89 peer-reviewed studies to quantify emission reduction potentials of abatement options for liquid manure management chains from cattle and pigs. Analyses of emission reductions highlight the importance of accounting for interactions between emissions. Only three out of the eight abatement options considered (frequent removal of manure, anaerobic digesters, and manure acidification) reduced ammonia (3-60%), nitrous oxide (21-55%), and methane (29-74%) emissions simultaneously, whereas in all other cases, tradeoffs were identified. The results demonstrate that a shift from single-stage emission abatement options towards a whole-chain perspective is vital in reducing overall emissions along the manure management chain. The study also identifies some key elements like proper clustering, reporting of influencing factors, and explicitly describing assumptions associated with abatement options that can reduce variability in emission reduction estimates. Prioritization of abatement options according to their functioning can help to determine low-risk emission reduction options, specifically options that alter manure characteristics (e.g., reduced protein diets, anaerobic digestion, or slurry acidification). These insights supported by comprehensive emission measurement studies can help improve the effectiveness of emission abatement and harmonize strategies aimed at reducing air pollution and climate change simultaneously. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Adaptive management for soil ecosystem services

    Science.gov (United States)

    Birge, Hannah E.; Bevans, Rebecca A.; Allen, Craig R.; Angeler, David G.; Baer, Sara G.; Wall, Diana H.

    2016-01-01

    Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services.

  17. Managing soil natural capital

    DEFF Research Database (Denmark)

    Cong, Ronggang; Termansen, Mette; Brady, Mark

    2017-01-01

    Farmers are exposed to substantial weather and market related risks. Rational farmers seek to avoid large losses. Future climate change and energy price fluctuations therefore make adaptating to increased risks particularly important for them. Managing soil natural capital—the capacity of the soil...... to generate ecosystem services of benefit to farmers—has been proven to generate the double dividend: increasing farm profit and reducing associated risk. In this paper we explore whether managing soil natural capital has a third dividend: reducing the downside risk (increasing the positive skewness of profit......). This we refer to as the prudence effect which can be viewed as an adaptation strategy for dealing with future uncertainties through more prudent management of soil natural capital. We do this by developing a dynamic stochastic portfolio model to optimize the stock of soil natural capital—as indicated...

  18. Sustainable Soil Management

    DEFF Research Database (Denmark)

    Green, Ole; Evgrafova, Alevtina; Kirkegaard Nielsen, Søren

    Linket til højre henviser til rapporten i trykt format til download. This report provides an overview on new technologies for integrate sustainable and resilient management practices in arable ecosystems for advanced farmers, consultants, NGOs and policy makers. By following sustainable soil...... and soil quality in short- and long-terms. This report also illustrates the importance to combine a system approach for plant production by assessing field readiness, managing in-field traffic management, implementing the sitespecific controlled as well as sensor-controlled seedbed preparation, seeding...

  19. Soil use and management

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Volume 3 on Soil Use and Management covers: - Soil evaluation and land use planning - Soil and

  20. Review of Alternative Management Options of Vegetable Crop Residues to Reduce Nitrate Leaching in Intensive Vegetable Rotations

    Directory of Open Access Journals (Sweden)

    Laura Agneessens

    2014-12-01

    Full Text Available Vegetable crop residues take a particular position relative to arable crops due to often large amounts of biomass with a N content up to 200 kg N ha−1 left behind on the field. An important amount of vegetable crops are harvested during late autumn and despite decreasing soil temperatures during autumn, high rates of N mineralization and nitrification still occur. Vegetable crop residues may lead to considerable N losses through leaching during winter and pose a threat to meeting water quality objectives. However, at the same time vegetable crop residues are a vital link in closing the nutrient and organic matter cycle of soils. Appropriate and sustainable management is needed to harness the full potential of vegetable crop residues. Two fundamentally different crop residue management strategies to reduce N losses during winter in intensive vegetable rotations are reviewed, namely (i on-field management options and modifications to crop rotations and (ii removal of crop residues, followed by a useful and profitable application.

  1. Economic analysis of emerald ash borer (Coleoptera: Buprestidae) management options.

    Science.gov (United States)

    Vannatta, A R; Hauer, R H; Schuettpelz, N M

    2012-02-01

    Emerald ash borer, Agrilus planipennis (Fairmaire) (Coleoptera: Buprestidae), plays a significant role in the health and extent of management of native North American ash species in urban forests. An economic analysis of management options was performed to aid decision makers in preparing for likely future infestations. Separate ash tree population valuations were derived from the i-Tree Streets program and the Council of Tree and Landscape Appraisers (CTLA) methodology. A relative economic analysis was used to compare a control option (do-nothing approach, only removing ash trees as they die) to three distinct management options: 1) preemptive removal of all ash trees over a 5 yr period, 2) preemptive removal of all ash trees and replacement with comparable nonash trees, or 3) treating the entire population of ash trees with insecticides to minimize mortality. For each valuation and management option, an annual analysis was performed for both the remaining ash tree population and those lost to emerald ash borer. Retention of ash trees using insecticide treatments typically retained greater urban forest value, followed by doing nothing (control), which was better than preemptive removal and replacement. Preemptive removal without tree replacement, which was the least expensive management option, also provided the lowest net urban forest value over the 20-yr simulation. A "no emerald ash borer" scenario was modeled to further serve as a benchmark for each management option and provide a level of economic justification for regulatory programs aimed at slowing the movement of emerald ash borer.

  2. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  3. Exploring options for integrated nutrient management in semi-arid tropics using farmer field schools: a case study in Mbeere District, eastern Kenya

    NARCIS (Netherlands)

    Onduru, D.D.; Preez, Du C.C.; Muchena, F.N.; Gachimbi, L.N.; Jager, de A.

    2008-01-01

    The farmer field school (FFS) approach was used in semi-arid eastern Kenya in the period 2002–2003 to explore technology options for addressing declining soil fertility and to institute learning processes on integrated nutrient management (INM).
    The farmer field school (FFS) approach was used in

  4. Erectile dysfunction management options in Nigeria.

    Science.gov (United States)

    Afolayan, Anthony Jide; Yakubu, Musa Toyin

    2009-04-01

    In Nigeria, the prevalence of erectile dysfunction (ED) among patients attending primary care clinics, age-standardized to the U.S. population in 2000 is 57.4%. This is considered high enough to warrant the attention of scientist for critical studies and analysis. The high ED prevalence is associated with etiologies such as psychosexual factors, chronic medical conditions, and some lifestyles. ED constitutes a major public health problem, influencing the patient's well-being and quality of life. It also leads to broken homes and marriages, psychological, social, and physical morbidity. To give an account of various ED management options in Nigeria. Review of peer-reviewed literature, questionnaire, and ethnobotanical survey to some indigenous herb sellers and herbalists. Cross cultural perspectives of ED management in Nigeria. The review suggests that traditional (phytotherapy, zootherapy, and occultism) and nontraditional, orthodox practice (drug therapy, psychological, and behavioral counseling) are applicable to ED management in Nigeria. This review should help in creating awareness into various options available for managing ED in the country, but does not recommend self medication of any form, be it the use of orthodox or herbal remedy.

  5. A multi-criteria decision analysis assessment of waste paper management options.

    Science.gov (United States)

    Hanan, Deirdre; Burnley, Stephen; Cooke, David

    2013-03-01

    The use of Multi-criteria Decision Analysis (MCDA) was investigated in an exercise using a panel of local residents and stakeholders to assess the options for managing waste paper on the Isle of Wight. Seven recycling, recovery and disposal options were considered by the panel who evaluated each option against seven environmental, financial and social criteria. The panel preferred options where the waste was managed on the island with gasification and recycling achieving the highest scores. Exporting the waste to the English mainland for incineration or landfill proved to be the least preferred options. This research has demonstrated that MCDA is an effective way of involving community groups in waste management decision making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Sustainable Soil Management

    DEFF Research Database (Denmark)

    Green, Ole; Evgrafova, Alevtina; Kirkegaard Nielsen, Søren

    management strategies, which consider the site- and field-specific parameters and agricultural machinery’s improvements, it is possible to maximize production and income, while reducing negative environmental impacts and human health issues induced by agricultural activities as well as improving food......Linket til højre henviser til rapporten i trykt format til download. This report provides an overview on new technologies for integrate sustainable and resilient management practices in arable ecosystems for advanced farmers, consultants, NGOs and policy makers. By following sustainable soil...... and soil quality in short- and long-terms. This report also illustrates the importance to combine a system approach for plant production by assessing field readiness, managing in-field traffic management, implementing the sitespecific controlled as well as sensor-controlled seedbed preparation, seeding...

  7. Comparative evaluation of radioactive waste management options. Final report

    International Nuclear Information System (INIS)

    Appel, D.; Kreusch, J.; Neumann, W.

    2001-05-01

    A comprehensive presentation of the various radioactive waste options under debate has not been made so far, let alone a comparative evaluation of the options with respect to their substantiated or assumed advantages or drawbacks. However, any appropriate discussion about the pros and cons of the specific options for final decision making has to be based on a comprehensive knowledge base drawn from profound comparative evaluation of essential options. Therefore, the study reported in this publication was to serve three major purposes: Presentation of the conditions and waste management policies and approaches in selected countries, in order to compile information about the various policy goals and the full scope of argumentation, as well as the range of individual arguments used for or against specific options. - Derivation of a methodology for evaluation, including development of criteria for a comparative and qualitative evaluation of options. - Identification of possible implications for a waste management strategy for Germany, derived from the results of the comparative evaluation and the examination of the reasonings and argumentation used in the various countries. (orig./CB) [de

  8. Low-level radioactive waste management options

    International Nuclear Information System (INIS)

    Schmalz, R.F.

    1989-01-01

    This paper discusses the non-technical problems associated with the social and political obstacles to the secure disposal of low level radioactive waste. The author reviews thirty years' experience managing non-military wastes. The merits of available options are considered

  9. Managing Agricultural Soils of Pakistan for Food and Climate

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2018-06-01

    practices (BMPs, is the only viable option because there is no scope for any horizontal expansion. Site/regional specific BMPs may include conservation agriculture along with retention of crop residue mulch and without any in-field burning of biomass; incorporation of a cover crop (forages in the rotation cycle; and use of integrated nutrient management (INM involving a judicious combination of organic (compost, manure, biofertilizers and inorganic sources of nutrients, and integration of crops with livestock and trees. Further, the flood irrigation must be replaced by drip sub-irrigation system. Chosen BMPs must create a positive soil ecosystem C budget, and restore the soil organic carbon stock.

  10. Improving Soil Seed Bank Management.

    Science.gov (United States)

    Haring, Steven C; Flessner, Michael L

    2018-05-08

    Problems associated with simplified weed management motivate efforts for diversification. Integrated weed management uses fundamentals of weed biology and applied ecology to provide a framework for diversified weed management programs; the soil seed bank comprises a necessary part of this framework. By targeting seeds, growers can inhibit the propagule pressure on which annual weeds depend for agricultural invasion. Some current management practices affect weed seed banks, such as crop rotation and tillage, but these tools are often used without specific intention to manage weed seeds. Difficulties quantifying the weed seed bank, understanding seed bank phenology, and linking seed banks to emerged weed communities challenge existing soil seed bank management practices. Improved seed bank quantification methods could include DNA profiling of the soil seed bank, mark and recapture, or 3D LIDAR mapping. Successful and sustainable soil seed bank management must constrain functionally diverse and changing weed communities. Harvest weed seed controls represent a step forward, but over-reliance on this singular technique could make it short-lived. Researchers must explore tools inspired by other pest management disciplines, such as gene drives or habitat modification for predatory organisms. Future weed seed bank management will combine multiple complementary practices that enhance diverse agroecosystems. This article is protected by copyright. All rights reserved.

  11. Soil fauna: key to new carbon models

    NARCIS (Netherlands)

    Filser, Juliane; Faber, J.H.; Tiunov, Alexei V.; Brussaard, L.; Frouz, J.; Deyn, de G.B.; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, M.; Wall, D.H.; Querner, Pascal; Eijsackers, Herman; Jimenez, Juan Jose

    2016-01-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential

  12. Managing for soil health can suppress pests

    Directory of Open Access Journals (Sweden)

    Amanda Hodson

    2016-08-01

    Full Text Available A “healthy” soil can be thought of as one that functions well, both agronomically and ecologically, and one in which soil biodiversity and crop management work in synergy to suppress pests and diseases. UC researchers have pioneered many ways of managing soil biology for pest management, including strategies such as soil solarization, steam treatment and anaerobic soil disinfestation, as well as improvements on traditional methods, such as reducing tillage, amending soil with organic materials, and cover cropping. As managing for soil health becomes more of an explicit focus due to restrictions on the use of soil fumigants, integrated soil health tests will be needed that are validated for use in California. Other research needs include breeding crops for disease resistance and pest suppressive microbial communities as well as knowledge of how beneficial organisms influence plant health.

  13. Economic assumptions for evaluating reactor-related options for managing plutonium

    International Nuclear Information System (INIS)

    Rothwell, G.

    1996-01-01

    This paper discusses the economic assumptions in the U.S. National Academy of Sciences' report, Management and Disposition of Excess Weapons Plutonium: Reactor-Related Options (1995). It reviews the Net Present Value approach for discounting and comparing the costs and benefits of reactor-related options. It argues that because risks associated with the returns to plutonium management are unlikely to be constant over time, it is preferable to use a real risk-free rate to discount cash flows and explicitly describe the probability distributions for costs and benefits, allowing decision makers to determine the risk premium of each option. As a baseline for comparison, it assumes that one economic benefit of changing the current plutonium management system is a reduction in on-going Surveillance and Maintenance (S and M) costs. This reduction in the present value of S and M costs can be compared with the discounted costs of each option. These costs include direct construction costs, indirect costs, operating costs minus revenues, and decontamination and decommissioning expenses. The paper also discusses how to conduct an uncertainty analysis. It finishes by summarizing conclusions and recommendations and discusses how these recommendations might apply to the evaluation of Russian plutonium management options. (author)

  14. Soil physics and the water management of spatially variable soils

    International Nuclear Information System (INIS)

    Youngs, E.G.

    1983-01-01

    The physics of macroscopic soil-water behaviour in inert porous materials has been developed by considering water flow to take place in a continuum. This requires the flow region to consist of an assembly of representative elementary volumes, repeated throughout space and small compared with the scale of observations. Soil-water behaviour in swelling soils may also be considered as a continuum phenomenon so long as the soil is saturated and swells and shrinks in the normal range. Macroscale heterogeneity superimposed on the inherent microscale heterogeneity can take many forms and may pose difficulties in the definition and measurement of soil physical properties and also in the development and use of predictive theories of soil-water behaviour. Thus, measurement techniques appropriate for uniform soils are often inappropriate, and criteria for soil-water management, obtained from theoretical considerations of behaviour in equivalent uniform soils, are not applicable without modification when there is soil heterogeneity. The spatial variability of soil-water properties is shown in results from field experiments concerned with water flow measurements; these illustrate both stochastic and deterministic heterogeneity in soil-water properties. Problems of water management of spatially variable soils when there is stochastic heterogeneity appear to present an insuperable problem in the application of theory. However, for soils showing deterministic heterogeneity, soil-water theory has been used in the solution of soil-water management problems. Thus, scaling using similar media theory has been applied to the infiltration of water into soils that vary over a catchment area. Also, the drain spacing to control the water-table height in soils in which the hydraulic conductivity varies with depth has been calculated using groundwater seepage theory. (author)

  15. What determines how top managers value their stock options?

    NARCIS (Netherlands)

    Sautner, Z.; Weber, M.

    2008-01-01

    What determines how top managers value their executive stock options? We explore this question empirically by using a unique survey data set which combines subjective option valuation data with a wide set of individual-level variables. Inconsistent with the predictions of theory, individuals in our

  16. 41 CFR 102-194.5 - What is the Standard and Optional Forms Management Program?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is the Standard and Optional Forms Management Program? 102-194.5 Section 102-194.5 Public Contracts and Property Management... PROGRAMS 194-STANDARD AND OPTIONAL FORMS MANAGEMENT PROGRAM § 102-194.5 What is the Standard and Optional...

  17. Effects of soil management techniques on soil water erosion in apricot orchards.

    Science.gov (United States)

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-05-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide

  18. Sustainability likelihood of remediation options for metal-contaminated soil/sediment.

    Science.gov (United States)

    Chen, Season S; Taylor, Jessica S; Baek, Kitae; Khan, Eakalak; Tsang, Daniel C W; Ok, Yong Sik

    2017-05-01

    Multi-criteria analysis and detailed impact analysis were carried out to assess the sustainability of four remedial alternatives for metal-contaminated soil/sediment at former timber treatment sites and harbour sediment with different scales. The sustainability was evaluated in the aspects of human health and safety, environment, stakeholder concern, and land use, under four different scenarios with varying weighting factors. The Monte Carlo simulation was performed to reveal the likelihood of accomplishing sustainable remediation with different treatment options at different sites. The results showed that in-situ remedial technologies were more sustainable than ex-situ ones, where in-situ containment demonstrated both the most sustainable result and the highest probability to achieve sustainability amongst the four remedial alternatives in this study, reflecting the lesser extent of off-site and on-site impacts. Concerns associated with ex-situ options were adverse impacts tied to all four aspects and caused by excavation, extraction, and off-site disposal. The results of this study suggested the importance of considering the uncertainties resulting from the remedial options (i.e., stochastic analysis) in addition to the overall sustainability scores (i.e., deterministic analysis). The developed framework and model simulation could serve as an assessment for the sustainability likelihood of remedial options to ensure sustainable remediation of contaminated sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Calcific tendinitis of the rotator cuff: management options.

    Science.gov (United States)

    Suzuki, Kentaro; Potts, Aaron; Anakwenze, Oke; Singh, Anshu

    2014-11-01

    Calcific tendinitis of the rotator cuff tendons is a common cause of shoulder pain in adults and typically presents as activity-related shoulder pain. It is thought to be an active, cell-mediated process, although the exact pathophysiology remains unclear. Nonsurgical management continues to be the mainstay of treatment; most patients improve with modalities such as oral anti-inflammatory medication, physical therapy, and corticosteroid injections. Several options are available for patients who fail nonsurgical treatment, including extracorporeal shock wave therapy, ultrasound-guided needle lavage, and surgical débridement. These modalities alleviate pain by eliminating the calcific deposit, and several recent studies have demonstrated success with the use of these treatment options. Surgical management options include arthroscopic procedures to remove calcific deposits and subacromial decompression; however, the role of subacromial decompression and repair of rotator cuff defects created by removing these deposits remains controversial. Copyright 2014 by the American Academy of Orthopaedic Surgeons.

  20. Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites.

    Science.gov (United States)

    Bert, Valérie; Seuntjens, Piet; Dejonghe, Winnie; Lacherez, Sophie; Thuy, Hoang Thi Thanh; Vandecasteele, Bart

    2009-11-01

    processes and vegetation development mainly determined by hydrology, over alluvial soils affected by overbank sedimentation (including flood control areas), to dredged sediment disposal facilities where hydrology and vegetation might be affected or managed by human intervention. This gradient is also a gradient of systems with highly variable soil and hydrological conditions in a temporal scale (tidal marshes) versus systems with a distinct soil development over time (dredged sediment landfill sites). In some circumstances (e.g. to avoid flooding or to ensure navigation) dredging operations are necessary. Management and remediation of contaminated sediments are necessary to reduce the ecological risks and risks associated with food chain contamination and leaching. Besides disposal, classical remediation technologies for contaminated sediment also extract or destroy contaminants. These techniques imply the sediment structure deterioration and prohibitive costs. On the contrary, phytoremediation could be a low-cost option, particularly suited to in situ remediation of large sites and environmentally friendly. However, phytoremediation is rarely included in the management scheme of contaminated sediment and accepted as a viable option. Phytoremediation is still an emerging technology that has to prove its sustainability at field scale. Research needs to focus on optimisations to enhance applicability and to address the economic feasibility of phytoremediation.

  1. Soil Organic Carbon assessment on two different forest management

    Science.gov (United States)

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón

    2017-04-01

    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  2. Plant parasite control and soil fauna diversity.

    Science.gov (United States)

    Lavelle, Patrick; Blouin, Manuel; Boyer, Johnny; Cadet, Patrice; Laffray, Daniel; Pham-Thi, Anh-Thu; Reversat, Georges; Settle, William; Zuily, Yasmine

    2004-07-01

    The use of pesticides to control plant parasites and diseases has generated serious problems of public health and environmental quality, leading to the promotion of alternative Integrated Pest Management strategies that tend to rely more on natural processes and the active participation of farmers as observers and experimenters in their own fields. We present three case studies that point at different options provided by locally available populations of soil organisms, the maintenance of diverse populations of pests or increased resistance of plants to pest attacks by their interactions with earthworms and other useful soil organisms. These examples demonstrate the diversity of options offered by the non-planned agro-ecosystem diversity in pest control and the need to identify management options that maintain this biodiversity.

  3. Soil management planning for military installations: Strategy for identifying contaminated soils

    International Nuclear Information System (INIS)

    Makdisi, R.S.; Baskin, D.A.; Downey, D.; Taffinder, S.A.

    1992-01-01

    Numerous federal and state regulations mandate the proper handling and disposal and/or treatment of contaminated soils. The Land Disposal Ban and the increasing lack of new or proximal land disposal facilities, coupled with the increasing liability of off-site disposal, have created a need for altering the traditional methods of managing contaminated sods. To delineate soil management decisions, a Soil Management Plan (SMP) was developed which incorporates the substantive requirements of CERCLA/SARA and RCRA into the ongoing base activities (i.e., construction projects, utility repairs and maintenance) and other environmental projects (i.e., underground storage tank removals) that may involve contaminated soils. The decision-making process is developed to guide base personnel in recognizing contamination, following proper sampling and temporary storage procedures, preventing unnecessary human exposure and isolating soils for removal off-site or treatment on-site. The SMP also contains a comprehensive review of soil remediation technologies, such as biological treatment, soil vapor extraction, soil washing, biofiltering, thermal desorption, soil stabilization/solidification, chemical/physical treatment and incineration. Contaminant types expected at the federal military facility are cross-referenced to the appropriate remediation technologies to determine the specific base needs for a soil treatment unit. An example of a conceptual design for a hydrocarbon-contaminated soil treatment unit is presented for a base where underground fuel tanks are the principal source of soil contamination

  4. Comparing organic versus conventional soil management on soil respiration [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bence Mátyás

    2018-03-01

    Full Text Available Soil management has great potential to affect soil respiration. In this study, we investigated the effects of organic versus conventional soil management on soil respiration.  We measured the main soil physical-chemical properties from conventional and organic managed soil in Ecuador. Soil respiration was determined using alkaline absorption according to Witkamp.  Soil properties such as organic matter, nitrogen, and humidity, were comparable between conventional and organic soils in the present study, and in a further analysis there was no statically significant correlation with soil respiration. Therefore, even though organic farmers tend to apply more organic material to their fields, but this did not result in a significantly higher CO2 production in their soils in the present study.

  5. Exploiting Soil-Management Strategies for Climate Mitigation in the European Union: Maximizing "Win-Win" Solutions across Policy Regimes

    Directory of Open Access Journals (Sweden)

    Christian Bugge. Henriksen

    2011-12-01

    Full Text Available The Intergovernmental Panel on Climate Change (IPCC has identified a number of soil-management strategies that can be implemented to reduce GHG emissions. However, before deciding which of these strategies are most appropriate in any given situation, it is important to investigate how these strategies affect other aspects of sustainable development. For instance, some attempts to sequester carbon in the landscape could alter the soil's capacity to filter water. Alternatively, other strategies could unintentionally increase net energy consumption through greater fertilizer use. Focusing specifically on opportunities to implement soil-management strategies in the European Union (EU, we discuss the synergies and trade-offs of those strategies with respect to water resources management and energy security. The focus of the analysis is two-fold: first, we analyze the net benefit of strategies such as crop management, nutrient management, tillage and residue management, water management, and bioenergy vis-a-vis their implications for water resources and energy security; second, we undertake an assessment of the EU's relevant policy frameworks to assess whether the potential synergies from various soil-management strategies are being encouraged or, conversely, where perverse outcomes or trade-offs are likely. Our findings suggest there is much scope to encourage soil-management strategies in Europe that would mitigate greenhouse gas emissions, but these synergies are currently not fully exploited at the EU policy level. We identify a number of options for better policy integration among the Common Agricultural Policy, the Water Framework Directive, and the Climate Action and Renewable Energy Package.

  6. Soil type-depending effect of paddy management: composition and distribution of soil organic matter

    Science.gov (United States)

    Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid

    2016-04-01

    Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by

  7. Effects of soil management in vineyard on soil physical and chemical characteristics

    Directory of Open Access Journals (Sweden)

    Linares Rubén

    2014-01-01

    Full Text Available Cover crops in Mediterranean vineyards are scarcely used due to water competition between the cover crop and the grapevine; however, bare soil management through tillage or herbicides tends to have negative effects on the soil over time (organic matter decrease, soil structure and soil fertility degradation, compaction, etc. The objective of this study was to understand how soil management affects soil fertility, compaction and infiltration over time. To this end, two bare soil techniques were compared, tillage (TT and total herbicide (HT with two cover crops; annual cereal (CT and annual grass (AGT, established for 8 years. CT treatment showed the highest organic matter content, having the biggest amount of biomass incorporated into the soil. The annual adventitious vegetation in TT treatment (568 kg dry matter ha-1 that was incorporated into the soil, kept the organic matter content higher than HT levels and close to AGT level, in spite of the greater aboveground annual biomass production of this treatment (3632 kg dry matter ha-1 whereas only its roots were incorporated into the soil. TT presented the highest bulk density under the tractor track lines and a greatest resistance to penetration (at 0.2 m depth. AGT presented bulk density values (upper 0.4 m lower than TT and penetration resistance in CT lower (at 0.20 m depth than TT too. The HT decreased water infiltration due to a superficial crust generated for this treatment. These results indicate that the use of annual grass cover can be a good choice of soil management in Mediterranean climate due to soil quality improvement, with low competition and simple management.

  8. 13 CFR 107.250 - Exclusion of stock options issued by Licensee from Management Expenses.

    Science.gov (United States)

    2010-01-01

    ... Sbic § 107.250 Exclusion of stock options issued by Licensee from Management Expenses. Stock options... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Exclusion of stock options issued by Licensee from Management Expenses. 107.250 Section 107.250 Business Credit and Assistance SMALL...

  9. Soil washing treatability study

    International Nuclear Information System (INIS)

    Krstich, M.

    1995-12-01

    Soil washing was identified as a viable treatment process option for remediating soil at the FEMP Environmental Management Project (FEMP). Little information relative to the specific application and potential effectiveness of the soil washing process exists that applies to the types of soil at the FEMP. To properly evaluate this process option in conjunction with the ongoing FEMP Remedial Investigation/Feasibility Study (RI/FS), a treatability testing program was necessary to provide a foundation for a detailed technical evaluation of the viability of the process. In August 1991, efforts were initiated to develop a work plan and experimental design for investigating the effectiveness of soil washing on FEMP soil. In August 1992, the final Treatability Study Work Plan for Operable Unit 5: Soil Washing (DOE 1992) was issued. This document shall be referenced throughout the remainder of this report as the Treatability Study Work Plan (TSWP). The purpose of this treatability study was to generate data to support initial screening and the detailed analysis of alternatives for the Operable Unit 5 FS

  10. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01

    yields are less than 11 Mg ha-1 (175 bu ac-1) unless more intensive landscape management practices are implemented. Furthermore, although non-irrigated corn grain yields east and west of the primary Corn Belt may not consistently achieve the 11 Mg ha-1 yield levels, corn can still be part of an overall landscape approach for sustainable feedstock production. Another option for producers with consistently high yields (> 12.6 Mg ha-1 or 200 bu ac-1) that may enable them to sustainably harvest even more stover is to decrease their tillage intensity which will reduce fuel use, preserve rhizosphere carbon, and/or help maintain soil structure and soil quality benefits often attributed to no-till production systems. In conclusion, I challenge all ISTRO scientists to critically ask if your research is contributing to improved soil and crop management strategies that effectively address the complexity associated with sustainable food, feed, fiber and fuel production throughout the world.

  11. Option managing for radioactive metallic waste from the decommissioning of Kori Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chagn Lak [KEPCO International Nuclear Graduate School (KINGS), Ulsan (Korea, Republic of)

    2017-06-15

    The purpose of this paper is to evaluate several leading options for the management of radioactive metallic waste against a set of general criteria including safety, cost effectiveness, radiological dose to workers and volume reduction. Several options for managing metallic waste generated from decommissioning are evaluated in this paper. These options include free release, controlled reuse, and direct disposal of radioactive metallic waste. Each of these options may involve treatment of the metal waste for volume reduction by physical cutting or melting. A multi-criteria decision analysis was performed using the Analytic Hierarchy Process (AHP) to rank the options. Melting radioactive metallic waste to produce metal ingots with controlled reuse or free release is found to be the most effective option.

  12. Soil management practices for sustainable crop production

    International Nuclear Information System (INIS)

    Abalos, E.B.

    2005-01-01

    In a sustainable system, the soil is viewed as a fragile and living medium that must be protected and nurtured to ensure its long-term productivity and stability. However, due to high demand for food brought about by high population as well as the decline in agricultural lands, the soil is being exploited beyond its limit thus, leading to poor or sick soils. Sound soil management practices in the Philippines is being reviewed. The technologies, including the advantages and disadvantages are hereby presented. This includes proper cropping systems, fertilizer program, soil erosion control and correcting soil acidity. Sound soil management practices which conserve organic matter for long-term sustainability includes addition of compost, maintaining soil cover, increasing aggregates stability, soil tilt and diversity of soil microbial life. A healthy soil is a key component to sustainability as a health soil produce healthy crop plants and have optimum vigor or less susceptible to pests. (author)

  13. Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation

    OpenAIRE

    Tao, Hsiao-Hang; Slade, Eleanor M.; Willis, Katherine J.; Caliman, Jean Pierre; Snaddon, Jake Lanion

    2016-01-01

    Optimizing the use of available soil management practices in oil palm plantations is crucial to enhance long-term soil fertility and productivity. However, this needs a thorough understanding of the functional responses of soil biota to these management practices. To address this knowledge gap, we used the bait lamina method to investigate the effects of different soil management practices on soil fauna feeding activity, and whether feeding activity was associated with management-mediated cha...

  14. Evaluation of soil solarisation and bio-fumigation for the ...

    African Journals Online (AJOL)

    Soil-borne plant pathogens cause heavy losses to all major crops, leading to reductions in both yield and quality. Soil solarisation and bio-fumigation offer disease management options that are safe and reduce the use of pesticides for soil-borne plant pathogens. Mustard plant releases antimicrobial hydrolysis products, ...

  15. French programs for advanced waste management options

    Energy Technology Data Exchange (ETDEWEB)

    Salvatores, M [CEA-DRN (France); Schapira, J P [CNRS-IN2P3 (France); Mouney, H [EDF-DE (France)

    1997-11-01

    Several organisms (CEA, CNRS, EdF, etc.) are cooperating in France on Accelerator-Driven Systems (ADS). The major motivation is the investigation of innovative options for the radioactive waste management. The paper describes the ongoing activities and future directions of this cooperative effort in the field of ADS. 11 refs, 3 figs.

  16. Soil management practices under organic farming

    Science.gov (United States)

    Aly, Adel; Chami Ziad, Al; Hamdy, Atef

    2015-04-01

    Organic farming methods combine scientific knowledge of ecology and modern technology with traditional farming practices based on naturally occurring biological processes. Soil building practices such as crop rotations, intercropping, symbiotic associations, cover crops, organic fertilizers and minimum tillage are central to organic practices. Those practices encourage soil formation and structure and creating more stable systems. In farm nutrient and energy cycling is increased and the retentive abilities of the soil for nutrients and water are enhanced. Such management techniques also play an important role in soil erosion control. The length of time that the soil is exposed to erosive forces is decreased, soil biodiversity is increased, and nutrient losses are reduced, helping to maintain and enhance soil productivity. Organic farming as systematized and certifiable approach for agriculture, there is no surprise that it faces some challenges among both farmers and public sector. This can be clearly demonstrated particularly in the absence of the essential conditions needed to implement successfully the soil management practices like green manure and composting to improve soil fertility including crop rotation, cover cropping and reduced tillage. Those issues beside others will be fully discussed highlighting their beneficial impact on the environmental soil characteristics. Keywords: soil fertility, organic matter, plant nutrition

  17. Using real options analysis to support strategic management decisions

    Science.gov (United States)

    Kabaivanov, Stanimir; Markovska, Veneta; Milev, Mariyan

    2013-12-01

    Decision making is a complex process that requires taking into consideration multiple heterogeneous sources of uncertainty. Standard valuation and financial analysis techniques often fail to properly account for all these sources of risk as well as for all sources of additional flexibility. In this paper we explore applications of a modified binomial tree method for real options analysis (ROA) in an effort to improve decision making process. Usual cases of use of real options are analyzed with elaborate study on the applications and advantages that company management can derive from their application. A numeric results based on extending simple binomial tree approach for multiple sources of uncertainty are provided to demonstrate the improvement effects on management decisions.

  18. Municipal solid waste options : integrating organics management and residual disposal treatment : executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Cant, M. (comp.) [Totten Sims Hubicki Associates Ltd., Calgary, AB (Canada); Van der Werf, P. [2cg Inc., Edmonton, AB (Canada); Kelleher, M. [Kelleher Environmental, Toronto, ON (Canada); Merriman, D. [MacViro Consultants, Markham, ON (Canada); Fitcher, K. [Gartner Lee Ltd., Toronto, ON (Canada); MacDonald, N. [CH2M Hill Engineering Ltd., Calgary, AB (Canada)

    2006-04-15

    The Municipal Solid Waste (MSW) Options Report explored different MSW management options for 3 community sizes: 20,000, 80,000 and 200,0000 people. It was released at a time when many communities were developing waste management plans to cost-effectively reduce environmental impacts and conserve landfill capacity. The purpose of this report was to provide a greater understanding on the environmental, social, economic, energy recovery/utilization and greenhouse gas (GHG) considerations of MSW management. The report also demonstrated the interrelationships between the management of organics and residuals. It was based on information from existing waste diversion and organics management options and emerging residual treatment technology options. The following organics management and residual treatment disposal options were evaluated: composting; anaerobic digestion; sanitary landfills; bioreactor landfills; and thermal treatment. Composting was examined with reference to both source separated organics (SSO) and mixed waste composting. SSO refers to the separation of materials suitable for composting solid waste from households, while mixed waste composting refers to the manual or mechanical removal of recyclable material from the waste, including compost. The composting process was reviewed along with available technologies such as non-reactor windrow; aerated static pile; reactor enclosed channel; and, container tunnel. An evaluation of SSO and mixed waste composting was then presented in terms of environmental, social, financial and GHG impacts. refs., tabs., figs.

  19. Soil fauna: key to new carbon models

    OpenAIRE

    Filser, Juliane; Faber, Jack H.; Tiunov, Alexei V.; Brussaard, Lijbert; Frouz, Jan; Deyn, Gerlinde; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, Michel; Wall, Diana H.; Querner, Pascal; Eijsackers, Herman; Jiménez, Juan José

    2016-01-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential services provided by soils, policy makers depend on robust, predictive models identifying key drivers of SOM dynamics. Existing SOM models and suggested guidelines for future SOM modelling are defined ...

  20. Ditch network maintenance in peat-dominated boreal forests: Review and analysis of water quality management options.

    Science.gov (United States)

    Nieminen, Mika; Piirainen, Sirpa; Sikström, Ulf; Löfgren, Stefan; Marttila, Hannu; Sarkkola, Sakari; Laurén, Ari; Finér, Leena

    2018-03-27

    The objective of this study was to evaluate the potential of different water management options to mitigate sediment and nutrient exports from ditch network maintenance (DNM) areas in boreal peatland forests. Available literature was reviewed, past data reanalyzed, effects of drainage intensity modeled, and major research gaps identified. The results indicate that excess downstream loads may be difficult to prevent. Water protection structures constructed to capture eroded matter are either inefficient (sedimentation ponds) or difficult to apply (wetland buffers). It may be more efficient to decrease erosion, either by limiting peak water velocity (dam structures) or by adjusting ditch depth and spacing to enable satisfactory drainage without exposing the mineral soil below peat. Future research should be directed towards the effects of ditch breaks and adjusted ditch depth and spacing in managing water quality in DNM areas.

  1. A PC-based software package for modeling DOE mixed-waste management options

    International Nuclear Information System (INIS)

    Abashian, M.S.; Carney, C.; Schum, K.

    1995-02-01

    The U.S. Department of Energy (DOE) Headquarters and associated contractors have developed an IBM PC-based software package that estimates costs, schedules, and public and occupational health risks for a range of mixed-waste management options. A key application of the software package is the comparison of various waste-treatment options documented in the draft Site Treatment Plans prepared in accordance with the requirements of the Federal Facility Compliance Act of 1992. This automated Systems Analysis Methodology consists of a user interface for configuring complexwide or site-specific waste-management options; calculational algorithms for cost, schedule and risk; and user-selected graphical or tabular output of results. The mixed-waste management activities modeled in the automated Systems Analysis Methodology include waste storage, characterization, handling, transportation, treatment, and disposal. Analyses of treatment options identified in the draft Site Treatment Plans suggest potential cost and schedule savings from consolidation of proposed treatment facilities. This paper presents an overview of the automated Systems Analysis Methodology

  2. Evaluating Nitrogen Management Options for Reducing Nitrate Leaching from Northeast U.S. Pastures

    Directory of Open Access Journals (Sweden)

    William L. Stout

    2001-01-01

    Full Text Available Substantial amounts of nitrate nitrogen NO3-N can leach from intensively grazed pasture in the northeast U.S. where there is about 30 cm of groundwater recharge, annually. Management options for reducing NO3-N leaching were evaluated for this environment using the Cornell Net Carbohydrate and Protein System Model and a recently developed nitrogen leaching index. Management options utilizing energy supplementation of grazing dairy cows could improve nitrogen efficiency within the cow, but would not necessarily reduce NO3-N leaching at the pasture scale if stocking rate was not controlled. The management option of using white clover to supply nitrogen to the pasture decreased NO3-N leaching, but produced less dry matter yield, which in turn reduced stocking rate. The economic returns of reducing NO3-N with these options need to be evaluated in light of milk prices and commodity and fertilizer nitrogen costs. At current prices and costs, the economic benefit from the energy supplementation options is substantial.

  3. Colloid Release From Differently Managed Loess Soil

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Schjønning, Per; Møldrup, Per

    2012-01-01

    The content of water-dispersible colloids (WDC) in a soil can have a major impact on soil functions, such as permeability to water and air, and on soil strength, which can impair soil fertility and workability. In addition, the content of WDC in the soil may increase the risk of nutrient loss...... and of colloid-facilitated transport of strongly sorbing compounds. In the present study, soils from the Bad Lauchsta¨dt longterm static fertilizer experiment with different management histories were investigated to relate basic soil properties to the content of WDC, the content of water-stable aggregates (WSA......), and aggregate tensile strength. Our studies were carried out on soils on identical parent material under controlled management conditions, enabling us to study the long-term effects on soil physical properties with few explanatory variables in play. The content of WDC and the amount of WSA were measured...

  4. A Conceptual Framework for Soil management and its effect on Soil Biodiversity in Organic and Low Input Farming

    OpenAIRE

    Koopmans, Dr. C.J.; Smeding, Dr. F.W.

    2008-01-01

    Learning how to manage beneficial soil biological processes may be a key step towards developing sustainable agricultural systems. We designed a conceptual framework linking soil management practices to important soil-life groups and soil fertility services like nutrient cycling, soil structure and disease suppression. We selected a necessary parameter set to gain insight between management, soil life and soil support services. The findings help to develop management practices that optimise y...

  5. Energy options

    International Nuclear Information System (INIS)

    Hampton, Michael

    1999-01-01

    This chapter focuses on energy options as a means of managing exposure to energy prices. An intuitive approach to energy options is presented, and traditional definitions of call and put options are given. The relationship between options and swaps, option value and option exercises, commodity options, and option pricing are described. An end-user's guide to energy option strategy is outlined, and straight options, collars, participating swaps and collars, bull and bear spreads, and swaption are examined. Panels explaining the defining of basis risk, and discussing option pricing and the Greeks, delta hedging, managing oil options using the Black-Scholes model, caps, floors and collars, and guidelines on hedging versus speculation with options are included in the paper

  6. Market based generation: A promising market management option

    International Nuclear Information System (INIS)

    Siddiqi, R.

    1992-01-01

    It is proposed to ease the tension between demand management and supply side management at electric utilities through the introduction of a concept called market management. Market management provides a framework for developing and evaluating the attractiveness of new products and services such as dispersed generation hardware, implementation services, and complementary pricing structures. A market management strategy is the definition of market segments, creating products for those segments, evaluation of the profitability of the product-segment combinations, commitment of resources to those segments, and development of product and marketing plans for those segments. A brief analysis of backup generation is presented as an example of market management. In this example, the customer that is backed up shares some portion of the capital and maintenance costs of the backup unit through priority service rates; the utility and customers that are not backed up can obtain the use of the generating resource but pay only a portion of its costs. Backup generation programs have been found to provide utilities with the ability to meet peak load requirements more cheaply than by investing in peaking capacity. Other benefits for utilities include protection of market share, more efficient rates, and a new source of revenues. With the advances in the technology of small-scale generation, utilities can examine bundling various pricing options with market based generation to offer alternative value-added service options to customer segments with demand characteristics that make these technologies attractive. 3 figs

  7. A proposal for soil cover and management factor (C) for RUSLE in vineyards with different soil management across Europe

    Science.gov (United States)

    Gómez, José Alfonso; Biddoccu, Marcella; Guzman, Gema; Bauer, Thomas; Strauss, Peter; Winter, Silvia; Zaller, Johann; Cavallo, Eugenio

    2017-04-01

    The Revised Universal Soil Loss Equation RUSLE (Dabney et al., 2012) is commonly used to estimate rates of soil erosion caused by rainfall and its associated overland flow on cropland and many other disturbed and undisturbed lands. Several studies have been focused on the evaluation of erosion risk in vineyards across Europe, which has four countries, France, Italy, Spain and Portugal, among the world's top ten vine growers. Other European countries, such as Romania, Greece, Austria, Serbia and Hungary, also have significant surface devoted to vineyards (FAO, 2014). However, literature shows a wide variability among C factors from different sources (Auerswald and Schwab, 1999; Kouli et al., 2009; Novara et al., 2011; Pacheco et al., 2014; Rodrigo Comino et al., 2016) that complicates their interpretation and use outside the area where they were developed. Gómez et al. (2016) presented a simplified erosion prediction model based on RUSLE, ORUSCAL, to demonstrate the possibility to calibrate RUSLE for a broad range of management conditions in vineyards with limited datasets. This approach have already been pursued successfully in olives (Gómez et al. 2003, Vanwalleghem et al., 2011). This communication reports the results of an evaluation of the calibration strategies and model predictions of ORUSCAL using a long-term experiment dataset (Bidoccu et al., 2016) in a vineyard in Northern Italy, and its implementation to develop soil cover and management factors (C) in three different soil, climate and management conditions across Europe: Southern Spain, Northern Italy and Austria. The communication, furthermore, explores and discusses of the application of the ORUSCAL model to additional vineyards areas in France and Romania in the context of the Vinedivers project (www.vinedivers.eu). Keywords: vineyard, erosion, soil management, RUSLE, model. References Auerswald K., Schwab, S. 1999. Erosion risk (C factor) of different viticultural practices. Vitic. Enol. Sci.54

  8. Effect of soil type and soil management on soil physical, chemical and biological properties in commercial organic olive orchards in Southern Spain

    Science.gov (United States)

    Gomez, Jose Alfonso; Auxiliadora Soriano, Maria; Montes-Borrego, Miguel; Navas, Juan Antonio; Landa, Blanca B.

    2014-05-01

    One of the objectives of organic agriculture is to maintain and improve soil quality, while simultaneously producing an adequate yield. A key element in organic olive production is soil management, which properly implemented can optimize the use of rainfall water enhancing infiltration rates and controlling competition for soil water by weeds. There are different soil management strategies: eg. weed mowing (M), green manure with surface tillage in spring (T), or combination with animal grazing among the trees (G). That variability in soil management combined with the large variability in soil types on which organic olive trees are grown in Southern Spain, difficult the evaluation of the impact of different soil management on soil properties, and yield as well as its interpretation in terms of improvement of soil quality. This communications presents the results and analysis of soil physical, chemical and biological properties on 58 soils in Southern Spain during 2005 and 2006, and analyzed and evaluated in different studies since them. Those 58 soils were sampled in 46 certified commercial organic olive orchards with four soil types as well as 12 undisturbed areas with natural vegetation near the olive orchards. The four soil types considered were Eutric Regosol (RGeu, n= 16), Eutric Cambisol (CMeu, n=16), Calcaric Regosol (RGca, n=13 soils sampled) and Calcic Cambisol (CMcc), and the soil management systems (SMS) include were 10 light tillage (LT), 16 sheep grazing (G), 10 tillage (T), 10 mechanical mowing (M), and 12 undisturbed areas covered by natural vegetation (NV-C and NV-S). Our results indicate that soil management had a significant effect on olive yield as well as on key soil properties. Among these soil properties are physical ones, such as infiltration rate or bulk density, chemical ones, especially organic carbon concentration, and biological ones such as soil microbial respiration and bacterial community composition. Superimpose to that soil

  9. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  10. Risk management with options and futures under liquidity risk

    OpenAIRE

    Adam-Müller, A F A; Panaretou, A

    2009-01-01

    Futures hedging creates liquidity risk through marking to market. Liquidity risk matters if interim losses on a futures position have to be financed at a markup over the risk-free rate. This study analyzes the optimal risk management and production decisions of a firm facing joint price and liquidity risk. It provides a rationale for the use of options on futures in imperfect capital markets. If liquidity risk materializes, the firm sells options on futures in order to partly cover this liqui...

  11. Impact of land management on soil structure and soil hydraulic properties

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Jirků, V.; Nikodem, A.; Mühlhanselová, M.; Žigová, Anna

    2010-01-01

    Roč. 12, - (2010) ISSN 1029-7006. [European Geosciences Union General Assembly 2010. 02.05.2010-07.05.2010, Wienna] R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : land management * soil structure * soil hydraulic properties * micromorphology Subject RIV: DF - Soil Science

  12. Forest managment options for sequestering carbon in Mexico

    International Nuclear Information System (INIS)

    Masera, O.R.; Bellon, M.R.; Segura, G.

    1995-01-01

    This paper identifies and examines economic response options to avoid carbon emissions and increase carbon sequestration in Mexican forests. A ''Policy'' scenario covering the years 2000, 2010 and 2030 and a ''Technical Potential'' scenario (year 2030) are developed to examine the potential carbon sequestration and costs of each response option. Benefit-cost analyses for three case studies, including management of a pulpwood plantation, a native temperate forest and a native tropical evergreen forest are presented and discussed. The study suggests that a large potential for reducing carbon emissions and increasing carbon sequestration exists in Mexican forests. However, the achievement of this potential will require important reforms to the current institutional setting of the forest sector. The management of native temperate and tropical forests offers the most promising alternatives for carbon sequestration. The cost effectiveness of commercial plantations critically depends on very high site productivity. Restoration of degraded forest lands; particularly through the establishment of energy plantations, also shows a large carbon sequestration potential. (Author)

  13. Evaluation of dairy effluent management options using multiple criteria analysis.

    Science.gov (United States)

    Hajkowicz, Stefan A; Wheeler, Sarah A

    2008-04-01

    This article describes how options for managing dairy effluent on the Lower Murray River in South Australia were evaluated using multiple criteria analysis (MCA). Multiple criteria analysis is a framework for combining multiple environmental, social, and economic objectives in policy decisions. At the time of the study, dairy irrigation in the region was based on flood irrigation which involved returning effluent to the river. The returned water contained nutrients, salts, and microbial contaminants leading to environmental, human health, and tourism impacts. In this study MCA was used to evaluate 11 options against 6 criteria for managing dairy effluent problems. Of the 11 options, the MCA model selected partial rehabilitation of dairy paddocks with the conversion of remaining land to other agriculture. Soon after, the South Australian Government adopted this course of action and is now providing incentives for dairy farmers in the region to upgrade irrigation infrastructure and/or enter alternative industries.

  14. [Effects of intensive management on soil C and N pools and soil enzyme activities in Moso bamboo plantations.

    Science.gov (United States)

    Yang, Meng; Li, Yong Fu; Li, Yong Chun; Xiao, Yong Heng; Yue, Tian; Jiang, Pei Kun; Zhou, Guo Mo; Liu, Juan

    2016-11-18

    In order to elucidate the effects of intensive management on soil carbon pool, nitrogen pool, enzyme activities in Moso bamboo (Phyllostachys pubescens) plantations, we collected soil samples from the soil surface (0-20 cm) and subsurface (20-40 cm) layers in the adjacent Moso bamboo plantations with extensive and intensive managements in Sankou Township, Lin'an City, Zhejiang Province. We determined different forms of C, N and soil invertase, urease, catalase and acid phosphatase activities. The results showed that long-term intensive management of Moso bamboo plantations significantly decreased the content and storage of soil organic carbon (SOC), with the SOC storage in the soil surface and subsurface layers decreased by 13.2% and 18.0%, respectively. After 15 years' intensive management of Masoo bamboo plantations, the contents of soil water soluble carbon (WSOC), hot water soluble carbon (HWSOC), microbial carbon (MBC) and readily oxidizable carbon (ROC) were significantly decreased in the soil surface and subsurface layers. The soil N storage in the soil surface and subsurface layers in intensively managed Moso bamboo plantations increased by 50.8% and 36.6%, respectively. Intensive management significantly increased the contents of nitrate-N (NO 3 - -N) and ammonium-N (NH 4 + -N), but decreased the contents of water-soluble nitrogen (WSON) and microbial biomass nitrogen (MBN). After 15 years' intensive management of Masoo bamboo plantations, the soil invertase, urease, catalase and acid phosphatase activities in the soil surface layer were significantly decreased, the soil acid phosphatase activity in the soil subsurface layer were significantly decreased, and other enzyme activities in the soil subsurface layer did not change. In conclusion, long-term intensive management led to a significant decline of soil organic carbon storage, soil labile carbon and microbial activity in Moso bamboo plantations. Therefore, we should consider the use of organic

  15. Soil Quality Evaluation Using the Soil Management Assessment Framework (SMAF in Brazilian Oxisols with Contrasting Texture

    Directory of Open Access Journals (Sweden)

    Maurício Roberto Cherubin

    Full Text Available ABSTRACT The Soil Management Assessment Framework (SMAF was developed in the U.S.A. and has been used as a tool for assessing and quantifying changes in soil quality/health (SQ induced by land uses and agricultural practices in that region and elsewhere throughout the world. An initial study using SMAF in Brazil was recently published, but additional research for a variety of soils and management systems is still needed. Our objective was to use data from five studies in southern Brazil to evaluate the potential of SMAF for assessing diverse land-use and management practices on SQ. The studies examined were: (i horizontal and vertical distribution of soil properties in a long-term orange orchard; (ii impacts of long-term land-use change from native vegetation to agricultural crops on soil properties; (iii effects of short-term tillage on soil properties in a cassava production area; (iv changes in soil properties due to mineral fertilizer and pig slurry application coupled with soil tillage practices; and (v row and inter-row sowing effects on soil properties in a long-term no-tillage area. The soils were classified as Oxisols, with clay content ranging from 180 to 800 g kg-1. Six SQ indicators [pH(H2O, P, K, bulk density, organic C, and microbial biomass] were individually scored using SMAF curves and integrated into an overall Soil Quality Index (SQI focusing on chemical, physical, and biological sectors. The SMAF was sensitive for detecting SQ changes induced by different land uses and management practices within this wide textural range of Brazilian Oxisols. The SMAF scoring curve algorithms properly transformed the indicator values expressed in different units into unitless scores ranging from 0-1, thus enabling the individual indicators to be combined into an overall index for evaluating land-use and management effects on soil functions. Soil sector scores (i.e., chemical, physical, and biological identify the principal soil limitations

  16. Development of integrated waste management options for irradiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wareing, Alan; Abrahamsen-Mills, Liam; Fowler, Linda; Jarvis, Richard; Banford, Anthony William [National Nuclear Laboratory, Warrington (United Kingdom); Grave, Michael [Doosan Babcock, Gateshead (United Kingdom); Metcalfe, Martin [National Nuclear Laboratory, Gloucestershire (United Kingdom); Norris, Simon [Radioactive Waste Management Limited, Oxon (United Kingdom)

    2017-08-15

    The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  17. Assessing the dynamics of the upper soil layer relative to soil management practices

    Science.gov (United States)

    Hatfield, J.; Wacha, K.; Dold, C.

    2017-12-01

    The upper layer of the soil is the critical interface between the soil and the atmosphere and is the most dynamic in response to management practices. One of the soil properties most reflective to changes in management is the stability of the aggregates because this property controls infiltration of water and exchange of gases. An aggregation model has been developed based on the factors that control how aggregates form and the forces which degrade aggregates. One of the major factors for this model is the storage of carbon into the soil and the interaction with the soil biological component. To increase soil biology requires a stable microclimate that provides food, water, shelter, and oxygen which in turn facilitates the incorporation of organic material into forms that can be combined with soil particles to create stable aggregates. The processes that increase aggregate size and stability are directly linked the continual functioning of the biological component which in turn changes the physical and chemical properties of the soil. Soil aggregates begin to degrade as soon as there is no longer a supply of organic material into the soil. These processes can range from removal of organic material and excessive tillage. To increase aggregation of the upper soil layer requires a continual supply of organic material and the biological activity that incorporates organic material into substances that create a stable aggregate. Soils that exhibit stable soil aggregates at the surface have a prolonged infiltration rate with less runoff and a gas exchange that ensures adequate oxygen for maximum biological activity. Quantifying the dynamics of the soil surface layer provides a quantitative understanding of how management practices affect aggregate stability.

  18. Socia preferences to Mopane woodland management options: A ...

    African Journals Online (AJOL)

    Socia preferences to Mopane woodland management options: A case study from Southern Zimbabwe. TA Gondo, C Musvoto, T Mujawo. Abstract. No Abstract. Discovery and Innovation Vol. 19 (1&2) 2007: pp.4-14. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  19. Hydrological services and biodiversity conservation under forestation scenarios: comparing options to improve watershed management

    Science.gov (United States)

    Carvalho-Santos, Claudia; Nunes, João Pedro; Sousa-Silva, Rita; Gonçalves, João; Pradinho Honrado, João

    2015-04-01

    Humans rely on ecosystems for the provision of hydrological services, namely water supply and water damage mitigation, and promoting forests is a widely used management strategy for the provision of hydrological services. Therefore, it is important to model how forests will contribute for this provision, taking into account the environmental characteristics of each region, as well as the spatio-temporal patterns of societal demand. In addition, ensuring forest protection and the delivery of forest ecosystem services is one of the aims included in the European Union biodiversity strategy to 2020. On the other hand, forest management for hydrological services must consider possible trade-offs with other services provision, as well as with biodiversity conservation. Accurate modeling and mapping of both hydrological services and biodiversity conservation value is thus important to support spatial planning and land management options involving forests. The objectives of this study were: to analyze the provision and spatial dynamics of hydrological services under two forest cover change scenarios (oak and eucalyptus/pine) compared to the current shrubland-dominated landscape; and to evaluate their spatial trade-offs with biodiversity conservation value. The Vez watershed (250km2), in northwest Portugal, was used as case-study area. SWAT (Soil and Water Assessment Tool) was applied to simulate the provision of hydrological services (water supply quantity, timing and quality; soil erosion and flood regulation), and was calibrated against daily discharge, sediments, nitrates and evapotranspiration. Good agreement was obtained between model predictions and field measurements. The maps for each service under the different scenarios were produced at the Hydrologic Response Unit (HRU) level. Biodiversity conservation value was based on nature protection regimes and on expert valuation applied to a land cover map. Statistical correlations between hydrological services provision

  20. Soil management in rainfed olive orchards may result in conflicting effects on olive production and soil fertility

    Directory of Open Access Journals (Sweden)

    I. Q. Ferreira

    2013-03-01

    Full Text Available The adoption of a sustainable soil management system is essential for the steep slopes and low fertility soils still supporting rainfed olive orchards in the Mediterranean basin. The effect of the soil management on olive yield, tree nutritional status and soil fertility was studied in a rainfed olive orchard located in NE Portugal that had been managed since its earliest days as a sheep-walk. In 2001, three different soil management systems were established: Sheep-walk, in which the vegetation was managed with a flock of sheep; Tillage, where the vegetation was controlled by conventional tillage; and Glyphosate, where a glyphosate-based herbicide was applied. The soil management systems had a pronounced effect on olive yield. The accumulated olive yields between 2002 and 2011 were 187.2, 142.9 and 89.5 kg tree-1, respectively in the Glyphosate, Tillage and Sheep-walk treatments. However, the effect of soil management on tree nutritional status was not so clear. On the other hand, the pools of organic carbon and N in the soil, and also the soil available N and phosphorus (P, were found to be less in the Glyphosate and Tillage treatments in comparison with the Sheep-walk. In these soils, N appeared as a much more limiting factor for crop growth than P. In rainfed orchards, the tolerance to herbaceous vegetation appears to be a determining factor in sustainability, which regulates annual crop yields and soil fertility. The higher the tolerance to herbaceous species, the lower the olive yields, but the better are the soil fertility parameters.

  1. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil.

    OpenAIRE

    FRANCHINI, J. C.; CRISPINO, C. C.; SOUZA, R. A.; TORRES, E.; HUNGRIA, M.

    2006-01-01

    Metadata only record This article attempts to recognize soil parameters that can be used to monitor soil quality under different crop and soil management systems. The rates of CO2 emissions (soil respiration) were affected by variations in the sampling period, as well as in soil management and crop rotation. Considering all samples, CO2 emissions were 21% greater in conventional tillage. Soil microbial biomass was also influenced by sampling period and soil management, but not by crop rota...

  2. Bee diseases: Examining options for their management in Africa ...

    African Journals Online (AJOL)

    Bee diseases: Examining options for their management in Africa. ... In Europe and Asia, the problem of damage to bees by Varroa-Mites has ... has become more complicated, more work-intensive and more cost-intensive. ... from 32 Countries:.

  3. Soil-water salinity pollution: extent, management and potential impacts on agricultural sustain ability

    International Nuclear Information System (INIS)

    Javid, M.A.; Ali, K.; Javed, M.; Mahmood, A.

    1999-01-01

    One of the significant environmental hazards of irrigated agriculture is the accumulation of salts in the soil. The presence of large quantities of certain soluble salts badly affects the physical, chemical, biological and fertility characteristics of the soils. This pollution of soil salinity and its toxic degradation directly affects plants, hence impacting the air filters of nature. The soil and water salinity has adversely reduced the yield of our major agricultural crops to an extent that agricultural sustainability is being threatened. Salinity has also dwindled the survival of marine life, livestock, in addition to damaging of construction works. The problem can be estimated from the fact that out of 16.2 m.ha of irrigated land of Pakistan, 6.3 . ha are salt affected in the Indus Plain. The state of water pollution can further be assessed from the fact that presently about 106 MAF of water is diverted from the rivers into the canals of the Indus Plain which contains 28 MT of salts. Due to soil and water pollution more than 40,000 ha of good irrigated land goes out of cultivation every year. This it has drastically reduced the potential of our agricultural lands. Hence, an estimated annual loss of Rs. 14,000 million has been reported due to this soil-water salinity pollution in Pakistan. Some management options to mitigate the soil - water salinity pollution are proposed. (author)

  4. Usage of Option Contracts for Foreign Exchange Risk Management

    Directory of Open Access Journals (Sweden)

    Daniel Armeanu

    2007-06-01

    Full Text Available Today in Romania, in the context of the liberalization of the capital account and under a floating exchange rate (official is a managed floating currency regime established by National Bank of Romania the foreign exchange rate is very volatile. In consequence the financial institutions, corporations and, especially, the importers and exporters have to deal with a big exposition of currency risk related with their activities. Financial institutions and corporations today must adopt new roles in order to compete successfully in the explosively evolving foreign exchange markets. The methods, instruments and techniques used to manage foreign exchange risk are more complex than ever before. The objective of our paper is to provide the techniques and insights needed to pinpoint opportunities and control risks. We will present the most modern practical methods for managing the currency risk: option strategies (spread, strangle, straddle, etc. Also we will present the advantage, the disadvantage and our opinions related with the use of currency derivatives instruments (especially currency strategies options, making a comparative analysis.

  5. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects on soil, leaf and fruit element concentrations of organic (compost, straw mulch and hand weeding) and integrated (inorganic fertilisers and herbicide usage; IP) soil surface management practices in the tree rows, in combination with weed covers, cover crops and straw mulch in the work rows, were investigated in a ...

  6. Development of integrated waste management options for irradiated graphite

    Directory of Open Access Journals (Sweden)

    Alan Wareing

    2017-08-01

    Full Text Available The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  7. Integrated management in calcareous soils

    International Nuclear Information System (INIS)

    Castilla, Luis A; Salive, A

    2001-01-01

    Rice growing is developed in different kinds of soils, and some of the have high bases saturation, especially calcium and magnesium, as well as medium to high carbonate contents. This causes negative effects in the development and growth of the rice plant. As a consequence, several researching actions have been under-taken, and they are aimed at becoming this problem in economically manageable. Among the strategies we have, some of them are as follows: evaluating rice varieties presenting tolerance to these soils; using inorganic fertilizers looking for a response to elements, sources, dose and application times; evaluating organic fertilizers, mainly the green ones; using amendments, and physical soil management. According to the results, we have the fertilization response with major and minor elements and with the statistical differences at a 0.05% level. A response was found with elements such as zinc, copper, boron, iron, phosphorus and potassium. However, the efficiency of these elements depends on the addition of amendments as sulfur, the use of green fertilizers and farming systems that eliminate the superficial compaction of these soils, besides the use of varieties which are more tolerant to alkalinity, just like Fedearroz-50

  8. Effects of golf course management on subsurface soil properties in Iowa

    Science.gov (United States)

    Streeter, Matthew T.; Schilling, Keith E.

    2018-05-01

    Currently, in the USA and especially in the Midwest region, urban expansion is developing turfgrass landscapes surrounding commercial sites, homes, and recreational areas on soils that have been agriculturally managed for decades. Often, golf courses are at the forefront of conversations concerning anthropogenic environmental impacts as they account for some of the most intensively managed soils in the world. Iowa golf courses provide an ideal location to evaluate whether golf course management is affecting the quality of soils at depth. Our study evaluated how soil properties relating to soil health and resiliency varied with depth at golf courses across Iowa and interpreted relationships of these properties to current golf course management, previous land use, and inherent soil properties. Systematic variation in soil properties including sand content, NO3, and soil organic matter (SOM) were observed with depth at six Iowa golf courses among three landform regions. Variability in sand content was identified between the 20 and 50 cm depth classes at all courses, where sand content decreased by as much as 37 %. Highest concentrations of SOM and NO3 were found in the shallowest soils, whereas total C and P variability was not related to golf course management. Sand content and NO3 were found to be directly related to golf course management, particularly at shallow depths. The effects of golf course management dissipated with depth and deeper soil variations were primarily due to natural geologic conditions. The two abovementioned soil properties were very noticeably altered by golf course management and may directly impact crop productivity, soil health, and water quality, and while NO3 may be altered relatively quickly in soil through natural processes, particle size of the soil may not be altered without extensive mitigation. Iowa golf courses continue to be developed in areas of land use change from historically native prairies and more recently agriculture to

  9. Understanding cropping systems in the semi-arid environments of Zimbabwe: options for soil fertility management

    NARCIS (Netherlands)

    Ncube, B.

    2007-01-01

    African smallholder farmers face perennial food shortages due to low crop yields. The major cause of poor crop yields is soil fertility decline. The diversity of sites and soils between African farming systems isgreat,therefore strategies to solve soil fertility problems

  10. Nuclear spent fuel management. Experience and options

    International Nuclear Information System (INIS)

    1986-01-01

    Spent nuclear fuel can be stored safely for long periods at relatively low cost, but some form of permanent disposal will eventually be necessary. This report examines the options for spent fuel management, explores the future prospects for each stage of the back-end of the fuel cycle and provides a thorough review of past experience and the technical status of the alternatives. Current policies and practices in twelve OECD countries are surveyed

  11. New options in the management of tendinopathy

    Science.gov (United States)

    Maffulli, Nicola; Longo, Umile Giuseppe; Loppini, Mattia; Spiezia, Filippo; Denaro, Vincenzo

    2010-01-01

    Tendon injuries can be acute or chronic, and caused by intrinsic or extrinsic factors, either alone or in combination. Tendinopathies are a common cause of disability in occupational medicine and account for a substantial proportion of overuse injuries in sports. Tendinopathy is essentially a failed healing response, with haphazard proliferation of tenocytes, abnormalities in tenocytes, with disruption of collagen fibres and subsequent increase in noncollagenous matrix. The scientific evidence base for managing tendinopathies is limited. What may appear clinically as an “acute tendinopathy” is actually a well advanced failure of a chronic healing response in which there is neither histologic nor biochemical evidence of inflammation. In this review we report the new options for the management of tendinopathy, including eccentric exercises, extracorporeal shockwave therapy, injections (intratendinous injections of corticosteroids, aprotinin, polidocanol platelet-rich plasma, autologous blood injection, high-volume injections) and surgery. Open surgery aims to excise fibrotic adhesions, remove areas of failed healing and make multiple longitudinal incisions in the tendon to detect intratendinous lesions, and to restore vascularity and possibly stimulate the remaining viable cells to initiate cell matrix response and healing. New surgical techniques aim to disrupt the abnormal neoinnervation to interfere with the pain sensation caused by tendinopathy. These procedures are intrinsically different from the classical ones in present use, because they do not attempt to address directly the pathologic lesion, but act only to denervate them. They include endoscopy, electrocoagulation, and minimally invasive stripping. Further randomized controlled trials are necessary to clarify better the best therapeutic options for the management of tendinopathy. PMID:24198540

  12. Considerations Regarding ROK Spent Nuclear Fuel Management Options

    International Nuclear Information System (INIS)

    Braun, Chaim; Forrest, Robert

    2013-01-01

    In this paper we discuss spent fuel management options in the Republic of Korea (ROK) from two interrelated perspectives: Centralized dry cask storage and spent fuel pyroprocessing and burning in sodium fast reactors (SFRs). We argue that the ROK will run out of space for at-reactors spent fuel storage by about the year 2030 and will thus need to transition centralized dry cask storage. Pyroprocessing plant capacity, even if approved and successfully licensed and constructed by that time, will not suffice to handle all the spent fuel discharged annually. Hence centralized dry cask storage will be required even if the pyroprocessing option is successfully developed by 2030. Pyroprocessing is but an enabling technology on the path leading to fissile material recycling and burning in future SFRs. In this regard we discuss two SFR options under development in the U. S.: the Super Prism and the Travelling Wave Reactor (TWR). We note that the U. S. is further along in reactor development than the ROK. The ROK though has acquired more experience, recently in investigating fuel recycling options for SFRs. We thus call for two complementary joint R and D project to be conducted by U. S. and ROK scientists. One leading to the development of a demonstration centralized away-from-reactors spent fuel storage facility. The other involve further R and D on a combined SFR-fuel cycle complex based on the reactor and fuel cycle options discussed in the paper

  13. Soil Health Assessment Approaches and the Cornell Framework

    Science.gov (United States)

    van Es, Harold

    2016-04-01

    Soil health constraints beyond nutrient limitations and excesses currently limit agroecosystem productivity and sustainability, resilience to drought and extreme rainfall, and progress in soil and water conservation. With mounting pressure to produce food, feed, fiber, and even fuel for an increasing population, the concept of soil health is gaining national and international attention. Multiple regional, national, and global efforts are now leveraging that work to reach new stakeholder audiences, so that soil health management is expanding into mainstream agriculture. Each grower is generally faced with a unique situation in the choice of management options to address soil health constraints and each system affords its own set of opportunities or limitations to soil management. A more comprehensive understanding of soil health status can better guide farmers' management decisions. Until recently, there has not been a formalized decision making process for implementing a soil health management system that alleviates field-specific constrains identified through standard measurements and then maintains improved soil health. This presentation will discuss current US-based efforts related to soil health assessment, including efforts to build national consensus on appropriate methods for simple (inexpensive) and comprehensive tests. This includes the Cornell Soil Health Management Planning and Implementation Framework. The most relevant components of the framework are 1) measurement of indicators that represent critical soil processes, 2) scoring of measured values that allows for interpretation, and 3) linkage of identified constraints with management practices. Land managers can monitor changes over time through further assessment, and adapt management practices to achieve chosen goals. We will discuss the full tests and approaches for simplification.

  14. Assessment of Soil Protection to Support Forest Planning: an Experience in Southern Italy

    Directory of Open Access Journals (Sweden)

    Fabrizio Ferretti

    2014-04-01

    Full Text Available Aim of study: to support landscape planning when soil-erosion control and water cycle regulation represent relevant issues for forest management. A methodological approach - based on simplified index – is proposed in order to assess the protective efficacy of forests on soils (indirect protection. This method is aimed at supporting technicians who are requested to define the most suitable management guidelines and silvicultural treatments.Area of study: Southern Apennines (Alto Agri district – Basilicata Region - Italy, where a landscape planning experimentation was implemented. Material and Methods: The data to estimate the parameters used for the simplified index calculation are retrieved from a non aligned systematic forest inventory. The method considers: 1 the tendency towards instability, 2 the protective action of forest cover and 3 different silvicultural options.Main results: For the analysed forest categories, the results indicate the situations in which hydrogeological hazard is high. The cross-reading of these data with the values based on years of partial and total uncovering of the ground according to different silvicultural options (for each forest category in the reference period of 100 years has supported the definition of silviculture treatments and management options suitable for the considered forest formations.Research highlights: The proposed method can effectively support technicians in the field by highlighting situations of major hazard risk. Thanks to the joined assessment of different silvicultural options for each forest category, a series of silvicultural treatments, capable of better protecting the soil, can be already defined in the field survey phase.Key words: Alto Agri district (Italy; Forest Landscape Management Planning (FLMP; management; silvicultural treatment; protective function and soil erosion.

  15. Assessment of Soil Protection to Support Forest Planning: an Experience in Southern Italy

    Energy Technology Data Exchange (ETDEWEB)

    Ferreti, F.; Cantiani, P.; Meo, I. de; Paletto, A.

    2014-06-01

    Aim of study: To support landscape planning when soil-erosion control and water cycle regulation represent relevant issues for forest management. A methodological approach -based on simplified index- is proposed in order to assess the protective efficacy of forests on soils (indirect protection). This method is aimed at supporting technicians who are requested to define the most suitable management guidelines and silviculture treatments. Area of study: Southern Apennines (Alto Agri district -Basilicata Region- Italy), where a landscape planning experimentation was implemented. Material and methods: The data to estimate the parameters used for the simplified index calculation are retrieved from a non aligned systematic forest inventory. The method considers: 1) the tendency towards instability, 2) the protective action of forest cover and 3) different silviculture options. Main results: For the analysed forest categories, the results indicate the situations in which hydrogeological hazard is high. The cross-reading of these data with the values based on years of partial and total uncovering of the ground according to different silviculture options (for each forest category in the reference period of 100 years) has supported the definition of silviculture treatments and management options suitable for the considered forest formations. Research highlights The proposed method can effectively support technicians in the field by highlighting situations of major hazard risk. Thanks to the joined assessment of different silviculture options for each forest category, a series of silviculture treatments, capable of better protecting the soil, can be already defined in the field survey phase. Key words: Alto Agri district (Italy); Forest Landscape Management Planning (FLMP); management; silviculture treatment; protective function e soil erosion. (Author)

  16. USDA soil classification system dictates site surface management

    International Nuclear Information System (INIS)

    Bowmer, W.J.

    1985-01-01

    Success or failure of site surface management practices greatly affects long-term site stability. The US Department of Agriculture (USDA) soil classification system best documents those parameters which control the success of installed practices for managing both erosion and surface drainage. The USDA system concentrates on soil characteristics in the upper three meters of the surface that support the associated flora both physically and physiologically. The USDA soil survey first identifies soil series based on detailed characteristics that are related to production potential. Using the production potential, land use capability classes are developed. Capability classes reveal the highest and best agronomic use for the site. Lower number classes are considered arable while higher number classes are best suited for grazing agriculture. Application of ecological principles based on the USDA soil survey reveals the current state of the site relative to its ecological potential. To assure success, site management practices must be chosen that are compatible with both production capability and current state of the site

  17. Soil and plant responses from land application of saline-sodic waters: Implications of management

    Energy Technology Data Exchange (ETDEWEB)

    Vance, G.F.; King, L.A.; Ganjegunte, G.K. [University of Wyoming, Laramie, WY (United States). Department for Renewable Resources

    2008-09-15

    Land application of co-produced waters from coalbed natural gas (CBNG) wells is one management option used in the Powder River Basin (PRB) of Wyoming and Montana. Unfortunately the co-produced CBNG waters may be saline and/or sodic. The objective of this study was to examine the effects of irrigation with CBNG waters on soils and plants in the PRB. Soil properties and vegetation responses resulting from 1 to 4 yr of saline sodic water (electrical conductivity (EC) 1.6-4.8 dS m{sup -1} sodium adsorption ratio (SAR), 17-57 mmol L- applications were studied during 2003 and 2004 field seasons on sites (Ustic Torriorthent Haplocambid, Haplargid and Paleargid) representing native range grasslands seeded grass hayfields and alfalfa hayfields. Parameters measured from each irrigated site were compared directly with representative non-irrigated sites. Soil chemical and physical parameters including pH, EC, SAR, exchangeable sodium percent, texture, bulk density, infiltration and Darcy flux rates, were measured at various depth intervals to 120 cm. Mulitple-year applications of saline sodic water produced consistent trends of increased soil EC AND SAR values to depths of 30 cm reduced surface infiltration rates and lowered Darcy flux rates to 120 cm. Significant differences (p {le} 0.05) were determined between irrigated and non-irrigated areas for EC, SAR infiltration rates and Darcy flux (p {le} 0.10) at most sites. Saline sodic CBNG water applications significantly increased native perennial grass biomass production and cover on irrigated as compared with non-irrigated sites; however overall species evenness decreased. Biological effects were variable and complex reflecting site-specific conditions and water and soil management strategies.

  18. DIRECTIONS FOR FUTURE CONSTRUCTION SUPPLY CHAIN MANAGEMENT RESEARCH IN NEW ZEALAND: A REAL OPTIONS PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Tran, Van

    2012-04-01

    Full Text Available Real Options (RO has been a universally accepted concept in a number of major industries. However, its use in the construction supply chain management (CSCM sector has been limited. Some rare supply chain management RO studies have shown a number of limitations. First, there is a lack of a rigorous theoretical RO framework pertaining specifically to CSCM. All such supply chain management RO studies are based off RO theories or models developed for other sectors (engineering, infrastructure, natural resources. And second, attempts to extend real option to wider uses in CSCM seem premature at the present. This paper reviews all recent literature pertaining to real options and real options applied specifically to the construction supply chain management area. The study proposes a research programme pertaining to CSCM in New Zealand in order to enhance the current understanding of RO in this area and in the process develop a comprehensive theory for the RO application in New Zealand CSCM.

  19. Targeted management of organic resources for sustainably increasing soil organic carbon: Observations and perspectives for resource use and climate adaptations in northern Ghana

    DEFF Research Database (Denmark)

    Heve, William K; Olesen, Jørgen Eivind; Chirinda, Ngonidzashe

    2016-01-01

    Since soil organic matter (SOM) buffers against impacts of climatic variability, the objective of this study was to assess on-farm distribution of SOM and propose realistic options for increasing SOM and thus the adaptation of smallholder farmers to climate change and variability in the interior...... northern savannah of Ghana. Data and information on spatial distribution of soil organic carbon (SOC), current practices that could enhance climate adaptation including management of organic resources were collected through biophysical assessments and snap community surveys. Even though homestead fields...... and residues, traditions for bush-burning and competing use of organic resources for fuels. Our findings suggest a need for effective management practices, training and awareness aimed at improving management of organic resources and, consequently, increasing SOC and resilience to climate-change-induced risks....

  20. Albedo and vegetation demand-side management options for warm climates

    International Nuclear Information System (INIS)

    Hall, Darwin C.

    1997-01-01

    For electric utilities, demand-side management (DSM) can reduce electric load and shift load from peak to off-peak periods. In general, the investor in DSM collects the reward with lower electric bills, excepting a positive externality because of reduced tropospheric and stratospheric air pollution from fossil fuel power plants. In warm climates, DSM options include increasing albedo and vegetation, respectively, by painting surfaces white and planting trees; these DSM options are distinguished from all other DSM options because of ecosystem effects. Ambient temperature falls, mitigating the urban 'heat island', which reduces electric load and ozone formation. The investor in albedo and vegetation DSM options does not collect all of the reward from lower electric bills, since the lower ambient temperature provides savings to all customers who use electricity for air conditioning and refrigeration. Similar to other DSM options, air pollution is also reduced as a result of lower power plant emissions. Complex airshed models and electric utility system dispatch models are applied in this paper to account for some of these ecosystem effects. Unaccounted ecosystem effects remain, stymieing cost effectiveness analysis

  1. Relationships between soil-based management zones and canopy sensing for corn nitrogen management

    Science.gov (United States)

    Integrating soil-based management zones (MZ) with crop-based active canopy sensors to direct spatially variable nitrogen (N) applications has been proposed for improving N fertilizer management of corn (Zea mays L.). Analyses are needed to evaluate relationships between canopy sensing and soil-based...

  2. Influence of management history and landscape variables on soil organic carbon and soil redistribution

    Science.gov (United States)

    Venteris, E.R.; McCarty, G.W.; Ritchie, J.C.; Gish, T.

    2004-01-01

    Controlled studies to investigate the interaction between crop growth, soil properties, hydrology, and management practices are common in agronomy. These sites (much as with real world farmland) often have complex management histories and topographic variability that must be considered. In 1993 an interdisiplinary study was started for a 20-ha site in Beltsville, MD. Soil cores (271) were collected in 1999 in a 30-m grid (with 5-m nesting) and analyzed as part of the site characterization. Soil organic carbon (SOC) and 137Cesium (137Cs) were measured. Analysis of aerial photography from 1992 and of farm management records revealed that part of the site had been maintained as a swine pasture and the other portion as cropped land. Soil properties, particularly soil redistribution and SOC, show large differences in mean values between the two areas. Mass C is 0.8 kg m -2 greater in the pasture area than in the cropped portion. The pasture area is primarily a deposition site, whereas the crop area is dominated by erosion. Management influence is suggested, but topographic variability confounds interpretation. Soil organic carbon is spatially structured, with a regionalized variable of 120 m. 137Cs activity lacks spatial structure, suggesting disturbance of the profile by animal activity and past structures such as swine shelters and roads. Neither SOC nor 137Cs were strongly correlated to terrain parameters, crop yields, or a seasonal soil moisture index predicted from crop yields. SOC and 137Cs were weakly correlated (r2 ???0.2, F-test P-value 0.001), suggesting that soil transport controls, in part, SOC distribution. The study illustrates the importance of past site history when interpreting the landscape distribution of soil properties, especially those strongly influenced by human activity. Confounding variables, complex soil hydrology, and incomplete documentation of land use history make definitive interpretations of the processes behind the spatial distributions

  3. Refining ASD for disease management in strawberry and apple production

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD) has been studied as an industry level option for replacing soil fumigants to manage soil-borne diseases in both annual and perennial crop production systems. Although ASD has proven effective for the suppression of certain soil-borne pathogens in both strawberry ...

  4. Real options analysis for land use management: Methods, application, and implications for policy.

    Science.gov (United States)

    Regan, Courtney M; Bryan, Brett A; Connor, Jeffery D; Meyer, Wayne S; Ostendorf, Bertram; Zhu, Zili; Bao, Chenming

    2015-09-15

    Discounted cash flow analysis, including net present value is an established way to value land use and management investments which accounts for the time-value of money. However, it provides a static view and assumes passive commitment to an investment strategy when real world land use and management investment decisions are characterised by uncertainty, irreversibility, change, and adaptation. Real options analysis has been proposed as a better valuation method under uncertainty and where the opportunity exists to delay investment decisions, pending more information. We briefly review the use of discounted cash flow methods in land use and management and discuss their benefits and limitations. We then provide an overview of real options analysis, describe the main analytical methods, and summarize its application to land use investment decisions. Real options analysis is largely underutilized in evaluating land use decisions, despite uncertainty in policy and economic drivers, the irreversibility and sunk costs involved. New simulation methods offer the potential for overcoming current technical challenges to implementation as demonstrated with a real options simulation model used to evaluate an agricultural land use decision in South Australia. We conclude that considering option values in future policy design will provide a more realistic assessment of landholder investment decision making and provide insights for improved policy performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Technological options for management of hazardous wastes from US Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  6. Technological options for management of hazardous wastes from US Department of Energy facilities

    International Nuclear Information System (INIS)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables

  7. Soil as a Sustainable Resource for the Bioeconomy - BonaRes

    Science.gov (United States)

    Wollschläger, Ute; Amelung, Wulf; Brüggemann, Nicolas; Brunotte, Joachim; Gebbers, Robin; Grosch, Rita; Heinrich, Uwe; Helming, Katharina; Kiese, Ralf; Leinweber, Peter; Reinhold-Hurek, Barbara; Veldkamp, Edzo; Vogel, Hans-Jörg; Winkelmann, Traud

    2017-04-01

    Fertile soils are a fundamental resource for the production of biomass and provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for bio-based products which require preserving and - ideally - improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes which are insufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing, including SDGs. However, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management. To make soil management sustainable, we need to establish a scientific knowledge base of complex soil system processes that allows for developing models and tools to quantitatively predict the impact of a multitude of management measures on soil functions. This will finally allow for the provision of options for a site-specific, sustainable soil management. To face this challenge, the German Federal Ministry of Education and Research (BMBF) recently launched the funding program "Soil as a Sustainable Resource for the Bioeconomy - BonaRes". In a joint effort, ten collaborative projects and the coordinating BonaRes Centre are engaged to close existing knowledge gaps for a profound and systemic assessment and understanding of soil functions and their sensitivity to soil management. In BonaRes, the complete process chain of sustainable soil use in the context of a sustainable bio-economy is being addressed: from understanding of soil processes using state-of the art and

  8. Designing viable cropping options for salt-affected lands

    Science.gov (United States)

    Shabala, Sergey; Meinke, Holger

    2017-04-01

    Salinity cost agricultural sector over 27Bln pa in lost opportunities and is an issue that crosses all spatial and temporal scales - from individual fields, farms, catchments, landscapes to national and global levels. Salinity manifests itself in many forms and often leads to further soil degradation such as erosion, nutrient and soil organic matter depletion, and a loss of (soil) biodiversity. Salinity may also cause major disturbance to ecosystems due to its impact on resources (e.g. pollution of aquifers). In extreme cases it can turn previously highly productive areas into wastelands. An increasing global population and unprecedented urban sprawls are now putting additional pressures on our soil and water resources, particularly in regions where urbanisation directly competes with agriculture for access to land and water. And although everyone agrees that avoiding soil salinity in the first instance would be the most effective way of combating it, reality is that the amount of saline land and water resources is rapidly increasing, and will continue to increase, especially in developing countries. Purposefully designing our cropping systems that can cope with various levels of salinity could be one answer to this increasing problem. In this work we review some of the key cropping options that can be deployed to either avoid, reduce or remediate salt-affected lands. We argue that for these measures to be most effective an ongoing science - policy - society dialogue is required to ensure that policy frameworks that govern land and water management are conducive to reducing salinity or even assist in restoring affected areas. We first consider several case studies highlighting the extent of the problem using ongoing salinity hotspots around the globe. We then look at halophytes as a possible biological tools to remediate already saline sols, and discuss prospects of mixed (halophytes and glycophytes) cropping solutions for various agricultural systems at different

  9. Modeled effects of soil acidification on long-term ecological and economic outcomes for managed forests in the Adirondack region (USA)

    Science.gov (United States)

    Caputo, Jesse PhD.; Beier, Colin M.; Sullivan, Timothy J.; Lawrence, Gregory B.

    2016-01-01

    Sugar maple (Acer saccharum) is among the most ecologically and economically important tree species in North America, and its growth and regeneration is often the focus of silvicultural practices in northern hardwood forests. A key stressor for sugar maple (SM) is acid rain, which depletes base cations from poorly-buffered forest soils and has been associated with much lower SM vigor, growth, and recruitment. However, the potential interactions between forest management and soil acidification – and their implications for the sustainability of SM and its economic and cultural benefits – have not been investigated. In this study, we simulated the development of 50 extant SM stands in the western Adirondack region of NY (USA) for 100 years under different soil chemical conditions and silvicultural prescriptions. We found that interactions between management prescription and soil base saturation will strongly shape the ability to maintain SM in managed forests. Below 12% base saturation, SM did not regenerate sufficiently after harvest and was replaced mainly by red maple (Acer rubrum) and American beech (Fagus grandifolia). Loss of SM on acid-impaired sites was predicted regardless of whether the shelterwood or diameter-limit prescriptions were used. On soils with sufficient base saturation, models predicted that SM will regenerate after harvest and be sustained for future rotations. We then estimated how these different post-harvest outcomes, mediated by acid impairment of forest soils, would affect the potential monetary value of ecosystem services provided by SM forests. Model simulations indicated that a management strategy focused on syrup production – although not feasible across the vast areas where acid impairment has occurred – may generate the greatest economic return. Although pollution from acid rain is declining, its long-term legacy in forest soils will shape future options for sustainable forestry and ecosystem stewardship in the northern

  10. Radiological impacts of spent nuclear fuel management options

    International Nuclear Information System (INIS)

    Riotte, H.; Lazo, T.; Mundigl, S.

    2000-01-01

    An important technical study on radiological impacts of spent nuclear fuel management options, recently completed by the NEA, is intended to facilitate informed international discussions on the nuclear fuel cycle. The study compares the radiological impacts on the public and on nuclear workers resulting from two approaches to handling spent fuel from nuclear power plants: - the reprocessing option, that includes the recycling of spent uranium fuel, the reuse of the separated plutonium in MOX fuel, and the direct disposal of spent MOX fuel; and the once-through option, with no reprocessing of spent fuel, and its direct disposal. Based on the detailed research of a group of 18 internationally recognised experts, under NEA sponsorship, the report concludes that: The radiological impacts of both the reprocessing and the non-reprocessing fuel cycles studied are small, well below any regulatory dose limits for the public and for workers, and insignificantly low as compared with exposures caused by natural radiation. The difference in the radiological impacts of the two fuel cycles studied does not provide a compelling argument in favour of one option or the other. The study also points out that other factors, such as resource utilisation efficiency, energy security, and social and economic considerations would tend to carry more weight than radiological impacts in decision-making processes. (authors)

  11. An overview of soil water sensors for salinity & irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  12. Electricity market risk management using forward contracts with bilateral options

    International Nuclear Information System (INIS)

    Chung, T.S.; Yu, C.W.; Wong, K.P.; Zhang, S.H.

    2003-01-01

    Extreme short-term price volatility in competitive electricity markets creates the need for risk management arrangements. A new electricity forward contract with bilateral financial options is introduced, which allows both seller and buyer to take advantage of flexibility in generation and consumption to obtain monetary benefits while simultaneously removing the risk of market price fluctuations. The option theory is incorporated to formulate the contract price. The strike prices of options are derived from solving an equilibrium model in which both the buyer and the seller aim to maximise their own profit. Theoretical analysis shows that the proposed optional forward contract presents a more equitable and reasonable payoff structure that allows the buyer and seller to earn a larger overall expected benefit, and the contractual arrangement supports efficiency in economic dispatch of electricity production and consumption. The insights obtained from these results will be helpful to participants in the contractual decision-making process. (Author)

  13. Responses of soil respiration to soil management changes in an agropastoral ecotone in Inner Mongolia, China.

    Science.gov (United States)

    Xue, Haili; Tang, Haiping

    2018-01-01

    Studying the responses of soil respiration ( R s ) to soil management changes is critical for enhancing our understanding of the global carbon cycle and has practical implications for grassland management. Therefore, the objectives of this study were (1) quantify daily and seasonal patterns of R s , (2) evaluate the influence of abiotic factors on R s , and (3) detect the effects of soil management changes on R s . We hypothesized that (1) most of daily and seasonal variation in R s could be explained by soil temperature ( T s ) and soil water content ( S w ), (2) soil management changes could significantly affect R s , and (3) soil management changes affected R s via the significant change in abiotic and biotic factors. In situ R s values were monitored in an agropastoral ecotone in Inner Mongolia, China, during the growing seasons in 2009 (August to October) and 2010 (May to October). The soil management changes sequences included free grazing grassland (FG), cropland (CL), grazing enclosure grassland (GE), and abandoned cultivated grassland (AC). During the growing season in 2010, cumulative R s for FG, CL, GE, and AC averaged 265.97, 344.74, 236.70, and 226.42 gC m -2  year -1 , respectively. The T s and S w significantly influenced R s and explained 66%-86% of the variability in daily R s . Monthly mean temperature and precipitation explained 78%-96% of the variability in monthly R s . The results clearly showed that R s was increased by 29% with the conversion of FG to CL and decreased by 35% and 11% with the conversion of CL to AC and FG to GE. The factors impacting the change in R s under different soil management changes sequences varied. Our results confirm the tested hypotheses. The increase in Q 1 0 and litter biomass induced by conversion of FG to GE could lead to increased R s if the climate warming. We suggest that after proper natural restoration period, grasslands should be utilized properly to decrease R s .

  14. Soil health: a comparison between organically and conventionally managed arable soils in the Netherlands

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Blok, W.J.; Korthals, G.W.; Bruggen, van A.H.C.; Ariena, H.C.

    2005-01-01

    A comparative study of 13 organic and 13 neighboring conventional arable farming systems was conducted in the Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils were analyzed using a polyphasic approach combining traditional

  15. Mapping soil erosion hotspots and assessing the potential impacts of land management practices in the highlands of Ethiopia

    Science.gov (United States)

    Tamene, Lulseged; Adimassu, Zenebe; Ellison, James; Yaekob, Tesfaye; Woldearegay, Kifle; Mekonnen, Kindu; Thorne, Peter; Le, Quang Bao

    2017-09-01

    An enormous effort is underway in Ethiopia to address soil erosion and restore overall land productivity. Modelling and participatory approaches can be used to delineate erosion hotspots, plan site- and context-specific interventions and assess their impacts. In this study, we employed a modelling interface developed based on the Revised Universal Soil Loss Equation adjusted by the sediment delivery ratio to map the spatial distribution of net soil loss and identify priority areas of intervention. Using the modelling interface, we also simulated the potential impacts of different soil and water conservation measures in reducing net soil loss. Model predictions showed that net soil loss in the study area ranges between 0.4 and 88 t ha- 1 yr- 1 with an average of 12 t ha- 1 yr- 1. The dominant soil erosion hotspots were associated with steep slopes, gullies, communal grazing and cultivated areas. The average soil loss observed in this study is higher than the tolerable soil loss rate estimated for the highland of Ethiopia. The scenario analysis results showed that targeting hotspot areas where soil loss exceeds 10 t ha- 1 yr- 1 could reduce net soil loss to the tolerable limit (interventions. Future work should include cost-benefit and tradeoff analyses of the various management options for achieving a given level of erosion reduction.

  16. Modelling the Impact of Soil Management on Soil Functions

    Science.gov (United States)

    Vogel, H. J.; Weller, U.; Rabot, E.; Stößel, B.; Lang, B.; Wiesmeier, M.; Urbanski, L.; Wollschläger, U.

    2017-12-01

    Due to an increasing soil loss and an increasing demand for food and energy there is an enormous pressure on soils as the central resource for agricultural production. Besides the importance of soils for biomass production there are other essential soil functions, i.e. filter and buffer for water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these functions have a direct feed back to biogeochemical cycles and climate. To render agricultural production efficient and sustainable we need to develop model tools that are capable to predict quantitatively the impact of a multitude of management measures on these soil functions. These functions are considered as emergent properties produced by soils as complex systems. The major challenge is to handle the multitude of physical, chemical and biological processes interacting in a non-linear manner. A large number of validated models for specific soil processes are available. However, it is not possible to simulate soil functions by coupling all the relevant processes at the detailed (i.e. molecular) level where they are well understood. A new systems perspective is required to evaluate the ensemble of soil functions and their sensitivity to external forcing. Another challenge is that soils are spatially heterogeneous systems by nature. Soil processes are highly dependent on the local soil properties and, hence, any model to predict soil functions needs to account for the site-specific conditions. For upscaling towards regional scales the spatial distribution of functional soil types need to be taken into account. We propose a new systemic model approach based on a thorough analysis of the interactions between physical, chemical and biological processes considering their site-specific characteristics. It is demonstrated for the example of soil compaction and the recovery of soil structure, water capacity and carbon stocks as a result of plant growth and biological

  17. Effects of soil management techniques on soil water erosion in apricot orchards

    NARCIS (Netherlands)

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C.; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-01-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these

  18. Managing cultivated pastures for improving soil quality in South ...

    African Journals Online (AJOL)

    There are concerns that soils under pastures in certain regions of South Africa are degrading as a result of mismanagement, which include practising continuous tillage, improper grazing management, injudicious application of fertilisers and poor irrigation management. Soil quality indicators, which include physical, ...

  19. Sustainable agriculture, soil management and erosion from prehistoric times to 2100

    Science.gov (United States)

    Vanwalleghem, Tom; Gómez, Jose Alfonso; Infante Amate, Juan; González Molina, Manuel; Fernández, David Soto; Guzmán, Gema; Vanderlinden, Karl; Laguna, Ana; Giráldez, Juan Vicente

    2015-04-01

    The rational use of soil requires the selection of management practices to take profit of the beneficial functions of plant growth, water and nutrient storage, and pollutants removal by filtering and decomposition without altering its properties. However, the first evidence of important and widespread erosion peaks can generally be found with the arrival of the first farmers all over the world. In areas with a long land-use history such as the Mediterranean, clear signs indicating the advanced degradation status of the landscape, such as heavily truncated soils, are visible throughout. Soil conservation practices are then aimed at reducing erosion to geological rates, in equilibrium with long-term soil formation rates, while maximizing agricultural production. The adoption of such practices in most areas of the world are as old as the earliest soil erosion episodes themselves. This work firstly reviews historical evidence linking soil management and soil erosion intensity, with examples from N Europe and the Mediterranean. In particular, work by the authors in olive orchards will be presented that shows how significant variations in soil erosion rates between could be linked to the historical soil management. The potential of historical documents for calibrating a soil erosion model is shown as the model, in this case RUSLE-based and combining tillage and water erosion, adequately represents the measured erosion rate dynamics. Secondly, results from present-day, long-term farm experiments in the EU are reviewed to evaluate the effect of different soil management practices on physical soil properties, such as bulk density, penetration resistance, aggregate stability, runoff coefficient or sediment yield. Finally, we reflect upon model and field data that indicate how future global climate change is expected to affect soil management and erosion and how the examples used above hold clues about sustainable historical management practices that can be used successfully

  20. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2.s(-1 and clipping (2.06 μmol.m(-2.s(-1 than under grazing (1.65 μmol.m-(2.s(-1 over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP. Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content and biotic (ANPP and BNPP factors regulate soil respiration in the semiarid temperate grassland of northern China.

  1. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Science.gov (United States)

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  2. New options in the management of tendinopathy

    Directory of Open Access Journals (Sweden)

    Nicola Maffulli

    2010-03-01

    Full Text Available Nicola Maffulli1, Umile Giuseppe Longo2, Mattia Loppini2, Filippo Spiezia2, Vincenzo Denaro21Centre for Sports and Exercise Medicine, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Mile End Hospital, London, England; 2Department of Orthopedic and Trauma Surgery, Campus Biomedico University, Rome, ItalyAbstract: Tendon injuries can be acute or chronic, and caused by intrinsic or extrinsic factors, either alone or in combination. Tendinopathies are a common cause of disability in occupational medicine and account for a substantial proportion of overuse injuries in sports. Tendinopathy is essentially a failed healing response, with haphazard proliferation of tenocytes, abnormalities in tenocytes, with disruption of collagen fibres and subsequent increase in noncollagenous matrix. The scientific evidence base for managing tendinopathies is limited. What may appear clinically as an “acute tendinopathy” is actually a well advanced failure of a chronic healing response in which there is neither histologic nor biochemical evidence of inflammation. In this review we report the new options for the management of tendinopathy, including eccentric exercises, extracorporeal shockwave therapy, injections (intratendinous injections of corticosteroids, aprotinin, polidocanol platelet-rich plasma, autologous blood injection, high-volume injections and surgery. Open surgery aims to excise fibrotic adhesions, remove areas of failed healing and make multiple longitudinal incisions in the tendon to detect intratendinous lesions, and to restore vascularity and possibly stimulate the remaining viable cells to initiate cell matrix response and healing. New surgical techniques aim to disrupt the abnormal neoinnervation to interfere with the pain sensation caused by tendinopathy. These procedures are intrinsically different from the classical ones in present use, because they do not attempt to address directly the pathologic

  3. Options for including nitrogen management in climate policy

    International Nuclear Information System (INIS)

    Erisman, J.W.

    2010-12-01

    The outline of the presentation is as follows: Climate change and nitrogen; Nitrogen and climate interlinkages; Options for nitrogen management; Report, workshop and IPCC; and Conclusions. The concluding remarks are: Fertilizing the biosphere with reactive nitrogen compounds lead to ecosystem, health, water and climate impacts; Nitrogen deposition can lead to additional carbon sequestration and to impacts on biodiversity and ecosystem services; Nitrogen addition to the biosphere might have a net cooling effect of 1 W/m 2 ; Life Cycle Analysis is needed to show the full impact; and Nitrogen management is essential for the environment and can have a positive effect on the net GHG exchange.

  4. Impact of set-aside management on soil mesofauna

    Science.gov (United States)

    Landi, Silvia; d'Errico, Giada; Mazza, Giuseppe; Mocali, Stefano; Bazzoffi, Paolo; Roversi, Pio Federico

    2014-05-01

    To contrast the biodiversity decline, the current Common Agricultural Policy (CAP) 2014-2020 responds to urgent environmental challenges and provides some new greening attempts as pastures, rotations, orchard grasses, ecological set-aside and organic farming. This study, supported by the Italian National Project MONACO (MIPAAF), aims to provide preliminary indications about the ecological impact of set-aside on soil biodiversity. Soil invertebrates, mainly nematodes and microarthropods, are excellent candidates to study the human activity impacts on the environment. Indeed, invertebrates are abundant, relatively easy to sample, and they can quickly respond to soil disturbance. Nematode assemblages offer several advantages for assessing the quality of terrestrial ecosystems because of their permeable cuticle through which they are in direct contact with solvents in the soil capillary water. Moreover, nematodes have high diversity and represent a trophically heterogeneous group. The Maturity Index (MI), based on the nematode fauna, represents a gauge of the conditions of the soil ecosystem. Edaphic microarthropods play an important role in the soil system in organic matter degradation and nutrient cycling. They show morphological characters that reveal adaptation to soil environments, such as reduction or loss of pigmentation and visual apparatus, streamlined body form with appendages reduction, reduction or loss of flying, jumping or running adaptations, thinner cuticle for reduced water-retention capacity. The "Qualità Biologica del Suolo" (QBS) index, namely "Biological Quality of Soil", is based on the types of edaphic microarthropods to assess soil biological quality. Three different set-aside managements were compared with a conventional annual crop in three Italian sites (Caorle, VE; Fagna, FI; Metaponto, MT). After five years the biological quality of soils using MI and QBS was evaluated. Regarding nematodes, the family richness and the biological quality

  5. National Forest management options in response to climate change

    Science.gov (United States)

    Forest Service U.S. Department of Agriculture

    2009-01-01

    The effect of climate change on ecosystem structure, function, and services will depend on the ecosystem's degree of sensitivity to climate change, the natural ability of plants and animals to adapt, and the availability of effective management options. Sensitivity to climate change is a function of ecosystem health and environmental stresses such as air pollution...

  6. Study of microarthopod communities to assess soil quality in different managed vineyards

    Science.gov (United States)

    Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M. R.; Corino, L.; Simoni, S.

    2015-01-01

    Land use influences the abundance and diversity of soil arthropods. The evaluation of the impact of different management strategies on soil quality is increasingly requested. The determination of communities' structures of edaphic fauna can represent an efficient tool. In this study, in some vineyards in Piedmont (Italy), the effects of two different management systems, organic and integrated pest management (IPM), on soil biota were evaluated. As microarthropods living in soil surface are an important component of soil ecosystem interacting with all the other system components, a multi disciplinary approach was adopted by characterizing also some soil physical and chemical characteristics (soil texture, soil pH, total organic carbon, total nitrogen, calcium carbonate). Soil samplings were carried out on Winter 2011 and Spring 2012. All specimens were counted and determined up to the order level. The biological quality of the soil was defined through the determination of ecological indices, such as QBS-ar, species richness and indices of Shannon-Weaver, Pielou, Margalef and Simpson. The mesofauna abundance was affected by both the type of management and the soil texture. The analysis of microarthropod communities by QBS-ar showed higher values in organic than in IPM managed vineyards; in particular, the values registered in organic vineyards were similar to those characteristic of preserved soils.

  7. Organic management and cover crop species steer soil microbial community structure and functionality along with soil organic matter properties

    NARCIS (Netherlands)

    Martínez-García, Laura B.; Korthals, Gerard; Brussaard, Lijbert; Jørgensen, Helene Bracht; Deyn, de Gerlinde B.

    2018-01-01

    It is well recognized that organic soil management stimulates bacterial biomass and activity and that including cover crops in the rotation increases soil organic matter (SOM). Yet, to date the relative impact of different cover crop species and organic vs. non-organic soil management on soil

  8. Effect of soil surface management on radiocesium concentrations in apple orchard and fruit

    International Nuclear Information System (INIS)

    Kusaba, Shinnosuke; Matsuoka, Kaori; Abe, Kazuhiro

    2016-01-01

    We investigated the effect of soil surface management on radiocesium accumulation in an apple orchard in Fukushima Prefecture over 4 years after Tokyo Electric Power Company’s Fukushima Daiichi nuclear power plant accident in mid-March 2011. Different types of soil surface management such as clean cultivation, intertillage management, intertillage with bark compost application, sod culture, and zeolite application were employed. The radiocesium concentrations in soil were higher in the surface layer (0–5 cm) than in the other layers. The radiocesium concentration in the surface layer soil with sod culture in 2014 increased non-significantly compared with that observed in 2011. The radiocesium concentration in the mid-layer soil (5–15 cm) managed with intertillage was higher than that in soil managed using other types of management. The radiocesium amount in the organic matter on the soil surface was the highest in sod culture, and was significantly lower in the management with intertillage. The radiocesium concentration in fruit decreased exponentially during the 4 years in each types of soil surface management. The decrease in radiocesium concentration showed similar trends with each type of soil surface management, even if the concentration in each soil layer varied according to the management applied. Furthermore, intertillage with bark compost application did not affect the radiocesium concentration in fruit. These results suggest that the soil surface management type that affected the radiocesium distribution in the soil or the compost application with conventional practice did not affect its concentration in fruit of apple trees for at least 4 years since the nuclear power plant accident, at a radiocesium deposition level similar to that recorded in Fukushima City. (author)

  9. Using soil water sensors to improve irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and som...

  10. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    NARCIS (Netherlands)

    Soares, Johnny R.; Cassman, N.; Kielak, A.M.; Pijl, A.S.; do Carmo, J.B.; Lourenço, Késia S.; Laanbroek, H.J.; Cantarella, H.; Kuramae, E.E.

    2016-01-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O

  11. Taking Action Against Ocean Acidification: A Review of Management and Policy Options

    Science.gov (United States)

    Billé, Raphaël; Kelly, Ryan; Biastoch, Arne; Harrould-Kolieb, Ellycia; Herr, Dorothée; Joos, Fortunat; Kroeker, Kristy; Laffoley, Dan; Oschlies, Andreas; Gattuso, Jean-Pierre

    2013-10-01

    Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.

  12. Taking action against ocean acidification: a review of management and policy options.

    Science.gov (United States)

    Billé, Raphaël; Kelly, Ryan; Biastoch, Arne; Harrould-Kolieb, Ellycia; Herr, Dorothée; Joos, Fortunat; Kroeker, Kristy; Laffoley, Dan; Oschlies, Andreas; Gattuso, Jean-Pierre

    2013-10-01

    Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.

  13. Impact of agricultural management on bacterial laccase-encoding genes with possible implications for soil carbon storage in semi-arid Mediterranean olive farming

    Directory of Open Access Journals (Sweden)

    Beatriz Moreno

    2016-07-01

    vegetation decay. Conclusions: We suggest that the low humic acid content retrieved in the herbicide-treated soils was mainly related to the type (due to vegetal cover specialization and smaller quantity (due to lower vegetal biomass levels of phenolic substrates for laccase enzymes involved in humification processes. We also found that spontaneous vegetal cover managed using mechanical methods could be the best option for achieving C stabilization in rainfed Mediterranean agroecosystems.

  14. Options for the management of Chernobyl-restricted areas in England and Wales

    International Nuclear Information System (INIS)

    Nisbet, A.; Woodman, R.

    1999-01-01

    Areas in England and Wales are still subject to restrictions on tile movement, sale and slaughter of sheep because concentrations of radiocaesium in sheep meat may exceed the 1000 Bq kg -1 limit imposed after the Chernobyl nuclear power plant accident. Various monitoring programmes have been implemented to enable lamb production to be sustained in these restricted areas, although no alternative management strategies have been considered to date. Current management practices have been reviewed and costed. An assessment has also been undertaken to establish the practicability and cost effectiveness of five alternative management options. The practicability of each option, which encompasses technical feasibility, capacity, cost, impact and acceptability, was assessed through a series of case studies carried out on farms in the restricted area of north Wales, and through consultation with a range of organisations with interests in farming and/or the environment. Recommendations are made for the future management of the restricted areas in England and Wales. (author)

  15. Light fraction of soil organic matter under different management ...

    African Journals Online (AJOL)

    A study on light fraction organic matter was carried out on the soil from three different management systems namely; Gmelina arborea, Tectona grandis and Leucaena leucocephala plantations in the University of Agriculture, Abeokuta Nigeria. Soil samples were collected in each of the three management site at five auger ...

  16. soil fertility management practices by smallholder farmers in vhembe ...

    African Journals Online (AJOL)

    p2333147

    constraints associated with soil fertility management practices used by the farmers. ... nutrients. In addition, these drier areas often have highly degradable soils that are susceptible to soil erosion and eventual decline in soil fertility, especially under ... cases where the selected farm was a “community garden” (a group of.

  17. Microbial community structure and activity in trace element-contaminated soils phytomanaged by Gentle Remediation Options (GRO).

    Science.gov (United States)

    Touceda-González, M; Prieto-Fernández, Á; Renella, G; Giagnoni, L; Sessitsch, A; Brader, G; Kumpiene, J; Dimitriou, I; Eriksson, J; Friesl-Hanl, W; Galazka, R; Janssen, J; Mench, M; Müller, I; Neu, S; Puschenreiter, M; Siebielec, G; Vangronsveld, J; Kidd, P S

    2017-12-01

    Gentle remediation options (GRO) are based on the combined use of plants, associated microorganisms and soil amendments, which can potentially restore soil functions and quality. We studied the effects of three GRO (aided-phytostabilisation, in situ stabilisation and phytoexclusion, and aided-phytoextraction) on the soil microbial biomass and respiration, the activities of hydrolase enzymes involved in the biogeochemical cycles of C, N, P, and S, and bacterial community structure of trace element contaminated soils (TECS) from six field trials across Europe. Community structure was studied using denaturing gradient gel electrophoresis (DGGE) fingerprinting of Bacteria, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae, and sequencing of DGGE bands characteristic of specific treatments. The number of copies of genes involved in ammonia oxidation and denitrification were determined by qPCR. Phytomanagement increased soil microbial biomass at three sites and respiration at the Biogeco site (France). Enzyme activities were consistently higher in treated soils compared to untreated soils at the Biogeco site. At this site, microbial biomass increased from 696 to 2352 mg ATP kg -1 soil, respiration increased from 7.4 to 40.1 mg C-CO 2 kg -1 soil d -1 , and enzyme activities were 2-11-fold higher in treated soils compared to untreated soil. Phytomanagement induced shifts in the bacterial community structure at both, the total community and functional group levels, and generally increased the number of copies of genes involved in the N cycle (nirK, nirS, nosZ, and amoA). The influence of the main soil physico-chemical properties and trace element availability were assessed and eventual site-specific effects elucidated. Overall, our results demonstrate that phytomanagement of TECS influences soil biological activity in the long term. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Miscanthus establishment and overwintering in the Midwest USA: a regional modeling study of crop residue management on critical minimum soil temperatures.

    Directory of Open Access Journals (Sweden)

    Christopher J Kucharik

    Full Text Available Miscanthus is an intriguing cellulosic bioenergy feedstock because its aboveground productivity is high for low amounts of agrochemical inputs, but soil temperatures below -3.5 °C could threaten successful cultivation in temperate regions. We used a combination of observed soil temperatures and the Agro-IBIS model to investigate how strategic residue management could reduce the risk of rhizome threatening soil temperatures. This objective was addressed using a historical (1978-2007 reconstruction of extreme minimum 10 cm soil temperatures experienced across the Midwest US and model sensitivity studies that quantified the impact of crop residue on soil temperatures. At observation sites and for simulations that had bare soil, two critical soil temperature thresholds (50% rhizome winterkill at -3.5 °C and -6.0 °C for different Miscanthus genotypes were reached at rhizome planting depth (10 cm over large geographic areas. The coldest average annual extreme 10 cm soil temperatures were between -8 °C to -11 °C across North Dakota, South Dakota, and Minnesota. Large portions of the region experienced 10 cm soil temperatures below -3.5 °C in 75% or greater for all years, and portions of North and South Dakota, Minnesota, and Wisconsin experienced soil temperatures below -6.0 °C in 50-60% of all years. For simulated management options that established varied thicknesses (1-5 cm of miscanthus straw following harvest, extreme minimum soil temperatures increased by 2.5 °C to 6 °C compared to bare soil, with the greatest warming associated with thicker residue layers. While the likelihood of 10 cm soil temperatures reaching -3.5 °C was greatly reduced with 2-5 cm of surface residue, portions of the Dakotas, Nebraska, Minnesota, and Wisconsin still experienced temperatures colder than -3.5 °C in 50-80% of all years. Nonetheless, strategic residue management could help increase the likelihood of overwintering of miscanthus rhizomes in the first few

  19. Management of tritium-contaminated wastes a survey of alternative options

    International Nuclear Information System (INIS)

    Mannone, F.

    1990-01-01

    The European Tritium Handling Experimental Laboratory (ETHEL) under construction on the site of Ispra Joint Research Centre of the Commission of European Communities has been commissioned to experimentally develop operational and environmental safety aspects related to the tritium technology in fusion, i.e. dealing with the behaviour and reliability of materials, equipment and containment systems under tritium impact. For this reason a part of the experimental activities to be performed in ETHEL will be devoted to laboratory research on tritiated waste management. However, since all experimental activities planned for the execution in ETHEL will by itselves generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need also to be defined. To attain this target an adequate background information must be provided, which is the intent of this report. Through an exhaustive literature survey tritiated waste management options till now investigated or currently applied in several countries have been assessed. A particular importance has been attached to the tritium leach test programmes, whose results enable to assess the tritium retention efficiency of the various waste immobilization options. The conclusions resulting from the overall assessment are presented

  20. Education on sustainable soil management for the masses? The Soil4Life MOOC

    Science.gov (United States)

    Maroulis, Jerry; Demie, Moore; Riksen, Michel; Ritsema, Coen

    2017-04-01

    Although soil is one of our most important natural resources and the foundation for all life on Earth it remains one of the most neglected of our resources. We, in soil science know this, but what do we do to reach more people more quickly? MOOCs, 'Massive Open Online Courses', are a vehicle for offering learning to virtually unlimited audiences at little cost to the student. Could MOOCs be the format for introducing more people worldwide to the importance of soil and sustainable soil management? MOOCs have their limitations and critics. However, depending on your goals, expectations and resources, they are a means for getting information to a much broader population than is possible through conventional educational formats. Wageningen University (WU) agreed and approved the development of a MOOC on sustainable soil management entitled Soil4Life. This presentation reviews the format and results of Soil4Life, concluding with some observations and reflections about this approach to soil science education. The Soil4Life MOOC introduces the role of soil in life on earth, soil degradation, and socio-economic issues related to generating action for long-term sustainability of the many soil-related ecosystem services. The objectives of Soil4Life are to raise awareness about the many important aspects of soil and sustainable soil management, and to allow the educational materials we produced to be available for use by others. The process of creating the Soil4Life MOOC involved 18 academic staff across all WU soil-related groups plus a vital team of education and technical staff. This number of people posed various challenges. However, with clear guidelines, lots of encouragement and technical support, Soil4Life was started in late 2015 and launched on the edx platform in May 2016. Just over 5000 students from 161 countries enrolled in the first offer of the Soil4Life MOOC - a modest number for MOOCs, but not bad for soil science. The targeted audience was initially high

  1. Soil and land management in a circular economy.

    Science.gov (United States)

    Breure, A M; Lijzen, J P A; Maring, L

    2018-05-15

    This article elaborates the role of soil and land management in a circular economy. The circular economy is highly dependent on the functioning of soils and land for the production of food and other biomass; the storage, filtration and transformation of many substances including water, carbon, and nitrogen; the provision of fresh mineral resources and fossil fuels; and the use of their functions as the platform for nature and human activities. Resource demand is increasing as a result of the growing human population. In addition to the shrinking availability of resources resulting from their unsustainable use in the past, our planet's diminishing potential for resource production, due to a range of reasons, is leading to resource scarcity, especially in the case of depletable resources. As an economic system that focuses on maximizing the reuse of resources and products and minimizing their depreciation, the circular economy greatly influences, and depends on, soil and land management. The concise management of the resources, land and soil is thus necessary, to make a circular economy successful. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Innovative Soil Management Practices (SMP) Assessment in Europe and China

    Science.gov (United States)

    Barão, Lúcia

    2017-04-01

    The growing world population poses a major challenge to global agricultural food and feed production through the pressure to increase agricultural outputs either by increasing the land area dedicated to agriculture or by productivity increases. Whether in developed or developing regions, agricultural intensification based on conventional approaches has resulted in severe environmental impacts and innovative soil management practices are needed to halter ongoing soil degradation and promote sustainable land management capable to produce more from less. The iSQAPER project - Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience - aims to develop a Soil Quality app (SQAPP) linking soil and agricultural management practices to soil quality indicators. This easy friendly tool will provide a direct and convenient way to advise farmers and other suitable actors in this area, regarding the best management practices to be adopted in very specific and local conditions. In this particular study from iSQAPER, we aimed to identify the most promising innovative soil management practices (SMP) currently used and its geographical distribution along different pedo-climatic regions in Europe (Boreal, Atlantic, Mediterranean Temperate, Mediterranean Semi-Arid, Southern Sub-Continental and Northern Sub-Continental) and China (Middle Temperate, Warm temperate and Central Asia Tropical). So far we have identified 155 farms where innovative SMP's are used, distributed along 4 study site regions located in China (Qiyang, Suining, Zhifanggou and Gongzhuling) and 10 study site regions located in Europe (The Netherlands, France, Portugal, Spain, Greece, Slovenia, Hungary, Romania, Poland and Estonia) and covering the major pedo-climatic regions. From this identification we concluded that the most used innovative SMP's in the study site regions in Europe are Manuring & Composting (14%), Min-till (14%), Crop rotation (12

  3. Acceptability of child adoption as management option for infertility in ...

    African Journals Online (AJOL)

    Infertility remains a global health challenge with devastating psycho-social consequences in many African communities. Adoption that may serve as an alternative strategy for the affected couples is not widely practiced. This study was conceptualized to assess the acceptability of child adoption as a management option by ...

  4. Knowledge, attitudes and behaviour regarding waste management options in Romania: results from a school questionnaire

    OpenAIRE

    Karin KOLBE

    2014-01-01

    This study analyses knowledge, attitudes and behaviour in the area of different waste management approaches of pupils in Romania. Examining school students' knowledge about waste management options and finding out the reasons that prevent them from participating in environmentally sound disposal options is essential for teachers and legislators. For this purpose, questionnaires were designed and distributed in two schools in Romania. The analysis revealed that knowledge is highly developed in...

  5. Biological and biochemical soil quality indicators for agricultural management

    Science.gov (United States)

    Bongiorno, Giulia

    2017-04-01

    Soil quality is defined as the capacity of a soil to perform multiple functions. Agricultural soils can, in principle, sustain a wide range of functions. However, negative pressure exerted by natural and anthropogenic soil threats such as soil erosion, soil organic matter losses and soil compaction have the potential to permanently damage soil quality. Soil chemical, physical and biological parameters can be used as indicators of soil quality. The specific objective of this study is to assess the suitability of novel soil parameters as soil quality indicators. We focus on biological/biochemical parameters, due to the unique role of soil biota in soil functions and to their high sensitivity to disturbances. The novel indicators are assessed in ten European long-term field experiments (LTEs) with different agricultural land use (arable and permanent crops), management regimes and pedo-climatic characteristics. The contrasts in agricultural management are represented by conventional/reduced tillage, organic/mineral fertilization and organic matter addition/no organic matter addition. We measured two different pools of labile organic carbon (dissolved organic carbon (DOC), and permanganate oxidizable carbon (POXC)), and determined DOC quality through its fractionation in hydrophobic and hydrophilic compounds. In addition, total nematode abundance has been assessed with qPCR. These parameters will be related to soil functions which have been measured with a minimum data set of indicators for soil quality (including TOC, macronutrients, and soil respiration). As a preliminary analysis, the Sensitivity Index (SI) for a given LTE was calculated for DOC and POXC according to Bolinder et al., 1999 as the ratio of the soil attribute under modified practices (e.g. reduced tillage) compared to the conventional practices (e.g. conventional tillage). The overall effect of the sustainable management on the indicators has been derived by calculating an average SI for those LTEs

  6. Technological options for the management of biosolids.

    Science.gov (United States)

    Wang, Hailong; Brown, Sally L; Magesan, Guna N; Slade, Alison H; Quintern, Michael; Clinton, Peter W; Payn, Tim W

    2008-06-01

    provide a complete management for biosolids. A number of advanced thermal conversion technologies (e.g., supercritical water oxidation process and pyrolysis) are under development for biosolids management with a goal to generate useful products, such as higher quality fuels and recovery of phosphorus. With an ever-increasing demand for renewable energy, growing bioenergy crops and forests using biosolids as a fertilizer and soil amendment can not only contribute to the low-carbon economy but also maximize the nutrient and carbon value of the biosolids. Land application of biosolids achieves a complete reuse of its nutrients and organic carbon at a relatively low cost. Therefore, land application should become a preferred management option where there is available land, the quality of biosolids meet regulatory requirements, and it is socially acceptable. Intensive energy cropping and forest production using biosolids can help us meet the ever-increasing demand for renewable energy, which can eliminate the contamination potential for food sources, a common social concern about land application of biosolids. In recent years, increasing numbers of national and local governments have adopted more stringent regulations toward biosolid management. Under such a political climate, biosolids producers will have to develop multireuse strategies for biosolids to avoid being caught because a single route management practice might be under pressure at a short notice. Conventional incineration systems for biosolids management generally consume more energy than they produce and, although by-products may be used in manufacturing, this process cannot be regarded as a beneficial use of biosolids. However, biosolids are likely to become a source of renewable energy and produce 'carbon credits' under the increasingly popular, low-carbon economy policy. To manage biosolids in a sustainable manner, there is a need for further research in the following areas: achieving a higher degree of public

  7. Soil fauna and its relation with environmental variables in soil management systems

    Directory of Open Access Journals (Sweden)

    Dilmar Baretta

    Full Text Available The present study aims to generate knowledge about the soil fauna, its relation to other explanatory environmental variables, and, besides it, to select edaphic indicators that more contribute to separate the land use systems (LUS. Five different LUS were chosen: conventional tillage with crop rotation (CTCR; no-tillage with crop rotation (NTCR; conventional tillage with crop succession (CTCS; no-tillage with crop succession (NTCS and minimum tillage with crop succession (MTCS. The samples were made in the counties Chapecó, Xanxerê and Ouro Verde located in the state of Santa Catarina, Brazil, and were considered the true replicates of the LUS. In each site, nine points were sampled in a sampling grid of 3 x 3. At the same points, soil was sampled for the physical, chemical and biological attributes (environmental variables. Pitfall traps were used to evaluate the soil fauna. Data were analyzed using principal component analysis (PCA and canonical discriminant analysis (CDA. The soil fauna presented potential to be used as indictors of soil quality, since some groups proved to be sensible to changes of the environmental variables and to soil management and tillage. The soil management using crop rotation (NTCR and CTCR presented higher diversity, compared to the systems using crop succession (NTCS, MTCS and NTCS, evidencing the importance of the soil tillage, independent of the season (summer or winter. The variable that better contributed to explain these changes were the chemical variables (potassium, pH, calcium, organic matter, available phosphorus, potential acidity, and biological variables (Shannon diversity index, Collembola, Pielou equitability index and microbial biomass carbon, respectively.

  8. Soil mapping and processes modelling for sustainable land management: a review

    Science.gov (United States)

    Pereira, Paulo; Brevik, Eric; Muñoz-Rojas, Miriam; Miller, Bradley; Smetanova, Anna; Depellegrin, Daniel; Misiune, Ieva; Novara, Agata; Cerda, Artemi

    2017-04-01

    Soil maps and models are fundamental for a correct and sustainable land management (Pereira et al., 2017). They are an important in the assessment of the territory and implementation of sustainable measures in urban areas, agriculture, forests, ecosystem services, among others. Soil maps represent an important basis for the evaluation and restoration of degraded areas, an important issue for our society, as consequence of climate change and the increasing pressure of humans on the ecosystems (Brevik et al. 2016; Depellegrin et al., 2016). The understanding of soil spatial variability and the phenomena that influence this dynamic is crucial to the implementation of sustainable practices that prevent degradation, and decrease the economic costs of soil restoration. In this context, soil maps and models are important to identify areas affected by degradation and optimize the resources available to restore them. Overall, soil data alone or integrated with data from other sciences, is an important part of sustainable land management. This information is extremely important land managers and decision maker's implements sustainable land management policies. The objective of this work is to present a review about the advantages of soil mapping and process modeling for sustainable land management. References Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. (2016) Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274. Depellegrin, D.A., Pereira, P., Misiune, I., Egarter-Vigl, L. (2016) Mapping Ecosystem Services in Lithuania. International Journal of Sustainable Development and World Ecology, 23, 441-455. Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B., Smetanova, A., Depellegrin, D., Misiune, I., Novara, A., Cerda, A. (2017) Soil mapping and process modelling for sustainable land management. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B

  9. Real Options in Capital Budgeting. Pricing the Option to Delay and the Option to Abandon a Project

    Directory of Open Access Journals (Sweden)

    Nicoleta Vintila

    2007-07-01

    Full Text Available Traditional discounted cash-flows method for assessing projects assumes that investment decision is an irreversible one, which is not correct. Managers can and must reconsider their initial decision as the new information arises during the project life. This is managerial flexibility and it creates strategic value for a project, only if management takes advantage of the opportunities associated with an analyzed project. Real options represent a new approach in capital budgeting, using the theory of pricing financial options for investments in real assets. In this paper, we emphasize the characteristics and valuation methodologies of real options. The objective in the last section is pricing the option to delay and the option to abandon a project in construction materials field.

  10. Life cycle assessment of bagasse waste management options

    International Nuclear Information System (INIS)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-01-01

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative

  11. Forward, Forward Option and No Hedging Which One is the Best for Managing Currency Risk?

    Directory of Open Access Journals (Sweden)

    Riko Hendrawan

    2017-07-01

    Full Text Available Bank Indonesia Regulation No.18/18/PBI/2016 concerning foreign exchange transactions against rupiah between banks and domestic parties, indicates that the importance of hedging for business actors in Indonesia. Based on the data of the rupiah exchange rate movement against the dollar from January 2006 to December 2016 shows that the fluctuation of the rupiah against the US dollar tends to weaken, although at some point the observation shows the strengthening of the rupiah against the US dollar. The purpose of this research is to assess impact of Forward, Forward Option and No Hedging Strategy for managing currency exposure between IDR to USD. Using data from January 2006–December 2016 taken from website of Bank Indonesia and Federal Reserve. Total 396 simulations,consists of 132 using Forward simulations, 132 using Forward Option simulations and 132 using No Hedging simulations. Findings from this research show that Forward Option was has no positive contribution in managing currency exposure, No Hedging Strategy has 36,36 percent positive contribution and forward contract has 72,73 percent positive contribution in managing currency exposure. Its means Forward Contract was better than Forward Option and No Hedging Strategies in managing currency exposure.

  12. Management of saline soils in Israel

    International Nuclear Information System (INIS)

    Rawitz, E.

    1983-01-01

    The main soil salinity problem in Israel is the danger of gradual salinization as a result of excessively efficient water management. Aquifer management is aimed at preventing flow of groundwater into the ocean, causing a creeping salinization at a rate of about 2 ppm per year. Successful efforts to improve irrigation efficiency brought with them the danger of salt accumulation in the soil. A ten-year monitoring programme carried out by the Irrigation Extension Service at 250 sampling sites showed that appreciable salt accumulation indeed occurred during the rainless irrigation season. However, where annual rainfall is more than about 350 mm this salt accumulation is adequately leached out of the root zone by the winter rains. Soil salinity in the autumn is typically two to three times that in the spring, a level which does not affect yields adversely. In the drier regions of the country long-term increasing soil salinity has been observed, and leaching is required. This is generally accomplished during the pre-irrigation given in the spring, whose size is determined by the rainfall amount of the preceding winter. The increasing need to utilize brackish groundwater and recycled sewage effluent requires special measures, which have so far been successful. In particular, drip irrigation with its high average soil-water potential regime and partial wetting of the soil volume has achieved high yields under adverse conditions. However, the long-term trend of water-quality deterioration is unavoidable under present conditions, and will eventually necessitate either major changes in agricultural patterns or the provision of desalinated water for dilution of the irrigation water. (author)

  13. Soil and Crop management: Lessons from the laboratory biosphere 2002-2004

    Science.gov (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation with "Hoyt" Soy Beans, USU Apogee Wheat and TU-82-155 sweet potato using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching and returning crop residues to the soil after each experiment. Between experiment #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. Soil analyses for all three experiments are presented to show how the soils have changed with time and how the changes relate to crop selection and rotation, soil selection and management, water management and pest control. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth facility.

  14. Soil management effect on soil quality indicators in vineyards of the Appellation of Origin "Montilla-Moriles" in southern Spain

    Science.gov (United States)

    Guzmán, Gema; Cabezas, José Manuel; Bauer, Thomas; Strauss, Peter; Winter, Silvia; Zaller, Johann; Gómez, José Alfonso

    2017-04-01

    The effect soil management on several indicators frequently used in the assessment of soil quality it is not always reflected unambiguously when measured at the field although it is normally assumed that this relation is straightforward. Within the European project VineDivers (www.vinedivers.eu), sixteen commercial vineyards belonging to the Appellation of Origin "Montilla-Moriles" (Córdoba) and covering a wide range of textural classes were selected. These farms were classified 'a priori' under two soil management categories: temporal cover crop and bare soil during the whole year. In each of the vineyards one representative inter-row was selected in order to characterise different physical, chemical and biological parameters to evaluate some aspects related to soil quality. Results indicate that the studied indicators respond clearly to soil textural class and vegetation cover biomass. However, there was no clear difference in above-ground biomass of the two management categories (Guzmán et al., 2016). These results suggest that the interpretation and extrapolation of the indicators evaluated should incorporate complementary information to characterise small variations of soil management intensity among vineyards that are apparently managed under the same management category. The communication presents this analysis based on the number and type of soil disturbance events of all vineyards. The high variability found among vineyards under the same management highlights the relevance of measuring these soil parameters used as quality indicators, instead of extrapolating from other vineyards or agricultural systems, and interpreting them according to baseline levels. References: Guzmán G., Cabezas J.M., Gómez J.A. 2016. Evaluación preliminar del efecto del manejo del suelo en indicadores que determinan su calidad en viñedos de la Denominación de Origen Montilla Moriles. II Jornadas de Viticultura SECH. Madrid.

  15. New soil water sensors for irrigation management

    Science.gov (United States)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  16. Remote Sensing of Soils for Environmental Assessment and Management.

    Science.gov (United States)

    DeGloria, Stephen D.; Irons, James R.; West, Larry T.

    2014-01-01

    The next generation of imaging systems integrated with complex analytical methods will revolutionize the way we inventory and manage soil resources across a wide range of scientific disciplines and application domains. This special issue highlights those systems and methods for the direct benefit of environmental professionals and students who employ imaging and geospatial information for improved understanding, management, and monitoring of soil resources.

  17. Study of microarthropod communities to assess soil quality in different managed vineyards

    Science.gov (United States)

    Gagnarli, Elena; Vignozzi, Nadia; Valboa, Giuseppe; Bouneb, Mabrouk; Corino, Lorenzo; Goggioli, Donatella; Guidi, Silvia; Lottero, Mariarosa; Tarchi, Franca; Simoni, Sauro

    2014-05-01

    Land use type influences the abundance and diversity of soil arthropods. The evaluation of the effects of different crop managements on soil quality is commonly requested; it can be pursued by means of the determination of communities' structure of edaphic fauna. The development and application of biological indices may represent an efficient mean to assess soil quality. We evaluated the effect of crop managements (organic and Integrated Pest Management-IPM) in some vineyards in Piedmont (Italy) on soil biota in relation to some physical and chemical characteristics of the soil. The study was performed in eleven sites, including seven organic and four IPM managed vineyards located in the Costigliole d'Asti area. Samplings were carried out during the winter 2011 and the spring 2012. Soil samples were collected using a cylindrical soil core sampler (3cm diameter x 30cm height): each sample was a cylindrical soil core which was equally subdivided to study arthropod communities at different depth ranges. Additional samples were collected and analyzed for the following soil physical and chemical properties: texture (sedigraph method), pH (1:2.5 soil/water), total organic carbon (TOC), total nitrogen (NT) and calcium carbonate (dry combustion by CN analyzer). The extraction of microarthropods was performed using the selector Berlese-Tullgren. All specimens were counted and determined up to the order level. The influence of soil properties and of agronomic practices on the abundance of mesofauna was evaluated by multivariate analysis (MANOVA). The biological soil quality was also defined through the determination of biotic indices such as the qualitative and quantitative QBSar (Quality Biological Soil - arthropods), and biodiversity indices such as species richness and indices of Shannon-Wiener (H') and Simpson (D). Overall, more than four thousands arthropods were collected and the highest abundance was in biological management with about 2:1 ratio (biological vs

  18. Introduction to Soil Fumigant Management Plans

    Science.gov (United States)

    Soil fumigant pesticide labels require users to prepare a site-specific fumigation management plan (FMP) before the application begins. EPA has developed templates that outline the elements required by the labels.

  19. Soil aggregation under different management systems

    Directory of Open Access Journals (Sweden)

    Cibele Mascioli Rebello Portella

    2012-12-01

    Full Text Available Considering that the soil aggregation reflects the interaction of chemical, physical and biological soil factors, the aim of this study was evaluate alterations in aggregation, in an Oxisol under no-tillage (NT and conventional tillage (CT, since over 20 years, using as reference a native forest soil in natural state. After analysis of the soil profile (cultural profile in areas under forest management, samples were collected from the layers 0-5, 5-10, 10-20 and 20-40 cm, with six repetitions. These samples were analyzed for the aggregate stability index (ASI, mean weighted diameter (MWD, mean geometric diameter (MGD in the classes > 8, 8-4, 4-2, 2-1, 1-0.5, 0.5-0.25, and < 0.25 mm, and for physical properties (soil texture, water dispersible clay (WDC, flocculation index (FI and bulk density (Bd and chemical properties (total organic carbon - COT, total nitrogen - N, exchangeable calcium - Ca2+, and pH. The results indicated that more intense soil preparation (M < NT < PC resulted in a decrease in soil stability, confirmed by all stability indicators analyzed: MWD, MGD, ASI, aggregate class distribution, WDC and FI, indicating the validity of these indicators in aggregation analyses of the studied soil.

  20. Life cycle analysis of management options for organic waste collected in an urban area.

    Science.gov (United States)

    Di Maria, Francesco; Micale, Caterina

    2015-01-01

    Different options for managing the organic fraction (OF) of municipal solid waste generated in a given urban area were analyzed by life cycle assessment (LCA) for different source segregation (SS) intensities ranging from 0 to 52%. The best management option for processing the OF remaining in the residual organic fraction (ROF) for the different SS intensities was by incineration. Landfilling and mechanical biological treatment (MBT) of ROF gave higher impacts. Aerobic treatment alone or combined with anaerobic digestion (AD) for processing the source-segregated organic fraction (SSOF) led to relevant environmental impact reduction even if the difference between the two options was quite negligible. The weighted impact showed that scenarios using incineration always gave environmental gains, whereas there was a higher environmental burden with the scenarios using MBT.

  1. Evaluating anaerobic soil disinfestation and other biological soil management methods for open-field tomato production in Florida

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD), amending the soil with composted poultry litter (CPL) and molasses (M), has been shown to be a potential alternative to chemical soil fumigation for tomato production, however, optimization of ASD and the use of other biologically-based soil management practices ...

  2. Soil quality indicator responses to row crop, grazed pasture, and agroforestry buffer management

    Science.gov (United States)

    Incorporation of trees and establishment of grass buffers within agroecosystems are management practices shown to enhance soil quality. Soil enzyme activities and water stable aggregates (WSA) have been identified as sensitive soil quality indicators to evaluate early responses to soil management. ...

  3. Exploring differences of soil quality as related to management in ...

    African Journals Online (AJOL)

    soil, vegetation and biodiversity) and productivity. Vegetation condition in contrasting land-use management systems is well documented in semiarid rangelands, but relatively little information is available on soil quality. This study explores soil ...

  4. Land Management Restrictions and Options for Change in Perpetual Conservation Easements

    Science.gov (United States)

    Rissman, Adena; Bihari, Menka; Hamilton, Christopher; Locke, Christina; Lowenstein, David; Motew, Melissa; Price, Jessica; Smail, Robert

    2013-07-01

    Conservation organizations rely on conservation easements for diverse purposes, including protection of species and natural communities, working forests, and open space. This research investigated how perpetual conservation easements incorporated property rights, responsibilities, and options for change over time in land management. We compared 34 conservation easements held by one federal, three state, and four nonprofit organizations in Wisconsin. They incorporated six mechanisms for ongoing land management decision-making: management plans (74 %), modifications to permitted landowner uses with discretionary consent (65 %), amendment clauses (53 %), easement holder rights to conduct land management (50 %), reference to laws or policies as compliance terms (47 %), and conditional use permits (12 %). Easements with purposes to protect species and natural communities had more ecological monitoring rights, organizational control over land management, and mechanisms for change than easements with general open space purposes. Forestry purposes were associated with mechanisms for change but not necessarily with ecological monitoring rights or organizational control over land management. The Natural Resources Conservation Service-Wetland Reserve Program had a particularly consistent approach with high control over land use and some discretion to modify uses through permits. Conservation staff perceived a need to respond to changing social and ecological conditions but were divided on whether climate change was likely to negatively impact their conservation easements. Many conservation easements involved significant constraints on easement holders' options for altering land management to achieve conservation purposes over time. This study suggests the need for greater attention to easement drafting, monitoring, and ongoing decision processes to ensure the public benefits of land conservation in changing landscapes.

  5. Options for Healthcare Waste Management and Treatment in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Healthcare waste management and treatment is one of the national priority tasks of China's Tenth Five-Year Plan.Numerous installations disposing medical waste have already operated the project or under construction to the operation in 2006. This paper focuses on the assessment of existing and fu~re options to handle medical waste (MW). Internationally available and so far in China applied technologies and management practice are analysed, including the problems how to materials. Non-hazardous MW can be managed and treated in analogue to municipal solid waste (MSW). In most of the European countries decentralised hospital incinerators have been, because of high operation costs and pollution problems,widely banned and replaced by pre-treatment technologies at the source and centralised incineration plants for hazardous MW.Information for adapting and further developing MW management solutions and treatment technologies in China and applying the most appropriate MWM practice is provided.

  6. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils.

    Science.gov (United States)

    Jansa, Jan; Erb, Angela; Oberholzer, Hans-Rudolf; Smilauer, Petr; Egli, Simon

    2014-04-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil fungi, forming mutualistic symbiosis with a majority of terrestrial plant species. They are abundant in nearly all soils, less diverse than soil prokaryotes and other intensively studied soil organisms and thus are promising candidates for universal indicators of land management legacies and soil quality degradation. However, insufficient data on how the composition of indigenous AMF varies along soil and landscape gradients have hampered the definition of baselines and effect thresholds to date. Here, indigenous AMF communities in 154 agricultural soils collected across Switzerland were profiled by quantitative real-time PCR with taxon-specific markers for six widespread AMF species. To identify the key determinants of AMF community composition, the profiles were related to soil properties, land management and site geography. Our results indicate a number of well-supported dependencies between abundances of certain AMF taxa and soil properties such as pH, soil fertility and texture, and a surprising lack of effect of available soil phosphorus on the AMF community profiles. Site geography, especially the altitude and large geographical distance, strongly affected AMF communities. Unexpected was the apparent lack of a strong land management effect on the AMF communities as compared to the other predictors, which could be due to the rarity of highly intensive and unsustainable land management in Swiss agriculture. In spite of the extensive coverage of large geographical and soil gradients, we did not identify any taxon suitable as an indicator of land use among the six taxa we studied. © 2014 John Wiley & Sons Ltd.

  7. Management strategies to utilize salt affected soils. Isotopic and conventional research methods. Results of a co-ordinated research programme

    International Nuclear Information System (INIS)

    1995-07-01

    This document summarizes the results of a co-ordinated research programme on ''The Use of Nuclear Techniques for Improvement of Crop Production in Salt-affected Soils''. It aims at providing scientists experimental evidence of demonstrating technical feasibility of biological amelioration of salt affected soils as an alternative option of using expensive chemical amendments in soil reclamation complementing engineering structures of farm drainage systems or option of leaving the saline areas as barren lands in spite of the fact that arable agricultural lands have exhausted. 68 refs, 26 figs, 32 tabs

  8. Management strategies to utilize salt affected soils. Isotopic and conventional research methods. Results of a co-ordinated research programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document summarizes the results of a co-ordinated research programme on ``The Use of Nuclear Techniques for Improvement of Crop Production in Salt-affected Soils``. It aims at providing scientists experimental evidence of demonstrating technical feasibility of biological amelioration of salt affected soils as an alternative option of using expensive chemical amendments in soil reclamation complementing engineering structures of farm drainage systems or option of leaving the saline areas as barren lands in spite of the fact that arable agricultural lands have exhausted. 68 refs, 26 figs, 32 tabs.

  9. Best management practices: Managing cropping systems for soil protection and bioenergy production

    Science.gov (United States)

    Interest in renewable alternatives to fossil fuels has increased. Crop residue such as corn stover or wheat straw can be used for bioenergy including a substitution for natural gas or coal. Harvesting crop residue needs to be managed to protect the soil and future soil productivity. The amount of bi...

  10. Time Charters with Purchase Options in Shipping: Valuation and Risk Management

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte; De Giovanni, Domenico

    The paper studies the valuation and optimal management of Time Charters with Purchase Options (T/C-POPs) which is a specific type of asset lease with embedded options that is common in shipping markets. T/C-POPs are economically significant and sometimes account for more than half of the stock...... market value of listed shipping companies. The main source of risk in markets for maritime transportation is the freight rate, and we therefore specify a single-factor continuous time model for the dynamic evolution of freight rates which allows us to price a wide variety of freight rate related...

  11. Time Charters with Purchase Options in Shipping: Valuation and Risk Management

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte; De Giovanni, Domenico

    2010-01-01

    The article studies the valuation and optimal management of Time Charters with Purchase Options (T/C-POPs), which is a specific type of asset lease with embedded options that is common in shipping markets. T/C-POPs are economically significant and sometimes account for more than half of the stock...... market value of listed shipping companies. The main source of risk in markets for maritime transportation is the freight rate, and we therefore specify a single-factor continuous time model for the dynamic evolution of freight rates that allows us to price a wide variety of freight rate...

  12. The role of quantitative optimization techniques in assessment of best practicable environmental options for radioactive waste management

    International Nuclear Information System (INIS)

    Johnston, P.D.

    1987-01-01

    The interpretation of the Best Practicable Environmental Option (BPEO) and ALARA concepts in radioactive waste management is given. The quantitative analysis of the financial and radiological impacts of different options for waste management is discussed. Finally, the role of quantitative multi-attribute analysis in the DOE's assessment of BPEOs for radioactive waste is described. (UK)

  13. Assessing different agricultural managements with the use of soil quality indices in a Mediteranean calcareous soil

    Science.gov (United States)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Vicky; Cerdà, Artemi

    2013-04-01

    Soil erosion is a major problem in the Mediterranean region due to the arid conditions and torrential rainfalls, which contribute to the degradation of agricultural land. New strategies must be developed to reduce soil losses and recover or maintain soil functionality in order to achieve a sustainable agriculture. An experiment was designed to evaluate the effect of different agricultural management on soil properties and soil quality. Ten different treatments (contact herbicide, systemic herbicide, ploughing, Oat mulch non-plough, Oats mulch plough, leguminous plant, straw rice mulch, chipped pruned branches, residual-herbicide and agro geo-textile, and three control plots including no tillage or control and long agricultural abandonment (shrub on marls and shrub on limestone) were established in 'El Teularet experimental station' located in the Sierra de Enguera (Valencia, Spain). The soil is a Typic Xerorthent developed over Cretaceous marls in an old agricultural terrace. The agricultural management can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) developed by Zornoza et al. (2007) are used to evaluate the effects of the different agricultural management along 4 years. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and ß-glucosidase activities, pH, EC, P and CEC). We use the

  14. Simulating land management options to reduce nitrate pollution in an agricultural watershed dominated by an alluvial aquifer.

    Science.gov (United States)

    Cerro, Itsasne; Antigüedad, Iñaki; Srinavasan, Raghavan; Sauvage, Sabine; Volk, Martin; Sanchez-Perez, José Miguel

    2014-01-01

    The study area (Alegria watershed, Basque Country, Northern Spain) considered here is influenced by an important alluvial aquifer that plays a significant role in nitrate pollution from agricultural land use and management practices. Nitrates are transported primarily from the soil to the river through the alluvial aquifer. The agricultural activity covers 75% of the watershed and is located in a nitrate-vulnerable zone. The main objective of the study was to find land management options for water pollution abatement by using model systems. In a first step, the SWAT model was applied to simulate discharge and nitrate load in stream flow at the outlet of the catchment for the period between October 2009 and June 2011. The LOADEST program was used to estimate the daily nitrate load from measured nitrate concentration. We achieved satisfactory simulation results for discharge and nitrate loads at monthly and daily time steps. The results revealed clear variations in the seasons: higher nitrate loads were achieved for winter (20,000 kg mo NO-N), and lower nitrate loads were simulated for the summer (model was used to evaluate the long-term effects of best management practices (BMPs) for a 50-yr period by maintaining actual agricultural practices, reducing fertilizer application by 20%, splitting applications (same total N but applied over the growing period), and reducing 20% of the applied fertilizer amount and splitting the fertilizer doses. The BMPs were evaluated on the basis of local experience and farmer interaction. Results showed that reducing fertilizer amounts by 20% could lead to a reduction of 50% of the number of days exceeding the nitrate concentration limit value (50 mg L) set by the European Water Framework Directive. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Soil pH management without lime, a strategy to reduce greenhouse gas emissions from cultivated soils

    Science.gov (United States)

    Nadeem, Shahid; Bakken, Lars; Reent Köster, Jan; Tore Mørkved, Pål; Simon, Nina; Dörsch, Peter

    2015-04-01

    For decades, agricultural scientists have searched for methods to reduce the climate forcing of food production by increasing carbon sequestration in the soil and reducing the emissions of nitrous oxide (N2O). The outcome of this research is depressingly meagre and the two targets appear incompatible: efforts to increase carbon sequestration appear to enhance the emissions of N2O. Currently there is a need to find alternative management strategies which may effectively reduce both the CO2 and N2O footprints of food production. Soil pH is a master variable in soil productivity and plays an important role in controlling the chemical and biological activity in soil. Recent investigations of the physiology of denitrification have provided compelling evidence that the emission of N2O declines with increasing pH within the range 5-7. Thus, by managing the soil pH at a near neutral level appears to be a feasible way to reduce N2O emissions. Such pH management has been a target in conventional agriculture for a long time, since a near-neutral pH is optimal for a majority of cultivated plants. The traditional way to counteract acidification of agricultural soils is to apply lime, which inevitably leads to emission of CO2. An alternative way to increase the soil pH is the use of mafic rock powders, which have been shown to counteract soil acidification, albeit with a slower reaction than lime. Here we report a newly established field trail in Norway, in which we compare the effects of lime and different mafic mineral and rock powders (olivine, different types of plagioclase) on CO2 and N2O emissions under natural agricultural conditions. Soil pH is measured on a monthly basis from all treatment plots. Greenhouse gas (GHG) emission measurements are carried out on a weekly basis using static chambers and an autonomous robot using fast box technique. Field results from the first winter (fallow) show immediate effect of lime on soil pH, and slower effects of the mafic rocks. The

  16. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    Science.gov (United States)

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should

  17. Effects of green manure herbage management and its digestate from biogas production on barley yield, N recovery, soil structure and earthworm populations

    DEFF Research Database (Denmark)

    Frøseth, Randi Berland; Bakken, Anne Kjersti; Bleken, Marina Azzaroli

    2014-01-01

    management on the yield and N recovery of a subsequent spring barley crop, and their short term effects on soil structure and earthworm populations. A field trial was run from 2008 to 2011 at four sites with contrasting soils under cold climate conditions. We compared several options for on-site herbage......In repeatedly mown and mulched green manure leys, the mulched herbage contains substantial amounts of nitrogen (N), which may only slightly contribute to the following crops’ nutrient demand. The objective of the present work was to evaluate the effect of alternative strategies for green manure...... management and the application of anaerobically digested green manure herbage. Depending on the site, removal of green manure herbage reduced the barley grain yield by 0% to 33% compared to leaving it on-site. Applying digestate, containing 45% of the N in harvested herbage, as fertilizer for barley gave...

  18. An adaptive management process for forest soil conservation.

    Science.gov (United States)

    Michael P. Curran; Douglas G. Maynard; Ronald L. Heninger; Thomas A. Terry; Steven W. Howes; Douglas M. Stone; Thomas Niemann; Richard E. Miller; Robert F. Powers

    2005-01-01

    Soil disturbance guidelines should be based on comparable disturbance categories adapted to specific local soil conditions, validated by monitoring and research. Guidelines, standards, and practices should be continually improved based on an adaptive management process, which is presented in this paper. Core components of this process include: reliable monitoring...

  19. Towards phronetic knowledge for strategic planning in corporate real estate management: A real options approach

    NARCIS (Netherlands)

    van Reedt Dortland, Maartje; Voordijk, Johannes T.; Dewulf, Geert P.M.R.

    2014-01-01

    Purpose – The objective of this paper is to provide insights about the potential of real option thinking for corporate real estate management (CREM) from the owner-user perspective. A promising approach to classifying and evaluating flexibility in real estate is the real options approach. Most

  20. 41 CFR 102-194.30 - What role does my agency play in the Standard and Optional Forms Management Program?

    Science.gov (United States)

    2010-07-01

    ... What role does my agency play in the Standard and Optional Forms Management Program? Your agency head... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What role does my agency play in the Standard and Optional Forms Management Program? 102-194.30 Section 102-194.30 Public...

  1. Feasibility Study on UAV-assisted Construction Surplus Soil Tracking Control and Management Technique

    Science.gov (United States)

    Jieh Haur, Chen; Kuo, Lin Sheng; Fu, Chen Ping; Li Hsu, Yeh; Da Heng, Chen

    2018-01-01

    Construction surplus soil tracking management has been the key management issue in Taiwan since 1991. This is mainly due to the construction surplus soils were often regarded as disposable waste and were disposed openly without any supervision, leading to environmental pollution. Even though the surplus soils were gradually being viewed as reusable resources, some unscrupulous enterprises still dump them freely for their own convenience. In order to dispose these surplus soils, site offices are required to confirm with the soil treatment plant regarding the approximate soil volume for hauling vehicle dispatch. However, the excavated soil volume will transform from bank volume to loose volume upon excavation, which may differ by a certain speculative coefficient (1.3), depending on the excavation site and geological condition. For managing and tracking the construction surplus soils, local government authorities frequently performed on-site spot check, but the lack of rapid assessment tools for soil volume estimation increased the evaluation difficulty for on-site inspectors. This study adopted unmanned aerial vehicle (UAV) in construction surplus soil tracking and rapidly acquired site photography and point cloud data, the excavated soil volume can be determined promptly after post-processing and interpretation, providing references to future surplus soil tracking management.

  2. Sustainable Soil Management: Its perception and the need for policy intervention

    Science.gov (United States)

    Basch, Gottlieb; Kassam, Amir; González-Sánchez, Emilio

    2017-04-01

    As stated in the strategic objectives of the Global Soil Partnership "healthy soils and sustainable soil management are the precondition for human well-being and economic welfare and therefore play the key role for sustainable development". Although the functional properties of a healthy soil are well understood, in practice it is easily overlooked what is necessary to achieve and sustain healthy agricultural soils. This contribution intends: to discuss the concept of sustainable soil management in agricultural production with regard to soil health, and to highlight its importance in the achievement of both Sustainable Development Goals and the 4 per mille objectives, as well as for the Common Agricultural Policy (CAP). In Europe, soil and the need for its conservation and stewardship gained visibility at the beginning of this century during the discussions related to the Soil Thematic Strategy. This higher level of awareness concerning the status of Europe's soils led to the introduction of soil conservation standards into the cross-compliance mechanism within the 1st Pillar of CAP. These standards were applied through the definition of Good Agricultural and Environmental Conditions (GAECs) which are compulsory for all farmers receiving direct payments, and in the last CAP reform in 2014, through the introduction of additional Greening Measures in Pilar 1. Despite these measures and the claim of some writers that they already contributed to significantly reducing soil erosion, the EC Joint Research Centre still reports water erosion in Europe amounting to almost one billion tonnes annually. Regarding soil conservation, soil carbon stocks or the provision of additional ecosystem services, measures called for in GAEC 4 (Minimum soil cover), in GAEC 5 (Minimum land management reflecting site specific conditions to limit soil erosion), and in GAEC 6 (Maintenance of soil organic matter level through appropriate practices, …), give the impression that a lot is being

  3. Vegetation management with fire modifies peatland soil thermal regime.

    Science.gov (United States)

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (management effects. Temperatures measured in soil plots burned vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Local soil classification and crop suitability: Implications for the historical land use and soil management in Monti di Trapani (Sicily)

    Science.gov (United States)

    Garcia-Vila, Margarita; Corselli, Rocco; Bonet, María Teresa; Lopapa, Giuseppe; Pillitteri, Valentina; Fereres, Elias

    2017-04-01

    In the past, the lack of technologies (e.g. synthetic fertilizers) to overcome biophysical limitations has played a central role in land use planning. Thus, landscape management and agronomic practices are reactions to local knowledge and perceptions on natural resources, particularly soil. In the framework of the European research project MEMOLA (FP7), the role of local farmers knowledge and perceptions on soil for the historical land use through the spatial distribution of crops and the various management practices have been assessed in three different areas of Monti di Trapani region (Sicily). The identification of the soil classification systems of farmers and the criteria on which it is based, linked to the evaluation of the farmers' ability to identify and map the different soil types, was a key step. Nevertheless, beyond the comparison of the ethnopedological classification approach versus standard soil classification systems, the study also aims at understanding local soil management and land use decisions. The applied methodology was based on an interdisciplinary approach, combining soil science methods and participatory appraisal tools, particularly: i) semi-structured interviews; ii) soil sampling and analysis; iii) discussion groups; and iv) a workshop with local edafologists and agronomists. A rich local glossary of terms associated with the soil conditions and an own soil classification system have been identified in the region. Also, a detailed soil map, including process of soil degradation and soil capability, has been generated. This traditional soil knowledge has conditioned the management and the spatial distribution of the crops, and therefore the configuration of the landscape, until the 1990s. Acknowledgements This work has been funded by the European Union project MEMOLA (Grant agreement no: 613265).

  5. Evaluating management-induced soil salinization in golf courses in semi-arid landscapes

    Science.gov (United States)

    Young, J.; Udeigwe, T. K.; Weindorf, D. C.; Kandakji, T.; Gautam, P.; Mahmoud, M. A.

    2015-04-01

    Site-specific information on land management practices are often desired to make better assessments of their environmental impacts. A study was conducted in Lubbock, Texas, in the Southern High Plains of the United States, an area characterized by semi-arid climatic conditions, to (1) examine the potential management-induced alterations in soil salinity indicators in golf course facilities and (2) develop predictive relationships for a more rapid soil salinity examination within these urban landscape soils using findings from a portable X-ray fluorescence (PXRF) spectrometer. Soil samples were collected from managed (well irrigated) and non-managed (non-irrigated) areas of seven golf course facilities at 0-10, 10-20, and 20-30 cm depths and analyzed for a suite of chemical properties. Among the extractable cations, sodium (Na) was significantly (p golf facilities. Soil electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), parameters often used in characterizing soil salinity and sodicity, were for the most part significantly (p < 0.05) higher in the managed areas. Water quality reports collected over a 22-year period (1991-2013, all years not available) indicated a gradual increase in pH, EC, SAR, total alkalinity, and extractable ions, thus supporting the former findings. Findings from the PXRF suggested possible differences in chemical species and sources that contribute to salinity between the managed and non-managed zones. PXRF-quantified Cl and S, and to a lesser extent Ca, individually and collectively explained 23-85% of the variability associated with soil salinity at these facilities.

  6. Effect of Management Practices on Soil Microstructure and Surface Microrelief

    Directory of Open Access Journals (Sweden)

    R. Garcia Moreno

    2012-01-01

    Full Text Available Soil surface roughness (SSR and porosity were evaluated from soils located in two farms belonging to the Plant Breeding Institute of the University of Sidney. The sites differ in their soil management practices; the first site (PBI was strip-tilled during early fall (May 2010, and the second site (JBP was under power harrowed tillage at the end of July 2010. Both sites were sampled in mid-August. At each location, SSR was measured for three 1 m2 subplots using shadow analysis. To evaluate porosity and aggregation, soil samples were scanned using X-ray computed tomography with 5 μm resolution. The results show a strong negative correlation between SSR and porosity, 20.13% SSR and 41.38% porosity at PBI versus 42.00% SSR and 18.35% porosity at JBP. However, soil images show that when soil surface roughness is higher due to conservation and soil management practices, the processes of macroaggregation and structural porosity are enhanced. Further research must be conducted on SSR and porosity in different types of soils, as they provide complementary information on the evaluation of soil erosion susceptibility.

  7. Exotic Options: a Chooser Option and its Pricing

    Directory of Open Access Journals (Sweden)

    Raimonda Martinkutė-Kaulienė

    2012-12-01

    Full Text Available Financial instruments traded in the markets and investors’ situation in such markets are getting more and more complex. This leads to more complex derivative structures used for hedging that are harder to analyze and which risk is harder managed. Because of the complexity of these instruments, the basic characteristics of many exotic options may sometimes be not clearly understood. Most scientific studies have been focused on developing models for pricing various types of exotic options, but it is important to study their unique characteristics and to understand them correctly in order to use them in proper market situations. The paper examines main aspects of options, emphasizing the variety of exotic options and their place in financial markets and risk management process. As the exact valuation of exotic options is quite difficult, the article deals with the theoretical and practical aspects of pricing of chooser options that suggest a broad range of usage and application in different market conditions. The calculations made in the article showed that the price of the chooser is closely correlated with the choice time and low correlated with its strike price. So the first mentioned factor should be taken into consideration when making appropriate hedging and investing decisions.

  8. Soil carbon under perennial pastures; benchmarking the influence of pasture age and management

    Science.gov (United States)

    Orgill, Susan E.; Spoljaric, Nancy; Kelly, Georgina

    2015-07-01

    This paper reports baseline soil carbon stocks from a field survey of 19 sites; 8 pairs/triplet in the Monaro region of New South Wales. Site comparisons were selected by the Monaro Farming Systems group to demonstrate the influence of land management on soil carbon, and included: nutrient management, liming, pasture age and cropping history. Soil carbon stocks varied with parent material and with land management. The fertilised (phosphorus) native perennial pasture had a greater stock of soil carbon compared with the unfertilised site; 46.8 vs 40.4 Mg.C.ha to 0.50 m. However, the introduced perennial pasture which had been limed had a lower stock of soil carbon compared with the unlimed site; 62.8 vs 66.7 Mg.C.ha to 0.50 m. There was a greater stock of soil carbon under two of the three younger (35 yr old) pastures. Cropped sites did not have lower soil carbon stocks at all sites; however, this survey was conducted after three years of above average annual rainfall and most sites had been cropped for less than three years. At all sites more than 20% of the total carbon stock to 0.50 m was in the 0.30 to 0.50 m soil layer highlighting the importance of considering this soil layer when investigating the implications of land management on soil carbon. Our baseline data indicates that nutrient management may increase soil carbon under perennial pastures and highlights the importance of perennial pastures for soil carbon sequestration regardless of age.

  9. A process-based framework for soil ecosystem services study and management.

    Science.gov (United States)

    Su, Changhong; Liu, Huifang; Wang, Shuai

    2018-06-15

    Soil provides various indispensable ecosystem services for human society. Soil's complex structure and property makes the soil ecological processes complicated and brings about tough challenges for soil ecosystem services study. Most of the current frameworks on soil services focus exclusively on services per se, neglecting the links and underlying ecological mechanisms. This article put forward a framework on soil services by stressing the underlying soil mechanisms and processes, which includes: 1) analyzing soil natural capital stock based on soil structure and property, 2) disentangling the underlying complex links and soil processes, 3) soil services valuation based on field investigation and spatial explicit models, and 4) enacting soil management strategy based on soil services and their driving factors. By application of this framework, we assessed the soil services of sediment retention, water yield, and grain production in the Upper-reach Fenhe Watershed. Based on the ecosystem services and human driving factors, the whole watershed was clustered into five groups: 1) municipal area, 2) typical coal mining area, 3) traditional farming area, 4) unsustainable urbanizing area, and 5) ecological conservation area. Management strategies on soils were made according to the clustering based soil services and human activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Managing Reputational Risk through Environmental Management and Reporting: An Options Theory Approach

    Directory of Open Access Journals (Sweden)

    Juan Pineiro-Chousa

    2017-03-01

    Full Text Available Reputation is a complex and multidimensional concept that may be organized in downside and upside reputational risk. In this article, we present a formal modelling for the management capabilities of environmental management and reporting over reputational risk, considering that reputational risk is becoming increasingly important for organizations and it directly depends on the information available about companies’ environmental performances. As long as the effectiveness of communication and disclosure plays a key role in the process, the usefulness of environmental management and reporting as a hedging instrument for reputational risk is addressed through different levels of information transparency. When considering a scenario of voluntary reporting, we show that environmentally concerned companies can reduce the cost of environmental management as a reputational risk strategy, as well as reducing the potential loss of reputational value from reputational threats and increasing the potential profit from reputational opportunities. In the context of mandatory reporting, we highlight the role of assurance companies as bearers of the risk of bad reputations for non-concerned companies. As a result, this novel approach applies theoretical oriented research from options theory to reputational risk management literature, so that it benefits from the option’s well known theory, robustness, and conclusions.

  11. Assessing Cross-disciplinary Efficiency of Soil Amendments for Agro-biologically, Economically, and Ecologically Integrated Soil Health Management

    Science.gov (United States)

    2010-01-01

    Preventive and/or manipulative practices will be needed to maintain soil's biological, physiochemical, nutritional, and structural health in natural, managed, and disturbed ecosystems as a foundation for food security and global ecosystem sustainability. While there is a substantial body of interdisciplinary science on understanding function and structure of soil ecosystems, key gaps must be bridged in assessing integrated agro-biological, ecological, economical, and environmental efficiency of soil manipulation practices in time and space across ecosystems. This presentation discusses the application of a fertilizer use efficiency (FUE) model for assessing agronomic, economic, ecological, environmental, and nematode (pest) management efficiency of soil amendments. FUE is defined as increase in host productivity and/or decrease in plant-parasitic nematode population density in response to a given fertilizer treatment. Using the effects of nutrient amendment on Heterodera glycines population density and normalized difference vegetative index (indicator of physiological activities) of a soybean cultivar ‘CX 252’, how the FUE model recognizes variable responses and separates nutrient deficiency and toxicity from nematode parasitism as well as suitability of treatments designed to achieve desired biological and physiochemical soil health conditions is demonstrated. As part of bridging gaps between agricultural and ecological approaches to integrated understanding and management of soil health, modifications of the FUE model for analyzing the relationships amongst nematode community structure, soil parameters (eg. pH, nutrients, %OM), and plant response to soil amendment is discussed. PMID:22736840

  12. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    Science.gov (United States)

    Qadir, M; Oster, J D

    2004-05-05

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  13. Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-03-02

    This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soil at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for

  14. Soil nitrate testing supports nitrogen management in irrigated annual crops

    Directory of Open Access Journals (Sweden)

    Patricia A. Lazicki

    2016-12-01

    Full Text Available Soil nitrate (NO3− tests are an integral part of nutrient management in annual crops. They help growers make field-specific nitrogen (N fertilization decisions, use N more efficiently and, if necessary, comply with California's Irrigated Lands Regulatory Program, which requires an N management plan and an estimate of soil NO3− from most growers. As NO3− is easily leached into deeper soil layers and groundwater by rain and excess irrigation water, precipitation and irrigation schedules need to be taken into account when sampling soil and interpreting test results. We reviewed current knowledge on best practices for taking and using soil NO3− tests in California irrigated annual crops, including how sampling for soil NO3− differs from sampling for other nutrients, how tests performed at different times of the year are interpreted and some of the special challenges associated with NO3− testing in organic systems.

  15. 5 CFR 870.705 - Amount and election of Option B and Option C.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Amount and election of Option B and Option C. 870.705 Section 870.705 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED... Compensationers § 870.705 Amount and election of Option B and Option C. (a) The number of multiples of Option B...

  16. Carbon footprint and energy use of food waste management options for fresh fruit and vegetables from supermarkets.

    Science.gov (United States)

    Eriksson, Mattias; Spångberg, Johanna

    2017-02-01

    Food waste is a problem with economic, environmental and social implications, making it both important and complex. Previous studies have addressed food waste management options at the less prioritised end of the waste hierarchy, but information on more prioritised levels is also needed when selecting the best available waste management options. Investigating the global warming potential and primary energy use of different waste management options offers a limited perspective, but is still important for validating impacts from the waste hierarchy in a local context. This study compared the effect on greenhouse gas emissions and primary energy use of different food waste management scenarios in the city of Växjö, Sweden. A life cycle assessment was performed for four waste management scenarios (incineration, anaerobic digestion, conversion and donation), using five food products (bananas, tomatoes, apples, oranges and sweet peppers) from the fresh fruit and vegetables department in two supermarkets as examples when treated as individual waste streams. For all five waste streams, the established waste hierarchy was a useful tool for prioritising the various options, since the re-use options (conversion and donation) reduced the greenhouse gas emissions and the primary energy use to a significantly higher degree than the energy recovery options (incineration and anaerobic digestion). The substitution of other products and services had a major impact on the results in all scenarios. Re-use scenarios where food was replaced therefore had much higher potential to reduce environmental impact than the energy recovery scenarios where fossil fuel was replaced. This is due to the high level of resources needed to produce food compared with production of fossil fuels, but also to fresh fruit and vegetables having a high water content, making them inefficient as energy carriers. Waste valorisation measures should therefore focus on directing each type of food to the waste

  17. How do managers behave in stock option plans? Clinical evidence from exercise and survey data

    NARCIS (Netherlands)

    Sautner, Z.; Weber, M.

    2009-01-01

    We use unique case study data to analyze the behavior of top managers in an executive stock option plan. We gather questionnaire data on the managers' traits and combine it with exercise data. Managers in our sample expect low volatilities (compared to historical estimates) and are well diversified

  18. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils

    OpenAIRE

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Metadata only record The long-term effects of tillage system and residue management on soil organic carbon stabilization are studied in two tropical soils in Zimbabwe, a red clay and a sandy soil. The four tillage systems evaluated were conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR). Soil organic carbon (SOC) content was measured for each size fraction as well as total SOC. Based on the findings, the authors conclude that residue management - mainta...

  19. Uncertainty in soil carbon accounting due to unrecognized soil erosion.

    Science.gov (United States)

    Sanderman, Jonathan; Chappell, Adrian

    2013-01-01

    The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15-50% slower when an erosion rate of 15 t soil ha(-1)  yr(-1) was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3-1.0 t CO2  ha(-1)  yr(-1) . This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities. © 2012 Blackwell Publishing Ltd.

  20. Optimizing land use pattern to reduce soil erosion

    Directory of Open Access Journals (Sweden)

    Reza Sokouti

    2017-01-01

    Full Text Available Soil erosion hazard is one of the main problems can affect ecological balance in watersheds. This study aimed to determine the optimal use of land to reduce erosion and increase the resident's income of Qushchi watershed in West Azerbaijan province, Iran. Income and expenses for the current land uses were calculated with field studies. Damages resulting from the soil erosion were estimated by soil depth equal to the specified land uses. For three different options including the current status of land uses without and with land management, and the standard status of land uses, multi-objective linear programming model was established by LINGO software. Then the optimization problem of the land use was solved by simplex method. Finally, the best option of land use was determined by comparing erosion rate and its cost in each scenario. Then the circumstances and the recommended conditions were compared. The results indicated that the current surface area of current land uses is not suitable to reduce erosion and increase income of residents and should change in the optimum conditions. At the optimum level, there should change horticulture area of 408 to 507 (ha, irrigated land area of 169 to 136 (ha and dry farming of 636 to 570 (ha, while conversion of rangeland area not indispensable. In addition, the results showed that in case of the optimization of land use, soil erosion and the profitability of the whole area will decrease 0.75% and increase 3.68%, respectively. In case of land management practices, soil erosion will decrease 42.27% and the profitability increase 21.39% while in the standard conditions, soil erosion will decrease 60.95% and profitability will increase 24.20%. The results of the sensitivity analysis showed that the changes in the horticulture and range land areas have the greatest impact on the increasing profitability and reducing soil erosion of Qushchi watershed. So, it is recommended using Education and Extension to promote

  1. A decision methodology for the evaluation of mixed low-level radioactive waste management options for DOE sites

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, J. [Dept. of Energy, Washington, DC (United States); Abashian, M.S.; Chakraborti, S.; Devarakonda, M.; Djordjevic, S.M. [IT Corp., Albuquerque, NM (United States)

    1993-03-01

    Currently, many DOE sites are developing site-specific solutions to manage their mixed low-level wastes. These site-specific MLLW programs often result in duplication of efforts between the different sites, and consequently, inefficient use of DOE system resources. A nationally integrated program for MLLW eliminates unnecessary duplication of effort, but requires a comprehensive analysis of waste management options to ensure that all site issues are addressed. A methodology for comprehensive analysis of the complete DOE MLLW system is being developed by DOE-HQ to establish an integrated and standardized solution for managing MLLW. To be effective, the comprehensive systems analysis must consider all aspects of MLLW management from cradle-to-grave (i.e. from MLLW generation to disposal). The results of the analysis will include recommendations for alternative management options for the complete DOE MLLW system based on various components such as effectiveness, cost, health and safety risks, and the probability of regulatory acceptance for an option. Because of the diverse nature of these various components and the associated difficulties in comparing between them, a decision methodology is being developed that will integrate the above components into a single evaluation scheme for performing relative comparisons between different MLLW management options. The remainder of this paper provides an overview of the roles and responsibilities of the various participants of the DOE MLLW Program, and discusses in detail the components involved in the development of the decision methodology for a comprehensive systems analysis.

  2. Summer fallow soil management - impact on rainfed winter wheat

    DEFF Research Database (Denmark)

    Li, Fucui; Wang, Zhaohui; Dai, Jian

    2014-01-01

    Summer fallow soil management is an important approach to improve soil and crop management in dryland areas. In the Loess Plateau regions, the annual precipitation is low and varies annually and seasonally, with more than 60% concentrated in the summer months from July to September, which...... is the summer fallow period in the winter wheat-summer fallow cropping system. With bare fallow in summer as a control, a 3-year location-fixed field experiment was conducted in the Loess Plateau to investigate the effects of wheat straw retention (SR), green manure (GM) planting, and their combination on soil...... water retention (WR) during summer fallow, winter wheat yield, and crop water use and nitrogen (N) uptake. The results showed that SR increased soil WR during summer fallow by 20 mm on average compared with the control over 3 experimental years but reduced the grain yield by 8% in the third year...

  3. Management and conservation of acid soils in the savannahs of Latin America: Lessons from the agricultural development of the Brazilian cerrados

    International Nuclear Information System (INIS)

    Thomas, R.J.; Ayarza, M.; Lopes, A.S.

    2000-01-01

    Acid-soil savannahs represent most of the remaining land suitable for agricultural development in the world. Considered as marginal lands, they are of low inherent productivity for agriculture, and susceptible to rapid degradation. The vast Brazilian 'cerrados' were opened up some 30 years ago, and today they supply a considerable portion of the country's agricultural commodities. Monocultures of grain crops and pastures are proving to be unsustainable under today's conditions, and alternative production systems are being developed and implemented that incorporate improved production technologies and conservation of the natural resources. No-till, minimum tillage and integrated crop-livestock systems are proving to be successful in terms of farmer adoption. However, there is a need to elucidate the principles and functioning of these systems in order to assess their suitability for long-term sustainability of marginal savannah lands. The challenges that remain to ensure that these lands are developed in a sustainable manner include social, cultural and economic aspects, a favourable policy environment and a clearer understanding of sustainability and its measurement. In this article we review the lessons learned from the cerrados experience. Future research should include the development of new crop options with tolerance of acid soils, a better understanding of water and nutrient cycles, the development of principles of soil organic matter and crop-residue management, and the biological management of soil fertility. (author)

  4. Management and conservation of acid soils in the savannahs of Latin America: Lessons from the agricultural development of the Brazilian cerrados

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R J; Ayarza, M [Centro Internacional de Agricultura Tropical, Cali (Colombia); Lopes, A S [Federal University of Lavras, Lavras (Brazil)

    2000-06-01

    Acid-soil savannahs represent most of the remaining land suitable for agricultural development in the world. Considered as marginal lands, they are of low inherent productivity for agriculture, and susceptible to rapid degradation. The vast Brazilian 'cerrados' were opened up some 30 years ago, and today they supply a considerable portion of the country's agricultural commodities. Monocultures of grain crops and pastures are proving to be unsustainable under today's conditions, and alternative production systems are being developed and implemented that incorporate improved production technologies and conservation of the natural resources. No-till, minimum tillage and integrated crop-livestock systems are proving to be successful in terms of farmer adoption. However, there is a need to elucidate the principles and functioning of these systems in order to assess their suitability for long-term sustainability of marginal savannah lands. The challenges that remain to ensure that these lands are developed in a sustainable manner include social, cultural and economic aspects, a favourable policy environment and a clearer understanding of sustainability and its measurement. In this article we review the lessons learned from the cerrados experience. Future research should include the development of new crop options with tolerance of acid soils, a better understanding of water and nutrient cycles, the development of principles of soil organic matter and crop-residue management, and the biological management of soil fertility. (author)

  5. Polish Toxic Currency Options

    Directory of Open Access Journals (Sweden)

    Waldemar Gontarski

    2009-06-01

    Full Text Available Toxic currency options are defined on the basis of the opposition to the nature (essence of an option contract, which is justified in terms of norms founded on the general law clause of characteristics (nature of a relation (which represents an independent premise for imposing restrictions on the freedom of contracts. So-understood toxic currency options are unlawful. Indeed they contravene iuris cogentis regulations. These include for instance option contracts, which are concluded with a bank, if the bank has not informed about option risk before concluding the contract; or the barrier options, which focus only on the protection of bank’s interests. Therefore, such options may appear to be invalid. Therefore, performing contracts for toxic currency options may be qualified as a criminal mismanagement. For the sake of security, the manager should then take into consideration filing a claim for stating invalidity (which can be made in a court verdict. At the same time, if the supervisory board member in a commercial company, who can also be a subject to mismanagement offences, commits an omission involving lack of reaction (for example, if he/she fails to notify of the suspected offence committed by the management board members acting to the company’s detriment when the management board makes the company conclude option contracts which are charged with absolute invalidity the supervisory board member so acting may be considered to act to the company’s detriment. In the most recent Polish jurisprudence and judicature the standard of a “good host” is treated to be the last resort for determining whether the manager’s powers resulting from criminal regulations were performed. The manager of the exporter should not, as a rule, issue any options. Issuing options always means assuming an obligation. In the case of currency put options it is an absolute obligation to purchase a given amount in euro at exchange rate set in advance. On the

  6. Management-induced Soil Structure Degradation: Organic Matter Depletion and Tillage

    OpenAIRE

    Kay, B.D.; Munkholm, L.J.

    2004-01-01

    Soil structure is an important element of soil quality since changes in structural characteristics can cause changes in the ability of soil to fulfil different functions and services. Emphasis in this chapter is placed on the role of soil structure in biological productivity of agroecosystems. Combinations of management practices in which the extent of the degradation of soil structure caused by one practice is balanced or exceeded by the extent of regeneration by other practices will help su...

  7. Using Water and Agrochemicals in the Soil, Crop and Vadose Environment (WAVE Model to Interpret Nitrogen Balance and Soil Water Reserve Under Different Tillage Managements

    Directory of Open Access Journals (Sweden)

    Zare Narjes

    2014-10-01

    Full Text Available Applying models to interpret soil, water and plant relationships under different conditions enable us to study different management scenarios and then to determine the optimum option. The aim of this study was using Water and Agrochemicals in the soil, crop and Vadose Environment (WAVE model to predict water content, nitrogen balance and its components over a corn crop season under both conventional tillage (CT and direct seeding into mulch (DSM. In this study a corn crop was cultivated at the Irstea experimental station in Montpellier, France under both CT and DSM. Model input data were weather data, nitrogen content in both the soil and mulch at the beginning of the season, the amounts and the dates of irrigation and nitrogen application. The results show an appropriate agreement between measured and model simulations (nRMSE < 10%. Using model outputs, nitrogen balance and its components were compared with measured data in both systems. The amount of N leaching in validation period were 10 and 8 kgha–1 in CT and DSM plots, respectively; therefore, these results showed better performance of DSM in comparison with CT. Simulated nitrogen leaching from CT and DSM can help us to assess groundwater pollution risk caused by these two systems.

  8. Exploring Climate-Smart Land Management for Atlantic Europe

    Directory of Open Access Journals (Sweden)

    Rogier P. O. Schulte

    2016-09-01

    Full Text Available Soils can be a sink or source of carbon, and managing soil carbon has significant potential to partially offset agricultural greenhouse gas emissions. While European Union (EU member states have not been permitted to account for this offsetting potential in their efforts to meet the EU 2020 reduction targets, this policy is now changing for the period 2020 to 2030, creating a demand for land management plans aimed at maximizing the offsetting potential of land. In this letter, we derive a framework for climate-smart land management in the Atlantic climate zone of the EU by combining the results from five component research studies on various aspects of the carbon cycle. We show that the options for proactive management of soil organic carbon differ according to soil type and that a spatially tailored approach to land management will be more effective than blanket policies.

  9. Cacao Crop Management Zones Determination Based on Soil Properties and Crop Yield

    Directory of Open Access Journals (Sweden)

    Perla Silva Matos de Carvalho

    Full Text Available ABSTRACT: The use of management zones has ensured yield success for numerous agricultural crops. In spite of this potential, studies applying precision agricultural techniques to cacao plantations are scarce or almost nonexistent. The aim of the present study was to delineate management zones for cacao crop, create maps combining soil physical properties and cacao tree yield, and identify what combinations best fit within the soil chemical properties. The study was conducted in 2014 on a cacao plantation in a Nitossolo Háplico Eutrófico (Rhodic Paleudult in Bahia, Brazil. Soil samples were collected in a regular sampling grid with 120 sampling points in the 0.00-0.20 m soil layer, and pH(H2O, P, K+, Ca2+, Mg2+, Na+, H+Al, Fe, Zn, Cu, Mn, SB, V, TOC, effective CEC, CEC at pH 7.0, coarse sand, fine sand, clay, and silt were determined. Yield was measured in all the 120 points every month and stratified into annual, harvest, and early-harvest cacao yields. Data were subjected to geostatistical analysis, followed by ordinary kriging interpolation. The management zones were defined through a Fuzzy K-Means algorithm for combinations between soil physical properties and cacao tree yield. Concordance analysis was carried out between the delineated zones and soil chemical properties using Kappa coefficients. The zones that best classified the soil chemical properties were defined from the early-harvest cacao yield map associated with the clay or sand fractions. Silt content proved to be an inadequate variable for defining management zones for cacao production. The delineated management zones described the spatial variability of the soil chemical properties, and are therefore important for site-specific management in the cacao crop.

  10. Agroforestry management in vineyards: effects on soil microbial communities

    Science.gov (United States)

    Montagne, Virginie; Nowak, Virginie; Guilland, Charles; Gontier, Laure; Dufourcq, Thierry; Guenser, Josépha; Grimaldi, Juliette; Bourgade, Emilie; Ranjard, Lionel

    2017-04-01

    Some vineyard practices (tillage, chemical weeding or pest management) are generally known to impact the environment with particular negative effects on the diversity and the abundance of soil microorganisms, and cause water and soil pollutions. In an agro-ecological context, innovative cropping systems have been developed to improve ecosystem services. Among them, agroforestry offers strategies of sustainable land management practices. It consists in intercropping trees with annual/perennial/fodder crop on the same plot but it is weakly referenced with grapevine. The present study assesses the effects of intercropped and neighbouring trees on the soil of three agroforestry vineyards, in south-western France regions. More precisely soils of the different plots were sampled and the impact of the distance to the tree or to the neighbouring trees (forest) on soil microbial community has been considered. Indigenous soil microbial communities were characterized by a metagenomic approach that consisted in extracting the molecular microbial biomass, then in calculating the soil fungi/bacteria ratio - obtained by qPCR - and then in characterizing the soil microbial diversity - through Illumina sequencing of 16S and 18S regions. Our results showed a significant difference between the soil of agroforestry vineyards and the soil sampled in the neighbouring forest in terms of microbial abundance and diversity. However, only structure and composition of bacterial community seem to be influenced by the implanted trees in the vine plots. In addition, the comparison of microbial co-occurrence networks between vine and forest plots as well as inside vine plots according to distance to the tree allow revealing a more sensitive impact of agroforestry practices. Altogether, the results we obtained build up the first references for concerning the soil of agroforestry vineyards which will be interpreted in terms of soil quality, functioning and sustainability.

  11. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    Science.gov (United States)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  12. Evaluation of conservation-oriented management on grayish brown soil

    Directory of Open Access Journals (Sweden)

    Consuelo E. Hernández Rodríguez

    2015-03-01

    Full Text Available Conservation and improvement actions were taken to ensure the soil preservation in agricultural areas affected by erosion on a grayish brown soil of Sarduy farm in Cumanayagua, Cuba. The technology that was used included strip-till, crop rotation, live and/or dead barriers, channel terraces, contour farming and the addition of organic matter and biofertilizers. The implementation of the soil conservation-oriented management had an influence on the yield increase of 10.6% - 20.2%, on the decrease of the erosive processes with a retention of soils to 13.33 t.ha -1, on maintaining the soil pH and on the increment of the assimilable P2O5 contents and soil organic matter.

  13. Template for assessing climate change impacts and management options: TACCIMO user guide version 2.2

    Science.gov (United States)

    Emrys Treasure; Steven McNulty; Jennifer Moore Myers; Lisa Nicole Jennings

    2014-01-01

    The Template for Assessing Climate Change Impacts and Management Options (TACCIMO) is a Web-based tool developed by the Forest Service, U.S. Department of Agriculture to assist Federal, State, and private land managers and planners with evaluation of climate change science implications for sustainable natural resource management. TACCIMO is a dynamic information...

  14. Leachate water quality of soils amended with different swine manure-based amendments

    Science.gov (United States)

    In the face of the rising level of manure production from concentrated animal feeding operations (CAFOs), management options are being sought that can provide nutrient recycling for plant growth and improved soil conditions with minimal environmental impacts. Alternatives to dire...

  15. Assessment of stormwater management options in urban contexts using Multiple Attribute Decision-Making

    DEFF Research Database (Denmark)

    Gogate, Nivedita G.; Kalbar, Pradip; Raval, Pratap M.

    2017-01-01

    This paper addresses the problem of selecting the most sustainable stormwater management alternative in developing countries in a dense urban context. Firstly, suitable Low Impact Development (LID) stormwater management measures for dense urban areas in developing countries were identified based...... sustainable stormwater management options in densely populated areas of developing countries....... on critical review of literature. Alternatives have been formulated as varying percentages (degree of adoption) of these suitable measures to manage the stormwater sustainably. Further, a novel decision-making framework is developed which generates the hierarchy for selection of the most sustainable...

  16. Does management intensity in inter rows effect soil physical properties in Austrian and Romanian vineyards?

    Science.gov (United States)

    Bauer, Thomas; Strauss, Peter; Stiper, Katrin; Klipa, Vladimir; Popescu, Daniela; Winter, Silvia; Zaller, Johann G.

    2016-04-01

    Successful viticulture is mainly influenced by soil and climate. The availability of water during the growing season highly influences wine quality and quantity. To protect soil from being eroded most of the winegrowers keep the inter row zones of the vineyards green. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, these greening strategies concerning the intensity of inter row management differ from farm to farm and are mainly based on personal experience of the winegrowers. However to what extent different inter row management practices affect soil physical properties are not clearly understood yet. To measure possible effects of inter row management in vineyards on soil physical parameters we selected paired vineyards with different inter row management in Austria and Romania. In total more than 7000 soil analysis were conducted for saturated and unsaturated hydraulic conductivity, soil water retention, water stable aggregates, total organic carbon, cation exchange capacity, potassium, phosphorous, soil texture, bulk density and water infiltration. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with one soil disturbance every second inter row per year and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not improve for the upper soil layer (3-8cm). This is in contrast to general perceptions of improved soil physical properties due to low intensity of inter row management, i.e. permanent vegetated inter rows. This may be attributed to long term and high frequency mechanical stress by agricultural machinery in inter rows.

  17. Spatio-temporal dynamics of arbuscular mycorrhizal fungi associated with glomalin-related soil protein and soil enzymes in different managed semiarid steppes.

    Science.gov (United States)

    Wang, Qi; Bao, Yuying; Liu, Xiaowei; Du, Guoxin

    2014-10-01

    Temporal and spatial patterns of arbuscular mycorrhizal fungi (AMF) and glomalin and soil enzyme activities were investigated in different managed semiarid steppes located in Inner Mongolia, North China. Soils were sampled in a depth up to 30 cm from non-grazed, overgrazed, and naturally restored steppes from June to September. Roots of Leymus chinense (Trin.) Tzvel. and Stipagrandis P. Smirn. were also collected over the same period. Results showed that overgrazing significantly decreased the total mycorrhizal colonization of S. grandis; total colonization of L. chinensis roots was not significantly different in the three managed steppes. Nineteen AMF species belonging to six genera were isolated. Funneliformis and Glomus were dominant genera in all three steppes. Spore density and species richness were mainly influenced by an interaction between plant growth stage and management system (P soil depth. AMF species richness was significantly positively correlated with soil acid phosphatase activity, alkaline phosphatase activity, and two Bradford-reactive soil protein (BRSP) fractions (P soil glomalin and phosphatase activity in different managed semiarid steppes. Based on these observations, AMF communities could be useful indicators for evaluating soil quality and function of semiarid grassland ecosystems.

  18. Integrated assessment of space, time, and management-related variability of soil hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Es, H.M. van; Ogden, C.B.; Hill, R.L.; Schindelbeck, R.R.; Tsegaye, T.

    1999-12-01

    Computer-based models that simulate soil hydrologic processes and their impacts on crop growth and contaminant transport depend on accurate characterization of soil hydraulic properties. Soil hydraulic properties have numerous sources of variability related to spatial, temporal, and management-related processes. Soil type is considered to be the dominant source of variability, and parameterization is typically based on soil survey databases. This study evaluated the relative significance of other sources of variability: spatial and temporal at multiple scales, and management-related factors. Identical field experiments were conducted for 3 yr. at two sites in New York on clay loam and silt loam soils, and at two sites in Maryland on silt loam and sandy loam soils, all involving replicated plots with plow-till and no-till treatments. Infiltrability was determined from 2054 measurements using parameters, and Campbell's a and b parameters were determined based on water-retention data from 875 soil cores. Variance component analysis showed that differences among the sites were the most important source of variability for a (coefficient of variation, CV = 44%) and b (CV = 23%). Tillage practices were the most important source of variability for infiltrability (CV = 10%). For all properties, temporal variability was more significant than field-scale spatial variability. Temporal and tillage effects were more significant for the medium- and fine-textured soils, and correlated to initial soil water conditions. The parameterization of soil hydraulic properties solely based on soil type may not be appropriate for agricultural lands since soil-management factors are more significant. Sampling procedures should give adequate recognition to soil-management and temporal processes at significant sources of variability to avoid biased results.

  19. Women's experiences of three early miscarriage management options: a qualitative study.

    Science.gov (United States)

    Smith, Lindsay F; Frost, Julia; Levitas, Ruth; Bradley, Harriet; Garcia, Jo

    2006-03-01

    Miscarriage affects around one in six pregnancies. Much research has taken place identifying the consequences of this for parents but is mainly quantitative. Of the limited qualitative studies, none have explored women's experiences of the methods of miscarriage management received. To assess the social and personal impact of different management methods (expectant, medical and surgical) on women's experience of first trimester miscarriage. Qualitative interviews using a topic guide with a purposive cohort of four categories of women (each management method plus non-participants) 6 months to 1 year after first trimester miscarriage. Focus groups with both research participants and health workers. Women from three hospitals in the South West of England that participated in the Miscarriage Treatment (MIST) trial. Seventy-two interviews were undertaken between September 1999 and June 2000. There were also five focus groups (47 participants) and two feedback sessions (8 participants) with written feedback from 12 women. Interviews lasted 0.5-2.5 hours generating over 2000 A4 pages of transcripts. The transcripts were analysed for common themes, using standard proformas, which were filled in by individual team members and then discussed by the whole research team. Iterative readings in the light of new emerging issues ensured that new themes could be identified throughout the analytical process. All transcripts were then encoded for the identified themes using NUDIST. Common themes emerged across all management options although some were specific to just one or two management options. The five major themes arising out of the data analysis were: intervention; experiences of care; finality; the 'baby'; and pain and bleeding. Women's experiences and beliefs vary widely and their preferences need to be considered in their early miscarriage management. The three methods have different benefits and problems from the women's point of view. Competence and caring from

  20. Impact of the post fire management in some soil chemical properties. First results.

    Science.gov (United States)

    Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Úbeda, Xavi

    2016-04-01

    Post-fire management after severe wildfires has impact on soil properties. In Mediterranean environments management of fire affected areas is a common practice. This intervention may change soil chemical properties of the soil such as major cations. The aim of this work is to study the impact of different types of forest management in soil extractable calcium, magnesium, sodium and potassium after a severe wildfire. The study area is located in Ódena (Catalonia, Spain). The wildfire occurred at July 27th of 2015 and burned 1235 ha. After the fire an experimental plot was designed 9 plots with 2x2 meters (4 square meters). The different managements were: a) clear-cuted area and wood removed, b) no treatment); and c) clear-cutted. The results of the first sampling showed significant differences among all treatments in extractable calcium, sodium and potassium. The amount of these extractable elements was high in clear-cutted treatment in comparison to the others. No differences were identified in extractable magnesium. Overall, in the immediate period after the fire, burned area management, changed the studied soil properties. We are currently studying the evolution of this soil properties in these plots with the time

  1. Agricultural management impact on physical and chemical functions of European peat soils.

    Science.gov (United States)

    Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph

    2017-04-01

    Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which

  2. Spatial distribution of diuron sorption affinity as affected by soil, terrain and management practices in an intensively managed apple orchard.

    Science.gov (United States)

    Umali, Beng P; Oliver, Danielle P; Ostendorf, Bertram; Forrester, Sean; Chittleborough, David J; Hutson, John L; Kookana, Rai S

    2012-05-30

    We investigated how the sorption affinity of diuron (3'-(3,4-dichlorophenyl)-1,1-dimenthyl-urea), a moderately hydrophobic herbicide, is affected by soil properties, topography and management practices in an intensively managed orchard system. Soil-landscape analysis was carried out in an apple orchard which had a strong texture contrast soil and a landform with relief difference of 50 m. Diuron sorption (K(d)) affinity was successfully predicted (R(2)=0.79; pdiuron K(d) with TOC, pH(w), slope and WI as key variables. Mean diuron K(d) values were also significantly different (pdiuron than soil in the alleys. Younger stands, which were found to have lower TOC than in the older stands, also had lower diuron K(d) values. In intensively managed orchards, sorption affinity of pesticides to soils was not only affected by soil properties and terrain attributes but also by management regime. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Managing AVN following internal fixation: treatment options and clinical results.

    Science.gov (United States)

    Hoskinson, Simon; Morison, Zachary; Shahrokhi, Shahram; Schemitsch, Emil H

    2015-03-01

    Avascular necrosis (AVN) after internal fixation of intracapsular hip fractures is a progressive multifactorial disease that ultimately results in local ischemia with ensuing osteocyte necrosis and structural compromise. This disease can cause significant clinical morbidity and affects patients of any age, including young and active patients. Effective treatment of this condition among young adults is challenging due to their high functional demands. The aim of managing AVN is to relieve pain, preserve range of movement and improve function. Treatment methods vary depending on the stage of the disease and can be broadly categorised into two options, hip preserving surgery and hip arthroplasty. Although, hip preserving techniques are attractive in the young adult, they may alter the morphology of the proximal femur and make subsequent arthroplasty more challenging. Conversely, arthroplasty in the young adult may require repeat revision procedures throughout the patient's life. Current evidence suggests that modifications of prevailing treatments, in addition to new technologies, have led to the development of management strategies that may be able to alter the course of femoral head osteonecrosis. This review aims to summarise the options available for treatment of AVN in the young adult and review the clinical results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Soil physico-hydrical properties resulting from the management in Integrated Production Systems

    Directory of Open Access Journals (Sweden)

    André Carlos Auler

    Full Text Available Anthropic action, such as the soil use and management systems, promote changes in the soil structure. These changes might hamper the development of plants in soil management practices that involve its mobilization, and the negative effects might be increased due to intensive use. The aim of this study was to evaluate the physico-hydrical properties of a Haplohumox in integrated production systems under different soil managements. The soil superficial (0.0-0.10 m and sub-superficial (0.10-0.20 m layers were evaluated in the different systems: conventional tillage (CT, minimum tillage (MT, no-tillage (NT and chiseled no-tillage (CNT, taking into consideration the annual ryegrass cropped for different uses [cover crop (C, grazing (G and silage (S] during the winter. Soil bulk density (Db, total porosity (TP, macro (Ma and microporosity (Mi, water retention curves (SWRC and water retention due to pore size (r were determined. The annual ryegrass used as C produced lower Db and Mi and higher TP and Ma in CT, MT and CNT systems. No difference was verified between G and S in any of the management systems or soil layers. The superficial layer SWRC presented similar behavior regarding CT, MT and CNT. Under NT, C resulted in higher water retention. However, G and S provided higher water retention due to the pore size in this system.

  5. Agricultural management explains historic changes in regional soil carbon stocks

    Science.gov (United States)

    van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark

    2010-01-01

    Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks. PMID:20679194

  6. Soil sorting, new approach to site remediation management

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Woods, J.A.; Dillon, M.J.

    1996-01-01

    Soil sorting is the technology which conveys soil beneath contaminant detectors and, based on contaminant signal, automatically toggles a gate at the conveyor end to send soil with contamination above a guideline to a separate location from soil which meets the guideline. The technology was perfected for remediation of sites having soils with radioactive contamination, but it is applicable to other contaminants when instrumental methods exist for rapid contaminant detection at levels of concern. This paper examines the three methods for quantifying contamination in soil in support of site remediation management. Examples are discussed where the primary contaminant is plutonium, a radioactive substance and source of nuclear energy which can be hazardous to health when in the environment without controls. Field survey instruments are very sensitive to plutonium and can detect it in soil at levels below a part per billion, and there are a variety of soils which have been contaminated by plutonium and thoroughly investigated. The lessons learned with plutonium are applicable to other types of contaminants and site remediations. The paper concludes that soil sorting can be the most cost effective approach to site remediation, and it leads to the best overall cleanup

  7. Using soil quality indicators for monitoring sustainable forest management

    Science.gov (United States)

    James A. Burger; Garland Gray; D. Andrew Scott

    2010-01-01

    Most private and public forest land owners and managers are compelled to manage their forests sustainably, which means management that is economically viable,environmentally sound, and socially acceptable. To meet this mandate, the USDA Forest Service protects the productivity of our nation’s forest soils by monitoring and evaluating management activities to ensure...

  8. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring

  9. Economic Screening of Geologic Sequestration Options in the United States with a Carbon Management Geographic Information System

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.(BATTELLE (PACIFIC NW LAB)); Dooley, James J.(BATTELLE (PACIFIC NW LAB)); Brown, Daryl R.(BATTELLE (PACIFIC NW LAB)); Stephan, Alex J.(BATTELLE (PACIFIC NW LAB)); Badie I. Morsi

    2001-10-19

    Developing a carbon management strategy is a formidable task for nations as well as individual companies. It is often difficult to understand what options are available, let alone determine which may be optimal. In response to the need for a better understanding of complex carbon management options, Battelle has developed a state-of-the-art Geographic Information System (GIS) model with economic screening capability focused on carbon capture and geologic sequestration opportunities in the United States. This paper describes the development of this GIS-based economic screening model and demonstrates its use for carbon management analysis.

  10. The impact of agriculture management on soil quality in citrus orchards in Eastern Spain

    Science.gov (United States)

    Hondebrink, Merel; Cerdà, Artemi; Cammeraat, Erik

    2015-04-01

    Currently, the agricultural management of citrus orchard in the Valencia region in E Spain, is changing from traditionally irrigated and managed orchards to drip irrigated organic managed orchards. It is not known what is the effect of such changes on soil quality and hope to shed some light with this study on this transition. It is known that the drip-irrigated orchards built in sloping terrain increase soil erosion (Cerdà et al., 2009; Li et al., 2014) and that agricultural management such as catch crops and mulches reduce sediment yield and surface runoff (Xu et al., 2012; ), as in other orchards around the world (Wang et al., 2010; Wanshnong et al., 2013; Li et al., 2014; Hazarika et al., 2014): We hypothesize that these changes have an important impact on the soil chemical and physical properties. Therefor we studied the soil quality of 12 citrus orchards, which had different land and irrigation management techniques. We compared organic (OR) and conventional (CO) land management with either drip irrigation (DRP) or flood irrigation (FLD). Soil samples at two depths, 0-1 cm and 5-10 cm, were taken for studying soil quality parameters under the different treatments. These parameters included soil chemical parameters, bulk density, texture, soil surface shear strength and soil aggregation. Half of the studied orchards were organically managed and the other 6 were conventionally managed, and for each of these 6 study sites three fields were flood irrigated plots (FLD) and the other three drip irrigated systems (DRP) In total 108 soil samples were taken as well additional irrigation water samples. We will present the results of this study with regard to the impact of the studied irrigation systems and land management systems with regard to soil quality. This knowledge might help in improving citrus orchard management with respect to maintaining or improving soil quality to ensure sustainable agricultural practices. References Cerdà, A., Giménez-Morera, A. and

  11. Radiological aspects of postfission waste management for light-water reactor fuel cycle options

    Energy Technology Data Exchange (ETDEWEB)

    Shipler, D B; Nelson, I C [Battelle Pacific Northwest Laboratories, Richland, WA (United States)

    1978-12-01

    A generic environmental impact statement on the management of radioactive postfission wastes from various light-water reactor fuel cycles in the United States has been prepared. The environmental analysis for post-fission waste management includes an examination of radiological impacts related to different waste treatment, storage, transportation, and disposal options at the process level. Effects addressed include effluents from plants, and radiological impacts from facility operation (routine and accidents), and decommissioning. Environmental effects are combined for fuel reprocessing plants, mixed-oxide fuel fabrication plants, and waste repositories. Radiological effects are also aggregated for several fuel cycle options over the period 1980 and 2050. Fuel cycles analyzed are (1) once-through cycle in which spent reactor fuel is cooled in water basins for at least 6-1/2 years and then disposed of in deep geologic repositories; (2) spent fuel reprocessing in which uranium only and uranium and plutonium is recycled and solidified high level waste, fuel residues, and non-high-level transuranic wastes are disposed of in deep geologic repositories; and (3) deferred cycle that calls for storage of spent fuel at Federal spent fuel storage facilities until the year 2000 at which time a decision is made whether to dispose of spent fuel as a waste or to reprocess the fuel to recover uranium and plutonium. Key environmental issues for decision-making related to waste management alternatives and fuel cycle options are highlighted. (author)

  12. Effects of artificial soil surface management on changes of ...

    African Journals Online (AJOL)

    Studies of size distribution, stability of the aggregates, and other soil properties are very important due to their influence on tilth, water infiltration, and nutrient dynamics and more importantly on accelerated erosion but are affected by soil surface management. Both chemical e.g. pH, organic carbon, (OC), exchangeable ...

  13. Evaluation Of Management Properties Of Wetland Soils Of Akwa ...

    African Journals Online (AJOL)

    Evaluation Of Management Properties Of Wetland Soils Of Akwa Ibom State, Nigeria For Sustainable Crop Production. ... Organic matter content values were high with mean of 12.59, 60.01, and 3.20 percent for Inland valley, Flood plain and mangrove soils respectively. Effective cation exchange capacity (ECEC) was below ...

  14. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    Science.gov (United States)

    Mueller-Niggemann, Cornelia; Rahayu Utami, Sri; Marxen, Anika; Mangelsdorf, Kai; Bauersachs, Thorsten; Schwark, Lorenz

    2016-03-01

    Rice paddies constitute almost a fifth of global cropland and provide more than half of the world's population with staple food. At the same time, they are a major source of methane and therewith significantly contribute to the current warming of Earth's atmosphere. Despite their apparent importance in the cycling of carbon and other elements, however, the microorganisms thriving in rice paddies are insufficiently characterized with respect to their biomolecules. Hardly any information exists on human-induced alteration of biomolecules from natural microbial communities in paddy soils through varying management types (affecting, e.g., soil or water redox conditions, cultivated plants). Here, we determined the influence of different land use types on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs), which serve as molecular indicators for microbial community structures, in rice paddy (periodically flooded) and adjacent upland (non-flooded) soils and, for further comparison, forest, bushland and marsh soils. To differentiate local effects on GDGT distribution patterns, we collected soil samples in locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general, upland soil had higher crenarchaeol contents than paddy soil, which by contrast was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio, indicating the enhanced presence of methanogenic archaea, was 3-27 times higher in paddy soils compared to other soils and increased with the number of rice cultivation cycles per year. The index of tetraethers consisting of 86 carbons (TEX86) values were 1.3 times higher in upland, bushland and forest soils than in paddy soils, potentially due to differences in soil temperature. In all soils br

  15. Proceedings of the California Forest Soils Council Conference on Forest Soils Biology and Forest Management

    Science.gov (United States)

    Robert F. Powers; Donald L. Hauxwell; Gary M. Nakamura

    2000-01-01

    Biotic properties of forest soil are the linkages connecting forest vegetation with an inert rooting medium to create a dynamic, functioning ecosystem. But despite the significance of these properties, managers have little awareness of the biotic world beneath their feet. Much of our working knowledge of soil biology seems anchored in myth and misunderstanding. To...

  16. Waste Management Options for Long-Duration Space Missions: When to Reject, Reuse, or Recycle

    Science.gov (United States)

    Linne, Diane L.; Palaszewski, Bryan A.; Gokoglu, Suleyman; Gallo, Christopher A.; Balasubramaniam, Ramaswamy; Hegde, Uday G.

    2014-01-01

    The amount of waste generated on long-duration space missions away from Earth orbit creates the daunting challenge of how to manage the waste through reuse, rejection, or recycle. The option to merely dispose of the solid waste through an airlock to space was studied for both Earth-moon libration point missions and crewed Mars missions. Although the unique dynamic characteristics of an orbit around L2 might allow some discarded waste to intersect the lunar surface before re-impacting the spacecraft, the large amount of waste needed to be managed and potential hazards associated with volatiles recondensing on the spacecraft surfaces make this option problematic. A second option evaluated is to process the waste into useful gases to be either vented to space or used in various propulsion systems. These propellants could then be used to provide the yearly station-keeping needs at an L2 orbit, or if processed into oxygen and methane propellants, could be used to augment science exploration by enabling lunar mini landers to the far side of the moon.

  17. Engineered soil covers for management of salt impacted sites

    International Nuclear Information System (INIS)

    Sweeney, D.A.; Tratch, D.J.

    2005-01-01

    The use of engineered soil cover systems to mitigate environmental impacts from tailings and waste rock piles is becoming an accepted practice. This paper presented design concepts for soil covers related to reclamation practices in the mining industry as an effective risk management practice at salt impacted sites. Research and field programs have demonstrated that a layered engineered soil cover can reduce or eliminate infiltration. Key components of the system included re-establishing surface vegetation to balance precipitation fluxes with evapotranspiration potential, and design of a capillary break below the rooting zone to minimize deeper seated infiltration. It was anticipated that the incorporation of a vegetation cover and a capillary break would minimize infiltration into the waste rock or tailing pile and reduce the generation of acid rock drainage (ARD). Design of a layered soil cover requires the incorporation of meteorological data, moisture retention characteristics of the impacted soils, and proposed engineered cover materials. Performance of the soil cover was predicted using a finite element model combined with meteorological data from the site area, unsaturated soil properties of the parent sub-surface soils and potential covered materials. The soil cover design consisted of re-vegetation and a loose clay cover overlying a compacted till layer. The design was conducted for an off site release of salt impacted pasture land adjacent to a former highway maintenance yard. The model predicted minimal infiltration during high precipitation events and no infiltration during low precipitation events. Results indicated that the proposed soil cover would enable re-establishment of a productive agricultural ground cover, as well as minimizing the potential for additional salt migration. It was concluded that further research and development is needed to ensure that the cover system is an acceptable method for long-term risk management. 17 refs., 5 figs

  18. Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach.

    Science.gov (United States)

    Duan, Luchun; Naidu, Ravi; Thavamani, Palanisami; Meaklim, Jean; Megharaj, Mallavarapu

    2015-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are a family of contaminants that consist of two or more aromatic rings fused together. Soils contaminated with PAHs pose significant risk to human and ecological health. Over the last 50 years, significant research has been directed towards the cleanup of PAH-contaminated soils to background level. However, this achieved only limited success especially with high molecular weight compounds. Notably, during the last 5-10 years, the approach to remediate PAH-contaminated soils has changed considerably. A risk-based prioritization of remediation interventions has become a valuable step in the management of contaminated sites. The hydrophobicity of PAHs underlines that their phase distribution in soil is strongly influenced by factors such as soil properties and ageing of PAHs within the soil. A risk-based approach recognizes that exposure and environmental effects of PAHs are not directly related to the commonly measured total chemical concentration. Thus, a bioavailability-based assessment using a combination of chemical analysis with toxicological assays and nonexhaustive extraction technique would serve as a valuable tool in risk-based approach for remediation of PAH-contaminated soils. In this paper, the fate and availability of PAHs in contaminated soils and their relevance to risk-based management of long-term contaminated soils are reviewed. This review may serve as guidance for the use of site-specific risk-based management methods.

  19. Dealing with uncertainty and pursuing superior technology options in risk management-The inherency risk analysis

    International Nuclear Information System (INIS)

    Helland, Aasgeir

    2009-01-01

    Current regulatory systems focus on the state of scientific evidence as the predominant factor for how to handle risks to human health and the environment. However, production and assessment of risk information are costly and time-consuming, and firms have an intrinsic disincentive to produce and distribute information about risks of their products as this could endanger their production opportunities and sales. An emphasis on more or better science may result in insufficient thought and attention going into the exploration of technology alternatives, and that risk management policies miss out on the possible achievement of a more favorable set of consequences. In this article, a method is proposed that combines risk assessment with the search for alternative technological options as a part of the risk management procedure. The method proposed is the inherency risk analysis where the first stage focuses on the original agent subject to investigation, the second stage focuses on identifying technological options whereas the third stage reviews the different alternatives, searching for the most attractive tradeoffs between costs and inherent safety. This is then used as a fundament for deciding which technology option to pursue. This method aims at providing a solution-focused, systematic technology-based approach for addressing and setting priorities for environmental problems. By combining risk assessment with a structured approach to identify superior technology options within a risk management system, the result could very well be a win-win situation for both company and the environment.

  20. Interactive effects of agricultural management and topography on soil carbon sequestration

    Science.gov (United States)

    Ladoni, M.; Kravchenko, S.; Munoz, J.; Erickson, M.

    2012-12-01

    Proper agricultural management scenarios such as no-tillage, cover cropping, agroforestry, have demonstrated potential to increase the amount of carbon sequestered in soil and to mitigate atmospheric carbon levels. The knowledge about positive effects of cover cropping comes mostly from small uniform experimental plots, but whether these positive effects will exists in large scale fields with diverse topography and what would be the magnitude of these effects on a field scale remains to be seen. Our objective is to compare performance of different agricultural managements including those with cover crops in their influences on SOC across diverse topographical landscape in large agricultural fields. The three studied agricultural practices are Conventionally tilled and fertilized management without cover crops (T1), Low-input management with reduced chemical inputs (T3) and Organic (T4) management, the latter two have rye and red clover cover crops as part of their rotations. Within each field 1- 4 transects with three topographical positions of "depression", "slope" and "summit" were identified. The first soil sampling was done in spring 2010 and the second set of soil samples were collected from topographical positions during growing season of 2011. Samples were analyzed for total SOC and also particulate organic carbon (POC) content to show the changes in active pools of SOC. The results showed that topography has a significant influence in performance of cover crops. Agricultural managements with cover crops increased the POC in soil and the magnitude of this increase was different across space. Cover crops built the highest POC in depressions followed by summit and then slope. The conventional agricultural management increased POC in depression but decreased it on slopes. Low-input agricultural management when coupled with cover cropping has a potential to produce the highest increase in active pools of SOC across topographically diverse fields. The ratio of

  1. SOIL MOISTURE SPACE-TIME ANALYSIS TO SUPPORT IMPROVED CROP MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Bruno Montoani Silva

    2015-02-01

    Full Text Available The knowledge of the water content in the soil profile is essential for an efficient management of crop growth and development. This work aimed to use geostatistical techniques in a spatio-temporal study of soil moisture in an Oxisol in order to provide that information for improved crop management. Data were collected in a coffee crop area at São Roque de Minas, in the upper São Francisco River basin, MG state, Brazil. The soil moisture was measured with a multi-sensor capacitance (MCP probe at 10-, 20-, 30-, 40-, 60- and 100-cm depths between March and December, 2010. After adjusting the spherical semivariogram model using ordinary least squares, best model, the values were interpolated by kriging in order to have a continuous surface relating depth x time (CSDT and the soil water availability to plant (SWAP. The results allowed additional insight on the dynamics of soil water and its availability to plant, and pointed to the effects of climate on the soil water content. These results also allowed identifying when and where there was greater water consumption by the plants, and the soil layers where water was available and potentially explored by the plant root system.

  2. Case study of microarthropod communities to assess soil quality in different managed vineyards

    Science.gov (United States)

    Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M. R.; Corino, L.; Simoni, S.

    2015-07-01

    Land use influences the abundance and diversity of soil arthropods. The evaluation of the impact of different management strategies on soil quality is increasingly sought, and the determination of community structures of edaphic fauna can represent an efficient tool. In the area of Langhe (Piedmont, Italy), eight vineyards characterized for physical and chemical properties (soil texture, soil pH, total organic carbon, total nitrogen, calcium carbonate) were selected. We evaluated the effect of two types of crop management, organic and integrated pest management (IPM), on abundance and biodiversity of microarthropods living at the soil surface. Soil sampling was carried out in winter 2011 and spring 2012. All specimens were counted and determined up to the order level. The biodiversity analysis was performed using ecological indexes (taxa richness, dominance, Shannon-Wiener, Buzas and Gibson's evenness, Margalef, equitability, Berger-Parker), and the biological soil quality was assessed with the BSQ-ar index. The mesofauna abundance was affected by both the type of management and sampling time. On the whole, a higher abundance was in organic vineyards (N = 1981) than in IPM ones (N = 1062). The analysis performed by ecological indexes showed quite a high level of biodiversity in this environment, particularly in May 2012. Furthermore, the BSQ-ar values registered were similar to those obtained in preserved soils.

  3. Preliminary Analysis on the Management Options of IRT-DPRK Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Hyun; Kim, Minsoo; Hwang, Yongsoo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    Although IRT-DPRK was upgraded several times, operation lifetime was already exhausted and thus management policy is needed to deal with the aging of IRT-DPRK. For example, IRT- 2000 type nuclear reactors in Georgia and Bulgaria had been shut down to refurbish or decommissioned to establish new low power facilities. However, the existing negotiations and agreements related to the nuclear issues on North Korea have been focused on the 'denuclearization', and thus the issues on the IRTDPRK were not handled. In recent, a group of USA scientists has suggested that IRT-DPRK should be refurbished to establish the 'Scientific cent for excellence' like the Cooperative Threat Reduction program applied in Russia and the former Soviet Union (FSU). In this paper, we examined the several options to manage the IRT-DPRK through the study of similar foreign cases. Due to the lack of the detailed and standardized information, it is impossible to suggest the best option at this moment. In order to do that, the further research on the detailed procedures, radioactive wastes, the standards of safety and security are needed.

  4. Long-term effects of grazing management and buffer strips on soil erosion from pastures

    Science.gov (United States)

    High grazing pressure can lead to soil erosion in pastures by compacting soil and increasing runoff and sediment delivery to waterways. Limited information exists on the effects of grazing management and best management practices (BMPs), such as buffer strips, on soil erosion from pastures. The obje...

  5. Soil Respiration at Dominant Patch Types within a Managed Northern Wisconsin Landscape

    Science.gov (United States)

    Eug& #233; nie Euskirchen; Jiquan Chen; Eric J. Gustafson; Siyan Ma; Siyan Ma

    2003-01-01

    Soil respiration (SR), a substantial component of the forest carbon budget, has been studied extensively at the ecosystem, regional, continental, and global scales, but little progress has been made toward understanding SR over managed forest landscapes. Soil respiration is often influenced by soil temperature (Ts), soil moisture (Ms...

  6. Integrated weed management for sustainable rice production: concepts, perspectives and options

    International Nuclear Information System (INIS)

    Amartalingam Rajan

    2002-01-01

    Weed management has always been in some way integrated with cultural and biological methods, probably occurring more fortuitously than purposefully. Experience has shown that repeated use of any weed control technique especially in monocultures production systems results in rapid emergence of weeds more adapted to the new practice. In intensive high input farming systems, heavy selection pressure for herbicide tolerant weeds and the environmental impacts of these inputs are important tissues that require a good understanding of agroecosystem for successful integration of available options. Rice culture, in particular flooded rice culture has always employed integration through an evolution of management practices over the generations. However, a vast majority office farmers in Asia have yet to achieve the high returns realised by farmers elsewhere, where a near optimum combination of high inputs are being effectively integrated for maximum productivity. In addition to technological and management limitations, farmers in developing countries are faced with social, economic and policy constraints. On the other hand, farmers who had achieved considerable increases in productivity through labour replacing technologies, in particular direct seeding with the aid of herbicides, are now faced with issues related to environmental concerns due to high levels of these inputs. The issues facing weed scientists and farmers alike in managing weeds effectively and in a manner to ensure sustainability have become more challenging than ever before. In the last two decades, no issue has been discussed so. intensively as Sustainable Farming, Sustainable Agriculture or Alternative Agriculture within the broader global concept of Sustainable Development. To address these challenges a clear perspective of sustainable farming is essential. This paper addresses these concepts, perspectives and options for choices in weed management for sustainable rice production. (Author)

  7. Option Strike Price and Managerial Investment Decisions

    Institute of Scientific and Technical Information of China (English)

    刘鸿雁; 张维

    2003-01-01

    The manager′s investment decisions is modeled when the manager is risk-averse and has stock options as compensation. It is found that the strike price of options is crucial to the investment incentives of managers, and that the correct value, or interval of values, of managerial stock option strike price can bring stockholder and manager interests in agreement.

  8. Management options to reduce the carbon footprint of livestock products

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Kristensen, Troels

    2011-01-01

    Livestock products carry a large carbon footprint compared with other foods, and thus there is a need to focus on how to reduce it. The major contributing factors are emissions related to feed use and manure handling as well as the nature of the land required to produce the feed in question. We can....... Basically, it is important to make sure that all beneficial interactions in the livestock system are optimized instead of focusing only on animal productivity. There is an urgent need to arrive at a sound framework for considering the interaction between land use and carbon footprints of foods....... conclude that the most important mitigation options include - better feed conversion at the system level, - use of feeds that increase soil carbon sequestration versus carbon emission, - ensure that the manure produced substitutes for synthetic fertilizer, and - use manure for bio-energy production...

  9. Greenhouse gas fluxes from agricultural soils under organic and non-organic management — A global meta-analysis

    International Nuclear Information System (INIS)

    Skinner, Colin; Gattinger, Andreas; Muller, Adrian; Mäder, Paul; Fließbach, Andreas; Stolze, Matthias; Ruser, Reiner; Niggli, Urs

    2014-01-01

    It is anticipated that organic farming systems provide benefits concerning soil conservation and climate protection. A literature search on measured soil-derived greenhouse gas (GHG) (nitrous oxide and methane) fluxes under organic and non-organic management from farming system comparisons was conducted and followed by a meta-analysis. Up to date only 19 studies based on field measurements could be retrieved. Based on 12 studies that cover annual measurements, it appeared with a high significance that area-scaled nitrous oxide emissions from organically managed soils are 492 ± 160 kg CO 2 eq. ha −1 a −1 lower than from non-organically managed soils. For arable soils the difference amounts to 497 ± 162 kg CO 2 eq. ha −1 a −1 . However, yield-scaled nitrous oxide emissions are higher by 41 ± 34 kg CO 2 eq. t −1 DM under organic management (arable and use). To equalize this mean difference in yield-scaled nitrous oxide emissions between both farming systems, the yield gap has to be less than 17%. Emissions from conventionally managed soils seemed to be influenced mainly by total N inputs, whereas for organically managed soils other variables such as soil characteristics seemed to be more important. This can be explained by the higher bioavailability of the synthetic N fertilisers in non-organic farming systems while the necessary mineralisation of the N sources under organic management leads to lower and retarded availability. Furthermore, a higher methane uptake of 3.2 ± 2.5 kg CO 2 eq. ha −1 a −1 for arable soils under organic management can be observed. Only one comparative study on rice paddies has been published up to date. All 19 retrieved studies were conducted in the Northern hemisphere under temperate climate. Further GHG flux measurements in farming system comparisons are required to confirm the results and close the existing knowledge gaps. - Highlights: • Lower area-scaled nitrous oxide emissions from soils managed organically compared

  10. Management Options for a High Elevation Forest in the Alps

    Science.gov (United States)

    Jandl, R.; Jandl, N.; Schindlbacher, A.

    2013-12-01

    We explored different management strategies for a Cembran pine forest close to the timber line with respect to maintenance of the stand structure, the sequestration of carbon in the biomass and the soil, and the economical relevance of timber production. We used the forest growth simulation model Caldis for the implementation of three management intensities (zero managment, thinning every 30 years, thinning every 50 years) under two climate scenarios (IPCC A1B and B1). The soil carbon dynamics were analyzed with the simulation model Yasso07. The ecological evaluation of our simulation data showed that the extensive management with cutting interventions every 50 years allows the maintenance of the ecosystem carbon pool. Zero managment leads to the build-up of the carbon pool because the forest stand is rather unvulnerable to disturbances (bark beetle, storm). The more intensive mangement causes a decline in the ecosystem carbon pool. The economical evaluation showed the marginal relevance of the income generated by timber production. The main challenge is the compensation for the high harvesting costs (long-distance cable logging system). Even at extremely favorable market prices for timber from Cembran pine it is impossible to extract an appropriate amount of timber to justify the temporary instalment of the harvesting system and to maintain a stand density expected for a protection forest. We conclude that timber production is not a feasible object for mountain forests close to the timber line. Even in a warmer climate the productivity situation of forests close to the timberline will not change sufficiently. Therefore it will require public subsidies and personal efforts to maintain the silvicultural intensity at a level that is required for the sustainable maintenance of protection forests.

  11. Changing Climate, Challenging Choices: Identifying and Evaluating Climate Change Adaptation Options for Protected Areas Management in Ontario, Canada

    Science.gov (United States)

    Lemieux, Christopher J.; Scott, Daniel J.

    2011-10-01

    Climate change will pose increasingly significant challenges to managers of parks and other forms of protected areas around the world. Over the past two decades, numerous scientific publications have identified potential adaptations, but their suitability from legal, policy, financial, internal capacity, and other management perspectives has not been evaluated for any protected area agency or organization. In this study, a panel of protected area experts applied a Policy Delphi methodology to identify and evaluate climate change adaptation options across the primary management areas of a protected area agency in Canada. The panel identified and evaluated one hundred and sixty five (165) adaptation options for their perceived desirability and feasibility. While the results revealed a high level of agreement with respect to the desirability of adaptation options and a moderate level of capacity pertaining to policy formulation and management direction, a perception of low capacity for implementation in most other program areas was identified. A separate panel of senior park agency decision-makers used a multiple criterion decision-facilitation matrix to further evaluate the institutional feasibility of the 56 most desirable adaptation options identified by the initial expert panel and to prioritize them for consideration in a climate change action plan. Critically, only two of the 56 adaptation options evaluated by senior decision-makers were deemed definitely implementable, due largely to fiscal and internal capacity limitations. These challenges are common to protected area agencies in developed countries and pervade those in developing countries, revealing that limited adaptive capacity represents a substantive barrier to biodiversity conservation and other protected area management objectives in an era of rapid climate change.

  12. Management options for recycling radioactive scrap metals

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; MacKinney, J.; Bartlett, J.

    1997-02-01

    The feasibility and advantages of recycling radioactive scrap metals (RSM) have yet to be assessed, given the unique technical, regulatory, safety, and cost-benefit issues that have already been raised by a concerned recycling industry. As is known, this industry has been repeatedly involved with the accidental recycling of radioactive sources and, in some cases, with costly consequences. If recycling were deemed to be a viable option, it might have to be implemented with regulatory monitoring and controls. Its implementation may have to consider various and complex issues and address the requirements and concerns of distinctly different industries. There are three basic options for the recycling of such scraps. They are: (1) recycling through the existing network of metal-scrap dealers and brokers, (2) recycling directly and only with specific steelmills, or (3) recycling through regional processing centers. Under the first option, scrap dealers and brokers would receive material from RSM generators and determine at which steelmills such scraps would be recycled. For the second option, RSM generators would deal directly with selected steelmills under specific agreements. For the third option, generators would ship scraps only to regional centers for processing and shipment to participating steelmills. This paper addresses the potential advantages of each option, identifies the types of arrangements that would need to be secured among all parties, and attempts to assess the receptivity of the recycling industry to each option.

  13. Urban gray vs. urban green vs. soil protection — Development of a systemic solution to soil sealing management on the example of Germany

    International Nuclear Information System (INIS)

    Artmann, Martina

    2016-01-01

    Managing urban soil sealing is a difficult venture due to its spatial heterogeneity and embedding in a socio-ecological system. A systemic solution is needed to tackle its spatial, ecological and social sub-systems. This study develops a guideline for urban actors to find a systemic solution to soil sealing management based on two case studies in Germany: Munich and Leipzig. Legal-planning, informal-planning, economic-fiscal, co-operative and informational responses were evaluated by indicators to proof which strategy considers the spatial complexity of urban soil sealing (systemic spatial efficiency) and, while considering spatial complexity, to assess what the key management areas for action are to reduce the ecological impacts by urban soil sealing (ecological impact efficiency) and to support an efficient implementation by urban actors (social implementation efficiency). Results suggest framing the systemic solution to soil sealing management through a cross-scale, legal-planning development strategy embedded in higher European policies. Within the socio-ecological system, the key management area for action should focus on the protection of green infrastructure being of high value for actors from the European to local scales. Further efforts are necessary to establish a systemic monitoring concept to optimize socio-ecological benefits and avoid trade-offs such as between urban infill development and urban green protection. This place-based study can be regarded as a stepping stone on how to develop systemic strategies by considering different spatial sub-targets and socio-ecological systems. - Highlights: • Urban soil sealing management is spatially complex. • The legal-planning strategy supports a systemic sealing management. • Urban green infrastructure protection should be in the management focus. • Soil protection requires policies from higher levels of government. • A systemic urban soil sealing monitoring concept is needed.

  14. Urban gray vs. urban green vs. soil protection — Development of a systemic solution to soil sealing management on the example of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, Martina, E-mail: m.artmann@ioer.de

    2016-07-15

    Managing urban soil sealing is a difficult venture due to its spatial heterogeneity and embedding in a socio-ecological system. A systemic solution is needed to tackle its spatial, ecological and social sub-systems. This study develops a guideline for urban actors to find a systemic solution to soil sealing management based on two case studies in Germany: Munich and Leipzig. Legal-planning, informal-planning, economic-fiscal, co-operative and informational responses were evaluated by indicators to proof which strategy considers the spatial complexity of urban soil sealing (systemic spatial efficiency) and, while considering spatial complexity, to assess what the key management areas for action are to reduce the ecological impacts by urban soil sealing (ecological impact efficiency) and to support an efficient implementation by urban actors (social implementation efficiency). Results suggest framing the systemic solution to soil sealing management through a cross-scale, legal-planning development strategy embedded in higher European policies. Within the socio-ecological system, the key management area for action should focus on the protection of green infrastructure being of high value for actors from the European to local scales. Further efforts are necessary to establish a systemic monitoring concept to optimize socio-ecological benefits and avoid trade-offs such as between urban infill development and urban green protection. This place-based study can be regarded as a stepping stone on how to develop systemic strategies by considering different spatial sub-targets and socio-ecological systems. - Highlights: • Urban soil sealing management is spatially complex. • The legal-planning strategy supports a systemic sealing management. • Urban green infrastructure protection should be in the management focus. • Soil protection requires policies from higher levels of government. • A systemic urban soil sealing monitoring concept is needed.

  15. Soil mapping and process modeling for sustainable land use management: a brief historical review

    Science.gov (United States)

    Brevik, Eric C.; Pereira, Paulo; Muñoz-Rojas, Miriam; Miller, Bradley A.; Cerdà, Artemi; Parras-Alcántara, Luis; Lozano-García, Beatriz

    2017-04-01

    Basic soil management goes back to the earliest days of agricultural practices, approximately 9,000 BCE. Through time humans developed soil management techniques of ever increasing complexity, including plows, contour tillage, terracing, and irrigation. Spatial soil patterns were being recognized as early as 3,000 BCE, but the first soil maps didn't appear until the 1700s and the first soil models finally arrived in the 1880s (Brevik et al., in press). The beginning of the 20th century saw an increase in standardization in many soil science methods and wide-spread soil mapping in many parts of the world, particularly in developed countries. However, the classification systems used, mapping scale, and national coverage varied considerably from country to country. Major advances were made in pedologic modeling starting in the 1940s, and in erosion modeling starting in the 1950s. In the 1970s and 1980s advances in computing power, remote and proximal sensing, geographic information systems (GIS), global positioning systems (GPS), and statistics and spatial statistics among other numerical techniques significantly enhanced our ability to map and model soils (Brevik et al., 2016). These types of advances positioned soil science to make meaningful contributions to sustainable land use management as we moved into the 21st century. References Brevik, E., Pereira, P., Muñoz-Rojas, M., Miller, B., Cerda, A., Parras-Alcantara, L., Lozano-Garcia, B. Historical perspectives on soil mapping and process modelling for sustainable land use management. In: Pereira, P., Brevik, E., Muñoz-Rojas, M., Miller, B. (eds) Soil mapping and process modelling for sustainable land use management (In press). Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. 2016. Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274.

  16. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    Science.gov (United States)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  17. On-farm impact of cattle slurry manure management on biological soil quality

    NARCIS (Netherlands)

    Goede, de R.G.M.; Brussaard, L.; Akkermans, A.D.L.

    2003-01-01

    The effects of dairy cattle slurry management on soil biota, soil respiration and nitrogen (N) mineralization were evaluated in a farm trial across 12 farms and a field experiment on 2 farms located in a dairy farming area in the north of the Netherlands. The slurry management consisted of slit

  18. Effect of soil moisture management on the quality of wax apple | Lin ...

    African Journals Online (AJOL)

    Wax apple (Syzygium samarngense Merr.et Perry) was one of the economically planted fruits in Taiwan. This research was conducted to evaluate the effects of different soil moisture management on increasing wax apple quality. It was preceded at two different soil properties (shallow soil and alluvial soil) in Pingtung, ...

  19. Soil surface roughness decay in contrasting climates, tillage types and management systems

    Science.gov (United States)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge

    2014-05-01

    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  20. Changes in the Structure of a Nigerian Soil under Different Land Management Practices

    Directory of Open Access Journals (Sweden)

    Joshua Olalekan Ogunwole

    2015-06-01

    Full Text Available Quantification of soil physical quality (SPQ and pore size distribution (PSD can assist understanding of how changes in land management practices influence dynamics of soil structure, and this understanding could greatly improve the predictability of soil physical behavior and crop yield. The objectives of this study were to measure the SPQ index under two different land management practices (the continuous arable cropping system and natural bush fallow system, and contrast the effects of these practices on the structure of PSD using soil water retention data. Soil water retention curves obtained from a pressure chamber were fitted to van Genuchten’s equation, setting m (= 1-1/n. Although values for soil bulk density were high, soils under the continuous arable cropping system had good SPQ, and maintained the capacity to support root development. However, soils under the natural bush fallow system had a worse structure than the continuous arable system, with restrictions in available water capacity. These two management systems had different PSDs. Results showed the inferiority of the natural bush fallow system with no traffic restriction (which is the common practice in relation to the continuous arable cropping system in regard to physical quality and structure.

  1. Management options of varicoceles

    Directory of Open Access Journals (Sweden)

    Peter Chan

    2011-01-01

    Full Text Available Varicocele is one of the most common causes of male infertility. Treatment options for varicoceles includes open varicocelectomy performed at various anatomical levels. Laparoscopic varicocelectomy has been established to be a safe and effective treatment for varicoceles. Robotic surgery has been introduced recently as an alternative surgical option for varicocelectomy. Microsurgical varicocelectomy has gained increasing popularity among experts in male reproductive medicine as the treatment of choice for varicocele because of its superior surgical outcomes. There is a growing volume of literature in the recent years on minimal invasive varicocele treatment with percutaneous retrograde and anterograde venous embolization/sclerotherapy. In this review, we will discuss the advantages and limitations associated with each treatment modality for varicoceles. Employment of these advanced techniques of varicocelectomy can provide a safe and effective approach aiming to eliminate varicocele, preserve testicular function and, in a substantial number of men, increase semen quality and the likelihood of pregnancy.

  2. Long-Term Soil Experiments: A Key to Managing Earth's Rapidly Changing Critical Zones

    Science.gov (United States)

    Richter, D., Jr.

    2014-12-01

    In a few decades, managers of Earth's Critical Zones (biota, humans, land, and water) will be challenged to double food and fiber production and diminish adverse effects of management on the wider environment. To meet these challenges, an array of scientific approaches is being used to increase understanding of Critical Zone functioning and evolution, and one amongst these approaches needs to be long-term soil field studies to move us beyond black boxing the belowground Critical Zone, i.e., to further understanding of processes driving changes in the soil environment. Long-term soil experiments (LTSEs) provide direct observations of soil change and functioning across time scales of decades, data critical for biological, biogeochemical, and environmental assessments of sustainability; for predictions of soil fertility, productivity, and soil-environment interactions; and for developing models at a wide range of temporal and spatial scales. Unfortunately, LTSEs globally are not in a good state, and they take years to mature, are vulnerable to loss, and even today remain to be fully inventoried. Of the 250 LTSEs in a web-based network, results demonstrate that soils and belowground Critical Zones are highly dynamic and responsive to human management. The objective of this study is to review the contemporary state of LTSEs and consider how they contribute to three open questions: (1) can soils sustain a doubling of food production in the coming decades without further impinging on the wider environment, (2) how do soils interact with the global C cycle, and (3) how can soil management establish greater control over nutrient cycling. While LTSEs produce significant data and perspectives for all three questions, there is on-going need and opportunity for reviews of the long-term soil-research base, for establishment of an efficiently run network of LTSEs aimed at sustainability and improving management control over C and nutrient cycling, and for research teams that

  3. Analysis of soil characteristics, soil management and sugar yield on top and averagely managed farms growing sugar beet (Beta vulgaris L.) in the Netherlands

    NARCIS (Netherlands)

    Hanse, B.; Vermeulen, G.D.; Tijink, F.G.J.; Koch, H.J.; Märlander, B.

    2011-01-01

    Within the Speeding Up Sugar Yield (SUSY) project, soil management and soil characteristics were investigated as possible causes of yield differences in fields between 26 ‘type top’ and 26 ‘type average’ growers, ‘top’ and ‘average’ performance being based on past yield data. Growers were pairwise

  4. Integrated water-crop-soil-management system for evaluating the quality of irrigation water

    International Nuclear Information System (INIS)

    Pla-Sentis, I.

    1983-01-01

    The authors make use of an independent balance of the salts and ions present in the water available for irrigation, based on the residence times in the soil solution that are allowed by solubility limits and drainage conditions, to develop an efficient system for evaluating the quality of such water which combines the factors: water, crop, soil and management. The system is based on the principle that such quality depends not only on the concentration and composition of the salts dissolved in the water, but also on existing possibilities and limitations in using and managing it in respect of the soil and crops, with allowance for the crop's tolerance of salinity, drainage conditions and hydrological properties of the soils, climate and current or potential practices for the management of the irrigation. If this system is used to quantify approximately the time behaviour of the concentration and composition of the salts in the soil solution, it is possible not only to predict the effects on soil, crops and drainage water, but also to evaluate the various combinations of irrigation water, soil, crops and management and to select the most suitable. It is also useful for fairly accurately diagnosing current problems of salinity and for identifying alternatives and possibilities for reclamation. Examples of its use for these purposes in Venezuela are presented with particular reference to the diagnosis of the present and future development of ''salino-sodic'' and ''sodic'' soils by means of low-salt irrigation water spread over agricultural soils with very poor drainage in a sub-humid or semi-arid tropical climate. The authors also describe the use of radiation techniques for gaining an understanding of the relations between the factors making up the system and for improving the quantitative evaluations required to diagnose problems and to select the best management methods for the available irrigation water. (author)

  5. 23 CFR 500.104 - State option.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false State option. 500.104 Section 500.104 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRANSPORTATION INFRASTRUCTURE MANAGEMENT MANAGEMENT AND MONITORING SYSTEMS Management Systems § 500.104 State option. Except as specified in § 500.105 (a...

  6. Management options for vulvar carcinoma in a low resource setting.

    Science.gov (United States)

    Eke, Ahizechukwu C; Alabi-Isama, Lilian I; Akabuike, Josephat C

    2010-11-01

    Vulvar carcinoma is a rare tumor of the female genital tract. In Nigeria, very few studies have looked at the management options for vulvar carcinoma. The objective of this study was therefore, to describe the management options available and the challenges in treating this malignancy in Nigeria. A descriptive study of all vulvar cancer cases managed at the Nnamdi Azikiwe University Teaching Hospital, Nnewi over a 12 year period (1998-2009). The theatre, ward register, histo-pathologic records and case notes of all women who had surgery for vulvar carcinomas were retrieved and socio-demographic characteristics, clinical presentation, type of surgery, histologic type and complications of treatment were retrieved and analyzed. There were 867 gynecological malignancies and vulval carcinoma accounted for 11 cases, giving a prevalence of 1.27%. The ages ranged from 54 to 79 years with a mean of 61.2 years. Parity was 2-14, with a mean of 6.7 ± 2.33. Most of the patients were of low socio-economic class. All the 11 patients had surgery as 1st line treatment. Radical vulvectomy was done for 6 cases since they presented in the advanced stage. The complications of surgery included hemorrhage (18.2%), chronic lymphedema, wound infection and anesthetic complications. There were no hospital mortalities. Late presentation, with stage III (45.4%) was the commonest stage at presentation while the majority of the vulvar carcinomas (72.7%) were of epithelial origin. Squamous cell carcinoma predominated (63.6%). Carcinoma of the vulva is a rare gynecological malignancy in Nigeria. Surgery and radiotherapy remains the mainstay of this disease in Nigeria and can be highly successful if patients present early.

  7. Feasibility, cost and safety of some rehabilitation options for the Maralinga test site

    International Nuclear Information System (INIS)

    Vande Putte, D.; Tufton, E.P.S.; Myall, M.

    1992-01-01

    The need to rehabilitate the former nuclear test site at Maralinga has required the development of safe and cost-effective clean-up measures. Options have been investigated, which include fencing-off parts of the site, removing surface soil, mixing surface soil and stabilising the contents of debris pits. The results of the study can be used in selecting the most suitable options or combination of options necessary to achieve a given radiological end-point. (author)

  8. Women's experiences of three early miscarriage management options a qualitative study

    Science.gov (United States)

    Smith, Lindsay F; Frost, Julia; Levitas, Ruth; Bradley, Harriet; Garcia, Jo

    2006-01-01

    Background Miscarriage affects around one in six pregnancies. Much research has taken place identifying the consequences of this for parents but is mainly quantitative. Of the limited qualitative studies, none have explored women's experiences of the methods of miscarriage management received. Aim To assess the social and personal impact of different management methods (expectant, medical and surgical) on women's experience of first trimester miscarriage. Design of study Qualitative interviews using a topic guide with a purposive cohort of four categories of women (each management method plus non-participants) 6 months to 1 year after first trimester miscarriage. Focus groups with both research participants and health workers. Setting Women from three hospitals in the South West of England that participated in the Miscarriage Treatment (MIST) trial. Method Seventy-two interviews were undertaken between September 1999 and June 2000. There were also five focus groups (47 participants) and two feedback sessions (8 participants) with written feedback from 12 women. Interviews lasted 0.5–2.5 hours generating over 2000 A4 pages of transcripts. The transcripts were analysed for common themes, using standard proformas, which were filled in by individual team members and then discussed by the whole research team. Iterative readings in the light of new emerging issues ensured that new themes could be identified throughout the analytical process. All transcripts were then encoded for the identified themes using NUDIST. Results Common themes emerged across all management options although some were specific to just one or two management options. The five major themes arising out of the data analysis were: intervention; experiences of care; finality; the ‘baby’; and pain and bleeding. Conclusions Women's experiences and beliefs vary widely and their preferences need to be considered in their early miscarriage management. The three methods have different benefits and

  9. In-Soil and Down-Hole Soil Water Sensors: Characteristics for Irrigation Management

    Science.gov (United States)

    The past use of soil water sensors for irrigation management was variously hampered by high cost, onerous regulations in the case of the neutron probe (NP), difficulty of installation or maintenance, and poor accuracy. Although many sensors are now available, questions of their utility still abound....

  10. The effect of different water managements on rice arsenic content in two arsenic-spiked soils

    Directory of Open Access Journals (Sweden)

    Chang H. Y.

    2013-04-01

    Full Text Available Growing rice on arsenic (As-contaminated paddy fields may induce high As level grain production. In order to reduce the food contamination risk, the pot experiments containing two As-spiked aging soils and four water managements were conducted to evaluate the effects of water managements on rice As content. The results indicated that As concentration of Erlin soil solution was 10 to 20 times (210-520 μg/L higher than that of Pinchen soil solution (5-20 μg/L at early stage of experiment (0-60 days. Aerobic water treatment will decrease As level to 30-50% (108-220 μg/L of original As concentration in Erlin soil solution. Statistic results indicated that water management was effective to reduce the rice grain As level in Erlin soil. However, the management impact was not obvious in Pinchen soil, which may be attributed to high clay or free Fe and Al content in the soil. This study suggested that keeping soil under aerobic condition for 3 weeks before rice heading can reduce the risk of rice grown at the As-contamination soil.

  11. Greenhouse gas fluxes from agricultural soils under organic and non-organic management — A global meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Colin, E-mail: colin.skinner@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Gattinger, Andreas, E-mail: andreas.gattinger@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Muller, Adrian, E-mail: adrian.mueller@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Mäder, Paul, E-mail: paul.maeder@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Fließbach, Andreas, E-mail: andreas.fliessbach@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Stolze, Matthias, E-mail: matthias.stolze@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Ruser, Reiner, E-mail: reiner.ruser@uni-hohenheim.de [Fertilisation and Soil Matter Dynamics (340i), Institute of Crop Science, University of Hohenheim, Fruwirthstraße 20, 70599 Stuttgart (Germany); Niggli, Urs, E-mail: urs.niggli@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland)

    2014-01-01

    It is anticipated that organic farming systems provide benefits concerning soil conservation and climate protection. A literature search on measured soil-derived greenhouse gas (GHG) (nitrous oxide and methane) fluxes under organic and non-organic management from farming system comparisons was conducted and followed by a meta-analysis. Up to date only 19 studies based on field measurements could be retrieved. Based on 12 studies that cover annual measurements, it appeared with a high significance that area-scaled nitrous oxide emissions from organically managed soils are 492 ± 160 kg CO{sub 2} eq. ha{sup −1} a{sup −1} lower than from non-organically managed soils. For arable soils the difference amounts to 497 ± 162 kg CO{sub 2} eq. ha{sup −1} a{sup −1}. However, yield-scaled nitrous oxide emissions are higher by 41 ± 34 kg CO{sub 2} eq. t{sup −1} DM under organic management (arable and use). To equalize this mean difference in yield-scaled nitrous oxide emissions between both farming systems, the yield gap has to be less than 17%. Emissions from conventionally managed soils seemed to be influenced mainly by total N inputs, whereas for organically managed soils other variables such as soil characteristics seemed to be more important. This can be explained by the higher bioavailability of the synthetic N fertilisers in non-organic farming systems while the necessary mineralisation of the N sources under organic management leads to lower and retarded availability. Furthermore, a higher methane uptake of 3.2 ± 2.5 kg CO{sub 2} eq. ha{sup −1} a{sup −1} for arable soils under organic management can be observed. Only one comparative study on rice paddies has been published up to date. All 19 retrieved studies were conducted in the Northern hemisphere under temperate climate. Further GHG flux measurements in farming system comparisons are required to confirm the results and close the existing knowledge gaps. - Highlights: • Lower area-scaled nitrous

  12. Editorial Commentary: In a World of Endless Options, Is There a Single Solution? Management Options for Failed Anterior Instability Surgery in Athletes.

    Science.gov (United States)

    Matzkin, Elizabeth

    2018-05-01

    There are many options to manage anterior instability of the shoulder. The management of athletes who have failed previous operative stabilization can make choosing a treatment solution difficult. A modified Latarjet without capsulolabral repair has been demonstrated to be a good choice when treating failed stabilization in a high-risk population with sufficient return to play and outcomes. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  13. Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes.

    Science.gov (United States)

    Tamburini, Giovanni; De Simone, Serena; Sigura, Maurizia; Boscutti, Francesco; Marini, Lorenzo

    2016-08-31

    Agroecosystems are principally managed to maximize food provisioning even if they receive a large array of supporting and regulating ecosystem services (ESs). Hence, comprehensive studies investigating the effects of local management and landscape composition on the provision of and trade-offs between multiple ESs are urgently needed. We explored the effects of conservation tillage, nitrogen fertilization and landscape composition on six ESs (crop production, disease control, soil fertility, water quality regulation, weed and pest control) in winter cereals. Conservation tillage enhanced soil fertility and pest control, decreased water quality regulation and weed control, without affecting crop production and disease control. Fertilization only influenced crop production by increasing grain yield. Landscape intensification reduced the provision of disease and pest control. We also found tillage and landscape composition to interactively affect water quality regulation and weed control. Under N fertilization, conventional tillage resulted in more trade-offs between ESs than conservation tillage. Our results demonstrate that soil management and landscape composition affect the provision of several ESs and that soil management potentially shapes the trade-offs between them. © 2016 The Author(s).

  14. Advances in soil erosion modelling through remote sensing data availability at European scale

    Science.gov (United States)

    Panagos, Panos; Karydas, Christos; Borrelli, Pasqualle; Ballabio, Cristiano; Meusburger, Katrin

    2014-08-01

    Under the European Union's Thematic Strategy for Soil Protection, the European Commission's Directorate-General for the Environment (DG Environment) has identified the mitigation of soil losses by erosion as a priority area. Policy makers call for an overall assessment of soil erosion in their geographical area of interest. They have asked that risk areas for soil erosion be mapped under present land use and climate conditions, and that appropriate measures be taken to control erosion within the legal and social context of natural resource management. Remote sensing data help to better assessment of factors that control erosion, such as vegetation coverage, slope length and slope angle. In this context, the data availability of remote sensing data during the past decade facilitates the more precise estimation of soil erosion risk. Following the principles of the Universal Soil Loss Equation (USLE), various options to calculate vegetative cover management (C-factor) have been investigated. The use of the CORINE Land Cover dataset in combination with lookup table values taken from the literature is presented as an option that has the advantage of a coherent input dataset but with the drawback of static input. Recent developments in the Copernicus programme have made detailed datasets available on land cover, leaf area index and base soil characteristics. These dynamic datasets allow for seasonal estimates of vegetation coverage, and their application in the G2 soil erosion model which represents a recent approach to the seasonal monitoring of soil erosion. The use of phenological datasets and the LUCAS land use/cover survey are proposed as auxiliary information in the selection of the best methodology.

  15. Determinants of soil management practices among small-holder ...

    African Journals Online (AJOL)

    based farmers from six communities across the three agricultural zones in the State. ... education and institutional supports to the farmers for improved food production through sustainable and environmental friendly soil management measures.

  16. Coffee farming and soil management in Rwanda

    NARCIS (Netherlands)

    Nzeyimana, I.; Hartemink, A.E.; Graaff, de J.

    2013-01-01

    Agriculture is the cornerstone of Rwanda's economy. The authors review how the sector has changed and specifically what soil management practices are now being implemented to enhance coffee production. Coffee covers around 2.3% of total cultivated arable land, and is grown mainly by smallholder

  17. Site Specific Waste Management Instruction for the 116-F-4 soil storage unit

    International Nuclear Information System (INIS)

    Hopkins, G.G.

    1996-08-01

    This Site Specific Waste Management Instruction provides guidance for management of waste generated during the excavation and remediation of soil and debris from the 116-4 soil storage unit located at the Hanford Site in Richland, Washington. This document outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements

  18. Environmental review of options for managing radioactively contaminated carbon steel

    International Nuclear Information System (INIS)

    1996-10-01

    The U.S. Department of Energy (DOE) is proposing to develop a strategy for the management of radioactively contaminated carbon steel (RCCS). Currently, most of this material either is placed in special containers and disposed of by shallow land burial in facilities designed for low-level radioactive waste (LLW) or is stored indefinitely pending sufficient funding to support alternative disposition. The growing amount of RCCS with which DOE will have to deal in the foreseeable future, coupled with the continued need to protect the human and natural environment, has led the Department to evaluate other approaches for managing this material. This environmental review (ER) describes the options that could be used for RCCS management and examines the potential environmental consequences of implementing each. Because much of the analysis underlying this document is available from previous studies, wherever possible the ER relies on incorporating the conclusions of those studies as summaries or by reference

  19. Ecological effects of the Hayman Fire - Part 3: Soil properties, erosion, and implications for rehabilitation and aquatic ecosystems

    Science.gov (United States)

    Jan E. Cipra; Eugene F. Kelly; Lee MacDonald; John Norman

    2003-01-01

    This team was asked to address three questions regarding soil properties, erosion and sedimentation, and how aquatic and terrestrial ecosystems have responded or could respond to various land management options. We have used soil survey maps, burn severity maps, and digital elevation model (DEM) maps as primary map data. We used our own field measurements and...

  20. Soil Properties and Plant Biomass Production in Natural Rangeland Management Systems

    Directory of Open Access Journals (Sweden)

    Romeu de Souza Werner

    Full Text Available ABSTRACT Improper management of rangelands can cause land degradation and reduce the economic efficiency of livestock activity. The aim of this study was to evaluate soil properties and quantify plant biomass production in four natural rangeland management systems in the Santa Catarina Plateau (Planalto Catarinense of Brazil. The treatments, which included mowed natural rangeland (NR, burned natural rangeland (BR, natural rangeland improved through the introduction of plant species after harrowing (IH, and natural rangeland improved through the introduction of plant species after chisel plowing (IC, were evaluated in a Nitossolo Bruno (Nitisol. In the improved treatments, soil acidity was corrected, phosphate fertilizer was applied, and intercropped annual ryegrass (Lolium multiflorum, velvet grass (Holcus lanatus, and white clover (Trifolium repens were sown. Management systems with harrowed or chisel plowed soil showed improved soil physical properties; however, the effect decreased over time and values approached those of burned and mowed natural rangelands. Natural rangeland systems in the establishment phase had little influence on soil organic C. The mowed natural rangeland and improved natural rangeland exhibited greater production of grazing material, while burning the field decreased production and increased the proportion of weeds. Improvement of the natural rangelands increased leguminous biomass for pasture.

  1. A System Dynamics Approach for the Selection of Contaminated Land Management Options

    Science.gov (United States)

    McKnight, U. S.; Kuebert, M.; Finkel, M.; Bieg, M.

    2006-12-01

    Large-scale contaminated land and groundwater is a widespread problem that can severely impact human health, the environment and the economy at many urban sites all over the world. Usually a considerable number of potential management solutions exist at each of these sites. A detailed investigation of all these options, however, is not economically feasible which makes streamlining of the planning and decision process a mandatory requirement. Decisions to be taken should be made as early as possible in order to reduce expenditures on site investigation. Therefore, a tiered decision-making procedure is required, including (i) identification and prioritization of focal areas of risks, (ii) feasibility screening of remediation targets and available management alternatives to narrow the range of possible options for (iii) subsequent detailed investigations of only a select group of preferable options. For each of these elements, tailored decision and investigation concepts are required. These concepts and applied methods should be specifically adapted to the type and scale of the particular decision to be taken- more target-oriented, cost-efficient investigation programs, as well as model-based assessment methods are needed (Ruegner et al. 2006). A gap exists within this framework with respect to preliminary assessment methodologies representing the first decision level. To fill this gap, a new system dynamics approach has been developed that represents the system of source- pathway-receptor sequences by means of a mass flux model. The dynamics are governed by the effects of possible remedial actions, which are described as mass flux change over time (Serapiglia et al. 2005). This approach has been implemented in the preliminary evaluation tool CARO-plus (Cost-efficiency Assessment of Remediation Options) that models the effects of potential remedial actions, including tackling the contaminant source and managing the groundwater plume. The model represents the causal

  2. Soil phosphatase and urease activities impacted by cropping systems and water management

    Science.gov (United States)

    Soil enzymes can play an important role in nutrient availability to plants. Consequently, soil enzyme measurements can provide useful information on soil fertility for crop production. We examined the impact of cropping system and water management on phosphatase, urease, and microbial biomass C in s...

  3. Fungal Community Structure as an Indicator of Soil Agricultural Management Effects in the Cerrado

    Directory of Open Access Journals (Sweden)

    Alana de Almeida Valadares-Pereira

    2017-11-01

    Full Text Available ABSTRACT Forest-to-agriculture conversion and soil management practices for soybean cropping are frequently performed in the Cerrado (Brazilian tropical savanna. However, the effects of these practices on the soil microbial communities are still unknown. We evaluated and compared the fungal community structure in soil from soybean cropland with soil under native Cerrado vegetation at different times of the year in the Tocantins State. Soil samples were collected in two periods after planting (December and in two periods during the soybean reproductive growth stage (February. Concomitantly, soil samples were collected from an area under native Cerrado vegetation surrounding the agricultural area. The soil DNA was analyzed using a fingerprinting method termed Automated Ribosomal Intergenic Space Analysis (ARISA to assess the fungal community structure in the soil. Differences in the fungal community structure in the soil were found when comparing soybean cropland with the native vegetation (R = 0.932 for sampling 1 and R = 0.641 for sampling 2. Changes in the fungal community structure after management practices for soybean planting in Cerrado areas were related to changes in soil properties, mainly in copper, calcium, and iron contents, cation exchange capacity, base saturation, and calcium to magnesium ratio. These results show the changes in the fungal community structure in the soil as an effect of agricultural soil management in Cerrado vegetation in the state of Tocantins.

  4. Distributed Energy Implementation Options

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chandralata N [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-13

    This presentation covers the options for implementing distributed energy projects. It distinguishes between options available for distributed energy that is government owned versus privately owned, with a focus on the privately owned options including Energy Savings Performance Contract Energy Sales Agreements (ESPC ESAs). The presentation covers the new ESPC ESA Toolkit and other Federal Energy Management Program resources.

  5. Impacts of afforestation and silviculture on the soil C balance of tropical tree plantations: belowground C allocation, soil CO2 efflux and C accretion (Invited)

    Science.gov (United States)

    Epron, D.; Koutika, L.; Mareschal, L.; Nouvellon, Y.

    2013-12-01

    Tropical forest plantations will provide a large part of the global wood supply which is anticipated to increase sharply in the next decades, becoming a valuable source of income in many countries, where they also contribute to land use changes that impact the global carbon (C) cycle. Tropical forest plantations established on previous grasslands are potential C sinks offsetting anthropogenic CO2 emissions. When they are managed on short rotations, the aboveground biomass is frequently removed and transformed into wood products with short lifetimes. The soil is thus the only compartment for durable C sequestration. The soil C budget results from the inputs of C from litterfall, root turnover and residues left at logging stage, balanced by C losses through heterotrophic respiration and leaching of organic C with water flow. Intensive researches have been conducted these last ten years in eucalypt plantations in the Congo on the effects of management options on soil fertility improvement and C sequestration. Our aim is to review important results regarding belowground C allocation, soil CO2 efflux and C accretion in relation to management options. We will specifically address (i) the soil C dynamics after afforestation of a tropical savannah, (ii) the impact of post-harvest residue management, and (iii) the beneficial effect of introducing nitrogen fixing species for C sequestration. Our results on afforestation of previous savannah showed that mechanical soil disturbance for site preparation had no effect on soil CO2 efflux and soil C balance. Soil C increased after afforestation despite a rapid disappearance of the labile savannah-derived C because a large fraction of savannah-derived C is stable and the aboveground litter layer is as the major source of CO2 contributing to soil CO2 efflux. We further demonstrated that the C stock in and on the soil slightly increased after each rotation when large amounts of residues are left at logging stage and that most of

  6. Practice makes perfect: participatory innovation in soil fertility management to improve rural livelihoods in East Africa

    OpenAIRE

    Jager, de, A.

    2007-01-01

    Keywords: soil nutrient balances, soil fertility degradation, East Africa , participatory innovation, experiential learning, farmer field schools, smallholder agriculture Maintaining and improving soil fertility is crucial for Africa to attain the Millennium Development Goals. Fertile soil and balanced soil nutrient management are major foundations for sustainable food production, contribute to a sound management of natural resources and assist in controlling environmental degradation such ...

  7. Aggregates morphometry in a Latosol (Oxisol under different soil management systems

    Directory of Open Access Journals (Sweden)

    Carla Eloize Carducci

    2016-02-01

    Full Text Available Changes in soil physical properties are inherent in land use, mainly in superficial layers. Structural alterations can directly influence distribution, stability and especially morphometry of soil aggregates, which hence will affect pore system and the dynamic process of water and air in soil. Among the methods used to measure these changes, morphometry is a complementary tool to the classic methods. The aim of this study was to evaluate structural quality of a Latosol (Oxisol, under different management systems, using morphometric techniques. Treatments consisted of soil under no-tillage (NT; pasture (P, in which both had been cultivated for ten years, and an area under native vegetation (NV – Savannah like vegetation. Aggregates were sampled at depths of 0-0.10 and 0.10-0.20 m, retained on sieves with 9.52 – 4.76 mm, 4.76 – 1.0mm, 1.0 – 0.5mm diameter ranges. Aggregate morphometry was assessed by 2D images from scanner via QUANTPORO software. The analyzed variables were: area, perimeter, aspect, roughness, Ferret diameter and compactness. Moreover, disturbed samples were collected at the same depths to determine particle size, aggregate stability in water, water-dispersible clay, clay flocculation index and organic matter content. It was observed that different soil management systems have modified soil aggregate morphology as well as physical attributes; and management effects’ magnitude increased from NT to P.

  8. A Multi-Criteria Decision Analysis of Waste Treatment Options for Food and Biodegradable Waste Management in Japan

    Directory of Open Access Journals (Sweden)

    Micky A. Babalola

    2015-10-01

    Full Text Available Dealing with large-scale Food and Biodegradable Waste (FBW often results in many logistical problems and environmental impacts to be considered. These can become great hindrances when the integration of solid waste management is concerned. Extra care is needed to plan such waste disposal or treatment services and facilities, especially with respect to the ecological impact. Decision-making with regards to the sustainable use of these facilities also involves tradeoffs between a number of conflicting objectives, since increasing one benefit may decrease the others. In this study a Multi-Criteria Decision Analysis (MCDA is presented to evaluate different waste management options and their applicability in Japan. The analytical process aims at selecting the most suitable waste treatment option, using pairwise comparisons conducted within a decision hierarchy that was developed through the Analytical Hierarchy Process (AHP. The results of this study show that anaerobic digestion should be chosen as the best FBW treatment option with regards to resource recovery. The study also presents some conditions and recommendations that can enhance the suitability of other options like incineration and composting.

  9. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Corn Yield and Soil Nitrous Oxide Emission under Different Fertilizer and Soil Management: A Three-Year Field Experiment in Middle Tennessee.

    Science.gov (United States)

    Deng, Qi; Hui, Dafeng; Wang, Junming; Iwuozo, Stephen; Yu, Chih-Li; Jima, Tigist; Smart, David; Reddy, Chandra; Dennis, Sam

    2015-01-01

    A three-year field experiment was conducted to examine the responses of corn yield and soil nitrous oxide (N2O) emission to various management practices in middle Tennessee. The management practices include no-tillage + regular applications of urea ammonium nitrate (NT-URAN); no-tillage + regular applications of URAN + denitrification inhibitor (NT-inhibitor); no-tillage + regular applications of URAN + biochar (NT-biochar); no-tillage + 20% applications of URAN + chicken litter (NT-litter), no-tillage + split applications of URAN (NT-split); and conventional tillage + regular applications of URAN as a control (CT-URAN). Fertilizer equivalent to 217 kg N ha(-1) was applied to each of the experimental plots. Results showed that no-tillage (NT-URAN) significantly increased corn yield by 28% over the conventional tillage (CT-URAN) due to soil water conservation. The management practices significantly altered soil N2O emission, with the highest in the CT-URAN (0.48 mg N2O m(-2) h(-1)) and the lowest in the NT-inhibitor (0.20 mg N2O m(-2) h(-1)) and NT-biochar (0.16 mg N2O m(-2) h(-1)) treatments. Significant exponential relationships between soil N2O emission and water filled pore space were revealed in all treatments. However, variations in soil N2O emission among the treatments were positively correlated with the moisture sensitivity of soil N2O emission that likely reflects an interactive effect between soil properties and WFPS. Our results indicated that improved fertilizer and soil management have the potential to maintain highly productive corn yield while reducing greenhouse gas emissions.

  11. Effects of 10-Year Management Regimes on the Soil Seed Bank in Saline-Alkaline Grassland

    Science.gov (United States)

    Ma, Hongyuan; Yang, Haoyu; Liang, Zhengwei; Ooi, Mark K. J.

    2015-01-01

    Background Management regimes for vegetation restoration of degraded grasslands can significantly affect the process of ecological succession. However, few studies have focused on variation in the soil seed bank during vegetation restoration under different management regimes, especially in saline-alkaline grassland habitats. Our aim was to provide insights into the ecological effects of grassland management regimes on soil seed bank composition and vegetation establishment in mown, fenced, transplanted and natural grassland sites, all dominated by the perennial rhizomatous grass Leymus chinensis. Methodology We studied species composition and diversity in both the soil seed bank and aboveground vegetation in differently managed grasslands in Northeast China. An NMDS (nonmetric multidimensional scaling) was used to evaluate the relationship between species composition, soil seed banks, aboveground vegetation and soil properties. Principal Findings Fenced and mown grassland sites had high density and species richness in both the soil seed bank and aboveground vegetation. The Transplanted treatment exhibited the highest vegetation growth and seed production of the target species L. chinensis. Seeds of L. chinensis in the soil occurred only in transplanted and natural grassland. Based on the NMDS analysis, the number of species in both the soil seed bank and aboveground vegetation were significantly related to soil Na+, Cl-, RSC (residual sodium carbonate), alkalinity, ESP (exchangeable sodium percentage) and AP (available phosphorus). Conclusions Soil seed bank composition and diversity in the saline-alkaline grassland were significantly affected by the management regimes implemented, and were also significantly related to the aboveground vegetation and several soil properties. Based on vegetative growth, reproductive output and maintenance of soil seed bank, the transplanting was identified as the most effective method for relatively rapid restoration of the target

  12. Using Multispectral and Elevation Data to Predict Soil Properties for a Better Management of Fertilizers at Field Scale

    Science.gov (United States)

    Drouin, Ariane; Michaud, Aubert; Sylvain, Jean-Daniel; N'Dayegamiye, Adrien; Gasser, Marc-Olivier; Nolin, Michel; Perron, Isabelle; Grenon, Lucie; Beaudin, Isabelle; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    This project aims at developing and validating an operational integrated management and localized approach at field scale using remote sensing data. It is realized in order to support the competitiveness of agricultural businesses, to ensure soil productivity in the long term and prevent diffuse contamination of surface waters. Our intention is to help agrienvironmental advisors and farmers in the consideration of spatial variability of soil properties in the management of fields. The proposed approach of soil properties recognition is based on the combination of elevation data and multispectral satellite imagery (Landsat) within statistical models. The method is based on the use of the largest possible number of satellite images to cover the widest range of soil moisture variability. Several spectral indices are calculated for each image (normalized brightness index, soil color index, organic matter index, etc.). The assignation of soils is based on a calibration procedure making use of the spatial soil database available in Canada. It includes soil profile point data associated to a database containing the information collected in the field. Three soil properties are predicted and mapped: A horizon texture, B horizon texture and drainage class. All the spectral indices, elevation data and soil data are combined in a discriminant analysis that produces discriminant functions. These are then used to produce maps of soil properties. In addition, from mapping soil properties, management zones are delineated within the field. The delineation of management zones with relatively similar soil properties is created to enable farmers to manage their fertilizers by taking greater account of their soils. This localized or precision management aims to adjust the application of fertilizer according to the real needs of soils and to reduce costs for farmers and the exports of nutrients to the stream. Mapping of soil properties will be validated in three agricultural regions in

  13. Soil macrofauna functional groups and their effects on soil structure, as related to agricultural management practices across agroecological zones of Sub-Saharan Africa

    NARCIS (Netherlands)

    Ayuke, F.O.

    2010-01-01

    This study aimed at understanding the effects of crop management practices on soil macrofauna and the links with soil aggregation and soil organic matter dynamics, which is key to the improvement of infertile or degrading soils in Sub-Sahara Africa. Soil macrofauna, especially earthworms and

  14. Organic nitrogen storage in mineral soil: Implications for policy and management

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Andrew H., E-mail: drew_bingham@nps.gov [Air Resources Division, National Park Service, P.O. Box 25287, Denver, CO 80225 (United States); Cotrufo, M. Francesca [Department of Soil and Crop Sciences and Natural Resources Ecology Laboratory, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 (United States)

    2016-05-01

    Nitrogen is one of the most important ecosystem nutrients and often its availability limits net primary production as well as stabilization of soil organic matter. The long-term storage of nitrogen-containing organic matter in soils was classically attributed to chemical complexity of plant and microbial residues that retarded microbial degradation. Recent advances have revised this framework, with the understanding that persistent soil organic matter consists largely of chemically labile, microbially processed organic compounds. Chemical bonding to minerals and physical protection in aggregates are more important to long-term (i.e., centuries to millennia) preservation of these organic compounds that contain the bulk of soil nitrogen rather than molecular complexity, with the exception of nitrogen in pyrogenic organic matter. This review examines for the first time the factors and mechanisms at each stage of movement into long-term storage that influence the sequestration of organic nitrogen in the mineral soil of natural temperate ecosystems. Because the factors which govern persistence are different under this newly accepted paradigm we examine the policy and management implications that are altered, such as critical load considerations, nitrogen saturation and mitigation consequences. Finally, it emphasizes how essential it is for this important but underappreciated pool to be better quantified and incorporated into policy and management decisions, especially given the lack of evidence for many soils having a finite capacity to sequester nitrogen. - Highlights: • We review the current framework for long-term nitrogen stabilization in soils. • We highlight the most important factors according to this framework. • We discuss how these factors may influence management and policy decisions.

  15. Understanding the relationship between livelihood strategy and soil management

    DEFF Research Database (Denmark)

    Oumer, Ali Mohammed; Hjortsø, Carsten Nico Portefée; de Neergaard, Andreas

    2013-01-01

    help build livelihood strategies with high-economic return that in turn provide incentives to undertake improved soil management practices. The identified household types may guide entry points for development interventions targeting both food security and agricultural sustainability concerns......This paper aims to understand the relationship between households’ livelihood strategy and soil management using commonalities among rural households. We grouped households into four distinct types according to similar livelihood diversification strategies. For each household type, we identified...... the dominant income-generating strategies as well as the main agronomic activities pursued. The household types were: (I) households that pursue a cereal-based livelihood diversification strategy (23 %); (II) households predominantly engaged in casual off-farm-based strategy (15 %); (III) households...

  16. Options for the management of Chernobyl-restricted areas in England and Wales

    International Nuclear Information System (INIS)

    Nisbet, Anne; Woodman, Rona

    2000-01-01

    Areas in England and Wales are still subject to restrictions on the movement, sale and slaughter of sheep because activity concentrations of 137 Cs in sheepmeat may exceed the 1000 Bq kg -1 limit imposed after the Chernobyl nuclear power plant accident. The operation of various monitoring programmes has enabled lamb production to be sustained in restricted areas. Under present circumstances, it is predicted that some restrictions will remain until at least 2003. This paper describes an assessment of the practicability and cost-effectiveness of five alternative management options: utilisation of existing improved land for the purposes of clean feeding; improvement of unimproved upland grazing for the purposes of clean feeding; provision of housing and clean feed; administration of boli containing ammonium ferric hexacyanoferrate; and monitoring at the market place. The practicability of each option, which encompasses technical feasibility, capacity, cost, impact and acceptability, was assessed through a series of case studies carried out on farms in the restricted area of north Wales, and through consultation with a range of organisations with interests in farming and/or the environment. Recommendations are made for the future management of the restricted areas

  17. Applicability of the cost-effectiveness approach for comparison of waste management options

    International Nuclear Information System (INIS)

    Vuori, S.; Peltonen, E.; Vieno, T.; Vira, J.

    1984-01-01

    There is an obvious need to consider the achievable level of safety of waste management in view of the costs involved. The feasibility of the cost-effectiveness approach for this purpose is discussed in the framework of practical case studies. The analysis indicates that such an approach has clear benefits, but it also reveals several issues and ambiguities in its application. The waste management alternatives considered include various concepts for the disposal of low- and intermediate-level reactor wastes as well as of the unreprocessed spent fuel. The employed impact indicators describe both the individual and collective risks. In addition, indicators simultaneously giving a perspective into other risks in the society and a means to make a rank ordering of the alternative options are proposed. The cost-effectiveness ratios for collective risks vary in the range of ten to hundreds of millions US $ per man.Sv. The examples considered also indicate that increased costs do not necessarily improve safety. Furthermore, the comparison of the safety of different options requires more sophisticated and realistic models than those employed in the present analyses, because an unbalanced degree of conservatism could result in misleading conclusions. (author)

  18. EFFECT OF INTEGRATED SOIL FERTILITY MANAGEMENT INTERVENTIONS ON THE ABUNDANCE AND DIVERSITY OF SOIL COLLEMBOLA IN EMBU AND TAITA DISTRICTS, KENYA

    Directory of Open Access Journals (Sweden)

    Jamleck Muturi

    2010-10-01

    Full Text Available The study aimed at identifying soil fertility management practices that promote the Collembola population, diversity and survival in the soil. Soil samples were randomly collected from on farm plots amended with: 1-Mavuno ((Ma-is a compound fertilizer containing 26% Potassium, 10% Nitrogen, 10% Calcium, 4% Sulphur, 4% Magnesium and trace elements like Zinc, Copper, Boron, Molybdenum and Manganese, 2-Manure (Mn, 3-Trichoderna (Tr inoculant (is a soil and compost-borne antagonistic fungus used as biological control agent against plant fungal diseases, 4-Farmers practice ((FP where Tripple Super Phosphate (T.S.P. and Calcium Ammonium Nitrate (C.A.N. fertilizers are applied in the soil in mixed form, 5-Tripple Super Phosphate (T.S.P., 6-Calcium Ammonium Nitrate (C.A.N.. These treatments were compared with 7-Control (Co (where soil fertility management interventions where not applied. Soil Collembola were extracted using dynamic behavioural modified Berlese funnel and identified to the genus level. Occurrence of Collembola was significantly affected by soil fertility amendments in both Taita and Embu study sites (P

  19. Climate change adaptation and mitigation options a guide for natural resource managers in southern forest ecosystems

    Science.gov (United States)

    James M. Vose; Kier D. Klepzig

    2014-01-01

    The rapid pace of climate change and its direct and indirect effects on forest ecosystems present a pressing need for better scientific understanding and the development of new science-management partnerships. Understanding the effects of stressors and disturbances (including climatic variability), and developing and testing science-based management options to deal...

  20. Soil bioindicators as a usefull tools for land management and spatial planning processes: a case-study of prioritization of contaminated soil remediation

    Science.gov (United States)

    Grand, Cécile; Pauget, Benjamin; Villenave, Cécile; Le Guédard, Marina; Piron, Denis; Nau, Jean-François; Pérès, Guénola

    2017-04-01

    When setting up new land management, contaminated site remediation or soil use change are sometimes necessary to ensure soil quality and the restoration of the ecosystem services. The biological characterization of the soil can be used as complementary information to chemical data in order to better define the conditions for operating. Then, in the context of urban areas, elements on the soil biological quality can be taken into consideration to guide the land development. To assess this "biological state of soil health", some biological tools, called bioindicators, could provide comprehensive information to understand and predict the functioning of the soil ecosystem. In this context, a city of 200 thousand inhabitants has decided to integrate soil bioindicators in their soil diagnostic for their soil urban management. This city had to elaborate a spatial soil management in urban areas which presented soil contamination linked to a complex industrial history associated with bad uses of gardens not always safe for the environment. The project will lead to establish a Natural Urban Park (PNU) in order to develop recreational and leisure activities in a quality environment. In order to complete the knowledge of soil contamination and to assess the transfer of contaminants to the terrestrial ecosystem, a biological characterization of soils located in different areas was carried out using six bioindicators: bioindicators of accumulation which allowed to evaluate the transfers of soil contaminants towards the first 2 steps of a trophic chain (plants and soil fauna, e.g. snails), bioindicators of effects (Omega 3 index was used to assess the effects of soil contamination and to measure their impact on plants), bioindicators of soil functioning (measurement of microbial biomass, nematodes and earthworm community) ; the interest of these last bioindicators is that they also act on the functioning of ecosystems as on the dynamics of organic matter (mineralization) but also

  1. A road to food? : efficacy of nutrient management options targeted to heterogeneous soilscapes in the Teso farming system, Uganda

    NARCIS (Netherlands)

    Ebanyat, P.

    2009-01-01

    Key words: Land use change; Heterogeneity in soil fertility; Targeting; Integrated soil fertility management; Nutrient use efficiencies; Rehabilitation of degraded fields; Fertiliser requirements, Finger millet; QUEFTS model; Smallholder systems; sub-Saharan Africa.

    Poor soil fertility

  2. Management options for cholestatic liver disease in children.

    Science.gov (United States)

    Catzola, Andrea; Vajro, Pietro

    2017-11-01

    Due to a peculiar age-dependent increased susceptibility, neonatal cholestasis affects the liver of approximately 1 in every 2500 term infants. A high index of suspicion is the key to an early diagnosis, and to implement timely, often life-saving treatments. Even when specific treatment is not available or curative, prompt medical management and optimization of nutrition are of paramount importance to survival and avoidance of complications. Areas covered: The present article will prominently focus on a series of newer diagnostic and therapeutic options of cholestasis in neonates and infants blended with consolidated established paradigms. The overview of strategies for the management reported here is based on a systematic literature search published in English using accessible databases (PubMed, MEDLINE) with the keywords biliary atresia, choleretics and neonatal cholestasis. References lists from retrieved articles were also reviewed. Expert commentary: A large number of uncommon and rare hepatobiliary disorders may present with cholestasis during the neonatal and infantile period. Potentially life-saving disease-specific pharmacological and surgical therapeutic approaches are currently available. Advances in hepatobiliary transport mechanisms have started clarifying fundamental aspects of inherited and acquired cholestasis, laying the foundation for the development of possibly more effective specific therapies.

  3. Soil water sensing: Implications of sensor capabilities for variable rate irrigation management

    Science.gov (United States)

    Irrigation scheduling using soil water sensors aims at maintaining the soil water content in the crop root zone above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation, evaporation and runoff or that...

  4. Soil physical indicators of management systems in traditional agricultural areas under manure application

    Directory of Open Access Journals (Sweden)

    Luiz Paulo Rauber

    Full Text Available ABSTRACT Studies of the successive application of manure as fertilizer and its combined effect with long-term soil management systems are important to the identification of the interdependence of physical attributes. The aim of this study was to evaluate changes in the physical properties of a Rhodic Kandiudox under management systems employing successive applications of pig slurry and poultry litter, and select physical indicators that distinguish these systems using canonical discriminant analysis (CDA. The systems consisting of treatments including land use, management and the application time of organic fertilizers are described as follows: silage maize under no-tillage (NT-M7 years; silage maize under conventional tillage (CT-M20 years; annual pasture with chisel plowing (CP-P3 years; annual pasture with chisel plowing (CP-P15 years; perennial pasture without tillage (NT-PP20 years; and no-tillage yerba mate (NT-YM20 years and were compared with native forest (NF and native pasture (NP. Soil samples were collected from the layers at the following depths: 0.0-0.05, 0.05-0.10, and 0.10-0.20 m, and were analyzed for bulk density, porosity, aggregation, flocculation, penetration resistance, water availability and total clay content. Canonical discriminant analysis was an important tool in the study of physical indicators of soil quality. Organic fertilization, along with soil management, influences soil structure and its porosity. Total porosity was the most important physical property in the distinction of areas with management systems and application times of manure for the 0.0-0.05 and 0.10-0.20 m layers. Soil aeration and micropores differentiated areas in the 0.05-0.10 m layer. Animal trampling and machinery traffic were the main factors inducing compaction of this clayey soil.

  5. R and D options for demand side management in Japanese electric utilities

    International Nuclear Information System (INIS)

    Yamamoto, Takahiko

    1996-01-01

    Japanese electric demand has been steadily increasing in accordance with the economic growth. However, Japanese electric utilities are facing several problems; increasing construction cost of power facilities, siting constraints and the environmental issue of greenhouse gas emissions. To overcome these problems, electric utilities have been promoting demand-side-management (DSM) activities as well as supplier-side measures, with some presently being carried out through promoting energy conservation technologies and introducing electric tariff options of specific contracts for residential/commercial and industrial consumers. Japanese electric utilities have been carrying out R and D for the future, in particular, energy storage and heat storage which contribute to the improvement of load factor. In this paper, I would like to outline the R and D options for DSM in Japan. (author)

  6. Lethal trap trees: a potential option for emerald ash borer (Agrilus planipennis Fairmaire) management

    Science.gov (United States)

    Deborah G McCullough; Therese M. Poland; Phillip A. Lewis

    2015-01-01

    BACKGROUND: Economic and ecological impacts of ash (Fraxinus spp.) mortality resulting from emerald ash borer (EAB) (Agrilus planipennis Fairmaire) invasion are severe in forested, residential and urban areas. Management options include girdling ash trees to attract ovipositing adult beetles and then destroying infested trees...

  7. Determinants of the adoption of integrated soil fertility management ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... focused approach to achieve sustainable soil fertility management among smallholder farmers. ... entry points that can help in developing innovative ISFM technologies.

  8. Microbiological and faunal soil attributes of coffee cultivation under different management systems in Brazil

    Directory of Open Access Journals (Sweden)

    D. R. Lammel

    Full Text Available Abstract Brazil is the biggest coffee producer in the world and different plantation management systems have been applied to improve sustainability and soil quality. Little is known about the environmental effects of these different management systems, therefore, the goal of this study was to use soil biological parameters as indicators of changes. Soils from plantations in Southeastern Brazil with conventional (CC, organic (OC and integrated management systems containing intercropping of Brachiaria decumbens (IB or Arachis pintoi (IA were sampled. Total organic carbon (TOC, microbial biomass carbon (MBC and nitrogen (MBN, microbial activity (C-CO2, metabolic quotient (qCO2, the enzymes dehydrogenase, urease, acid phosphatase and arylsulphatase, arbuscular mycorrhizal fungi (AMF colonization and number of spores and soil fauna were evaluated. The greatest difference between the management systems was seen in soil organic matter content. The largest quantity of TOC was found in the OC, and the smallest was found in IA. TOC content influenced soil biological parameters. The use of all combined attributes was necessary to distinguish the four systems. Each management presented distinct faunal structure, and the data obtained with the trap method was more reliable than the TSBF (Tropical Soils method. A canonic correlation analysis showed that Isopoda was correlated with TOC and the most abundant order with OC. Isoptera was the most abundant faunal order in IA and correlated with MBC. Overall, OC had higher values for most of the biological measurements and higher populations of Oligochaeta and Isopoda, corroborating with the concept that the OC is a more sustainable system.

  9. Microbiological and faunal soil attributes of coffee cultivation under different management systems in Brazil.

    Science.gov (United States)

    Lammel, D R; Azevedo, L C B; Paula, A M; Armas, R D; Baretta, D; Cardoso, E J B N

    2015-11-01

    Brazil is the biggest coffee producer in the world and different plantation management systems have been applied to improve sustainability and soil quality. Little is known about the environmental effects of these different management systems, therefore, the goal of this study was to use soil biological parameters as indicators of changes. Soils from plantations in Southeastern Brazil with conventional (CC), organic (OC) and integrated management systems containing intercropping of Brachiaria decumbens (IB) or Arachis pintoi (IA) were sampled. Total organic carbon (TOC), microbial biomass carbon (MBC) and nitrogen (MBN), microbial activity (C-CO2), metabolic quotient (qCO2), the enzymes dehydrogenase, urease, acid phosphatase and arylsulphatase, arbuscular mycorrhizal fungi (AMF) colonization and number of spores and soil fauna were evaluated. The greatest difference between the management systems was seen in soil organic matter content. The largest quantity of TOC was found in the OC, and the smallest was found in IA. TOC content influenced soil biological parameters. The use of all combined attributes was necessary to distinguish the four systems. Each management presented distinct faunal structure, and the data obtained with the trap method was more reliable than the TSBF (Tropical Soils) method. A canonic correlation analysis showed that Isopoda was correlated with TOC and the most abundant order with OC. Isoptera was the most abundant faunal order in IA and correlated with MBC. Overall, OC had higher values for most of the biological measurements and higher populations of Oligochaeta and Isopoda, corroborating with the concept that the OC is a more sustainable system.

  10. Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review

    Institute of Scientific and Technical Information of China (English)

    Shobhit Raj VIMAL; Jay Shankar SINGH; Naveen Kumar ARORA; Surendra SINGH

    2017-01-01

    The expected rise in temperature and decreased precipitation owing to climate change and unabated anthropogenic activities add complexity and uncertainty to agro-industry.The impact of soil nutrient imbalance,mismanaged use of chemicals,high temperature,flood or drought,soil salinity,and heavy metal pollutions,with regard to food security,is increasingly being explored worldwide.This review describes the role of soil-plant-microbe interactions along with organic manure in solving stressed agriculture problems.Beneficial microbes associated with plants are known to stimulate plant growth and enhance plant resistance to biotic (diseases) and abiotic (salinity,drought,pollutions,etc.) stresses.The plant growth-promoting rhizobacteria (PGPR) and mycorrhizae,a key component of soil microbiota,could play vital roles in the maintenance of plant fitness and soil health under stressed environments.The application of organic manure as a soil conditioner to stressed soils along with suitable microbial strains could further enhance the plant-microbe associations and increase the crop yield.A combination of plant,stress-tolerant microbe,and organic amendment represents the tripartite association to offer a favourable environment to the proliferation of beneficial rhizosphere microbes that in turn enhance the plant growth performance in disturbed agro-ecosystem.Agriculture land use patterns with the proper exploitation of plant-microbe associations,with compatible beneficial microbial agents,could be one of the most effective strategies in the management of the concerned agriculture lands owing to climate change resilience.However,the association of such microbes with plants for stressed agriculture management still needs to be explored in greater depth.

  11. Soil Fertility Evaluation and Land Management of Dryland Farming at Tegallalang Sub-District, Gianyar Regency, Bali, Indonesia

    Science.gov (United States)

    Sardiana, I. K.; Susila, D.; Supadma, A. A.; Saifulloh, M.

    2017-12-01

    The landuse of Tegallalang Subdistrict is dominated by dryland farming. The practice of cultivation on agricultural dryland that ignores the carrying capacity of the environment can lead to land degradation that makes the land vulnerable to the deterioration of soil fertility. Soil fertility evaluation and land management of dryland farming in Tegallalang Sub-district, Gianyar Regency were aimed at (1) identifying the soil fertility and it’s respective limiting factors, (2) mapping the soil fertility using Geographic Information Systems (GIS) and (3) developing land management for dryland farming in Tegallalang Sub-district. This research implementing explora-tory method which followed by laboratory analysis. Soil samples were taken on each homogene-ous land units which developed by overlay of slope, soil type, and land use maps. The following soil fertility were measured, such as CEC, base saturation, P2O5, K- Total and C-Organic. The values of soil fertility were mapping using QGIS 2.18.7 and refer to land management evaluation. The results showed that the soil fertility in the research area considered high, and low level. The High soil fertility presents on land units at the flat to undulating slope with different land management systems (fertilizer, without fertilizer, soil tillage and without soil tillage). The low soil fertility includes land units that present on steep slope, and without land managements. The limiting factors of soil fertility were texture, C-Organic, CEC, P2O5, and K- total. It was recommended to applying organic fertilizer, Phonska, and dolomite on the farming area.

  12. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    Science.gov (United States)

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  13. Impact assessment of waste management options in Singapore.

    Science.gov (United States)

    Tan, Reginald B H; Khoo, Hsien H

    2006-03-01

    This paper describes the application of life cycle assessment for evaluating various waste management options in Singapore, a small-island city state. The impact assessment method by SimaPro is carried out for comparing the potential environmental impacts of waste treatment options including landfilling, incineration, recycling, and composting. The inventory data include gases and leachate from landfills, air emissions and energy recovery from incinerators, energy (and emission) savings from recycling, composting gases, and transport pollution. The impact assessment results for climate change, acidification, and ecotoxicity show that the incineration of materials imposes considerable harm to both human health and the environment, especially for the burning of plastics, paper/cardboard, and ferrous metals. The results also show that, although some amount of energy can be derived from the incineration of wastes, these benefits are outweighed by the air pollution (heavy metals and dioxins/furans) that incinerators produce. For Singapore, landfill gases and leachate generate minimal environmental damage because of the nation's policy to landfill only 10% of the total disposed wastes. Land transportation and separation of waste materials also pose minimal environmental damage. However, sea transportation to the landfill could contribute significantly to acidification because of the emissions of sulfur oxides and nitrogen oxides from barges. The composting of horticultural wastes hardly imposes any environmental damage. Out of all the waste strategies, the recycling of wastes offers the best solution for environmental protection and improved human health for the nation. Significant emission savings can be realized through recycling.

  14. 41 CFR 101-39.004 - Optional operations.

    Science.gov (United States)

    2010-07-01

    ...-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.0-General Provisions § 101-39.004 Optional operations. Nothing in this part shall preclude the establishment or operation of interagency fleet management systems by GSA or by... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Optional operations. 101...

  15. An Exploration of Mercury Soils Treatment Technologies for the Y-12 Plant - 13217

    International Nuclear Information System (INIS)

    Wrapp, John; Julius, Jonathon; Browning, Debbie; Kane, Michael; Whaley, Katherine; Estes, Chuck; Witzeman, John

    2013-01-01

    There are a number of areas at the Y-12 National Security Complex (Y-12) that have been contaminated with mercury due to historical mercury use and storage. Remediation of these areas is expected to generate large volumes of waste that are Resource Conservation and Recovery Act (RCRA) characteristically hazardous. These soils will require treatment to meet RCRA Land Disposal Restrictions (LDR) prior to disposal. URS - CH2M Oak Ridge LLC (UCOR) performed a feasibility assessment to evaluate on-site and off-site options for the treatment and disposal of mercury-contaminated soil from the Y-12 Site. The focus of the feasibility assessment was on treatment for disposal at the Environmental Management Waste Management Facility (EMWMF) located on the Oak Ridge Reservation. A two-phase approach was used in the evaluation process of treatment technologies. Phase 1 involved the selection of three vendors to perform treatability studies using their stabilization treatment technology on actual Y-12 soil. Phase II involved a team of waste management specialists performing an in-depth literature review of all available treatment technologies for treating mercury contaminated soil using the following evaluation criteria: effectiveness, feasibility of implementation, and cost. The result of the treatability study and the literature review revealed several viable on-site and off-site treatment options. This paper presents the methodology used by the team in the evaluation of technologies especially as related to EMWMF waste acceptance criteria, the results of the physical treatability studies, and a regulatory analysis for obtaining regulator approval for the treatment/disposal at the EMWMF. (authors)

  16. An Exploration of Mercury Soils Treatment Technologies for the Y-12 Plant - 13217

    Energy Technology Data Exchange (ETDEWEB)

    Wrapp, John [UCOR, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Julius, Jonathon [DOE Oak Ridge (United States); Browning, Debbie [Strata-G, LLC, 2027 Castaic Lane, Knoxville, TN, 37932 (United States); Kane, Michael [RSI, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Whaley, Katherine [RSI, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Estes, Chuck [EnergySolutions, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Witzeman, John [RSI, P.O. Box 4699, Oak Ridge, TN, 37831 (United States)

    2013-07-01

    There are a number of areas at the Y-12 National Security Complex (Y-12) that have been contaminated with mercury due to historical mercury use and storage. Remediation of these areas is expected to generate large volumes of waste that are Resource Conservation and Recovery Act (RCRA) characteristically hazardous. These soils will require treatment to meet RCRA Land Disposal Restrictions (LDR) prior to disposal. URS - CH2M Oak Ridge LLC (UCOR) performed a feasibility assessment to evaluate on-site and off-site options for the treatment and disposal of mercury-contaminated soil from the Y-12 Site. The focus of the feasibility assessment was on treatment for disposal at the Environmental Management Waste Management Facility (EMWMF) located on the Oak Ridge Reservation. A two-phase approach was used in the evaluation process of treatment technologies. Phase 1 involved the selection of three vendors to perform treatability studies using their stabilization treatment technology on actual Y-12 soil. Phase II involved a team of waste management specialists performing an in-depth literature review of all available treatment technologies for treating mercury contaminated soil using the following evaluation criteria: effectiveness, feasibility of implementation, and cost. The result of the treatability study and the literature review revealed several viable on-site and off-site treatment options. This paper presents the methodology used by the team in the evaluation of technologies especially as related to EMWMF waste acceptance criteria, the results of the physical treatability studies, and a regulatory analysis for obtaining regulator approval for the treatment/disposal at the EMWMF. (authors)

  17. Resobio. Management of forest residues: preserving soils and biodiversity

    International Nuclear Information System (INIS)

    Rantien, Caroline; Charasse, Laurent; Wlerick, Lise; Landmann, Guy; Nivet, Cecile; Jallais, Anais; Augusto, Laurent; Bigot, Maryse; Thivolle Cazat, Alain; Bouget, Christophe; Brethes, Alain; Boulanger, Vincent; Richter, Claudine; Cornu, Sophie; Rakotoarison, Hanitra; Ulrich, Erwin; Deleuze, Christine; Michaud, Daniel; Cacot, Emmanuel; Pousse, Noemie; Ranger, Jacques; Saint-Andre, Laurent; Zeller, Bernd; Achat, David; Cabral, Anne-Sophie; Akroume, Emila; Aubert, Michael; Bailly, Alain; Fraysse, Jean-Yves; Fraud, Benoit; Gardette, Yves-Marie; Gibaud, Gwenaelle; Helou, Tammouz-Enaut; Pitocchi, Sophie; Vivancos, Caroline

    2014-03-01

    The Resobio project (management of forest slash: preservation of soils and biodiversity) aimed at updating knowledge available at the international level (with a focus on temperate areas) on the potential consequences of forest slash sampling on fertility and on biodiversity, and at identifying orientations for recommendations for a revision of the ADEME guide of 2006 on wise collecting of forest slash. The first part of this report is a synthesis report which gives an overview of results about twenty issues dealing with the nature of wood used for energy production and the role of slash, about the consequences of this type of collecting for soil fertility and species productivity, and about impacts on biodiversity. Based on these elements, recommendations are made for slash management and for additional follow-up and research. The second part contains five scientific and technical reports which more deeply analyse the issue of fertility, and technical documents on slash management (guides) published in various countries

  18. Herbal Medicine Offered as an Initiative Therapeutic Option for the Management of Hepatocellular Carcinoma.

    Science.gov (United States)

    Chen, Shao-Ru; Qiu, Hong-Cong; Hu, Yang; Wang, Ying; Wang, Yi-Tao

    2016-06-01

    Hepatocellular carcinoma (HCC) is a common malignant cancer and is the third leading cause of death worldwide. Effective treatment of this disease is limited by the complicated molecular mechanism underlying HCC pathogenesis. Thus, therapeutic options for HCC management are urgently needed. Targeting the Wnt/β-catenin, Hedgehog, Notch, and Hippo-YAP signaling pathways in cancer stem cell development has been extensively investigated as an alternative treatment. Herbal medicine has emerged as an initiative therapeutic option for HCC management because of its multi-level, multi-target, and coordinated intervention effects. In this article, we summarized the recent progress and clinical benefits of targeting the above mentioned signaling pathways and using natural products such as herbal medicine formulas to treat HCC. Proving the clinical success of herbal medicine is expected to deepen the knowledge on herbal medicine efficiency and hasten the adoption of new therapies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.

    Science.gov (United States)

    Fruergaard, Thilde; Hyks, Jiri; Astrup, Thomas

    2010-09-15

    Based on available technology and emission data seven selected management options for air-pollution-control (APC) residues from waste incineration were evaluated by life-cycle assessment (LCA) using the EASEWASTE model. Scenarios were evaluated with respect to both non-toxicity impact categories (e.g. global warming) and toxicity related impact categories (e.g. ecotoxicity and human toxicity). The assessment addressed treatment and final placement of 1 tonne of APC residue in seven scenarios: 1) direct landfilling without treatment (baseline), 2) backfilling in salt mines, 3) neutralization of waste acid, 4) filler material in asphalt, 5) Ferrox stabilization, 6) vitrification, and 7) melting with automobile shredder residues (ASR). The management scenarios were selected as examples of the wide range of different technologies available worldwide while at the same time using realistic technology data. Results from the LCA were discussed with respect to importance of: energy consumption/substitution, material substitution, leaching, air emissions, time horizon aspects for the assessment, and transportation distances. The LCA modeling showed that thermal processes were associated with the highest loads in the non-toxicity categories (energy consumption), while differences between the remaining alternatives were small and generally considered insignificant. In the toxicity categories, all treatment/utilization options were significantly better than direct landfilling without treatment (lower leaching), although the thermal processes had somewhat higher impacts than the others options (air emissions). Transportation distances did not affect the overall ranking of the management alternatives. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    Science.gov (United States)

    2012-01-01

    Background Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Results Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use

  1. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems.

    Science.gov (United States)

    Rachid, Caio T C C; Piccolo, Marisa C; Leite, Deborah Catharine A; Balieiro, Fabiano C; Coutinho, Heitor Luiz C; van Elsas, Jan Dirk; Peixoto, Raquel S; Rosado, Alexandre S

    2012-08-08

    Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use was observed in soil under

  2. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    Directory of Open Access Journals (Sweden)

    Rachid Caio TCC

    2012-08-01

    Full Text Available Abstract Background Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane, next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA and denitrifying (nirK genes, greenhouse gas flow and several soil physicochemical properties were evaluated. Results Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil

  3. Managing for soil carbon sequestration: a modeling framework for decision-making

    Science.gov (United States)

    Abramoff, Rose; Harden, Jennifer; Georgiou, Katerina; Tang, Jinyun; Torn, Margaret; Riley, William

    2017-04-01

    In order to plan for responsible soil carbon (C) management, it is important to know how site factors will affect C stabilization. For example, is mineral-associated C vulnerable to climate change, and how do management practices that modify plant inputs affect mineral-associated C? We applied a soil organic carbon (SOC) decomposition model that represents microbial physiology and mineral sorption. The model was able to reproduce large spatial gradients in SOC stocks; model predictions of SOC were highly correlated with SOC observations across an 4000 km transect (R2 > 0.9). We also used a Random Forest algorithm to compare our model predictions with transect data. We applied this model to explore expected changes to SOC across a range of mineral surface properties, mean annual temperature (MAT), and plant input rates. We found that SOC generally increased after plant amendments. Furthermore, the type of amendment (i.e., high vs. low lignin content), soil mineralogy, and climate all affected the sign and magnitude of SOC change over time. In particular, cold sites with low mineral surface availability were most vulnerable to SOC loss, and may benefit most from plant amendments. At all sites, mineral surface saturation reduced the SOC pool's sensitivity to changes in plant inputs. Saturated soils lost a smaller fraction of initial mineral-associated C following warming. We encourage the use of soil carbon models as frameworks to evaluate how particular sites may respond to changes in management and/or climate.

  4. Optimizing operational water management with soil moisture data from Sentinel-1 satellites

    Science.gov (United States)

    Pezij, Michiel; Augustijn, Denie; Hendriks, Dimmie; Hulscher, Suzanne

    2016-04-01

    In the Netherlands, regional water authorities are responsible for management and maintenance of regional water bodies. Due to socio-economic developments (e.g. agricultural intensification and on-going urbanisation) and an increase in climate variability, the pressure on these water bodies is growing. Optimization of water availability by taking into account the needs of different users, both in wet and dry periods, is crucial for sustainable developments. To support timely and well-directed operational water management, accurate information on the current state of the system as well as reliable models to evaluate water management optimization measures are essential. Previous studies showed that the use of remote sensing data (for example soil moisture data) in water management offers many opportunities (e.g. Wanders et al. (2014)). However, these data are not yet used in operational applications at a large scale. The Sentinel-1 satellites programme offers high spatiotemporal resolution soil moisture data (1 image per 6 days with a spatial resolution of 10 by 10 m) that are freely available. In this study, these data will be used to improve the Netherlands Hydrological Instrument (NHI). The NHI consists of coupled models for the unsaturated zone (MetaSWAP), groundwater (iMODFLOW) and surface water (Mozart and DM). The NHI is used for scenario analyses and operational water management in the Netherlands (De Lange et al., 2014). Due to the lack of soil moisture data, the unsaturated zone model is not yet thoroughly validated and its output is not used by regional water authorities for decision-making. Therefore, the newly acquired remotely sensed soil moisture data will be used to improve the skill of the MetaSWAP-model and the NHI as whole. The research will focus among other things on the calibration of soil parameters by comparing model output (MetaSWAP) with the remotely sensed soil moisture data. Eventually, we want to apply data-assimilation to improve

  5. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Harden, Jennifer W. [Stanford Univ., Stanford, CA (United States); U.S. Geological Survey, Menlo Park, CA (United States); Hugelius, Gustaf [Stanford Univ., Stanford, CA (United States); Stockholm Univ., Stockholm (Sweden); Ahlstrom, Anders [Stanford Univ., Stanford, CA (United States); Department of Physical Geography and Ecosystem Science, Lund (Sweden); Blankinship, Joseph C. [Univ. of Arizona, Tucson, AZ (United States); Bond-Lamberty, Ben [Univ. of Maryland, College Park, MD (United States); Lawrence, Corey R. [U.S. Geological Survey, Denver, CO (United States); Loisel, Julie [Texas A & M Univ., College Station, TX (United States); Malhotra, Avni [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Robert B. [Stanford Univ., Stanford, CA (United States); Ogle, Stephen [Colorado State Univ., Fort Collins, CO (United States); Phillips, Claire [USDA-ARS Forage Seed and Cereal Research Unit, Corvallis, OR (United States); Ryals, Rebecca [Univ. of Hawai' i at Manoa, Honolulu, HI (United States); Todd-Brown, Katherine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vargas, Rodrigo [Univ. of Delaware, Newark, DE (United States); Vergara, Sintana E. [Univ. of California, Berkeley, CA (United States); Cotrufo, M. Francesca [Colorado State Univ., Fort Collins, CO (United States); Keiluweit, Marco [Univ. of Massachusetts, Amherst, MA (United States); Heckman, Katherine A. [USDA Forest Service, Houghton, MI (United States); Crow, Susan E. [Univ. of Hawai' i at Manoa, Honolulu, HI (United States); Silver, Whendee L. [Univ. of California, Berkeley, CA (United States); DeLonge, Marcia [Union of Concerned Scientists, Washington, D.C. (United States); Nave, Lucas E. [Univ. of Michigan, Pellston, MI (United States)

    2017-10-05

    Here, soil organic matter supports the Earth’s ability to sustain terrestrial ecosystems, provide food and fiber, and retain the largest pool of actively cycling carbon (C). Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance land productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well-established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of soil organic matter and C and their management for sustained production and climate regulation.

  6. Partitioning and transmutation: Radioactive waste management option

    International Nuclear Information System (INIS)

    Stanculescu, A.

    2005-01-01

    Growing world population with increasing energy needs, especially in the developing countries, Threat of global warming due to CO 2 emissions demands non-fossil electricity production. Nuclear will have to be part of a sustainable mix of energy production options Figures show that 350 GWe worldwide capacity is 'nuclear'. Present worldwide spent fuel (containing high Pu inventory) and HLW would need large repositories. In view of the previous facts this lecture deals Partitioning and transmutation as radioactive waste management option. Partitioning and transmutation (P and T) is a complex technology i.e. advanced reprocessing, and demand transuranics fuel fabrication plants, as well as innovative and/or dedicated transmutation reactors. In addition to U, Pu, and 129 I, 'partitioning' extracts from the liquid high level waste the minor actinides (MA) and the long-lived fission products (LLFP) 99-Tc, 93-Zr, 135-Cs, 107-Pd, and 79-Se). 'Transmutation' requires fully new fuel fabrication plants and reactor technologies to be developed and implemented on industrial scale. Present LWRs are not suited for MA and LLFP transmutation (safety consideration, plant operation, poor incineration capability). Only specially licensed LWRs can cope with MOX fuel; for increased Pu loadings (up to 100%), special reactor designs (e.g., ABB80+) are required; a combination of these reactor types could allow Pu inventory stabilization. Long-term waste radiotoxicity can be effectively reduced only if transuranics are 'incinerated' through fission with very hard neutron spectra. New reactor concepts (dedicated fast reactors, Accelerator Driven Systems (ADS), fusion/fission hybrid reactors) have been proposed as transmuters/incinerators. Significant Pu+MAs incineration rates can be achieved in symbiotic scenarios: LWR-MOX and dedicated fast reactors; fast neutron spectrum ADS mainly for MA incineration; very high thermal flux ADS concepts could also provide a significant transuranics

  7. Using cereal rye (catch crop) and dehydrogenase activity as indicators of the residual fertility effects of anaerobic soil disinfestation and other biological soil management practices following field tomato production

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD) and other biological soil management practices employing carbon-rich and/or biologically-active ingredients help contribute to overall soil suppressiveness in crop disease management. However, their roles in soil fertility tended to be overshadowed by disease cont...

  8. An Agent-Based Approach for Evaluating Basic Design Options of Management Accounting Systems

    Directory of Open Access Journals (Sweden)

    Friederike Wall

    2013-12-01

    Full Text Available This paper investigates the effectiveness of reducing errors in management accounting systems with respect to organizational performance. In particular, different basic design options of management accounting systems of how to improve the information base by measurements of actual values are analyzed in different organizational contexts. The paper applies an agent-based simulation based on the idea of NK fitness landscapes. The results provide broad, but no universal support for conventional wisdom that lower inaccuracies of accounting information lead to more effective adaptation processes. Furthermore, results indicate that the effectiveness of improving the management accounting system subtly interferes with the complexity of the interactions within the organization and the coordination mode applied

  9. Arbuscular mycorrhiza and their effect on the soil structure in farms with agroecological and intensive management

    Directory of Open Access Journals (Sweden)

    Juan David Lozano Sánchez

    2015-10-01

    Full Text Available Arbuscular mycorrhizal fungi help to reduce the damage caused by erosion and maintain soil structure through the production of mycelium and adhering substances. This study evaluated the structural stability; estimated the diversity and density of mycorrhizal spores present in three systems of soil (eroded, forest and coffee plantations in the rural area of Dagua, Valle del Cauca, Colombia. The systems evaluated were classified as farms with intensive or agroecological management. There were 25 morphospecies of mycorrhiza grouped in 13 genera, being Glomus and Entrophospora the most representative. The mean index values of mean weight (DPM and geometric (DGM diameters and diversity of mycorrhizal spores were statistically higher in farms with agroecological management than in farms with intensive management. The aggregate stability analysis revealed that eroded soils have significantly lower stability than forest and crop soils. A statistically significant correlation was found between diversity (r = 0.579 and spore density (r = 0.66 regarding DGM, and DPM with Shannon diversity (r = 0.54. Differences in practices, use and soil management affect mycorrhizal diversity found on farms and its effect such as particle aggregation agent generates remarkable changes in the stability and soil structure of evaluated areas. It is concluded, that agroecological management tends to favour both mycorrhizae and the structure of soils.

  10. Management of stage IV rectal cancer: Palliative options

    Science.gov (United States)

    Ronnekleiv-Kelly, Sean M; Kennedy, Gregory D

    2011-01-01

    Approximately 30% of patients with rectal cancer present with metastatic disease. Many of these patients have symptoms of bleeding or obstruction. Several treatment options are available to deal with the various complications that may afflict these patients. Endorectal stenting, laser ablation, and operative resection are a few of the options available to the patient with a malignant large bowel obstruction. A thorough understanding of treatment options will ensure the patient is offered the most effective therapy with the least amount of associated morbidity. In this review, we describe various options for palliation of symptoms in patients with metastatic rectal cancer. Additionally, we briefly discuss treatment for asymptomatic patients with metastatic disease. PMID:21412493

  11. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    Science.gov (United States)

    Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.

    2009-04-01

    The energetic function of the soil expressed through the potential energy accumulated through humus, the biogeochemical function (the circuit of the nutrient elements) are significantly influenced by its hydrophysical function and especially by the state of the bedding- consolidation, soil capacity of retaining an optimal quantity of water, and then its gradual disponibility for plant consumption. The understanding of soil functions and management including nutrient production, stocking, filtering and transforming minerals, water , organic matter , gas circuit and furnishing breeding material, all make the basis of human activity, Earth's past, present and especially future. The minimum tillage soil systems - paraplow, chisel or rotary grape - are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. By continuously applying for 10 years the minimum tillage system in a crop rotation: corn - soy-bean - wheat - potato / rape, an improvement in physical, hydro-physical and biological properties of soil was observed, together with the rebuilt of structure and increase of water permeability of soil. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. The minimum tillage systems rebuild the soil structure, improving the global drainage of soil which allows a rapid infiltration of water in soil. The result is a more productive soil, better protected against wind and water erosion and needing less

  12. Environmental and management influences on temporal variability of near saturated soil hydraulic properties☆

    Science.gov (United States)

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2013-01-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (− 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r2 = 0.43 to 0.59). Our results suggested that beside considering average

  13. Environmental and management influences on temporal variability of near saturated soil hydraulic properties.

    Science.gov (United States)

    Bodner, G; Scholl, P; Loiskandl, W; Kaul, H-P

    2013-08-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (- 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r 2  = 0.43 to 0.59). Our results suggested that beside considering average

  14. Waste management of actinide contaminated soil

    International Nuclear Information System (INIS)

    Navratil, J.D.; Thompson, G.H.; Kochen, R.L.

    1978-01-01

    Waste management processes have been developed to reduce the volume of Rocky Flats soil contaminated with plutonium and americium and to prepare the contaminated fraction for terminal storage. The primary process consists of wet-screening. The secondary process uses attrition scrubbing and wet screening with additives. The tertiary process involves volume reduction of the contaminated fraction by calcination, or fixation by conversion to glass. The results of laboratory scale testing of the processes are described

  15. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems

    Directory of Open Access Journals (Sweden)

    Kezia eGoldmann

    2015-11-01

    Full Text Available Fungal communities have been shown to be highly sensitive towards shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L., with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L. or spruce (Picea abies Karst. which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure.We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal OTU richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera.This study extends our knowledge

  16. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems.

    Science.gov (United States)

    Goldmann, Kezia; Schöning, Ingo; Buscot, François; Wubet, Tesfaye

    2015-01-01

    Fungal communities have been shown to be highly sensitive toward shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L.), with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L.) or spruce (Picea abies Karst.) which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure. We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal operational taxonomic units richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM) and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera. This study extends our

  17. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils

    International Nuclear Information System (INIS)

    Clarke, Lorraine Weller; Jenerette, G. Darrel; Bain, Daniel J.

    2015-01-01

    Heavy metals in urban soils can compromise human health, especially in urban gardens, where gardeners may ingest contaminated dust or crops. To identify patterns of urban garden metal contamination, we measured concentrations and bioavailability of Pb, As, and Cd in soils associated with twelve community gardens in Los Angeles County, CA. This included sequential extractions to partition metals among exchangeable, reducible, organic, or residual fractions. Proximity to road increased all metal concentrations, suggesting vehicle emissions sources. Reducible Pb increased with neighborhood age, suggesting leaded paint as a likely pollutant source. Exchangeable Cd and As both increased with road proximity. Only cultivated soils showed an increase in exchangeable As with road proximity, potentially due to reducing humic acid interactions while Cd bioavailability was mitigated by organic matter. Understanding the geochemical phases and metal bioavailability allows incorporation of contamination patterns into urban planning. - Highlights: • Road proximity, legacies, and management affect garden soil metal concentrations. • Soil near old houses had high reducible Pb, likely due to lead paint. • Pb, As, and Cd all increased with proximity to road. • As and Cd reacted with organic matter to become more or less bioavailable to crops. - Road proximity, legacies, and management affect garden soil metal concentrations. Soil near old houses had high reducible Pb due to lead paint, while all metals increased near the road

  18. SPATIAL CORRELATION BETWEEN PHYSICAL PROPERTIES OF SOIL AND WEEDS IN TWO MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Valter Roberto Schaffrath

    2015-02-01

    Full Text Available The spatial correlation between soil properties and weeds is relevant in agronomic and environmental terms. The analysis of this correlation is crucial for the interpretation of its meaning, for influencing factors such as dispersal mechanisms, seed production and survival, and the range of influence of soil management techniques. This study aimed to evaluate the spatial correlation between the physical properties of soil and weeds in no-tillage (NT and conventional tillage (CT systems. The following physical properties of soil and weeds were analyzed: soil bulk density, macroporosity, microporosity, total porosity, aeration capacity of soil matrix, soil water content at field capacity, weed shoot biomass, weed density, Commelina benghalensis density, and Bidens pilosa density. Generally, the ranges of the spatial correlations were higher in NT than in CT. The cross-variograms showed that many variables have a structure of combined spatial variation and can therefore be mapped from one another by co-kriging. This combined variation also allows inferences about the physical and biological meanings of the study variables. Results also showed that soil management systems influence the spatial dependence structure significantly.

  19. Termite and earthworm abundance and taxonomic richness under long-term conservation soil management in Saria, Burkina Faso, West Africa

    NARCIS (Netherlands)

    Zida, Z.; Ouedraogo, E.; Mando, A.; Stroosnijder, L.

    2011-01-01

    Unsustainable crop and soil management practices are major causes of soil degradation and declining soil biodiversity in West Africa. Identifying soil management practices that favor macrofauna abundance is highly desirable for long-term soil health. This study investigates the effects of long-term

  20. The Three-Dimensional Approach of Total Quality Management, an Essential Strategic Option for Business Excellence

    Directory of Open Access Journals (Sweden)

    Armenia Androniceanu

    2017-02-01

    Full Text Available In a complex and dynamic business environment, managers widely appeal to modern methods and techniques that would help them cope with the competition and offer their customers new, attractive, good quality products and services and at competitive prices. In this context, total quality management is a viable and sustainable option that can systematically contribute to the consolidation of the capacity of organizations. The aim of this paper was to put forth a three-dimensional approach of total quality management and provide some concrete action ways through which organizations in Romania that implement total or partial quality management integrated systems would produce significant competitive advantages. The main research methods used were: the questionnaire, document analysis, applications offered by Word and Excel and the Statistical Package for Social Sciences, one of the most complete software packages with which we calculated means and standard deviations and determined and analysed correlations between variables and various quality parameters. In this research, have been identified the main key success factors, the vulnerabilities and weaknesses of the systems, their causes and the necessary changes through which the threedimensional approach of total quality management could become a preferred strategic option with a major positive impact upon business excellence. The most important results obtained are a three-dimensional approach of the Total Quality Management and a substantial number of certain proposals for the Romanian firms in order to achieve business excellence.

  1. Soil fertility management in organic greenhouses in Europe

    NARCIS (Netherlands)

    Tittatelli, Fabio; Bath, Brigitta; Ceglie, Francesco Giovanni; Garcia, M.C.; Moller, K.; Reents, H.J.; Vedie, Helene; Voogt, W.

    2016-01-01

    The management of soil fertility in organic greenhouse systems differs quite widely across Europe. The challenge is to identify and implement strategies which comply with the organic principles set out in (EC) Reg. 834/2007 and (EC) Reg. 889/2008 as well as supporting environmentally, socially and

  2. The Microbiome Structure of Oklahoma Cropland and Prairie Soils and its Response to Seasonal Forcing and Management Practices

    Science.gov (United States)

    Cornell, C. R.; Peterson, B.; Zhou, J.; Xiao, X.; Wawrik, B.

    2017-12-01

    Greenhouse gases (GHG) emissions from soils are primarily the consequence of microbial processes. Agricultural management of soils is known to affect the structure of microbial communities, and it is likely that dominant GHG emitting microbial activities are impacted via requisite practices. To gain better insight into the impact of seasonal forcing and management practices on the microbiome structure in Oklahoma agricultural soils, a seasonal study was conducted. Over a year period, samples were collected bi-weekly during wet months, and monthly during dry months from two grassland and two managed agricultural sites in El Reno, Oklahoma. Microbial community structure was determined in quadruplicate for each site and time point via 16S rRNA gene sequencing. Measures of soil water content, subsoil nitrate, ammonium, organic matter, total nitrogen, and biomass were also taken for each time point. Data analysis revealed several important trends, indicating greater microbial diversity in native grassland and distinct microbial community changes in response to management practices. The native grassland soils also contained greater microbial biomass than managed soils and both varied in response to rainfall events. Native grassland soils harbor more diverse microbial communities, with the diversity and biomass decreasing along a gradient of agricultural management intensity. These data indicate that microbial community structure in El Reno soils occurs along a continuum in which native grasslands and highly managed agricultural soils (tilling and manure application) form end members. Integration with measurements from eddy flux towers into modelling efforts using the DeNitrification-DeComposition (DNDC) model is currently being explored to improve predictions of GHG emissions from grassland soils.

  3. Organic matter composition of soil macropore surfaces under different agricultural management practices

    Science.gov (United States)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  4. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... 2006, and supervisory authorities in many other European countries have implemented similar regulation. Traffic light options are therefore likely to attract the attention of a wider audience of pension fund managers in the future. Focusing on the valuation of the traffic light option we set up a Black...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  5. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    2007-01-01

    This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... 2006, and supervisory authorities in many other European countries have implemented similar regulation. Traffic light options are therefore likely to attract the attention of a wider audience of pension fund managers in the future. Focusing on the valuation of the traffic light option we set up a Black...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  6. Nitrogen Cycling Considerations for Low-Disturbance, High-Carbon Soil Management in Climate-Adaptive Agriculture

    Science.gov (United States)

    Bruns, M. A.; Dell, C. J.; Karsten, H.; Bhowmik, A.; Regan, J. M.

    2016-12-01

    Agriculturists are responding to climate change concerns by reducing tillage and increasing organic carbon inputs to soils. Although these management practices are intended to enhance soil carbon sequestration and improve water retention, resulting soil conditions (moister, lower redox, higher carbon) are likely to alter nitrogen cycling and net greenhouse gas (GHG) emissions. Soils are particularly susceptible to denitrification losses of N2O when soils are recently fertilized and wet. It is paradoxical that higher N2O emissions may occur when farmers apply practices intended to make soils more resilient to climate change. As an example, the application of animal manures to increase soil organic matter and replace fossil fuel-based fertilizers could either increase or decrease GHGs. The challenges involved with incorporating manures in reduced-tillage soils often result in N2O emission spikes immediately following manure application. On the other hand, manures enrich soils with bacteria capable of dissimilatory nitrate reduction to ammonium (DNRA), a process that could counter N2O production by denitrification. Since bacterial DNRA activity is enhanced by labile forms of carbon, the forms of carbon in soils may play a role in determining the predominant N cycling processes and the extent and duration of DNRA activity. A key question is how management can address the tradeoff of higher N2O emissions from systems employing climate-adaptive practices. Management factors such as timing and quality of carbon inputs therefore may be critical considerations in minimizing GHG emissions from low-disturbance, high-carbon cropping systems.

  7. Soil fungal and bacterial biomass determined by epifluorescence microscopy and mycorrhizal spore density in different sugarcane managements

    Directory of Open Access Journals (Sweden)

    Adriana Pereira Aleixo

    2014-04-01

    Full Text Available Crop productivity and sustainability have often been related to soil organic matter and soil microbial biomass, especially because of their role in soil nutrient cycling. This study aimed at measuring fungal and bacterial biomass by epifluorescence microscopy and arbuscular mycorrhizal fungal (AMF spore density in sugarcane (Saccharum officinarum L. fields under different managements. We collected soil samples of sugarcane fields managed with or without burning, with or without mechanized harvest, with or without application of vinasse and from nearby riparian native forest. The soil samples were collected at 10cm depth and storage at 4°C until analysis. Fungal biomass varied from 25 to 37µg C g-1 dry soil and bacterial from 178 to 263µg C g-1 dry soil. The average fungal/bacterial ratio of fields was 0.14. The AMF spore density varied from 9 to 13 spores g-1 dry soil. The different sugarcane managements did not affect AMF spore density. In general, there were no significant changes of microbial biomass with crop management and riparian forest. However, the sum of fungal and bacterial biomass measured by epifluorescence microscopy (i.e. 208-301µg C g-1 dry soil was very close to values of total soil microbial biomass observed in other studies with traditional techniques (e.g. fumigation-extraction. Therefore, determination of fungal/bacterial ratios by epifluorescence microscopy, associated with other parameters, appears to be a promising methodology to understand microbial functionality and nutrient cycling under different soil and crop managements.

  8. Participatory groundwater management in Jordan: Development and analysis of options

    Science.gov (United States)

    Chebaane, Mohamed; El-Naser, Hazim; Fitch, Jim; Hijazi, Amal; Jabbarin, Amer

    Groundwater over-exploitation has been on the rise in Jordan. Competing demands have grown in the face of perennial water shortages, a situation which has been exacerbated by drought conditions in the past decade. This paper reports findings of a project in which management options to address over-exploitation were developed for one of Jordan's principal aquifer systems, the Amman-Zarqa Basin. Options for addressing the situation were developed through a participatory approach that involved government officials and various public and private sector interest groups. Particular efforts were made to involve well irrigators, who are likely to be heavily impacted by the changes required to reduce groundwater pumping to a sustainable level. With information obtained from a rapid appraisal survey as well as from interviews with farmers, community groups, government officials, and technical experts, an extensive set of options was identified for evaluation. Based on integrated hydrogeologic, social, and economic analysis, five complementary management options were recommended for implementation. These included the establishment of an Irrigation Advisory Service, buying out farm wells, placing firm limits on well ion and irrigated crop areas, exchanging treated wastewater for groundwater, and measures to increase the efficiency of municipal and industrial water use. Various combinations and levels of these options were grouped in scenarios, representing possible implementation strategies. The scenarios were designed to assist decision makers, well owners and other stakeholders in moving gradually towards a sustainable ion regime. Social and economic aspects of each option and scenario were analyzed and presented to stakeholders, together with a of legal, institutional and environmental ramifications. Combining scientific analysis with a participatory approach in the Amman Zarqa Basin groundwater management was devised as a prototype to be used in the management of other

  9. Analysis of Options Contract, Option Pricing in Agricultural Products

    Directory of Open Access Journals (Sweden)

    H. Tamidy

    2016-03-01

    Full Text Available Introduction: Risk is an essential component in the production and sale of agricultural products. Due to the nature of agricultural products, the people who act in this area including farmers and businesspersons encounter unpredictable fluctuations of prices. On the other hand, the firms that process agricultural products also face fluctuation of price of agricultural inputs. Given that the Canola is considered as one of the inputs of product processing factories, control of unpredictable fluctuations of the price of this product would increase the possibility of correct decision making for farmers and managers of food processing industries. The best available tool for control and management of the price risk is the use of future markets and options. It is evident that the pricing is the main pillar in every trade. Therefore, offering a fair price for the options will be very important. In fact, options trading in the options market create cost insurance stopped. In this way, which can reduce the risks of deflation created in the future, if the person entitled to the benefits of the price increase occurs in the future. Unlike the futures, market where the seller had to deliver the product on time, in the options market, there is no such compulsion. In addition, this is one of the strengths of this option contract, because if there is not enough product for delivery to the futures market as result of chilling, in due course, the farmers suffer, but in the options market there will be a loss. In this study, the setup options of rape, as a product, as well as inputs has been paid for industry. Materials and Methods: In this section. The selection criteria of the disposal of asset base for valuation of European put options and call option is been introduced. That for obtain this purpose, some characteristics of the goods must considered: 1-Unpredictable fluctuations price of underlying asset 2 -large underlying asset cash market 3- The possibility

  10. Influence of soil management on water erosion and hydrological responses in semiarid agrosystems

    Science.gov (United States)

    De Alba, Saturnino; Alcazar, María; Ivón Cermeño, F.

    2014-05-01

    In Europe, in the Mediterranean area, water erosion is very severe, moderately to seriously affecting 50% to 70% of the agricultural land. However, it is remarkable the lack of field data of water erosion rates for agricultural areas of semiarid Mediterranean climate. Moreover, this lack of field data is even more severe regarding the hydrological and erosive responses of soils managed with organic farming compared to those with conventional managements or others under conservation agriculture. This paper describes an experimental field station (La Higueruela Station) for the continuous monitoring of water erosion that was set up in 1992 in Central Spain (Toledo, Castilla-La Mancha). In the study area, the annual precipitation is around 450 mm with a very irregular inter-annual and seasonal distribution, which includes a strong drought in summer. The geology is characterised by non-consolidated Miocene materials, mostly arcosics. The area presents a low relief and gentle slopes, generally less than 15%. At the experimental field, the soil is a Typic Haploxeralf (USDA, 1990). The land-uses are rainfed crops mainly herbaceous crops, vineyard and olive trees. The hydrological response and soil losses by water erosion under natural rainfall conditions are monitored in a total of 28 experimental plots of the USLE type. The plots have a total area of 33.7 m2, (22.5 m long downslope and 3 m wide) and presented a slope gradient of 9%. Detailed descriptions of the experimental field facilities and the automatic station for monitoring runoff and sediment productions, as well as of the meteorological station, are presented. The land uses and treatments applied on the experimental plots are for different soil management systems for cereals crops (barley): 1) Organic farming, 2) Minimum tillage of moderate tillage intensity, 3) No-tillage, and 4) Conventional tillage; five alternatives of fallow: 1) Traditional fallow (white fallow) with conventional tillage, 2) Traditional

  11. Does grazing management matter for soil carbon sequestration in shortgrass steppe?

    Science.gov (United States)

    Considerable uncertainty remains regarding the potential of grazing management on semiarid rangelands to sequester soil carbon. Short-term (less than 1 decade) studies have determined that grazing management potentially influences fluxes of carbon, but such studies are strongly influenced by prevail...

  12. Weed management practice and cropping sequence impact on soil residual nitrogen

    Science.gov (United States)

    Inefficient N uptake by crops from N fertilization and/or N mineralized from crop residue and soil organic matter results in the accumulation of soil residual N (NH4-N and NO3-N) which increases the potential for N leaching. The objective of this study was to evaluate the effects of weed management ...

  13. Carbon fractions and soil fertility affected by tillage and sugarcane residue management an Xanthic Udult

    Directory of Open Access Journals (Sweden)

    Iara Maria Lopes

    2017-10-01

    Full Text Available The gradual change in management practices in sugarcane (Saccharum spp. production from burning straw to a green harvesting system, as well as the use of minimum soil tillage during field renovation, may affect soil fertility and soil organic matter (SOM contents. The objectives of this work were to investigate the influence of sugar cane production systems on: (1 soil fertility parameters; (2 on physical carbon fractions; (3 and on humic substance fractions, in a long-term experiment, comparing two soil tillage and two residue management systems an Xanthic Udult, in the coastal tableland region of Espírito Santo State, Brazil. The treatments consisted of plots (conventional tillage (CT or minimum tillage (MT and subplots (residue burned or unburned at harvesting, with five replicates The highest values of Ca2+ + Mg2+ and total organic carbon (TOC were observed in the MT system in all soil layers, while high values of K+ were observed in the 0.1-0.2 m layer. The CT associated with the burned residue management negatively influenced the TOC values, especially in the 0.1-0.2 and 0.2-0.4 m layers. The carbon in the humin fraction and organic matter associated with minerals were significantly different among the tillage systems; the MT showed higher values than the CT. However, there were no significant differences between the sugarcane residue management treatments. Overall, fractioning the SOM allowed for a better understanding of tillage and residue management systems effects on the soil properties.

  14. Estimating option values of solar radiation management assuming that climate sensitivity is uncertain.

    Science.gov (United States)

    Arino, Yosuke; Akimoto, Keigo; Sano, Fuminori; Homma, Takashi; Oda, Junichiro; Tomoda, Toshimasa

    2016-05-24

    Although solar radiation management (SRM) might play a role as an emergency geoengineering measure, its potential risks remain uncertain, and hence there are ethical and governance issues in the face of SRM's actual deployment. By using an integrated assessment model, we first present one possible methodology for evaluating the value arising from retaining an SRM option given the uncertainty of climate sensitivity, and also examine sensitivities of the option value to SRM's side effects (damages). Reflecting the governance challenges on immediate SRM deployment, we assume scenarios in which SRM could only be deployed with a limited degree of cooling (0.5 °C) only after 2050, when climate sensitivity uncertainty is assumed to be resolved and only when the sensitivity is found to be high (T2x = 4 °C). We conduct a cost-effectiveness analysis with constraining temperature rise as the objective. The SRM option value is originated from its rapid cooling capability that would alleviate the mitigation requirement under climate sensitivity uncertainty and thereby reduce mitigation costs. According to our estimates, the option value during 1990-2049 for a +2.4 °C target (the lowest temperature target level for which there were feasible solutions in this model study) relative to preindustrial levels were in the range between $2.5 and $5.9 trillion, taking into account the maximum level of side effects shown in the existing literature. The result indicates that lower limits of the option values for temperature targets below +2.4 °C would be greater than $2.5 trillion.

  15. Demographic profile, clinical presentation, management options in cranio-cerebral trauma

    International Nuclear Information System (INIS)

    Bhole, A.M.; Potode, R.; Joharapurkar, S.R.

    2007-01-01

    Head injury is a common condition that can result in either obvious neurological sequelae or imaging findings. The purpose of this study was to find out the epidemiology, clinical presentation and management options in patients with head injury at a rural centre of central India. In this retrospective study, data of all patients who attended the Department of Surgery, ABMH, Sawangi (Meghe), Wardha for cranio-cerebral trauma were included and a total of 200 patients were reviewed. Epidemiological and clinical details including investigations were noted for all the patients. Management offered to the patients was studied and outcome was analyzed. This study enrolled 200 patients. Male were more common than female. Young patients were commonly affected. Common presenting features were loss of consciousness and vomiting. Mild head injury was most common. Majority of patients were treated conservatively and indications for surgery were compound depressed fractures and significant intracranial haematomas. Cranio-cerebral injury patterns in developing countries particularly in rural area are no different from developed countries and knowledge of its causative factors, management and potential complications will help to plan active interventions that may improve outcome. It will also help in developing preventive measures. (author)

  16. Effect of nutrient management on soil organic carbon sequestration, fertility, and productivity under rice-wheat cropping system in semi-reclaimed sodic soils of North India.

    Science.gov (United States)

    Gupta Choudhury, Shreyasi; Yaduvanshi, N P S; Chaudhari, S K; Sharma, D R; Sharma, D K; Nayak, D C; Singh, S K

    2018-02-05

    The ever shrinking agricultural land availability and the swelling demand of food for the growing population fetch our attention towards utilizing partially reclaimed sodic soils for cultivation. In the present investigation, we compared six treatments, like control (T1), existing farmers' practice (T2), balanced inorganic fertilization (T3) and combined application of green gram (Vigna radiate) with inorganic NPK (T4), green manure (Sesbania aculeate) with inorganic NPK (T5), and farmyard manure with inorganic NPK (T6), to study the influence of nutrient management on soil organic carbon sequestration and soil fertility under long-term rice-wheat cropping system along with its productivity in gypsum-amended partially reclaimed sodic soils of semi-arid sub-tropical Indian climate. On an average, combined application of organics along with fertilizer NPK (T4, T5, and T6) decreased soil pH, ESP, and BD by 3.5, 13.0, and 6.7% than FP (T2) and 3.7, 12.5, and 6.7%, than balanced inorganic fertilizer application (T3), respectively, in surface (0-20 cm). These treatments (T4, T5, and T6) also increased 14.1% N and 19.5% P availability in soil over the usual farmers' practice (FP) with an additional saving of 44.4 and 27.3% fertilizer N and P, respectively. Long-term (6 years) incorporation of organics (T4, T5, and T6) sequestered 1.5 and 2.0 times higher soil organic carbon as compared to the balanced inorganic (T3) and FP (T2) treatments, respectively. The allocation of soil organic carbon into active and passive pools determines its relative susceptibility towards oxidation. The lower active to passive ratio (1.63) in FYM-treated plots along with its potentiality of higher soil organic carbon (SOC) sequestration compared to the initial stock proved its acceptability for long-term sustenance under intensive cropping even in partially reclaimed sodic soils. Among all the treatments, T4 yielded the maximum from second year onwards. Moreover, after 6 years of continuous

  17. Water erosion under simulated rainfall in different soil management systems during soybean growth

    OpenAIRE

    Engel,Fernando Luis; Bertol,Ildegardis; Mafra,Álvaro Luiz; Cogo,Neroli Pedro

    2007-01-01

    Soil management influences soil cover by crop residues and plant canopy, affecting water erosion. The objective of this research was to quantify water and soil losses by water erosion under different soil tillage systems applied on a typical aluminic Hapludox soil, in an experiment carried out from April 2003 to May 2004, in the Santa Catarina highland region, Lages, southern Brazil. Simulated rainfall was applied during five soybean cropstages, at the constant intensity of 64.0 mm h-1. Treat...

  18. Strategic options in using sterile insects for area-wide integrated pest management

    International Nuclear Information System (INIS)

    Hendrichs, J.; Vreysen, M.J.B.; Enkerlin, W.R.; Cayol, J.P.

    2005-01-01

    The four strategic options, 'suppression', 'eradication', 'containment' and 'prevention', in which the sterile insect technique (SIT) can be deployed as part of area-wide integrated pest management (AW-IPM) interventions, are defined and described in relation to the contexts in which they are applied against exotic or naturally occurring major insect pests. Advantages and disadvantages of these strategic options are analysed, and examples of successful programmes provided. Considerations of pest status, biology and distribution affecting decision-making in relation to strategy selection are reviewed and discussed in terms of feasibility assessment, and programme planning and implementation. Unrealistic expectations are often associated with applying the SIT, resulting in high political costs to change a strategy during implementation. The choice of strategy needs to be assessed carefully, and considerable baseline data obtained to prepare for the selected strategy, before embarking on an AW-IPM programme with an SIT component. (author)

  19. How agricultural management shapes soil microbial communities: patterns emerging from genetic and genomic studies

    Science.gov (United States)

    Daly, Amanda; Grandy, A. Stuart

    2016-04-01

    Agriculture is a predominant land use and thus a large influence on global carbon (C) and nitrogen (N) balances, climate, and human health. If we are to produce food, fiber, and fuel sustainably we must maximize agricultural yield while minimizing negative environmental consequences, goals towards which we have made great strides through agronomic advances. However, most agronomic strategies have been designed with a view of soil as a black box, largely ignoring the way management is mediated by soil biota. Because soil microbes play a central role in many of the processes that deliver nutrients to crops and support their health and productivity, agricultural management strategies targeted to exploit or support microbial activity should deliver additional benefits. To do this we must determine how microbial community structure and function are shaped by agricultural practices, but until recently our characterizations of soil microbial communities in agricultural soils have been largely limited to broad taxonomic classes due to methodological constraints. With advances in high-throughput genetic and genomic sequencing techniques, better taxonomic resolution now enables us to determine how agricultural management affects specific microbes and, in turn, nutrient cycling outcomes. Here we unite findings from published research that includes genetic or genomic data about microbial community structure (e.g. 454, Illumina, clone libraries, qPCR) in soils under agricultural management regimes that differ in type and extent of tillage, cropping selections and rotations, inclusion of cover crops, organic amendments, and/or synthetic fertilizer application. We delineate patterns linking agricultural management to microbial diversity, biomass, C- and N-content, and abundance of microbial taxa; furthermore, where available, we compare patterns in microbial communities to patterns in soil extracellular enzyme activities, catabolic profiles, inorganic nitrogen pools, and nitrogen

  20. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter

    Science.gov (United States)

    Harden, Jennifer W.; Hugelius, Gustaf; Ahlström, Anders; Blankinship, Joseph C.; Bond-Lamberty, Ben; Lawrence, Corey; Loisel, Julie; Malhotra, Avni; Jackson, Robert B.; Ogle, Stephen M.; Phillips, Claire; Ryals, Rebecca; Todd-Brown, Katherine; Vargas, Rodrigo; Vergara, Sintana E.; Cotrufo, M. Francesca; Keiluweit, Marco; Heckman, Katherine; Crow, Susan E.; Silver, Whendee L.; DeLonge, Marcia; Nave, Lucas E.

    2018-01-01

    Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.

  1. Effects of buffer strips and grazing management on soil loss from pastures

    Science.gov (United States)

    Intensive grazing pressure can cause soil erosion from pastures causing increased sediment loading to aquatic systems. The objectives of this work were to determine the long-term effects of grazing management and buffer strips on soil erosion from pastures fertilized with broiler litter. Field stud...

  2. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    Science.gov (United States)

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  3. Effect of agricultural management regimes on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, Joanna; van Elsas, J.D.; Van Veen, J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  4. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J.F.; Elsas, van J.D.; Veen, van J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  5. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J. F.; van Elsas, J. D.; van Veen, J. A.

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  6. Active microbial soil communities in different agricultural managements

    Science.gov (United States)

    Landi, S.; Pastorelli, R.

    2009-04-01

    We studied the composition of active eubacterial microflora by RNA extraction from soil (bulk and rhizosphere) under different environmental impact managements, in a hilly basin in Gallura (Sardinia). We contrasted grassy vineyard, in which the soil had been in continuous contact with plant roots for a long period of time, with traditional tilled vineyard. Moreover, we examined permanent grassland, in which plants had been present for some years, with temporary grassland, in which varying plants had been present only during the respective growing seasons. Molecular analysis of total population was carried out by electrophoretic separation by Denaturing Gradient Gel Electrophoresis (DGGE) of amplified cDNA fragments obtained from 16S rRNA. In vineyards UPGMA (Unweighted Pair Group Mathematical Average) analysis made up separate clusters depending on soil management. In spring both clusters showed similarity over 70%, while in autumn the similarity increased, 84% and 90% for grassy and conventional tilled vineyard respectively. Permanent and temporary grassland joined in a single cluster in spring, while in autumn a partial separation was evidenced. The grassy vineyard, permanent and temporary grassland showed higher richness and diversity Shannon-Weiner index values than vineyard with conventional tillage although no significant. In conclusion the expected effect of the rhizosphere was visible: the grass cover influenced positively the diversity of active microbial population.

  7. Long-term issues associated with spent nuclear power fuel management options

    International Nuclear Information System (INIS)

    Jae-Sol, Lee; Kosaku, Fukuda; Burcl, R.; Bell, M.

    2003-01-01

    Spent fuel management is perceived as one of the crucial issues to be resolved for sustainable utilisation of nuclear power. In the last decades, spent fuel management policies have shown diverging tendencies among the nuclear power production countries - a group has adhered to reprocessing- recycle and another has turned to direct disposal, while the rest of the countries have not taken decision yet, often with ''wait and see'' position. Both the closed and open fuel cycle options for spent fuel management have been subject to a number of debates with pros and cons on various issues such as proliferation risk, environmental impact, etc. The anticipation for better technical solutions that would mitigate those issues has given rise to the renewal of interest in partitioning and transmutation of harmful nuclides to be disposed of, and in a broader context, the recent initiatives for development of innovative nuclear systems. The current trend toward globalization of market economy, which has already brought important impacts on nuclear industry, might have a stimulating effect on regional-international co-operations for cost-effective efforts to mitigate some of those long-term issues associated with spent fuel management. (author)

  8. Household Fertilizers Use and Soil Fertility Management Practices ...

    African Journals Online (AJOL)

    Household Fertilizers Use and Soil Fertility Management Practices in Vegetable Crops Production: The Case of Central Rift Valley of Ethiopia. ... rate, which could leads to pollution of the environment from over dose application and from runoff in to the water bodies and leaching in to the ground water with economic loss.

  9. A New Soil Water and Bulk Electrical Conductivity Sensor Technology for Irrigation and Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Evett, Steve; Schwartz, Robert; Casanova, Joaquin [Soil and Water Management Research Unit, Conservation and Production Research Laboratory, USDA-ARS, Bushland, Texas (United States); Anderson, Scott [Acclima, Inc., 2260 East Commercial Street, Meridian, Idaho 83642 (United States)

    2014-01-15

    Existing soil water content sensing systems based on electromagnetic (EM) properties of soils often over estimate and sometimes underestimate water content in saline and salt-affected soils due to severe interference from the soil bulk electrical conductivity (BEC), which varies strongly with temperature and which can vary greatly throughout an irrigation season and across a field. Many soil water sensors, especially those based on capacitance measurements, have been shown to be unsuitable in salt-affected or clayey soils (Evett et al., 2012a). The ability to measure both soil water content and BEC can be helpful for the management of irrigation and leaching regimes. Neutron probe is capable of accurately sensing water content in salt-affected soils but has the disadvantages of being: (1) labour-intensive, (2) not able to be left unattended in the field, (3) subject to onerous regulations, and (4) not able to sense salinity. The Waveguide-On-Access-Tube (WOAT) system based on time domain reflectometry (TDR) principles, recently developed by Evett et al. (2012) is a new promising technology. This system can be installed at below 3 m in 20-cm sensor segments to cover as much of the crop root zone as needed for irrigation management. It can also be installed to measure the complete soil profile from the surface to below the root zone, allowing the measurement of crop water use and water use efficiency - knowledge of which is key for irrigation and farm management, and for the development of new drought tolerant and water efficient crop varieties and hybrids, as well as watershed and environmental management.

  10. Default options and neonatal resuscitation decisions.

    Science.gov (United States)

    Haward, Marlyse Frieda; Murphy, Ryan O; Lorenz, John M

    2012-12-01

    To determine whether presenting delivery room management options as defaults influences decisions to resuscitate extremely premature infants. Adult volunteers recruited from the world wide web were randomised to receive either resuscitation or comfort care as the delivery room management default option for a hypothetical delivery of a 23-week gestation infant. Participants were required to check a box to opt out of the default. The primary outcome measure was the proportion of respondents electing resuscitation. Data were analysed using χ(2) tests and multivariate logistic regression. Participants who were told the delivery room management default option was resuscitation were more likely to opt for resuscitation (OR 6.54 95% CI 3.85 to 11.11, pmanipulation. Further, this effect may operate in ways that a decision maker is not aware of and this raises questions of patient autonomy. Presenting delivery room options for extremely premature infants as defaults may compromise autonomous decision-making.

  11. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment

    Science.gov (United States)

    Sjøgaard, Kamilla S.; Treusch, Alexander H.; Valdemarsen, Thomas B.

    2017-09-01

    Permanent flooding of low-lying coastal areas is a growing threat due to climate change and related sea-level rise. An increasingly common solution to protect coastal areas lying below sea level is intentional flooding by "managed coastal realignment". However, the biogeochemical implications of flooding agricultural soils with seawater are still not well understood. We conducted a 1-year mesocosm experiment to investigate microbial carbon degradation processes in soils flooded with seawater. Agricultural soils were sampled on the northern coast of the island Fyn (Denmark) at Gyldensteen Strand, an area that was subsequently flooded in a coastal realignment project. We found rapid carbon degradation to TCO2 1 day after experimental flooding and onwards and microbial sulfate reduction established quickly as an important mineralization pathway. Nevertheless, no free sulfide was observed as it precipitated as Fe-S compounds with Fe acting as a natural buffer, preventing toxic effects of free sulfide in soils flooded with seawater. Organic carbon degradation decreased significantly after 6 months, indicating that most of the soil organic carbon was refractory towards microbial degradation under the anoxic conditions created in the soil after flooding. During the experiment only 6-7 % of the initial soil organic carbon pools were degraded. On this basis we suggest that most of the organic carbon present in coastal soils exposed to flooding through sea-level rise or managed coastal realignment will be permanently preserved.

  12. Nuclear techniques in integrated plant nutrient, water and soil management. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The need to produce sufficient food of acceptable quality in the context of an ever-expanding human population has been recognized as a priority by several international conventions and agreements. Intensification, rather than expansion of agriculture into new areas, will be required if the goal of food security is to become a reality. Problems related to the sustainable production of food, fuel and fibre, both in low input and in high input agricultural systems, are now widely recognized. The overexploitation of the natural resource base has led to serious declines in soil fertility through loss of organic matter, nutrient mining, and soil erosion. The overuse of external inputs of water and manufactured fertilizers has resulted in salinization and pollution of ground and surface waters. Nuclear science has a crucial role to play in supporting research and development of sustainable farming systems. An FAO/IAEA International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water and Soil Management, held in Vienna from 16 to 20 October 2000, was attended by 117 participants representing forty-three countries and five organizations. The purpose was to provide an international forum for a comprehensive review of the state of the art and recent advances made in this specific field, as well as a basis for delineating further research and development needs. The participation of soil, crop and environmental scientists, as well as isotope specialists, ensured an exchange of information and views on recent advances in interdisciplinary and multidisciplinary approaches to addressing problems in sustainable land management. The symposium was organized around seven themes, each represented by a technical session introduced by a keynote speaker: Evaluation and management of natural and manufactured nutrient sources; Soil organic matter dynamics and nutrient cycling; Soil water management and conservation; Plant tolerance to environmental stress; Environmental and

  13. Nuclear techniques in integrated plant nutrient, water and soil management. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    The need to produce sufficient food of acceptable quality in the context of an ever-expanding human population has been recognized as a priority by several international conventions and agreements. Intensification, rather than expansion of agriculture into new areas, will be required if the goal of food security is to become a reality. Problems related to the sustainable production of food, fuel and fibre, both in low input and in high input agricultural systems, are now widely recognized. The overexploitation of the natural resource base has led to serious declines in soil fertility through loss of organic matter, nutrient mining, and soil erosion. The overuse of external inputs of water and manufactured fertilizers has resulted in salinization and pollution of ground and surface waters. Nuclear science has a crucial role to play in supporting research and development of sustainable farming systems. An FAO/IAEA International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water and Soil Management, held in Vienna from 16 to 20 October 2000, was attended by 117 participants representing forty-three countries and five organizations. The purpose was to provide an international forum for a comprehensive review of the state of the art and recent advances made in this specific field, as well as a basis for delineating further research and development needs. The participation of soil, crop and environmental scientists, as well as isotope specialists, ensured an exchange of information and views on recent advances in interdisciplinary and multidisciplinary approaches to addressing problems in sustainable land management. The symposium was organized around seven themes, each represented by a technical session introduced by a keynote speaker: Evaluation and management of natural and manufactured nutrient sources; Soil organic matter dynamics and nutrient cycling; Soil water management and conservation; Plant tolerance to environmental stress; Environmental and

  14. Tadalafil - a therapeutic option in the management of BPH-LUTS.

    Science.gov (United States)

    Carson, C C; Rosenberg, M; Kissel, J; Wong, D G

    2014-01-01

    Men with signs of benign prostatic hyperplasia (BPH) may experience lower urinary tract symptoms (LUTS) such as urinary frequency, urgency, intermittence, nocturia, straining, incomplete emptying or a weak urinary stream. The effective management of LUTS suggestive of BPH (BPH-LUTS) requires careful consideration of several factors, including the severity of a patient's symptoms, concurrent or other coexisting medical conditions, the ability to improve symptoms and impact quality of life (QOL), as well as the potential side effects of available treatment options. Several clinical studies have assessed phosphodiesterase type 5 (PDE5) inhibitors in reducing LUTS; however, tadalafil is the only PDE5 inhibitor approved for the treatment of signs and symptoms of BPH, as well as in men with both erectile dysfunction (ED) and the signs and symptoms of BPH. This review examined articles that assessed tadalafil in patients with signs and symptoms of BPH, with or without erectile dysfunction (ED), which led to regulatory approval in the United States and Europe. In dose-ranging and confirmatory studies, results demonstrate that tadalafil significantly improved total International Prostate Symptom Score (IPSS) following 12 weeks of treatment with once daily tadalafil 5 mg. Statistically significant improvements in Benign Prostatic Hyperplasia Impact Index (BII), IPSS subscores, IPSS QOL and International Index of Erectile Function (IIEF) were also observed. Improvement in urinary symptoms occurred regardless of age, previous treatment with an α1 -adrenergic blocker, BPH-LUTS severity at baseline or ED status. While tadalafil is most frequently recognised as a standard treatment option for men with ED, it also represents a well-tolerated and effective treatment option in men with moderate to severe BPH-LUTS. © 2013 John Wiley & Sons Ltd.

  15. Optimizing soil and water management in dryland farming systems in Cabo Verde

    NARCIS (Netherlands)

    Santos Baptista Costa, Dos I.

    2016-01-01

    “Optimizing Soil and Water Management in Dryland Farming Systems in Cabo Verde”

    Isaurinda Baptista

    Summary

    Soil and land degradation poses a great challenge for sustainable development worldwide and, in Cabo Verde, has strongly affected both

  16. National Option of China's Nuclear Energy Systems for Spent Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.X. [University of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I.; Lee, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Along with safety concerns, these long standing environmental challenges are the major factors influencing the public acceptance of nuclear power. Although nuclear power plays an important role in reducing carbon emissions from energy generation, this could not fully prove it as a sustainable energy source unless we find a consensus approach to treat the nuclear wastes. There are currently no countries that have completed a whole nuclear fuel cycle, and the relative comparison of the reprocessing spent fuel options versus direct disposal option is always a controversial issue. Without exception, nowadays, China is implementing many R and D projects on spent fuel management to find a long-term solution for nuclear fuel cycle system transition, such as deep geological repositories for High Level Waste (HLW), Pu Reduction by Solvent Extraction (PUREX) technology, and fast reactor recycling Mixed U-Pu Oxide (MOX) fuels, etc. This paper integrates the current nation's projects of back-end fuel cycle, analyzes the consequences of potential successes, failures and delays in the project development to future nuclear fuel cycle transition up to 2100. We compared the dynamic results of four scenarios and then assessed relative impact on spent fuel management. The result revealed that the fuel cycle transition of reprocessing and recycling of spent fuel would bring advantages to overall nuclear systems by reducing high level waste inventory, saving natural uranium resources, and reducing plutonium management risk.

  17. Knowledge, attitudes and behaviour regarding waste management options in Romania: results from a school questionnaire

    Directory of Open Access Journals (Sweden)

    Karin KOLBE

    2014-12-01

    The analysis revealed that knowledge is highly developed in Romania regarding the potential of recycling, while the concepts of waste management technologies are far less known about and understood. Landfill is seen as a problem for human health and the environment. However, recycling behaviour is low - partly as a result of limited possibilities. In general, the treatment hierarchy that is recommended in the "European waste hierarchy" is only partly reflected in students’ attitudes towards waste management options.

  18. Cokriging of Electromagnetic Induction Soil Electrical Conductivity Measurements and Soil Textural Properties to Demarcate Sub-field Management Zones for Precision Irrigation.

    Science.gov (United States)

    Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.

    2017-12-01

    There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each

  19. The BonaRes Centre - A virtual institute for soil research in the context of a sustainable bio-economy

    Science.gov (United States)

    Wollschläger, Ute; Helming, Katharina; Heinrich, Uwe; Bartke, Stephan; Kögel-Knabner, Ingrid; Russell, David; Eberhardt, Einar; Vogel, Hans-Jörg

    2016-04-01

    Fertile soils are central resources for the production of biomass and provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for both, food and bio-energy, which require preserving and improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained. To render soil management sustainable, we need to establish a scientific knowledge base about complex soil system processes that allows for the development of model tools to quantitatively predict the impact of a multitude of management measures on soil functions. This, finally, will allow for the provision of site-specific options for sustainable soil management. To face this challenge, the German Federal Ministry of Education and Research recently launched the funding program "Soil as a Natural Resource for the Bio-Economy - BonaRes". In a joint effort, ten collaborative projects and the coordinating BonaRes Centre are engaged to close existing knowledge gaps for a profound and systemic understanding of soil functions and their sensitivity to soil management. This presentation provides an overview of the concept of the BonaRes Centre which is responsible for i) setting up a comprehensive data base for soil-related information, ii) the development of model tools aiming to estimate the impact of different management measures on soil functions, and iii) establishing a web-based portal providing decision support tools for a sustainable soil management. A specific focus of the presentation will be laid on the so-called "knowledge-portal" providing the infrastructure for a community effort towards a comprehensive meta-analysis on soil functions as a basis for future model developments.

  20. Management and conservation of tropical acid soils for sustainable crop production. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    2000-06-01

    Forests of the tropics are invaluable ecosystems of global, regional and local importance, particularly in terms of protection and conservation of biodiversity and water resources. The indiscriminate conversion of tropical forests into agricultural land as a result of intense human activities - logging and modem shifting cultivation - continues to cause soil erosion and degradation. However, the acid savannahs of the world, such as the cerrado of Brazil, the Llanos in Venezuela and Colombia, the savannahs of Africa, and the largely anthropic savannahs of tropical Asia, encompass vast areas of potentially arable land. The acid soils of the savannahs are mostly considered marginal because of low inherent fertility and susceptibility to rapid degradation. These constraints for agricultural development are exacerbated by the poverty of new settlers who try to cultivate such areas after deforestation. Low- or minimum-input systems are not sustainable on these tropical acid soils but, with sufficient investment and adequate technologies, they can be highly productive. Thus, there is a need to develop management practices for sustainable agricultural production systems on such savannah acid soils. The Soil and Water Management and Crop Nutrition Sub-programme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture strongly supports an integrated approach to soil, water and nutrient management within cropping systems. In this context, nuclear and related techniques can be used to better understand the processes and factors influencing the productivity of agricultural production systems, and improve them through the use of better soil, water and nutrient management practices. A panel of experts actively engaged in field projects on acid soils of savannah agro-ecosystems in the humid and sub-humid tropics convened in March 1999 in Vienna to review and discuss recent research progress, along the following main lines of investigation: (i) utilization of

  1. Diagnosis & Correction of Soil Nutrient Limitations in Intensively managed southern pine forests

    Energy Technology Data Exchange (ETDEWEB)

    University of Florida

    2002-10-25

    Forest productivity is one manner to sequester carbon and it is a renewable energy source. Likewise, efficient use of fertilization can be a significant energy savings. To date, site-specific use of fertilization for the purpose of maximizing forest productivity has not been well developed. Site evaluation of nutrient deficiencies is primarily based on empirical approaches to soil testing and plot fertilizer tests with little consideration for soil water regimes and contributing site factors. This project uses mass flow diffusion theory in a modeling context, combined with process level knowledge of soil chemistry, to evaluate nutrient bioavailability to fast-growing juvenile forest stands growing on coastal plain Spodosols of the southeastern U.S. The model is not soil or site specific and should be useful for a wide range of soil management/nutrient management conditions. In order to use the model, field data of fast-growing southern pine needed to be measured and used in the validation of the model. The field aspect of the study was mainly to provide data that could be used to verify the model. However, we learned much about the growth and development of fast growing loblolly. Carbon allocation patterns, root shoot relationships and leaf area root relationships proved to be new, important information. The Project Objectives were to: (1) Develop a mechanistic nutrient management model based on the COMP8 uptake model. (2) Collect field data that could be used to verify and test the model. (3) Model testing.

  2. Improving the management of infertile acid soils in Southeast Asia: The approach of the IBSRAM Acid-Soils network

    International Nuclear Information System (INIS)

    Lefroy, R.D.B.

    2000-01-01

    The IBSRAM ASIALAND Management of Acid Soils network aims to improve the understanding of the broad range of biophysical and socio-economic production limitations on infertile acid soils of Southeast Asia, and to lead to development and implementation of sustainable land-management strategies for these important marginal areas. The main activities of the network are in Indonesia, Myanmar, Philippines, and Vietnam, with associated activity in Thailand, and minor involvement in Brunei, Cambodia, Laos, and Malaysia. The main experimental focus is through researcher-managed on-farm trials, to improve the management of phosphorus nutrition with inorganic and organic amendments. A generic design is used across the eight well characterised sites that form the core of the network. The results will be analysed across time and across sites. Improved methods for laboratory analyses, experimental management, socio-economic data collection, and data analysis and interpretation are critical components. Three important initiatives are associated with the core activities. These aim to establish a broader network on maintenance of quality laboratory analyses, to assess the potential for implementation of improved strategies through farmer-managed on-farm trials, and to improve our understanding of, and ways of estimating, nutrient budgets for diverse farming systems. (author)

  3. Long-term grassland management effects on soil Phosphorus status on rewetted Histosols

    Science.gov (United States)

    Heller, Sebastian; Müller, Jürgen; Kayser, Manfred

    2017-04-01

    Since the Neolithic Period, the cultivation of wetlands has played a significant role for the settlement of Humans northwest Germany. A continuing drainage of the wetlands over the centuries and an intensified soil cultivation during the last decades has caused irreversible peat degradation and led to fundamental changes in the landscape. Nowadays, almost 70 % of the 4345 km2 peatland of Lower Saxony is altered by agriculture. For the revitalization of wetland ecosystems, permanent rewetting is an integral component to preserve the functions of organic soils and achieve resilient, speciesrich wetlands. However, permanent rewetting measures are not always feasible. In our study area at the Osterfeiner Moor, a fen located in the Dümmer lowlands near Osnabrück, intensive forage cropping areas were converted into extensive permanent grasslands accompanied by temporary rewetting during winter. This management practice combined with zero fertilization and a low mowing and grazing intensity aims at mitigating mineralisation of peat layers and creating a habitat for endangered meadow bird species. In this semi-natural ecosystem soil phosphorus (P) dynamics play a crucial role. However, longterm research results on P availability of degraded and rewetted fens are still lacking. Thus, we investigated the interaction of different grassland uses and P dynamics in the soil. We described P depletion of the topsoil over a time scale of 17 years after the implementation of restoration measures. Our study site comprises of 180 ha protected grassland divided into 52 management plots. According to the management system, we divided the plots into meadows, pastures and combinations of cutting and grazing. The soils in our study area can be characterised as drained organic soils, WRB: Rheic Sapric Histosols (Drainic), with drastic degradation properties through moorsh forming processes. Plant-available P (double lactate extraction method: PDL) was analysed from representative topsoil

  4. Analysis of radwaste material management options for experimental DUPIC fuel fabrication process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Yang, M. S.; Kim, K. H.; Shin, J. M.; Lee, H. S.; Ko, W. I.; Lee, J. W.; Yim, S. P.; Hong, D. H.; Lee, J. Y.; Baik, S. Y.; Song, W. S.; Yoo, B. O.; Lee, E. P.; Kang, I. S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This report is desirable to review management options in advance for radioactive waste generated from manufacturing experiment of DUPIC nuclear fuel as well as residual nuclear material and dismantled equipment. This report was written for helping researchers working in related facilities to DUPIC project understanding management of DUPIC radioactive waste as well as fellows in DUPIC project. Also, it will be used as basic material to prove transparency and safeguardability of DUPIC fuel cycle. In order to meet these purposes, this report includes basic experiment plan for manufacturing DUPIC nuclear fuel, outlines for DUPIC manufacturing facility and equipment, arising source and estimated amount of radioactive waste, waste classification and packing, transport cask, transport procedures. 15 refs., 31 figs., 11 tabs. (Author)

  5. Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem.

    Science.gov (United States)

    García-Orenes, Fuensanta; Morugán-Coronado, Alicia; Zornoza, Raul; Cerdà, Artemi; Scow, Kate

    2013-01-01

    Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA). Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain): residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass), suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage.

  6. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil.

    Directory of Open Access Journals (Sweden)

    Zhanjun Liu

    Full Text Available Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK, NPK plus green manure (NPKG, NPK plus pig manure (NPKM, and NPK plus straw (NPKS on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC, activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72 was comparable to that of the NPK (0.77, NPKG (0.81 and NPKS (0.79 treatments but significantly lower compared with NPKM (0.85. The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil.

  7. Measuring and modeling of soil N2O emissions - How well are we doing?

    Science.gov (United States)

    Butterbach-Bahl, K.; Ralf, K.; Werner, C.; Wolf, B.

    2017-12-01

    Microbial processes in soils are the primarily source of atmospheric N2O. Fertilizer use to boost food and feed production of agricultural systems as well as nitrogen deposition to natural and semi-natural ecosystems due to emissions of NOx and NH3 from agriculture and energy production and re-deposition to terrestrial ecosystems has likely nearly doubled the pre-industrial source strength of soils for atmospheric N2O. Quantifying soil emissions and identifying mitigation options is becoming a major focus in the climate debate as N2O emissions from agricultural soils are a major contributor to the greenhouse gas footprint of agricultural systems, with agriculture incl. land use change contributing up to 30% to total anthropogenic GHG emissions. The increasing number of annual datasets show that soil emissions a) are largely depended on soil N availability and thus e.g. fertilizer application, b) vary with management (e.g. timing of fertilization, residue management, tillage), c) depend on soil properties such as organic matter content and pH, e) are affected by plant N uptake, and e) are controlled by environmental factors such as moisture and temperature regimes. It is remarkable that the magnitude of annual emissions is largely controlled by short-term N2O pulses occurring due to fertilization, wetting and drying or freezing and thawing of soils. All of this contributes to a notorious variability of soil N2O emissions in space and time. Overcoming this variability for quantification of source strengths and identifying tangible mitigation options requires targeted measuring approaches as well as the translation of our knowledge on mechanisms underlying emissions into process oriented models, which finally might be used for upscaling and scenario studies. This paper aims at reviewing current knowledge on measurements, modelling and upscaling of soil N2O emissions, thereby identifying short comes and uncertainties of the various approaches and fields for future

  8. Influences of observation method, season, soil depth, land use and management practice on soil dissolvable organic carbon concentrations: A meta-analysis.

    Science.gov (United States)

    Li, Siqi; Zheng, Xunhua; Liu, Chunyan; Yao, Zhisheng; Zhang, Wei; Han, Shenghui

    2018-08-01

    Quantifications of soil dissolvable organic carbon concentrations, together with other relevant variables, are needed to understand the carbon biogeochemistry of terrestrial ecosystems. Soil dissolvable organic carbon can generally be grouped into two incomparable categories. One is soil extractable organic carbon (EOC), which is measured by extracting with an aqueous extractant (distilled water or a salt solution). The other is soil dissolved organic carbon (DOC), which is measured by sampling soil water using tension-free lysimeters or tension samplers. The influences of observation methods, natural factors and management practices on the measured concentrations, which ranged from 2.5-3970 (mean: 69) mg kg -1 of EOC and 0.4-200 (mean: 12) mg L -1 of DOC, were investigated through a meta-analysis. The observation methods (e.g., extractant, extractant-to-soil ratio and pre-treatment) had significant effects on EOC concentrations. The most significant divergence (approximately 109%) occurred especially at the extractant of potassium sulfate (K 2 SO 4 ) solutions compared to distilled water. As EOC concentrations were significantly different (approximately 47%) between non-cultivated and cultivated soils, they were more suitable than DOC concentrations for assessing the influence of land use on soil dissolvable organic carbon levels. While season did not significantly affect EOC concentrations, DOC concentrations showed significant differences (approximately 50%) in summer and autumn compared to spring. For management practices, applications of crop residues and nitrogen fertilizers showed positive effects (approximately 23% to 91%) on soil EOC concentrations, while tillage displayed negative effects (approximately -17%), compared to no straw, no nitrogen fertilizer and no tillage. Compared to no nitrogen, applications of synthetic nitrogen also appeared to significantly enhance DOC concentrations (approximately 32%). However, further studies are needed in the future

  9. Exploring options for managing strategies for pea-barley intercropping using a modeling approach

    DEFF Research Database (Denmark)

    Launay, M.; Brisson, N.; Satger, S.

    2009-01-01

    ) intercropping made better use of environmental resources as regards yield amount and stability than sole cropping, with a noticeable site effect, (2) pea growth in intercrops was strongly linked to soil moisture, and barley yield was determined by nitrogen uptake and light interception due to its height......, underlining the interspecific offset in the use of environmental growth resources which led to similar total grain yields whatever the pea–barley design, and (5) long-term strategies including mineralization management through organic residue supply and rotation management were very valuable, always favoring...

  10. Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanee, 21-France)

    Energy Technology Data Exchange (ETDEWEB)

    Landry, David [UMR 1229 INRA/Universite de Bourgogne, Microbiologie et Geochimie des sols, Centre des Sciences de la Terre, Universite de Bourgogne, 6 bd Gabriel 21000 Dijon (France)]. E-mail: david.landry@u-bourgogne.fr; Dousset, Sylvie [UMR 1229 INRA/Universite de Bourgogne, Microbiologie et Geochimie des sols, Centre des Sciences de la Terre, Universite de Bourgogne, 6 bd Gabriel 21000 Dijon (France); Fournier, Jean-Claude [UMR 1229 INRA/Universite de Bourgogne, INRA, 17 rue Sully, 21000 Dijon (France); Andreux, Francis [UMR 1229 INRA/Universite de Bourgogne, Microbiologie et Geochimie des sols, Centre des Sciences de la Terre, Universite de Bourgogne, 6 bd Gabriel 21000 Dijon (France)

    2005-11-15

    Some drinking water reservoirs under the vineyards of Burgundy are contaminated with herbicides. Thus the effectiveness of alternative soil management practices, such as grass cover, for reducing the leaching of glyphosate and its metabolite, AMPA, through soils was studied. The leaching of both molecules was studied in structured soil columns under outdoor conditions for 1 year. The soil was managed under two vineyard soil practices: a chemically treated bare calcosol, and a vegetated calcosol. After 680 mm of rainfall, the vegetated calcosol leachates contained lower amounts of glyphosate and AMPA (0.02% and 0.03%, respectively) than the bare calcosol leachates (0.06% and 0.15%, respectively). No glyphosate and only low amounts of AMPA (<0.01%) were extracted from the soil. Glyphosate, and to a greater extent, AMPA, leach through the soils; thus, both molecules may be potential contaminants of groundwater. However, the alternative soil management practice of grass cover could reduce groundwater contamination by the pesticide. - Glyphosate and AMPA leached in greater amounts through a chemically treated bare calcosol than through a vegetated calcosol.

  11. Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanee, 21-France)

    International Nuclear Information System (INIS)

    Landry, David; Dousset, Sylvie; Fournier, Jean-Claude; Andreux, Francis

    2005-01-01

    Some drinking water reservoirs under the vineyards of Burgundy are contaminated with herbicides. Thus the effectiveness of alternative soil management practices, such as grass cover, for reducing the leaching of glyphosate and its metabolite, AMPA, through soils was studied. The leaching of both molecules was studied in structured soil columns under outdoor conditions for 1 year. The soil was managed under two vineyard soil practices: a chemically treated bare calcosol, and a vegetated calcosol. After 680 mm of rainfall, the vegetated calcosol leachates contained lower amounts of glyphosate and AMPA (0.02% and 0.03%, respectively) than the bare calcosol leachates (0.06% and 0.15%, respectively). No glyphosate and only low amounts of AMPA (<0.01%) were extracted from the soil. Glyphosate, and to a greater extent, AMPA, leach through the soils; thus, both molecules may be potential contaminants of groundwater. However, the alternative soil management practice of grass cover could reduce groundwater contamination by the pesticide. - Glyphosate and AMPA leached in greater amounts through a chemically treated bare calcosol than through a vegetated calcosol

  12. In situ phytoremediation of arsenic- and metal-polluted pyrite waste with field crops: effects of soil management.

    Science.gov (United States)

    Vamerali, Teofilo; Bandiera, Marianna; Mosca, Giuliano

    2011-05-01

    Sunflower, alfalfa, fodder radish and Italian ryegrass were cultivated in severely As-Cd-Co-Cu-Pb-Zn-contaminated pyrite waste discharged in the past and capped with 0.15m of unpolluted soil at Torviscosa (Italy). Plant growth and trace element uptake were compared under ploughing and subsoiling tillages (0.3m depth), the former yielding higher contamination (∼30%) in top soil. Tillage choice was not critical for phytoextraction, but subsoiling enhanced above-ground productivity, whereas ploughing increased trace element concentrations in plants. Fodder radish and sunflower had the greatest aerial biomass, and fodder radish the best trace element uptake, perhaps due to its lower root sensitivity to pollution. Above-ground removals were generally poor (maximum of 33mgm(-2) of various trace elements), with Zn (62%) and Cu (18%) as main harvested contaminants. The most significant finding was of fine roots proliferation in shallow layers that represented a huge sink for trace element phytostabilisation. It is concluded that phytoextraction is generally far from being an efficient management option in pyrite waste. Sustainable remediation requires significant improvements of the vegetation cover to stabilise the site mechanically and chemically, and provide precise quantification of root turnover. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Communicating soil carbon science to farmers: Incorporating credibility, salience and legitimacy

    DEFF Research Database (Denmark)

    Ingram, Julie; Mills, Jane; Dibari, Camilla

    2016-01-01

    A key narrative within climate change science is that conserving and improving soil carbon through agricultural practices can contribute to agricultural productivity and is a promising option for mitigating carbon loss through sequestration. This paper examines the potential disconnect between...... science and practice in the context of communicating information about soil carbon management. It focuses on the information producing process and on stakeholder (adviser, farmer representative, policy maker etc) assessment of the attributes credibility, salience and legitimacy. In doing this it draws...... on results from consultations with stakeholders in the SmartSOIL project which aimed to provide decision support guidelines about practices that optimise carbon mitigation and crop productivity. An iterative methodology, used to engage stakeholders in developing, testing and validating a range of decision...

  14. POTASSIUM FERTILIZATION AND SOIL MANAGEMENT SYSTEMS FOR COTTON CROPS

    Directory of Open Access Journals (Sweden)

    VITOR MARQUES VIDAL

    2017-01-01

    Full Text Available Cotton has great socio-economic importance due to its use in textile industry, edible oil and biodiesel production and animal feed. Thus, the objective of this work was to identify the best potassium rate and soil management for cotton crops and select among cultivars, the one that better develops in the climatic conditions of the Cerrado biome in the State of Goiás, Brazil. Thus, the effect of five potassium rates (100, 150, 200, 250 and 300 kg ha-1 of K2O and two soil management systems (no-till and conventional tillage on the growth, development and reproduction of four cotton cultivars (BRS-371, BRS-372, BRS-286 and BRS-201 was evaluated. The data on cotton growth and development were subjected to analysis of variance; the data on potassium rates were subjected to regression analysis; and the data on cultivars and soil management to mean test. The correlation between the vegetative and reproductive variables was also assessed. The conventional tillage system provides the best results for the herbaceous cotton, regardless of the others factors evaluated. The cultivar BRS-286 has the best results in the conditions evaluated. The cultivar BRS-371 under no-till system present the highest number of fruiting branches at a potassium rate of 105.5% and highest number of floral buds at a potassium rate of 96.16%. The specific leaf area was positively correlated with the number of bolls per plant at 120 days after emergence of the herbaceous cotton.

  15. An Evaluation of Feral Cat Management Options Using a Decision Analysis Network

    Directory of Open Access Journals (Sweden)

    Kerrie Anne T. Loyd

    2010-12-01

    Full Text Available The feral domestic cat (Felis catus is a predatory invasive species with documented negative effects on native wildlife. The issue of appropriate and acceptable feral cat management is a matter of contentious debate in cities and states across the United States due to concerns for wildlife conservation, cat welfare, and public health. Common management strategies include: Trap-Neuter-Release, Trap-Neuter-Release with removal of kittens for adoption and Trap-Euthanize. Very little empirical evidence exists relevant to the efficacy of alternative options and a model-based approach is needed to predict population response and extend calculations to impact on wildlife. We have created a structured decision support model representing multiple stakeholder groups to facilitate the coordinated management of feral cats. We used a probabilistic graphical model (a Bayesian Belief Network to evaluate and rank alternative management decisions according to efficacy, societal preferences, and cost. Our model predicts that Trap-Neuter-Release strategies would be optimal management decisions for small local populations of less than fifty cats while Trap-Euthanize would be the optimal management decision for populations greater than 50 cats. Removal is predicted to reduce feral cat populations quickly and prevent cats from taking a large number of wildlife prey.

  16. Soil physical properties and grape yield influenced by cover crops and management systems

    Directory of Open Access Journals (Sweden)

    Jaqueline Dalla Rosa

    2013-10-01

    Full Text Available The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L. in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS, black oat (Avena strigosa Schreb (BO, and a mixture of white clover (Trifolium repens L., red clover (Trifolium pratense L. and annual rye-grass (Lolium multiflorum L. (MC. Two management systems were applied: desiccation with herbicide (D and mechanical mowing (M. Soil under a native forest (NF area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.

  17. Sugarcane productivity correlated with physical-chemical attributes to create soil management zone

    Directory of Open Access Journals (Sweden)

    Flávio Carlos Dalchiavon

    2013-10-01

    Full Text Available The socioeconomic importance of sugar cane in Brazil is unquestionable because it is the raw material for the production of ethanol and sugar. The accurate spatial intervention in the management of the crop, resulting zones of soil management, increases productivity as well as its agricultural yields. The spatial and Person's correlations between sugarcane attributes and physico-chemical attributes of a Typic Tropustalf were studied in the growing season of 2009, in Suzanápolis, State of São Paulo, Brazil (20°28'10'' S lat.; 50°49'20'' W long., in order to obtain the one that best correlates with agricultural productivity. Thus, the geostatistical grid with 120 sampling points was installed to soil and data collection in a plot of 14.6 ha with second crop sugarcane. Due to their substantial and excellent linear and spatial correlations with the productivity of the sugarcane, the population of plants and the organic matter content of the soil, by evidencing substantial correlations, linear and spatial, with the productivity of sugarcane, were indicators of management zones strongly attached to such productivity.

  18. Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liming; Zhuang, Qianlai; He, Yujie; Liu, Yaling; Yu, Dongsheng; Zhao, Quanying; Shi, Xuezheng; Xing, Shihe; Wang, Guangxiang

    2016-08-01

    Understanding the impacts of climate change and agricultural management practices on soil organic carbon (SOC) dynamics is critical for implementing optimal farming practices and maintaining agricultural productivity. This study examines the influence of climate and agricultural management on carbon sequestration potentials in Tai-Lake Paddy soils of China using the DeNitrification-DeComposition (DNDC) model, with a high-resolution soil database (1:50,000). Model simulations considered the effects of no tillage, increasing manure application, increasing/decreasing of N-fertilizer application and crop residues, water management, and climatic shifts in temperature and precipitation. We found that the carbon sequestration potential for the 2.32 Mha paddy soils of the Tai-Lake region varied from 4.71 to 44.31 Tg C during the period 2001-2019, with an annual average SOC changes ranged from 107 to 1005 kg C ha-1 yr-1. The sequestration potential significantly increased with increasing application of N-fertilizer, manure, conservation tillage, and crop residues. To increase soil C sequestration in this region, no-tillage and increasing of crop residue return to soils and manure application are recommended. Our analysis of climate impacts on SOC sequestration suggests that the rice paddies in this region will continue to be a carbon sink under future warming conditions. In addition, because the region’s annual precipitation (>1200 mm) is high, we also recommend reducing irrigation water use for these rice paddies to conserve freshwater in the Tai-Lake region.

  19. Security option file - Exploitation (DOS-Expl)

    International Nuclear Information System (INIS)

    2016-01-01

    This document aims at presenting functions performed by Cigeo during its exploitation phase, its main technical and security options which are envisaged with respect to different types of internal or external risks, and a first assessment of its impact on mankind and on the environment during its exploitation in normal operation as well as in incidental or accidental situations. A first volume addresses security principles, approach and management in relationship with the legal and regulatory framework. The second volume presents input data related to waste parcels and used for the installation sizing and operation, the main site characteristics, the main technical options regarding structures and equipment, and the main options regarding exploitation (parcel management, organisational and human aspects, and effluent management). The third volume describes how parcel are processed from their arrival to their setting in storage compartment, an inventory of internal and external risks, and a first assessment of consequences of scenarios on mankind and on the environment. The fourth volume presents options and operations which are envisaged regarding Cigeo closure, and inventory of associated risks

  20. Use of clay to remediate cadmium contaminated soil under different water management regimes.

    Science.gov (United States)

    Li, Jianrui; Xu, Yingming

    2017-07-01

    We examined in situ remediation of sepiolite on cadmium-polluted soils with diverse water regimes, and several variables including brown rice Cd, exchangeable Cd, pH, and available Fe/P. pH, available Fe/P in soils increased gradually during continuous flooding, which contributed to Cd absorption on colloids. In control group (untreated soils), compared to conventional irrigation, brown rice Cd in continuous flooding reduced by 37.9%, and that in wetting irrigation increased by 31.0% (psoils reduced by 44.4%, 34.5% and 36.8% under continuous flooding, conventional irrigation and wetting irrigation (psoils reduced by 27.5-49.0%, 14.3-40.5%, and 24.9-32.8% under three water management regimes (psoils were higher in continuous flooding than in conventional irrigation and wetting irrigation. Continuous flooding management promoted soil Cd immobilization by sepiolite. Copyright © 2017. Published by Elsevier Inc.

  1. Managing soil nutrients with compost in organic farms of East Georgia

    Science.gov (United States)

    Ghambashidze, Giorgi

    2013-04-01

    Soil Fertility management in organic farming relies on a long-term integrated approach rather than the more short-term very targeted solutions common in conventional agriculture. Increasing soil organic matter content through the addition of organic amendments has proven to be a valuable practice for maintaining or restoring soil quality. Organic agriculture relies greatly on building soil organic matter with compost typically replacing inorganic fertilizers and animal manure as the fertility source of choice. In Georgia, more and more attention is paid to the development of organic farming, occupying less than 1% of total agricultural land of the country. Due to increased interest towards organic production the question about soil amendments is arising with special focus on organic fertilizers as basic nutrient supply sources under organic management practice. In the frame of current research two different types of compost was prepared and their nutritional value was studied. The one was prepared from organic fraction municipal solid waste and another one using fruit processing residues. In addition to main nutritional properties both composts were tested on heavy metals content, as one of the main quality parameter. The results have shown that concentration of main nutrient is higher in municipal solid waste compost, but it contains also more heavy metals, which is not allowed in organic farming system. Fruit processing residue compost also has lower pH value and is lower in total salt content being is more acceptable for soil in lowlands of East Georgia, mainly characterised by alkaline reaction. .

  2. Non-deposit system option for waste management on small islands.

    Science.gov (United States)

    Vilms, Monica; Voronova, Viktoria

    2016-08-01

    This paper analyses waste management on small islands (on a global scale these are micro-islands). In the context of the paper, small islands are islands that have an area less than 50 km(2) The study presents an overview of the problems connected with waste transport from islands to the mainland. Waste generation on islands is very much related to tourists. If tourists do not handle waste properly, it will cause problems. Four small Estonian islands in the range of 3-19 km(2) are studied in detail. For these and other small islands, the main problem is the waste produced by tourists, or related to tourists and waste transport to the mainland. Currently, the local municipality has to arrange and finance waste transport. In fact, and based on the polluter-pays principle, the tourists should bear the cost of waste management. There are different tax options available in order to collect the money from tourists - waste tax, harbour tax, tourist tax, donations, environmental tax and others. The study results revealed that the best possible solution for Estonian islands may be a non-deposit system - including an additional charge on ferry ticket prices. The extra money should cover the costs of waste management and waste shipping. The tourists arriving in their own boats should pay a harbour tax, which includes a waste tax to compensate for the cost of waste management. © The Author(s) 2016.

  3. Matching soil salinization and cropping systems in communally managed irrigation schemes

    Science.gov (United States)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  4. Phosphate fertilisers and management for sustainable crop production in tropical acid soils

    International Nuclear Information System (INIS)

    Chien, S.H.; Friesen, D.K.

    2000-01-01

    Extensive research has been conducted over the past 25 years on the management of plant nutrients, especially N and P, for crop production on acidic infertile tropical soils. Under certain conditions, the use of indigenous phosphate rock (PR) and modified PR products, such as partially acidulated PR or compacted mixtures of PR with superphosphates, are attractive alternatives, both agronomically and economically, to the use of conventional water-soluble P fertilisers for increasing crop productivity on Oxisols and Ultisols. A combination of the effects of proper P and N management including biological N 2 fixation, judicious use of lime, and the use of acid-soil tolerant and/or P-efficient cultivars in cropping systems that enhance nutrient cycling and use efficiency, can provide an effective technology to sustainably increase crop productivity and production in tropical agro-ecosystems dominated by these acid soils. (author)

  5. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review.

    Science.gov (United States)

    Rizwan, Muhammad; Ali, Shafaqat; Qayyum, Muhammad Farooq; Ok, Yong Sik; Zia-Ur-Rehman, Muhammad; Abbas, Zaheer; Hannan, Fakhir

    2017-04-01

    Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.

  6. Volume reduction options for the management of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Clark, D.E.; Lerch, R.E.

    1979-01-01

    Volume reduction options that are now or soon will be available for low-level wastes are examined. These wastes generally are in the form of combustible solids, noncombustible solids, and wet wastes (solid/liquid). Initially, the wastes are collected and stored onsite. Preconditioning may be required, e.g., sorting, shredding, and classifying the solids into combustible and noncombustible fractions. The volume of combustible solids can be reduced by compaction, incineration/pyrolysis, acid digestion, or molten salt combustion. Options for reducing the volume of noncombustible solids include compaction, size reduction and decontamination, meltdown-casting, dissolution and electropolishing. Burnable wet wastes (e.g., organic wastes) can be evaporated or combusted; nonburnable wet wastes can be treated by various evaporative or nonevaporative processes. All radioactive waste processing operations result in some equipment contamination and the production of additional radioactively contaminated wastes (secondary wastes). The additional waste quantities must be considered in evaluating performance and overall volume reduction factors for the various systems. In the selection of an optimum waste management plan for a given facility, other important factors (e.g., relative stability of the waste product form) should be considered along with the savings accrued due to volume reduction

  7. An assessment of alternative agricultural management practice impacts on soil carbon in the corn belt

    Energy Technology Data Exchange (ETDEWEB)

    Barnwell, T.O. Jr.; Jackson, R.B.; Mulkey, L.A. [Environmental Research Laboratory, Athens, GA (United States)

    1993-12-31

    This impact of alternative management practices on agricultural soil C is estimated by a soil C mass balance modeling study that incorporates policy considerations in the analysis. A literature review of soil C modeling and impacts of management practices has been completed. The models selected for use and/or modification to meet the needs of representing soil C cycles in agroecosystems and impacts of management practices are CENTURY and DNDC. These models share a common ability to examine the impacts of alternative management practices on soil organic C, and are readily accessible. An important aspect of this effort is the development of the modeling framework and methodology that define the agricultural production systems and scenarios (i.e., crop-soil-climate combinations) to be assessed in terms of national policy, the integration of the model needs with available databases, and the operational mechanics of evaluating C sequestration potential with the integrated model/database system. We are working closely with EPA`s Office of Policy and Program Evaluation to define a reasonable set of policy alternatives for this assessment focusing on policy that might be affected through a revised Farm Bill, such as incentives to selectively promote conservation tillage, crop rotations, and/or good stewardship of the conservation reserve. Policy alternatives are translated into basic data for use in soil C models through economic models. These data, including such elements as agricultural practices, fertilization rates, and production levels are used in the soil C models to produce net carbon changes on a per unit area basis. The unit-area emissions are combined with areal-extent data in a GIS to produce an estimate of total carbon and nitrogen changes and thus estimate greenhouse benefits.

  8. [Effects of climate change on forest soil organic carbon storage: a review].

    Science.gov (United States)

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  9. Abundance and Diversity of CO2-Assimilating Bacteria and Algae Within Red Agricultural Soils Are Modulated by Changing Management Practice.

    Science.gov (United States)

    Yuan, Hongzhao; Ge, Tida; Chen, Xiangbi; Liu, Shoulong; Zhu, Zhenke; Wu, Xiaohong; Wei, Wenxue; Whiteley, Andrew Steven; Wu, Jinshui

    2015-11-01

    Elucidating the biodiversity of CO(2)-assimilating bacterial and algal communities in soils is important for obtaining a mechanistic view of terrestrial carbon sinks operating at global scales. "Red" acidic soils (Orthic Acrisols) cover large geographic areas and are subject to a range of management practices, which may alter the balance between carbon dioxide production and assimilation through changes in microbial CO(2)-assimilating populations. Here, we determined the abundance and diversity of CO(2)-assimilating bacteria and algae in acidic soils using quantitative PCR and terminal restriction fragment length polymorphism (T-RFLP) of the cbbL gene, which encodes the key CO(2) assimilation enzyme (ribulose-1,5-bisphosphate carboxylase/oxygenase) in the Calvin cycle. Within the framework of a long-term experiment (Taoyuan Agro-ecosystem, subtropical China), paddy rice fields were converted in 1995 to four alternative land management regimes: natural forest (NF), paddy rice (PR), maize crops (CL), and tea plantations (TP). In 2012 (17 years after land use transformation), we collected and analyzed the soils from fields under the original and converted land management regimes. Our results indicated that fields under the PR soil management system harbored the greatest abundance of cbbL copies (4.33 × 10(8) copies g(-1) soil). More than a decade after converting PR soils to natural, rotation, and perennial management systems, a decline in both the diversity and abundance of cbbL-harboring bacteria and algae was recorded. The lowest abundance of bacteria (0.98 × 10(8) copies g(-1) soil) and algae (0.23 × 10(6) copies g(-1) soil) was observed for TP soils. When converting PR soil management to alternative management systems (i.e., NF, CL, and TP), soil edaphic factors (soil organic carbon and total nitrogen content) were the major determinants of bacterial autotrophic cbbL gene diversity. In contrast, soil phosphorus concentration was the major regulator

  10. Anaerobic N mineralization in paddy soils in relation to inundation management, physicochemical soil fractions, mineralogy and soil properties

    Science.gov (United States)

    Sleutel, Steven; Kader, Mohammed Abdul; Ara Begum, Shamim; De Neve, Stefaan

    2013-04-01

    Anaerobic N mineralization measured from (saturated) repacked soil cores from 25 paddy fields in Bangladesh and was previously found to negatively related to soil N content on a relative basis. This suggests that other factors like soil organic matter (SOM) quality or abiotic factors instead control the anaerobic N mineralization process. We therefore assessed different physical and chemical fractions of SOM, management factors and various soil properties as predictors for the net anaerobic N mineralization. 1° First, we assessed routinely analyzed soil parameters (soil N and soil organic carbon, texture, pH, oxalate- and pyrophosphate-extractable Fe, Al, and Mn, fixed-NH4 content). We found no significant influences of neither soil mineralogy nor the annual length of inundation on soil N mineralization. The anaerobic N mineralization correlated positively with Na-pyrophosphate-extractable Fe and negatively with pH (both at Presistant OM fraction, followed by extraction of mineral bound OM with 10%HF thereby isolating the HF-resistant OM. None of the physicochemical SOM fractions were found useful predictors anaerobic N mineralization. The linkage between these chemical soil N fractions and N supplying processes actually occurring in the soil thus appears to be weak. Regardless, we hypothesize that variation in strength of N-mineral and N-OM linkages is likely to explain variation in bio-availability of organic N and proneness to mineralization. Yet, in order to separate kinetically different soil N fractions we then postulated that an alternative approach would be required, which instead isolates soil N fractions on the basis of bonding strength. In this respect bonding strength should be seen as opposite of proneness to dissolution of released N into water, the habitat of soil microorganisms mediating soil N mineralization. We hypothesize that soil N extracted by water at increasing temperatures would reflect such N fractions with increasing bonding strength, in

  11. Efficient Trajectory Options Allocation for the Collaborative Trajectory Options Program

    Science.gov (United States)

    Rodionova, Olga; Arneson, Heather; Sridhar, Banavar; Evans, Antony

    2017-01-01

    The Collaborative Trajectory Options Program (CTOP) is a Traffic Management Initiative (TMI) intended to control the air traffic flow rates at multiple specified Flow Constrained Areas (FCAs), where demand exceeds capacity. CTOP allows flight operators to submit the desired Trajectory Options Set (TOS) for each affected flight with associated Relative Trajectory Cost (RTC) for each option. CTOP then creates a feasible schedule that complies with capacity constraints by assigning affected flights with routes and departure delays in such a way as to minimize the total cost while maintaining equity across flight operators. The current version of CTOP implements a Ration-by-Schedule (RBS) scheme, which assigns the best available options to flights based on a First-Scheduled-First-Served heuristic. In the present study, an alternative flight scheduling approach is developed based on linear optimization. Results suggest that such an approach can significantly reduce flight delays, in the deterministic case, while maintaining equity as defined using a Max-Min fairness scheme.

  12. Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands

    Directory of Open Access Journals (Sweden)

    D. Imer

    2013-09-01

    Full Text Available A profound understanding of temporal and spatial variabilities of soil carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O fluxes between terrestrial ecosystems and the atmosphere is needed to reliably quantify these fluxes and to develop future mitigation strategies. For managed grassland ecosystems, temporal and spatial variabilities of these three soil greenhouse gas (GHG fluxes occur due to changes in environmental drivers as well as fertilizer applications, harvests and grazing. To assess how such changes affect soil GHG fluxes at Swiss grassland sites, we studied three sites along an altitudinal gradient that corresponds to a management gradient: from 400 m a.s.l. (intensively managed to 1000 m a.s.l. (moderately intensive managed to 2000 m a.s.l. (extensively managed. The alpine grassland was included to study both effects of extensive management on CH4 and N2O fluxes and the different climate regime occurring at this altitude. Temporal and spatial variabilities of soil GHG fluxes and environmental drivers on various timescales were determined along transects of 16 static soil chambers at each site. All three grasslands were N2O sources, with mean annual soil fluxes ranging from 0.15 to 1.28 nmol m−2 s−1. Contrastingly, all sites were weak CH4 sinks, with soil uptake rates ranging from −0.56 to −0.15 nmol m−2 s−1. Mean annual soil and plant respiration losses of CO2, measured with opaque chambers, ranged from 5.2 to 6.5 μmol m−2 s−1. While the environmental drivers and their respective explanatory power for soil N2O emissions differed considerably among the three grasslands (adjusted r2 ranging from 0.19 to 0.42, CH4 and CO2 soil fluxes were much better constrained (adjusted r2 ranging from 0.46 to 0.80 by soil water content and air temperature, respectively. Throughout the year, spatial heterogeneity was particularly high for soil N2O and CH4 fluxes. We found permanent hot spots for soil N2O emissions as well as

  13. Inventory of pollution reduction options for an aluminium pressure die casting plant

    NARCIS (Netherlands)

    Neto, B.A.F.; Kroeze, C.; Hordijk, L.; Costa, C.

    2009-01-01

    This study presents an overview of options aiming to reduce emissions to air, soil and water from an aluminium die casting plant located in Portugal. We identify eighteen pollution reduction options and then estimate their potential to reduce the pollution, and the costs associated with their

  14. What are the effects of agricultural management on soil organic carbon (SOC) stocks?

    DEFF Research Database (Denmark)

    Söderström, Bo; Hedlund, Katarina; Jackson, Louise E.

    2014-01-01

    the physical and biological properties of the soil. Intensification of agriculture and land-use change from grasslands to croplands are generally known to deplete SOC stocks. The depletion is exacerbated through agricultural practices with low return of organic material and various mechanisms......Changes in soil organic carbon (SOC) stocks significantly influence the atmospheric C concentration. Agricultural management practices that increase SOC stocks thus may have profound effects on climate mitigation. Additional benefits include higher soil fertility since increased SOC stocks improve......, such as oxidation/mineralization, leaching and erosion. However, a systematic review comparing the efficacy of different agricultural management practices to increase SOC stocks has not yet been produced. Since there are diverging views on this matter, a systematic review would be timely for framing policies...

  15. Effects of different agricultural managements in soil microbial community structure in a semi-arid Mediterranean region.

    Science.gov (United States)

    García-Orenes, Fuensanta; Morugan, Alicia; Mataix-Solera, Jorge; Scow, Kate

    2013-04-01

    Agriculture has been practiced in semi-arid Mediterranean regions for 10.000 years and in many cases these practices have been unsuitable causing land degradation for millennium and an important loss of soil quality. The land management can provide solutions to find the best agricultural practices in order to maintain the soil quality and get a sustainable agriculture model. Microbiological properties are the most sensitive and rapid indicators of soil perturbations and land use managements. The study of microbial community and diversity has an important interest as indicators of changes in soil quality. The main objective of this work was to asses the effect of different agricultural management practices in soil microbial community (evaluated as abundance of phospholipid fatty acids, PLFA). Four different treatments were selected, based on the most commonly practices applied by farmers in the study area, "El Teularet Experimental Station", located at the Enguera Range in the southern part of the Valencia province (eastern Spain). These treatments were: a) ploughing, b) herbicides c) mulch, using the types applied by organic farmers to develop a sustainable agriculture, such as oat straw and d) control that was established as plot where the treatment was abandonment after farming. An adjacent area with the same type of soil, but with natural vegetation was used as a standard or reference high quality soil. Soil samples were taken to evaluate the changes in microbial soil structure, analysing the abundance of PLFA. The results showed a major content of total PLFA in soils treated with oats straw, being these results similar to the content of PLFA in the soil with natural vegetation, also these soils were similar in the distribution of abundance of different PLFA studied. However, the herbicide and tillage treatments showed great differences regarding the soil used as reference (soil under natural vegetation).

  16. Effects of inter-row management intensity on wild bee, plant and soil biota diversity in vineyards

    Science.gov (United States)

    Kratschmer, Sophie; Pachinger, Bärbel; Winter, Silvia; Zaller, Johann G.; Buchholz, Jacob; Querner, Pascal; Strauß, Peter; Bauer, Thomas; Stiper, Katrin

    2016-04-01

    Vineyards may provide a range of essential ecosystem services, which interact with a diverse community of above- and belowground organisms. Intensive soil management like frequent tilling has resulted in the degradation of habitat quality with consequences on biodiversity and ecosystem services. This study is part of the European BiodivERsA project "VineDivers - Biodiversity-based ecosystem services in vineyards". We study the effects of different soil management intensities on above- and below-ground biodiversity (plants, insect pollinators, and soil biota), their interactions and the consequences for ecosystem services. We investigated 16 vineyards in Austria assessing the diversity of (1) wild bees using a semi-quantitative transect method, (2) earthworms by hand sorting, (3) Collembola (springtails) via pitfall trapping and soil coring, (4) plants by relevés and (5) litter decomposition (tea bag method). Management intensity differed in tillage frequency from intermediate intensity resulting in temporary vegetation cover to no tillage in permanent vegetation cover systems. First results show opposed relationships between the biodiversity of selected species groups and management intensity. We will discuss possible explanations and evaluate ecological interactions between wild bee, plant and soil biota diversity.

  17. [Effects of management regime on soil respiration from agroecosystems].

    Science.gov (United States)

    Chen, Shu-tao; Zhu, Da-wei; Niu, Chuan-po; Zou, Jian-wen; Wang, Chao; Sun, Wen-juan

    2009-10-15

    In order to examine the effects of management regime, such as nitrogen application and plowing method, on soil respiration from farmland, the static opaque chamber-gas chromatograph method was used to measure soil CO2 fluxes in situ. The field measurement was carried out for 5 growing seasons, which were the 2002-2003 wheat, 2003 maize and soybean, 2003-2004 wheat, 2004 maize and 2004-2005 wheat seasons. Our results showed that soil respiration increased in fertilizer-applied treatments compared with no fertilizer treatment after 3 times of fertilizer application on 9 November 2002, 14 February and 26 March 2003. And the most obvious increase appeared following the third fertilizer application. No significant difference in soil respiration was found among several fertilizer application treatments. The effect of plowing depth on soil respiration was contingent on preceding cropping practice. Over the 2003-2004 wheat-growing seasons (its preceding cropping practice was rice paddy), mean soil respiration rates were not significant different (p > 0.05) between no plowing treatment and shallow plowing treatment. The shallow plowing treatment CT2 led to higher soil CO2 losses compared with no plowing treatment of NT2 in the 2004 maize-growing season, however, the significant higher (p soil respiration rates occurred with no plowing treatment of NT3 in the following 2004-2005 wheat-growing season. Intensive plowing (25 cm depth), compared with no plowing practice (NT4), increased soil respiration significantly during the 2004-2005 wheat-growing season. Regression analysis showed that the exponential function could be employed to fit the relationship between soil respiration and temperature. The exponential relationship yielded the Q10 values which were varied from 1.26 to 3.60, with a mean value of 2.08. To evaluate the effect of temperature on soil respiration, the CO2 emission fluxes were normalized for each treatment and each crop growing season. Plotting the

  18. Environmental and management impacts on temporal variability of soil hydraulic properties

    Science.gov (United States)

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2012-04-01

    Soil hydraulic properties underlie temporal changes caused by different natural and management factors. Rainfall intensity, wet-dry cycles, freeze-thaw cycles, tillage and plant effects are potential drivers of the temporal variability. For agricultural purposes it is important to determine the possibility of targeted influence via management. In no-till systems e.g. root induced soil loosening (biopores) is essential to counteract natural soil densification by settling. The present work studies two years of temporal evolution of soil hydraulic properties in a no-till crop rotation (durum wheat-field pea) with two cover crops (mustard and rye) having different root systems (taproot vs. fibrous roots) as well as a bare soil control. Soil hydraulic properties such as near-saturated hydraulic conductivity, flow weighted pore radius, pore number and macroporosity are derived from measurements using a tension infiltrometer. The temporal dynamics are then analysed in terms of potential driving forces. Our results revealed significant temporal changes of hydraulic conductivity. When approaching saturation, spatial variability tended to dominate over the temporal evolution. Changes in near-saturated hydraulic conductivity were mainly a result of changing pore number, while the flow weighted mean pore radius showed less temporal dynamic in the no-till system. Macroporosity in the measured range of 0 to -10 cm pressure head ranged from 1.99e-4 to 8.96e-6 m3m-3. The different plant coverage revealed only minor influences on the observed system dynamics. Mustard increased slightly the flow weighted mean pore radius, being 0.090 mm in mustard compared to 0.085 mm in bare soil and 0.084 mm in rye. Still pore radius changes were of minor importance for the overall temporal dynamics. Rainfall was detected as major driving force of the temporal evolution of structural soil hydraulic properties at the site. Soil hydraulic conductivity in the slightly unsaturated range (-7 cm to -10

  19. R and D options for demand side management in Japanese electric utilities

    International Nuclear Information System (INIS)

    Yamamoto, T.

    1995-01-01

    Japanese electric utilities are facing several problems: increasing construction cost of power facilities, siting constraints and the environmental issue of greenhouse gas emissions. To overcome these problems, electric utilities have been promoting demand-side-management (DSM) activities as well as supplier-side measures, with some presently being carried out through promoting energy conservation technologies and introducing tariff options for residential/commercial and industrial consumers. R and D works have been carried out on various fields such as energy storage and heat storage which contribute to the improvement of the load factor. 5 figs., 2 tabs

  20. Main Parameters of Soil Quality and it's Management Under Changing Climate

    Science.gov (United States)

    László Phd, M., ,, Dr.

    2009-04-01

    Reviewing Paper Introduction: Malcolm summarised the topic of soil quality and it's management in a well synthetized form in 2000. So, the soils are fundamental to the well-being and productivity of agricultural and natural ecosystems. Soil quality is a concept being developed to characterize the usefulness and health of soils. Soil quality includes soil fertility, potential productivity, contaminant levels and their effects, resource sustainability and environmental quality. A general definition of soil quality is the degree of fitness of a soil for a specific use. The existence of multiple definitions suggests that the soil quality concept continues to evolve (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). Recent attention has focused on the sustainability of human uses of soil, based on concerns that soil quality may be declining (Boehn and Anderson, 1997). We use sustainable to mean that a use or management of soil will sustain human well-being over time. Lal (1995) described the land resources of the world (of which soil is one component) as "finite, fragile, and nonrenewable," and reported that only about 22% (3.26 billion ha) of the total land area on the globe is suitable for cultivation and at present, only about 3% (450 million ha) has a high agricultural production capacity. Because soil is in large but finite supply, and some soil components cannot be renewed within a human time frame, the condition of soils in agriculture and the environment is an issue of global concern (Howard, 1993; FAO, 1997). Concerns include soil losses from erosion, maintaining agricultural productivity and system sustainability, protecting natural areas, and adverse effects of soil contamination on human health (Haberern, 1992; Howard, 1993; Sims et al., 1997). Parr et al. (1992) state, "...soil degradation is the single most destructive force diminishing the world's soil resource base." Soil quality guidelines

  1. Healthy sand : a farmers initiative on soil protection and ecosystem service management

    Science.gov (United States)

    Smit, Annemieke; Verzandvoort, Simone; Kuikman, Peter; Stuka, Jason; Morari, Francesco; Rienks, Willem; Stokkers, Jan; Hesselink, Bertus; Lever, Henk

    2015-04-01

    In a small region in the Netherlands a group of dairy farmers (cooperated in a foundation HOE Duurzaam) cooperates with the drinking water company and together aim for a more healthy soil. They farm a sandy soil, which is in most of the parcels low in organic matter. The local farmers perceive loss of soil fertility and blame loss of soil organic matter for that. All farmers expect that increasing the soil organic matter content will retain more nitrates in the soil, leading to a reduction in nitrate leaching and a higher nutrient availability for the crops, forage and grass and probably low urgency for grassland renewal. The drinking water company in the area also has high expectations that a higher SOM content does relate to higher quality of the (drinking) water and lower costs to clean and filter the water to meet drinking water quality requirements. Most farmers in the area face suboptimal moisture conditions and thrive for increasing the soil organic matter content and improving the soil structure as key factors to relieve, soil moisture problems both in dry (drought) and wet (flooding) periods. A better water holding capacity of the soil provides benefits for the regional water board as this reduces leaching and run-off. The case study, which is part of the Recare-project, at first glance deals with soil management and technology to improve soil quality. However, the casus in fact deals with social innovation. The real challenge to this group of neighbours, farmers within a small region, and to science is how to combine knowledge and experience on soil management for increasing the content of soil organic matter and how to recognize the ecosystem services that are provided by the adapted and more 'healthy' soils. And also how to formalize relations between costs and benefits of measures taken in the field and how these could be financially rewarded from an agreed and acceptable financial awarding scheme based on payments for securing soil carbon stocks and

  2. Enchytraeids as indicator of soil quality in temporary organic grass-clover leys under contrasting management

    DEFF Research Database (Denmark)

    Maraldo, Kristine; Schmelz, Rüdiger; Larsen, Thomas

    2015-01-01

    One objective in organic farming is to sustain the quality of the soil resource. Because enchytraeids are an important soil faunal component, they stand as bioindicators of soil quality. We tested this candidature in a field experiment on loamy sand soil with 1- and 4-year old grass-clover leys...... interactions among soil physical, chemical and biological properties suggest that enchytraeid abundance is not a feasible stand-alone indicator of management impacts on soil quality in temporary grass-clover leys but may candidate as one of several biological key parameters in more comprehensive soil quality...

  3. Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas

    Directory of Open Access Journals (Sweden)

    José Camilo Bedano

    2016-07-01

    Full Text Available Soil is the most basic resource for sustainable agricultural production; it promotes water quality, is a key component of the biogeochemical cycles and hosts a huge diversity of organisms. However, we are not paying enough attention to soil degradation produced by land use. Modern agriculture has been successful in increasing yields but has also caused extensive environmental damage, particularly soil degradation. In the Argentine Pampas, agriculturization reached a peak with the generalized use of the no-till technological package: genetically modified soybeans tolerant to glyphosate, no-till, glyphosate, and inorganic fertilizers. This phenomenon has been widely spread in the country; the no-till package has been applied in large areas and has been used by tenants in a 60%–70% of cultivated lands. Thus, those who were involved in developing management practices may not be the same as those who will face degradation issues related to those practices. Indeed, most evidence reviewed in this paper suggests that the most widely distributed practices in the Pampas region are actually producing severe soil degradation. Biological degradation is particularly important because soil biota is involved in numerous soil processes on which soil functioning relies, affecting soil fertility and productivity. For example, soil meso- and macrofauna are especially important in nutrient cycling and in soil structure formation and maintenance, and they are key components of the network that links microbial process to the scale of fields and landscapes where ecosystem services are produced. However, the knowledge of the impact of different agricultural managements on soil meso- and macrofauna in Pampas agroecosystems is far from conclusive at this stage. The reason for this lack of definite conclusions is that this area has been given less attention than in other parts of the world; the response of soil fauna to agricultural practices is complex and taxa

  4. Hydrogen peroxide treatment of TCE contaminated soil

    International Nuclear Information System (INIS)

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-01-01

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil

  5. Higher molecular weight dissolved organic nitrogen turnover as affected by soil management history

    DEFF Research Database (Denmark)

    Lønne Enggrob, Kirsten

    of different management histories on the turnover of high Mw DON. Further, we distinguished between several classes of high Mw DON, i.e., 1-10 kDa and >10 kDa. 3. Materials and methods With the use of micro-lysimeters, the turnover of triple-labeled (15N, 14C and 13C) high Mw DON was studied in a sandy soil......High molecular weight dissolved organic nitrogen turnover as affected by soil management history *Kirsten Lønne Enggrob,1 Lars Elsgaard,1 and Jim Rasmussen1 1Aarhus University, Dept. of Agroecology, Foulum, Denmark 1. Introduction Dissolved organic nitrogen (DON) play an important role in soil N...... are presented for 14CO2 evolution during 14 days of incubation. 4. Results and conclusion Results showed that the turnover rate of high Mw DON was dependent on both the Mw size of DON and on the soil liming history. Evidence showing where in the DON Mw sizes the bottleneck lies will be presented....

  6. Nematodes Relevance in Soil Quality Management and their Significance as Biomarkers in Aquatic Substrates: Review.

    Science.gov (United States)

    Akpheokhai, Leonard I; Oribhabor, Blessing J

    2016-01-01

    The interaction of man with the ecosystem is a major factor causing environmental pollution and its attendant consequences such as climate change in our world today. Patents relating to nematodes' relevance in soil quality management and their significance as biomarkers in aquatic substrates were reviewed. Nematodes are useful in rapid, easy and inexpensive method for testing the toxicity of substance (e.g. aquatic substrates). This review paper sets out to examine and discuss the issue of soil pollution, functions of nematodes in soil and aquatic substrates as well as bio-indicators in soil health management in terrestrial ecology. The information used were on the basis of secondary sources from previous research. It is abundantly clear that the population dynamics of plant parasitic or free-living nematodes have useful potentials as biomonitor for soil health and other forms of environmental contamination through agricultural activities, industrial pollution and oil spillage, and the analysis of nematode community structure could be used as complementary information obtained from conventional soil testing approaches.

  7. [Advance in researches on vegetation cover and management factor in the soil erosion prediction model].

    Science.gov (United States)

    Zhang, Yan; Yuan, Jianping; Liu, Baoyuan

    2002-08-01

    Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.

  8. Determination of soil erosion and sedimentation affected by buffer zones and biochar amendment as best management practices

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah

    Sustainable management is one of the main challenges in modern agriculture. Soil erosion as one form of soil degradation is a threat against the soil sustainability. The main objective of my PhD study was to investigate the effectiveness of biochar as a non-structural best management practice (BMP...... bodies. Biochar as an organic amendment was in general able to improve soil quality by increasing soil aggregate stability, tensile strength (TS), and specific rupture energy (SRE) and on the other hand by decreasing clay dispersibility and the friability index (FI) of the soil aggregates. The results...... of rainfall-runoff simulations using round flumes in the laboratory indicated the positive effects of biochar amendment to mitigate runoff and soil erosion. Moreover laser scanning technique confirmed the positive effects of biochar lumps to enhance the soil surface roughness thereby reduce the runoff...

  9. Study of Agricultural Product Options Pricing

    Science.gov (United States)

    HONG, Qiu

    2017-09-01

    China is a large agricultural country, and the healthy development of agriculture is related to the stability of the whole society. The agricultural production and management of agricultural products are confronted with many risks, especially the market risks. Option contract is the object of option market transaction, so it is very important to study the option contract of agricultural products. Option trading separates the risk and profit, so that the trader can avoid the risk while retaining the opportunity to obtain income. The option has the characteristics of low transaction cost, simple and efficient, so it is suitable for small and medium investors.

  10. Soil erosion from harvested sites versus streamside management zone sediment deposition in the Piedmont of Virginia

    Science.gov (United States)

    William A. Lakel; W. Michael Aust; C. Andrew Dolloff; Amy W. Easterbrook

    2006-01-01

    Forestry best management practices were primarily developed to address two major issues related to soil erosion: water quality and site productivity. Sixteen watersheds managed as loblolly pine plantations in the piedmont region were monitored for soil erosion and water quality prior to treatment. Subsequently, all watersheds were harvested with clearcutting, ground-...

  11. Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?

    Science.gov (United States)

    Weaver, David; Summers, Robert

    2014-05-01

    Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (bank soil (bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport

  12. Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils

    Directory of Open Access Journals (Sweden)

    Marie-Pierre Hiel

    2018-05-01

    Full Text Available Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions. This study specifically focusses on temperate climate and loamy soil using a seven-year data set. Between 2008 and 2016, we compared four contrasting residue management strategies differing in the amount of crop residues returned to the soil (incorporation vs. exportation of residues and in the type of tillage (reduced tillage (10 cm depth vs. conventional tillage (ploughing at 25 cm depth in a field experiment. We assessed the impact of the crop residue management on crop production (three crops—winter wheat, faba bean and maize—cultivated over six cropping seasons, soil organic carbon content, nitrate ( ${\\mathrm{NO}}_{3}^{-}$ NO 3 − , phosphorus (P and potassium (K soil content and uptake by the crops. The main differences came primarily from the tillage practice and less from the restitution or removal of residues. All years and crops combined, conventional tillage resulted in a yield advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower germination rate observed under reduced tillage, especially during drier years. On average, only small differences were observed for total organic carbon (TOC content of the soil, but reduced tillage resulted in a very clear stratification of TOC and also of P and K content as compared to conventional tillage. We observed no effect of residue

  13. Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils.

    Science.gov (United States)

    Hiel, Marie-Pierre; Barbieux, Sophie; Pierreux, Jérôme; Olivier, Claire; Lobet, Guillaume; Roisin, Christian; Garré, Sarah; Colinet, Gilles; Bodson, Bernard; Dumont, Benjamin

    2018-01-01

    Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions. This study specifically focusses on temperate climate and loamy soil using a seven-year data set. Between 2008 and 2016, we compared four contrasting residue management strategies differing in the amount of crop residues returned to the soil (incorporation vs. exportation of residues) and in the type of tillage (reduced tillage (10 cm depth) vs. conventional tillage (ploughing at 25 cm depth)) in a field experiment. We assessed the impact of the crop residue management on crop production (three crops-winter wheat, faba bean and maize-cultivated over six cropping seasons), soil organic carbon content, nitrate ([Formula: see text]), phosphorus (P) and potassium (K) soil content and uptake by the crops. The main differences came primarily from the tillage practice and less from the restitution or removal of residues. All years and crops combined, conventional tillage resulted in a yield advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower germination rate observed under reduced tillage, especially during drier years. On average, only small differences were observed for total organic carbon (TOC) content of the soil, but reduced tillage resulted in a very clear stratification of TOC and also of P and K content as compared to conventional tillage. We observed no effect of residue management on the [Formula: see

  14. Pasture Management Strategies for Sequestering Soil Carbon - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Franzluebbers, Alan J.

    2006-03-15

    management indicated that soil organic carbon and nitrogen storage were greater with than without endophyte only under high soil fertility. This extra carbon and nitrogen in soil due to the presence of the endophyte was further found to be located in intermediately sized soil aggregates, which are important for reducing water runoff and improving water quality. These results suggest that well-fertilized tall fescue pastures with a high percentage of plants infected with the endophyte have the potential to help offset the rising carbon dioxide in the atmosphere. This research has also shown positive ecological implications of tall fescue-endophyte association.

  15. Long-term effects of conservation soil management in Saria, Burkina Faso, West Africa

    OpenAIRE

    Zacharie, Z.

    2011-01-01

    The negative degradation spiral that currently leads to deteriorating soil properties in African drylands is a serious problem that limits food production and threatensthe livelihoods of the people. Nutrient depletion and water and wind erosion are the main factors in soil degradation in Africa. This thesis describes field research conducted from 2006 through 2008 to assess how changes in physical and hydrological soil properties, induced by differences in land management and macro-faunal bi...

  16. Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region.

    Science.gov (United States)

    Bevivino, Annamaria; Paganin, Patrizia; Bacci, Giovanni; Florio, Alessandro; Pellicer, Maite Sampedro; Papaleo, Maria Cristiana; Mengoni, Alessio; Ledda, Luigi; Fani, Renato; Benedetti, Anna; Dalmastri, Claudia

    2014-01-01

    Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered). Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture) showed a more stable bacterial community than those with high human input (vineyards and managed meadow). Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio-indicators of soil

  17. Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region.

    Directory of Open Access Journals (Sweden)

    Annamaria Bevivino

    Full Text Available Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered. Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture showed a more stable bacterial community than those with high human input (vineyards and managed meadow. Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio

  18. Indications and interventional options for non-resectable tracheal stenosis

    Science.gov (United States)

    Bacon, Jenny Louise; Patterson, Caroline Marie

    2014-01-01

    Non-specific presentation and normal examination findings in early disease often result in tracheal obstruction being overlooked as a diagnosis until patients present acutely. Once diagnosed, surgical options should be considered, but often patient co-morbidity necessitates other interventional options. Non-resectable tracheal stenosis can be successfully managed by interventional bronchoscopy, with therapeutic options including airway dilatation, local tissue destruction and airway stenting. There are common aspects to the management of tracheal obstruction, tracheomalacia and tracheal fistulae. This paper reviews the pathogenesis, presentation, investigation and management of tracheal disease, with a focus on tracheal obstruction and the role of endotracheal intervention in management. PMID:24624290

  19. Stock Option Compensation and Managerial Turnover

    OpenAIRE

    Raluca Georgiana NASTASESCU

    2009-01-01

    This study examines the association between managerial turnover and equity-based compensation. I investigate whether stock options act to bond executives to their firms and whether retention of managers is a motivation of companies in designing CEO incentive contracts. The results show that stock options do negatively influence the probability of a CEO leaving the company. The monetary cost of losing the value of equity-based compensation package keeps the manager with his company. I also fin...

  20. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    Science.gov (United States)

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row