Sample records for soil land cover

  1. Interrelationships between soil cover and plant cover depending on land use

    Directory of Open Access Journals (Sweden)

    Tiina Köster


    Full Text Available Interrelationships between soil cover and plant cover of normally developed (or postlithogenic mineral soils are analysed on the basis of four sampling soil groups. The four-link pedo-ecological sequence of analysed soils, rendzinas → brown soils → pseudopodzolic soils → gley-podzols, forms a representative cross section in relation to the normal mineral soils of Estonia. All groups differ substantially from each other in terms of soil properties (calcareousness, acidity, nutrition conditions, profile fabric and humus cover. The primary tasks of the research were (1 to elucidate the main pedo-ecological characteristics of the four soil groups and their suitability for plant cover, (2 to evaluate comparatively soils in terms of productivity, sustainability, biodiversity and environmental protection ability and (3 to analyse possibilities for ecologically sound matching of soil cover with suitable plant cover. On the basis of the same material, the influence of land-use change on humus cover (epipedon fabric, properties of the entire soil cover and soil–plant interrelationship were also analysed. An ecosystem approach enables us to observe particularities caused by specific properties of a soil type (species, variety in biological turnover and in the formation of biodiversity.

  2. Soil chemical and physical properties that differentiate urban land-use and cover types (United States)

    R.V. Pouyat; I.D. Yesilonis; J. Russell-Anelli; N.K. Neerchal


    We investigated the effects of land use and cover and surface geology on soil properties in Baltimore, MD, with the objectives to: (i) measure the physical and chemical properties of surface soils (0?10 cm) by land use and cover; and (ii) ascertain whether land use and cover explain differences in these properties relative to surface geology. Mean and median values of...

  3. The Significance of Land Cover Delineation on Soil Erosion Assessment. (United States)

    Efthimiou, Nikolaos; Psomiadis, Emmanouil


    The study aims to evaluate the significance of land cover delineation on soil erosion assessment. To that end, RUSLE (Revised Universal Soil Loss Equation) was implemented at the Upper Acheloos River catchment, Western Central Greece, annually and multi-annually for the period 1965-92. The model estimates soil erosion as the linear product of six factors (R, K, LS, C, and P) considering the catchment's climatic, pedological, topographic, land cover, and anthropogenic characteristics, respectively. The C factor was estimated using six alternative land use delineations of different resolution, namely the CORINE Land Cover (CLC) project (2000, 2012 versions) (1:100,000), a land use map conducted by the Greek National Agricultural Research Foundation (NAGREF) (1:20,000), a land use map conducted by the Greek Payment and Control Agency for Guidance and Guarantee Community Aid (PCAGGCA) (1:5,000), and the Landsat 8 16-day Normalized Difference Vegetation Index (NDVI) dataset (30 m/pixel) (two approximations) based on remote sensing data (satellite image acquired on 07/09/2016) (1:40,000). Since all other factors remain unchanged per each RUSLE application, the differences among the yielded results are attributed to the C factor (thus the land cover pattern) variations. Validation was made considering the convergence between simulated (modeled) and observed sediment yield. The latter was estimated based on field measurements conducted by the Greek PPC (Public Power Corporation). The model performed best at both time scales using the Landsat 8 (Eq. 13) dataset, characterized by a detailed resolution and a satisfactory categorization, allowing the identification of the most susceptible to erosion areas.

  4. Effect of land use land cover change on soil erosion potential in an agricultural watershed. (United States)

    Sharma, Arabinda; Tiwari, Kamlesh N; Bhadoria, P B S


    Universal soil loss equation (USLE) was used in conjunction with a geographic information system to determine the influence of land use and land cover change (LUCC) on soil erosion potential of a reservoir catchment during the period 1989 to 2004. Results showed that the mean soil erosion potential of the watershed was increased slightly from 12.11 t ha(-1) year(-1) in the year 1989 to 13.21 t ha(-1) year(-1) in the year 2004. Spatial analysis revealed that the disappearance of forest patches from relatively flat areas, increased in wasteland in steep slope, and intensification of cultivation practice in relatively more erosion-prone soil were the main factors contributing toward the increased soil erosion potential of the watershed during the study period. Results indicated that transition of other land use land cover (LUC) categories to cropland was the most detrimental to watershed in terms of soil loss while forest acted as the most effective barrier to soil loss. A p value of 0.5503 obtained for two-tailed paired t test between the mean erosion potential of microwatersheds in 1989 and 2004 also indicated towards a moderate change in soil erosion potential of the watershed over the studied period. This study revealed that the spatial location of LUC parcels with respect to terrain and associated soil properties should be an important consideration in soil erosion assessment process.

  5. Effect of land use and land cover changes on carbon sequestration in vegetation and soils between 1956 and 2007 (southern Spain) (United States)

    Muñoz-Rojas, M.; Jordán, A.; Zavala, L. M.; de la Rosa, D.; Abd-Elmabod, S. K.; Anaya-Romero, M.


    Land use has significantly changed during the last decades at global and local scale, while the importance of ecosystems as sources/sinks of C has been highlighted, emphasizing the global impact of land use changes. The aim of this research was to improve and test methodologies to assess land use and land cover change dynamics and temporal and spatial variability in C stored in soils and vegetation at a wide scale. A Mediterranean region (Andalusia, Southern Spain) was selected for this pilot study in the period 1956-2007. Land use changes were detected by comparison of data layers, and soil information was gathered from available spatial databases. Data from land use and land cover change were reclassified according to CORINE Land Cover legend, according to land cover flows reported in Europe. Carbon vegetation stocks for 1956 and 2007 were calculated by multiplying C density for each land cover class and area. Soil carbon stocks were determined for each combination of soil and land use type at different standard depths (0-25, 25-50 and 50-75 cm). Total current carbon stocks (2007) are 156.1 Tg in vegetation and 415 Tg in soils (in the first 75 cm). Southern Spain has supported intense land cover changes affecting more than one third of the study area, with significant consequences for C stocks. Vegetation carbon increased 17.24 Mt since 1956 after afforestation practices and intensification of agriculture. Soil C stock decreased mainly in Cambisols and Regosols (above 80%) after forest areas were transformed into agricultural areas. The methodologies and information generated in this project constitute a basis for modelling of C sequestration and analysis of potential scenarios, as a new component of MicroLEIS DSS. This study highlights the importance of land cover changes for C sequestration in Mediterranean areas, highlighting possible trends for management policies in Europe in order to mitigate climate change.

  6. Land-cover effects on soil organic carbon stocks in a European city. (United States)

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R


    Soil is the vital foundation of terrestrial ecosystems storing water, nutrients, and almost three-quarters of the organic carbon stocks of the Earth's biomes. Soil organic carbon (SOC) stocks vary with land-cover and land-use change, with significant losses occurring through disturbance and cultivation. Although urbanisation is a growing contributor to land-use change globally, the effects of urban land-cover types on SOC stocks have not been studied for densely built cities. Additionally, there is a need to resolve the direction and extent to which greenspace management such as tree planting impacts on SOC concentrations. Here, we analyse the effect of land-cover (herbaceous, shrub or tree cover), on SOC stocks in domestic gardens and non-domestic greenspaces across a typical mid-sized U.K. city (Leicester, 73 km(2), 56% greenspace), and map citywide distribution of this ecosystem service. SOC was measured in topsoil and compared to surrounding extra-urban agricultural land. Average SOC storage in the city's greenspace was 9.9 kg m(-2), to 21 cm depth. SOC concentrations under trees and shrubs in domestic gardens were greater than all other land-covers, with total median storage of 13.5 kg m(-2) to 21 cm depth, more than 3 kg m(-2) greater than any other land-cover class in domestic and non-domestic greenspace and 5 kg m(-2) greater than in arable land. Land-cover did not significantly affect SOC concentrations in non-domestic greenspace, but values beneath trees were higher than under both pasture and arable land, whereas concentrations under shrub and herbaceous land-covers were only higher than arable fields. We conclude that although differences in greenspace management affect SOC stocks, trees only marginally increase these stocks in non-domestic greenspaces, but may enhance them in domestic gardens, and greenspace topsoils hold substantial SOC stores that require protection from further expansion of artificial surfaces e.g. patios and driveways. Copyright

  7. Land Use and Land Cover Change Analysis along the Coastal ...

    African Journals Online (AJOL)

    Agribotix GCS 077

    are carried out on the land usually effect changes in its cover. ... The FAO document on land cover classification systems, (2000) partly answers this ... over the surface land, including water, vegetation, bare soils and or artificial structures. ... diseases may occur more readily in areas exposed by Land Use and Land Cover ...

  8. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin (United States)

    Babamaaji, R. A.; Lee, J.


    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated

  9. The Effect of Land Cover Change on Soil Properties around Kibale National Park in South Western Uganda

    International Nuclear Information System (INIS)

    Majaliwa, J.G.M.; Twongyirwe, R.; Nyenje, R.; Oluka, M.; Ongom, B.; Sirike, J.; Mfitumukiza, D.; Azanga, E.; Natumanya, R.; Mwerera, R.; Barasa, B.


    The change from natural forest cover to tea and Eucalyptus is rampant in protected areas of western Uganda. The objectives were; to examine the trend in land-use /cover change and determine the effect of these changes on the physico-chemical properties of soils around Kibale National Park. The trend in land use/cover change was assessed by analyzing a series of Landsat images. Focused group discussions and key informant interviews were used for land-use/cover reconstruction. Three major land uses were included; wood lot (Eucalyptus grandis; 5 years old) ), tea (57 years old) and natural forest used as a control. Each of these land-uses were selected at two different North facing landscape positions and were replicated three times. A total of 36 composite soil samples were taken at 0-15 and 15-30 cm depth from natural forest, Tea plantation and eucalyptus on three ridges. Results showed that small scale farming, tea and eucalyptus plantation and built up area have increased over time, to the expense of wood lot and forest cover. Tea and Eucalyptus have induced changes in: exchangeable Mg and Ca, available P, SOM, ph, and bulk density of sub soil (P<.05). Landscape positions within land use also significantly influenced most soil properties (P<.05). Similar findings were observed by Wang et al. (2006) in commercial tea plantations in China that received nitrogen fertilizers.

  10. Land Cover Land Use Change and Soil Organic Carbon under Climate Variability in the Semi-Arid West African Sahel (1960-2050) (United States)

    Dieye, Amadou M.


    Land Cover Land Use (LCLU) change affects land surface processes recognized to influence climate change at local, national and global levels. Soil organic carbon is a key component for the functioning of agro-ecosystems and has a direct effect on the physical, chemical and biological characteristics of the soil. The capacity to model and project…

  11. Modelling soil moisture under different land covers in a sub-humid ...

    Indian Academy of Sciences (India)

    in the sub-humid climate within the Western Ghats, Karnataka, India. ... carried out with respect to the water-holding capacity of the soils with the aim of explaining ... changes have taken place in the land-use/cover of ... about 20–25 km inland.

  12. Mapping land cover through time with the Rapid Land Cover Mapper—Documentation and user manual (United States)

    Cotillon, Suzanne E.; Mathis, Melissa L.


    The Rapid Land Cover Mapper is an Esri ArcGIS® Desktop add-in, which was created as an alternative to automated or semiautomated mapping methods. Based on a manual photo interpretation technique, the tool facilitates mapping over large areas and through time, and produces time-series raster maps and associated statistics that characterize the changing landscapes. The Rapid Land Cover Mapper add-in can be used with any imagery source to map various themes (for instance, land cover, soils, or forest) at any chosen mapping resolution. The user manual contains all essential information for the user to make full use of the Rapid Land Cover Mapper add-in. This manual includes a description of the add-in functions and capabilities, and step-by-step procedures for using the add-in. The Rapid Land Cover Mapper add-in was successfully used by the U.S. Geological Survey West Africa Land Use Dynamics team to accurately map land use and land cover in 17 West African countries through time (1975, 2000, and 2013).

  13. Interrelationships of Land Use/Cover Change and Topography with Soil Acidity and Salinity as Indicators of Land Degradation

    Directory of Open Access Journals (Sweden)

    Ramita Manandhar


    Full Text Available As soil is the basis of all terrestrial ecosystems, degraded soil means lower fertility, reduced biodiversity and reduced human welfare. Therefore the focus of this paper is on elucidating the influence of land use and land cover (LULC change on two important soil quality indicators that are fundamental to effective measures for ameliorating soil degradation; namely soil acidity and soil salinity in the Lower Hunter Valley of New South Wales, Australia. First, Analysis of Variance was used to elucidate the effects of LULC categories on soil acidity and salinity. The results indicate that soils under Vineyard have significantly higher pH. In contrast there is no significant effect of LULC or its change on soil salinity. To further elucidate the complex interactions of these soil quality indicators with landscape attributes over 20 years and other terrain attributes, multivariate ordination techniques (correspondence analysis and canonical correspondence analysis were used. The results show that elevation exerted a more dominant influence on pH than the LULC types and their dynamics. In comparison, salinity of the soil appears to be higher in subsoil layers under woodland than under other LULC categories. The environmental implications of these interactions, as evidenced by this study, provide some insights for future land use planning in the region.

  14. Soil cover patterns influence on the land environmental functions, agroecological quality, land-use and monitoring efficiency in the Central Russia (United States)

    Vasenev, Ivan; Yashin, Ivan; Lukin, Sergey; Valentini, Riccardo


    First decades of XXI century actualized for soil researches the principal methodical problem of most modern geosciences: what spatial and temporal scale would be optimal for land quality evaluation and land-use practice optimizing? It is becoming obvious that this question cannot have one solution and have to be solved with especial attention on the features of concrete region and landscape, land-use history and practical issues, land current state and environmental functions, soil cover patterns and variability, governmental requirements and local society needs, best available technologies and their potential profitability. Central Russia is one of the most dynamical economic regions with naturally high and man-made complicated landscape and soil cover variability, long-term land-use history and self-contradictory issues, high potential of profitable farming and increased risks of land degradation. Global climate and technological changes essentially complicate the originally high and sharply increased in XX century farming land heterogeneity in the Central Russia that actualizes system analysis of its zonal, intra-zonal and azonal soil cover patterns according to their influence on land environmental functions, agroecological quality, and land-use and monitoring efficiency variability. Developed by the Laboratory of agroecological monitoring, ecosystem modeling & prediction (LAMP / RTSAU with support of RF Governmental projects #11.G34.31.0079 and # regional systems of greenhouse gases environmental monitoring RusFluxNet (6 fixed & 1 mobile eddy covariance stations with zonal functional sets of key plots with chamber investigations in 5 Russian regions) and of agroecological monitoring (in representative key plots with different farming practice in 9 RF regions) allow to do this analysis in frame of enough representative regional multi-factorial matrix of soil cover patterns, bioclimatic conditions, landscape features, and land-use history and

  15. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. (United States)

    Yigini, Yusuf; Panagos, Panos


    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Land Cover Land Use change and soil organic carbon under climate variability in the semi-arid West African Sahel (1960-2050) (United States)

    Dieye, Amadou M.

    Land Cover Land Use (LCLU) change affects land surface processes recognized to influence climate change at local, national and global levels. Soil organic carbon is a key component for the functioning of agro-ecosystems and has a direct effect on the physical, chemical and biological characteristics of the soil. The capacity to model and project LCLU change is of considerable interest for mitigation and adaptation measures in response to climate change. A combination of remote sensing analyses, qualitative social survey techniques, and biogeochemical modeling was used to study the relationships between climate change, LCLU change and soil organic carbon in the semi-arid rural zone of Senegal between 1960 and 2050. For this purpose, four research hypotheses were addressed. This research aims to contribute to an understanding of future land cover land use change in the semi-arid West African Sahel with respect to climate variability and human activities. Its findings may provide insights to enable policy makers at local to national levels to formulate environmentally and economically adapted policy decisions. This dissertation research has to date resulted in two published and one submitted paper.

  17. Remote sensing as a source of land cover information utilized in the universal soil loss equation (United States)

    Morris-Jones, D. R.; Morgan, K. M.; Kiefer, R. W.; Scarpace, F. L.


    In this study, methods for gathering the land use/land cover information required by the USLE were investigated with medium altitude, multi-date color and color infrared 70-mm positive transparencies using human and computer-based interpretation techniques. Successful results, which compare favorably with traditional field study methods, were obtained within the test site watershed with airphoto data sources and human airphoto interpretation techniques. Computer-based interpretation techniques were not capable of identifying soil conservation practices but were successful to varying degrees in gathering other types of desired land use/land cover information.

  18. Modelling the effects of land cover and climate change on soil water partitioning in a boreal headwater catchment (United States)

    Wang, Hailong; Tetzlaff, Doerthe; Soulsby, Chris


    Climate and land cover are two major factors affecting the water fluxes and balance across spatiotemporal scales. These two factors and their impacts on hydrology are often interlinked. The quantification and differentiation of such impacts is important for developing sustainable land and water management strategies. Here, we calibrated the well-known Hydrus-1D model in a data-rich boreal headwater catchment in Scotland to assess the role of two dominant vegetation types (shrubs vs. trees) in regulating the soil water partitioning and balance. We also applied previously established climate projections for the area and replaced shrubs with trees to imitate current land use change proposals in the region, so as to quantify the potential impacts of climate and land cover changes on soil hydrology. Under tree cover, evapotranspiration and deep percolation to recharge groundwater was about 44% and 57% of annual precipitation, whilst they were about 10% lower and 9% higher respectively under shrub cover in this humid, low energy environment. Meanwhile, tree canopies intercepted 39% of annual precipitation in comparison to 23% by shrubs. Soils with shrub cover stored more water than tree cover. Land cover change was shown to have stronger impacts than projected climate change. With a complete replacement of shrubs with trees under future climate projections at this site, evapotranspiration is expected to increase by ∼39% while percolation to decrease by 21% relative to the current level, more pronounced than the modest changes in the two components (seasons, which may result in water stress experienced by the vegetation. The findings provide an important evidence base for adaptive management strategies of future changes in low-energy humid environments, where vegetation growth is usually restricted by radiative energy and not water availability while few studies that quantify soil water partitioning exist.

  19. Sensitivity of WRF-simulated planetary boundary layer height to land cover and soil changes

    Directory of Open Access Journals (Sweden)

    Ferenc Ács


    Full Text Available Planetary boundary layer (PBL height sensitivity to both so-called single and accumulated land cover and soil changes is investigated in shallow convection under cloud-free conditions to compare the effects. Single land cover type and soil changes are carried out to be able to unequivocally separate the cause and effect relationships. The Yonsei University scheme in the framework of the Weather Research Forecasting (WRF mesoscale modeling system is used as a research tool. The area investigated lies in the Carpathian Basin, where anticyclonic weather type influence dominated on the five summer days chosen for simulations. Observation-based methods applied for validating diurnal PBL height courses manifest great deviations reaching 500–1300 m. The obtained deviations are somewhat smaller around midday and greater at night. They can originate either from the differences in the measuring principles or from the differences in the atmospheric profiles used. Concerning sensitivity analyses, we showed that PBL height differences caused by soil change are comparable with the PBL height differences caused by land cover change. The differences are much greater in the single than in the accumulated tests. Space averaged diurnal course difference around midday reaching a few tens of meters can be presumably treated as strongly significant. PBL height differences obtained in the sensitivity analyses are, at least in our case, smaller than those obtained by applying different observation based methods. The results may be utilized in PBL height diurnal course analyses.

  20. How does soil erosion influence the terrestrial carbon cycle and the impacts of land use and land cover change? (United States)

    Naipal, V.; Wang, Y.; Ciais, P.; Guenet, B.; Lauerwald, R.


    The onset of agriculture has accelerated soil erosion rates significantly, mobilizing vast quantities of soil organic carbon (SOC) globally. Studies show that at timescales of decennia to millennia this mobilized SOC can significantly alter previously estimated carbon emissions from land use and land cover change (LULCC). However, a full understanding of the impact of soil erosion on land-atmosphere carbon exchange is still missing. The aim of our study is to better constrain the terrestrial carbon fluxes by developing methods, which are compatible with earth system models (ESMs), and explicitly represent the links between soil erosion and carbon dynamics. For this we use an emulator that represents the carbon cycle of ORCHIDEE, which is the land component of the IPSL ESM, in combination with an adjusted version of the Revised Universal Soil Loss Equation (RUSLE) model. We applied this modeling framework at the global scale to evaluate how soil erosion influenced the terrestrial carbon cycle in the presence of elevated CO2, regional climate change and land use change. Here, we focus on the effects of soil detachment by erosion only and do not consider sediment transport and deposition. We found that including soil erosion in the SOC dynamics-scheme resulted in two times more SOC being lost during the historical period (1850-2005 AD). LULCC is the main contributor to this SOC loss, whose impact on the SOC stocks is significantly amplified by erosion. Regionally, the influence of soil erosion varies significantly, depending on the magnitude of the perturbations to the carbon cycle and the effects of LULCC and climate change on soil erosion rates. We conclude that it is necessary to include soil erosion in assessments of LULCC, and to explicitly consider the effects of elevated CO2 and climate change on the carbon cycle and on soil erosion, for better quantification of past, present, and future LULCC carbon emissions.

  1. Recent land cover history and nutrient retention in riparian wetlands (United States)

    Hogan, D.M.; Walbridge, M.R.


    Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus]. ?? 2009 Springer Science+Business Media, LLC.

  2. Tree cover, tree height and bare soil cover differences along a land use degradation gradient in semi-arid savannas, South Africa

    CSIR Research Space (South Africa)

    Mathieu, R


    Full Text Available High resolution airborne hyperspectral and discrete return LiDAR data were used to assess bare soil and tree cover differences along a land use transect consisting of state-owned, privately-owned conservation areas, and communal areas in South...

  3. Multitemporal analysis of Landsat images to detect land use land cover changes for monitoring soil sealing in the Nola area (Naples, Italy) (United States)

    De Giglio, Michaela; Allocca, Maria; Franci, Francesca


    Land Use Land Cover Changes (LULCC) data provide objective information to support environmental policy, urban planning purposes and sustainable land development. Understanding of past land use/cover practices and current landscape patterns is critical to assess the effects of LULCC on the Earth system. Within the framework of soil sealing in Italy, the present study aims to assess the LULCC of the Nola area (Naples metropolitan area, Italy), relating to a thirty year period from 1984 to 2015. The urban sprawl affects this area causing the impervious surface increase, the loss in rural areas and landscape fragmentation. Located near Vesuvio volcano and crossed by artificial filled rivers, the study area is subject to landslide, hydraulic and volcanic risks. Landsat time series has been processed by means of the supervised per-pixel classification in order to produce multitemporal Land Use Land Cover maps. Then, post-classification comparison approach has been applied to quantify the changes occurring between 1984 and 2015, also analyzing the intermediate variations in 1999, namely every fifteen years. The results confirm the urban sprawl. The increase of the built-up areas mainly causes the habitat fragmentation and the agricultural land conversion of the Nola area that is already damaged by unauthorized disposal of urban waste. Moreover, considering the local risk maps, it was verified that some of the new urban areas were built over known hazardous sites. In order to limit the soil sealing, urgent measures and sustainable urban planning are required.

  4. Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran). (United States)

    Soleimani, Azam; Hosseini, Seyed Mohsen; Massah Bavani, Ali Reza; Jafari, Mostafa; Francaviglia, Rosa


    Soil organic carbon (SOC) contains a considerable portion of the world's terrestrial carbon stock, and is affected by changes in land cover and climate. SOC modeling is a useful approach to assess the impact of land use, land use change and climate change on carbon (C) sequestration. This study aimed to: (i) test the performance of RothC model using data measured from different land covers in Hyrcanian forests (northern Iran); and (ii) predict changes in SOC under different climate change scenarios that may occur in the future. The following land covers were considered: Quercus castaneifolia (QC), Acer velutinum (AV), Alnus subcordata (AS), Cupressus sempervirens (CS) plantations and a natural forest (NF). For assessment of future climate change projections the Fifth Assessment IPCC report was used. These projections were generated with nine Global Climate Models (GCMs), for two Representative Concentration Pathways (RCPs) leading to very low and high greenhouse gases concentration levels (RCP 2.6 and RCP 8.5 respectively), and for four 20year-periods up to 2099 (2030s, 2050s, 2070s and 2090s). Simulated values of SOC correlated well with measured data (R 2 =0.64 to 0.91) indicating a good efficiency of the RothC model. Our results showed an overall decrease in SOC stocks by 2099 under all land covers and climate change scenarios, but the extent of the decrease varied with the climate models, the emissions scenarios, time periods and land covers. Acer velutinum plantation was the most sensitive land cover to future climate change (range of decrease 8.34-21.83tCha -1 ). Results suggest that modeling techniques can be effectively applied for evaluating SOC stocks, allowing the identification of current patterns in the soil and the prediction of future conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed. (United States)

    Altaf, Sadaff; Meraj, Gowhar; Romshoo, Shakil Ahmad


    Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area.

  6. Relationship between Organic Carbon Runoff to River and Land Cover (United States)

    Kim, G. S.; Lee, S. G.; Lim, C. H.; Lee, W.; Yoo, S.; Kim, S. J.; Heo, S.; Lee, W. K.


    Carbon is an important unit in understanding the ecosystem and energy circulation. Each ecosystem, land, water, and atmosphere, is interconnected through the exchange of energy and organic carbon. In the rivers, primary producers utilize the organic carbon from the land. Understanding the organic carbon uptake into the river is important for understanding the mechanism of river ecosystems. The main organic carbon source of the river is land. However, it is difficult to observe the amount of organic carbon runoff to the river. Therefore, an indirect method should be used to estimate the amount of organic carbon runoff to the river. The organic carbon inflow is caused by the runoff of organic carbon dissolved in water or the inflow of organic carbon particles by soil loss. Therefore, the hydrological model was used to estimate organic carbon runoff through the flow of water. The land cover correlates with soil respiration, soil loss, and so on, and the organic carbon runoff coefficient will be estimated to the river by land cover. Using the organic carbon concentration from water quality data observed at each point in the river, we estimate the amount of organic carbon released from the land. The reason is that the runoff from the watershed converges into the rivers in the watershed, the watershed simulation is conducted based on the water quality data observation point. This defines a watershed that affects organic carbon observation sites. The flow rate of each watershed is calculated by the SWAT (Soil and Water Assessment Tool), and the total organic carbon runoff is calculated by using flow rate and organic carbon concentration. This is compared with the factors related to the amount of organic carbon such as land cover, soil loss, and soil organic carbon, and spatial analysis is carried out to estimate the organic carbon runoff coefficient per land cover.


    Directory of Open Access Journals (Sweden)

    I. Munteanu


    Full Text Available Based on the new concept of the “Epiderm of the Earth” introduced by the 2006 edition of the WRB-SR, the idea of “geoepiderm” has been developed. Besides its holistic meaning, by including both soil and non-soil materials found in the first 2 meters of the land surface, the term “geoepiderm” has a strong ecological sense, by suggesting similarity with the skin of the living organisms, as such, this concept is fully concordant with that of “Gaia” (Living Earth developed by James Lovelock. According to the main pedo-ecological characteristics of the soil and not soil coverings from the earth surface, ten kinds (classes of ‘geoepiderms” have been identified:1 – Protoderma (Entiderma– the primitive (emerging geoepiderm (mainly non-soil materials; five main subtypes: a Regoderma, b Leptoderma, c Areniderma, d Fluviderma and e Gleyoderma, were identified;2 – Cryoderma (Geliderma – geoepiderm of cold, mainly artic and subartic, regions with mean annual soil temperature <00C (often with perennial frozen subsoil - permafrost:3 – Arididerma – geoepiderm of arid regions and salt affected lands with limited or scarce available moisture; two subtypes: a Desertiderma, b Saliderma4 – Inceptiderma (or Juvenilederma – with 2 subtypes: a Cambiderma – a young (incipiently developed geoepiderm and b Andiderma, geoepiderm developed in volcanic materials;5 – Euderma – nutrient rich geoepiderm with two main subtypes: a Cherniderma (or Molliderma and b Luviderma (or Alfiderma;6 – Oligoderma – geoepiderm with low macro-nutrient and weatherable minerals content with 2 subtypes: a Podziderma (or Spodiderma and b Acriderma (or Ultiderma;7 – Ferriderma (Oxiderma or Senilederma – geoepiderm strongly weathered and with iron and aluminium hydroxides enrichment and low weatherable minerals reserve;8 – Vertiderma (Contractilederma – Contractile geoepiderm, developed from swelling clays;9 – Histoderma (Organiderma

  8. National Land Cover Database (NLCD) Land Cover Collection (United States)

    U.S. Geological Survey, Department of the Interior — The National Land Cover Database (NLCD) Land Cover Collection is produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC)...

  9. Land Cover - Minnesota Land Cover Classification System (United States)

    Minnesota Department of Natural Resources — Land cover data set based on the Minnesota Land Cover Classification System (MLCCS) coding scheme. This data was produced using a combination of aerial photograph...

  10. Effects of land cover change on litter decomposition and soil greenhouse gas fluxes in subtropical Hong Kong (United States)

    Ngar Wong, Chun; Lai, Derrick Yuk Fo


    Nowadays, over 50% of the world's population live in urbanized areas and the level of urbanization varies substantially across countries. Intense human activities and management associated with urbanization can alter the microclimate and biogeochemical processes in urban areas, which subsequently affect the provision of ecosystem services and functions. Litter decomposition and soil greenhouse gas (GHG) exchange play an important role in governing nutrient cycling and future climate change, respectively. Yet, the effects of urbanization on these two biogeochemical processes remain uncertain and not well understood, especially in subtropical and high-density cities. This study aims to examine the effects of urbanization on decomposition and GHG fluxes among four land covers- natural forest, urban forest, farmland and roadside planter, in Hong Kong based on litterbag experiment and closed chamber measurements for one full year. Litter decomposition rate was significantly lower in farmland than in other land cover types. Significant differences in CO2 emission were detected among the four land cover types (pmean N2O fluxes, respectively. The emission of CO2 was positively correlated with soil potassium content, while CH4 and N2O flux increased markedly with soil temperature and nitrate nitrogen content, respectively. The results obtained in this study will enhance our understanding on urban ecosystem and be useful for recommending sustainable management strategies for conservation of ecosystem services in urban areas.

  11. Exploring dust emission responses to land cover change using an ecological land classification (United States)

    Galloza, Magda S.; Webb, Nicholas P.; Bleiweiss, Max P.; Winters, Craig; Herrick, Jeffrey E.; Ayers, Eldon


    Despite efforts to quantify the impacts of land cover change on wind erosion, assessment uncertainty remains large. We address this uncertainty by evaluating the application of ecological site concepts and state-and-transition models (STMs) for detecting and quantitatively describing the impacts of land cover change on wind erosion. We apply a dust emission model over a rangeland study area in the northern Chihuahuan Desert, New Mexico, USA, and evaluate spatiotemporal patterns of modelled horizontal sediment mass flux and dust emission in the context of ecological sites and their vegetation states; representing a diversity of land cover types. Our results demonstrate how the impacts of land cover change on dust emission can be quantified, compared across land cover classes, and interpreted in the context of an ecological model that encapsulates land management intensity and change. Results also reveal the importance of established weaknesses in the dust model soil characterisation and drag partition scheme, which appeared generally insensitive to the impacts of land cover change. New models that address these weaknesses, coupled with ecological site concepts and field measurements across land cover types, could significantly reduce assessment uncertainties and provide opportunities for identifying land management options.

  12. Land agroecological quality assessment in conditions of high spatial soil cover variability at the Pereslavskoye Opolye. (United States)

    Morev, Dmitriy; Vasenev, Ivan


    The essential spatial variability is mutual feature for most natural and man-changed soils at the Central region of European territory of Russia. The original spatial heterogeneity of forest soils has been further complicated by a specific land-use history and human impacts. For demand-driven land-use planning and decision making the quantitative analysis and agroecological interpretation of representative soil cover spatial variability is an important and challenging task that receives increasing attention from private companies, governmental and environmental bodies. Pereslavskoye Opolye is traditionally actively used in agriculture due to dominated high-quality cultivated soddy-podzoluvisols which are relatively reached in organic matter (especially for conditions of the North part at the European territory of Russia). However, the soil cover patterns are often very complicated even within the field that significantly influences on crop yield variability and have to be considered in farming system development and land agroecological quality evaluation. The detailed investigations of soil regimes and mapping of the winter rye yield have been carried in conditions of two representative fields with slopes sharply contrasted both in aspects and degrees. Rye biological productivity and weed infestation have been measured in elementary plots of 0.25 m2 with the following analysis the quality of the yield. In the same plot soil temperature and moisture have been measured by portable devices. Soil sampling was provided from three upper layers by drilling. The results of ray yield detailed mapping shown high differences both in average values and within-field variability on different slopes. In case of low-gradient slope (field 1) there is variability of ray yield from 39.4 to 44.8 dt/ha. In case of expressed slope (field 2) the same species of winter rye grown with the same technology has essentially lower yield and within-field variability from 20 to 29.6 dt/ha. The

  13. Review of Land Use and Land Cover Change research progress (United States)

    Chang, Yue; Hou, Kang; Li, Xuxiang; Zhang, Yunwei; Chen, Pei


    Land Use and Land Cover Change (LUCC) can reflect the pattern of human land use in a region, and plays an important role in space soil and water conservation. The study on the change of land use patterns in the world is of great significance to cope with global climate change and sustainable development. This paper reviews the main research progress of LUCC at home and abroad, and suggests that land use change has been shifted from land use planning and management to land use change impact and driving factors. The development of remote sensing technology provides the basis and data for LUCC with dynamic monitoring and quantitative analysis. However, there is no uniform standard for land use classification at present, which brings a lot of inconvenience to the collection and analysis of land cover data. Globeland30 is an important milestone contribution to the study of international LUCC system. More attention should be paid to the accuracy and results contrasting test of land use classification obtained by remote sensing technology.

  14. Trend Analysis of Soil Salinity in Different Land Cover Types Using Landsat Time Series Data (case Study Bakhtegan Salt Lake) (United States)

    Taghadosi, M. M.; Hasanlou, M.


    Soil salinity is one of the main causes of desertification and land degradation which has negative impacts on soil fertility and crop productivity. Monitoring salt affected areas and assessing land cover changes, which caused by salinization, can be an effective approach to rehabilitate saline soils and prevent further salinization of agricultural fields. Using potential of satellite imagery taken over time along with remote sensing techniques, makes it possible to determine salinity changes at regional scales. This study deals with monitoring salinity changes and trend of the expansion in different land cover types of Bakhtegan Salt Lake district during the last two decades using multi-temporal Landsat images. For this purpose, per-pixel trend analysis of soil salinity during years 2000 to 2016 was performed and slope index maps of the best salinity indicators were generated for each pixel in the scene. The results of this study revealed that vegetation indices (GDVI and EVI) and also salinity indices (SI-1 and SI-3) have great potential to assess soil salinity trends in vegetation and bare soil lands respectively due to more sensitivity to salt features over years of study. In addition, images of May had the best performance to highlight changes in pixels among different months of the year. A comparative analysis of different slope index maps shows that more than 76% of vegetated areas have experienced negative trends during 17 years, of which about 34% are moderately and highly saline. This percent is increased to 92% for bare soil lands and 29% of salt affected soils had severe salinization. It can be concluded that the areas, which are close to the lake, are more affected by salinity and salts from the lake were brought into the soil which will lead to loss of soil productivity ultimately.

  15. Vegetative cover and PAHs accumulation in soils of urban green space

    International Nuclear Information System (INIS)

    Peng Chi; Ouyang Zhiyun; Wang Meie; Chen Weiping; Jiao Wentao


    We investigated how urban land uses influence soil accumulation of polycyclic aromatic hydrocarbons (PAHs) in the urban green spaces composed of different vegetative cover. How did soil properties, urbanization history, and population density affect the outcomes were also considered. Soils examined were obtained at 97 green spaces inside the Beijing metropolis. PAH contents of the soils were influenced most significantly by their proximity to point source of industries such as the coal combustion installations. Beyond the influence circle of industrial emissions, land use classifications had no significant effect on the extent of PAH accumulation in soils. Instead, the nature of vegetative covers affected PAH contents of the soils. Tree–shrub–herb and woodland settings trapped more airborne PAH and soils under these vegetative patterns accumulated more PAHs than those of the grassland. Urbanization history, population density and soil properties had no apparent impact on PAHs accumulations in soils of urban green space. - Highlights: ► Land use did not affect PAHs in soils except for areas adjacent to industrial sources. ► Tree–shrub–herb and woodland cover amass more PAHs in soils than grassland cover. ► Urban development and soil property factors had little effect on PAHs in soils. - Industrial emissions aside, vegetative cover is the dominant factor controlling accumulation of PAHs in urban green space soils.

  16. Using multi-approaches to investigate the effects of land cover on runoff and soil erosion in the Loess Plateau of China (United States)

    Gao, G.; Fu, B.; Liu, Y.; Wang, Y.


    This study used the in-situ measurement, model simulation and radioisotope tracing methods to investigate the effects of land cover on runoff and soil erosion at plot and hillslope scales in the Loess Plateau of China. Three runoff plot groups covered by sparse young trees (Group 1), native shrubs (Group 2) and dense tussock (Group 3) with different revegetation time were established in the Yangjuangou catchment of Loess Plateau. Greater runoff was produced in plot groups (Group 2 and Group 3) with higher vegetation cover and longer restoration time as a result of soil compaction processes. Both of the runoff coefficient and soil loss rate decreased with increasing plot length in Group 2 and Group 3 plots. The runoff coefficient increased with plot length in Group 1 plots located at the early stage of revegetation, and the soil loss rates increased over an area threshold. Therefore, the effect of scale on runoff and soil erosion was dependent on restoration extent. The antecedent moisture condition (AMC) was explicitly incorporated in runoff production and initial abstraction of the SCS-CN model, and the direct effect of runoff on event soil loss was considered in the RUSLE model by adopting a rainfall-runoff erosivity factor. The modified SCS-CN and RUSLE models were coupled to link rainfall-runoff-erosion modeling. The modified SCS-CN model was accurate in predicting event runoff from the three plot groups with Nash-Sutcliffe model efficiency (EF) over 0.85, and the prediction accuracy of the modified RUSLE model was satisfactory with EF values being over 0.70. The 137Cs tracing technique was used to examine soil erosion under different land uses and land-use combinations. The results show that the order of erosion rate in different land uses increases sequentially from mature forest to grass to young forest to orchard to terrace crop. The land-use combinations of 'grass (6 years old) + mature forest (25 years old) + grass (25 years old)' and 'grass (6 years old

  17. About soil cover heterogeneity of agricultural research stations' experimental fields (United States)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia


    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  18. Evaluation of burial ground soil covers

    International Nuclear Information System (INIS)

    Fenimore, J.W.


    Solid radioactive waste burial at the Savannah River Plant between 1955 and 1972 filled a 76-acre site. Burial operations then were shifted to an adjacent site, and a program was begun to develop a land cover that would: (1) minimize soil erosion; and (2) protect the buried waste from deep-rooted plants, since radionuclides can be recycled by uptake through root systems. In anticipation of the need for a suitable soil cover, five grass species were planted on 20 plots (4 plots of each species) at the burial ground (Facility 643-G) in 1969. The grass plots were planted for evaluation of viability, root depth, and erosion protection existing under conditions of low fertility and minimum care. In addition, 16 different artificial soil covers were installed on 32 plots (each cover on two plots) to evaluate: (1) resistance of cover to deterioration from weathering; (2) resistance of cover to encroachment by deep-rooted plants; and (3) soil erosion protection provided by the cover. All test plots were observed and photographed in 1970 and in 1974. After both grass and artificial soil covers were tested five years, the following results were observed: Pensacola Bahia grass was the best of the five cover grasses tested; and fifteen of the sixteen artificial covers that were tested controlled vegetation growth and soil erosion. Photographs of the test plots will be retaken at five-year intervals for future documentation

  19. Land Cover (United States)

    Kansas Data Access and Support Center — The Land Cover database depicts 10 general land cover classes for the State of Kansas. The database was compiled from a digital classification of Landsat Thematic...

  20. Soil Fertility in relation to Landscape Position and Land Use/Cover Types: A Case Study of the Lake Kivu Pilot Learning Site

    Directory of Open Access Journals (Sweden)

    Majaliwa Mwanjalolo Jackson-Gilbert


    Full Text Available This study determined the change and distribution of land-uses/covers along the landscape, and evaluated the nutrient status of the top soil layer in the Lake Kivu Pilot Learning Site (LKPLS benchmarked micro-catchments. Soil physical and chemical properties were quantified using triplicate soil samples collected from each land-use/cover at two depths (0–15 and 15–30 cm in three LK PLS Learning Innovation Platform (IP sites (Bufundi in Uganda, Mupfuni-Shanga in D.R. Congo, Gataraga in Rwanda. Small scale agriculture has increased in all the benchmarked micro-catchments at the expense of other land-uses/covers. In the settlement areas land-use/cover distribution along the landscape varied across sites and countries; the major one being eucalyptus woodlots, wetland, and perennials and annuals crops in Bufundi; annuals and perennials crops in Mupfuni-Shanga; and annuals crops in Gataraga. Perennial crops tended to occur at the footslope and valley bottoms, while the annuals occurred at the upper backslopes and summits. Available P and K were relatively higher and C/N ratio (7.28 was the lowest in Mupfuni Shanga. Annual crops had the lowest available P and N across site (P<0.05. The key nutrients N, P and K were below the critical values for plant growth for Bufundi.

  1. The impact of land use and land cover changes on solute dynamics in seepage water of soil from karst hillslopes of Southwest China

    International Nuclear Information System (INIS)

    Ding Hu; Lang Yunchao; Liu Congqiang


    Land use and land cover changes can cause variations in terrestrial energy, water balance and availability of nutrients. To understand the role of vegetation in regulating the hydrochemistry of karst hillslopes, overland flow and soil seepage water from two hillslopes covered with and without vegetation were studied in the Huanjiang Observation and Research Station for Karst Ecosystems, Guangxi, SW China. Dissolved major ions, as well as isotopic compositions of dissolved inorganic C (DIC) were examined. Water from the vegetated control slope had higher solute concentrations (except NO 3 - ) and lower δ 13 C values than water from the disturbed slope. The dynamics of K + and NO 3 - in soil water sampled in time-sequence from the control slope was different from the disturbed slope. Specifically, K + and NO 3 - concentrations of the control slope decreased gradually over time, while K + and NO 3 - concentrations of the disturbed slope increased, and other ionic concentrations increased in both of the slopes.

  2. Mekong Land Cover Dasboard: Regional Land Cover Mointoring Systems (United States)

    Saah, D. S.; Towashiraporn, P.; Aekakkararungroj, A.; Phongsapan, K.; Triepke, J.; Maus, P.; Tenneson, K.; Cutter, P. G.; Ganz, D.; Anderson, E.


    SERVIR-Mekong, a USAID-NASA partnership, helps decision makers in the Lower Mekong Region utilize GIS and Remote Sensing information to inform climate related activities. In 2015, SERVIR-Mekong conducted a geospatial needs assessment for the Lower Mekong countries which included individual country consultations. The team found that many countries were dependent on land cover and land use maps for land resource planning, quantifying ecosystem services, including resilience to climate change, biodiversity conservation, and other critical social issues. Many of the Lower Mekong countries have developed national scale land cover maps derived in part from remote sensing products and geospatial technologies. However, updates are infrequent and classification systems do not always meet the needs of key user groups. In addition, data products stop at political boundaries and are often not accessible making the data unusable across country boundaries and with resource management partners. Many of these countries rely on global land cover products to fill the gaps of their national efforts, compromising consistency between data and policies. These gaps in national efforts can be filled by a flexible regional land cover monitoring system that is co-developed by regional partners with the specific intention of meeting national transboundary needs, for example including consistent forest definitions in transboundary watersheds. Based on these facts, key regional stakeholders identified a need for a land cover monitoring system that will produce frequent, high quality land cover maps using a consistent regional classification scheme that is compatible with national country needs. SERVIR-Mekong is currently developing a solution that leverages recent developments in remote sensing science and technology, such as Google Earth Engine (GEE), and working together with production partners to develop a system that will use a common set of input data sources to generate high

  3. [Effects of land cover change on soil organic carbon and light fraction organic carbon at river banks of Fuzhou urban area]. (United States)

    Zeng, Hong-Da; Du, Zi-Xian; Yang, Yu-Sheng; Li, Xi-Bo; Zhang, Ya-Chun; Yang, Zhi-Feng


    By using Vario EL III element analyzer, the vertical distribution characteristics of soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in the lawn, patch plantation, and reed wetland at river banks of Fuzhou urban area were studied in July 2007. For all the three land cover types, the SOC and LFOC contents were the highest in surface soil layer, and declined gradually with soil depth. Compared with reed wetland, the lawn and patch plantation had higher SOC and LFOC contents in each layer of the soil profile (0-60 cm), and the lawn had significantly higher contents of SOC and LFOC in 0-20 cm soil layer, compared with the patch plantation. After the reed wetland was converted into lawn and patch plantation, the SOC stock in the soil profile was increased by 94.8% and 72.0%, and the LFOC stock was increased by 225% and 93%, respectively. Due to the changes of plant species, plant density, and management measure, the conversion from natural wetland into human-manipulated green spaces increased the SOC and LFOC stocks in the soil profile, and improved the soil quality. Compared with the SOC, soil LFOC was more sensitive to land use/cover change, especially for those in 0-20 cm soil layer.

  4. Land cover mapping of North and Central America—Global Land Cover 2000 (United States)

    Latifovic, Rasim; Zhu, Zhi-Liang


    The Land Cover Map of North and Central America for the year 2000 (GLC 2000-NCA), prepared by NRCan/CCRS and USGS/EROS Data Centre (EDC) as a regional component of the Global Land Cover 2000 project, is the subject of this paper. A new mapping approach for transforming satellite observations acquired by the SPOT4/VGTETATION (VGT) sensor into land cover information is outlined. The procedure includes: (1) conversion of daily data into 10-day composite; (2) post-seasonal correction and refinement of apparent surface reflectance in 10-day composite images; and (3) extraction of land cover information from the composite images. The pre-processing and mosaicking techniques developed and used in this study proved to be very effective in removing cloud contamination, BRDF effects, and noise in Short Wave Infra-Red (SWIR). The GLC 2000-NCA land cover map is provided as a regional product with 28 land cover classes based on modified Federal Geographic Data Committee/Vegetation Classification Standard (FGDC NVCS) classification system, and as part of a global product with 22 land cover classes based on Land Cover Classification System (LCCS) of the Food and Agriculture Organisation. The map was compared on both areal and per-pixel bases over North and Central America to the International Geosphere–Biosphere Programme (IGBP) global land cover classification, the University of Maryland global land cover classification (UMd) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Global land cover classification produced by Boston University (BU). There was good agreement (79%) on the spatial distribution and areal extent of forest between GLC 2000-NCA and the other maps, however, GLC 2000-NCA provides additional information on the spatial distribution of forest types. The GLC 2000-NCA map was produced at the continental level incorporating specific needs of the region.

  5. Assessing the Impact of Land Use and Land Cover Change on Global Water Resources (United States)

    Batra, N.; Yang, Y. E.; Choi, H. I.; Islam, A.; Charlotte, D. F.; Cai, X.; Kumar, P.


    Land use and land cover changes (LULCC) significantly modify the hydrological regime of the watersheds, affecting water resources and environment from regional to global scale. This study seeks to advance and integrate water and energy cycle observation, scientific understanding, and human impacts to assess future water availability. To achieve the research objective, we integrate and interpret past and current space based and in situ observations into a global hydrologic model (GHM). GHM is developed with enhanced spatial and temporal resolution, physical complexity, hydrologic theory and processes to quantify the impact of LULCC on physical variables: surface runoff, subsurface flow, groundwater, infiltration, ET, soil moisture, etc. Coupled with the common land model (CLM), a 3-dimensional volume averaged soil-moisture transport (VAST) model is expanded to incorporate the lateral flow and subgrid heterogeneity. The model consists of 11 soil-hydrology layers to predict lateral as well as vertical moisture flux transport based on Richard's equations. The primary surface boundary conditions (SBCs) include surface elevation and its derivatives, land cover category, sand and clay fraction profiles, bedrock depth and fractional vegetation cover. A consistent global GIS-based dataset is constructed for the SBCs of the model from existing observational datasets comprising of various resolutions, map projections and data formats. Global ECMWF data at 6-hour time steps for the period 1971 through 2000 is processed to get the forcing data which includes incoming longwave and shortwave radiation, precipitation, air temperature, pressure, wind components, boundary layer height and specific humidity. Land use land cover data, generated using IPCC scenarios for every 10 years from 2000 to 2100 is used for future assessment on water resources. Alterations due to LULCC on surface water balance components: ET, groundwater recharge and runoff are then addressed in the study. Land

  6. Sensitivity analysis of the GEMS soil organic carbon model to land cover land use classification uncertainties under different climate scenarios in Senegal (United States)

    Dieye, A.M.; Roy, David P.; Hanan, N.P.; Liu, S.; Hansen, M.; Toure, A.


    Spatially explicit land cover land use (LCLU) change information is needed to drive biogeochemical models that simulate soil organic carbon (SOC) dynamics. Such information is increasingly being mapped using remotely sensed satellite data with classification schemes and uncertainties constrained by the sensing system, classification algorithms and land cover schemes. In this study, automated LCLU classification of multi-temporal Landsat satellite data were used to assess the sensitivity of SOC modeled by the Global Ensemble Biogeochemical Modeling System (GEMS). The GEMS was run for an area of 1560 km2 in Senegal under three climate change scenarios with LCLU maps generated using different Landsat classification approaches. This research provides a method to estimate the variability of SOC, specifically the SOC uncertainty due to satellite classification errors, which we show is dependent not only on the LCLU classification errors but also on where the LCLU classes occur relative to the other GEMS model inputs.

  7. Soil resources, land cover changes and rural areas: towards a spatial mismatch? (United States)

    Ferrara, Agostino; Salvati, Luca; Sabbi, Alberto; Colantoni, Andrea


    The present study analyzes the impact of long-term urban expansion on soil depletion in Emilia-Romagna, an agricultural-specialized region of northern Italy. Using settlement density maps at three points in time (1945, 1971 and 2001) dense and diffused urbanization trends were assessed and correlated with soil quality. Non-urbanized land decreased from 11.8% in 1945 to 6.3% in 2001. Urbanization dynamics between 1945 and 1971 reflect the increase of dense settlements around pre-existing urban centers. To the contrary, a discontinuous, low- and medium-density urban expansion along the road network and in the most fertile lowland areas was observed between 1971 and 2001. Overall, urbanization consumed soils with progressively higher quality. However, a diverging trend was observed in the two investigated time intervals: soil with high quality was occupied by compact and dense settlements during 1945-1971 and by discontinuous, medium- and low-density settlements during 1971-2001. These findings document the polarization in areas with low and high soil capital and may reflect disparities in agricultural production and increasing environmental degradation. Moreover, the analysis shows a diverging trend between land and soil consumption patterns suggesting that the edification of pervious land is an unreliable indicator of soil quality depletion. Taken together, the results of this study illustrate the (increasing) spatial mismatch between agricultural land and high-quality soils as a consequence of urbanization-driven landscape transformations and may inform measures to contain soil depletion driven by economic growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Vegetation cover and land use impacts on soil water repellency in an Urban Park located in Vilnius, Lithuania (United States)

    Pereira, Paulo; Cerda, Artemi


    It is strongly recognized that vegetation cover, land use have important impacts on the degree of soil water repellency (SWR). Soil water repellency is a natural property of soils, but can be induced by natural and anthropogenic disturbances as fire and soil tillage (Doerr et al., 2000; Urbanek et al., 2007; Mataix-Solera et al., 2014). Urban parks are areas where soils have a strong human impact, with implications on their hydrological properties. The aim of this work is to study the impact of different vegetations cover and urban soils impact on SWR and the relation to other soil variables as pH, Electrical Conductivity (EC) and soil organic matter (SOM) in an urban park. The study area is located in Vilnius city (54°.68' N, 25°.25' E). It was collected 15 soil samples under different vegetation cover as Pine (Pinus Sylvestris), Birch (Alnus glutinosa), Penduculate Oak (Quercus robur), Platanus (Platanus orientalis) and other human disturbed areas as forest trails and soils collected from human planted grass. Soils were taken to the laboratory, air-dried at room temperature and sieved with the 3600 (extremely water repellent). The results showed significant differences among the different vegetation cover (Kruskal-Wallis H=20.64, ppost-fire management scenarios, CGL2013-47862-C2-1-R), funded by the Spanish Ministry of Economy and Competitiveness; Fuegored; RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecting European connectivity research). References Bisdom, E.B.A., Dekker, L., Schoute, J.F.Th. (1993) Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105-118. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. (2000) Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 33-65. Doerr, S.H. (1998

  9. The impact of land use and land cover changes on solute dynamics in seepage water of soil from karst hillslopes of Southwest China

    Energy Technology Data Exchange (ETDEWEB)

    Ding Hu; Lang Yunchao [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46th Guanshui Road, Guiyang 550002 (China); Liu Congqiang, E-mail: [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46th Guanshui Road, Guiyang 550002 (China)


    Land use and land cover changes can cause variations in terrestrial energy, water balance and availability of nutrients. To understand the role of vegetation in regulating the hydrochemistry of karst hillslopes, overland flow and soil seepage water from two hillslopes covered with and without vegetation were studied in the Huanjiang Observation and Research Station for Karst Ecosystems, Guangxi, SW China. Dissolved major ions, as well as isotopic compositions of dissolved inorganic C (DIC) were examined. Water from the vegetated control slope had higher solute concentrations (except NO{sub 3}{sup -}) and lower {delta}{sup 13}C values than water from the disturbed slope. The dynamics of K{sup +} and NO{sub 3}{sup -} in soil water sampled in time-sequence from the control slope was different from the disturbed slope. Specifically, K{sup +} and NO{sub 3}{sup -} concentrations of the control slope decreased gradually over time, while K{sup +} and NO{sub 3}{sup -} concentrations of the disturbed slope increased, and other ionic concentrations increased in both of the slopes.

  10. Watershed Analysis of Nitrate Transport as a Result of Agricultural Inputs for Varying Land Use/Land Cover and Soil Type (United States)

    Scott, M. E.; Sykes, J. F.


    The Grand River Watershed is one of the largest watersheds in southwestern Ontario with an area of approximately 7000 square kilometers. Ninety percent of the watershed is classified as rural, and 80 percent of the watershed population relies on groundwater as their source of drinking water. Management of the watershed requires the determination of the effect of agricultural practices on long-term groundwater quality and to identify locations within the watershed that are at a higher risk of contamination. The study focuses on the transport of nitrate through the root zone as a result of agricultural inputs with attenuation due to biodegradation. The driving force for transport is spatially and temporally varying groundwater recharge that is a function of land use/land cover, soil and meteorological inputs that yields 47,229 unique soil columns within the watershed. Fertilizer sources are determined from Statistics Canada's Agricultural Census and include livestock manure and a popular commercial fertilizer, urea. Accounting for different application rates yields 60,066 unique land parcels of which 22,809 are classified as croplands where manure and inorganic fertilizes are directly applied. The transport for the croplands is simulated over a 14-year period to investigate the impact of seasonal applications of nitrate fertilizers on the concentration leaching from the root zone to the water table. Based on land use/land cover maps, ArcView GIS is used to define the location of fertilizer applications within the watershed and to spatially visualize data and analyze results. The large quantity of input data is stored and managed using MS-Access and a relational database management system. Nitrogen transformations and ammonium and nitrate uptake by plants and transport through the soil column are simulated on a daily basis using Visual Basic for Applications (VBA) within MS-Access modules. Nitrogen transformations within the soil column were simplified using

  11. Effects of plant cover on soil N mineralization during the growing season in a sandy soil (United States)

    Yao, Y.; Shao, M.; Wei, X.; Fu, X.


    Soil nitrogen (N) mineralization and its availability plays a vital role in regulating ecosystem productivity and C cycling, particularly in semiarid and desertified ecosystems. To determine the effect of plant cover on N turnover in a sandy soil ecosystem, we measured soil N mineralization and inorganic N pools in soil solution during growing season in a sandy soil covered with various plant species (Artemisia desertorum, Salix psammophila, and Caragana korshinskii). A bare sandy soil without any plant was selected as control. Inorganic N pools and N mineralization rates decreased overtime during the growing season, and were not affected by soil depth in bare land soils, but were significantly higher at the 0-10 cm layer than those at the 10-20 cm soil layer under any plant species. Soil inorganic N pool was dominated by ammonium, and N mineralization was dominated by nitrification regardless of soil depth and plant cover. Soils under C. korshinskii have significant higher inorganic N pools and N mineralization rate than soils under bare land and A. desertorum and S. psammophila, and the effects of plant cover were greater at the 0-10 cm soil layer than at the 10-20 cm layer. The effects of C. korshinskii on soil inorganic N pools and mineralization rate varied with the stage of growing season, with greater effects on N pools in the middle growing season, and greater effects on mineralization rate at the last half of the growing season. The results from this study indicate that introduction of C. korshinskii has the potential to increase soil N turnover and availability in sandy soils, and thus to decrease N limitation. Caragana korshinskii is therefore recommend for the remediation of the desertified land.

  12. Impact of land cover and land use change on runoff characteristics. (United States)

    Sajikumar, N; Remya, R S


    Change in Land Cover and Land Use (LCLU) influences the runoff characteristics of a drainage basin to a large extent, which in turn, affects the surface and groundwater availability of the area, and hence leads to further change in LCLU. This forms a vicious circle. Hence it becomes essential to assess the effect of change in LCLU on the runoff characteristics of a region in general and of small watershed levels (sub-basin levels) in particular. Such an analysis can effectively be carried out by using watershed simulation models with integrated GIS frame work. SWAT (Soil and Water Analysis Tool) model, being one of the versatile watershed simulation models, is found to be suitable for this purpose as many GIS integration modules are available for this model (e.g. ArcSWAT, MWSWAT). Watershed simulation using SWAT requires the land use and land cover data, soil data and many other features. With the availability of repository of satellite imageries, both from Indian and foreign sources, it becomes possible to use the concurrent local land use and land cover data, thereby enabling more accurate modelling of small watersheds. Such availability will also enable us to assess the effect of LCLU on runoff characteristics and their reverse impact. The current study assesses the effect of land use and land cover on the runoff characteristics of two watersheds in Kerala, India. It also assesses how the change in land use and land cover in the last few decades affected the runoff characteristics of these watersheds. It is seen that the reduction in the forest area amounts to 60% and 32% in the analysed watersheds. However, the changes in the surface runoff for these watersheds are not comparable with the changes in the forest area but are within 20%. Similarly the maximum (peak) value of runoff has increased by an amount of 15% only. The lesser (aforementioned) effect than expected might be due to the fact that forest has been converted to agricultural purpose with major

  13. Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management. (United States)

    Kooch, Yahya; Moghimian, Negar; Bayranvand, Mohammad; Alberti, Giorgio


    Conversions of land use/cover are associated with changes in soil properties and biogeochemical cycling, with implications for carbon (C), nitrogen (N), and trace gas fluxes. In an attempt to provide a comprehensive evaluation of the significance of different land uses (Alnus subcordata plantation, Taxodium distichum plantation, agriculture, and deforested areas) on soil features and on the dynamics of greenhouse gas (GHG) fluxes at local scale, this study was carried out in Mazandaran province, northern Iran. Sixteen samples per land use, from the top 10 cm of soil, were taken, from which bulk density, texture, water content, pH, organic C, total N, microbial biomass of C and N, and earthworm density/biomass were determined. In addition, the seasonal changes in the fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored over a year. Our results indicated that the different land uses were different in terms of soil properties and GHG fluxes. Even though the amount of the GHG varied widely during the year, the highest CO2 and CH4 fluxes (0.32 mg CO2 m(-2) day(-1) and 0.11 mg CH4 m(-2) day(-1), respectively) were recorded in the deforested areas. N2O flux was higher in Alnus plantation (0.18 mg N2O m(-2) day(-1)) and deforested areas (0.17 mg N2O m(-2) day(-1)) than at agriculture site (0.05 mg N2O m(-2) day(-1)) and Taxodium plantation (0.03 mg N2O m(-2) day(-1)). This study demonstrated strong impacts of land use change on soil-atmosphere trace gas exchanges and provides useful observational constraints for top-down and bottom-up biogeochemistry models.

  14. Land cover change detection of Hatiya Island, Bangladesh, using remote sensing techniques (United States)

    Kumar, Lalit; Ghosh, Manoj Kumer


    Land cover change is a significant issue for environmental managers for sustainable management. Remote sensing techniques have been shown to have a high probability of recognizing land cover patterns and change detection due to periodic coverage, data integrity, and provision of data in a broad range of the electromagnetic spectrum. We evaluate the applicability of remote sensing techniques for land cover pattern recognition, as well as land cover change detection of the Hatiya Island, Bangladesh, and quantify land cover changes from 1977 to 1999. A supervised classification approach was used to classify Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM), and Multispectral Scanner (MSS) images into eight major land cover categories. We detected major land cover changes over the 22-year study period. During this period, marshy land, mud, mud with small grass, and bare soil had decreased by 85%, 46%, 44%, and 24%, respectively, while agricultural land, medium forest, forest, and settlement had positive changes of 26%, 45%, 363%, and 59%, respectively. The primary drivers of such landscape change were erosion and accretion processes, human pressure, and the reforestation and land reclamation programs of the Bangladesh Government.

  15. "Land-Cover Conversion in Amazonia, The Role of ENV" Ironment and Substrate composition in Modifying SOI (United States)

    Roberts, Dar A.; Chadwick, Oliver A.; Batista, Getulio T.


    LBA research from the first phase of LBA focused on three broad categories: 1) mapping land cover and quantifying rates of change, persistence of pasture, and area of recovering forest; 2) evaluating the role of environmental factors and land-use history on soil biogeochemistry; and 3) quantifying the natural and human controls on stream nutrient concentrations. The focus of the research was regional, concentrating primarily in the state of RondBnia, but also included land-cover mapping in the vicinity of Maraba, Para, and Manaus, Amazonas. Remote sensing analysis utilized Landsat Thematic Mapper (TM) and Multispectral Scanner (MS S) data to map historical patterns of land-cover change. Specific questions addressed by the remote sensing component of the research included: 1) what is the areal extent of dominant land-cover classes? 2) what are the rates of change of dominant land cover through processes of deforestation, disturbance and regeneration? and 3) what are the dynamic properties of each class that characterize temporal variability, duration, and frequency of repeat disturbance? Biogeochemical analysis focused on natural variability and impacts of land-use/land-cover changes on soil and stream biogeochemical properties at the regional scale. An emphasis was given to specific soil properties considered to be primary limiting factors regionally, including phosphorus, nitrogen, base cations and cation-exchange properties. Stream sampling emphasized the relative effects of the rates and timing of land-cover change on stream nutrients, demonstrating that vegetation conversion alone does not impact nutrients as much as subsequent land use and urbanization.

  16. The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study. (United States)

    Bajocco, S; De Angelis, A; Perini, L; Ferrara, A; Salvati, L


    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  17. The Impact of Land Use/Land Cover Changes on Land Degradation Dynamics: A Mediterranean Case Study (United States)

    Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L.


    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  18. Decay Functions of Soil Moisture: Implications for Land Cover Controls on Actual Evapotranspiration During the Wet Season of a West-African Savanna (United States)

    Bassiouni, M.; Ceperley, N. C.; Mande, T.; Parlange, M. B.


    The West-African savanna experiences extreme seasonal climate. The role of vegetation and the impact of agriculture on the regional hydrology of these areas are not well understood. A better understanding of such phenomena is crucial, as water resources are becoming unstable and populations dependent on rain-fed agriculture are more vulnerable. This study examines soil moisture dynamics during the 2010 rainy season in the Singou River Basin, Burkina Faso. Volumetric soil water content and meteorological data are collected from seven stations of a wireless sensor network. This network covers representative types of land cover in the watershed including riverbank, wetland, open savanna, agricultural parkland, and forested upland savanna. Vegetation was also surveyed throughout the season. Here, we present parameterizations and exploratory analysis of soil moisture decay functions at each station considered. Results are compared to the seasonal evolution of soil moisture storage, potential evapotranspiration and vegetation density. Preliminary results suggest these soil moisture measurements may be essential to understanding actual evapotranspiration and the hydrological influence of the types of land cover in the watershed over time. These findings contribute to improved modeling of the ecohydrological behavior of the Singou River Basin and up-scaling of the sensor network data for regional water management purposes as part of an integrated research and development project, Info4Dourou.

  19. Land-cover change detection (United States)

    Chen, Xuexia; Giri, Chandra; Vogelmann, James


    Land cover is the biophysical material on the surface of the earth. Land-cover types include grass, shrubs, trees, barren, water, and man-made features. Land cover changes continuously.  The rate of change can be either dramatic and abrupt, such as the changes caused by logging, hurricanes and fire, or subtle and gradual, such as regeneration of forests and damage caused by insects (Verbesselt et al., 2001).  Previous studies have shown that land cover has changed dramatically during the past sevearal centuries and that these changes have severely affected our ecosystems (Foody, 2010; Lambin et al., 2001). Lambin and Strahlers (1994b) summarized five types of cause for land-cover changes: (1) long-term natural changes in climate conditions, (2) geomorphological and ecological processes, (3) human-induced alterations of vegetation cover and landscapes, (4) interannual climate variability, and (5) human-induced greenhouse effect.  Tools and techniques are needed to detect, describe, and predict these changes to facilitate sustainable management of natural resources.


    African Journals Online (AJOL)


    and 9.7 % were 1.045, 1.070, 1.100, 2.266 and 3.121 kg, respectively. Vegetative cover soil with grasses reduced the runoff volume and soil loss. Runoff volume and soil loss increased as slope of the land increases. Keywords: erodibility, erosion, erosivity, rainfall simulator, soil loss,. INTRODUCTION. Erosion is a serious ...

  1. Land cover and water yield: inference problems when comparing catchments with mixed land cover

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk


    Full Text Available Controlled experiments provide strong evidence that changing land cover (e.g. deforestation or afforestation can affect mean catchment streamflow (Q. By contrast, a similarly strong influence has not been found in studies that interpret Q from multiple catchments with mixed land cover. One possible reason is that there are methodological issues with the way in which the Budyko framework was used in the latter type studies. We examined this using Q data observed in 278 Australian catchments and by making inferences from synthetic Q data simulated by a hydrological process model (the Australian Water Resources Assessment system Landscape model. The previous contrasting findings could be reproduced. In the synthetic experiment, the land cover influence was still present but not accurately detected with the Budyko- framework. Likely sources of interpretation bias demonstrated include: (i noise in land cover, precipitation and Q data; (ii additional catchment climate characteristics more important than land cover; and (iii covariance between Q and catchment attributes. These methodological issues caution against the use of a Budyko framework to quantify a land cover influence in Q data from mixed land-cover catchments. Importantly, however, our findings do not rule out that there may also be physical processes that modify the influence of land cover in mixed land-cover catchments. Process model simulations suggested that lateral water redistribution between vegetation types and recirculation of intercepted rainfall may be important.

  2. Completion of the National Land Cover Database (NLCD) 1992-2001 Land Cover Change Retrofit Product (United States)

    The Multi-Resolution Land Characteristics Consortium has supported the development of two national digital land cover products: the National Land Cover Dataset (NLCD) 1992 and National Land Cover Database (NLCD) 2001. Substantial differences in imagery, legends, and methods betwe...

  3. Engineered soil covers for management of salt impacted sites

    International Nuclear Information System (INIS)

    Sweeney, D.A.; Tratch, D.J.


    The use of engineered soil cover systems to mitigate environmental impacts from tailings and waste rock piles is becoming an accepted practice. This paper presented design concepts for soil covers related to reclamation practices in the mining industry as an effective risk management practice at salt impacted sites. Research and field programs have demonstrated that a layered engineered soil cover can reduce or eliminate infiltration. Key components of the system included re-establishing surface vegetation to balance precipitation fluxes with evapotranspiration potential, and design of a capillary break below the rooting zone to minimize deeper seated infiltration. It was anticipated that the incorporation of a vegetation cover and a capillary break would minimize infiltration into the waste rock or tailing pile and reduce the generation of acid rock drainage (ARD). Design of a layered soil cover requires the incorporation of meteorological data, moisture retention characteristics of the impacted soils, and proposed engineered cover materials. Performance of the soil cover was predicted using a finite element model combined with meteorological data from the site area, unsaturated soil properties of the parent sub-surface soils and potential covered materials. The soil cover design consisted of re-vegetation and a loose clay cover overlying a compacted till layer. The design was conducted for an off site release of salt impacted pasture land adjacent to a former highway maintenance yard. The model predicted minimal infiltration during high precipitation events and no infiltration during low precipitation events. Results indicated that the proposed soil cover would enable re-establishment of a productive agricultural ground cover, as well as minimizing the potential for additional salt migration. It was concluded that further research and development is needed to ensure that the cover system is an acceptable method for long-term risk management. 17 refs., 5 figs

  4. Temporal stability of soil moisture under different land uses/cover in the Loess Plateau based on a finer spatiotemporal scale


    Zhou, J.; Fu, B. J.; Lü, N.; Gao, G. Y.; Lü, Y. H.; Wang, S.


    The Temporal stability of soil moisture (TSSM) is an important factor to evaluate the value of available water resources in a water-controlled ecosystem. In this study we used the evapotranspiration-TSSM (ET-TSSM) model and a new sampling design to examine the soil water dynamics and water balance of different land uses/cover types in a hilly landscape of the Loess Plateau under a finer spatiotemporal scale. Our primary focus is to examine the difference amo...

  5. Water Resources Response to Climate and Land-Cover Changes in a Semi-Arid Watershed, New Mexico, USA

    Directory of Open Access Journals (Sweden)

    Joonghyeok Heo


    Full Text Available This research evaluates a climate-land cover-water resources interconnected system in a semi-arid watershed with minimal human impact from 1970 - 2009. We found _ increase in temperature and 10.9% decrease in precipitation. The temperature exhibited a lower increase trend and precipitation showed a similar decrease trend compared to previous studies. The dominant land-cover change trend was grass and forest conversion into bush/shrub and developed land and crop land into barren and grass land. These alterations indicate that changes in temperature and precipitation in the study area may be linked to changes in land cover, although human intervention is recognized as the major land-cover change contributor for the short term. These alterations also suggest that decreasing human activity in the study area leads to developed land and crop land conversion into barren and grass land. Hydrological responses to climate and land-cover changes for surface runoff, groundwater discharge, soil water content and evapotranspiration decreased by 10.2, 10.0, 4.1, and 10.5%, respectively. Hydrological parameters generally follow similar trends to that of precipitation in semi-arid watersheds with minimal human development. Soil water content is sensitive to land-cover change and offset relatively by the changes in precipitation.

  6. Completion of the National Land Cover Database (NLCD) 1992–2001 Land Cover Change Retrofit product (United States)

    Fry, J.A.; Coan, Michael; Homer, Collin G.; Meyer, Debra K.; Wickham, J.D.


    The Multi-Resolution Land Characteristics Consortium has supported the development of two national digital land cover products: the National Land Cover Dataset (NLCD) 1992 and National Land Cover Database (NLCD) 2001. Substantial differences in imagery, legends, and methods between these two land cover products must be overcome in order to support direct comparison. The NLCD 1992-2001 Land Cover Change Retrofit product was developed to provide more accurate and useful land cover change data than would be possible by direct comparison of NLCD 1992 and NLCD 2001. For the change analysis method to be both national in scale and timely, implementation required production across many Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) path/rows simultaneously. To meet these requirements, a hybrid change analysis process was developed to incorporate both post-classification comparison and specialized ratio differencing change analysis techniques. At a resolution of 30 meters, the completed NLCD 1992-2001 Land Cover Change Retrofit product contains unchanged pixels from the NLCD 2001 land cover dataset that have been cross-walked to a modified Anderson Level I class code, and changed pixels labeled with a 'from-to' class code. Analysis of the results for the conterminous United States indicated that about 3 percent of the land cover dataset changed between 1992 and 2001.

  7. Building a Continental Scale Land Cover Monitoring Framework for Australia (United States)

    Thankappan, Medhavy; Lymburner, Leo; Tan, Peter; McIntyre, Alexis; Curnow, Steven; Lewis, Adam


    Land cover information is critical for national reporting and decision making in Australia. A review of information requirements for reporting on national environmental indicators identified the need for consistent land cover information to be compared against a baseline. A Dynamic Land Cover Dataset (DLCD) for Australia has been developed by Geoscience Australia and the Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES) recently, to provide a comprehensive and consistent land cover information baseline to enable monitoring and reporting for sustainable farming practices, water resource management, soil erosion, and forests at national and regional scales. The DLCD was produced from the analysis of Enhanced Vegetation Index (EVI) data at 250-metre resolution derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the period from 2000 to 2008. The EVI time series data for each pixel was modelled as 12 coefficients based on the statistical, phenological and seasonal characteristics. The time series were then clustered in coefficients spaces and labelled using ancillary information on vegetation and land use at the catchment scale. The accuracy of the DLCD was assessed using field survey data over 25,000 locations provided by vegetation and land management agencies in State and Territory jurisdictions, and by ABARES. The DLCD is seen as the first in a series of steps to build a framework for national land cover monitoring in Australia. A robust methodology to provide annual updates to the DLCD is currently being developed at Geoscience Australia. There is also a growing demand from the user community for land cover information at better spatial resolution than currently available through the DLCD. Global land cover mapping initiatives that rely on Earth observation data offer many opportunities for national and international programs to work in concert and deliver better outcomes by streamlining efforts on development and

  8. Effect of land use change on soil properties and functions (United States)

    Tonutare, Tonu; Kõlli, Raimo; Köster, Tiina; Rannik, Kaire; Szajdak, Lech; Shanskiy, Merrit


    For good base of sustainable land management and ecologically sound protection of soils are researches on soil properties and functioning. Ecosystem approach to soil properties and functioning is equally important in both natural and cultivated land use conditions. Comparative analysis of natural and agro-ecosystems formed on similar soil types enables to elucidate principal changes caused by land use change (LUC) and to elaborate the best land use practices for local pedo-ecological conditions. Taken for actual analysis mineral soils' catena - rendzina → brown soils → pseudopodzolic soils → gley-podzols - represent ca 1/3 of total area of Estonian normal mineral soils. All soils of this catena differ substantially each from other by calcareousness, acidity, nutrition conditions, fabric and humus cover type. This catena (representative to Estonian pedo-ecological conditions) starts with drought-prone calcareous soils. Brown (distributed in northern and central Estonia) and pseudopodzolic soils (in southern Estonia) are the most broadly acknowledged for agricultural use medium-textured high-quality automorphic soils. Dispersedly distributed gley-podzols are permanently wet and strongly acid, low-productivity sandy soils. In presentation four complex functions of soils are treated: (1) being a suitable soil environment for plant cover productivity (expressed by annual increment, Mg ha-1 yr-1); (2) forming adequate conditions for decomposition, transformation and conversion of fresh falling litter (characterized by humus cover type); (3) deposition of humus, individual organic compounds, plant nutrition elements, air and water, and (4) forming (bio)chemically variegated active space for soil type specific edaphon. Capacity of soil cover as depositor (3) depends on it thickness, texture, calcareousness and moisture conditions. Biological activity of soil (4) is determined by fresh organic matter influx, quality and quantity of biochemical substances and humus

  9. Current and historical land use influence soil-based ecosystem services in an urban landscape. (United States)

    Ziter, Carly; Turner, Monica G


    Urban landscapes are increasingly recognized as providing important ecosystem services (ES) to their occupants. Yet, urban ES assessments often ignore the complex spatial heterogeneity and land-use history of cities. Soil-based services may be particularly susceptible to land-use legacy effects. We studied indicators of three soil-based ES, carbon storage, water quality regulation, and runoff regulation, in a historically agricultural urban landscape and asked (1) How do ES indicators vary with contemporary land cover and time since development? (2) Do ES indicators vary primarily among land-cover classes, within land-cover classes, or within sites? (3) What is the relative contribution of urban land-cover classes to potential citywide ES provision? We measured biophysical indicators (soil carbon [C], available phosphorus [P], and saturated hydraulic conductivity [K s ]) in 100 sites across five land-cover classes, spanning an ~125-year gradient of time since development within each land-cover class. Potential for ES provision was substantial in urban green spaces, including developed land. Runoff regulation services (high K s ) were highest in forests; water quality regulation (low P) was highest in open spaces and grasslands; and open spaces and developed land (e.g., residential yards) had the highest C storage. In developed land covers, both C and P increased with time since development, indicating effects of historical land-use on contemporary ES and trade-offs between two important ES. Among-site differences accounted for a high proportion of variance in soil properties in forests, grasslands, and open space, while residential areas had high within-site variability, underscoring the leverage city residents have to improve urban ES provision. Developed land covers contributed most ES supply at the citywide scale, even after accounting for potential impacts of impervious surfaces. Considering the full mosaic of urban green space and its history is needed to

  10. Soil cover patterns and dynamics impact on GHG fluxes in RF native and man-changed ecosystems (United States)

    Vasenev, Ivan; Nesterova, Olga


    The increased soil spatial-temporal variability is mutual feature for most mature natural and particularly man-changed terrestrial ecosystems in Central and Far-East regions of Russia with soil cover strongly pronounced bioclimatic zoning and landscape-geomorphologic differentiation. Soil cover patterns (SCP) detailed morphogenetic analysis and typification is useful tool for soil forming and degradation processes quantitative evaluation, land ecological state and functional quality quantitative assessment. Quantitative analysis and functional-ecological interpretation of representative SCP spatial variability is especially important for environmentally friendly and demand-driven land-use planning and decision making. The carried out 33-years region- and local-scale researches of the wide zonal-provincial set of representative ecosystems and SCP with different types and history of land-use (forest, meadow-steppe, agricultural and recreational ones) give us the interregional multi-factorial matrix of elementary soil cover patterns (ESCP) with different land-use practices and history, soil-geomorphologic features, environmental and microclimate conditions. Succession process-based analysis of modern evolution of man-changed and natural soils and ESCP essentially increases accuracy of quantitative assessments of dominant soil forming and degradation processes rate and potential, their influence on land and soil cover quality and ecosystem services. Their results allow developing the regional and landscape adapted versions of automated land evaluation systems and land-use DSS. The validation and ranging of the limiting factors of ESCP regulation and develop¬ment, ecosystem principal services (with especial attention on greenhouse gases emissions, soil carbon dynamics and sequestration potential, biodiversity and productivity, hydrological regimes and geomorphologic stabilization), land functional qualities and agroecological state have been done for dominating and

  11. Patterns of in-soil methane production and atmospheric emission among different land covers of a Lake Erie estuarine wetland (United States)

    Rey Sanchez, C.; Morin, T. H.; Stefanik, K. C.; Angle, J.; Wrighton, K. C.; Bohrer, G.


    Wetland soils store a great amount of carbon, but also accumulate and emit methane (CH4), a powerful greenhouse gas. To better understand the vertical and horizontal spatial variability of CH4 emissions, we monitored production and fluxes of CH4 in Old Woman Creek, an estuarine wetland of Lake Erie, Ohio, during the growing seasons of 2015 and 2016. Our combined observation methods targeted three different scales: 1) the eddy covariance technique provided continuous high frequency observations integrated over a large spatial footprint; 2) monthly chamber measurements provided sparse point measurements of fluxes in four distinct land-cover types in the wetland: open water, emergent vegetation (Typha spp.), floating vegetation (Nelumbo spp.) and mud flats; and 3) in-situ porewater dialysis samplers, "peepers", provided vertical CH4 concentration data in the soil at the same locations and temporal time steps as the chambers. In addition, we studied gene transcripts to quantify methanogenesis activity along the vertical soil profile. Using integrated chamber and EC measurements, we found an average surface emission rate from Typha, the most abundant vegetated land cover, of 219.4 g CH4-C m-2 y-1, which was much higher than rates reported in similar emergent vegetation types in other wetlands. There was large spatial variation of flux rates, with mud flats having the highest rates of CH4 emission, followed by Nelumbo and Typha patches, and with open water having the lowest emissions. Within the soil column, we applied a numerical model to convert soil methane concentrations to emissions rates. We found that, contrary to current ideas of methane production, most methane was being produced in the well-oxygenated surface soils, probably in anoxic microsites within the oxic layer. Our metatranscriptomic data supported these findings, clearly showing nine times greater methanogenic activity in oxic surface soils relative to deeper anoxic soils. Combined, our results provide

  12. Application of remote sensing data to land use and land cover assessment in the Tubarao River coastal plain, Santa Catarina, Brazil (United States)


    By means of aerial photography and MSS-LANDSAT data a land use/land cover classification was applied to the Tubarao River coastal plain. The following classes were identified: coal related areas, permanently flooded wetlands, periodically flooded wetlands, agricultural lands, bare soils, water bodies, urban areas, forestlands.

  13. Impact of land cover changes on the South African climate

    International Nuclear Information System (INIS)

    Ngwana, T I; Demory, M-E; Vidale, P L; Plant, R S; Mbedzi, M P


    The Joint UK Land Environmental Simulator (JULES) was run offline to investigate the sensitivity of land surface type changes over South Africa. Sensitivity tests were made in idealised experiments where the actual land surface cover is replaced by a single homogeneous surface type. The vegetation surface types on which some of the experiments were made are static. Experimental tests were evaluated against the control. The model results show among others that the change of the surface cover results in changes of other variables such as soil moisture, albedo, net radiation and etc. These changes are also visible in the spin up process. The model shows different surfaces spinning up at different cycles. Because JULES is the land surface model of Unified Model, the results could be more physically meaningful if it is coupled to the Unified Model.

  14. Determining Topographic and Some Physical Characteristics of the Land in Artvin City and Investigating Relationship between These Characteristics with Land Cover

    Directory of Open Access Journals (Sweden)

    Ayşe Yavuz Özalp


    Full Text Available In this study, the aim was to determine topographic (elevation, slope, and aspect and some physical (Great Soil Groups (GSG and Land Use Capability Classes (LUCC characteristics of the land in Artvin and to reveal relations between these characteristics and land cover of the city that lies along the northeast border of Turkey and due to its natural resources, consists of several protected areas as well as many development projects -both planned and ongoing. Within this scope, areal and percentile distributions in respect to slope, aspect, elevation, GSG, LUCC and land cover were determined for eight towns of Artvin using digitized 1/25000 topographic and soil maps along with CORINE 2006 land cover map with the help of Geographical Information System (GIS. Then, distributions of chosen land use types (forest, agriculture, grassland/meadow were investigated according to the determined-ranges for the parameters of slope, aspect, elevation, GSG, and LUCC. The results showed that about 48.22% of Artvin’s whole land is between an elevation ranges of 1000 – 2000 m while 31.07% of the land lies above 2000 m. Moreover, average elevation of all the towns, except for Hopa, is over the country’s mean elevation of 1132 m and 81.25% of the city’s land consists of more than 30% slope, meaning that topography of the land in Artvin

  15. Sensitivity of selected landscape pattern metrics to land-cover misclassification and differences in land-cover composition (United States)

    James D. Wickham; Robert V. O' Neill; Kurt H. Riitters; Timothy G. Wade; K. Bruce Jones


    Calculation of landscape metrics from land-cover data is becoming increasingly common. Some studies have shown that these measurements are sensitive to differences in land-cover composition, but none are known to have tested also their a sensitivity to land-cover misclassification. An error simulation model was written to test the sensitivity of selected land-scape...

  16. Validation of land use / land cover changes for Denmark

    DEFF Research Database (Denmark)

    Levin, Gregor; Johannsen, Vivian Kvist; Caspersen, Ole Hjort


    This report presents applied methods and results for a validation of land use and land cover changes for 1990 and 2014-2016. Results indicate that generally, accuracies of land use and land cover. However, afforestation and particularly deforestation are significantly overestimated....

  17. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques. (United States)

    Nosrati, Kazem


    Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.

  18. Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots

    International Nuclear Information System (INIS)

    Yoshimura, Kazuya; Onda, Yuichi; Kato, Hiroaki


    Radiocaesium wash-off associated with soil erosion in different land use was monitored using USLE plots in Kawamata, Fukushima Prefecture, Japan after the Fukushima Dai-ichi Nuclear Power Plant accident. Parameters and factors relating to soil erosion and 137 Cs concentration in the eroded soil were evaluated based on the field monitoring and presented. The erosion of fine soil, which is defined as the fraction of soil overflowed along with discharged water from a sediment-trap tank, constituted a large proportion of the discharged radiocaesium. This indicated that the quantitative monitoring of fine soil erosion is greatly important for the accurate evaluation of radiocaesium wash-off. An exponential relationship was found between vegetation cover and the amount of eroded soil. Moreover, the radiocaesium concentrations in the discharged soil were greatly affected by the land use. These results indicate that radiocaesium wash-off related to vegetation cover and land use is crucially important in modelling radiocaesium migration. - Highlights: • Fine soil erosion showed large impact on radiocaesium wash-off. • Exponential relationship was found between vegetation cover and eroded soil. • Radiocaesium concentration in the discharged soil was depending on land use

  19. Influence of land development on stormwater runoff from a mixed land use and land cover catchment. (United States)

    Paule-Mercado, M A; Lee, B Y; Memon, S A; Umer, S R; Salim, I; Lee, C-H


    Mitigating for the negative impacts of stormwater runoff is becoming a concern due to increased land development. Understanding how land development influences stormwater runoff is essential for sustainably managing water resources. In recent years, aggregate low impact development-best management practices (LID-BMPs) have been implemented to reduce the negative impacts of stormwater runoff on receiving water bodies. This study used an integrated approach to determine the influence of land development and assess the ecological benefits of four aggregate LID-BMPs in stormwater runoff from a mixed land use and land cover (LULC) catchment with ongoing land development. It used data from 2011 to 2015 that monitored 41 storm events and monthly LULC, and a Personalized Computer Storm Water Management Model (PCSWMM). The four aggregate LID-BMPs are: ecological (S1), utilizing pervious covers (S2), and multi-control (S3) and (S4). These LID-BMPs were designed and distributed in the study area based on catchment characteristics, cost, and effectiveness. PCSWMM was used to simulate the monitored storm events from 2014 (calibration: R 2 and NSE>0.5; RMSE 0.5; RMSE runoff data and LULC change patterns (only 2015 for LID-BMPs) were used. Results show that the expansion of bare land and impervious cover, soil alteration, and high amount of precipitation influenced the stormwater runoff variability during different phases of land development. The four aggregate LID-BMPs reduced runoff volume (34%-61%), peak flow (6%-19%), and pollutant concentrations (53%-83%). The results of this study, in addition to supporting local LULC planning and land development activities, also could be applied to input data for empirical modeling, and designing sustainable stormwater management guidelines and monitoring strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Conversion of land use and cover in northwest Amazon (Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Antonio da Silva Junior


    Full Text Available The increasing use of natural resources in a disorderly way has been demanding constant monitoring and ecological-economic zoning. The knowledge on land use and cover allows that measures that guarantee the preservation, maintenance of the environment and space management be appropriate to the reality, since through these factors it is possible to follow the probable environmental impacts and the socioeconomic development of a place in several contexts. The Geographical Information System (GIS and remote sensing techniques have been applied to land use and land cover mapping. This study aimed to analyze the conversion of land use from different perspectives, concerning geoprocessing techniques, in the southeastern of Roraima State, Brazil, in two distinct periods. In order to verify the land use and cover, two analyses were conducted, using the Spring and TerraView softwares. Great part of the cultivated areas was converted into capoeira, what probably denotes an ending of profitable agriculture, as well as its abandonment caused by the nutritional deficiency of the soil, that became inappropriate for cultivation in the subsequent years. A fuzzy logic would possibly fit well to the types of data analyzed, because the attribute query is overly complex.

  1. Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga. (United States)

    Ribeiro, Kelly; Sousa-Neto, Eráclito Rodrigues de; Carvalho, João Andrade de; Sousa Lima, José Romualdo de; Menezes, Rômulo Simões Cezar; Duarte-Neto, Paulo José; da Silva Guerra, Glauce; Ometto, Jean Pierre Henry Baulbaud


    The Caatinga biome covers an area of 844,453km(2) and has enormous endemic biodiversity, with unique characteristics that make it an exclusive Brazilian biome. It falls within the earth's tropical zone and is one of the several important ecoregions of Brazil. This biome undergoes natural lengthy periods of drought that cause losses in crop and livestock productivity, having a severe impact on the population. Due to the vulnerability of this ecosystem to climate change, livestock has emerged as the main livelihood of the rural population, being the precursor of the replacement of native vegetation by grazing areas. This study aimed to measure GHG emissions from two different soil covers: native forest (Caatinga) and pasture in the municipality of São João, Pernambuco State, in the years 2013 and 2014. GHG measurements were taken by using static chamber techniques in both soil covers. According to a previous search, so far, this is the first study measuring GHG emissions using the static chamber in the Caatinga biome. N2O emissions ranged from -1.0 to 4.2mgm(-2)d(-1) and -1.22 to 3.4mgm(-2)d(-1) in the pasture and Caatinga, respectively, and they did not significantly differ from each other. Emissions were significantly higher during dry seasons. Carbon dioxide ranged from -1.1 to 14.1 and 1.2 to 15.8gm(-2)d(-1) in the pasture and Caatinga, respectively. CO2 emissions were higher in the Caatinga in 2013, and they were significantly influenced by soil temperature, showing an inverse relation. Methane emission ranged from 6.6 to 6.8 and -6.0 to 4.8mgm(-2)d(-1) in the pasture and Caatinga, respectively, and was significantly higher only in the Caatinga in the rainy season of 2014. Soil gas fluxes seemed to be influenced by climatic and edaphic conditions as well as by soil cover in the Caatinga biome. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Land Use and Land Cover - MO 2015 Silver Land Cover (GDB) (United States)

    NSGIC State | GIS Inventory — MoRAP produced and integrated data to map land cover and wetlands for the Upper Silver Creek Watershed in Illinois. LiDAR elevation and vegetation height information...

  3. Land Use and Land Cover - MO 2015 Meramec Land Cover (GDB) (United States)

    NSGIC State | GIS Inventory — MoRAP produced and integrated data to map land cover and wetlands for the Meramec River bottomland in Missouri. LiDAR elevation and vegetation height information and...

  4. Frozen soil and snow cover with respect to the hydrological land-surface behaviour; Gefrorener Boden und Schneebedeckung unter besonderer Beruecksichtigung des hydrologischen Verhaltens der Landoberflaeche

    Energy Technology Data Exchange (ETDEWEB)

    Warrach, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik


    Investigations of the water and energy cycle in the climate system using atmospheric circulation models require a proper representation of the land surface. The land-surface model SEWAB calculates the vertical exchange of water and energy between the atmosphere and the land-surface. This includes the calculation of runoff from the land-surface into the rivers and of the vertical heat and water fluxes within the soil. The inclusion of soil freezing and thawing and the accumulation and ablation of a snow cover in SEWAB is introduced. Additionally changes in the runoff calculation such as the inclusion of the TOPMODEL-approach to consider orographic effects are made. Applications carried out for various regions of North America show good agreement between model results and measurements. (orig.)

  5. Effect of land management models on soil erosion in wet tropical cacao plantations in Indonesia




    Indonesia is one of the world???s largest cocoa exporters and is located in a tropical wet region. In tropical regions, surface run off is a major factor behind the occurrence of erosion-driven land degradation. Both land slope and land cover influence the magnitude of surface run off and soil erosion. Cocoa plants are generally cultivated on land that has a steep slope without regard to existing land cover conditions resulting in a susceptibility to soil erosion. The purpose of this resea...

  6. Salt and N leaching and soil accumulation due to cover cropping practices (United States)

    Gabriel, J. L.; Quemada, M.


    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth

  7. Quality Evaluation of Land-Cover Classification Using Convolutional Neural Network (United States)

    Dang, Y.; Zhang, J.; Zhao, Y.; Luo, F.; Ma, W.; Yu, F.


    Land-cover classification is one of the most important products of earth observation, which focuses mainly on profiling the physical characters of the land surface with temporal and distribution attributes and contains the information of both natural and man-made coverage elements, such as vegetation, soil, glaciers, rivers, lakes, marsh wetlands and various man-made structures. In recent years, the amount of high-resolution remote sensing data has increased sharply. Accordingly, the volume of land-cover classification products increases, as well as the need to evaluate such frequently updated products that is a big challenge. Conventionally, the automatic quality evaluation of land-cover classification is made through pixel-based classifying algorithms, which lead to a much trickier task and consequently hard to keep peace with the required updating frequency. In this paper, we propose a novel quality evaluation approach for evaluating the land-cover classification by a scene classification method Convolutional Neural Network (CNN) model. By learning from remote sensing data, those randomly generated kernels that serve as filter matrixes evolved to some operators that has similar functions to man-crafted operators, like Sobel operator or Canny operator, and there are other kernels learned by the CNN model that are much more complex and can't be understood as existing filters. The method using CNN approach as the core algorithm serves quality-evaluation tasks well since it calculates a bunch of outputs which directly represent the image's membership grade to certain classes. An automatic quality evaluation approach for the land-cover DLG-DOM coupling data (DLG for Digital Line Graphic, DOM for Digital Orthophoto Map) will be introduced in this paper. The CNN model as an robustness method for image evaluation, then brought out the idea of an automatic quality evaluation approach for land-cover classification. Based on this experiment, new ideas of quality evaluation

  8. The influence of land-use and land-management on Soil Organic Carbon concentrations: Limitations of making predictions using only soil order data (United States)

    Bell, M. J.; Worrall, F.


    In light of recent concern over the extent of global warming and the role of soil carbon as a potential store of atmospheric carbon, there is increasing demand for regions to estimate their current soil organic carbon (SOC) stocks with the greatest possible accuracy. Several previous attempts at calculating SOC baselines at global, national or regional scale have used mean values for soil orders and multiplied these values by the mapped areas of the soils they represent. Other methods have approached the task from a land cover point of view, making estimates using only land-use, or soil order/land-use combinations and others have included variables such as altitude, climate and soil texture. This study aimed to assess the major controls on SOC concentrations (%SOC) at the National Trust Wallington estate in Northumberland, NE England (area = 55km2) where an extensive soil sampling campaign was used to test what level of accuracy could be achieved in modelling the %SOC values on the Estate. Mapped %SOC values were compared to the values predicted from The National Soils Resources Institute (NSRI) representative soil profile data for major soil group, soil series and land-use corrected soil series values, as well as land-use/major soil group combinations from the Countryside Survey database. The results of this study can be summarised as follows: When only soil series or land-use were used as predictors only 48% and 44% of the variation in the dataset were explained. When soil series/land-use combinations were used explanatory power increased to 57% both altitude and soil pH are major controls on %SOC and including these variables gave an improvement to 59% A further improvement from 59% to 66% in the ability to predict %SOC levels at point locations when farm tenancy was included indicates that differences in land-management practices between farm tenancies explained more of the variation than either soil series or land-use in %SOC. Further work will involve a


    Directory of Open Access Journals (Sweden)

    S. A. Rahaman


    Full Text Available Nowadays land use/ land cover in mountain landscape is in critical condition; it leads to high risky and uncertain environments. These areas are facing multiple stresses including degradation of land resources; vagaries of climate and depletion of water resources continuously affect land use practices and livelihoods. To understand the Land use/Land cover (Lu/Lc changes in a semi-arid mountain landscape, Kallar watershed of Bhavani basin, in southern India has been chosen. Most of the hilly part in the study area covers with forest, plantation, orchards and vegetables and which are highly affected by severe soil erosion, landslide, frequent rainfall failures and associated drought. The foothill regions are mainly utilized for agriculture practices; due to water scarcity and meagre income, the productive agriculture lands are converted into settlement plots and wasteland. Hence, land use/land cover change deduction; a stochastic processed based method is indispensable for future prediction. For identification of land use/land cover, and vegetation changes, Landsat TM, ETM (1995, 2005 and IRS P6- LISS IV (2015 images were used. Through CAMarkov chain analysis, Lu/Lc changes in past three decades (1995, 2005, and 2015 were identified and projected for (2020 and 2025; Normalized Difference Vegetation Index (NDVI were used to find the vegetation changes. The result shows that, maximum changes occur in the plantation and slight changes found in forest cover in the hilly terrain. In foothill areas, agriculture lands were decreased while wastelands and settlement plots were increased. The outcome of the results helps to farmer and policy makers to draw optimal lands use planning and better management strategies for sustainable development of natural resources.

  10. Land Use/land Cover Changes in Semi-Arid Mountain Landscape in Southern India: a Geoinformatics Based Markov Chain Approach (United States)

    Rahaman, S. A.; Aruchamy, S.; Balasubramani, K.; Jegankumar, R.


    Nowadays land use/ land cover in mountain landscape is in critical condition; it leads to high risky and uncertain environments. These areas are facing multiple stresses including degradation of land resources; vagaries of climate and depletion of water resources continuously affect land use practices and livelihoods. To understand the Land use/Land cover (Lu/Lc) changes in a semi-arid mountain landscape, Kallar watershed of Bhavani basin, in southern India has been chosen. Most of the hilly part in the study area covers with forest, plantation, orchards and vegetables and which are highly affected by severe soil erosion, landslide, frequent rainfall failures and associated drought. The foothill regions are mainly utilized for agriculture practices; due to water scarcity and meagre income, the productive agriculture lands are converted into settlement plots and wasteland. Hence, land use/land cover change deduction; a stochastic processed based method is indispensable for future prediction. For identification of land use/land cover, and vegetation changes, Landsat TM, ETM (1995, 2005) and IRS P6- LISS IV (2015) images were used. Through CAMarkov chain analysis, Lu/Lc changes in past three decades (1995, 2005, and 2015) were identified and projected for (2020 and 2025); Normalized Difference Vegetation Index (NDVI) were used to find the vegetation changes. The result shows that, maximum changes occur in the plantation and slight changes found in forest cover in the hilly terrain. In foothill areas, agriculture lands were decreased while wastelands and settlement plots were increased. The outcome of the results helps to farmer and policy makers to draw optimal lands use planning and better management strategies for sustainable development of natural resources.

  11. CLC2000 land cover database of the Netherlands; monitoring land cover changes between 1986 and 2000


    Hazeu, G.W.


    The 1986 CORINE land cover database of the Netherlands was revised and updated on basis of Landsat satellite images and ancillary data. Interpretation of satellite images from 1986 and 2000 resulted in the CLC2000, CLC1986rev and CLCchange databases. A standard European legend and production methodology was applied. Thirty land cover classes were discerned. Most extended land cover types were pastures (231), arable land (211) and complex cultivation patterns (242). Between 1986 and 2000 aroun...

  12. [Advance in researches on vegetation cover and management factor in the soil erosion prediction model]. (United States)

    Zhang, Yan; Yuan, Jianping; Liu, Baoyuan


    Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.

  13. Analysing land cover and land use change in the Matobo National Park and surroundings in Zimbabwe (United States)

    Scharsich, Valeska; Mtata, Kupakwashe; Hauhs, Michael; Lange, Holger; Bogner, Christina


    Natural forests are threatened worldwide, therefore their protection in National Parks is essential. Here, we investigate how this protection status affects the land cover. To answer this question, we analyse the surface reflectance of three Landsat images of Matobo National Park and surrounding in Zimbabwe from 1989, 1998 and 2014 to detect changes in land cover in this region. To account for the rolling countryside and the resulting prominent shadows, a topographical correction of the surface reflectance was required. To infer land cover changes it is not only necessary to have some ground data for the current satellite images but also for the old ones. In particular for the older images no recent field study could help to reconstruct these data reliably. In our study we follow the idea that land cover classes of pixels in current images can be transferred to the equivalent pixels of older ones if no changes occurred meanwhile. Therefore we combine unsupervised clustering with supervised classification as follows. At first, we produce a land cover map for 2014. Secondly, we cluster the images with clara, which is similar to k-means, but suitable for large data sets. Whereby the best number of classes were determined to be 4. Thirdly, we locate unchanged pixels with change vector analysis in the images of 1989 and 1998. For these pixels we transfer the corresponding cluster label from 2014 to 1989 and 1998. Subsequently, the classified pixels serve as training data for supervised classification with random forest, which is carried out for each image separately. Finally, we derive land cover classes from the Landsat image in 2014, photographs and Google Earth and transfer them to the other two images. The resulting classes are shrub land; forest/shallow waters; bare soils/fields with some trees/shrubs; and bare light soils/rocks, fields and settlements. Subsequently the three different classifications are compared and land changes are mapped. The main changes are

  14. Association between land cover and Culicoides (Diptera: Ceratopogonidae) breeding sites on four Danish cattle farms

    DEFF Research Database (Denmark)

    Kirkeby, Carsten; Bødker, Rene; Stockmarr, Anders


    from 30 sampling points. Soil samples were set up in emergence chambers for hatching adult Culicoides. Two species of Culicoides (C punctatus and C pulicaris) emerged from nine of 12 soil samples from a wet, grazed field with manure. Seventy-two other samples from similar land cover on the three other......Biting midges of the genus Culicoides are vectors of bluetongue virus. Their larval habitats are poorly known in Northern Europe. Three classes of the CORINE land cover index, found within 300 in of four farms in Denmark, were used to stratify sampling sites for a total of 360 soil core samples...... farms were negative. Seven sampling points from pastures were incorrectly classified by CORINE. The remaining 23 sampling points were classified correctly. The visually observed land use was not sufficiently detailed to adequately predict Culicoides breeding sites in this study. The CORINE index failed...

  15. Allegheny County Land Cover Areas (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Land Cover dataset demarcates 14 land cover types by area; such as Residential, Commercial, Industrial, Forest, Agriculture, etc. If viewing this description on...

  16. Scenarios of land cover in China (United States)

    Yue, Tian Xiang; Fan, Ze Meng; Liu, Ji Yuan


    A method for surface modeling of land cover change (SMLC) is developed on the basis of establishing transition probability matrixes between land cover types and HLZ types. SMLC is used to simulate land cover scenarios of China for the years 2039, 2069 and 2099, for which HLZ scenarios are first simulated in terms of HadCM3 climatic scenarios that are downscaled in zonal model of spatial climate change in China. This paper also analyzes spatial distribution of land cover types, area change and mean center shift of each land cover type, ecotope diversity, and patch connectivity under the land cover scenarios. The results show that cultivated land would decrease and woodland would expand greatly with climatic change, which coincides with consequences expected by implementation of Grain-for-Green policy. Nival area would shrink, and desertification area would expand at a comparatively slow rate in future 100 years. Climate change would generally cause less ecotope diversity and more patch connectivity. Ecosystems in China would have a pattern of beneficial cycle after efficient ecological conservation and restoration. However, if human activities would exceed regulation capacity of ecosystems themselves, the ecosystems in China might deteriorate more seriously.

  17. Cover integrity in shallow land burial of low-level wastes: hydrology and erosion

    International Nuclear Information System (INIS)

    Lane, L.J.; Nyhan, J.W.


    Applications of a state-of-the-art technology for simulating hydrologic processes and erosion affecting cover integrity at shallow land waste burial sites are described. A nonpoint source pollution model developed for agricultural systems has been adapted for application to waste burial sites in semiarid and arid regions. Applications include designs for field experiments, evaluation of slope length and steepness, evaluation of various soil types, and evaluation of vegetative cover influencing erosion rates and the water balance within the soil profile

  18. The National Land Cover Database (United States)

    Homer, Collin G.; Fry, Joyce A.; Barnes, Christopher A.


    The National Land Cover Database (NLCD) serves as the definitive Landsat-based, 30-meter resolution, land cover database for the Nation. NLCD provides spatial reference and descriptive data for characteristics of the land surface such as thematic class (for example, urban, agriculture, and forest), percent impervious surface, and percent tree canopy cover. NLCD supports a wide variety of Federal, State, local, and nongovernmental applications that seek to assess ecosystem status and health, understand the spatial patterns of biodiversity, predict effects of climate change, and develop land management policy. NLCD products are created by the Multi-Resolution Land Characteristics (MRLC) Consortium, a partnership of Federal agencies led by the U.S. Geological Survey. All NLCD data products are available for download at no charge to the public from the MRLC Web site:

  19. Soil evaluation for land use optimizing (United States)

    Marinina, O. A.


    The article presents the method of soil classification proposed in the course of the study in which the list of indicators proposed by the existing recommendations is optimized. On the example of one of the river basins within the boundaries of the Belgorod region zoning of the territory was carried out. With this approach, the boundaries of the territorial zones are projected along the natural boundaries of natural objects and the productivity of soils is determined as the main criterion for zoning. To assess the territory by soil properties, the features of the soil cover of the river basin were studied and vectorization of the soil variety boundaries was carried out. In the land evaluation essential and useful for the growth of crops macro- and minor-nutrient elements necessary for the growth of crops were included. To compare the soils each of the indicators was translated into relative units. The final score of soil quality is calculated as the mean geometric value of scores from 0 to 100 points for the selected diagnostic features. Through the imposition of results of soil classification and proposed by the concept of basin nature management - land management activities, five zones were identified according to the degree of suitability for use in agriculture.

  20. Impact of Land Use Land Cover Change on East Asian monsoon (United States)

    Chilukoti, N.; Xue, Y.; Liu, Y.; Lee, J.


    Humans modify the Earth's terrestrial surface on a continental scale by removing natural vegetation for crops/grazing. The current rates, extents and intensities of Land Use and Land Cover Change (LULCC) are greater than ever in history. The earlier studies of Land-atmosphere interactions used specified land surface conditions without interannual variations. In this study using NCEP CFSv2 coupled with Simplified Simple Biosphere (SSiB) model, biogeophysical impacts of LULCC on climate variability, anomaly, and changes are investigated by using the LULCC map from the Hurtt et al. (2006, 2011), which covered 66 years from 1950-2015 with annual variability. We combined the changes in crop and pasture fractions and consider as LULCC. A methodology had been developed to convert the Hurtt LULCC change map with 1° resolution to the GCM grid points. Since the GCM has only one dominant type, when the crop and pasture frction value at one point was larger than the critical value, that grid was assigned as degraded. Comprehensive evaluation was conducted to ensure the consistence of the trend of land degradation in the Hurtt's map and in the GCM LULCC map. In the degraded point, trees were changed to low vegetation or grasses, and low vegetation to bare soil. A set of surface parameters such as leaf area index, vegetation height, roughness length, and soil parameters, associated with vegetation are changed to show the degradation effects. We integrated the model with the potential vegetation map and the map with LULCC from 1950 to 2015, and the results indicate the LULCC causes precipitation reduction globally, with the strongest signals over monsoon regions. For instance, the degradation in Mexico, West Africa, south and East Asia and South America produced significant precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. Meanwhile, it has also found that the LULCC enhances the surface warming during the summer in monsoon

  1. The Regional Land Cover Monitoring System: Building regional capacity through innovative land cover mapping approaches (United States)

    Saah, D.; Tenneson, K.; Hanh, Q. N.; Aekakkararungroj, A.; Aung, K. S.; Goldstein, J.; Cutter, P. G.; Maus, P.; Markert, K. N.; Anderson, E.; Ellenburg, W. L.; Ate, P.; Flores Cordova, A. I.; Vadrevu, K.; Potapov, P.; Phongsapan, K.; Chishtie, F.; Clinton, N.; Ganz, D.


    Earth observation and Geographic Information System (GIS) tools, products, and services are vital to support the environmental decision making by governmental institutions, non-governmental agencies, and the general public. At the heart of environmental decision making is the monitoring land cover and land use change (LCLUC) for land resource planning and for ecosystem services, including biodiversity conservation and resilience to climate change. A major challenge for monitoring LCLUC in developing regions, such as Southeast Asia, is inconsistent data products at inconsistent intervals that have different typologies across the region and are typically made in without stakeholder engagement or input. Here we present the Regional Land Cover Monitoring System (RLCMS), a novel land cover mapping effort for Southeast Asia, implemented by SERVIR-Mekong, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries. The RLCMS focuses on mapping biophysical variables (e.g. canopy cover, tree height, or percent surface water) at an annual interval and in turn using those biophysical variables to develop land cover maps based on stakeholder definitions of land cover classes. This allows for flexible and consistent land cover classifications that can meet the needs of different institutions across the region. Another component of the RLCMS production is the stake-holder engagement through co-development. Institutions that directly benefit from this system have helped drive the development for regional needs leading to services for their specific uses. Examples of services for regional stakeholders include using the RLCMS to develop maps using the IPCC classification scheme for GHG emission reporting and developing custom annual maps as an input to hydrologic modeling/flood forecasting systems. In addition to the implementation of this system and the service stemming from the RLCMS in Southeast Asia, it is

  2. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale

    Directory of Open Access Journals (Sweden)

    P. Porada


    Full Text Available Bryophyte and lichen cover on the forest floor at high latitudes exerts an insulating effect on the ground. In this way, the cover decreases mean annual soil temperature and can protect permafrost soil. Climate change, however, may change bryophyte and lichen cover, with effects on the permafrost state and related carbon balance. It is, therefore, crucial to predict how the bryophyte and lichen cover will react to environmental change at the global scale. To date, current global land surface models contain only empirical representations of the bryophyte and lichen cover, which makes it impractical to predict the future state and function of bryophytes and lichens. For this reason, we integrate a process-based model of bryophyte and lichen growth into the global land surface model JSBACH (Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg. The model simulates bryophyte and lichen cover on upland sites. Wetlands are not included. We take into account the dynamic nature of the thermal properties of the bryophyte and lichen cover and their relation to environmental factors. Subsequently, we compare simulations with and without bryophyte and lichen cover to quantify the insulating effect of the organisms on the soil. We find an average cooling effect of the bryophyte and lichen cover of 2.7 K on temperature in the topsoil for the region north of 50° N under the current climate. Locally, a cooling of up to 5.7 K may be reached. Moreover, we show that using a simple, empirical representation of the bryophyte and lichen cover without dynamic properties only results in an average cooling of around 0.5 K. This suggests that (a bryophytes and lichens have a significant impact on soil temperature in high-latitude ecosystems and (b a process-based description of their thermal properties is necessary for a realistic representation of the cooling effect. The advanced land surface scheme, including a dynamic bryophyte and lichen model, will

  3. Land cover fire proneness in Europe

    Directory of Open Access Journals (Sweden)

    Mario Gonzalez Pereira


    Full Text Available Aim of study: This study aims to identify and characterize the spatial and temporal evolution of the types of vegetation that are most affected by forest fires in Europe. The characterization of the fuels is an important issue of the fire regime in each specific ecosystem while, on the other hand, fire is an important disturbance for global vegetation dynamics.Area of study: Southern European countries: Portugal, Spain, France, Italy and Greece.Material and Methods: Corine Land Cover maps for 2000 and 2006 (CLC2000, CLC2006 and burned area (BA perimeters, from 2000 to 2013 in Europe are combined to access the spatial and temporal evolution of the types of vegetation that are most affected by wild fires using descriptive statistics and Geographical Information System (GIS techniques.Main results: The spatial and temporal distribution of BA perimeters, vegetation and burnt vegetation by wild fires was performed and different statistics were obtained for Mediterranean and entire Europe, confirming the usefulness of the proposed land cover system. A fire proneness index is proposed to assess the fire selectivity of land cover classes. The index allowed to quantify and to compare the propensity of vegetation classes and countries to fire.Research highlights: The usefulness and efficiency of the land cover classification scheme and fire proneness index. The differences between northern Europe and southern Europe and among the Mediterranean region in what concerns to vegetation cover, fire incidence, area burnt in land cover classes and fire proneness between classes for the different countries.Keywords: Fire proneness; Mixed forests; Land cover/land use; Fire regime; Europe; GIS; Corine land cover

  4. Using ASTER Imagery in Land Use/cover Classification of Eastern Mediterranean Landscapes According to CORINE Land Cover Project

    Directory of Open Access Journals (Sweden)

    Recep Gundogan


    Full Text Available The satellite imagery has been effectively utilized for classifying land covertypes and detecting land cover conditions. The Advanced Spaceborne Thermal Emissionand Reflection Radiometer (ASTER sensor imagery has been widely used in classificationprocess of land cover. However, atmospheric corrections have to be made by preprocessingsatellite sensor imagery since the electromagnetic radiation signals received by the satellitesensors can be scattered and absorbed by the atmospheric gases and aerosols. In this study,an ASTER sensor imagery, which was converted into top-of-atmosphere reflectance(TOA, was used to classify the land use/cover types, according to COoRdination ofINformation on the Environment (CORINE land cover nomenclature, for an arearepresenting the heterogonous characteristics of eastern Mediterranean regions inKahramanmaras, Turkey. The results indicated that using the surface reflectance data ofASTER sensor imagery can provide accurate (i.e. overall accuracy and kappa values of83.2% and 0.79, respectively and low-cost cover mapping as a part of inventory forCORINE Land Cover Project.

  5. Pairing FLUXNET sites to validate model representations of land-use/land-cover change (United States)

    Chen, Liang; Dirmeyer, Paul A.; Guo, Zhichang; Schultz, Natalie M.


    Land surface energy and water fluxes play an important role in land-atmosphere interactions, especially for the climatic feedback effects driven by land-use/land-cover change (LULCC). These have long been documented in model-based studies, but the performance of land surface models in representing LULCC-induced responses has not been investigated well. In this study, measurements from proximate paired (open versus forest) flux tower sites are used to represent observed deforestation-induced changes in surface fluxes, which are compared with simulations from the Community Land Model (CLM) and the Noah Multi-Parameterization (Noah-MP) land model. Point-scale simulations suggest the CLM can represent the observed diurnal and seasonal changes in net radiation (Rnet) and ground heat flux (G), but difficulties remain in the energy partitioning between latent (LE) and sensible (H) heat flux. The CLM does not capture the observed decreased daytime LE, and overestimates the increased H during summer. These deficiencies are mainly associated with models' greater biases over forest land-cover types and the parameterization of soil evaporation. Global gridded simulations with the CLM show uncertainties in the estimation of LE and H at the grid level for regional and global simulations. Noah-MP exhibits a similar ability to simulate the surface flux changes, but with larger biases in H, G, and Rnet change during late winter and early spring, which are related to a deficiency in estimating albedo. Differences in meteorological conditions between paired sites is not a factor in these results. Attention needs to be devoted to improving the representation of surface heat flux processes in land models to increase confidence in LULCC simulations.

  6. Protist community in soil: Effects of different land-use types

    DEFF Research Database (Denmark)

    Santos, Susana; Schöler, Anne; Winding, Anne

    Soil protist microorganisms represent an important part of the soil microbial community being major players in providing ecosystem services. Changes in their community structure and dynamics may influence the rate and kind of soil formation and fertility. Corroborative studies indicate that protist...... microorganisms exhibit high levels of molecular and functional diversity in soils. However, studies questioning the protist diversity in soil and their variability across different soil land-use types, have received far less attention. The purpose of our study was to obtain relative abundances of flagellate......, cilliates and amoeboid soil protists, and to relate the expected changes in community composition to space and land-use. Within the EU FP7 project EcoFINDERS, soils were collected from six long-term observatories (LTO’s) scattered around Europe, covering different climatic zones and different vegetation...

  7. IRSeL-An approach to enhance continuity and accuracy of remotely sensed land cover data (United States)

    Rathjens, H.; Dörnhöfer, K.; Oppelt, N.


    Land cover data gives the opportunity to study interactions between land cover status and environmental issues such as hydrologic processes, soil properties, or biodiversity. Land cover data often are based on classification of remote sensing data that seldom provides the requisite accuracy, spatial availability and temporal observational frequency for environmental studies. Thus, there is a high demand for accurate and spatio-temporal complete time series of land cover. In the past considerable research was undertaken to increase land cover classification accuracy, while less effort was spent on interpolation techniques. The purpose of this article is to present a space-time interpolation and revision approach for remotely sensed land cover data. The approach leverages special properties known for agricultural areas such as crop rotations or temporally static land cover classes. The newly developed IRSeL-tool (Interpolation and improvement of Remotely Sensed Land cover) corrects classification errors and interpolates missing land cover pixels. The easy-to-use tool solely requires an initial land cover data set. The IRSeL specific interpolation and revision technique, the data input requirements and data output structure are described in detail. A case study in an area around the city of Neumünster in Northern Germany from 2006 to 2012 was performed for IRSeL validation with initial land cover data sets (Landsat TM image classifications) for the years 2006, 2007, 2009, 2010 and 2011. The results of the case study showed that IRSeL performs well; including years with no classification data overall accuracy values for IRSeL interpolated pixels range from 0.63 to 0.81. IRSeL application significantly increases the accuracy of the land cover data; overall accuracy values rise 0.08 in average resulting in overall accuracy values of at least 0.86. Considering estimated reliabilities, the IRSeL tool provides a temporally and spatially completed and revised land cover

  8. Land use/ land cover and ecosystem functions change in the grassland restoration program areas in China from 2000 to 2010 (United States)

    Zhang, H.; Fan, J.


    The grassland restoration areas in China, most of which was located in arid and semi-arid areas, are affected by climate change and anthropogenic activities. Using the 3S (RS, GIS, GPS) technologies, quantitative analysis method of landscape patterns and ecological simulation, this study examines the spatiotemporal characteristics of land use/ land cover and ecosystem functions change in the grassland restoration areas in China from 2000 to 2010. We apply two parameters land use transfer matrix and land use dynamic degree to explore the speed and regional differentiation of land use change. We propose vegetation coverage, net primary production (NPP), soil and water conservation capacity to assess the ecosystem functions. This study analyzes the characteristics of landscape patterns at the class and landscape levels and explores the ecological effect of land use pattern and regional ecological processes. The results show that: (1) Grassland and others were the main landscape types in the study area in the past decade. The ecosystem structure was stable. About 0.37% of the total grassland area in 2000 experienced change in land use / land cover types. The area of woodlands, wetlands, farmlands, and built-up areas expanded. The area of others has declined. (2) The dynamic degree of regional land use was less than one percent in the recent ten years. The speed of land use and land cover change was low, and regional differentiation of change between the provinces was small. (3) The matrix of the landscape did not change in the study area. Landscape fragmentation index values decreased progressively; landscape diversity rose continuously; landscape aggregation and continuity decreased slightly; the landscape maintained relative integrity. (4) Ecosystem functions has increased as a whole. The vegetation coverages with significant increase (with a 1.99% yr-1 slope of regression) in the total study area; NPP has a fluctuating and increasing tendency, ranging from 218.23 g

  9. Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land. (United States)

    Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G


    There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. © 2013.

  10. The Application of Remote Sensing Data to GIS Studies of Land Use, Land Cover, and Vegetation Mapping in the State of Hawaii (United States)

    Hogan, Christine A.


    A land cover-vegetation map with a base classification system for remote sensing use in a tropical island environment was produced of the island of Hawaii for the State of Hawaii to evaluate whether or not useful land cover information can be derived from Landsat TM data. In addition, an island-wide change detection mosaic combining a previously created 1977 MSS land classification with the TM-based classification was produced. In order to reach the goal of transferring remote sensing technology to State of Hawaii personnel, a pilot project was conducted while training State of Hawaii personnel in remote sensing technology and classification systems. Spectral characteristics of young island land cover types were compared to determine if there are differences in vegetation types on lava, vegetation types on soils, and barren lava from soils, and if they can be detected remotely, based on differences in pigments detecting plant physiognomic type, health, stress at senescence, heat, moisture level, and biomass. Geographic information systems (GIS) and global positioning systems (GPS) were used to assist in image rectification and classification. GIS was also used to produce large-format color output maps. An interactive GIS program was written to provide on-line access to scanned photos taken at field sites. The pilot project found Landsat TM to be a credible source of land cover information for geologically young islands, and TM data bands are effective in detecting spectral characteristics of different land cover types through remote sensing. Large agriculture field patterns were resolved and mapped successfully from wildland vegetation, but small agriculture field patterns were not. Additional processing was required to work with the four TM scenes from two separate orbits which span three years, including El Nino and drought dates. Results of the project emphasized the need for further land cover and land use processing and research. Change in vegetation

  11. Geovisualization of land use and land cover using bivariate maps and Sankey flow diagrams (United States)

    Strode, Georgianna; Mesev, Victor; Thornton, Benjamin; Jerez, Marjorie; Tricarico, Thomas; McAlear, Tyler


    The terms `land use' and `land cover' typically describe categories that convey information about the landscape. Despite the major difference of land use implying some degree of anthropogenic disturbance, the two terms are commonly used interchangeably, especially when anthropogenic disturbance is ambiguous, say managed forestland or abandoned agricultural fields. Cartographically, land use and land cover are also sometimes represented interchangeably within common legends, giving with the impression that the landscape is a seamless continuum of land use parcels spatially adjacent to land cover tracts. We believe this is misleading, and feel we need to reiterate the well-established symbiosis of land uses as amalgams of land covers; in other words land covers are subsets of land use. Our paper addresses this spatially complex, and frequently ambiguous relationship, and posits that bivariate cartographic techniques are an ideal vehicle for representing both land use and land cover simultaneously. In more specific terms, we explore the use of nested symbology as ways to represent graphically land use and land cover, where land cover are circles nested with land use squares. We also investigate bivariate legends for representing statistical covariance as a means for visualizing the combinations of land use and cover. Lastly, we apply Sankey flow diagrams to further illustrate the complex, multifaceted relationships between land use and land cover. Our work is demonstrated on data representing land use and cover data for the US state of Florida.

  12. Estimating land use / land cover changes in Denmark from 1990 - 2012

    DEFF Research Database (Denmark)

    Levin, Gregor; Kastrup Blemmer, Morten; Gyldenkærne, Steen

    According to the article 3(4) of the Kyoto Protocol, Denmark is obliged to document sequestration and emission of carbon dioxide from land use and land cover and changes in these. This report documents and describes applied data end developed methods aiming at estimating amounts and changes in land...... use and land cover for Denmark for since 1990. Estimation of land use and land cover categories and changes in these is predominantly based on existing categorical (i.e. pre-classified) geographical information. Estimations are elaborated for the period from 1990 to 2005, from 2005 to 2011 and from...... 2011 to 2012. Due to limited availability of historical spatially explicit information, estimations of change in land use and land cover from 1990 up to 2011 do, to some degree, involve decisions based on expert knowledge. Due to a significant increase in the availability of detailed spatially specific...

  13. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods (United States)

    Xian, George; Homer, Collin G.; Fry, Joyce


    The recent release of the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001, which represents the nation's land cover status based on a nominal date of 2001, is widely used as a baseline for national land cover conditions. To enable the updating of this land cover information in a consistent and continuous manner, a prototype method was developed to update land cover by an individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season in 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, land cover classifications at the full NLCD resolution for 2006 areas of change were completed by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain several metropolitan areas including Seattle, Washington; San Diego, California; Sioux Falls, South Dakota; Jackson, Mississippi; and Manchester, New Hampshire. Results from the five study areas show that the vast majority of land cover change was captured and updated with overall land cover classification accuracies of 78.32%, 87.5%, 88.57%, 78.36%, and 83.33% for these areas. The method optimizes mapping efficiency and has the potential to provide users a flexible method to generate updated land cover at national and regional scales by using NLCD 2001 as the baseline.

  14. Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots. (United States)

    Yoshimura, Kazuya; Onda, Yuichi; Kato, Hiroaki


    Radiocaesium wash-off associated with soil erosion in different land use was monitored using USLE plots in Kawamata, Fukushima Prefecture, Japan after the Fukushima Dai-ichi Nuclear Power Plant accident. Parameters and factors relating to soil erosion and (137)Cs concentration in the eroded soil were evaluated based on the field monitoring and presented. The erosion of fine soil, which is defined as the fraction of soil overflowed along with discharged water from a sediment-trap tank, constituted a large proportion of the discharged radiocaesium. This indicated that the quantitative monitoring of fine soil erosion is greatly important for the accurate evaluation of radiocaesium wash-off. An exponential relationship was found between vegetation cover and the amount of eroded soil. Moreover, the radiocaesium concentrations in the discharged soil were greatly affected by the land use. These results indicate that radiocaesium wash-off related to vegetation cover and land use is crucially important in modelling radiocaesium migration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Determination of Some Land and Soil Characteristics of Siirt Province with Geographic Information System Analysis

    Directory of Open Access Journals (Sweden)

    Mehmet Arif ÖZYAZICI


    Full Text Available The main aim of this research was to determine some land and soil characteristics of Siirt province and to make database using Geographic Information System (GIS. The study area covers about 562619.5 ha. Firstly, digital elevation model was formed using topographic map of the Siirt province and after this process slope, aspect, elevation and hill shade maps were also produced. In addition to that, some data produced General Directory of Rural Services and climate data were used in this study. According to study results, west part of the Siirt province has almost flat area whereas, hilly and mountain area locate in north and east part of it. Therefore, slope degree increase from west to north and east ways. More than half of the study area’s soil types (65% is Brown forest soils. Besides, according to land use and land cover map about 44% and 31% of the study area covers by shrubbery-brush and pastures, respectively. According to erosion maps, approximately %90 of the Siirt province lands has medium, severe and very severe erosion problem. Lands that are suitable for agricultural activities are very limited in Siirt Province. Only about 9% of the total land was classified as I, II and III land capability classes. Moreover, investigated depth map of the study area about 85% of the study area has very shallow and shallow soil depth. Deep soils found on plain and valley located at west part of the study area.

  16. Border Lakes land-cover classification (United States)

    Marvin Bauer; Brian Loeffelholz; Doug. Shinneman


    This document contains metadata and description of land-cover classification of approximately 5.1 million acres of land bordering Minnesota, U.S.A. and Ontario, Canada. The classification focused on the separation and identification of specific forest-cover types. Some separation of the nonforest classes also was performed. The classification was derived from multi-...

  17. Land susceptibility to soil erosion in Orashi Catchment, Nnewi South, Anambra State, Nigeria (United States)

    Odunuga, Shakirudeen; Ajijola, Abiodun; Igwetu, Nkechi; Adegun, Olubunmi


    Soil erosion is one of the most critical environmental hazards that causes land degradation and water quality challenges. Specifically, this phenomenon has been linked, among other problems, to river sedimentation, groundwater pollution and flooding. This paper assesses the susceptibility of Orashi River Basin (ORB) to soil erosion for the purpose of erosion control measures. Located in the South Eastern part of Nigeria, the ORB which covers approximately 413.61 km2 is currently experiencing one of the fastest population growth rate in the region. Analysis of the soil erosion susceptibility of the basin was based on four factors including; rainfall, Land use/Land cover change (LULC), slope and soil erodibility factor (k). The rainfall was assumed to be a constant and independent variable, slope and soil types were categorised into ten (10) classes each while the landuse was categorised into five classes. Weight was assigned to the classes based on the degree of susceptibility to erosion. An overlay of the four variables in a GIS environment was used to produce the basin susceptibility to soil erosion. This was based on the weight index of each factors. The LULC analysis revealed that built-up land use increased from 26.49 km2 (6.4 %) in year 1980 to 79.24 km2 (19.16 %) in 2015 at an average growth rate of 1.51 km2 per annum while the light forest decreased from 336.41 km2 (81.33 %) in 1980 to 280.82 km2 (67.89 %) in 2015 at an average rate 1.59 km2 per annum. The light forest was adjudged to have the highest land cover soil erosion susceptibility. The steepest slope ranges between 70 and 82° (14.34 % of the total land area) and was adjudged to have the highest soil susceptibility to erosion. The total area covered of the loamy soil is 112.37 km2 (27.07 %) with erodibility of 0.7. In all, the overlay of all the variables revealed that 106.66 km2 (25.70 %) and 164.80 km2 (39.7 %) of the basin has a high and very high susceptibility to soil erosion. The over 50

  18. Carbon Assessment of Hawaii Land Cover Map (CAH_LandCover) (United States)

    Department of the Interior — While there have been many maps produced that depict vegetation for the state of Hawai‘i only a few of these display land cover for all of the main Hawaiian Islands,...

  19. Towards realistic Holocene land cover scenarios: integration of archaeological, palynological and geomorphological records and comparison to global land cover scenarios. (United States)

    De Brue, Hanne; Verstraeten, Gert; Broothaerts, Nils; Notebaert, Bastiaan


    Accurate and spatially explicit landscape reconstructions for distinct time periods in human history are essential for the quantification of the effect of anthropogenic land cover changes on, e.g., global biogeochemical cycles, ecology, and geomorphic processes, and to improve our understanding of interaction between humans and the environment in general. A long-term perspective covering Mid and Late Holocene land use changes is recommended in this context, as it provides a baseline to evaluate human impact in more recent periods. Previous efforts to assess the evolution and intensity of agricultural land cover in past centuries or millennia have predominantly focused on palynological records. An increasing number of quantitative techniques has been developed during the last two decades to transfer palynological data to land cover estimates. However, these techniques have to deal with equifinality issues and, furthermore, do not sufficiently allow to reconstruct spatial patterns of past land cover. On the other hand, several continental and global databases of historical anthropogenic land cover changes based on estimates of global population and the required agricultural land per capita have been developed in the past decennium. However, at such long temporal and spatial scales, reconstruction of past anthropogenic land cover intensities and spatial patterns necessarily involves many uncertainties and assumptions as well. Here, we present a novel approach that combines archaeological, palynological and geomorphological data for the Dijle catchment in the central Belgium Loess Belt in order to arrive at more realistic Holocene land cover histories. Multiple land cover scenarios (> 60.000) are constructed using probabilistic rules and used as input into a sediment delivery model (WaTEM/SEDEM). Model outcomes are confronted with a detailed geomorphic dataset on Holocene sediment fluxes and with REVEALS based estimates of vegetation cover using palynological data from

  20. 1990 Kansas Land Cover Patterns Update (United States)

    Kansas Data Access and Support Center — In 2008, an update of the 1990 Kansas Land Cover Patterns (KLCP) database was undertaken. The 1990 KLCP database depicts 10 general land cover classes for the State...

  1. VT National Land Cover Dataset - 2001 (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The NLCD2001 layer available from VCGI is a subset of the the National Land Cover Database 2001 land cover layer for mapping zone 65 was produced...

  2. Land cover changes in central Sonora Mexico (United States)

    Diego Valdez-Zamudio; Alejandro Castellanos-Villegas; Stuart Marsh


    Remote sensing techniques have been demonstrated to be very effective tools to help detect, analyze, and evaluate land cover changes in natural areas of the world. Changes in land cover can generally be attributed to either natural or anthropogenic forces. Multitemporal satellite imagery and airborne videography were used to detect, analyze, and evaluate land cover...

  3. Assessment of the effect of land use /land cover changes on total runoff from Ofu River catchment in Nigeria

    Directory of Open Access Journals (Sweden)

    Meshach Ileanwa Alfa


    Full Text Available The total runoff from a catchment is dependednt on both the soil characteristics and the land use/land cover (LULC type. This study was conducted to examine the effect of changes in land cover on the total runoff from Ofu River Catchment in Nigeria. Classified Landsat imageries of 1987, 2001 and 2016 in combination with the soil map extracted from the Digital Soil Map of the World was used to estimate the runoff curve number for 1987, 2001 and 2016. The runoff depth for 35 years daily rainfall data was estimated using Natura Resource Conservation Services Curve Number (NRCS-CN method. The runoff depths obtained for the respective years were subjected to a one-way analysis of variance at 95% level of significance. P-value < 0.05 was taken as statistically significant. Runoff curve numbers obtained for 1987, 2001 and 2016 were 61.83, 63.26 and 62.79 respectively. The effects of the changes in LULC for 1987-2001, 2001-2016 and 1987-2016 were statistically significant (P<0.001 at 95% confident interval.  The average change in runoff depths were 79.81%, -11.10% and 48.09% respectively for 1987-2001, 2001-2016 and 1987-2016. The study concluded that the changes in LULC of the catchment had significant effect on the runoff from the catchment.

  4. Vegetation cover and land use of a protected coastal area and its surroundings, southeast Brazil


    Caris,Elisa Araujo Penna; Kurtz,Bruno Coutinho; Cruz,Carla Bernadete Madureira; Scarano,Fabio Rubio


    We applied remote sensing techniques on a TM Landsat 5 image (1:50,000) to map land use and vegetation cover of the Restinga de Jurubatiba National Park and surroundings. The thematic map generated from the digital classification of the image allowed us to spatially characterize and quantify the different land uses and soil covers of the area. Thirteen classes were identified. The most representative classes in the park were the Clusia (31.99%) and Ericaceae formations (29.14%). More than 90%...

  5. Classification of Land Cover and Land Use Based on Convolutional Neural Networks (United States)

    Yang, Chun; Rottensteiner, Franz; Heipke, Christian


    Land cover describes the physical material of the earth's surface, whereas land use describes the socio-economic function of a piece of land. Land use information is typically collected in geospatial databases. As such databases become outdated quickly, an automatic update process is required. This paper presents a new approach to determine land cover and to classify land use objects based on convolutional neural networks (CNN). The input data are aerial images and derived data such as digital surface models. Firstly, we apply a CNN to determine the land cover for each pixel of the input image. We compare different CNN structures, all of them based on an encoder-decoder structure for obtaining dense class predictions. Secondly, we propose a new CNN-based methodology for the prediction of the land use label of objects from a geospatial database. In this context, we present a strategy for generating image patches of identical size from the input data, which are classified by a CNN. Again, we compare different CNN architectures. Our experiments show that an overall accuracy of up to 85.7 % and 77.4 % can be achieved for land cover and land use, respectively. The classification of land cover has a positive contribution to the classification of the land use classification.

  6. From land cover change to land function dynamics: A major challenge to improve land characterization

    NARCIS (Netherlands)

    Verburg, P.H.; Steeg, van de J.; Veldkamp, A.; Willemen, L.


    Land cover change has always had a central role in land change science. This central role is largely the result of the possibilities to map and characterize land cover based on observations and remote sensing. This paper argues that more attention should be given to land use and land functions and

  7. LandSat-Based Land Use-Land Cover (Vector) (United States)

    Minnesota Department of Natural Resources — Vector-based land cover data set derived from classified 30 meter resolution Thematic Mapper satellite imagery. Classification is divided into 16 classes with source...

  8. LandSat-Based Land Use-Land Cover (Raster) (United States)

    Minnesota Department of Natural Resources — Raster-based land cover data set derived from 30 meter resolution Thematic Mapper satellite imagery. Classification is divided into 16 classes with source imagery...

  9. Nitrate-nitrogen losses through subsurface drainage under various agricultural land covers. (United States)

    Qi, Zhiming; Helmers, Matthew J; Christianson, Reid D; Pederson, Carl H


    Nitrate-nitrogen (NO₃-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO₃-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn ( L.) (C) and soybean [ (L.) Merr.] (S); (ii) winter rye ( L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover ( M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass ( L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha, respectively. Effect of land covers on subsurface drainage was not significant. The NO₃-N loss was significantly lower for kC and PF than C and S treatments (p rye cover crop did not reduce NO₃-N loss, but NO₃-N concentration was significantly reduced in rC during March to June and in rS during July to November (p rye cover crop on NO-N loss reduction needs further investigation under conditions of different N rates, wider weather patterns, and fall tillage. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Erosion of earth covers used in shallow land burial at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Depoorter, G.L.; Drennon, B.J.; Simanton, J.R.; Foster, G.R.


    The Los Alamos National Laboratory and the USDA-ARS examined soil erosion and water balance relationships for a trench cap used for the shallow land burial of low-level radioactive waters at Los Alamos, NM. Eight 3.05 by 10.7 m plots were installed with bare soil, tilled, and vegetated surface treatments on a 15 by 63 m trench cap constructed from soil and crushed tuff layers. A rotating boom rain simulator was used to estimate the soil erodibility and cover-management factors of the Universal Soil Loss Equation (USLE) for this trench cap and for two undisturbed plots with natural vegetative cover. The implications of the results of this study are discussed relative to the management of infiltration and erosion processes at waste burial sites and compared with similar USDA research performed throughout the USA

  11. Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Rojas, M. [CSIC Spin-off, Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Seville (Spain). Evenor-Tech; Sevilla Univ. (Spain). MED Soil Research Group; Jordan, A.; Zavala, L.M. [Sevilla Univ. (Spain). MED Soil Research Group; Rosa, D. de la [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Seville (Spain); Abd-Elmabod, S.K. [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Seville (Spain); National Research Centre, Cairo (Egypt). Dept. of Soil and Water Use; Anaya-Romero, M. [CSIC Spin-off, Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Seville (Spain). Evenor-Tech


    Soil C sequestration through changes in land use and management is one of the sustainable and long-term strategies to mitigate climate change. This research explores and quantifies the role of soil and land use as determinants of the ability of soils to store C along Mediterranean systems. Detailed studies of soil organic C (SOC) dynamics are necessary in order to identify factors determining fluctuations and intensity of changes. In this study, SOC contents from different soil and land use types have been investigated in Andalusia (Southern Spain). We have used soil information from different databases, as well as land use digital maps, climate databases and digital elevation models. The average SOC content for each soil control section (0-25, 25-50 and 50-75 cm) was determined and SOC stocks were calculated for each combination of soil and land use type, using soil and land cover maps. The total organic C stocks in soils of Andalusia is 415 Tg for the upper 75 cm, with average values ranging from 15.9 MgC ha{sup -1} (Solonchaks under ''arable land'') to 107.6 MgC ha{sup -1} (Fluvisols from ''wetlands''). Up to 55% of SOC accumulates in the top 25 cm of soil (229.7 Tg). This research constitutes a preliminary assessment for modelling SOC stock under scenarios of land use and climate change. (orig.)

  12. EnviroAtlas - Land Cover for the Conterminous United States (United States)

    U.S. Environmental Protection Agency — This dataset represents the percentage of land area that is classified as forest land cover, modified forest land cover, and natural land cover using the 2006...

  13. Development of a 30 m Spatial Resolution Land Cover of Canada: Contribution to the Harmonized North America Land Cover Dataset (United States)

    Pouliot, D.; Latifovic, R.; Olthof, I.


    Land cover is needed for a large range of environmental applications regarding climate impacts and adaption, emergency response, wildlife habitat, air quality, water yield, etc. In Canada a 2008 user survey revealed that the most practical scale for provision of land cover data is 30 m, nationwide, with an update frequency of five years (Ball, 2008). In response to this need the Canada Centre for Remote Sensing has generated a 30 m land cover of Canada for the base year 2010 as part of a planned series of maps at the recommended five year update frequency. This land cover is the Canadian contribution to the North American Land Change Monitoring System initiative, which seeks to provide harmonized land cover across Canada, the United States, and Mexico. The methodology developed in this research utilized a combination of unsupervised and machine learning techniques to map land cover, blend results between mapping units, locally optimize results, and process some thematic attributes with specific features sets. Accuracy assessment with available field data shows it was on average 75% for the five study areas assessed. In this presentation an overview of the unique processing aspects, example results, and initial accuracy assessment will be discussed.

  14. Validation of Land Cover Products Using Reliability Evaluation Methods

    Directory of Open Access Journals (Sweden)

    Wenzhong Shi


    Full Text Available Validation of land cover products is a fundamental task prior to data applications. Current validation schemes and methods are, however, suited only for assessing classification accuracy and disregard the reliability of land cover products. The reliability evaluation of land cover products should be undertaken to provide reliable land cover information. In addition, the lack of high-quality reference data often constrains validation and affects the reliability results of land cover products. This study proposes a validation schema to evaluate the reliability of land cover products, including two methods, namely, result reliability evaluation and process reliability evaluation. Result reliability evaluation computes the reliability of land cover products using seven reliability indicators. Process reliability evaluation analyzes the reliability propagation in the data production process to obtain the reliability of land cover products. Fuzzy fault tree analysis is introduced and improved in the reliability analysis of a data production process. Research results show that the proposed reliability evaluation scheme is reasonable and can be applied to validate land cover products. Through the analysis of the seven indicators of result reliability evaluation, more information on land cover can be obtained for strategic decision-making and planning, compared with traditional accuracy assessment methods. Process reliability evaluation without the need for reference data can facilitate the validation and reflect the change trends of reliabilities to some extent.

  15. Forecasting land cover change impacts on drinking water treatment costs in Minneapolis, Minnesota (United States)

    Woznicki, S. A.; Wickham, J.


    Source protection is a critical aspect of drinking water treatment. The benefits of protecting source water quality in reducing drinking water treatment costs are clear. However, forecasting the impacts of environmental change on source water quality and its potential to influence future treatment processes is lacking. The drinking water treatment plant in Minneapolis, MN has recognized that land cover change threatens water quality in their source watershed, the Upper Mississippi River Basin (UMRB). Over 1,000 km2 of forests, wetlands, and grasslands in the UMRB were lost to agriculture from 2008-2013. This trend, coupled with a projected population increase of one million people in Minnesota by 2030, concerns drinking water treatment plant operators in Minneapolis with respect to meeting future demand for clean water in the UMRB. The objective of this study is to relate land cover change (forest and wetland loss, agricultural expansion, urbanization) to changes in treatment costs for the Minneapolis, MN drinking water utility. To do this, we first developed a framework to determine the relationship between land cover change and water quality in the context of recent historical changes and projected future changes in land cover. Next we coupled a watershed model, the Soil and Water Assessment Tool (SWAT) to projections of land cover change from the FOREcasting SCEnarios of Land-use Change (FORE-SCE) model for the mid-21st century. Using historical Minneapolis drinking water treatment data (chemical usage and costs), source water quality in the UMRB was linked to changes in treatment requirements as a function of projected future land cover change. These analyses will quantify the value of natural landscapes in protecting drinking water quality and future treatment processes requirements. In addition, our study provides the Minneapolis drinking water utility with information critical to their planning and capital improvement process.

  16. Analysis of land cover/use changes using Landsat 5 TM data and indices. (United States)

    Ettehadi Osgouei, Paria; Kaya, Sinasi


    Urban expansion and unprecedented rural to urban transition, along with a huge population growth, are major driving forces altering land cover/use in metropolitan areas. Many of the land cover classes such as farmlands, wetlands, forests, and bare soils have been transformed during the past years into human settlements. Identification of the city growth trends and the impact of it on the vegetation cover of an area is essential for a better understanding of the sustainability of urban development processes, both planned and unplanned. Analyzing the causes and consequences of land use dynamics helps local government, urban planners, and managers for the betterment of future plans and minimizing the negative effects.This study determined temporal changes in vegetation cover and built-up area in Istanbul (Turkey) using the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and built-up area index (BUAI). The temporal data were based on Landsat 5 Thematic Mapper (TM) images acquired in June of 1984, 2002, 2007, 2009, and 2011. The NDVI was applied to all the Landsat images, and the resulting NDVI images were overlaid to generate an NDVI layer stack image. The same procedure was repeated using the SAVI and BUAI images. The layer stack images revealed those areas that had changed in terms of the different indices over the years. To determine temporal change trends, the values of 150 randomly selected control points were extracted from the same locations in the NDVI, SAVI, and BUAI layer stack images. The results obtained from these control points showed that vegetation cover decreased considerably because of a remarkable increase in the built-up area.

  17. Monitoring land use/land cover changes using CORINE land cover data: a case study of Silivri coastal zone in Metropolitan Istanbul. (United States)

    Yilmaz, Rüya


    The objective of the present study was to assess changes in land use/land cover patterns in the coastal town of Silivri, a part of greater Istanbul administratively. In the assessment, remotely sensed data, in the form of satellite images, and geographic information systems were used. Types of land use/land cover were designated as the percentage of the total area studied. Results calculated from the satellite data for land cover classification were compared successfully with the database Coordination of Information on the Environment (CORINE). This served as a reference to appraise the reliability of the study presented here. The CORINE Program was established by the European Commission to create a harmonized Geographical Information System on the state of the environment in the European Community. Unplanned urbanization is causing land use changes mainly in developing countries such as Turkey. This situation in Turkey is frequently observed in the city of Istanbul. There are only a few studies of land use-land cover changes which provide an integrated assessment of the biophysical and societal causes and consequences of environmental degradation in Istanbul. The research area comprised greater Silivri Town which is situated by the coast of Marmara Sea, and it is located approximately 60 km west of Istanbul. The city of Istanbul is one of the largest metropolises in Europe with ca. 15 million inhabitants. Additionally, greater Silivri is located near the terminal point of the state highway connecting Istanbul with Europe. Measuring of changes occurring in land use would help control future planning of settlements; hence, it is of importance for the Greater Silivri and Silivri Town. Following our evaluations, coastal zone of Silivri was classified into the land use groups of artificial surfaces agricultural areas and forests and seminatural areas with 47.1%, 12.66%, and 22.62%, respectively.

  18. Satellite-derived land covers for runoff estimation using SCS-CN method in Chen-You-Lan Watershed, Taiwan (United States)

    Zhang, Wen-Yan; Lin, Chao-Yuan


    The Soil Conservation Service Curve Number (SCS-CN) method, which was originally developed by the USDA Natural Resources Conservation Service, is widely used to estimate direct runoff volume from rainfall. The runoff Curve Number (CN) parameter is based on the hydrologic soil group and land use factors. In Taiwan, the national land use maps were interpreted from aerial photos in 1995 and 2008. Rapid updating of post-disaster land use map is limited due to the high cost of production, so the classification of satellite images is the alternative method to obtain the land use map. In this study, Normalized Difference Vegetation Index (NDVI) in Chen-You-Lan Watershed was derived from dry and wet season of Landsat imageries during 2003 - 2008. Land covers were interpreted from mean value and standard deviation of NDVI and were categorized into 4 groups i.e. forest, grassland, agriculture and bare land. Then, the runoff volume of typhoon events during 2005 - 2009 were estimated using SCS-CN method and verified with the measured runoff data. The result showed that the model efficiency coefficient is 90.77%. Therefore, estimating runoff by using the land cover map classified from satellite images is practicable.

  19. Perubahan Lingkungan Mikro pada Berbagai Penutupan Lahan Hasil Revegetasi (Micro Environmental Change in Various Form Land Cover Revegetation

    Directory of Open Access Journals (Sweden)

    Dadan Mulyana


    Full Text Available Evaluation of land rehabilitation (revegetation activities is necessary for measuring the extent of success of the ongoing activities in rehabilitating and recovering degraded lands. One way for evaluating the success of land rehabilitation (revegetation is by determining the changes of micro enviroment.  The objective of this research was to study the changes of micro environment in  various types of revegetated land cover, including scrub/bush land (SB, agricultural land (TP, monoculture teak (JM and mixed crops (TC in Ciliwung upper watershed. Research results showed that the highest air temperature and soil temperature were  obtained at SB, respectively at 32.8 0C and 26.5 0C, and the lowest at TC, respectively at 28.1 0C and 20.7 0C. Relative humidity and soil moisture were highest at TC (72.3% and 96% and lowest at SB (60.8%, and the lowest soil moisture occurred at JM (45%.  The highest infiltration rate occurred on TP (475.5 mm h-1, very rapid, followed by JM (117 mmh-1, fast and TC (80 mm h-1, and the lowest at SB (17.65 mm h-1, medium slow.  Erosion reductions occurred after 6 years of the revegetation activities with the following  results:TC  (96,676.1 ton year-1 ha-1, JM (10,790 ton year-1 ha-1, TP and SB (52,867.9 ton year-1 ha-1 and 24,612.6 ton year-1 ha-1.  The micro environments for all land cover types were better after revegetation activities.Keywords: micro environment, land cover, erosion, infiltration, upper watershed

  20. Hydrological Responses of Climate and Land Use/Cover Changes in Tao'er River Basin Based on the SWAT Model (United States)

    Liu, J.; Kou, L.


    Abstract: The changes of both climate and land use/cover have some impact on the water resources. For Tao'er River Basin, these changes have a direct impact on the land use pattern adjustment, wetland protection, connection project between rivers and reservoirs, local social and economic development, etc. Therefore, studying the impact of climate and land use/cover changes is of great practical significance. The Soil and Water Assessment Tool (SWAT) is used as the research method. With historical actual measured runoff data and the yearly land use classification caught by satellite remote sensing maps, analyze the impact of climate change on the runoff of Tao'er River. And according to the land use/cover classification of 1990, 2000 and 2010, analyze the land use/cover change in the recent 30 years, the impact of the land use/cover change on the river runoff and the contribution coefficient of farmland, woodland, grassland and other major land-use types to the runoff. These studies can provide some references to the rational allocation of water resource and adjustment of land use structure in this area.

  1. Impact of Land Use Change to the Soil Erosion Estimation for Cultural Landscapes: Case Study of Paphos Disrict in Cyprus (United States)

    Cuca, B.; Agapiou, A.


    In 2006 UNESCO report has identified soil loss as one of the main threats of climate change with possible impact to natural and cultural heritage. The study illustrated in this paper shows the results from geomatic perspective, applying an interdisciplinary approach undertaken in order to identify major natural hazards affecting cultural landscapes and archaeological heritage in rural areas in Cyprus. In particular, Earth Observation (EO) and ground-based methods were identified and applied for mapping, monitoring and estimation of the possible soil loss caused by soil erosion. Special attention was given to the land use/land cover factor (C) and its impact on the overall estimation of the soil-loss. Cover factor represents the effect of soil-disturbing activities, plants, crop sequence and productivity level, soil cover and subsurface bio-mass on soil erosion. Urban areas have a definite role in retarding the recharge process, leading to increased runoff and soil loss in the broader area. On the other hand, natural vegetation plays a predominant role in reducing water erosion. The land use change was estimated based on the difference of the NDVI value between Landsat 5 TM and Sentinel-2 data for the period between 1980s' until today. Cover factor was then estimated for both periods and significant land use changes were further examined in areas of significant cultural and natural landscape value. The results were then compared in order to study the impact of land use change on the soil erosion and hence on the soil loss rate in the selected areas.

  2. ISLSCP II Historical Land Cover and Land Use, 1700-1990 (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Historical Land Cover and Land Use data set was developed to provide the global change community with historical land use estimates. The data set...

  3. Investigating the Effects of Land Cover Change on the Hydrology of the Mississippi River Basin (United States)

    Twine, T. E.; Coe, M. T.; Lenters, J. D.; Kucharik, C. J.; Donner, S.; Foley, J. A.


    Humans have greatly altered the Earth's landscape since the beginning of sedentary agriculture. Through the conversion of forests and grasslands to croplands and pasture, human land use activities have changed biogeochemical cycles including the water cycle. Using IBIS, a global land surface model with 0.5-degree resolution (Foley et al., 1996; Kucharik et al., 2000), and HYDRA, a runoff-routing algorithm with 5-minute resolution (Coe, 2000), we have studied how land cover change may affect the hydrology of the Mississippi River Basin. The IBIS model describes physical, physiological, and ecological processes occurring in vegetative canopies and soils. Through forcing from climate data and vegetation and soil properties, IBIS simulates energy, water, and biogeochemical cycles at small time-steps (30-60 minutes). Lenters et al. (2000) have validated the IBIS-modeled water budget over the Mississippi River Basin at several scales and HYDRA-modeled discharge has been compared favorably to United States Geological Survey stream gauge data (Donner et al., 2001). This work extends those studies through use of an improved version of IBIS. The IBIS model has been calibrated for use over the continental United States through an improved phenology routine and the inclusion of corn and soybeans as land cover types. Results from a comparison of a control run of natural vegetation with experimental runs of corn and soybean cover will be shown.

  4. Towards Seamless Validation of Land Cover Data (United States)

    Chuprikova, Ekaterina; Liebel, Lukas; Meng, Liqiu


    This article demonstrates the ability of the Bayesian Network analysis for the recognition of uncertainty patterns associated with the fusion of various land cover data sets including GlobeLand30, CORINE (CLC2006, Germany) and land cover data derived from Volunteered Geographic Information (VGI) such as Open Street Map (OSM). The results of recognition are expressed as probability and uncertainty maps which can be regarded as a by-product of the GlobeLand30 data. The uncertainty information may guide the quality improvement of GlobeLand30 by involving the ground truth data, information with superior quality, the know-how of experts and the crowd intelligence. Such an endeavor aims to pave a way towards a seamless validation of global land cover data on the one hand and a targeted knowledge discovery in areas with higher uncertainty values on the other hand.

  5. Impacts of land use and cover change on terrestrial carbon stocks and the micro-climate over urban surface: a case study in Shanghai, China (United States)

    Zhang, F.; Zhan, J.; Bai, Y.


    Land use and cover change is the key factor affecting terrestrial carbon stocks and micro-climate, and their dynamics not only in regional ecosystems but also in urbanized areas. Using the typical fast-growing city of Shanghai, China as a case study, this paper explored the relationships between terrestrial carbon stocks, micro-climate and land cover within an urbanized area. The main objectives were to assess variation in soil carbon stocks and local climate conditions across terrestrial land covers with different intensities of urban development, and quantify spatial distribution and dynamic variation of carbon stocks and microclimate in response to urban land use and cover change. On the basis of accurate spatial datasets derived from a series of Landsat TM images during the years 1988 to 2010 and reliable estimates of urban climate and soil carbon stocks using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, our results showed that carbon stocks per unit area in terrestrial land covers decreased and urban temperature increased with increasing intensity of urban development. Urban land use and cover change and sealing of the soil surface created hotspots for losses in carbon stocks. Total carbon stocks in Shanghai decreased by about 30%-35%, representing a 1.5% average annual decrease, and the temperature increased by about 0.23-0.4°/10a during the past 20 years. We suggested potential policy measures to mitigate negative effects of land use and cover change on carbon stocks and microclimate in urbanized areas.

  6. Distributed Hydrologic Modeling of Semiarid Basins in Arizona: A Platform for Land Cover and Climate Change Assessments (United States)

    Hawkins, G. A.; Vivoni, E. R.


    Watershed management is challenged by rising concerns over climate change and its potential to interact with land cover alterations to impact regional water supplies and hydrologic processes. The inability to conduct experimental manipulations that address climate and land cover change at watershed scales limits the capacity of water managers to make decisions to protect future supplies. As a result, spatially-explicit, physically-based models possess value for predicting the possible consequences on watershed hydrology. In this study, we apply a distributed watershed model, the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS), to the Beaver Creek basin in Arizona. This sub-basin of the Verde River is representative of the regional topography, land cover, soils distribution and availability of hydrologic data in forested regions of northern Arizona. As such, it can serve as a demonstration study in the broader region to illustrate the utility of distributed models for change assessment studies. Through a model application to summertime conditions, we compare the hydrologic response from three sources of meteorological input: (1) an available network of ground-based stations, (2) weather radar rainfall estimates, and (3) the North American Land Data Assimilation System (NLDAS). Comparisons focus on analysis of spatiotemporal distributions of precipitation, soil moisture, runoff generation, evapotranspiration and recharge from the root zone at high resolution for an assessment of sustainable water supplies for agricultural and domestic purposes. We also present a preliminary analysis of the impact of vegetation change arising from historical treatments in the Beaver Creek to inform the hydrologic consequences in the form of soil moisture and evapotranspiration patterns with differing degrees of proposed forest thinning. Our results are discussed in the context of improved hydrologic predictions for sustainability and decision

  7. South African National Land-Cover Change Map

    African Journals Online (AJOL)

    Fritz Schoeman

    monitoring land-cover change at a national scale over time using EO data. 2. .... assist with final results reporting and analysis on a sub-national level. ..... South African Land-Cover Characteristics Database: A synopsis of the landscape.

  8. Land use/cover disturbance due to tourism in Jeseníky Mountain, Czech Republic: A remote sensing and GIS based approach


    Mukesh Singh Boori; Vít Voženílek; Komal Choudhary


    The Jeseníky Mountains tourism in Czech Republic is unique for its floristic richness. This is caused mainly by the altitude division and polymorphism of the landscape, climate and soil structure. This study assesses the impacts of tourism on the land cover in the Jeseníky Mountain region by comparing multi-temporal Landsat imageries (1991, 2001 and 2013) to describe the rate and extent of land-cover changes. This was achieved through spectral classification of different land cover classes an...

  9. Statistical Monitoring of Changes to Land Cover

    KAUST Repository

    Zerrouki, Nabil; Harrou, Fouzi; Sun, Ying


    Accurate detection of changes in land cover leads to better understanding of the dynamics of landscapes. This letter reports the development of a reliable approach to detecting changes in land cover based on remote sensing and radiometric data

  10. The Critical Depth of Freeze-Thaw Soil under Different Types of Snow Cover

    Directory of Open Access Journals (Sweden)

    Qiang Fu


    Full Text Available Snow cover is the most common upper boundary condition influencing the soil freeze-thaw process in the black soil farming area of northern China. Snow is a porous dielectric cover, and its unique physical properties affect the soil moisture diffusion, heat conduction, freezing rate and other variables. To understand the spatial distribution of the soil water-heat and the variable characteristics of the critical depth of the soil water and heat, we used field data to analyze the freezing rate of soil and the extent of variation in soil water-heat in a unit soil layer under bare land (BL, natural snow (NS, compacted snow (CS and thick snow (TS treatments. The critical depth of the soil water and heat activity under different snow covers were determined based on the results of the analysis, and the variation fitting curve of the difference sequences on the soil temperature and water content between different soil layers and the surface 5-cm soil layer were used to verify the critical depth. The results were as follows: snow cover slowed the rate of soil freezing, and the soil freezing rate under the NS, CS and TS treatments decreased by 0.099 cm/day, 0.147 cm/day and 0.307 cm/day, respectively, compared with that under BL. In addition, the soil thawing time was delayed, and the effect was more significant with increased snow cover. During freeze-thaw cycles, the extent of variation in the water and heat time series in the shallow soil was relatively large, while there was less variation in the deep layer. There was a critical stratum in the vertical surface during hydrothermal migration, wherein the critical depth of soil water and heat change gradually increased with increasing snow cover. The variance in differences between the surface layer and both the soil water and heat in the different layers exhibited “steady-rising-steady” behavior, and the inflection point of the curve is the critical depth of soil freezing and thawing. This critical

  11. Wet-dry seasonal and vertical geochemical variations in soil water and their driving forces under different land covers in southwest China karst (United States)

    Wang, Peng; Hu, Bill X.; Wu, Chuanhao; Xu, Kai


    Karst aquifers supply drinking water for 25% of the world's population, and they are, however, vulnerable to climate change. Bimonthly hydrochemical data in karst soil water samples from July 2010 to July 2011 were obtained to reveal the seasonal and vertical geochemical variations in soil water under five vegetation types in Qingmuguan, a small karst catchment in southwest China. Soil water chemistry was dominated by Ca2+, HCO3-, and SO42- because of the dissolution of limestone, dolomite, and gypsum minerals in the strata. The predominant hydrochemical types in soil water were Ca2+-HCO3-, Ca2+-SO42-, and mixed Ca2+-HCO3-SO42-. Ca2+ and HCO3- concentrations ranked in the following order: shrub land > dry land > afforestation farmland > bamboo land > grassland. In warm and wet seasons, the main ion concentrations in soil water from grasslands were low. Na+, K+, Ca2+, Mg2+, HCO3-, SO42-, and Cl- concentrations in soil water from other lands were high. An opposite trend was observed in cold and dry seasons. Marked seasonal variations were observed in Ca2+, HCO3-, and NO3- in soil water from dry land. The main ion concentrations in soil water from bamboo lands decreased as soil depth increased. By contrast, the chemistry of soil water from other lands increased as soil depth increased. Their ions were accumulated in depth. A consistent high and low variation between the main ions in soil water and the contents of carbonate and CO2 was found in the soil. Hydrochemical changes in soil water were regulated by the effects of dilution and soil CO2.


    Directory of Open Access Journals (Sweden)

    V. Šafář


    Full Text Available Czech landscape is an old residential area used by humans since ancient times. People have influenced it since their arrival and various activities in different periods create landscape layers called a palimpsest. Land Cover of one location could have changed several times. The most important reason is meandering and subsequent straightening of rivers, deforestation, relocation and change in soil layers. These changes in the past affected the present management and it is important to identify them. A suitable tool for the determination of different sites is remote sensing in the infrared spectrum, which monitors changes in the vegetation with the support of archival materials. After identifying the different places you can search the archival materials, how the land cover looked in the past. There have been used these archival materials: maps II. and III. military mapping, basic maps and other maps and historical orthophotomap. Czech Republic has a national archive of aerial photographs with aerial photographs from the thirties of the last century maintained by MGHO Dobruska. A comparative analysis of Land Cover shows the increases and decreases in agricultural land, changes in communication line elements, forest losses and increases, comparing the legal and actual status of the forest boundaries and their changes over time, changes in the built areas and links to the surrounding countryside. Land Cover of this study was created primarily with a visual interpretation of each area with their vectorization and assigning attributes to these areas and then comparing each of archival materials.

  13. Nickel, Cobalt, Chromium and Copper in agricultural and grazing land soils of Europe (United States)

    Albanese, Stefano; Sadeghi, Martiya; De Vivo, Benedetto; Lima, Annamaria; Cicchella, Domenico; Dinelli, Enrico


    In the framework of the GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soils) project, concentrations of Ni, Co, Cu and Cr were determined for the whole available dataset (2218 samples of agricultural soil and 2127 samples of grazing land soil) covering a total area of 5.6 million sq km all over Europe. The distribution pattern of Ni in the European soils (both agricultural and grazing land soils) shows the highest concentrations in correspondence with the Mediterranean area (especially in Greece, the Balcan Peninsula and NW Italy) with average values generally ranging between 40 mg/kg and 140 mg/kg and anomalous areas characterized by peaks higher than 2400 mg/kg. Concentrations between 10 mg/kg and 40 mg/kg characterize Continental Europe north of Alps and, partly, the Scandinavian countries. Lower concentrations (agricultural and grazing land soils. The maximum concentration peaks of Cobalt and Cr rise up to respectively 126 mg/kg and 696 mg/kg in agricultural soils and up to 255 mg/kg and 577 mg/kg in grazing land soils. Copper distribution in the soils collected across Europe, although has a general correspondence with the patterns of Ni, Co, Cr, shows some peculiarities. Specifically, Cu is characterized by high concentration values (up to 395 mg/kg in agricultural soils and 373 mg/kg in Grazing land soils) also in correspondence with the Roman Comagmatic Province and the south western coast of France characterized by a wide spread of vineyards.

  14. Effects of Land-use/Land-cover and Climate Changes on Water Quantity and Quality in Sub-basins near Major US Cities in the Great Lakes Region (United States)

    Murphy, L.; Al-Hamdan, M. Z.; Crosson, W. L.; Barik, M.


    Land-cover change over time to urbanized, less permeable surfaces, leads to reduced water infiltration at the location of water input while simultaneously transporting sediments, nutrients and contaminants farther downstream. With an abundance of agricultural fields bordering the greater urban areas of Milwaukee, Detroit, and Chicago, water and nutrient transport is vital to the farming industry, wetlands, and communities that rely on water availability. Two USGS stream gages each located within a sub-basin near each of these Great Lakes Region cities were examined, one with primarily urban land-cover between 1992 and 2011, and one with primarily agriculture land-cover. ArcSWAT, a watershed model and soil and water assessment tool used in extension with ArcGIS, was used to develop hydrologic models that vary the land-covers to simulate surface runoff during a model run period from 2004 to 2008. Model inputs that include a digital elevation model (DEM), Landsat-derived land-use/land-cover (LULC) satellite images from 1992, 2001, and 2011, soil classification, and meteorological data were used to determine the effect of different land-covers on the water runoff, nutrients and sediments. The models were then calibrated and validated to USGS stream gage data measurements over time. Additionally, the watershed model was run based on meteorological data from an IPCC CMIP5 high emissions climate change scenario for 2050. Model outputs from the different LCLU scenarios were statistically evaluated and results showed that water runoff, nutrients and sediments were impacted by LULC change in four out of the six sub-basins. In the 2050 climate scenario, only one out of the six sub-basin's water quantity and quality was affected. These results contribute to the importance of developing hydrologic models as the dependence on the Great Lakes as a freshwater resource competes with the expansion of urbanization leading to the movement of runoff, nutrients, and sediments off the

  15. Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960-2005. (United States)

    Dewan, Ashraf M; Yamaguchi, Yasushi


    This paper illustrates the result of land use/cover change in Dhaka Metropolitan of Bangladesh using topographic maps and multi-temporal remotely sensed data from 1960 to 2005. The Maximum likelihood supervised classification technique was used to extract information from satellite data, and post-classification change detection method was employed to detect and monitor land use/cover change. Derived land use/cover maps were further validated by using high resolution images such as SPOT, IRS, IKONOS and field data. The overall accuracy of land cover change maps, generated from Landsat and IRS-1D data, ranged from 85% to 90%. The analysis indicated that the urban expansion of Dhaka Metropolitan resulted in the considerable reduction of wetlands, cultivated land, vegetation and water bodies. The maps showed that between 1960 and 2005 built-up areas increased approximately 15,924 ha, while agricultural land decreased 7,614 ha, vegetation decreased 2,336 ha, wetland/lowland decreased 6,385 ha, and water bodies decreased about 864 ha. The amount of urban land increased from 11% (in 1960) to 344% in 2005. Similarly, the growth of landfill/bare soils category was about 256% in the same period. Much of the city's rapid growth in population has been accommodated in informal settlements with little attempt being made to limit the risk of environmental impairments. The study quantified the patterns of land use/cover change for the last 45 years for Dhaka Metropolitan that forms valuable resources for urban planners and decision makers to devise sustainable land use and environmental planning.

  16. High spatial resolution decade-time scale land cover change at multiple locations in the Beringian Arctic (1948–2000s)

    International Nuclear Information System (INIS)

    Lin, D H; Johnson, D R; Tweedie, C E; Andresen, C


    Analysis of time series imagery from satellite and aircraft platforms is useful for detecting land cover change at plot to regional scales. In this study, we created multi-temporal high spatial resolution land cover maps for seven locations in the Beringian Arctic and assessed the change in land cover over time. Land cover classifications were site specific and mostly aligned with a soil moisture gradient. Time series varied between 60 and 21 years. Four of the five landscapes studied in Alaska underwent an expansion of drier land cover classes while the two landscapes studies in Chukotka, Russia showed an expansion of wetter land cover types. While a range of land cover types was present across the landscapes studied, the extent of shrubs (in Chukotka) and open water (in Alaska) increased in all landscapes where these land cover types were present. The results support trends documented for regional change in NDVI (a measure of vegetation greenness and productivity) as well as a host of other long term, experimental and modeling studies. Using historic change trends for each land cover type at each landscape, we use a simple probabilistic vegetation model to establish hypotheses of future change trajectories for different land cover types at each of the landscapes investigated. This study is a contribution to the International Polar Year Back to the Future project (IPY-BTF). (letter)

  17. Using Urban Landscape Trajectories to Develop a Multi-Temporal Land Cover Database to Support Ecological Modeling

    Directory of Open Access Journals (Sweden)

    Marina Alberti


    Full Text Available Urbanization and the resulting changes in land cover have myriad impacts on ecological systems. Monitoring these changes across large spatial extents and long time spans requires synoptic remotely sensed data with an appropriate temporal sequence. We developed a multi-temporal land cover dataset for a six-county area surrounding the Seattle, Washington State, USA, metropolitan region. Land cover maps for 1986, 1991, 1995, 1999, and 2002 were developed from Landsat TM images through a combination of spectral unmixing, image segmentation, multi-season imagery, and supervised classification approaches to differentiate an initial nine land cover classes. We then used ancillary GIS layers and temporal information to define trajectories of land cover change through multiple updating and backdating rules and refined our land cover classification for each date into 14 classes. We compared the accuracy of the initial approach with the landscape trajectory modifications and determined that the use of landscape trajectory rules increased our ability to differentiate several classes including bare soil (separated into cleared for development, agriculture, and clearcut forest and three intensities of urban. Using the temporal dataset, we found that between 1986 and 2002, urban land cover increased from 8 to 18% of our study area, while lowland deciduous and mixed forests decreased from 21 to 14%, and grass and agriculture decreased from 11 to 8%. The intensity of urban land cover increased with 252 km2 in Heavy Urban in 1986 increasing to 629 km2 by 2002. The ecological systems that are present in this region were likely significantly altered by these changes in land cover. Our results suggest that multi-temporal (i.e., multiple years and multiple seasons within years Landsat data are an economical means to quantify land cover and land cover change across large and highly heterogeneous urbanizing landscapes. Our data, and similar temporal land cover change

  18. Assessment of environmental responses to land use/land cover ...

    African Journals Online (AJOL)



    Dec 17, 2013 ... 49.86% of the land cover has been converted to other land uses, ... management information system and policies that will ensure sustainable management of fragile ...... growth in agricultural output such as food and fiber.

  19. Land cover mapping of Greater Mesoamerica using MODIS data (United States)

    Giri, Chandra; Jenkins, Clinton N.


    A new land cover database of Greater Mesoamerica has been prepared using moderate resolution imaging spectroradiometer (MODIS, 500 m resolution) satellite data. Daily surface reflectance MODIS data and a suite of ancillary data were used in preparing the database by employing a decision tree classification approach. The new land cover data are an improvement over traditional advanced very high resolution radiometer (AVHRR) based land cover data in terms of both spatial and thematic details. The dominant land cover type in Greater Mesoamerica is forest (39%), followed by shrubland (30%) and cropland (22%). Country analysis shows forest as the dominant land cover type in Belize (62%), Cost Rica (52%), Guatemala (53%), Honduras (56%), Nicaragua (53%), and Panama (48%), cropland as the dominant land cover type in El Salvador (60.5%), and shrubland as the dominant land cover type in Mexico (37%). A three-step approach was used to assess the quality of the classified land cover data: (i) qualitative assessment provided good insight in identifying and correcting gross errors; (ii) correlation analysis of MODIS- and Landsat-derived land cover data revealed strong positive association for forest (r2 = 0.88), shrubland (r2 = 0.75), and cropland (r2 = 0.97) but weak positive association for grassland (r2 = 0.26); and (iii) an error matrix generated using unseen training data provided an overall accuracy of 77.3% with a Kappa coefficient of 0.73608. Overall, MODIS 500 m data and the methodology used were found to be quite useful for broad-scale land cover mapping of Greater Mesoamerica.

  20. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River

    NARCIS (Netherlands)

    Ouyang, W.; Hao, F.; Skidmore, A.K.; Toxopeus, A.G.


    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and

  1. Land cover controls on depression-focused recharge: an example from southern Ontario (United States)

    Buttle, J. M.; Greenwood, W. J.


    The Oak Ridges Moraine (ORM) is a critical hydrogeologic feature in southern Ontario. Although previous research has highlighted the implications of spatially-focused recharge in closed topographic depressions for regional groundwater resources, such depression-focused recharge (DFR) has not been empirically demonstrated on the ORM. Permeable surficial sands and gravels mantling much of the ORM imply that water fluxes will largely be vertical recharge rather than lateral downslope transfer into depressions. Nevertheless, lateral fluxes may occur in winter and spring, when concrete frost development encourages surface runoff of rainfall and snowmelt. The potential for DFR was examined under forest and agricultural land cover with similar soils and surficial geology. Soil water contents, soil temperatures and ground frost thickness were measured at the crest and base of closed depressions in two agricultural fields and two forest stands on permeable ORM outcrops. Recharge from late-fall to the end of spring snowmelt was estimated via 1-d water balances and surface-applied bromide tracing. Both forest and agricultural sites experienced soil freezing; however, greater soil water contents prior to freeze-up at the latter led to concrete soil frost development. This resulted in lateral movement of snowmelt and rainfall into topographic depressions and surface ponding, which did not occur in forest depressions. Water balance recharge exceeded estimates from the bromide tracer approach at all locations; nevertheless, both methods indicated DRF exceeded recharge at the depression crest in agricultural areas with little difference in forest areas. Water balance estimates suggest winter-spring DFR (1300 - 2000 mm) is 3-5× recharge on level agricultural sites. Differences in the potential for DFR between agricultural and forest land covers have important implications for the spatial variability of recharge fluxes and the quality of recharging water on the ORM.

  2. The Land Cover Dynamics and Conversion of Agricultural Land in Northwestern Bangladesh, 1973-2003. (United States)

    Pervez, M.; Seelan, S. K.; Rundquist, B. C.


    The importance of land cover information describing the nature and extent of land resources and changes over time is increasing; this is especially true in Bangladesh, where land cover is changing rapidly. This paper presents research into the land cover dynamics of northwestern Bangladesh for the period 1973-2003 using Landsat satellite images in combination with field survey data collected in January and February 2005. Land cover maps were produced for eight different years during the study period with an average 73 percent overall classification accuracy. The classification results and post-classification change analysis showed that agriculture is the dominant land cover (occupying 74.5 percent of the study area) and is being reduced at a rate of about 3,000 ha per year. In addition, 6.7 percent of the agricultural land is vulnerable to temporary water logging annually. Despite this loss of agricultural land, irrigated agriculture increased substantially until 2000, but has since declined because of diminishing water availability and uncontrolled extraction of groundwater driven by population pressures and the extended need for food. A good agreement (r = 0.73) was found between increases in irrigated land and the depletion of the shallow groundwater table, a factor affecting widely practiced small-scale irrigation in northwestern Bangladesh. Results quantified the land cover change patterns and the stresses placed on natural resources; additionally, they demonstrated an accurate and economical means to map and analyze changes in land cover over time at a regional scale, which can assist decision makers in land and natural resources management decisions.

  3. Towards monitoring land-cover and land-use changes at a global scale: the global land survey 2005 (United States)

    Gutman, G.; Byrnes, Raymond A.; Masek, J.; Covington, S.; Justice, C.; Franks, S.; Headley, Rachel


    Land cover is a critical component of the Earth system, infl uencing land-atmosphere interactions, greenhouse gas fl uxes, ecosystem health, and availability of food, fi ber, and energy for human populations. The recent Integrated Global Observations of Land (IGOL) report calls for the generation of maps documenting global land cover at resolutions between 10m and 30m at least every fi ve years (Townshend et al., in press). Moreover, despite 35 years of Landsat observations, there has not been a unifi ed global analysis of land-cover trends nor has there been a global assessment of land-cover change at Landsat-like resolution. Since the 1990s, the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) have supported development of data sets based on global Landsat observations (Tucker et al., 2004). These land survey data sets, usually referred to as GeoCover ™, provide global, orthorectifi ed, typically cloud-free Landsat imagery centered on the years 1975, 1990, and 2000, with a preference for leaf-on conditions. Collectively, these data sets provided a consistent set of observations to assess land-cover changes at a decadal scale. These data are freely available via the Internet from the USGS Center for Earth Resources Observation and Science (EROS) (see or This has resulted in unprecedented downloads of data, which are widely used in scientifi c studies of land-cover change (e.g., Boone et al., 2007; Harris et al., 2005; Hilbert, 2006; Huang et al. 2007; Jantz et al., 2005, Kim et al., 2007; Leimgruber, 2005; Masek et al., 2006). NASA and USGS are continuing to support land-cover change research through the development of GLS2005 - an additional global Landsat assessment circa 20051 . Going beyond the earlier initiatives, this data set will establish a baseline for monitoring changes on a 5-year interval and will pave the way toward continuous global land-cover

  4. Budget of N2O emissions at the watershed scale: role of land cover and topography (the Orgeval basin, France

    Directory of Open Access Journals (Sweden)

    G. Billen


    Full Text Available Agricultural basins are the major source of N2O emissions, with arable land accounting for half of the biogenic emissions worldwide. Moreover, N2O emission strongly depends on the position of agricultural land in relation with topographical gradients, as footslope soils are often more prone to denitrification. The estimation of land surface area occupied by agricultural soils depends on the available spatial input information and resolution. Surface areas of grassland, forest and arable lands were estimated for the Orgeval sub-basin using two cover representations: the pan European CORINE Land Cover 2006 database (CLC 2006 and a combination of two databases produced by the IAU IDF (Institut d'Aménagement et d'Urbanisme de la Région d'Île-de-France, the MOS (Mode d'Occupation des Sols combined with the ECOMOS 2000 (a land-use classification. In this study, we have analyzed how different land-cover representations influence and introduce errors into the results of regional N2O emissions inventories. A further introduction of the topography concept was used to better identify the critical zones for N2O emissions, a crucial issue to better adapt the strategies of N2O emissions mitigation. Overall, we observed that a refinement of the land-cover database led to a 5 % decrease in the estimation of N2O emissions, while the integration of the topography decreased the estimation of N2O emissions up to 25 %.

  5. Statistical Monitoring of Changes to Land Cover

    KAUST Repository

    Zerrouki, Nabil


    Accurate detection of changes in land cover leads to better understanding of the dynamics of landscapes. This letter reports the development of a reliable approach to detecting changes in land cover based on remote sensing and radiometric data. This approach integrates the multivariate exponentially weighted moving average (MEWMA) chart with support vector machines (SVMs) for accurate and reliable detection of changes to land cover. Here, we utilize the MEWMA scheme to identify features corresponding to changed regions. Unfortunately, MEWMA schemes cannot discriminate between real changes and false changes. If a change is detected by the MEWMA algorithm, then we execute the SVM algorithm that is based on features corresponding to detected pixels to identify the type of change. We assess the effectiveness of this approach by using the remote-sensing change detection database and the SZTAKI AirChange benchmark data set. Our results show the capacity of our approach to detect changes to land cover.

  6. CORINE land cover and floristic variation in a Mediterranean wetland. (United States)

    Giallonardo, Tommaso; Landi, Marco; Frignani, Flavio; Geri, Francesco; Lastrucci, Lorenzo; Angiolini, Claudia


    The aims of the present study were to: (1) investigate whether CORINE land cover classes reflect significant differences in floristic composition, using a very detailed CORINE land cover map (scale 1:5000); (2) decompose the relationships between floristic assemblages and three groups of explanatory variables (CORINE land cover classes, environmental characteristics and spatial structure) into unique and interactive components. Stratified sampling was used to select a set of 100-m(2) plots in each land cover class identified in the semi-natural wetland surrounding a lake in central Italy. The following six classes were considered: stable meadows, deciduous oak dominated woods, hygrophilous broadleaf dominated woods, heaths and shrublands, inland swamps, canals or watercourses. The relationship between land cover classes and floristic composition was tested using several statistical techniques in order to determine whether the results remained consistent with different procedures. The variation partitioning approach was applied to identify the relative importance of three groups of explanatory variables in relation to floristic variation. The most important predictor was land cover, which explained 20.7% of the variation in plant distribution, although the hypothesis that each land cover class could be associated with a particular floristic pattern was not verified. Multi Response Permutation Analysis did not indicate a strong floristic separability between land cover classes and only 9.5% of species showed a significant indicator value for a specific land cover class. We suggest that land cover classes linked with hygrophilous and herbaceous communities in a wetland may have floristic patterns that vary with fine scale and are not compatible with a land cover map.

  7. High-Precision Land-Cover-Land-Use GIS Mapping and Land Availability and Suitability Analysis for Grass Biomass Production in the Aroostook River Valley, Maine, USA

    Directory of Open Access Journals (Sweden)

    Chunzeng Wang


    Full Text Available High-precision land-cover-land-use GIS mapping was performed in four major townships in Maine’s Aroostook River Valley, using on-screen digitization and direct interpretation of very high spatial resolution satellite multispectral imagery (15–60 cm and high spatial resolution LiDAR data (2 m and the field mapping method. The project not only provides the first-ever high-precision land-use maps for northern Maine, but it also yields accurate hectarage estimates of different land-use types, in particular grassland, defined as fallow land, pasture, and hay field. This enables analysis of potential land availability and suitability for grass biomass production and other sustainable land uses. The results show that the total area of fallow land in the four towns is 7594 hectares, which accounts for 25% of total open land, and that fallow plots equal to or over four hectares in size total 4870, or 16% of open land. Union overlay analysis, using the Natural Resources Conservation Service (NRCS soil data, indicates that only a very small percentage of grassland (4.9% is on “poorly-drained” or “very-poorly-drained” soils, and that most grassland (85% falls into the “farmland of state importance” or “prime farmland” categories, as determined by NRCS. It is concluded that Maine’s Aroostook River Valley has an ample base of suitable, underutilized land for producing grass biomass.

  8. Shifts in soil bacterial community after eight years of land-use change. (United States)

    Suleiman, Afnan Khalil Ahmad; Manoeli, Lupatini; Boldo, Juliano Tomazzoni; Pereira, Marcos G; Roesch, Luiz Fernando Wurdig


    The interaction between plants, soil and microorganisms is considered to be the major driver of ecosystem functions and any modification of plant cover and/or soil properties might affect the microbial structure, which, in turn, will influence ecological processes. Assuming that soil properties are the major drivers of soil bacterial diversity and structure within the same soil type, it can be postulated whether plant cover causes significant shifts in soil bacterial community composition. To address this question, this study used 16S rRNA pyrosequencing to detect differences in diversity, composition and/or relative abundance of bacterial taxa from an area covered by pristine forest, as well as eight-year-old grassland surrounded by the same forest. It was shown that a total of 69% of the operational taxonomic units (OTUs) were shared between environments. Overall, forest and grassland samples presented the same diversity and the clustering analysis did not show the occurrence of very distinctive bacterial communities between environments. However, 11 OTUs were detected in statistically significant higher abundance in the forest samples but in lower abundance in the grassland samples, whereas 12 OTUs occurred in statistically significant higher abundance in the grassland samples but in lower abundance in the forest samples. The results suggested the prevalence of a resilient core microbial community that did not suffer any change related to land use, soil type or edaphic conditions. The results illustrated that the history of land use might influence present-day community structure. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Influence of shrub cover vegetal and slope length on soil bulk density

    International Nuclear Information System (INIS)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.


    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  10. Millennium Ecosystem Assessment: MA Rapid Land Cover Change (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Rapid Land Cover Change provides data and information on global and regional land cover change in raster format for...

  11. Slope and Land Use Changing Effects on Soil Properties and Magnetic Susceptibility in Hilly Lands, Yasouj Region

    Directory of Open Access Journals (Sweden)

    rouhollaah vafaeezadeh


    Full Text Available Introduction: Land use changes are the most reasons which affect natural ecosystem protection. Forest soils have high organic matter and suitable structure, but their land use management change usually affects soil properties and decreases soil quality. There are several outcomes of such land use changes and intensification: accelerated soil erosion and decline of soil nutrient conditions, change of hydrological regimes and sedimentation and loss of primary forests and their biodiversity. Establishing effects of land use and land cover changes on soil properties have implications for devising management strategies for sustainable use. Forest land use change in Yasouj caused soil losses and decreased soil quality. The objectives of this study were to assess some soil physical and chemical properties and soil magnetic susceptibility changes in different land uses and slope position. Materials and Methods: Soil samples were taken from natural forest, degraded forest and dryland farm from different slops (0-10, 10-20 and 20-30 percent in sout east of Yasouj. They were from 0–10 cm depth in a completely randomized design with five replications. Soil moisture and temperature regimes in the study area are xeric and mesic, respectively. Particle size distribution was determined by the hydrometer method and soil organic matter, CaCO3 equivalent and bulk density was determined using standard procedures described in Methods of Soil Analysis book. Magnetic susceptibility was measured at low and high frequency of 0.46 kHz (χlf and 4.6 kHz (χHf respectively with a Bartington MS2D meter using approximately 20 g of soil held in a four-dram clear plastic vial. Frequency dependent susceptibility (χfd is expressed as the difference between the high and the low frequency measurements as a percentage of χ at low frequency. Results and Discussion: Soil texture was affected by land use change from silty clay loam in forest to silty loam in dry land farm

  12. Land use/Land Cover Changes and Causes of Deforestation in the ...

    African Journals Online (AJOL)

    The objective of this paper is to provide the non-existent data on land use/land cover changes in the Wilberforce Island for the purposes of determining the causes of deforestation and changes in the vegetation cover for a 13 – year period. Accordingly, 125 questionnaires were administered in five communities to determine ...

  13. Integration of remote sensing (RS) and geographic information system (GIS) techniques for change detection of the land use and land cover (LULC) for soil management in the southern Port Said region, Egypt (United States)

    Hassan, Mohamed Abd El Rehim Abd El Aziz


    The monitoring of land use/land cover (LULC) changes in southern Port Said region area is very important for the planner of managements, governmental and non-governmental organizations, decision makers and the scientific community. This information is essential for planning and implementing policies to optimize the use of natural resources and accommodate development whilst minimizing the impact on the environment. To monitor these changes in the study area, two sets of satellite images (Landsat TM-5 and ETM+7) data were used with Path/Row (175/38) in date 1986 and 2006, respectively. The Landsat TM and ETM data are useful for this type of study due to its high spatial resolution, spectral resolution and low repetitive acquisition (16 days). A postclassification technique is used in this study based on hybrid classification (Unsupervised and Supervised). Each method used was assessed, and checked in field. Eight to Twelve LULC classes are recognized and mapping produced. The soils in southern Port Said area were classification in two orders for soil taxonomic units, which are Entisols and Aridisols and four sub-orders classes. The study land was evaluated into five classes from non suitable (N) to very highly suitable (S1) for some crops in the southern region of Port Said studied soils, with assess the nature of future change following construction of the international coastal road which crosses near to the study area.

  14. How do soil properties and soil carbon stocks change after land abandonment in Mediterranean mountain areas? (United States)

    Nadal Romero, Estela; Cammeraat, Erik; Pérez Cardiel, Estela; Lasanta, Teodoro


    Land abandonment and subsequent revegetation processes (due to secondary succession and afforestation practices) are global issues with important implications in Mediterranean mountain areas. Moreover, the effects of land use changes on soil carbon stocks are a matter of concern stated in international policy agendas on the mitigation of greenhouse emissions, and afforestation practices are increasingly viewed as an environmental restorative land use change prescription and are considered one of the most efficient carbon sequestration strategies currently available. The MED-AFFOREST project aims to gain more insight into the discussion by exploring the following central research questions: (i) what is the impact of land abandonment on soil properties? and (ii) how do soil organic carbon change after land abandonment? The main objective of this study is to assess the effects of land abandonment, land use change and afforestation practices on soil properties and soil organic carbon (SOC) dynamics. For this aim, five different land covers (bare soil, meadows, secondary succession, Pinus sylvestris (PS) and Pinus nigra (PN) afforestation), in the Central Spanish Pyrenees were analysed. Results showed that changes in soil properties after land abandonment were limited, even if afforestation practices were carried out and no differences were observed between natural succession and afforestation. The results on SOC dynamics showed that: (i) SOC contents were higher in the PN sites in the topsoil (10 cm), (ii) when all the profile was considered no significant differences were observed between meadows and PN, (iii) SOC accumulation under secondary succession is a slow process, and (iv) meadows should also be considered due to the relative importance in SOC stocks. The first step of SOC stabilization after afforestation is the formation of macro-aggregates promoted by large inputs of SOC, with a high contribution of labile organic matter. However, our respiration

  15. The causes of land-use and land-cover change : moving beyond the myths

    NARCIS (Netherlands)

    Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; George, P.S.; Homewood, K.; Imbernon, J.; Leemans, R.; Xiubin Li,; Moran, E.F.; Mortimore, M.; Ramakrishnan, P.S.; Richards, J.F.; Skanes, H.; Steffen, W.; Stone, G.D.; Svedin, U.; Veldkamp, A.; Vogel, C.; Jianchu Xu,


    Common understanding of the causes of land-use and land-cover change is dominated by simplifications which, in turn, underlie many environment-development policies. This article tracks some of the major myths on driving forces of land-cover change and proposes alternative pathways of change that are

  16. Land cover and topography affect the land transformation caused by wind facilities.

    Directory of Open Access Journals (Sweden)

    Jay E Diffendorfer

    Full Text Available Land transformation (ha of surface disturbance/MW associated with wind facilities shows wide variation in its reported values. In addition, no studies have attempted to explain the variation across facilities. We digitized land transformation at 39 wind facilities using high resolution aerial imagery. We then modeled the effects of turbine size, configuration, land cover, and topography on the levels of land transformation at three spatial scales. The scales included strings (turbines with intervening roads only, sites (strings with roads connecting them, buried cables and other infrastructure, and entire facilities (sites and the roads or transmission lines connecting them to existing infrastructure. An information theoretic modeling approach indicated land cover and topography were well-supported variables affecting land transformation, but not turbine size or configuration. Tilled landscapes, despite larger distances between turbines, had lower average land transformation, while facilities in forested landscapes generally had the highest land transformation. At site and string scales, flat topographies had the lowest land transformation, while facilities on mesas had the largest. The results indicate the landscape in which the facilities are placed affects the levels of land transformation associated with wind energy. This creates opportunities for optimizing wind energy production while minimizing land cover change. In addition, the results indicate forecasting the impacts of wind energy on land transformation should include the geographic variables affecting land transformation reported here.


    Directory of Open Access Journals (Sweden)

    Shevchenko O.


    Full Text Available In the article modern scientific and theoretical positions concerning determination of the effectiveness of soil protection measures on agricultural lands are investigated. It is analyzed that the protection of land from degradation is one of the most important problems of agriculture, as this process leads to a significant decrease in soil fertility and crop yields. That is why in today's conditions, when the protection of agricultural land became urgent and a priority task, the scientific substantiation of the economic assessment of the damage caused by the degradation of land to agriculture, as well as the development of methods for determining the economic efficiency of the most progressive soil protection measures, technologies and complexes based on their overall Comparative evaluation. It was established that ground protection measures are a system of various measures aimed at reducing the negative degradation effect on the soil cover and ensuring the preservation and reproduction of soil fertility and integrity, as well as increasing their productivity as a result of rational use. The economic essence of soil protection measures is the economic effect achieved by preventing damage caused by land degradation to agriculture, as well as for obtaining additional profit as a result of their action. The economic effectiveness of soil protection measures means their effectiveness, that is, the correlation between the results and the costs that they provided. The excess of the economic result over the cost of its achievement indicates the economic efficiency of soil protection measures, and the difference between the result and the expenditure characterizes the economic effect. Ecological efficiency is characterized by environmental parameters of the soil cover, namely: the weakening of degradation effects on soils; improvement of their qualitative properties; An increase in production without violation of environmental standards, etc. Economic

  18. Simulating feedbacks in land use and land cover change models

    NARCIS (Netherlands)

    Verburg, P.H.


    In spite of the many advances in land use and land cover change modelling over the past decade many challenges remain. One of these challenges relates to the explicit treatment of feedback mechanisms in descriptive models of the land use system. This paper argues for model-based analysis to explore

  19. Evaluating The Land Use And Land Cover Dynamics In Borena ...

    African Journals Online (AJOL)

    The integration of satellite remote sensing and GIS was an effective approach for analyzing the direction, rate, and spatial pattern of land use change. Three land use and land cover maps were produced by analyzing remotely sensed images of Landsat satellite imageries at three time points (1972,1985,and 2003) .

  20. Land use and land cover mapping: City of Palm Bay, Florida (United States)

    Barile, D. D.; Pierce, R.


    Two different computer systems were compared for use in making land use and land cover maps. The Honeywell 635 with the LANDSAT signature development program (LSDP) produced a map depicting general patterns, but themes were difficult to classify as specific land use. Urban areas were unclassified. The General Electric Image 100 produced a map depicting eight land cover categories classifying 68 percent of the total area. Ground truth, LSDP, and Image 100 maps were all made to the same scale for comparison. LSDP agreed with the ground truth 60 percent and 64 percent within the two test areas compared and Image 100 was in agreement 70 percent and 80 percent.

  1. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China.

    Directory of Open Access Journals (Sweden)

    Jian Duan

    Full Text Available Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface

  2. Deriving a per-field land use and land cover map in an agricultural mosaic catchment (United States)

    Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C. L.; Tenhunen, J.


    Detailed data on land use and land cover constitute important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly; however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in the agricultural mosaic catchment Haean in South Korea. We recorded the land cover types with additional information on agricultural practice. In this paper we introduce the data, their collection and the post-processing protocol. Furthermore, because it is important to quantitatively evaluate available land use and land cover products, we compared our data with the MODIS Land Cover Type product (MCD12Q1). During the studied period, a large portion of dry fields was converted to perennial crops. Compared to our data, the forested area was underrepresented and the agricultural area overrepresented in MCD12Q1. In addition, linear landscape elements such as waterbodies were missing in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research. The data are available at the public repository Pangaea (doi:110.1594/PANGAEA.823677).

  3. Temporal change detection of land use/land cover using GIS and ...

    African Journals Online (AJOL)

    Satellite images for the years 1972, 1989, 1999 and 2016 were used for LULC ... built-up areas, pastures and bare land, agricultural land and water bodies. For the accuracy of assessment classifications, matrix error and KAPPA ... Keywords: land use/land cover change; change detection; classification; remote sensing; GIS ...

  4. Land Cover Classification Using ALOS Imagery For Penang, Malaysia

    International Nuclear Information System (INIS)

    Sim, C K; Abdullah, K; MatJafri, M Z; Lim, H S


    This paper presents the potential of integrating optical and radar remote sensing data to improve automatic land cover mapping. The analysis involved standard image processing, and consists of spectral signature extraction and application of a statistical decision rule to identify land cover categories. A maximum likelihood classifier is utilized to determine different land cover categories. Ground reference data from sites throughout the study area are collected for training and validation. The land cover information was extracted from the digital data using PCI Geomatica 10.3.2 software package. The variations in classification accuracy due to a number of radar imaging processing techniques are studied. The relationship between the processing window and the land classification is also investigated. The classification accuracies from the optical and radar feature combinations are studied. Our research finds that fusion of radar and optical significantly improved classification accuracies. This study indicates that the land cover/use can be mapped accurately by using this approach

  5. Vertical Distribution of Soil Organic Carbon Density in Relation to Land Use/Cover, Altitude and Slope Aspect in the Eastern Himalayas

    Directory of Open Access Journals (Sweden)

    Tshering Dorji


    Full Text Available In-depth understanding about the vertical distribution of soil organic carbon (SOC density is crucial for carbon (C accounting, C budgeting and designing appropriate C sequestration strategies. We examined the vertical distribution of SOC density under different land use/land cover (LULC types, altitudinal zones and aspect directions in a montane ecosystem of Bhutan. Sampling sites were located using conditioned Latin hypercube sampling (cLHS scheme. Soils were sampled based on genetic horizons. An equal-area spline function was fitted to interpolate the target values to predetermined depths. Linear mixed model was fitted followed by mean separation tests. The results show some significant effects of LULC, altitudinal zone and slope aspect on the vertical distribution of SOC density in the profiles. Based on the proportion of mean SOC density in the first 20 cm relative to the cumulative mean SOC density in the top meter, the SOC density under agricultural lands (34% was more homogeneously distributed down the profiles than forests (39%, grasslands (59% and shrublands (43%. Similarly, the SOC density under 3500–4000 m zone (35% was more uniformly distributed compared to 3000–3500 m zone (43% and 1769–2500 m and 2500–3000 m zones (41% each. Under different aspect directions, the north and east-facing slopes (38% each had more uniform distribution of SOC density than south (40% and west-facing slopes (49%.

  6. Land-cover change in the Ozark Highlands, 1973-2000 (United States)

    Karstensen, Krista A.


    Led by the Geographic Analysis and Monitoring Program of the U.S. Geological Survey (USGS) in collaboration with the U.S. Environmental Protection Agency (EPA) and the National Aeronautics and Space Administration (NASA), the Land-Cover Trends Project was initiated in 1999 and aims to document the types, geographic distributions, and rates of land-cover change on a region by region basis for the conterminous United States, and to determine some of the key drivers and consequences of the change (Loveland and others, 2002). For 1973, 1980, 1986, 1992, and 2000 land-cover maps derived from the Landsat series are classified by visual interpretation, inspection of historical aerial photography and ground survey, into 11 land-cover classes. The classes are defined to capture land cover that is discernable in Landsat data. A stratified probability-based sampling methodology undertaken within the 84 Omernik Level III Ecoregions (Omernik, 1987) was used to locate the blocks, with 9 to 48 blocks per ecoregion. The sampling was designed to enable a statistically robust 'scaling up' of the sample-classification data to estimate areal land-cover change within each ecoregion (Loveland and others, 2002; Stehman and others, 2005). At the time of writing, approximately 90 percent of the 84 conterminous United States ecoregions have been processed by the Land-Cover Trends Project. Results from these completed ecoregions illustrate that across the conterminous United States there is no single profile of land-cover/land-use change, rather, there are varying pulses affected by clusters of change agents (Loveland and others, 2002). Land-Cover Trends Project results for the conterminous United States to-date are being used for collaborative environmental change research with partners such as; the National Science Foundation, the National Oceanic and Atmospheric Administration, and the U.S. Fish and Wildlife Service. The strategy has also been adapted for use in a NASA global

  7. Land-cover classification with an expert classification algorithm using digital aerial photographs

    Directory of Open Access Journals (Sweden)

    José L. de la Cruz


    Full Text Available The purpose of this study was to evaluate the usefulness of the spectral information of digital aerial sensors in determining land-cover classification using new digital techniques. The land covers that have been evaluated are the following, (1 bare soil, (2 cereals, including maize (Zea mays L., oats (Avena sativa L., rye (Secale cereale L., wheat (Triticum aestivum L. and barley (Hordeun vulgare L., (3 high protein crops, such as peas (Pisum sativum L. and beans (Vicia faba L., (4 alfalfa (Medicago sativa L., (5 woodlands and scrublands, including holly oak (Quercus ilex L. and common retama (Retama sphaerocarpa L., (6 urban soil, (7 olive groves (Olea europaea L. and (8 burnt crop stubble. The best result was obtained using an expert classification algorithm, achieving a reliability rate of 95%. This result showed that the images of digital airborne sensors hold considerable promise for the future in the field of digital classifications because these images contain valuable information that takes advantage of the geometric viewpoint. Moreover, new classification techniques reduce problems encountered using high-resolution images; while reliabilities are achieved that are better than those achieved with traditional methods.

  8. U.S. landowner behavior, land use and land cover changes, and climate change mitigation. (United States)

    Ralph J. Alig


    Landowner behavior is a major determinant of land use and land cover changes. an important consideration for policy analysts concerned with global change. Study of landowner behavior aids in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change by reducing net greenhouse gas emissions. Afforestation,...

  9. Percent Agricultural Land Cover on Steep Slopes (United States)

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  10. Land-cover change and avian diversity in the conterminous United States (United States)

    Chadwick D. Rittenhouse; Anna M. Pidgeon; Thomas P. Albright; Patrick D. Culbert; Murray K. Clayton; Curtis H. Flather; Jeffrey G. Masek; Volker C. Radeloff


    Changes in land use and land cover have affected and will continue to affect biological diversity worldwide. Yet, understanding the spatially extensive effects of land-cover change has been challenging because data that are consistent over space and time are lacking. We used the U.S. National Land Cover Dataset Land Cover Change Retrofit Product and North American...

  11. Impacts of Land Cover Changes on Climate over China (United States)

    Chen, L.; Frauenfeld, O. W.


    Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.

  12. Land change monitoring, assessment, and projection (LCMAP) revolutionizes land cover and land change research (United States)

    Young, Steven


    When nature and humanity change Earth’s landscapes - through flood or fire, public policy, natural resources management, or economic development - the results are often dramatic and lasting.Wildfires can reshape ecosystems. Hurricanes with names like Sandy or Katrina will howl for days while altering the landscape for years. One growing season in the evolution of drought-resistant genetics can transform semiarid landscapes into farm fields.In the past, valuable land cover maps created for understanding the effects of those events - whether changes in wildlife habitat, water-quality impacts, or the role land use and land cover play in affecting weather and climate - came out at best every 5 to 7 years. Those high quality, high resolution maps were good, but users always craved more: even higher quality data, additional land cover and land change variables, more detailed legends, and most importantly, more frequent land change information.Now a bold new initiative called Land Change Monitoring, Assessment, and Projection (LCMAP) promises to fulfill that demand.Developed at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, LCMAP provides definitive, timely information on how, why, and where the planet is changing. LCMAP’s continuous monitoring process can detect changes as they happen every day that Landsat satellites acquire clear observations. The result will be to place near real-time information in the hands of land and resource managers who need to understand the effects these changes have on landscapes.

  13. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems


    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip


    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on poten...

  14. Modeled impact of anthropogenic land cover change on climate (United States)

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.


    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  15. Global observation-based diagnosis of soil moisture control on land surface flux partition (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.


    . Higher RWRs were observed for shorter vegetation and bare soil compared to tall, deep-rooted vegetation due to differences in both aerodynamic and hydrological properties. The variation of RWR with antecedent rainfall provides information on which evaporation regime a particular region lies in climatologically. Different drying stages for a given antecedent rainfall can thus be observed depending on land cover type. For instance, our results suggest that forests in a continental climate remain unstressed during a 10 day dry spell provided the previous month saw at least 95 mm of rain. Conversely, RWR values indicate that under similar conditions regions of grass/crop cover are water-stressed.

  16. Land use and land cover change based on historical space-time model (United States)

    Sun, Qiong; Zhang, Chi; Liu, Min; Zhang, Yongjing


    Land use and cover change is a leading edge topic in the current research field of global environmental changes and case study of typical areas is an important approach understanding global environmental changes. Taking the Qiantang River (Zhejiang, China) as an example, this study explores automatic classification of land use using remote sensing technology and analyzes historical space-time change by remote sensing monitoring. This study combines spectral angle mapping (SAM) with multi-source information and creates a convenient and efficient high-precision land use computer automatic classification method which meets the application requirements and is suitable for complex landform of the studied area. This work analyzes the histological space-time characteristics of land use and cover change in the Qiantang River basin in 2001, 2007 and 2014, in order to (i) verify the feasibility of studying land use change with remote sensing technology, (ii) accurately understand the change of land use and cover as well as historical space-time evolution trend, (iii) provide a realistic basis for the sustainable development of the Qiantang River basin and (iv) provide a strong information support and new research method for optimizing the Qiantang River land use structure and achieving optimal allocation of land resources and scientific management.

  17. Highly erodible terrain in agriculture land against chipped pruned branches. Or how to stop the soil erosion with low investment (United States)

    Cerdà, A.


    The session on "Soil erosion and sediment control with vegetation and bioengineering on severely eroded terrain" pays special attention to the severe soil erosion suffered on steep slopes and erodible parent materials and soils. Within the last 20 years, in the Mediterranean lands, the citrus orchards were reallocated on steep slopes due to the urban development and better climatic and management conditions of the new plantations. The lack of vegetation cover on the new slope plantations of citrus resulted in high erosion rates. Those non-sustainable soil losses were measured by means of rainfall simulation experiments, Gerlach collectors, geomorphological transect and topographical measurements. The October 2007 and October 2008 rainy periods resulted in sheet, rill and gully erosion. Some recently planted orchards (2005) had the first pruning season in 2008. The pruned chipped branches reduced the soil losses to 50 % of the expected, although the litter (pruned branches) covered 4.67 % of the soil. This is why a research was developed by means of simulated rainfall experiments to determine the vegetation cover (litter, mainly leaves) to protect the soil to reach a sustainable erosion rate. Rainfall simulation experiments at 43 mm h-1 where performed on 1 m2 plots covered with 0, 3, 7, 15, 30, 45, 60, 80 and 100 % litter cover (pruned chipped branches) to determine the sustainable litter cover to avoid the soil losses. The results show that more that 45 % litter cover almost reduces the soil losses to negligible rates. The results confirm that 4 % of vegetation cover reduces the soil losses to 50 %. Key words: Agriculture land, erodible terrain, land management, citrus, erosion, Spain, Valencia, herbicides. Acknowledgements, We thanks the financial support of the Ministerio de Ciencia e Innovación by means of the project CGL2008-02879/BTE, "PERDIDA DE SUELO EN NUEVAS EXPLOTACIONES CITRICOLAS EN PENDIENTE. ESTRATEGIAS PARA EL CONTROL DE LA EROSION HIDRICA"

  18. Temporal Land Cover Analysis for Net Ecosystem Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Yinghai; Coleman, Andre M.; Diefenderfer, Heida L.


    We delineated 8 watersheds contributing to previously defined river reaches within the 1,468-km2 historical floodplain of the tidally influenced lower Columbia River and estuary. We assessed land-cover change at the watershed, reach, and restoration site scales by reclassifying remote-sensing data from the National Oceanic and Atmospheric Administration Coastal Change Analysis Program’s land cover/land change product into forest, wetland, and urban categories. The analysis showed a 198.3 km2 loss of forest cover during the first 6 years of the Columbia Estuary Ecosystem Restoration Program, 2001–2006. Total measured urbanization in the contributing watersheds of the estuary during the full 1996-2006 change analysis period was 48.4 km2. Trends in forest gain/loss and urbanization differed between watersheds. Wetland gains and losses were within the margin of error of the satellite imagery analysis. No significant land cover change was measured at restoration sites, although it was visible in aerial imagery, therefore, the 30-m land-cover product may not be appropriate for assessment of early-stage wetland restoration. These findings suggest that floodplain restoration sites in reaches downstream of watersheds with decreasing forest cover will be subject to increased sediment loads, and those downstream of urbanization will experience effects of increased impervious surfaces on hydrologic processes.

  19. GlobeLand30 as an alternative fine-scale global land cover map

    DEFF Research Database (Denmark)

    Jokar Arsanjani, Jamal; Tayyebi, A.; Vaz, E.


    land cover information such as developing countries. In this study, we look at GlobeLand30 of 2010 for Iran in order to find out the accuracy of this dataset as well as its implications. By having looked at 6 selected study sites around larger cities representing dissimilar eco-regions covering rural...

  20. Historical Land-Cover Change and Land-Use Conversions Global Dataset (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A set of three estimates of land-cover types and annual transformations of land use are provided on a global 0.5 x0.5 degree lat/lon grid at annual time steps. The...

  1. Impact of land use change on soil erodibility

    Directory of Open Access Journals (Sweden)

    F. Taleshian Jeloudar


    Full Text Available Vulnerability of soil separates to detachment by water is described as soil erodibility by Universal Soil Loss Equation which can be affected by land use change. In this study it was attempted to quantify the changes of Universal Soil Loss Equation K-factor and its soil driving factors in three land uses including rangeland, rainfed farming, and orchards in Babolrood watershed, northern Iran. Soil composite samples were obtained from two layers in three land uses, and the related soil physico-chemical properties were measured. The rainfed farming land use showed the highest clay contents, but the highest amounts of soil organic matter and sand particles were found in orchard land use. The high intensity of tillage led to the significant decrease of soil aggregate stability and permeability in the rainfed farming land use. The Universal Soil Loss Equation K-factor was negatively correlated with soil permeability (r=-0.77**. In rangeland, the K-factor (0.045 Mg h/MJ/mm was significantly higher and the particle size distribution had a great impact on the K-factor. The orchard land use, converted from the rangeland, did not show any increase of soils erodibility and can potentially be introduced as a good alternative land use in sloping areas. However, more detailed studies on environmental, social and economic aspects of this land use are needed.

  2. Historical Image Registration and Land-Use Land-Cover Change Analysis

    Directory of Open Access Journals (Sweden)

    Fang-Ju Jao


    Full Text Available Historical aerial images are important to retain past ground surface information. The land-use land-cover change in the past can be identified using historical aerial images. Automatic historical image registration and stitching is essential because the historical image pose information was usually lost. In this study, the Scale Invariant Feature Transform (SIFT algorithm was used for feature extraction. Subsequently, the present study used the automatic affine transformation algorithm for historical image registration, based on SIFT features and control points. This study automatically determined image affine parameters and simultaneously transformed from an image coordinate system to a ground coordinate system. After historical aerial image registration, the land-use land-cover change was analyzed between two different years (1947 and 1975 at the Tseng Wen River estuary. Results show that sandbars and water zones were transformed into a large number of fish ponds between 1947 and 1975.


    Directory of Open Access Journals (Sweden)

    Barvinskyi A.V.


    Full Text Available Modern agricultural landuseof researched Tetiivskyi-Boguslavskyi nature-agricultural district of Kyiv region is characterized by high technological loading on the soil covering, associated with the transformation of lands structure and sowing areas of crops under the influence of market situations. The high level of technological loading on land resources causes the development of degradation processes, and as a result – reduced lands productivity. The main reasons are: unbalanced development of the productive forces and exhausting exploitation of land resources, producers ignoring of environmental imperatives, technical, technological and organizational backwardness of agricultural production; embryonic nature of ecological and economical mechanism of land use and realization of land protection measures, the lack of perfect legal framework of regulating and management of resource- ecological security at national, regional and local levels. Increasing of anthropogeneous pressure on soil (excessive soil tillage in agricultural landscapes, ecologically unsustainable use of agricultural chemicals, high intensity of heavy agricultural machinery, etc. leads to increase of degradation processes almost on the all area of arable land (Medvedev, 1994. So important is the continuous monitoring of agrophysical condition of soils and development of scientific and practical foundations of optimizing the physical parameters of fertility. The environmentally unbalanced application of anthropogeneous factors results in agrophysical degradation of arable lands, what is displaied in top soil overcompaction.Experimentally found that depending on how the agricultural land use equilibrium bulk density of the gray forest soils varies between 1,35-1,58 g/cm3, dark-gray forest soils - 1,36-1,44, podzolized chernozem - 1,26-1,33, typical chernozem- 1,09-1,18 g/cm3, that indicating the imbalance of soil-physical factors, a significant deviation from the requirements of

  4. Surface albedo in different land-use and cover types in Amazon forest region

    Directory of Open Access Journals (Sweden)

    Thiago de Oliveira Faria


    Full Text Available Albedo is the portion of energy from the Sun that is reflected by the earth's surface, thus being an important variable that controls climate and energy processes on Earth. Surface albedo is directly related to the characteristics of the Earth’s surface materials, making it a useful parameter to evaluate the effects of original soil cover replacement due to human occupation. This study evaluated the changes in the surface albedo values due to the conversion of vegetation to other land uses and to analyze the applicability of the use of albedo in the spatial delimitation of land-use classes in the transitional region between the Cerrado and Amazon biomes. Surface albedo measurements were obtained from processing of Landsat Thematic Mapper data in the Geographic Information System (GIS, and land-use information were collected using Google Earth high-resolution images. The results show that human activities such as the cultivation of crops and burning have contributed substantially to variations in the surface albedo, and that albedo estimates from Landsat imagery have the potential to help in the recognition and delimitation of features of land use and cover.

  5. Development of 2010 national land cover database for the Nepal. (United States)

    Uddin, Kabir; Shrestha, Him Lal; Murthy, M S R; Bajracharya, Birendra; Shrestha, Basanta; Gilani, Hammad; Pradhan, Sudip; Dangol, Bikash


    Land cover and its change analysis across the Hindu Kush Himalayan (HKH) region is realized as an urgent need to support diverse issues of environmental conservation. This study presents the first and most complete national land cover database of Nepal prepared using public domain Landsat TM data of 2010 and replicable methodology. The study estimated that 39.1% of Nepal is covered by forests and 29.83% by agriculture. Patch and edge forests constituting 23.4% of national forest cover revealed proximate biotic interferences over the forests. Core forests constituted 79.3% of forests of Protected areas where as 63% of area was under core forests in the outside protected area. Physiographic regions wise forest fragmentation analysis revealed specific conservation requirements for productive hill and mid mountain regions. Comparative analysis with Landsat TM based global land cover product showed difference of the order of 30-60% among different land cover classes stressing the need for significant improvements for national level adoption. The online web based land cover validation tool is developed for continual improvement of land cover product. The potential use of the data set for national and regional level sustainable land use planning strategies and meeting several global commitments also highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effects of traditional land transactions on soil erosion and land degradation


    Leduka, R.C.


    A research report on the effects of traditional land transactions on soil erosion and land degradation in Lesotho. This report focuses on the land transactions in Lesotho and how these transaction affect the growing erosion rates of the soil.

  7. Monitoring land Cover Changes and Fragmentation dynamics in the ...

    African Journals Online (AJOL)

    Monitoring land Cover Changes and Fragmentation dynamics in the subtropical thicket of the Eastern Cape Province, South Africa. ... Baseline land use/cover maps and fragmentation analyses in a temporal framework are valuable for gaining insights into, among other things, carbon stock change trends. Keywords: Land ...

  8. Spatial Data Mining for Estimating Cover Management Factor of Universal Soil Loss Equation (United States)

    Tsai, F.; Lin, T. C.; Chiang, S. H.; Chen, W. W.


    Universal Soil Loss Equation (USLE) is a widely used mathematical model that describes long-term soil erosion processes. Among the six different soil erosion risk factors of USLE, the cover-management factor (C-factor) is related to land-cover/land-use. The value of C-factor ranges from 0.001 to 1, so it alone might cause a thousandfold difference in a soil erosion analysis using USLE. The traditional methods for the estimation of USLE C-factor include in situ experiments, soil physical parameter models, USLE look-up tables with land use maps, and regression models between vegetation indices and C-factors. However, these methods are either difficult or too expensive to implement in large areas. In addition, the values of C-factor obtained using these methods can not be updated frequently, either. To address this issue, this research developed a spatial data mining approach to estimate the values of C-factor with assorted spatial datasets for a multi-temporal (2004 to 2008) annual soil loss analysis of a reservoir watershed in northern Taiwan. The idea is to establish the relationship between the USLE C-factor and spatial data consisting of vegetation indices and texture features extracted from satellite images, soil and geology attributes, digital elevation model, road and river distribution etc. A decision tree classifier was used to rank influential conditional attributes in the preliminary data mining. Then, factor simplification and separation were considered to optimize the model and the random forest classifier was used to analyze 9 simplified factor groups. Experimental results indicate that the overall accuracy of the data mining model is about 79% with a kappa value of 0.76. The estimated soil erosion amounts in 2004-2008 according to the data mining results are about 50.39 - 74.57 ton/ha-year after applying the sediment delivery ratio and correction coefficient. Comparing with estimations calculated with C-factors from look-up tables, the soil erosion


    Directory of Open Access Journals (Sweden)

    K. Fukue


    Full Text Available The objective of this study is to develop high accuracy land cover classification algorithm for Global scale by using multi-temporal MODIS land reflectance products. In this study, time-domain co-occurrence matrix was introduced as a classification feature which provides time-series signature of land covers. Further, the non-parametric minimum distance classifier was introduced for timedomain co-occurrence matrix, which performs multi-dimensional pattern matching for time-domain co-occurrence matrices of a classification target pixel and each classification classes. The global land cover classification experiments have been conducted by applying the proposed classification method using 46 multi-temporal(in one year SR(Surface Reflectance and NBAR(Nadir BRDF-Adjusted Reflectance products, respectively. IGBP 17 land cover categories were used in our classification experiments. As the results, SR and NBAR products showed similar classification accuracy of 99%.

  10. Effect of land-use practice on soil moisture variability for soils covered with dense forest vegetation of Puerto Rico (United States)

    Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.


    Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.

  11. The impact of Future Land Use and Land Cover Changes on Atmospheric Chemistry-Climate Interactions

    NARCIS (Netherlands)

    Ganzeveld, L.N.; Bouwman, L.


    To demonstrate potential future consequences of land cover and land use changes beyond those for physical climate and the carbon cycle, we present an analysis of large-scale impacts of land cover and land use changes on atmospheric chemistry using the chemistry-climate model EMAC (ECHAM5/MESSy

  12. Next generation of global land cover characterization, mapping, and monitoring (United States)

    Giri, Chandra; Pengra, Bruce; Long, J.; Loveland, Thomas R.


    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  13. VT Generalized Land Cover Land Use for Champlain Basin - SAL 1992 (United States)

    Vermont Center for Geographic Information — (Link to Metadata) Circa 1992 land use - land cover (LULC) for the Lake Champlain Basin. This layer was created by performing a retrospective change detection on the...

  14. VT Generalized Land Cover Land Use for Champlain Basin - SAL 2001 (United States)

    Vermont Center for Geographic Information — (Link to Metadata) Circa 2001 land use / land cover (LULC) for the Lake Champlain Basin. The goal in creating this layer was to generate an "improved" version of...

  15. Land-Cover Change in the East Central Texas Plains, 1973-2000 (United States)

    Karstensen, Krista A.


    Project Background: The Geographic Analysis and Monitoring (GAM) Program of the U.S. Geological Survey (USGS) Land Cover Trends project is focused on understanding the rates, trends, causes, and consequences of contemporary U.S. land-use and land-cover change. The objectives of the study are to: (1) develop a comprehensive methodology for using sampling and change analysis techniques and Landsat Multispectral Scanner (MSS) and Thematic Mapper (TM) data for measuring regional land-cover change across the United States, (2) characterize the types, rates and temporal variability of change for a 30-year period, (3) document regional driving forces and consequences of change, and (4) prepare a national synthesis of land-cover change (Loveland and others, 1999). Using the 1999 Environmental Protection Agency (EPA) Level III ecoregions derived from Omernik (1987) as the geographic framework, geospatial data collected between 1973 and 2000 were processed and analyzed to characterize ecosystem responses to land-use changes. The 27-year study period was divided into five temporal periods: 1973-1980, 1980-1986, 1986-1992, 1992-2000, and 1973-2000. General land-cover classes such as water, developed, grassland/shrubland, and agriculture for these periods were interpreted from Landsat MSS, TM, and Enhanced Thematic Mapper Plus imagery to categorize land-cover change and evaluate using a modified Anderson Land-Use Land-Cover Classification System for image interpretation. The interpretation of these land-cover classes complement the program objective of looking at land-use change with cover serving as a surrogate for land use. The land-cover change rates are estimated using a stratified, random sampling of 10-kilometer (km) by 10-km blocks allocated within each ecoregion. For each sample block, satellite images are used to interpret land-cover change for the five time periods previously mentioned. Additionally, historical aerial photographs from similar timeframes and other

  16. National Land Cover Database 2001 (NLCD01) (United States)

    LaMotte, Andrew E.


    This 30-meter data set represents land use and land cover for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System (see The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (, consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004), (see: The NLCD 2001 was created by partitioning the United States into mapping zones. A total of 68 mapping zones (see, were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or

  17. Use of UAV-Borne Spectrometer for Land Cover Classification

    Directory of Open Access Journals (Sweden)

    Sowmya Natesan


    Full Text Available Unmanned aerial vehicles (UAV are being used for low altitude remote sensing for thematic land classification using visible light and multi-spectral sensors. The objective of this work was to investigate the use of UAV equipped with a compact spectrometer for land cover classification. The UAV platform used was a DJI Flamewheel F550 hexacopter equipped with GPS and Inertial Measurement Unit (IMU navigation sensors, and a Raspberry Pi processor and camera module. The spectrometer used was the FLAME-NIR, a near-infrared spectrometer for hyperspectral measurements. RGB images and spectrometer data were captured simultaneously. As spectrometer data do not provide continuous terrain coverage, the locations of their ground elliptical footprints were determined from the bundle adjustment solution of the captured images. For each of the spectrometer ground ellipses, the land cover signature at the footprint location was determined to enable the characterization, identification, and classification of land cover elements. To attain a continuous land cover classification map, spatial interpolation was carried out from the irregularly distributed labeled spectrometer points. The accuracy of the classification was assessed using spatial intersection with the object-based image classification performed using the RGB images. Results show that in homogeneous land cover, like water, the accuracy of classification is 78% and in mixed classes, like grass, trees and manmade features, the average accuracy is 50%, thus, indicating the contribution of hyperspectral measurements of low altitude UAV-borne spectrometers to improve land cover classification.

  18. Effect of land cover on atmospheric processes and air quality over the continental United States – a NASA Unified WRF (NU-WRF model study

    Directory of Open Access Journals (Sweden)

    Z. Tao


    Full Text Available The land surface plays a crucial role in regulating water and energy fluxes at the land–atmosphere (L–A interface and controls many processes and feedbacks in the climate system. Land cover and vegetation type remains one key determinant of soil moisture content that impacts air temperature, planetary boundary layer (PBL evolution, and precipitation through soil-moisture–evapotranspiration coupling. In turn, it will affect atmospheric chemistry and air quality. This paper presents the results of a modeling study of the effect of land cover on some key L–A processes with a focus on air quality. The newly developed NASA Unified Weather Research and Forecast (NU-WRF modeling system couples NASA's Land Information System (LIS with the community WRF model and allows users to explore the L–A processes and feedbacks. Three commonly used satellite-derived land cover datasets – i.e., from the US Geological Survey (USGS and University of Maryland (UMD, which are based on the Advanced Very High Resolution Radiometer (AVHRR, and from the Moderate Resolution Imaging Spectroradiometer (MODIS – bear large differences in agriculture, forest, grassland, and urban spatial distributions in the continental United States, and thus provide an excellent case to investigate how land cover change would impact atmospheric processes and air quality. The weeklong simulations demonstrate the noticeable differences in soil moisture/temperature, latent/sensible heat flux, PBL height, wind, NO2/ozone, and PM2.5 air quality. These discrepancies can be traced to associate with the land cover properties, e.g., stomatal resistance, albedo and emissivity, and roughness characteristics. It also implies that the rapid urban growth may have complex air quality implications with reductions in peak ozone but more frequent high ozone events.

  19. Local Wood Demand, Land Cover Change and the State of Albany Thicket on an Urban Commonage in the Eastern Cape, South Africa (United States)

    Stickler, M. M.; Shackleton, C. M.


    Understanding the rates and causes of land-use change is crucial in identifying solutions, especially in sensitive landscapes and ecosystems, as well as in places undergoing rapid political, socioeconomic or ecological change. Despite considerable concern at the rate of transformation and degradation of the biodiversity-rich Albany Thicket biome in South Africa, most knowledge is gleaned from private commercial lands and state conservation areas. In comparison, there is limited work in communal areas where land uses include biomass extraction, especially for firewood and construction timber. We used aerial photographs to analyze land use and cover change in the high- and low-use zones of an urban commonage and an adjacent protected area over almost six decades, which included a major political transition. Field sampling was undertaken to characterize the current state of the vegetation and soils of the commonage and protected area and to determine the supply and demand for firewood and construction timber. Between the 1950s and 1980s, there was a clear increase in woody vegetation cover, which was reversed after the political transition in the mid-1990s. However, current woody plant standing stocks and sustainable annual production rates are well above current firewood demand, suggesting other probable causes for the decline in woody plant cover. The fragmentation of woody plant cover is paralleled by increases in grassy areas and bare ground, an increase in soil compaction, and decreases in soil moisture, carbon, and nutrients.

  20. Impact of vetch cover crop on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia (United States)

    Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt


    Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P plant, above ground biomass and grain yield of chick pea. However, there was no statistically significant difference (P > 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield in addition to reduce soil erosion in the

  1. Surface erosion and hydrology of earth covers used in shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Bent, G.C.


    Shallow land burial is the current method of disposal of low-level radioactive waste in the United States. The most serious technical problems encountered in shallow land burial are water-related. Water is reported to come into contact with the waste by erosion of earth covers or through infiltration of precipitation through the earth covers. The objectives of this study were to: compare and evaluate the effects of crested wheatgrass and streambank wheatgrass on surface erosion of simulated earth covers at Idaho National Engineering Laboratory (INEL), characterize the surface hydrology, and estimate cumulative soil loss for average and extreme rainfall events and determine if the waste will become exposed during its burial life due to erosion. 30 refs., 26 figs., 21 tabs

  2. Land use intensification effects in soil arthropod community of an entisol in Pernambuco State, Brazil. (United States)

    Siqueira, G M; Silva, E F F; Paz-Ferreiro, J


    The interactions between soil invertebrates and land use and management are fundamental for soil quality assessment but remain largely unaddressed. The aim of this study was to evaluate the changes in soil arthropod community of an entisol brought about by different land use systems under semiarid climate in Pernambuco State, Brazil. The soil invertebrate community was sampled using pitfall traps from areas with eight vegetation types by the end of the austral winter. The land uses studied were native thorn forest plus seven agricultural fields planted with elephant grass, apple guava, passion fruit, carrot, maize, tomato, and green pepper. Native vegetation was considered as a reference, whereas the agricultural fields showed a range of soil use intensities. The abundance of organisms, the total and average richness, Shannon's diversity index, and the Pielou uniformity index were determined, and all of these were affected by several crop and soil management practices such as residue cover, weed control, and pesticide application. Our study found differences in community assemblages and composition under different land use systems, but no single taxa could be used as indicator of soil use intensity.

  3. Land Use Intensification Effects in Soil Arthropod Community of an Entisol in Pernambuco State, Brazil

    Directory of Open Access Journals (Sweden)

    G. M. Siqueira


    Full Text Available The interactions between soil invertebrates and land use and management are fundamental for soil quality assessment but remain largely unaddressed. The aim of this study was to evaluate the changes in soil arthropod community of an entisol brought about by different land use systems under semiarid climate in Pernambuco State, Brazil. The soil invertebrate community was sampled using pitfall traps from areas with eight vegetation types by the end of the austral winter. The land uses studied were native thorn forest plus seven agricultural fields planted with elephant grass, apple guava, passion fruit, carrot, maize, tomato, and green pepper. Native vegetation was considered as a reference, whereas the agricultural fields showed a range of soil use intensities. The abundance of organisms, the total and average richness, Shannon’s diversity index, and the Pielou uniformity index were determined, and all of these were affected by several crop and soil management practices such as residue cover, weed control, and pesticide application. Our study found differences in community assemblages and composition under different land use systems, but no single taxa could be used as indicator of soil use intensity.

  4. Anthropogenic Influences in Land Use/Land Cover Changes in Mediterranean Forest Landscapes in Sicily

    Directory of Open Access Journals (Sweden)

    Donato S. La Mela Veca


    Full Text Available This paper analyzes and quantifies the land use/land cover changes of the main forest and semi-natural landscape types in Sicily between 1955 and 2012. We analyzed seven representative forest and shrubland landscapes in Sicily. These study areas were chosen for their importance in the Sicilian forest panorama. We carried out a diachronic survey on historical and current aerial photos; all the aerial images used to survey the land use/land cover changes were digitalized and georeferenced in the UTM WGS84 system. In order to classify land use, the Regional Forest Inventory 2010 legend was adopted for the more recent images, and the CORINE Land Cover III level used for the older, lower resolution images. This study quantifies forest landscape dynamics; our results show for almost all study areas an increase of forest cover and expansion, whereas a regressive dynamic is found in rural areas due to intensive agricultural and pasturage uses. Understanding the dynamics of forest landscapes could enhance the role of forestry policy as a tool for landscape management and regional planning.

  5. Effect of land use change on methane oxidation in temperate forest and grassland soils

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D.S.; Valentine, D.W.; Mosier, A.R.; Parton, W.J.; Schimel, D.S. (Colorado State University, Fort Collins, CO (USA). Natural Resources Ecology Lab.)

    Evidence is accumulating that land use changes and other human activity during the past 100 to 200 years have contributed to decreased CH[sub 4] oxidation in the soil. Increased N additions to temperate forest soils in the northeastern United States decreased CH[sub 4] uptake by 30 to 60%, and increased N fertilization and conversion to cropland in temperate grasslands decreased CH[sub 4] uptake by 30 to 75%. Using these data, a series of calculations were made to estimate the impact of land use and management changes which have altered soil, the CH[sub 4] sink in temperate forest and grassland ecosystems. As the atmospheric mixing ratio of CH[sub 4] has increased during the past 150 y, the temperate CH[sub 4] sink has risen from approximately 8 Tg y[sup -1] to 27 Tg y[sup -1], assuming no loss of land cover to cropland conversion. The net effect of intensive land cover changes and extensive chronic disturbance (i.e., increased atmospheric N deposition) to these ecosystems have resulted in about 30% reduction in the CH[sub 4] budget even more as atmospheric CH[sub 4] concentrations increase and as a result of further disturbance to other biomes. Without accounting for this approximately 20 Tg y[sup -1] temperate soil sink, the atmospheric CH[sub 4] concentration would be increasing about 1.5 times the current rate. 39 refs., 2 figs., 1 tab.

  6. Diel hysteresis between soil respiration and soil temperature in a biological soil crust covered desert ecosystem. (United States)

    Guan, Chao; Li, Xinrong; Zhang, Peng; Chen, Yongle


    Soil respiration induced by biological soil crusts (BSCs) is an important process in the carbon (C) cycle in arid and semi-arid ecosystems, where vascular plants are restricted by the harsh environment, particularly the limited soil moisture. However, the interaction between temperature and soil respiration remains uncertain because of the number of factors that control soil respiration, including temperature and soil moisture, especially in BSC-dominated areas. In this study, the soil respiration in moss-dominated crusts and lichen-dominated crusts was continuously measured using an automated soil respiration system over a one-year period from November 2015 to October 2016 in the Shapotou region of the Tengger Desert, northern China. The results indicated that over daily cycles, the half-hourly soil respiration rates in both types of BSC-covered areas were commonly related to the soil temperature. The observed diel hysteresis between the half-hourly soil respiration rates and soil temperature in the BSC-covered areas was limited by nonlinearity loops with semielliptical shapes, and soil temperature often peaked later than the half-hourly soil respiration rates in the BSC-covered areas. The average lag times between the half-hourly soil respiration rates and soil temperature for both types of BSC-covered areas were two hours over the diel cycles, and they were negatively and linearly related to the volumetric soil water content. Our results highlight the diel hysteresis phenomenon that occurs between soil respiration rates and soil temperatures in BSC-covered areas and the negative response of this phenomenon to soil moisture, which may influence total C budget evaluations. Therefore, the interactive effects of soil temperature and moisture on soil respiration in BSC-covered areas should be considered in global carbon cycle models of desert ecosystems.

  7. Land Cover Influence on Wet Season Storm Runoff Generation and Hydrologic Flowpaths in Central Panama (United States)

    Birch, A. L.; Stallard, R. F.; Barnard, H. R.


    While relationships between land use/land cover and hydrology are well studied and understood in temperate parts of the world, little research exists in the humid tropics, where hydrologic research is often decades behind. Specifically, quantitative information on how physical and biological differences across varying land covers influence runoff generation and hydrologic flowpaths in the humid tropics is scarce; frequently leading to poorly informed hydrologic modelling and water policy decision making. This research effort seeks to quantify how tropical land cover change may alter physical hydrologic processes in the economically important Panama Canal Watershed (Republic of Panama) by separating streamflow into its different runoff components using end member mixing analysis. The samples collected for this project come from small headwater catchments of four varying land covers (mature tropical forest, young secondary forest, active pasture, recently clear-cut tropical forest) within the Smithsonian Tropical Research Institute's Agua Salud Project. During the past three years, samples have been collected at the four study catchments from streamflow and from a number of water sources within hillslope transects, and have been analyzed for stable water isotopes, major cations, and major anions. Major ion analysis of these samples has shown distinct geochemical differences for the potential runoff generating end members sampled (soil moisture/ preferential flow, groundwater, overland flow, throughfall, and precipitation). Based on this finding, an effort was made from May-August 2017 to intensively sample streamflow during wet season storm events, yielding a total of 5 events of varying intensity in each land cover/catchment, with sampling intensity ranging from sub-hourly to sub-daily. The focus of this poster presentation will be to present the result of hydrograph separation's done using end member mixing analysis from this May-August 2017 storm dataset. Expected

  8. Enhanced Cover Assessment Project:Soil Manipulation and Revegetation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W. Joseph [Navarro Research and Engineering, Inc.; Albright, Dr. Bill [Desert Research Inst. (DRI), Reno, NV (United States); Benson, Dr. Craig [University of Wisconsin-Madison


    The U.S. Department of Energy Office of Legacy Management is evaluating methods to enhance natural changes that are essentially converting conventional disposal cell covers for uranium mill tailings into water balance covers. Conventional covers rely on a layer of compacted clayey soil to limit exhalation of radon gas and percolation of rainwater. Water balance covers rely on a less compacted soil “sponge” to store rainwater, and on soil evaporation and plant transpiration (evapotranspiration) to remove stored water and thereby limit percolation. Over time, natural soil-forming and ecological processes are changing conventional covers by increasing hydraulic conductivity, loosening compaction, and increasing evapotranspiration. The rock armor on conventional covers creates a favorable habitat for vegetation by slowing soil evaporation, increasing soil water storage, and trapping dust and organic matter, thereby providing the water and nutrients needed for plant germination, survival, and sustainable transpiration. Goals and Objectives Our overall goal is to determine if allowing or enhancing these natural changes could improve cover performance and reduce maintenance costs over the long term. This test pad study focuses on cover soil hydrology and ecology. Companion studies are evaluating effects of natural and enhanced changes in covers on radon attenuation, erosion, and biointrusion. We constructed a test cover at the Grand Junction disposal site to evaluate soil manipulation and revegetation methods. The engineering design, construction, and properties of the test cover match the upper three layers of the nearby disposal cell cover: a 1-foot armoring of rock riprap, a 6-inch bedding layer of coarse sand and gravel, and a 2-foot protection layer of compacted fine soil. The test cover does not have a radon barrier—cover enhancement tests leave the radon barrier intact. We tested furrowing and ripping as means for creating depressions parallel to the slope

  9. A simulation study of the effects of land cover and crop type on sensing soil moisture with an orbital C-band radar (United States)

    Dobson, M. C.; Ulaby, F. T.; Moezzi, S.; Roth, E.


    Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1 km, and 3 km by 3 km, and each is processed using more than 23 independent samples. Moisture classification errors are examined as a function of land-cover distribution, field-size distribution, and local topographic relief for the full test site and also for subregions of cropland, urban areas, woodland, and pasture/rangeland. Results show that a radar resolution of 100 m by 100 m yields the most robust classification accuracies.

  10. Soil Diversity as Affected by Land Use in China: Consequences for Soil Protection

    Directory of Open Access Journals (Sweden)

    Wei Shangguan


    Full Text Available Rapid land-use change in recent decades in China and its impact on terrestrial biodiversity have been widely studied, particularly at local and regional scales. However, the effect of land-use change on the diversity of soils that support the terrestrial biological system has rarely been studied. Here, we report the first effort to assess the impact of land-use change on soil diversity for the entire nation of China. Soil diversity and land-use effects were analyzed spatially in grids and provinces. The land-use effects on different soils were uneven. Anthropogenic soils occupied approximately 12% of the total soil area, which had already replaced the original natural soils. About 7.5% of the natural soil classes in China were in danger of substantial loss, due to the disturbance of agriculture and construction. More than 80% of the endangered soils were unprotected due to the overlook of soil diversity. The protection of soil diversity should be integrated into future conservation activities.

  11. Soil Diversity as Affected by Land Use in China: Consequences for Soil Protection (United States)

    Shangguan, Wei; Gong, Peng; Liang, Lu; Dai, YongJiu; Zhang, Keli


    Rapid land-use change in recent decades in China and its impact on terrestrial biodiversity have been widely studied, particularly at local and regional scales. However, the effect of land-use change on the diversity of soils that support the terrestrial biological system has rarely been studied. Here, we report the first effort to assess the impact of land-use change on soil diversity for the entire nation of China. Soil diversity and land-use effects were analyzed spatially in grids and provinces. The land-use effects on different soils were uneven. Anthropogenic soils occupied approximately 12% of the total soil area, which had already replaced the original natural soils. About 7.5% of the natural soil classes in China were in danger of substantial loss, due to the disturbance of agriculture and construction. More than 80% of the endangered soils were unprotected due to the overlook of soil diversity. The protection of soil diversity should be integrated into future conservation activities. PMID:25250394

  12. Impacts of land use/cover classification accuracy on regional climate simulations (United States)

    Ge, Jianjun; Qi, Jiaguo; Lofgren, Brent M.; Moore, Nathan; Torbick, Nathan; Olson, Jennifer M.


    Land use/cover change has been recognized as a key component in global change. Various land cover data sets, including historically reconstructed, recently observed, and future projected, have been used in numerous climate modeling studies at regional to global scales. However, little attention has been paid to the effect of land cover classification accuracy on climate simulations, though accuracy assessment has become a routine procedure in land cover production community. In this study, we analyzed the behavior of simulated precipitation in the Regional Atmospheric Modeling System (RAMS) over a range of simulated classification accuracies over a 3 month period. This study found that land cover accuracy under 80% had a strong effect on precipitation especially when the land surface had a greater control of the atmosphere. This effect became stronger as the accuracy decreased. As shown in three follow-on experiments, the effect was further influenced by model parameterizations such as convection schemes and interior nudging, which can mitigate the strength of surface boundary forcings. In reality, land cover accuracy rarely obtains the commonly recommended 85% target. Its effect on climate simulations should therefore be considered, especially when historically reconstructed and future projected land covers are employed.

  13. Land-cover change research at the U.S. Geological Survey-assessing our nation's dynamic land surface (United States)

    Wilson, Tamara S.


    The U.S. Geological Survey (USGS) recently completed an unprecedented, 27-year assessment of land-use and land-cover change for the conterminous United States. For the period 1973 to 2000, scientists generated estimates of change in major types of land use and land cover, such as development, mining, agriculture, forest, grasslands, and wetlands. To help provide the insight that our Nation will need to make land-use decisions in coming decades, the historical trends data is now being used by the USGS to help model potential future land use/land cover under different scenarios, including climate, environmental, economic, population, public policy, and technological change.

  14. Evaluating Impacts of Land Use/Land Cover Change on Water Resources in Semiarid Regions (United States)

    Scanlon, B. R.; Faunt, C. C.; Pool, D. R.; Reedy, R. C.


    Land use/land cover (LU/LC) changes play an integral role in water resources by controlling the partitioning of water at the land surface. Here we evaluate impacts of changing LU/LC on water resources in response to climate variation and change and land use change related to agriculture using data from semiarid regions in the southwestern U.S. Land cover changes in response to climate can amplify or dampen climate impacts on water resources. Changes from wet Pleistocene to much drier Holocene climate resulted in expansion of perennial vegetation, amplifying climate change impacts on water resources by reducing groundwater recharge as shown in soil profiles in the southwestern U.S.. In contrast, vegetation response to climate extremes, including droughts and floods, dampen impacts of these extremes on water resources, as shown by water budget monitoring in the Mojave Desert. Agriculture often involves changes from native perennial vegetation to annual crops increasing groundwater recharge in many semiarid regions. Irrigation based on conjunctive use of surface water and groundwater increases water resource availability, as shown in the Central Valley of California and in southern Arizona. Surface water irrigation in these regions is enhanced by water transported from more humid settings through extensive pipelines. These projects have reversed long-term declining groundwater trends in some regions. While irrigation design has often focused on increased efficiency, "more crop per drop", optimal water resource management may benefit more from inefficient (e.g. flood irrigation) surface-water irrigation combined with efficient (e.g. subsurface drip) irrigation to maximize groundwater recharge, as seen in parts of the Central Valley. Flood irrigation of perennial crops, such as almonds and vineyards, during winter is being considered in the Central Valley to enhance groundwater recharge. Managed aquifer recharge can be considered a special case of conjunctive use of

  15. Land use/land cover changes around Rameshwaram Island, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Gowthaman, R.; Dwarakish, G.S.; Sanilkumar, V.

    Land-use/land cover changes are studied using the Indian Remote Sensing satellite (IRS-1C, IRS-6) Linear Image Self-scan Sensor (LISS) III data of 1998 and 2010 Coastal land use categories such as sand, vegetation, coral reef and water have been...

  16. Land cover/land use change in semi-arid Inner Mongolia: 1992-2004

    Energy Technology Data Exchange (ETDEWEB)

    John, Ranjeet; Chen Jiquan; Lu Nan; Wilske, Burkhard, E-mail: ranjeet.john@utoledo.ed [Department of Environmental Sciences, University of Toledo, Toledo, OH 43606 (United States)


    The semi-arid grasslands in Inner Mongolia (IM) are under increasing stress owing to climate change and rapid socio-economic development in the recent past. We investigated changes in land cover/land use and landscape structure between 1992 and 2004 through the analysis of AVHRR and MODIS derived land cover data. The scale of analysis included the regional level (i.e. the whole of IM) as well as the level of the dominant biomes (i.e. the grassland and desert). We quantified proportional change, rate of change and the changes in class-level landscape metrics using the landscape structure analysis program FRAGSTATS. The dominant land cover types, grassland and barren, 0.47 and 0.27 million km{sup 2}, respectively, have increased proportionally. Cropland and urban land use also increased to 0.15 million km{sup 2} and 2197 km{sup 2}, respectively. However, the results further indicated increases in both the homogeneity and fragmentation of the landscape. Increasing homogeneity was mainly related to the reduction in minority cover types such as savanna, forests and permanent wetlands and increasing cohesion, aggregation index and clumpy indices. Conversely, increased fragmentation of the landscape was based on the increase in patch density and the interspersion/juxtaposition index (IJI). It is important to note the socio-economic growth in this fragile ecosystem, manifested by an increasing proportion of agricultural and urban land use not just at the regional level but also at the biome level in the context of regional climate change and increasing water stress.

  17. Land cover/land use change in semi-arid Inner Mongolia: 1992-2004

    International Nuclear Information System (INIS)

    John, Ranjeet; Chen Jiquan; Lu Nan; Wilske, Burkhard


    The semi-arid grasslands in Inner Mongolia (IM) are under increasing stress owing to climate change and rapid socio-economic development in the recent past. We investigated changes in land cover/land use and landscape structure between 1992 and 2004 through the analysis of AVHRR and MODIS derived land cover data. The scale of analysis included the regional level (i.e. the whole of IM) as well as the level of the dominant biomes (i.e. the grassland and desert). We quantified proportional change, rate of change and the changes in class-level landscape metrics using the landscape structure analysis program FRAGSTATS. The dominant land cover types, grassland and barren, 0.47 and 0.27 million km 2 , respectively, have increased proportionally. Cropland and urban land use also increased to 0.15 million km 2 and 2197 km 2 , respectively. However, the results further indicated increases in both the homogeneity and fragmentation of the landscape. Increasing homogeneity was mainly related to the reduction in minority cover types such as savanna, forests and permanent wetlands and increasing cohesion, aggregation index and clumpy indices. Conversely, increased fragmentation of the landscape was based on the increase in patch density and the interspersion/juxtaposition index (IJI). It is important to note the socio-economic growth in this fragile ecosystem, manifested by an increasing proportion of agricultural and urban land use not just at the regional level but also at the biome level in the context of regional climate change and increasing water stress.

  18. Methane uptake by a selection of soils in Ghana with different land use

    DEFF Research Database (Denmark)

    Priemé, Anders; Christensen, Søren


    , the methane oxidation rates in the tropical forest and savanna soils were low (range from 9 to 26 µg CH4 m-2 h-1) compared to, for example temperate forest soils. In the savanna soil, annual fire had decreased soil methane oxidation rates to 5 µg CH4 m-2 h-1 compared to 9 µg CH4 m-2 h-1 at a site...... not subjected to fire for 6 years. In paired sites of moist forest and arable soils, methane oxidation rates were lower by >60% in the arable soils. Methane oxidation rates in three arable soils in the savanna zone soils ranged from 7 to 11 µg CH4 m-2 h-1 before the first rain but increased to 23-28 µg CH4 m-2......We measured the oxidation of atmospheric methane in tropical soils in Ghana covering a moisture gradient from the moist forest zone to the savanna zone at the onset of the rainy season. Land use at the sites covered undisturbed (forest and savanna) and cultivated soil, including burning. Generally...

  19. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China (United States)

    Yang, Lei; Wei, Wei; Chen, Liding; Mo, Baoru


    SummarySoil moisture is an effective water source for plant growth in the semi-arid Loess Plateau of China. Characterizing the response of deep soil moisture to land use and afforestation is important for the sustainability of vegetation restoration in this region. In this paper, the dynamics of soil moisture were quantified to evaluate the effect of land use on soil moisture at a depth of 2 m. Specifically, the gravimetric soil moisture content was measured in the soil layer between 0 and 8 m for five land use types in the Longtan catchment of the western Loess Plateau. The land use types included traditional farmland, native grassland, and lands converted from traditional farmland (pasture grassland, shrubland and forestland). Results indicate that the deep soil moisture content decreased more than 35% after land use conversion, and a soil moisture deficit appeared in all types of land with introduced vegetation. The introduced vegetation decreased the soil moisture content to levels lower than the reference value representing no human impact in the entire 0-8 m soil profile. No significant differences appeared between different land use types and introduced vegetation covers, especially in deeper soil layers, regardless of which plant species were introduced. High planting density was found to be the main reason for the severe deficit of soil moisture. Landscape management activities such as tillage activities, micro-topography reconstruction, and fallowed farmland affected soil moisture in both shallow and deep soil layers. Tillage and micro-topography reconstruction can be used as effective countermeasures to reduce the soil moisture deficit due to their ability to increase soil moisture content. For sustainable vegetation restoration in a vulnerable semi-arid region, the plant density should be optimized with local soil moisture conditions and appropriate landscape management practices.

  20. Theorizing Land Cover and Land Use Changes: The Case of Tropical Deforestation (United States)

    Walker, Robert


    This article addresses land-cover and land-use dynamics from the perspective of regional science and economic geography. It first provides an account of the so-called spatially explicit model, which has emerged in recent years as a key empirical approach to the issue. The article uses this discussion as a springboard to evaluate the potential utility of von Thuenen to the discourse on land-cover and land-use change. After identifying shortcomings of current theoretical approaches to land use in mainly urban models, the article filters a discussion of deforestation through the lens of bid-rent and assesses its effectiveness in helping us comprehend the destruction of tropical forest in the Amazon basin. The article considers the adjustments that would have to be made to existing theory to make it more useful to the empirical issues.

  1. IT-based soil quality evaluation for agroecologically smart land-use planning in RF conditions (United States)

    Vasenev, Ivan


    Activated in the first decades of XXI century global climate, economy and farming changes sharply actualized novel IT-based approaches in soil quality evaluation to address modern agricultural issues with agroecologically smart land-use planning. Despite global projected climate changes will affect a general decline of crop yields (IPCC 2014), RF boreal and subboreal regions will benefit from predicted and already particularly verified temperature warming and increased precipitation (Valentini, Vasenev, 2015) due to essential increasing of growing season length and mild climate conditions favorable for most prospective crops and best available agrotechnologies. However, the essential spatial heterogeneity is mutual feature for most natural and man-changed soils at the Central European region of Russia which is one of the biggest «food baskets» in RF. In these conditions potentially favorable climate circumstances will increase not only soil fertility and workability features but also their dynamics and spatial variability that determine crucial issues of IT-based soil quality evaluation systems development and agroecologically smart farming planning. Developed and verified within the LAMP project (RF Governmental projects #11.G34.31.0079 and # regionally adapted DSS (ACORD-R - RF #2012612944) gives effective informational and methodological support for smart farming agroecological optimization in global climate and farming changes challenges. Information basis for agroecologically smart land-use planning consists of crops and agrotechnologies requirements, regional and local systems of agroecological zoning, local landscape and soil cover patterns, land quality and degradation risk assessments, current and previous farming practices results, agroclimatic predictions and production agroecological models, environmental limitations and planned profitability, fertilizing efficiency DSS ACORD-R. Smart land-use practice refers to sustainable balance

  2. The managed clearing: An overlooked land-cover type in urbanizing regions? (United States)

    Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K.


    Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type–semi-natural, vegetated land surfaces with varying degrees of management practices–for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area– 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and

  3. Hydrological impacts of global land cover change and human water use

    Directory of Open Access Journals (Sweden)

    J. H. C. Bosmans


    Full Text Available Human impacts on global terrestrial hydrology have been accelerating during the 20th century. These human impacts include the effects of reservoir building and human water use, as well as land cover change. To date, many global studies have focussed on human water use, but only a few focus on or include the impact of land cover change. Here we use PCR-GLOBWB, a combined global hydrological and water resources model, to assess the impacts of land cover change as well as human water use globally in different climatic zones. Our results show that land cover change has a strong effect on the global hydrological cycle, on the same order of magnitude as the effect of human water use (applying irrigation, abstracting water, for industrial use for example, including reservoirs, etc.. When globally averaged, changing the land cover from that of 1850 to that of 2000 increases discharge through reduced evapotranspiration. The effect of land cover change shows large spatial variability in magnitude and sign of change depending on, for example, the specific land cover change and climate zone. Overall, land cover effects on evapotranspiration are largest for the transition of tall natural vegetation to crops in energy-limited equatorial and warm temperate regions. In contrast, the inclusion of irrigation, water abstraction and reservoirs reduces global discharge through enhanced evaporation over irrigated areas and reservoirs as well as through water consumption. Hence, in some areas land cover change and water distribution both reduce discharge, while in other areas the effects may partly cancel out. The relative importance of both types of impacts varies spatially across climatic zones. From this study we conclude that land cover change needs to be considered when studying anthropogenic impacts on water resources.

  4. Percent Agricultural Land Cover on Steep Slopes (Future) (United States)

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  5. Land Use/Cover Changes between 1966 and 1996 in Chirokella ...

    African Journals Online (AJOL)

    Abstract: Keywords: Land Cover; Dynamic; Expansion; Exposed Land; ReductionTwo periods of panchromatic aerial photographs taken in 1966 and 1996 were analyzed to determine spatial and temporal land cover changes occurring in Chirokella micro-watershed, Southeastern Ethiopia. Theresults of the analysis were ...

  6. The land use patterns for soil organic carbon conservation at Endanga watershed Southeast Sulawesi Indonesia (United States)

    Leomo, S.; Ginting, S.; Sabaruddin, L.; Tufaila, M.; Muhidin


    The Endanga basin is one part of the Konaweeha watershed located in South Konawe, Southeast Sulawesi Province, covering an area of 1,353.67 hectares. The land use patterns in Endanga Watershed contained forests, shrubs, oil palm plantations, pepper fields, and cultivated fields of field rice, corn monoculture and intercropping of peanuts and corn. This watershed needs serious attention because most of its territory is on slope of 15-40%, with erosion hazard levels (EHL) varying from mild erosion to severe erosion. The loss of organic carbon (C-organic) soil is measured from the soil carried along with the surface stream and into the reservoir on various land uses. The result measurement of C-organic soil loss on forest land use is 14.02 kg ha-1, shrubs land 22.71 kg ha-1, oil palm 151.32 kg ha-1, pepper garden 93.69 kg ha-1, field rice 313.80 kg.ha-1, monoculture of maize 142.44 kg ha-1, intercropped maize and corn 51.10 kg ha-1 and open land 1,909.16 kg ha-1. The forest land and shrubs is best in conserving soil C-organic, but economically unfavorable for the community, so land use pattern for intercropping and pepper plantation can be used for soil C-organic conservation

  7. Challenges in land model representation of heat transfer in snow and frozen soils (United States)

    Musselman, K. N.; Clark, M. P.; Nijssen, B.; Arnold, J.


    Accurate model simulations of soil thermal and moisture states are critical for realistic estimates of exchanges of energy, water, and biogeochemical fluxes at the land-atmosphere interface. In cold regions, seasonal snow-cover and organic soils form insulating barriers, modifying the heat and moisture exchange that would otherwise occur between mineral soils and the atmosphere. The thermal properties of these media are highly dynamic functions of mass, water and ice content. Land surface models vary in their representation of snow and soil processes, and thus in the treatment of insulation and heat exchange. For some models, recent development efforts have improved representation of heat transfer in cold regions, such as with multi-layer snow treatment, inclusion of soil freezing and organic soil properties, yet model deficiencies remain prevalent. We evaluate models that participated in the Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) experiment for proficiency in simulating heat transfer between the soil through the snowpack to the atmosphere. Using soil observations from cold region sites and a controlled experiment with Structure for Unifying Multiple Modeling Alternatives (SUMMA), we explore the impact of snow and soil model decisions and parameter values on heat transfer model skill. Specifically, we use SUMMA to mimic the spread of behaviors exhibited by the models that participated in PLUMBER. The experiment allows us to isolate relationships between model skill and process representation. The results are aimed to better understand existing model challenges and identify potential advances for cold region models.

  8. Hydrometric, Hydrochemical, and Hydrogeophysical Runoff Characterization Across Multiple Land Covers in the Agua Salud Project, Panama (United States)

    Litt, Guy Finley

    As the Panama Canal Authority faces sensitivity to water shortages, managing water resources becomes crucial for the global shipping industry's security. These studies address knowledge gaps in tropical water resources to aid hydrological model development and validation. Field-based hydrological investigations in the Agua Salud Project within the Panama Canal Watershed employed multiple tools across a variety of land covers to investigate hydrological processes. Geochemical tracers informed where storm runoff in a stream comes from and identified electrical conductivity (EC) as an economical, high sample frequency tracer during small storms. EC-based hydrograph separation coupled with hydrograph recession rate analyses identified shallow and deep groundwater storage-discharge relationships that varied by season and land cover. A series of plot-scale electrical resistivity imaging geophysical experiments coupled with rainfall simulation characterized subsurface flow pathway behavior and quantified respectively increasing infiltration rates across pasture, 10 year old secondary succession forest, teak (tectona grandis), and 30 year old secondary succession forest land covers. Additional soil water, groundwater, and geochemical studies informed conceptual model development in subsurface flow pathways and groundwater, and identified future research needs.

  9. Spatiotemporal models of global soil organic carbon stock to support land degradation assessments at regional and global scales: limitations, challenges and opportunities (United States)

    Hengl, Tomislav; Heuvelink, Gerard; Sanderman, Jonathan; MacMillan, Robert


    There is an increasing interest in fitting and applying spatiotemporal models that can be used to assess and monitor soil organic carbon stocks (SOCS), for example, in support of the '4 pourmille' initiative aiming at soil carbon sequestration towards climate change adaptation and mitigation and UN's Land Degradation Neutrality indicators and similar degradation assessment projects at regional and global scales. The land cover mapping community has already produced several spatiotemporal data sets with global coverage and at relatively fine resolution e.g. USGS MODIS land cover annual maps for period 2000-2014; European Space Agency land cover maps at 300 m resolution for the year 2000, 2005 and 2010; Chinese GlobeLand30 dataset available for years 2000 and 2010; Columbia University's WRI GlobalForestWatch with deforestation maps at 30 m resolution for the period 2000-2016 (Hansen et al. 2013). These data sets can be used for land degradation assessment and scenario testing at global and regional scales (Wei et al 2014). Currently, however, no compatible global spatiotemporal data sets exist on status of soil quality and/or soil health (Powlson et al. 2013). This paper describes an initial effort to devise and evaluate a procedure for mapping spatio-temporal changes in SOC stocks using a complete stack of soil forming factors (climate, relief, land cover, land use, lithology and living organisms) represented mainly through remote sensing based time series of Earth images. For model building we used some 75,000 geo-referenced soil profiles and a stacks space-time covariates (land cover, land use, biomass, climate) at two standard resolutions: (1) 10 km resolution with data available for period 1920-2014 and (2) 1000 m resolution with data available for period 2000-2014. The initial results show that, although it is technically feasible to produce space time estimates of SOCS that demonstrate the procedure, the estimates are relatively uncertain (<45% of variation

  10. The effects of changing land cover on streamflow simulation in Puerto Rico (United States)

    Van Beusekom, Ashley; Hay, Lauren E.; Viger, Roland; Gould, William A.; Collazo, Jaime; Henareh Khalyani, Azad


    This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from four land cover scenes for the period 1953-2012. The PRMS simulations based on static land cover illustrated consistent differences in simulated streamflow across the island. It was determined that the scale of the analysis makes a difference: large regions with localized areas that have undergone dramatic land cover change may show negligible difference in total streamflow, but streamflow simulations using dynamic land cover parameters for a highly altered subwatershed clearly demonstrate the effects of changing land cover on simulated streamflow. Incorporating dynamic parameterization in these highly altered watersheds can reduce the predictive uncertainty in simulations of streamflow using PRMS. Hydrologic models that do not consider the projected changes in land cover may be inadequate for water resource management planning for future conditions.

  11. Does estuarine health relate to catchment land-cover in the East ...

    African Journals Online (AJOL)

    Possible links between catchment and buffer zone land-cover class composition and the health of the East Kleinemonde Estuary were explored. There was a relationship between catchment land-cover and estuarine health within all assessed catchment delineations. Natural land-cover was determined to be the best ...

  12. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia (United States)

    Rokni Deilmai, B.; Ahmad, B. Bin; Zabihi, H.


    Mapping is essential for the analysis of the land use and land cover, which influence many environmental processes and properties. For the purpose of the creation of land cover maps, it is important to minimize error. These errors will propagate into later analyses based on these land cover maps. The reliability of land cover maps derived from remotely sensed data depends on an accurate classification. In this study, we have analyzed multispectral data using two different classifiers including Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). To pursue this aim, Landsat Thematic Mapper data and identical field-based training sample datasets in Johor Malaysia used for each classification method, which results indicate in five land cover classes forest, oil palm, urban area, water, rubber. Classification results indicate that SVM was more accurate than MLC. With demonstrated capability to produce reliable cover results, the SVM methods should be especially useful for land cover classification.

  13. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia

    International Nuclear Information System (INIS)

    Deilmai, B Rokni; Ahmad, B Bin; Zabihi, H


    Mapping is essential for the analysis of the land use and land cover, which influence many environmental processes and properties. For the purpose of the creation of land cover maps, it is important to minimize error. These errors will propagate into later analyses based on these land cover maps. The reliability of land cover maps derived from remotely sensed data depends on an accurate classification. In this study, we have analyzed multispectral data using two different classifiers including Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). To pursue this aim, Landsat Thematic Mapper data and identical field-based training sample datasets in Johor Malaysia used for each classification method, which results indicate in five land cover classes forest, oil palm, urban area, water, rubber. Classification results indicate that SVM was more accurate than MLC. With demonstrated capability to produce reliable cover results, the SVM methods should be especially useful for land cover classification


    Data derived from remotely sensed images were utilized to conduct land cover assessments of three indigenous communities in northern Nicaragua. Historical land use, present land cover and land cover change processes were all identified through the use of a geographic informat...

  15. Soil Properties in Natural Forest Destruction and Conversion to Agricultural Land,in Gunung Leuser National Park, North Sumatera Province

    Directory of Open Access Journals (Sweden)

    Basuki Wasis


    Full Text Available Destruction of the Gunung Leuser National Park area of North Sumatera Province through land clearing and land cover change from natural forest to agricultural land. Less attention to land use and ecosystem carrying capacity of the soil can cause soil degradation and destruction of flora, fauna, and wildlife habitat destruction. Environmental damage will result in a national park wild life will come out of the conservation area and would damage the agricultural community. Soil sampling conducted in purposive sampling in natural forest and agricultural areas.  Observation suggest that damage to the natural forest vegetation has caused the soil is not protected so that erosion has occurred. Destruction of natural forest into agricultural are as has caused damage to soil physical properties, soil chemical properties, and biological soil properties significantly. Forms of soil degradation caused by the destruction of natural forests, which is an increase in soil density (density Limbak by 103%, a decrease of 93% organic C and soil nitrogen decreased by 81%. The main factors causing soil degradation is the reduction of organic matter and soil erosion due to loss of natural forest vegetation.  Criteria for soil degradation in Governance Regulation Number 150/2000 can be used to determine the extent of soil degradation in natural forest ecosystems.Keywords: Gunung Leuser National Park, natural forest, agricultural land, land damage, soil properties

  16. Effect of snow cover on soil frost penetration (United States)

    Rožnovský, Jaroslav; Brzezina, Jáchym


    Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.

  17. Land cover change of watersheds in Southern Guam from 1973 to 2001. (United States)

    Wen, Yuming; Khosrowpanah, Shahram; Heitz, Leroy


    Land cover change can be caused by human-induced activities and natural forces. Land cover change in watershed level has been a main concern for a long time in the world since watersheds play an important role in our life and environment. This paper is focused on how to apply Landsat Multi-Spectral Scanner (MSS) satellite image of 1973 and Landsat Thematic Mapper (TM) satellite image of 2001 to determine the land cover changes of coastal watersheds from 1973 to 2001. GIS and remote sensing are integrated to derive land cover information from Landsat satellite images of 1973 and 2001. The land cover classification is based on supervised classification method in remote sensing software ERDAS IMAGINE. Historical GIS data is used to replace the areas covered by clouds or shadows in the image of 1973 to improve classification accuracy. Then, temporal land cover is utilized to determine land cover change of coastal watersheds in southern Guam. The overall classification accuracies for Landsat MSS image of 1973 and Landsat TM image of 2001 are 82.74% and 90.42%, respectively. The overall classification of Landsat MSS image is particularly satisfactory considering its coarse spatial resolution and relatively bad data quality because of lots of clouds and shadows in the image. Watershed land cover change in southern Guam is affected greatly by anthropogenic activities. However, natural forces also affect land cover in space and time. Land cover information and change in watersheds can be applied for watershed management and planning, and environmental modeling and assessment. Based on spatio-temporal land cover information, the interaction behavior between human and environment may be evaluated. The findings in this research will be useful to similar research in other tropical islands.

  18. Measurement of semantic similarity for land use and land cover classification systems (United States)

    Deng, Dongpo


    Land use and land cover (LULC) data is essential to environmental and ecological research. However, semantic heterogeneous of land use and land cover classification are often resulted from different data resources, different cultural contexts, and different utilities. Therefore, there is need to develop a method to measure, compare and integrate between land cover categories. To understand the meaning and the use of terminology from different domains, the common ontology approach is used to acquire information regarding the meaning of terms, and to compare two terms to determine how they might be related. Ontology is a formal specification of a shared conceptualization of a domain of interest. LULC classification system is a ontology. The semantic similarity method is used to compare to entities of three LULC classification systems: CORINE (European Environmental Agency), Oregon State, USA), and Taiwan. The semantic properties and relations firstly have been extracted from their definitions of LULC classification systems. Then semantic properties and relations of categories in three LULC classification systems are mutually compared. The visualization of semantic proximity is finally presented to explore the similarity or dissimilarity of data. This study shows the semantic similarity method efficiently detect semantic distance in three LULC classification systems and find out the semantic similar objects.

  19. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.


    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database,, which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  20. Soil respiration and carbon loss relationship with temperature and land use conversion in freeze-thaw agricultural area. (United States)

    Ouyang, Wei; Lai, Xuehui; Li, Xia; Liu, Heying; Lin, Chunye; Hao, Fanghua


    Soil respiration (Rs) was hypothesized to have a special response pattern to soil temperature and land use conversion in the freeze-thaw area. The Rs differences of eight types of land use conversions during agricultural development were observed and the impacts of Rs on soil organic carbon (SOC) loss were assessed. The land use conversions during last three decades were categorized into eight types, and the 141 SOC sampling sites were grouped by conversion type. The typical soil sampling sites were subsequently selected for monitoring of soil temperature and Rs of each land use conversion types. The Rs correlations with temperature at difference depths and different conversion types were identified with statistical analysis. The empirical mean error model and the biophysical theoretical model with Arrhenius equation about the Rs sensitivity to temperature were both analyzed and shared the similar patterns. The temperature dependence of soil respiration (Q10) analysis further demonstrated that the averaged value of eight types of land use in this freeze-thaw agricultural area ranged from 1.15 to 1.73, which was lower than the other cold areas. The temperature dependence analysis demonstrated that the Rs in the top layer of natural land covers was more sensitive to temperature and experienced a large vertical difference. The natural land covers exhibited smaller Rs and the farmlands had the bigger value due to tillage practices. The positive relationships between SOC loss and Rs were identified, which demonstrated that Rs was the key chain for SOC loss during land use conversion. The spatial-vertical distributions of SOC concentration with the 1.5-km grid sampling showed that the more SOC loss in the farmland, which was coincided with the higher Rs in farmlands. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze

  1. Operational monitoring of land-cover change using multitemporal remote sensing data (United States)

    Rogan, John


    Land-cover change, manifested as either land-cover modification and/or conversion, can occur at all spatial scales, and changes at local scales can have profound, cumulative impacts at broader scales. The implication of operational land-cover monitoring is that researchers have access to a continuous stream of remote sensing data, with the long term goal of providing for consistent and repetitive mapping. Effective large area monitoring of land-cover (i.e., >1000 km2) can only be accomplished by using remotely sensed images as an indirect data source in land-cover change mapping and as a source for land-cover change model projections. Large area monitoring programs face several challenges: (1) choice of appropriate classification scheme/map legend over large, topographically and phenologically diverse areas; (2) issues concerning data consistency and map accuracy (i.e., calibration and validation); (3) very large data volumes; (4) time consuming data processing and interpretation. Therefore, this dissertation research broadly addresses these challenges in the context of examining state-of-the-art image pre-processing, spectral enhancement, classification, and accuracy assessment techniques to assist the California Land-cover Mapping and Monitoring Program (LCMMP). The results of this dissertation revealed that spatially varying haze can be effectively corrected from Landsat data for the purposes of change detection. The Multitemporal Spectral Mixture Analysis (MSMA) spectral enhancement technique produced more accurate land-cover maps than those derived from the Multitemporal Kauth Thomas (MKT) transformation in northern and southern California study areas. A comparison of machine learning classifiers showed that Fuzzy ARTMAP outperformed two classification tree algorithms, based on map accuracy and algorithm robustness. Variation in spatial data error (positional and thematic) was explored in relation to environmental variables using geostatistical interpolation

  2. Biomass Burning, Land-Cover Change, and the Hydrological Cycle in Northern Sub-Saharan Africa (United States)

    Ichoku, Charles; Ellison, Luke T.; Willmot, K. Elena; Matsui, Toshihisa; Dezfuli, Amin K.; Gatebe, Charles K.; Wang, Jun; Wilcox, Eric M.; Lee, Jejung; Adegoke, Jimmy; hide


    The Northern Sub-Saharan African (NSSA) region, which accounts for 20%-25%of the global carbon emissions from biomass burning, also suffers from frequent drought episodes and other disruptions to the hydrological cycle whose adverse societal impacts have been widely reported during the last several decades. This paper presents a conceptual framework of the NSSA regional climate system components that may be linked to biomass burning, as well as detailed analyses of a variety of satellite data for 2001-2014 in conjunction with relevant model-assimilated variables. Satellite fire detections in NSSA show that the vast majority (greater than 75%) occurs in the savanna and woody savanna land-cover types. Starting in the 2006-2007 burning season through the end of the analyzed data in 2014, peak burning activity showed a net decrease of 2-7% /yr in different parts of NSSA, especially in the savanna regions. However, fire distribution shows appreciable coincidence with land-cover change. Although there is variable mutual exchange of different land cover types, during 2003-2013, cropland increased at an estimated rate of 0.28% /yr of the total NSSA land area, with most of it (0.18% /yr) coming from savanna.During the last decade, conversion to croplands increased in some areas classified as forests and wetlands, posing a threat to these vital and vulnerable ecosystems. Seasonal peak burning is anti-correlated with annual water-cycle indicators such as precipitation, soil moisture, vegetation greenness, and evapotranspiration, except in humid West Africa (5 deg-10 deg latitude),where this anti-correlation occurs exclusively in the dry season and burning virtually stops when monthly mean precipitation reaches 4 mm/d. These results provide observational evidence of changes in land-cover and hydrological variables that are consistent with feedbacks from biomass burning in NSSA, and encourage more synergistic modeling and observational studies that can elaborate this feedback

  3. Impacts of land leveling on lowland soil physical properties

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt


    Full Text Available The practice of land leveling alters the soil surface to create a uniform slope to improve land conditions for the application of all agricultural practices. The aims of this study were to evaluate the impacts of land leveling through the magnitudes, variances and spatial distributions of selected soil physical properties of a lowland area in the State of Rio Grande do Sul, Brazil; the relationships between the magnitude of cuts and/or fills and soil physical properties after the leveling process; and evaluation of the effect of leveling on the spatial distribution of the top of the B horizon in relation to the soil surface. In the 0-0.20 m layer, a 100-point geo-referenced grid covering two taxonomic soil classes was used in assessment of the following soil properties: soil particle density (Pd and bulk density (Bd; total porosity (Tp, macroporosity (Macro and microporosity (Micro; available water capacity (AWC; sand, silt, clay, and dispersed clay in water (Disp clay contents; electrical conductivity (EC; and weighted average diameter of aggregates (WAD. Soil depth to the top of the B horizon was also measured before leveling. The overall effect of leveling on selected soil physical properties was evaluated by paired "t" tests. The effect on the variability of each property was evaluated through the homogeneity of variance test. The thematic maps constructed by kriging or by the inverse of the square of the distances were visually analyzed to evaluate the effect of leveling on the spatial distribution of the properties and of the top of the B horizon in relation to the soil surface. Linear regression models were fitted with the aim of evaluating the relationship between soil properties and the magnitude of cuts and fills. Leveling altered the mean value of several soil properties and the agronomic effect was negative. The mean values of Bd and Disp clay increased and Tp, Macro and Micro, WAD, AWC and EC decreased. Spatial distributions of all

  4. Error and Uncertainty in the Accuracy Assessment of Land Cover Maps (United States)

    Sarmento, Pedro Alexandre Reis

    Traditionally the accuracy assessment of land cover maps is performed through the comparison of these maps with a reference database, which is intended to represent the "real" land cover, being this comparison reported with the thematic accuracy measures through confusion matrixes. Although, these reference databases are also a representation of reality, containing errors due to the human uncertainty in the assignment of the land cover class that best characterizes a certain area, causing bias in the thematic accuracy measures that are reported to the end users of these maps. The main goal of this dissertation is to develop a methodology that allows the integration of human uncertainty present in reference databases in the accuracy assessment of land cover maps, and analyse the impacts that uncertainty may have in the thematic accuracy measures reported to the end users of land cover maps. The utility of the inclusion of human uncertainty in the accuracy assessment of land cover maps is investigated. Specifically we studied the utility of fuzzy sets theory, more precisely of fuzzy arithmetic, for a better understanding of human uncertainty associated to the elaboration of reference databases, and their impacts in the thematic accuracy measures that are derived from confusion matrixes. For this purpose linguistic values transformed in fuzzy intervals that address the uncertainty in the elaboration of reference databases were used to compute fuzzy confusion matrixes. The proposed methodology is illustrated using a case study in which the accuracy assessment of a land cover map for Continental Portugal derived from Medium Resolution Imaging Spectrometer (MERIS) is made. The obtained results demonstrate that the inclusion of human uncertainty in reference databases provides much more information about the quality of land cover maps, when compared with the traditional approach of accuracy assessment of land cover maps. None

  5. Study Of Land Cover And Condition Catchment Area Groundwater Aquifer In Tanah Merah North Samarinda District Using Resistivity Geoelectric Sounding

    Directory of Open Access Journals (Sweden)



    Full Text Available Land cover is a biophysical cover that maintains land conditions in water balance. The purpose of this research is to know the condition of land cover water catchment groundwater aquifer and correlation. This research begins by collecting data on land cover soil type rainfall slopes and groundwaterinformation. Field activities include observation and data collection of land cover geological conditions community wells and geoelectric sounding. Land cover data is classified according to circumstances and conditions. Geoelectric sounding data was analyzed with IP2WIN software interpretation of lithologic variation of rocks and depth based on resistivity value. Plot the position of each lithology sounding with Surfer software obtained kontour rock field boundary and 3D model of the aquifer position.The results showed that the land cover consisted of vegetated areas forests 27221 Ha 4032 and agricultural land 18336 Ha 2716 non-vegetation area 9880 Ha 1464 constructed land Open land 116.33 Ha 17.23 and water body 4.35 Ha 0.64 The condition of land cover in this water catchment area has decreased 6838 Ha 1014 from the previous condition 34059 Ha 5046 to 27221 Ha 4032. Referring to Permenhut RI No. 32 in 2009 total score catchment area 33 including the somewhat critical condition. Groundwater aquifers based on 3D sounding geolistrik modeling consist of a free aquifer for shallow groundwater depth of water level between 2-30 m with thickness 2-65 m and a distorted aquifer for groundwaterin depth of water between 75-150 m With thickness 75-125 m depth of community well 10-45 m. The transfer of land into open pit mines resulted in the destruction of the balance and water system the decreasing decreasing the discharge of the well water of the community drill the failure and the lack of new water discharge of the new wells the loss of groundwaterin several dug wells landslides and mud floods on the farmland

  6. Embedding soil quality in land-use planning

    NARCIS (Netherlands)

    Wezel AP van; Weijden AGG van der; Wijnen HJ van; Mulder Ch; Wijnen HJ van; MNP; LER; LDL


    Changes in land use in the Netherlands are anticipated on a large scale. Soil quality, however, hardly plays a role in spatial planning, which was reason enough to analyse the relationship between land use and soil quality on a national scale using ecological data. Despite major changes in land

  7. Analytical tools for assessing land degradation and its impact on soil quality (United States)

    Bindraban, P. S.; Mantel, S.; Bai, Z.; de Jong, R.


    Maintaining and enhancing the quality of land is of major importance to sustain future production capacity for food and other agriculture based products like fibers and wood, and for maintaining ecosystems services, including below and above ground biodiversity, provision of soil water and sequestration of carbon. Deterioration of this production base will be detrimental to the provision of the foreseen dramatic increase in human needs for goods and services. For this reason, land degradation, defined as a long-term loss in ecosystem function and productivity, has to be understood properly. Climate, soils, topography and socioeconomic activities are primary factors that can cause, by themselves or in combination, a number of temporary or permanent changes in the landscape, leading to degradation of vegetation and soils. For identifying intervention measures to prevent and revert trends of land deterioration, it is fundamental to know the extent of land degradation and to understand its impact on functional properties of land. To assess the global extent, (Bai et al. 2008) apply a remotely sensed vegetation index that describes the greenness of the vegetation cover as a proxy for biomass. Biomass production has been identified as a strong indicator for soil quality as it is an integral measure for soil, crop and environmental characteristics (Bindraban et al., 2000). Bai and colleagues observed that 24% of the global land has been degrading over the past 26 years - often in very productive areas. The relation with functional properties of land can be made through ecosystem models. Mantel et al. (1999; 2000) applied dynamic crop-soil models to calculate crop productivity at the national level. A baseline scenario that represents the current conditions and a scenario for 20 years of prolonged sheet erosion were modeled to calculate the productivity impact of topsoil erosion for wheat in Uruguay and for maize in Kenya. They concluded that topsoil erosion primarily

  8. Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia

    Directory of Open Access Journals (Sweden)

    W. Dawes


    Full Text Available The groundwater resource contained within the sandy aquifers of the Swan Coastal Plain, south-west Western Australia, provides approximately 60 percent of the drinking water for the metropolitan population of Perth. Rainfall decline over the past three decades coupled with increasing water demand from a growing population has resulted in falling dam storage and groundwater levels. Projected future changes in climate across south-west Western Australia consistently show a decline in annual rainfall of between 5 and 15 percent. There is expected to be a reduction of diffuse recharge across the Swan Coastal Plain. This study aims to quantify the change in groundwater recharge in response to a range of future climate and land cover patterns across south-west Western Australia.

    Modelling the impact on the groundwater resource of potential climate change was achieved with a dynamically linked unsaturated/saturated groundwater model. A vertical flux manager was used in the unsaturated zone to estimate groundwater recharge using a variety of simple and complex models based on climate, land cover type (e.g. native trees, plantation, cropping, urban, wetland, soil type, and taking into account the groundwater depth.

    In the area centred on the city of Perth, Western Australia, the patterns of recharge change and groundwater level change are not consistent spatially, or consistently downward. In areas with land-use change, recharge rates have increased. Where rainfall has declined sufficiently, recharge rates are decreasing, and where compensating factors combine, there is little change to recharge. In the southwestern part of the study area, the patterns of groundwater recharge are dictated primarily by soil, geology and land cover. In the sand-dominated areas, there is little response to future climate change, because groundwater levels are shallow and much rainfall is rejected recharge. Where the combination of native vegetation and

  9. Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery


    Moran, Emilio Federico.


    High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervi...

  10. [Runoff loss of soil mineral nitrogen and its relationship with grass coverage on Loess slope land]. (United States)

    Zhang, Yali; Li, Huai'en; Zhang, Xingchang; Xiao, Bo


    In a simulated rainfall experiment on Loess slope land, this paper determined the rainfall, surface runoff and the effective depth of interaction (EDI) between rainfall and soil mineral nitrogen, and studied the effects of grass coverage on the EDI and the runoff loss of soil mineral nitrogen. The results showed that with the increase of EDI, soil nitrogen in deeper layers could be released into surface runoff through dissolution and desorption. The higher the grass coverage, the deeper the EDI was. Grass coverage promoted the interaction between surface runoff and surface soil. On the slope land with 60%, 80% and 100% of grass coverage, the mean content of runoff mineral nitrogen increased by 34.52%, 32.67% and 6.00%, while surface runoff decreased by 4.72%, 9.84% and 12.89%, and eroded sediment decreased by 83.55%, 87.11% and 89.01%, respectively, compared with bare slope land. The total runoff loss of soil mineral nitrogen on the lands with 60%, 80%, and 100% of grass coverage was 95.73%, 109.04%, and 84.05% of that on bare land, respectively. Grass cover had dual effects on the surface runoff of soil mineral nitrogen. On one hand, it enhanced the influx of soil mineral nitrogen to surface runoff, and on the other hand, it markedly decreased the runoff, resulting in the decrease of soil mineral nitrogen loss through runoff and sediment. These two distinct factors codetermined the total runoff loss of soil mineral nitrogen.

  11. Internal Migration and Land Use and Land Cover Changes in the Middle Mountains of Nepal

    Directory of Open Access Journals (Sweden)

    Bhawana KC


    Full Text Available The movement of rural households from remote uplands to valley floors and to semiurban and urban areas (internal migration is a common phenomenon in the middle mountain districts of Nepal. Understanding the causes and effects of internal migration is critical to the development and implementation of policies that promote land use planning and sustainable resource management. Using geospatial information technologies and social research methods, we investigated the causes and effects of internal migration on land use and land cover patterns in a western mountain district of Nepal between 1998 and 2013. The results show a decreasing number of households at high elevations (above 1400 m, where an increase in forest cover has been observed with a consequent decrease in agricultural land and shrub- or grassland. At lower elevations (below 1400 m, forest cover has remained constant over the last 25 years, and the agricultural land area has increased but has become geometrically complex to meet the diverse needs and living requirements of the growing population. Our findings indicate that internal migration plays an important role in shaping land use and land cover change in the middle mountains of Nepal and largely determines the resource management, utilization, and distribution patterns within a small geographic unit. Therefore, land use planning must take an integrated and interdisciplinary approach rather than considering social, environmental, and demographic information in isolation.

  12. Evidence for micronutrient limitation of biological soil crusts: Importance to arid-lands restoration (United States)

    Bowker, M.A.; Belnap, J.; Davidson, D.W.; Phillips, S.L.


    Desertification is a global problem, costly to national economies and human societies. Restoration of biological soil crusts (BSCs) may have an important role to play in the reversal of desertification due to their ability to decrease erosion and enhance soil fertility. To determine if there is evidence that lower fertility may hinder BSC recolonization, we investigated the hypothesis that BSC abundance is driven by soil nutrient concentrations. At a regional scale (north and central Colorado Plateau, USA), moss and lichen cover and richness are correlated with a complex water-nutrient availability gradient and have approximately six-fold higher cover and approximately two-fold higher species richness on sandy soils than on shale-derived soils. At a microscale, mosses and lichens are overrepresented in microhabitats under the north sides of shrub canopies, where water and nutrients are more available. At two spatial scales, and at the individual species and community levels, our data are consistent with the hypothesis that distributions of BSC organisms are determined largely by soil fertility. The micronutrients Mn and Zn figured prominently and consistently in the various analyses, strongly suggesting that these elements are previously unstudied limiting factors in BSC development. Structural-equation modeling of our data is most consistent with the hypothesis of causal relationships between the availability of micronutrients and the abundance of the two major nitrogen (N) fixers of BSCs. Specifically, higher Mn availability may determine greater Collema tenax abundance, and both Mn and Zn may limit Collema coccophorum; alternative causal hypotheses were less consistent with the data. We propose experimental trials of micronutrient addition to promote the restoration of BSC function on disturbed lands. Arid lands, where BSCs are most prevalent, cover ???40% of the terrestrial surface of the earth; thus the information gathered in this study is potentially useful

  13. Optimizing land use pattern to reduce soil erosion

    Directory of Open Access Journals (Sweden)

    Reza Sokouti


    Full Text Available Soil erosion hazard is one of the main problems can affect ecological balance in watersheds. This study aimed to determine the optimal use of land to reduce erosion and increase the resident's income of Qushchi watershed in West Azerbaijan province, Iran. Income and expenses for the current land uses were calculated with field studies. Damages resulting from the soil erosion were estimated by soil depth equal to the specified land uses. For three different options including the current status of land uses without and with land management, and the standard status of land uses, multi-objective linear programming model was established by LINGO software. Then the optimization problem of the land use was solved by simplex method. Finally, the best option of land use was determined by comparing erosion rate and its cost in each scenario. Then the circumstances and the recommended conditions were compared. The results indicated that the current surface area of current land uses is not suitable to reduce erosion and increase income of residents and should change in the optimum conditions. At the optimum level, there should change horticulture area of 408 to 507 (ha, irrigated land area of 169 to 136 (ha and dry farming of 636 to 570 (ha, while conversion of rangeland area not indispensable. In addition, the results showed that in case of the optimization of land use, soil erosion and the profitability of the whole area will decrease 0.75% and increase 3.68%, respectively. In case of land management practices, soil erosion will decrease 42.27% and the profitability increase 21.39% while in the standard conditions, soil erosion will decrease 60.95% and profitability will increase 24.20%. The results of the sensitivity analysis showed that the changes in the horticulture and range land areas have the greatest impact on the increasing profitability and reducing soil erosion of Qushchi watershed. So, it is recommended using Education and Extension to promote

  14. Land use/land cover study of urban features using spot imagery

    International Nuclear Information System (INIS)

    Mahmood, S.A.; Qureshi, J.; Abbas, I.


    This study is based on visual interpretation and classification of the urban area of Peshawar. Cloud free satellite image of the French SPOT System in panchromatic mode at 100m/pixel spatial detail was used for this purpose. The coverage area comprised nearly (7.5 x 6)sq. km. on the ground depicting the major portion of the city. Various image interpretation elements were exploited to accomplish the study, thirteen land cover classes were identified and demarcated on a tracing sheet. Having prepared the base map. Satellite image map was constructed by assigning disparate colors to the identified features. Dimensions of some of the prominent, regular and liner features were computed from the image. The results indicate that high-resolution satellite image can be effectively used for mapping and area estimation of urban land use/land cover features. (author)

  15. Tularosa, NM 1:250,000 Quad USGS Land Use/Land Cover, 1986 (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  16. Carbon dioxide emissions from forestry and peat land using land-use/land-cover changes in North Sumatra, Indonesia (United States)

    Basyuni, M.; Sulistyono, N.; Slamet, B.; Wati, R.


    Forestry and peat land including land-based is one of the critical sectors in the inventory of CO2 emissions and mitigation efforts of climate change. The present study analyzed the land-use and land-cover changes between 2006 and 2012 in North Sumatra, Indonesia with emphasis to CO2 emissions. The land-use/land-cover consists of twenty-one classes. Redd Abacus software version 1.1.7 was used to measure carbon emission source as well as the predicted 2carbon dioxide emissions from 2006-2024. Results showed that historical emission (2006-2012) in this province, significant increases in the intensive land use namely dry land agriculture (109.65%), paddy field (16.23%) and estate plantation (15.11%). On the other hand, land-cover for forest decreased significantly: secondary dry land forest (7.60%), secondary mangrove forest (9.03%), secondary swamp forest (33.98%), and the largest one in the mixed dry land agriculture (79.96%). The results indicated that North Sumatra province is still a CO2 emitter, and the most important driver of emissions mostly derived from agricultural lands that contributed 2carbon dioxide emissions by 48.8%, changing from forest areas into degraded lands (classified as barren land and shrub) shared 30.6% and estate plantation of 22.4%. Mitigation actions to reduce carbon emissions was proposed such as strengthening the forest land, rehabilitation of degraded area, development and plantation forest, forest protection and forest fire control, and reforestation and conservation activity. These mitigation actions have been simulated to reduce 15% for forestry and 18% for peat land, respectively. This data is likely to contribute to the low emission development in North Sumatra.

  17. Soil and soil cover changes in spruce forests after final logging

    Directory of Open Access Journals (Sweden)

    E. M. Lapteva


    Full Text Available Soil cover transformation and changes of morphological and chemical properties of Albeluvisols in clear-cuttings of middle taiga spruce forests were studied. The observed changes in structure and properties of podzolic texturally-differentiated soils at cuttings of spruce forests in the middle taiga subzone do not cause their transition to any other soil type. Soil cover of secondary deciduous-coniferous forests which replace cut forests are characterized with a varied soil contour and a combination of the main type of podzolic soils under undisturbed spruce forests. The increased surface hydromorphism in cut areas causes formation of complicated sub-types of podzolic texturally differentiated soils (podzolic surface-gley soils with microprofile of podzol and enlarges their ratio (up to 35–38 % in soil cover structure. Temporary soil over-wetting at the initial (5–10 years stage of after-cutting self-restoring vegetation succession provides for soil gleyzation, improves yield and segregation of iron compounds, increases the migratory activity of humic substances. Low content and resources of total nitrogen in forest litters mark anthropogenic transformation processes of podzolic soils at this stage. Later (in 30–40 years after logging, soils in cut areas still retain signs of hydromorphism. Forest litters are denser, less acidic and thick with a low weight ratio of organic carbon as compared with Albeluvisols of undisturbed spruce forest. The upper mineral soil horizons under secondary deciduous-coniferous forests contain larger amounts of total iron, its mobile (oxalate-dissolvable components, and Fe-Mn-concretions.

  18. Extraction of land cover change information from ENVISAT-ASAR data in Chengdu Plain (United States)

    Xu, Wenbo; Fan, Jinlong; Huang, Jianxi; Tian, Yichen; Zhang, Yong


    Land cover data are essential to most global change research objectives, including the assessment of current environmental conditions and the simulation of future environmental scenarios that ultimately lead to public policy development. Chinese Academy of Sciences generated a nationwide land cover database in order to carry out the quantification and spatial characterization of land use/cover changes (LUCC) in 1990s. In order to improve the reliability of the database, we will update the database anytime. But it is difficult to obtain remote sensing data to extract land cover change information in large-scale. It is hard to acquire optical remote sensing data in Chengdu plain, so the objective of this research was to evaluate multitemporal ENVISAT advanced synthetic aperture radar (ASAR) data for extracting land cover change information. Based on the fieldwork and the nationwide 1:100000 land cover database, the paper assesses several land cover changes in Chengdu plain, for example: crop to buildings, forest to buildings, and forest to bare land. The results show that ENVISAT ASAR data have great potential for the applications of extracting land cover change information.

  19. Generating local scale land use/cover change scenarios: case studies of high-risk mountain areas (United States)

    Malek, Žiga; Glade, Thomas; Boerboom, Luc


    The relationship between land use/cover changes and consequences to human well-being is well acknowledged and has led to higher interest of both researchers and decision makers in driving forces and consequences of such changes. For example, removal of natural vegetation cover or urban expansion resulting in new elements at risk can increase hydro-meteorological risk. This is why it is necessary to study how the land use/cover could evolve in the future. Emphasis should especially be given to areas experiencing, or expecting, high rates of socio-economic change. A suitable approach to address these changes is scenario development; it offers exploring possible futures and the corresponding environmental consequences, and aids decision-making, as it enables to analyse possible options. Scenarios provide a creative methodology to depict possible futures, resulting from existing decisions, based on different assumptions of future socio-economic development. They have been used in various disciplines and on various scales, such as flood risk and soil erosion. Several studies have simulated future scenarios of land use/cover changes at a very high success rate, however usually these approaches are tailor made for specific case study areas and fit to available data. This study presents a multi-step scenario generation framework, which can be transferable to other local scale case study areas, taking into account the case study specific consequences of land use/cover changes. Through the use of experts' and decision-makers' knowledge, we aimed to develop a framework with the following characteristics: (1) it enables development of scenarios that are plausible, (2) it can overcome data inaccessibility, (3) it can address intangible and external driving forces of land use/cover change, and (4) it ensures transferability to other local scale case study areas with different land use/cover change processes and consequences. To achieve this, a set of different methods is applied

  20. Monitoring and assessment of seasonal land cover changes using remote sensing: a 30-year (1987-2016) case study of Hamoun Wetland, Iran. (United States)

    Kharazmi, Rasoul; Tavili, Ali; Rahdari, Mohammad Reza; Chaban, Lyudmila; Panidi, Evgeny; Rodrigo-Comino, Jesús


    The availability of Landsat data allows improving the monitoring and assessment of large-scale areas with land cover changes in rapid developing regions. Thus, we pretend to show a combined methodology to assess land cover changes (LCCs) in the Hamoun Wetland region (Iran) over a period of 30-year (1987-2016) and to quantify seasonal and decadal landscape and land use variabilities. Using the pixel-based change detection (PBCD) and the post-classification comparison (PCC), four land cover classes were compared among spring, summer, and fall seasons. Our findings showed for the water class a higher correlation between spring and summer (R 2  = 0.94) than fall and spring (R 2  = 0.58) seasons. Before 2000, ~ 50% of the total area was covered by bare soil and 40% by water. However, after 2000, more than 70% of wetland was transformed into bare soils. The results of the long-term monitoring period showed that fall season was the most representative time to show the inter-annual variability of LCCs monitoring and the least affected by seasonal-scale climatic variations. In the Hamoun Wetland region, land cover was highly controlled by changes in surface water, which in turn responded to both climatic and anthropogenic impacts. We were able to divide the water budget monitoring into three different ecological regimes: (1) a period of high water level, which sustained healthy extensive plant life, and approximately 40% of the total surface water was retained until the end of the hydrological year; (2) a period of drought during high evaporation rates was observed, and a mean wetland surface of about 85% was characterized by bare land; and (3) a recovery period in which water levels were overall rising, but they are not maintained from year to year. After a spring flood, in 2006 and 2013, grassland reached the highest extensions, covering till more than 20% of the region, and the dynamics of the ecosystem were affected by the differences in moisture. The Hamoun

  1. Using remote sensing imagery and GIS to identify land cover and land use within Ceahlau Massif (Romania

    Directory of Open Access Journals (Sweden)



    Full Text Available Using remote sensing imagery and GIS to identify land cover and land use within Ceahlău Massif (Romania. In this study we considerer land cover and land use asessment within Ceahlău Massif (Romania using satellite imagery and GIS . To achieve this goal, we used a Landsat 7 ETM + satellite image, which was processed using specialized software in analyzing satellite images and GIS software in several stages:  Downloading, importing and layer stack of all spectral bands composing satellite image;  Establishment of areas of interest for each category of land cover and land use, which were digitized on - screen and for which spectral signatures characteristics were established;  Supervised image classification using Maximum Likelihood Method;  Importing the resulting m ap (raster in GIS environment and creating the final land cover/land use map for Ceahlău Massif. In the study area we identified nine land cover/land use classes: deciduous forests, mixed forests, coniferous forests, secondary grasslands, subalpine vegeta tion, alpine meadows, agricultural land, lakes and built area. By analizing the spatial distribution of these classes, it was found that forests are the best represented class, occupying an area of 188.4 km² (56.4% of total, followed by secondary grassl and, which occupies an area of 68.2 km² (20.4% of total, lakes (26.6 km² or 7.98% of total and agricultural land (16.1 km² or 4.86%

  2. Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation

    Directory of Open Access Journals (Sweden)

    L. Giosan


    Full Text Available Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet little is known about the rhythm and rates of soil erosion prior to the most recent few centuries. Here we reconstruct a Holocene erosional history from central India, as integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the exported terrigenous carbon. Taken together, our data show that the monsoon decline in the late Holocene significantly increased soil erosion and the age of exported organic carbon. This acceleration of natural erosion was later exacerbated by the Neolithic adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a constantly elevated sea level since the middle Holocene, this erosion acceleration led to a rapid growth of the continental margin. We conclude that in monsoon conditions aridity boosts rather than suppresses sediment and carbon export, acting as a monsoon erosional pump modulated by land cover conditions.

  3. Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation (United States)

    Giosan, Liviu; Ponton, Camilo; Usman, Muhammed; Blusztajn, Jerzy; Fuller, Dorian Q.; Galy, Valier; Haghipour, Negar; Johnson, Joel E.; McIntyre, Cameron; Wacker, Lukas; Eglinton, Timothy I.


    Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet little is known about the rhythm and rates of soil erosion prior to the most recent few centuries. Here we reconstruct a Holocene erosional history from central India, as integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the exported terrigenous carbon. Taken together, our data show that the monsoon decline in the late Holocene significantly increased soil erosion and the age of exported organic carbon. This acceleration of natural erosion was later exacerbated by the Neolithic adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a constantly elevated sea level since the middle Holocene, this erosion acceleration led to a rapid growth of the continental margin. We conclude that in monsoon conditions aridity boosts rather than suppresses sediment and carbon export, acting as a monsoon erosional pump modulated by land cover conditions.

  4. Prediction of Soil Solum Depth Using Topographic Attributes in Some Hilly Land of Koohrang in Central Zagros


    A. Mehnatkesh; S. Ayoubi; A. Jalalian


    Introduction: Soil depth is defined as the depth from the surface to more-or-less consolidated material and can be considered as the most crucial soil indicator, affecting desertification and degradation in disturbed ecosystems. Soil depth varies as a function of many different factors, including slope, land use, curvature, parent material, weathering rate, climate, vegetation cover, upslope contributing area, and lithology. Topography, one of the major soil forming factors, controls various ...

  5. Land use, population dynamics, and land-cover change in Eastern Puerto Rico (United States)

    W.A. Gould; S. Martinuzzi; I.K. Páres-Ramos


    We assessed current and historic land use and land cover in the Luquillo Mountains and surrounding area in eastern Puerto Rico, including four small subwatersheds that are study watersheds of the U.S. Geological Survey’s Water, Energy, and Biogeochemical Budgets (WEBB) program. This region occupies an area of 1,616 square kilometers, about 18 percent of the total land...

  6. Land Use, Land Use History, and Soil Type Affect Soil Greenhouse Gas Fluxes From Agricultural Landscapes of the East African Highlands (United States)

    Wanyama, I.; Rufino, M. C.; Pelster, D. E.; Wanyama, G.; Atzberger, C.; van Asten, P.; Verchot, Louis V.; Butterbach-Bahl, K.


    This study aims to explain effects of soil textural class, topography, land use, and land use history on soil greenhouse gas (GHG) fluxes in the Lake Victoria region. We measured GHG fluxes from intact soil cores collected in Rakai, Uganda, an area characterized by low-input smallholder (soil cores were air dried and rewetted to water holding capacities (WHCs) of 30, 55, and 80%. Soil CO2, CH4, and N2O fluxes were measured for 48 h following rewetting. Cumulative N2O fluxes were highest from soils under perennial crops and the lowest from soils under annual crops (P soils had lower N2O fluxes than the clay soils (P soil CO2 fluxes were highest from eucalyptus plantations and lowest from annual crops across multiple WHC (P = 0.014 at 30% WHC and P soil cores from the top soil. This study reveals that land use and soil type have strong effects on GHG fluxes from agricultural land in the study area. Field monitoring of fluxes is needed to confirm whether these findings are consistent with what happens in situ.

  7. Soil cover by natural trees in agroforestry systems (United States)

    Diaz-Ambrona, C. G. H.; Almoguera Millán, C.; Tarquis Alfonso, A.


    The dehesa is common agroforestry system in the Iberian Peninsula. These open oak parklands with silvo-pastoral use cover about two million hectares. Traditionally annual pastures have been grazed by cows, sheep and also goats while acorns feed Iberian pig diet. Evergreen oak (Quercus ilex L.) has other uses as fuelwood collection and folder after tree pruning. The hypothesis of this work is that tree density and canopy depend on soil types. We using the spanish GIS called SIGPAC to download the images of dehesa in areas with different soil types. True colour images were restoring to a binary code, previously canopy colour range was selected. Soil cover by tree canopy was calculated and number of trees. Processing result was comparable to real data. With these data we have applied a dynamic simulation model Dehesa to determine evergreen oak acorn and annual pasture production. The model Dehesa is divided into five submodels: Climate, Soil, Evergreen oak, Pasture and Grazing. The first three require the inputs: (i) daily weather data (maximum and minimum temperatures, precipitation and solar radiation); (ii) the soil input parameters for three horizons (thickness, field capacity, permanent wilting point, and bulk density); and (iii) the tree characterization of the dehesa (tree density, canopy diameter and height, and diameter of the trunk). The influence of tree on pasture potential production is inversely proportional to the canopy cover. Acorn production increase with tree canopy cover until stabilizing itself, and will decrease if density becomes too high (more than 80% soil tree cover) at that point there is competition between the trees. Main driving force for dehesa productivity is soil type for pasture, and tree cover for acorn production. Highest pasture productivity was obtained on soil Dystric Planosol (Alfisol), Dystric Cambisol and Chromo-calcic-luvisol, these soils only cover 22.4% of southwest of the Iberian peninssula. Lowest productivity was

  8. Land management on soil physical properties and maize (Zea mays L. var. BIMA) growth (An adaptation strategy of climate change) (United States)

    Zaki, M. K.; Komariah; Pujiasmanto, B.; Noda, K.


    Water deficit is a problem on rainfed maize production but can be solved by proper land management. The objective of the study to determine the soil physical properties and maize yield affected by land management to adapt to drought. The experimental design was a randomized complete block using 5 treatments with 4 repetitions, including: (i) Control (KO), (ii) Rice Straw Mulched (MC), (iii) Compost Fertilizer (CF), (iv) In-Organic Fertilizer (AF), (v) Legume Cover crop (CC). Soil physical and maize growth properties namely soil moisture, soil texture, soil bulk density, plant height, biomass, and yield were investigated. The results showed that composting land increased soil water availability and provided nutrient to crops and thus increase soil physical properties, maize growth and yield. Although inorganic fertilizer also increased plant growth and yield, but it did not improve soil physical properties.

  9. The effects of land use types and soil depth on soil properties of ...

    African Journals Online (AJOL)

    The effects of land use types and soil depth on soil properties of Agedit watershed, Northwest Ethiopia. ... immediate intervention to protect the remnant forests and to replenish the degraded soil properties for sustainable agricultural productivity. Keywords: cultivation, deforestation, grazing, land management, soil fertility ...

  10. Image-based change estimation for land cover and land use monitoring (United States)

    Jeremy Webb; C. Kenneth Brewer; Nicholas Daniels; Chris Maderia; Randy Hamilton; Mark Finco; Kevin A. Megown; Andrew J. Lister


    The Image-based Change Estimation (ICE) project resulted from the need to provide estimates and information for land cover and land use change over large areas. The procedure uses Forest Inventory and Analysis (FIA) plot locations interpreted using two different dates of imagery from the National Agriculture Imagery Program (NAIP). In order to determine a suitable...

  11. A proposed periodic national inventory of land use land cover change (United States)

    Hans T. Schreuder; Paul W. Snook; Raymond L. Czaplewski; Glenn P. Catts


    Three alternatives using digital thematic mapper (TM), analog TM, and a combination of either digital or analog TM data with low altitude photography are discussed for level I and level II land use/land cover classes for a proposed national inventory. Digital TM data should prove satisfactory for estimating acreage in level I classes, although estimates of precision...

  12. Hydrological response to land cover changes and human activities in arid regions using a geographic information system and remote sensing.

    Directory of Open Access Journals (Sweden)

    Shereif H Mahmoud

    Full Text Available The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities.

  13. Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data (United States)

    Gibril, Mohamed Barakat A.; Idrees, Mohammed Oludare; Yao, Kouame; Shafri, Helmi Zulhaidi Mohd


    The growing use of optimization for geographic object-based image analysis and the possibility to derive a wide range of information about the image in textual form makes machine learning (data mining) a versatile tool for information extraction from multiple data sources. This paper presents application of data mining for land-cover classification by fusing SPOT-6, RADARSAT-2, and derived dataset. First, the images and other derived indices (normalized difference vegetation index, normalized difference water index, and soil adjusted vegetation index) were combined and subjected to segmentation process with optimal segmentation parameters obtained using combination of spatial and Taguchi statistical optimization. The image objects, which carry all the attributes of the input datasets, were extracted and related to the target land-cover classes through data mining algorithms (decision tree) for classification. To evaluate the performance, the result was compared with two nonparametric classifiers: support vector machine (SVM) and random forest (RF). Furthermore, the decision tree classification result was evaluated against six unoptimized trials segmented using arbitrary parameter combinations. The result shows that the optimized process produces better land-use land-cover classification with overall classification accuracy of 91.79%, 87.25%, and 88.69% for SVM and RF, respectively, while the results of the six unoptimized classifications yield overall accuracy between 84.44% and 88.08%. Higher accuracy of the optimized data mining classification approach compared to the unoptimized results indicates that the optimization process has significant impact on the classification quality.

  14. Soil quality evaluation following the implementation of permanent cover crops in semi-arid vineyards. Organic matter, physical and biological soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Virto, I.; Imaz, M. J.; Fernandez-Ugalde, O.; Urrutia, I.; Enrique, A.; Bescansa, P.


    Changing from conventional vineyard soil management, which includes keeping bare soil through intense tilling and herbicides, to permanent grass cover (PGC) is controversial in semi-arid land because it has agronomic and environmental advantages but it can also induce negative changes in the soil physical status. The objectives of this work were (i) gaining knowledge on the effect of PGC on the soil physical and biological quality, and (ii) identifying the most suitable soil quality indicators for vineyard calcareous soils in semi-arid land. Key soil physical, organic and biological characteristics were determined in a Cambic Calcisol with different time under PGC (1 and 5 years), and in a conventionally managed control. Correlation analysis showed a direct positive relationship between greater aggregate stability (WSA), soil-available water capacity (AWC), microbial biomass and enzymatic activity in the topsoil under PGC. Total and labile organic C concentrations (SOC and POM-C) were also correlated to microbial parameters. Factor analysis of the studied soil attributes using principal component analysis (PCA) was done to identify the most sensitive soil quality indicators. Earthworm activity, AWC, WSA, SOC and POM-C were the soil attributes with greater loadings in the two factors determined by PCA, which means that these properties can be considered adequate soil quality indicators in this agrosystem. These results indicate that both soil physical and biological attributes are different under PGC than in conventionally-managed soils, and need therefore to be evaluated when assessing the consequences of PGC on vineyard soil quality. (Author) 65 refs.

  15. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau (United States)

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.


    Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to

  16. an assessment of the land use and land cover changes in shurugwi

    African Journals Online (AJOL)

    Dr Osondu

    Zimbabwe's fast-track land reform programme and other economic activities have caused ... Geographic Information System and remote sensing techniques. ... 1990 and 2009 Landsat images of the district were downloaded from the Global Land cover Facility as well ... Information System (GIS) are now providing new.

  17. Saving Soil for Sustainable Land Use

    Directory of Open Access Journals (Sweden)

    Carmelo M. Torre


    Full Text Available This paper experiments with some costs-benefit analyses, seeking a balance between soil-take and buildability due to land policy and management. The activities have been carried out inside the MITO lab (Lab for Multimedia Information for Territorial Objects of the Polytechnic University of Bari. Reports have been produced about the Southern Italian Apulia Region, which is rich in farmland and coastline, often invaded by construction, with a severe loss of nature, a degradation of the soil, landscape, and ecosystem services. A methodological approach to the assessment of sustainability of urban expansion related, on one hand, to “plus values” deriving from the transformation of urban fringes and, on the other hand to the analysis of the transition of land-use, with the aim of “saving soil” against urban sprawl. The loss of natural and agricultural surfaces due to the expanding artificial lands is an unsustainable character of urban development, especially in the manner in which it was carried out in past decades. We try to assess how plus value can be considered “unearned”, and to understand if the “land value recapture” can compensate for the negative environmental effects of urban expansion. We measured the transition from farmlands and natural habitat to urbanization with the support of the use of some Geographic Information Systems (GIS tools, in favor of a new artificial land cover in the region of Apulia, Southern Italy. Data have been collected at the regional scale and at the local level, producing information about land use change and increases of property values due to improvements, referring to the 258 municipalities of the region. Looking at the results of our measurements, we started an interpretation of the driving forces that favor the plus values due to the transition of land-use. Compensation, easements, recapture of plus value, and improvement are, nowadays in Italy, discussed as major land-policy tools for

  18. Evolution of the soil cover of soccer fields (United States)

    Belobrov, V. P.; Zamotaev, I. V.


    A soccer field can be considered a soil-like technogenic formation (STF). According to the theory of soil cover patterns, the artificially constructed (anthropogenic) soil cover of a soccer field is an analogue of a relatively homogeneous elementary soil area. However, the spatial homogeneity of the upper part (50-80 cm) of the STF of soccer fields is unstable and is subjected to gradual transformation under the impact of pedogenetic processes, agrotechnical loads, and mechanical loads during the games. This transformation is favored by the initial heterogeneity of the deep (buried) parts of the STF profile. The technogenic factors and elementary pedogenetic processes specify the dynamic functioning regime of the STF. In 50-75 years, the upper part of the STF is transformed into soil-like bodies with properties close to those in zonal soils. Certain micro- and nanopatterns of the soil cover are developed within the field creating its spatial heterogeneity.

  19. Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization. (United States)

    Zhang, Wenting; Huang, Bo


    Soil erosion has become a pressing environmental concern worldwide. In addition to such natural factors as slope, rainfall, vegetation cover, and soil characteristics, land-use changes-a direct reflection of human activities-also exert a huge influence on soil erosion. In recent years, such dramatic changes, in conjunction with the increasing trend toward urbanization worldwide, have led to severe soil erosion. Against this backdrop, geographic information system-assisted research on the effects of land-use changes on soil erosion has become increasingly common, producing a number of meaningful results. In most of these studies, however, even when the spatial and temporal effects of land-use changes are evaluated, knowledge of how the resulting data can be used to formulate sound land-use plans is generally lacking. At the same time, land-use decisions are driven by social, environmental, and economic factors and thus cannot be made solely with the goal of controlling soil erosion. To address these issues, a genetic algorithm (GA)-based multi-objective optimization (MOO) approach has been proposed to find a balance among various land-use objectives, including soil erosion control, to achieve sound land-use plans. GA-based MOO offers decision-makers and land-use planners a set of Pareto-optimal solutions from which to choose. Shenzhen, a fast-developing Chinese city that has long suffered from severe soil erosion, is selected as a case study area to validate the efficacy of the GA-based MOO approach for controlling soil erosion. Based on the MOO results, three multiple land-use objectives are proposed for Shenzhen: (1) to minimize soil erosion, (2) to minimize the incompatibility of neighboring land-use types, and (3) to minimize the cost of changes to the status quo. In addition to these land-use objectives, several constraints are also defined: (1) the provision of sufficient built-up land to accommodate a growing population, (2) restrictions on the development of

  20. Climate Impacts of Cover Crops (United States)

    Lombardozzi, D.; Wieder, W. R.; Bonan, G. B.; Morris, C. K.; Grandy, S.


    Cover crops are planted in agricultural rotation with the intention of protecting soil rather than harvest. Cover crops have numerous environmental benefits that include preventing soil erosion, increasing soil fertility, and providing weed and pest control- among others. In addition to localized environmental benefits, cover crops can have important regional or global biogeochemical impacts by increasing soil organic carbon, changing emissions of greenhouse trace gases like nitrous oxide and methane, and reducing hydrologic nitrogen losses. Cover crops may additionally affect climate by changing biogeophysical processes, like albedo and latent heat flux, though these potential changes have not yet been evaluated. Here we use the coupled Community Atmosphere Model (CAM5) - Community Land Model (CLM4.5) to test how planting cover crops in the United States may change biogeophysical fluxes and climate. We present seasonal changes in albedo, heat fluxes, evaporative partitioning, radiation, and the resulting changes in temperature. Preliminary analyses show that during seasons when cover crops are planted, latent heat flux increases and albedo decreases, changing the evaporative fraction and surface temperatures. Understanding both the biogeophysical changes caused by planting cover crops in this study and the biogeochemical changes found in other studies will give a clearer picture of the overall impacts of cover crops on climate and atmospheric chemistry, informing how this land use strategy will impact climate in the future.

  1. Quantitative Estimation of Soil Carbon Sequestration in Three Land Use Types (Orchard, Paddy Rice and Forest in a Part of Ramsar Lands, Northern Iran

    Directory of Open Access Journals (Sweden)

    zakieh pahlavan yali


    Full Text Available Introduction: The increasing Greenhouse Gases in atmosphere is the main cause of climate and ecosystems changes. The most important greenhouse gas is CO2 that causes global warming or the greenhouse effect. One of the known solutions that reduces atmospheric carbon and helps to improve the situation, is carbon sequestration in vegetation cover and soil. Carbon sequestration refers to the change in atmospheric CO2 into organic carbon compounds by plants and capture it for a certain time . However, the ecosystems with different vegetation have Impressive Influence on soil carbon sequestration (SCS. Soil as the main component of these ecosystems is a world-wide indicator which has been known to play an important role in global balance of carbon sequestration. Furthermore, carbon sequestration can be a standard world trade and becomes guaranteed. Costs of transfer of CO2 (carbon transfer From the atmosphere into the soil based on the negative effects of increased CO2 on Weather is always increasing, This issue can be faced by developing countries to create a new industry, especially when conservation and restoration of rangeland to follow. This research was regarded due to estimation of SCS in three land use types (orchard, paddy rice and forest in a Part of Ramsar Lands, Northern Iran. Materials and Methods: Ramsar city with an area of about 729/7 km2 is located in the western part of Mazandaran province. Its height above sea level is 20 meters. Ramsar city is situated in a temperate and humid climate. Land area covered by forest, orchard and paddy rice. After field inspection of the area, detailed topographic maps of the specified zone on the study were also tested. In each of the three land types, 500 hectares in the every growing and totally 1,500 hectares as study area were selected .For evaluation the sequestration of carbon in different vegetation systems,15 soil profile selected and sampling from depth of 0 to 100 centimetres of each profile

  2. Decontamination by replacing soil and soil cover with deep-level soil in flower beds and vacant places in Northern Fukushima Prefecture

    International Nuclear Information System (INIS)

    Sugiura, Hiroyuki; Kawano, Keisuke; Kayama, Yukihiko; Koube, Nobuyuki


    Radioactivity decontamination by replacing soil and soil cover with deep-level soil and soil cover in flower beds and a vacant place in Northern Fukushima Prefecture were studied, which experienced radioactive contamination due to the accident at the TEPCO's Fukushima Daiichi Nuclear Power Plant. Radioactivity counting rate 1 cm above the soil surface after replacing surface soil with uncontaminated deep-level soil decreased to 13.7% of the control in gardens. The concentration of radioactive cesium in the cover soil increased after 132 days; however, it decreased in the old surface soil under the cover soil in flower beds. A 10 cm deep-level soil cover placed by heavy machinery decreased the radiation dose rate to 70.8% of the control and radioactivity counting rate to 24.6% in the vacant place. Replacing the radioactively contaminated surface soil and soil cover with a deep-level soil was a reasonable decontamination method for the garden and vacant place because it is quick, cost effective and labour efficient. (author)

  3. C-CAP Niihau 2005 Land Cover (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of land cover derived from high resolution imagery according to the Coastal Change Analysis Program (C-CAP) protocol. This data set utilized 1...

  4. Using high-resolution radar images to determine vegetation cover for soil erosion assessments. (United States)

    Bargiel, D; Herrmann, S; Jadczyszyn, J


    Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk areas for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation cover and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation cover data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and year was assessed to occur on 13.6% (646 ha) of the agricultural areas within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and year. Such a spatial information about areas of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Interfacial stability of soil covers on lined surface impoundments

    International Nuclear Information System (INIS)

    Mitchell, D.H.; Gates, T.E.


    The factors affecting the interfacial stability of soil covers on geomembranes were examined to determine the maximum stable slopes for soil cover/geomembrane systems. Several instances of instability of soil covers on geomembranes have occurred at tailings ponds, leaving exposed geomembranes with the potential for physical ddamage and possibly chemical and ultraviolet degradation. From an operator's viewpoint, it is desirable to maximize the slope of lined facilities in order to maximize the volume-to-area ratio; however, the likelihood for instability also increases with increasing slope. Frictional data obtained from direct shear tests are compared with stability data obtained using a nine-square-meter (m 2 ) engineering-scale test stand to verify that direct shear test data are valid in slope design calculations. Interfacial frictional data from direct shear tests using high-density polyethylene and a poorly graded sand cover agree within several degrees with the engineering-scale tests. Additional tests with other soils and geomembranes are planned. The instability of soil covers is not always an interfacial problem; soil erosion and limited drainage capacity are additional factors that must be considered in the design of covered slopes. 7 refs., 5 figs., 2 tabs

  6. Simulation of boreal Summer Monsoon Rainfall using CFSV2_SSiB model: sensitivity to Land Use Land Cover (LULC) (United States)

    Chilukoti, N.; Xue, Y.


    The land surface play a vital role in determining the surface energy budget, accurate representation of land use and land cover (LULC) is necessary to improve forecast. In this study, we have investigated the influence of surface vegetation maps with different LULC on simulating the boreal summer monsoon rainfall. Using a National Centres for Environmental Prediction (NCEP) Coupled Forecast System version 2(CFSv2) model coupled with Simplified Simple Biosphere (SSiB) model, two experiments were conducted: one with old vegetation map and one with new vegetation map. The significant differences between new and old vegetation map were in semi-arid and arid areas. For example, in old map Tibetan plateau classified as desert, which is not appropriate, while in new map it was classified as grasslands or shrubs with bare soil. Old map classified the Sahara desert as a bare soil and shrubs with bare soil, whereas in new map it was classified as bare ground. In addition to central Asia and the Sahara desert, in new vegetation map, Europe had more cropped area and India's vegetation cover was changed from crops and forests to wooded grassland and small areas of grassland and shrubs. The simulated surface air temperature with new map shows a significant improvement over Asia, South Africa, and northern America by some 1 to 2ºC and 2 to 3ºC over north east China and these are consistent with the reduced rainfall biases over Africa, near Somali coast, north east India, Bangladesh, east China sea, eastern Pacific and northern USA. Over Indian continent and bay of Bengal dry rainfall anomalies that is the only area showing large dry rainfall bias, however, they were unchanged with new map simulation. Overall the CFSv2(coupled with SSiB) model with new vegetation map show a promising result in improving the monsoon forecast by improving the Land -Atmosphere interactions. To compare with the LULC forcing, experiment was conducted using the Global Forecast System (GFS) simulations

  7. Drivers and Implications of Land Use and Land Cover Change in the ...

    African Journals Online (AJOL)

    This study explores the major drivers of Land-use/Land-cover (LULC) dynamics and the observed environmental degradation as a response to these changes in the Modjo watershed, central Ethiopia. Data for this study were generated through household survey and supplemented with remotely sensed image interpretation ...

  8. Long-term effect of land use change on soil quality: Afforestation and land abandonment in semi-arid Spain (United States)

    Zethof, Jeroen; Cammeraat, Erik; Nadal-Romero, Estela


    Soils under the Mediterranean climate are vulnerable for degradation, especially after land abandonment. Abandonment is an important factor in the Mediterranean landscape as vegetation regeneration is hampered due to the characteristic semi-arid and sub-humid Mediterranean climate regime. During the past 70 year extensive afforestation projects have been conducted with the aim to protect landscapes and soils against degradation. While large investments are still being made, little is known about the impact of afforestation on soil quality on a longer time scale. During the past decade, there is a growing interest in qualifying and quantifying the carbon storage in soils by such afforestation projects, to get a better understanding of the carbon cycle and look for possibilities to fixate atmospheric CO2 in the soil. It is generally accepted that afforestation projects will increase the soil carbon pool, but data on this process is scarce. Therefore an intensive fieldwork has been carried out in Murcia, southeastern Spain to study the effects of land abandonment and afforestation on soil quality along a chronosequence and included two afforested areas (from the early '70s and 1993). The Pinus halepensis trees were planted in rows, for which the underlying calcrete was broken. Samples were taken to study changes in soil quality (Aggregate stability, Corg, N, P, K, Na), Soil Organic Carbon (SOC) stocks and soil hydraulic properties, such as infiltration and water retention, between the afforestation projects, abandoned agricultural plots of similar age, semi-natural vegetation, cereal crop fields and almond orchards. As the natural vegetation is characterized by a spotted pattern of bare areas and trees, forming so-called "islands of fertility", both bare and vegetation covered sub-sites were sampled. First results showed a positive effect of both land abandonment and afforestation on the soil aggregation. Especially the 40-year-old plots showed underneath trees

  9. Minnesota Land Use and Cover - A 1990's Census of the Land - Tiled (United States)

    Minnesota Department of Natural Resources — This data set integrates six different source data sets to provide a simplified overall view of Minnesota's land use / cover. The six source data sets covered...

  10. Standard land-cover classification scheme for remote-sensing applications in South Africa

    CSIR Research Space (South Africa)

    Thompson, M


    Full Text Available For large areas, satellite remote-sensing techniques have now become the single most effective method for land-cover and land-use data acquisition. However, the majority of land-cover (and land-use) classification schemes used have been developed...

  11. An Algorithm Approach for the Analysis of Urban Land-Use/Cover: Logic Filters

    Directory of Open Access Journals (Sweden)

    Şinasi Kaya


    Full Text Available Accurate classification of land-use/cover based on remotely sensed data is important for interpreters who analyze time or event-based change on certain areas. Any method that has user flexibility on area selection provides great simplicity during analysis, since the analyzer may need to work on a specific area of interest instead of dealing with the entire remotely sensed data. The objectives of the paper are to develop an automation algorithm using Matlab & Simulink on user selected areas, to filter V-I-S (Vegetation, Impervious, Soil components using the algorithm, to analyze the components according to upper and lower threshold values based on each band histogram, and finally to obtain land-use/cover map combining the V-I-S components. LANDSAT 5TM satellite data covering Istanbul and Izmit regions are utilized, and 4, 3, 2 (RGB band combination is selected to fulfill the aims of the study. These referred bands are normalized, and V-I-S components of each band are determined. This methodology that uses Matlab & Simulink program is equally successful like the unsupervised and supervised methods. Practices with these methods that lead to qualitative and quantitative assessments of selected urban areas will further provide important spatial information and data especially to the urban planners and decision-makers.

  12. Estonian soil classification as a tool for recording information on soil cover and its matching with local site types, plant covers and humus forms classifications (United States)

    Kõlli, Raimo; Tõnutare, Tõnu; Rannik, Kaire; Krebstein, Kadri


    Estonian soil classification (ESC) has been used successfully during more than half of century in soil survey, teaching of soil science, generalization of soil databases, arrangement of soils sustainable management and others. The Estonian normally developed (postlithogenic) mineral soils (form 72.4% from total area) are characterized by mean of genetic-functional schema, where the pedo-ecological position of soils (ie. location among other soils) is given by means of three scalars: (i) 8 stage lithic-genetic scalar (from rendzina to podzols) separates soils each from other by parent material, lithic properties, calcareousness, character of soil processes and others, (ii) 6 stage moisture and aeration conditions scalar (from aridic or well aerated to permanently wet or reductic conditions), and (iii) 2-3 stage soil development scalar, which characterizes the intensity of soil forming processes (accumulation of humus, podzolization). The organic soils pedo-ecological schema, which links with histic postlithogenic soils, is elaborated for characterizing of peatlands superficial mantle (form 23.7% from whole soil cover). The position each peat soil species among others on this organic (peat) soil matrix schema is determined by mean of 3 scalars: (i) peat thickness, (ii) type of paludification or peat forming peculiarities, and (iii) stage of peat decomposition or peat type. On the matrix of abnormally developed (synlithogenic) soils (all together 3.9%) the soil species are positioned (i) by proceeding in actual time geological processes as erosion, fluvial processes (at vicinity of rivers, lakes or sea) or transforming by anthropogenic and technological processes, and (ii) by 7 stage moisture conditions (from aridic to subaqual) of soils. The most important functions of soil cover are: (i) being a suitable environment for plant productivity; (ii) forming adequate conditions for decomposition, transformation and conversion of falling litter (characterized by humus

  13. High spatial resolution mapping of land cover types in a priority area for conservation in the Brazilian savanna (United States)

    Ribeiro, F.; Roberts, D. A.; Hess, L. L.; Davis, F. W.; Caylor, K. K.; Nackoney, J.; Antunes Daldegan, G.


    Savannas are heterogeneous landscapes consisting of highly mixed land cover types that lack clear distinct boundaries. The Brazilian Cerrado is a Neotropical savanna considered a biodiversity hotspot for conservation due to its biodiversity richness and rapid transformation of its landscape by crop and pasture activities. The Cerrado is one of the most threatened Brazilian biomes and only 2.2% of its original extent is strictly protected. Accurate mapping and monitoring of its ecosystems and adjacent land use are important to select areas for conservation and to improve our understanding of the dynamics in this biome. Land cover mapping of savannas is difficult due to spectral similarity between land cover types resulting from similar vegetation structure, floristically similar components, generalization of land cover classes, and heterogeneity usually expressed as small patch sizes within the natural landscape. These factors are the major contributor to misclassification and low map accuracies among remote sensing studies in savannas. Specific challenges to map the Cerrado's land cover types are related to the spectral similarity between classes of land use and natural vegetation, such as natural grassland vs. cultivated pasture, and forest ecosystem vs. crops. This study seeks to classify and evaluate the land cover patterns across an area ranked as having extremely high priority for future conservation in the Cerrado. The main objective of this study is to identify the representativeness of each vegetation type across the landscape using high to moderate spatial resolution imagery using an automated scheme. A combination of pixel-based and object-based approaches were tested using RapidEye 3A imagery (5m spatial resolution) to classify the Cerrado's major land cover types. The random forest classifier was used to map the major ecosystems present across the area, and demonstrated to have an effective result with 68% of overall accuracy. Post

  14. Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact

    International Nuclear Information System (INIS)

    Huang, Kuo-Ching; Huang, Thomas C C


    Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred

  15. The GOFC-GOLD/CEOS Land Cover Harmonization and Validation Initiative: Technical Design and Implementation (United States)

    Herold, M.; Woodcock, C.; Stehman, S.; Nightingale, J.; Friedl, M.; Schmullius, C.


    A global effort to assess the accuracy of existing and future land cover products derived from a variety of satellite sensors over a range of spatial resolutions is being led by the Land Cover Implementation Team (LC-IT) of GOFC/GOLD (Global Observation of Land Cover Dynamics) in conjunction with the CEOS (Committee on Earth Observation Satellites) WGCV (Working Group on Calibration and Validation) LPV (Land Product Validation) subgroup. The first phase of this effort is complete and culminated in a publication of community consensus "best practices" for validation of global land cover datasets (2). The next phase is to implement the recommendations outlined in the "best practices" document. A "living database" of global randomized sample sites will form the basis of accuracy assessment for a host of global land cover products (GLC2000, MODIS land cover, GLOBCOVER, United Nation's Forest Resource Assessment (FRA2010), and the Mid-Decadal Global Land Survey. This "living dataset" will also be a community resource available for use in validation of regional or national mapping efforts using LCCS (UN FAO's Land Cover Classification System). Based on the known accuracy of existing land cover products, GOFC/GOLD will to develop and update a "best currently available" global land cover map. Individual geographic regions may be selected from different land cover products (global, national or regional), or they may be combined in various ways

  16. Land-cover mapping using multitemporal, dual-frequency polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Dierking, Wolfgang


    during the growing season acquired a lot of data over a Danish agricultural site. The data acquisitions were co-ordinated with ground surveys to obtain a detailed land cover map. The test area contains a large number of different land cover classes, such as more than 10 different crop types, deciduous......The Danish Center for Remote Sensing (DCRS) is, in collaboration with the Danish mapping agency, conducting a study on topographic mapping using SAR data, and land cover mapping results are presented. The Danish EMISAR system (an L- and C-band, fully polarimetric, airborne SAR) have in 1994 to 1999...

  17. Estimating Accuracy of Land-Cover Composition From Two-Stage Clustering Sampling (United States)

    Land-cover maps are often used to compute land-cover composition (i.e., the proportion or percent of area covered by each class), for each unit in a spatial partition of the region mapped. We derive design-based estimators of mean deviation (MD), mean absolute deviation (MAD), ...

  18. Land regeneration: soil development through forestation on former opencast coal-lands in upland Wales

    Energy Technology Data Exchange (ETDEWEB)

    Haigh, M.J. [Oxford Brookes University, Oxford (United Kingdom)


    The degradation of lands that have been 'reclaimed' after surface coal mining is an international concern. Research near the UNESCO World Heritage site for industrial land at Blaenavon, Wales, seeks more effective ways of creating self-sustaining soils on coal-lands, where the auto-compaction of minespoils causes land degradation. Remedies are sought through the use of close-planted trees as bio-accumulators. Preliminary findings suggest that: 1. forestation quickly mitigates soil compaction, 2. soil fertilisation with NPK improves the survival rate of Alnus glutinosa but may not enhance average growth, 3. soil remineralisation with basic igneous rock flour may be more effective than conventional NPK application alone for enhancing both survival rates and growth and that 4. soil disturbance causes long term depletion of the soil microbial ecosystem. 16 refs., 1 fig., 4 tabs.

  19. Soil organic phosphorus in soils under different land use systems in northeast Germany (United States)

    Slazak, Anna; Freese, Dirk; Hüttl, Reinhard F.


    Phosphorus (P) is commonly known as a major plant nutrient, which can act as a limiting factor for plant growth in many ecosystems, including different land use systems. Organic P (Po), transformations in soil are important in determining the overall biological availability of P and additionally Po depletion is caused by land cultivation. It is expected that changes of land use modifies the distribution of soil P among the various P-pools (Ptotal, Plabile, Po), where the Plabile forms are considered to be readily available to plants and Po plays an important role with P nutrition supply for plants. The aim of the study was to measure the different soil P pools under different land use systems. The study was carried out in northeast of Brandenburg in Germany. Different land use systems were studied: i) different in age pine-oak mixed forest stands, ii) silvopastoral land, iii) arable lands. Samples were taken from two mineral soil layers: 0-10 and 10-20 cm. Recently, a variety of analytical methods are available to determine specific Po compounds in soils. The different P forms in the soil were obtained by a sequential P fractionation by using acid and alkaline extractants, which mean that single samples were subjected to increasingly stronger extractants, consequently separating the soil P into fractions based on P solubility. The soil Ptotal for the forest stands ranged from 100 to 183 mg kg -1 whereas Po from 77 to 148 mg kg -1. The Po and Plabile in both soil layers increased significantly with increase of age-old oak trees. The most available-P fraction was Plabile predominate in the oldest pine-oak forest stand, accounting for 29% of soil Ptotal. For the silvopasture and arable study sites the Ptotal content was comparable. However, the highest value of Ptotal was measured in the 30 years old silvopastoral system with 685 mg kg-1 and 728 mg kg-1 at 0-10 cm and 10-20 cm depth, respectively than in arable lands. The results have shown that the 30 years old


    African Journals Online (AJOL)

    The group was concerned with soil ero- sion and the associated effect upon the vegetation cover. The first s~ge of the project was to est- ablish exactly which aspects of soil erosion should be studied. The following points were initially considered: soil types and characteristics different grasses and their carrying capacity.

  1. New findings and setting the research agenda for soil and water conservation for sustainable land management (United States)

    Keesstra, Saskia; Argaman, Eli; Gomez, Jose Alfonso; Quinton, John


    The session on soil and water conservation for sustainable land management provides insights into the current research producing viable measures for sustainable land management and enhancing the lands role as provider of ecosystem services. The insights into degradation processes are essential for designing and implementing feasible measures to mitigate against degradation of the land resource and adapt to the changing environment. Land degradation occurs due to multiple pressures on the land, such as population growth, land-use and land-cover changes, climate change and over exploitation of resources, often resulting in soil erosion due to water and wind, which occurs in many parts of the world. Understanding the processes of soil erosion by wind and water and the social and economic constraints faced by farmers forms an essential component of integrated land development projects. Soil and water conservation measures are only viable and sustainable if local environmental and socio-economic conditions are taken into account and proper enabling conditions and policies can be achieved. Land degradation increasingly occurs because land use, and farming systems are subject to rapid environmental and socio-economic changes without implementation of appropriate soil and water conservation technologies. Land use and its management are thus inextricably bound up with development; farmers must adapt in order to sustain the quality of their, and their families, lives. In broader perspective, soil and water conservation is needed as regulating ecosystem service and as a tool to enhance food security and biodiversity. Since land degradation occurs in many parts of the world and threatens food production and environmental stability it affects those countries with poorer soils and resilience in the agriculture sector first. Often these are the least developed countries. Therefore the work from researchers from developing countries together with knowledge from other disciplines

  2. Land Use and Land Cover Change, and Woody Vegetation Diversity in Human Driven Landscape of Gilgel Tekeze Catchment, Northern Ethiopia

    Directory of Open Access Journals (Sweden)

    Samuale Tesfaye


    Full Text Available Land use and land cover (LULC change through inappropriate agricultural practices and high human and livestock population pressure have led to severe land degradation in the Ethiopian highlands. This has led to further degradation such as biodiversity loss, deforestation, and soil erosion. The study examined woody vegetation diversity status and the impact of drivers of change across different LULC types and agroecological zones in Gilgel Tekeze catchment, northern Ethiopian highlands. LULC dynamics were assessed using GIS techniques on 1976, 1986, and 2008 satellite images. Vegetation data were collected from 135 sample plots (20 m × 20 m from five LULC types, namely, forest, shrub-bush, grazing, settlement, and cultivated land, in the three agroecological zones; Kolla, Weyna-Dega, and Dega. Differences in vegetation structure and composition and their relationship to agroecological zones were tested using two-way ANOVA and PCA technique. The results show that vegetation structure and composition significantly differed across all LULC types in different agroecological zones particularly in sapling density, tree height, and shrub height and in each agroecological zone between forest land, shrub-bush land, and settlement area. Overall, Weyna-Dega agroecological zone and the shrub-bush land had more structural and compositional diversity than the other agroecological zones and LULC types.

  3. ISLSCP II IGBP DISCover and SiB Land Cover, 1992-1993 (United States)

    National Aeronautics and Space Administration — This data set describes the geographic distributions of 17 classes of land cover based on the International Geosphere-Biosphere DISCover land cover legend (Loveland...

  4. NLCD - MODIS land cover- albedo dataset for the continental United States (United States)

    U.S. Environmental Protection Agency — The NLCD-MODIS land cover-albedo database integrates high-quality MODIS albedo observations with areas of homogeneous land cover from NLCD. The spatial resolution...

  5. [Effects of sand-covering on apple trees transpiration and fruit quality in dry land orchards of Longdong, Gansu]. (United States)

    Zhang, Kun; Yin, Xiao-ning; Liu, Xiao-yong; Wang, Fa-lin


    Aiming at the seasonal drought in the dry land orchards of Longdong, Gansu Province, a sand-covering experiment was conducted with 15-year-old Nagafu No. 2 apple trees, with the soil water content, temperature, stem sap flow velocity, leaf stomatal conductance, and fruit quality measured. In the orchard covered with 5-cm-thick riversand, the increment of soil temperature in February-April was lower than 1 degrees C, while in June-July, it was 2.44 degrees C and 2.61 degrees C on sunny and cloudy days, respectively. The soil water content was over 60% of field capacity throughout the growing season. On sunny days with high soil water content (H season), the stem sap flow curve presented a wide peak. Under sand- covering, the sap flow started 0.6 h earlier, and the maximum sap flow velocity was 25.5% higher than the control. On cloudy days of H season, the maximum sap flow velocity was 165.6% higher than the control. On sunny days with low soil water content (L season), the sap flow curve had a single peak, and under sand covering, the sap flow started 0.5-1 h earlier than the control on sunny days. The maximum sap flow velocity was 794 g x h(-1). On cloudy days of L season, the sap flow started 1 h earlier, and the maximum sap flow velocity was 311.0% higher than the control. The evaporation of the control was 156.0% higher than that of sand-covering from March to July, suggesting that excessive ground water evaporation was the main reason to cause soil drought. Under sand-covering, single fruit mass was improved obviously whereas fruit firmness was reduced slightly, and soluble solids, vitamin C, total sugar, and organic acid contents were somewhat promoted.

  6. CLC2000 land cover database of the Netherlands; monitoring land cover changes between 1986 and 2000

    NARCIS (Netherlands)

    Hazeu, G.W.


    The 1986 CORINE land cover database of the Netherlands was revised and updated on basis of Landsat satellite images and ancillary data. Interpretation of satellite images from 1986 and 2000 resulted in the CLC2000, CLC1986rev and CLCchange databases. A standard European legend and production

  7. Land management and land-cover change have impacts of similar magnitude on surface temperature

    DEFF Research Database (Denmark)

    Luyssaert, Sebastiaan; Jammet, Mathilde; Stoy, Paul C.


    Anthropogenic changes to land cover (LCC) remain common, but continuing land scarcity promotes the widespread intensification of land management changes (LMC) to better satisfy societal demand for food, fibre, fuel and shelter1. The biophysical effects of LCC on surface climate are largely unders...

  8. LBA-ECO ND-01 Land Cover Classification, Rondonia, Brazil: 1975-2000 (United States)

    National Aeronautics and Space Administration — This data set provides a time series of land cover classifications for Ariquemes, Ji-Parana, and Luiza, research sites in Rondonia, Brazil. The land cover...

  9. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl


    Information about the quantitative effect of conservation tillage combined with a cover crop on soil structure is still limited. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-term field trial. The tillage treatments (main...... plots) included direct drilling (D), harrowing to a depth of 8 to 10 cm (H), and moldboard plowing (MP). The cover crop treatments were subplot with cover crop (+CC) and without cover crop (−CC). Minimally disturbed soil cores were taken from the 4- to 8-, 12- to 16-, and 18- to 27-cm depth intervals...... in the spring of 2012 before cultivation. Soil water retention and air permeability were measured for matric potentials ranging from −1 to −30 kPa. Gas diffusivity was measured at −10 kPa. Computed tomography (CT) scanning was also used to characterize soil pore characteristics. At the 4- to 8- and 18- to 27-cm...

  10. A hierarchical approach of hybrid image classification for land use and land cover mapping

    Directory of Open Access Journals (Sweden)

    Rahdari Vahid


    Full Text Available Remote sensing data analysis can provide thematic maps describing land-use and land-cover (LULC in a short period. Using proper image classification method in an area, is important to overcome the possible limitations of satellite imageries for producing land-use and land-cover maps. In the present study, a hierarchical hybrid image classification method was used to produce LULC maps using Landsat Thematic mapper TM for the year of 1998 and operational land imager OLI for the year of 2016. Images were classified using the proposed hybrid image classification method, vegetation cover crown percentage map from normalized difference vegetation index, Fisher supervised classification and object-based image classification methods. Accuracy assessment results showed that the hybrid classification method produced maps with total accuracy up to 84 percent with kappa statistic value 0.81. Results of this study showed that the proposed classification method worked better with OLI sensor than with TM. Although OLI has a higher radiometric resolution than TM, the produced LULC map using TM is almost accurate like OLI, which is because of LULC definitions and image classification methods used.

  11. Comparison of Methods for Estimating Fractional Cover of Photosynthetic and Non-Photosynthetic Vegetation in the Otindag Sandy Land Using GF-1 Wide-Field View Data


    Xiaosong Li; Guoxiong Zheng; Jinying Wang; Cuicui Ji; Bin Sun; Zhihai Gao


    Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) are important ground cover types for desertification monitoring and land management. Hyperspectral remote sensing has been proven effective for separating NPV from bare soil, but few studies determined fractional cover of PV (fpv) and NPV (fnpv) using multispectral information. The purpose of this study is to evaluate several spectral unmixing approaches for retrieval of fpv and fnpv in the Otindag Sandy Land using GF-1 wi...

  12. Monitoring the variations of evapotranspiration due to land use/cover change in a semiarid shrubland (United States)

    Gong, Tingting; Lei, Huimin; Yang, Dawen; Jiao, Yang; Yang, Hanbo


    Evapotranspiration (ET) is an important process in the hydrological cycle, and vegetation change is a primary factor that affects ET. In this study, we analyzed the annual and inter-annual characteristics of ET using continuous observation data from eddy covariance (EC) measurement over 4 years (1 July 2011 to 30 June 2015) in a semiarid shrubland of Mu Us Sandy Land, China. The Normalized Difference Vegetation Index (NDVI) was demonstrated as the predominant factor that influences the seasonal variations in ET. Additionally, during the land degradation and vegetation rehabilitation processes, ET and normalized ET both increased due to the integrated effects of the changes in vegetation type, topography, and soil surface characteristics. This study could improve our understanding of the effects of land use/cover change on ET in the fragile ecosystem of semiarid regions and provide a scientific reference for the sustainable management of regional land and water resources.

  13. The Impact of Land Use and Land Cover Change on Water Yield in the Jing- Jin-Ji Region in China (United States)

    Li, Suxiao; Yang, Hong


    Water yield is one of the key ecosystem services sustaining both people's life and economic development. However, the water yield function is sensitive to anthropogenic activity especially the land use and land cover change (LUCC). Assessment of historical LUCC and its impact on water yield could benefit designing and implementing appropriate land use strategy that enhance the water yield capacity. Beijing (Jing) and its surrounding areas of Tianjin (Jin) and Hebei (Ji) is the political, cultural and economic center of China. The region is facing increasingly water crisis. Taking the Jing-Jin-Ji region as a study area, this study analyzed the historical LUCC and its impact on water yield by using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model to spatially map and quantify the changes of water yield from 1995 to 2010. The results showed there was main decline in area of wetland and forest and increase in area of crop land and built up land. An abrupt decline in water yield was found for year 2000. The water yield was influenced to a great extent by precipitation and evapotranspiration, but the land use played an important role in the water yield capacity (water yield per unit area) through plant cover that affected evapotranspiration, soil water permeability and the capacity of holding the moisture content. By general ranking, the water yield capacity of different land use type was as follows: built-up>bare land>cropland> grassland>forest >wetland, which illustrated that the built-up and bare land had higher run off rate while the vegetation area had higher capacity to control surface run off to increase the groundwater. A good understanding of temporal-spatial allocation of historical LUCC and Water yield of the Jing-Jin-Ji region could help guide land use policy decisions that take into consideration of tradeoffs with respect to spatial distribution of ecosystem services amongst the three administrative entities (Jing-Jin-Ji) and

  14. Multi-temporal and Dual-polarization Interferometric SAR for Land Cover Type Classification

    Directory of Open Access Journals (Sweden)

    WANG Xinshuang


    Full Text Available In order to study SAR land cover classification method, this paper uses the multi-dimensional combination of temporal,polarization and InSAR data. The area covered by space borne data of ALOS PALSAR in Xunke County,Heilongjiang Province was chosen as test site. A land cover classification technique of SVM based on multi-temporal, multi-polarization and InSAR data had been proposed, using the sensitivity to land cover type of multi-temporal, multi-polarization SAR data and InSAR measurements, and combing time series characteristic of backscatter coefficient and correlation coefficient to identify ground objects. The results showed the problem of confusion between forest land and urban construction land can be nicely solved, using the correlation coefficient between HH and HV, and also combing the selected temporal, polarization and InSAR characteristics. The land cover classification result with higher accuracy is gotten using the classification algorithm proposed in this paper.

  15. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    Energy Technology Data Exchange (ETDEWEB)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.


    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m{sup -}2 yr{sup -}1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59{+-}0.43 g kg{sup -}1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha{sup -}1 yr{sup -}1. (Author) 20 refs.

  16. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    International Nuclear Information System (INIS)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.


    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m - 2 yr - 1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59±0.43 g kg - 1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha - 1 yr - 1. (Author) 20 refs.

  17. Gallup, NM AZ 1:250,000 Quad USGS Land Use/Land Cover, 1986 (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  18. Santa Fe, NM 1:250,000 Quad USGS Land Use/Land Cover, 1986 (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  19. Projecting land-use and land cover change in a subtropical urban watershed (United States)

    John J. Lagrosa IV; Wayne C. Zipperer; Michael G. Andreu


    Urban landscapes are heterogeneous mosaics that develop via significant land-use and land cover (LULC) change. Current LULC models project future landscape patterns, but generally avoid urban landscapes due to heterogeneity. To project LULC change for an urban landscape, we parameterize an established LULC model (Dyna-CLUE) under baseline conditions (continued current...

  20. Land use and land cover dynamics in the Brazilian Amazon: an overview (United States)

    Robert Walker; Alfredo Kingo Oyama Homma


    This paper presents a theoretical discussion of processes linking land use decisions and land cover outcomes at household level, with an emphasis on small proceduers. Evidence from the literature substantiating the existence of domestic cycle phenomena is brought forward and interpreted for the Brazilian case. Also considered are the relative disposition of production...

  1. Identifying Generalizable Image Segmentation Parameters for Urban Land Cover Mapping through Meta-Analysis and Regression Tree Modeling

    Directory of Open Access Journals (Sweden)

    Brian A. Johnson


    Full Text Available The advent of very high resolution (VHR satellite imagery and the development of Geographic Object-Based Image Analysis (GEOBIA have led to many new opportunities for fine-scale land cover mapping, especially in urban areas. Image segmentation is an important step in the GEOBIA framework, so great time/effort is often spent to ensure that computer-generated image segments closely match real-world objects of interest. In the remote sensing community, segmentation is frequently performed using the multiresolution segmentation (MRS algorithm, which is tuned through three user-defined parameters (the scale, shape/color, and compactness/smoothness parameters. The scale parameter (SP is the most important parameter and governs the average size of generated image segments. Existing automatic methods to determine suitable SPs for segmentation are scene-specific and often computationally intensive, so an approach to estimating appropriate SPs that is generalizable (i.e., not scene-specific could speed up the GEOBIA workflow considerably. In this study, we attempted to identify generalizable SPs for five common urban land cover types (buildings, vegetation, roads, bare soil, and water through meta-analysis and nonlinear regression tree (RT modeling. First, we performed a literature search of recent studies that employed GEOBIA for urban land cover mapping and extracted the MRS parameters used, the image properties (i.e., spatial and radiometric resolutions, and the land cover classes mapped. Using this data extracted from the literature, we constructed RT models for each land cover class to predict suitable SP values based on the: image spatial resolution, image radiometric resolution, shape/color parameter, and compactness/smoothness parameter. Based on a visual and quantitative analysis of results, we found that for all land cover classes except water, relatively accurate SPs could be identified using our RT modeling results. The main advantage of our

  2. Soil dynamics and carbon stocks 10 years after restoration of degraded land using Atlantic Forest tree species (United States)

    Lauro R. Nogueira; José Leonardo M. Goncalves; Vera L. Engel; John A. Parrotta


    Brazil’s Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential...

  3. Land use/cover classification in the Brazilian Amazon using satellite images. (United States)

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei João Siqueira


    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

  4. Land-cover effects on the fate and transport of surface-applied antibiotics and 17-beta-estradiol on a sandy outwash plain, Anoka County, Minnesota, 2008–09 (United States)

    Trost, Jared J.; Kiesling, Richard L.; Erickson, Melinda L.; Rose, Peter J.; Elliott, Sarah M.


    A plot-scale field experiment on a sandy outwash plain in Anoka County in east-central Minnesota was used to investigate the fate and transport of two antibiotics, sulfamethazine (SMZ) and sulfamethoxazole (SMX), and a hormone, 17-beta-estradiol (17BE), in four land-cover types: bare soil, corn, hay, and prairie. The SMZ, SMX, and 17BE were applied to the surface of five plots of each land-cover type in May 2008 and again in April 2009. The cumulative application rate was 16.8 milligrams per square meter (mg/m2) for each antibiotic and 0.6 mg/m2 for 17BE. Concentrations of each chemical in plant-tissue, soil, soil-water, and groundwater samples were determined by using enzyme-linked immunosorbent assay (ELISA) kits. Soil-water and groundwater sampling events were scheduled to capture the transport of SMZ, SMX, and 17BE during two growing seasons. Soil and plant-tissue sampling events were scheduled to identify the fate of the parent chemicals of SMZ, SMX, and 17BE in these matrices after two chemical applications. Areal concentrations (mg/m2) of SMZ and SMX in soil tended to decrease in prairie plots in the 8 weeks after the second chemical application, from April 2009 to June 2009, but not in other land-cover types. During these same 8 weeks, prairie plots produced more aboveground biomass and had extracted more water from the upper 125 centimeters of the soil profile compared to all other land-cover types. Areal concentrations of SMZ and SMX in prairie plant tissue did not explain the temporal changes in areal concentrations of these chemicals in soil. The areal concentrations of SMZ and SMX in the aboveground plant tissues in June 2009 and August 2009 were much lower, generally two to three orders of magnitude, than the areal concentrations of these chemicals in soil. Pooling all treatment plot data, the median areal concentration of SMZ and SMX in plant tissues was 0.01 and 0.10 percent of the applied chemical mass compared to 22 and 12 percent in soil

  5. Land and Forest Management by Land Use/ Land Cover Analysis and Change Detection Using Remote Sensing and GIS

    Directory of Open Access Journals (Sweden)



    Full Text Available Remote sensing and Geographical Information System (GIS are the most effective tools in spatial data analysis. Natural resources like land, forest and water, these techniques have proved a valuable source of information generation as well as in the management and planning purposes. This study aims to suggest possible land and forest management strategies in Chakia tahsil based on land use and land cover analysis and the changing pattern observed during the last ten years. The population of Chakia tahsil is mainly rural in nature. The study has revealed that the northern part of the region, which offers for the settlement and all the agricultural practices constitutes nearly 23.48% and is a dead level plain, whereas the southern part, which constitute nearly 76.6% of the region is characterized by plateau and is covered with forest. The southern plateau rises abruptly from the northern alluvial plain with a number of escarpments. The contour line of 100 m mainly demarcates the boundary between plateau and plain. The plateau zone is deeply dissected and highly rugged terrain. The resultant topography comprises of a number of mesas and isolated hillocks showing elevation differences from 150 m to 385 m above mean sea level. Being rugged terrain in the southern part, nowadays human encroachment are taking place for more land for the cultivation. The changes were well observed in the land use and land cover in the study region. A large part of fallow land and open forest were converted into cultivated land.

  6. Quantifying Water and Energy Fluxes Over Different Urban Land Covers in Phoenix, Arizona (United States)

    Templeton, Nicole P.; Vivoni, Enrique R.; Wang, Zhi-Hua; Schreiner-McGraw, Adam P.


    The impact of urbanization on water and energy fluxes varies according to the characteristics of the urban patch type. Nevertheless, urban flux observations are limited, particularly in arid climates, given the wide variety of land cover present in cities. To help address this need, a mobile eddy covariance tower was deployed at three locations in Phoenix, Arizona, to sample the surface energy balance at a parking lot, a xeric landscaping (irrigated trees with gravel) and a mesic landscaping (irrigated turf grass). These deployments were compared to a stationary eddy covariance tower in a suburban neighborhood. A comparison of the observations revealed key differences between the mobile and reference sites tied to the urban land cover within the measurement footprints. For instance, the net radiation varied substantially among the sites in manners consistent with albedo and shallow soil temperature differences. The partitioning of available energy between sensible and latent heat fluxes was modulated strongly by the presence of outdoor water use, with the irrigated turf grass exhibiting the highest evaporative fraction. At this site, we identified a lack of sensitivity of turbulent flux partitioning to precipitation events, which suggests that frequent outdoor water use removes water limitations in an arid climate, thus leading to mesic conditions. Other urban land covers with less irrigation, however, exhibited sensitivity to the occurrence of precipitation, as expected for an arid climate. As a result, quantifying the frequency and magnitude of outdoor water use is critical for understanding evapotranspiration losses in arid urban areas.

  7. Impact of Vegetation Cover Fraction Parameterization schemes on Land Surface Temperature Simulation in the Tibetan Plateau (United States)

    Lv, M.; Li, C.; Lu, H.; Yang, K.; Chen, Y.


    The parameterization of vegetation cover fraction (VCF) is an important component of land surface models. This paper investigates the impacts of three VCF parameterization schemes on land surface temperature (LST) simulation by the Common Land Model (CoLM) in the Tibetan Plateau (TP). The first scheme is a simple land cover (LC) based method; the second one is based on remote sensing observation (hereafter named as RNVCF) , in which multi-year climatology VCFs is derived from Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI (Normalized Difference Vegetation Index); the third VCF parameterization scheme derives VCF from the LAI simulated by LSM and clump index at every model time step (hereafter named as SMVCF). Simulated land surface temperature(LST) and soil temperature by CoLM with three VCF parameterization schemes were evaluated by using satellite LST observation and in situ soil temperature observation, respectively, during the period of 2010 to 2013. The comparison against MODIS Aqua LST indicates that (1) CTL produces large biases for both four seasons in early afternoon (about 13:30, local solar time), while the mean bias in spring reach to 12.14K; (2) RNVCF and SMVCF reduce the mean bias significantly, especially in spring as such reduce is about 6.5K. Surface soil temperature observed at 5 cm depth from three soil moisture and temperature monitoring networks is also employed to assess the skill of three VCF schemes. The three networks, crossing TP from West to East, have different climate and vegetation conditions. In the Ngari network, located in the Western TP with an arid climate, there are not obvious differences among three schemes. In Naqu network, located in central TP with a semi-arid climate condition, CTL shows a severe overestimates (12.1 K), but such overestimations can be reduced by 79% by RNVCF and 87% by SMVCF. In the third humid network (Maqu in eastern TP), CoLM performs similar to Naqu. However, at both Naqu and Maqu networks

  8. Integrated modelling of anthropogenic land-use and land-cover change on the global scale (United States)

    Schaldach, R.; Koch, J.; Alcamo, J.


    In many cases land-use activities go hand in hand with substantial modifications of the physical and biological cover of the Earth's surface, resulting in direct effects on energy and matter fluxes between terrestrial ecosystems and the atmosphere. For instance, the conversion of forest to cropland is changing climate relevant surface parameters (e.g. albedo) as well as evapotranspiration processes and carbon flows. In turn, human land-use decisions are also influenced by environmental processes. Changing temperature and precipitation patterns for example are important determinants for location and intensity of agriculture. Due to these close linkages, processes of land-use and related land-cover change should be considered as important components in the construction of Earth System models. A major challenge in modelling land-use change on the global scale is the integration of socio-economic aspects and human decision making with environmental processes. One of the few global approaches that integrates functional components to represent both anthropogenic and environmental aspects of land-use change, is the LandSHIFT model. It simulates the spatial and temporal dynamics of the human land-use activities settlement, cultivation of food crops and grazing management, which compete for the available land resources. The rational of the model is to regionalize the demands for area intensive commodities (e.g. crop production) and services (e.g. space for housing) from the country-level to a global grid with the spatial resolution of 5 arc-minutes. The modelled land-use decisions within the agricultural sector are influenced by changing climate and the resulting effects on biomass productivity. Currently, this causal chain is modelled by integrating results from the process-based vegetation model LPJmL model for changing crop yields and net primary productivity of grazing land. Model output of LandSHIFT is a time series of grid maps with land-use/land-cover information

  9. Spatio-temporal Assessment of Land Use/ Land Cover Dynamics and Urban Heat Island of Jaipur City using Satellite Data (United States)

    Jalan, S.; Sharma, K.


    Urban Heat Island (UHI) refers to the phenomena of higher surface temperature occurring in urban areas as compared to the surrounding countryside attributable to urbanization. Spatio-temporal changes in UHI can be quantified through Land Surface Temperature (LST) derived from satellite imageries. Spatial variations in LST occur due to complexity of land surface - combination of impervious surface materials, vegetation, exposed soils as well as water surfaces. Jaipur city has observed rapid urbanization over the last decade. Due to rising population pressure the city has expanded considerably in areal extent and has also observed substantial land use/land cover (LULC) changes. The paper aims to determine changes in the LST and UHI phenomena for Jaipur city over the period from 2000 to 2011 and analyzes the spatial distribution and temporal variation of LST in context of changes in LULC. Landsat 7 ETM+ (2000) and Landsat 5 TM (2011) images of summer season have been used. Results reveal that Jaipur city has witnessed considerable growth in built up area at the cost of greener patches over the last decade, which has had clear impact on variation in LST. There has been an average rise of 2.99 °C in overall summer temperature. New suburbs of the city record 2° to 4 °C increase in LST. LST change is inversely related to change in vegetation cover and positively related to extent of built up area. The study concludes that UHI of Jaipur city has intensified and extended over new areas.

  10. Modelling land change: the issue of use and cover in wide-scale applications

    NARCIS (Netherlands)

    Bakker, M.M.; Veldkamp, A.


    In this article, the underlying causes for the apparent mismatch between land cover and land use in the context of wide-scale land change modelling are explored. A land use-land cover (LU/LC) ratio is proposed as a relevant landscape characteristic. The one-to-one ratio between land use and land

  11. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992-2015) (United States)

    Li, Wei; MacBean, Natasha; Ciais, Philippe; Defourny, Pierre; Lamarche, Céline; Bontemps, Sophie; Houghton, Richard A.; Peng, Shushi


    Land-use and land-cover change (LULCC) impacts local energy and water balance and contributes on global scale to a net carbon emission to the atmosphere. The newly released annual ESA CCI (climate change initiative) land cover maps provide continuous land cover changes at 300 m resolution from 1992 to 2015, and can be used in land surface models (LSMs) to simulate LULCC effects on carbon stocks and on surface energy budgets. Here we investigate the absolute areas and gross and net changes in different plant functional types (PFTs) derived from ESA CCI products. The results are compared with other datasets. Global areas of forest, cropland and grassland PFTs from ESA are 30.4, 19.3 and 35.7 million km2 in the year 2000. The global forest area is lower than that from LUH2v2h (Hurtt et al., 2011), Hansen et al. (2013) or Houghton and Nassikas (2017) while cropland area is higher than LUH2v2h (Hurtt et al., 2011), in which cropland area is from HYDE 3.2 (Klein Goldewijk et al., 2016). Gross forest loss and gain during 1992-2015 are 1.5 and 0.9 million km2 respectively, resulting in a net forest loss of 0.6 million km2, mainly occurring in South and Central America. The magnitudes of gross changes in forest, cropland and grassland PFTs in the ESA CCI are smaller than those in other datasets. The magnitude of global net cropland gain for the whole period is consistent with HYDE 3.2 (Klein Goldewijk et al., 2016), but most of the increases happened before 2004 in ESA and after 2007 in HYDE 3.2. Brazil, Bolivia and Indonesia are the countries with the largest net forest loss from 1992 to 2015, and the decreased areas are generally consistent with those from Hansen et al. (2013) based on Landsat 30 m resolution images. Despite discrepancies compared to other datasets, and uncertainties in converting into PFTs, the new ESA CCI products provide the first detailed long-term time series of land-cover change and can be implemented in LSMs to characterize recent carbon dynamics

  12. Landspotting: collecting essential land cover information via an attractive internet game (United States)

    Fritz, Steffen; McCallum, Ian; Perger, Christoph; Christian, Schill; Florian, Kraxner; Erik, Lindquist; Michael, Obersteiner


    Based on the concept of collecting land cover information via crowdsourcing, we present a novel approach on how to get the crowd involved. Internet games as well as social networks are becoming increasingly popular and the full potential is yet to be exploited. However, thus far, few if any games provide anything other than entertainment. Can an attractive philanthropic game be created which uses the crowd to collect essential information needed to help to acquire better data to improve the understanding of the earth system? Since accurate and up to date information on global land cover plays a very important role in a number of different research fields such as climate change, monitoring of tropical deforestation, land use monitoring and land-use modelling, but still shows high levels of disagreement, the game will focus on how this essential land cover calibration and validation data can be collected in areas where uncertainty is currently highest. In the current version of the land spotting game, we combine uncertainty hotspot information from three global land cover datasets (GLC, MODIS and GlobCover). With an ever increasing amount of high resolution images available on Google Earth, it is becoming increasingly possible to distinguish land cover features with a high degree of accuracy. We first direct the landspotting game community to certain hotspots of land cover uncertainty and then ask them to enter/record the type of land cover they see (for this they will be able to acquire a certain number of points), possibly uploading pictures at that location (additional points will be received). Even though the development of the game "" is still underway, we illustrate what the functionality will be and what features are envisaged for the near future. will be designed in such a way as to challenge users to help map out the remaining areas of confusion over the globe - possibly in the form of an adventure game. Users

  13. C-CAP Santa Cruz 2001 era High Resolution Land Cover Metadata (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset represents land cover for the San Lorenzo River basin in Santa Cruz County, California derived from high resolution imagery. The land cover features in...

  14. A Continental United States High Resolution NLCD Land Cover – MODIS Albedo Database to Examine Albedo and Land Cover Change Relationships (United States)

    Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...

  15. National Land Cover Database (NLCD) Percent Developed Imperviousness Collection (United States)

    U.S. Geological Survey, Department of the Interior — The National Land Cover Database (NLCD) Percent Developed Imperviousness Collection is produced through a cooperative project conducted by the Multi-Resolution Land...

  16. Analyzing Land Use/Land Cover Changes Using Remote Sensing and GIS in Rize, North-East Turkey. (United States)

    Reis, Selçuk


    Mapping land use/land cover (LULC) changes at regional scales is essential for a wide range of applications, including landslide, erosion, land planning, global warming etc. LULC alterations (based especially on human activities), negatively effect the patterns of climate, the patterns of natural hazard and socio-economic dynamics in global and local scale. In this study, LULC changes are investigated by using of Remote Sensing and Geographic Information Systems (GIS) in Rize, North-East Turkey. For this purpose, firstly supervised classification technique is applied to Landsat images acquired in 1976 and 2000. Image Classification of six reflective bands of two Landsat images is carried out by using maximum likelihood method with the aid of ground truth data obtained from aerial images dated 1973 and 2002. The second part focused on land use land cover changes by using change detection comparison (pixel by pixel). In third part of the study, the land cover changes are analyzed according to the topographic structure (slope and altitude) by using GIS functions. The results indicate that severe land cover changes have occurred in agricultural (36.2%) (especially in tea gardens), urban (117%), pasture (-72.8%) and forestry (-12.8%) areas has been experienced in the region between 1976 and 2000. It was seen that the LULC changes were mostly occurred in coastal areas and in areas having low slope values.

  17. Analyzing Land Use/Land Cover Changes Using Remote Sensing and GIS in Rize, North-East Turkey

    Directory of Open Access Journals (Sweden)

    Selçuk Reis


    Full Text Available Mapping land use/land cover (LULC changes at regional scales is essential for a wide range of applications, including landslide, erosion, land planning, global warming etc. LULC alterations (based especially on human activities, negatively effect the patterns of climate, the patterns of natural hazard and socio-economic dynamics in global and local scale. In this study, LULC changes are investigated by using of Remote Sensing and Geographic Information Systems (GIS in Rize, North-East Turkey. For this purpose, firstly supervised classification technique is applied to Landsat images acquired in 1976 and 2000. Image Classification of six reflective bands of two Landsat images is carried out by using maximum likelihood method with the aid of ground truth data obtained from aerial images dated 1973 and 2002. The second part focused on land use land cover changes by using change detection comparison (pixel by pixel. In third part of the study, the land cover changes are analyzed according to the topographic structure (slope and altitude by using GIS functions. The results indicate that severe land cover changes have occurred in agricultural (36.2% (especially in tea gardens, urban (117%, pasture (-72.8% and forestry (-12.8% areas has been experienced in the region between 1976 and 2000. It was seen that the LULC changes were mostly occurred in coastal areas and in areas having low slope values.

  18. Impact of the construction of a hydroelectric power plant on the land cover and use: study of the basin Lajeado Bonito - RS

    International Nuclear Information System (INIS)

    Tramontina, Juliana; Breunig, Fabio Marcelo


    This work aims to analyze the impact of the construction of a hydroelectric power plant on land cover and use in Lajeado Bonito-RS watershed. The study evaluated the temporal evolution of land cover and use in the watershed for the period before and after to installation of hydroelectric plant Foz do Chapeco (2009 to 2010). For temporal analysis, two images were interpreted, one orbital image of High Resolution Camera (HRC) onboard of the CBERS-2B, acquired in December 29, 2009. And a high-resolution image obtained from Google Earth application, acquired at December 26, 2010. The land cover and use maps were generated by vector editing SPRING software. We found that the predominant land use related to agriculture and livestock, including bare soil. In 2009 this class accounted for 70.23% of the total area, while it come to represent 61.8% in 2010. At the same time, there was increase of areas with native forest cover, from 27.49% covered by forest in 2009, to 31% in 2010. The results showed that in both 2009 and 2010 years, approximately 49% of permanent preservation area were used inappropriately. (author)

  19. A high accuracy land use/cover retrieval system

    Directory of Open Access Journals (Sweden)

    Alaa Hefnawy


    Full Text Available The effects of spatial resolution on the accuracy of mapping land use/cover types have received increasing attention as a large number of multi-scale earth observation data become available. Although many methods of semi automated image classification of remotely sensed data have been established for improving the accuracy of land use/cover classification during the past 40 years, most of them were employed in single-resolution image classification, which led to unsatisfactory results. In this paper, we propose a multi-resolution fast adaptive content-based retrieval system of satellite images. Through our proposed system, we apply a Super Resolution technique for the Landsat-TM images to have a high resolution dataset. The human–computer interactive system is based on modified radial basis function for retrieval of satellite database images. We apply the backpropagation supervised artificial neural network classifier for both the multi and single resolution datasets. The results show significant improved land use/cover classification accuracy for the multi-resolution approach compared with those from single-resolution approach.

  20. Using the FORE-SCE model to project land-cover change in the southeastern United States (United States)

    Sohl, Terry; Sayler, Kristi L.


    A wide variety of ecological applications require spatially explicit current and projected land-use and land-cover data. The southeastern United States has experienced massive land-use change since European settlement and continues to experience extremely high rates of forest cutting, significant urban development, and changes in agricultural land use. Forest-cover patterns and structure are projected to change dramatically in the southeastern United States in the next 50 years due to population growth and demand for wood products [Wear, D.N., Greis, J.G. (Eds.), 2002. Southern Forest Resource Assessment. General Technical Report SRS-53. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, 635 pp]. Along with our climate partners, we are examining the potential effects of southeastern U.S. land-cover change on regional climate. The U.S. Geological Survey (USGS) Land Cover Trends project is analyzing contemporary (1973-2000) land-cover change in the conterminous United States, providing ecoregion-by-ecoregion estimates of the rates of change, descriptive transition matrices, and changes in landscape metrics. The FORecasting SCEnarios of future land-cover (FORE-SCE) model used Land Cover Trends data and theoretical, statistical, and deterministic modeling techniques to project future land-cover change through 2050 for the southeastern United States. Prescriptions for future proportions of land cover for this application were provided by ecoregion-based extrapolations of historical change. Logistic regression was used to develop relationships between suspected drivers of land-cover change and land cover, resulting in the development of probability-of-occurrence surfaces for each unique land-cover type. Forest stand age was initially established with Forest Inventory and Analysis (FIA) data and tracked through model iterations. The spatial allocation procedure placed patches of new land cover on the landscape until the scenario

  1. The role of rock fragment cover on soil erosion in conventional vineyards in Eastern Spain (United States)

    Rodrigo Comino, Jesús; Jordán, Antonio; García-Díaz, Andrés; Brevik, Eric C.; Pereira, Paulo; Keesstra, Saskia; Novara, Agata; Cerdà, Artemi


    Soil erosion results in soil degradation and losses in crop production, specifically, in vineyards are active sources of sediments and water (Martínez-Casasnovas et al., 2005; Rodrigo Comino et al., 2016). Several studies confirm that the main causes of this degradation include lack of vegetative cover, widespread use of herbicides and sprays, and compaction by heavy machinery and trampling effect, suggesting the use of organic amendments and management of mulch covers as solutions (Prosdocimi et al., 2016). Local, inexpensive materials are easier to manage, less costly to apply, and more sustainable if already in the soil, such as the rock fragments. Rock fragments can improve soil quality by conserving the temperature such as the slates in German vineyards (Rodrigo Comino et al., 2015) or contributing to the forestation of degraded ecosystems (Jiménez et al., 2016), but no information exists from tilled vineyards. Therefore, the main goal of this research was to determine the impact of soil cover and soil properties (slope, soil organic carbon, vegetation cover, soil water content, and rock fragments) on soil erosion in tilled vineyards. To achieve this goal, simulated rainfall experiments were carried out to avoid the spatial variability of natural rainfall (Cerdà, 1999, 1997). After performing the rainfall simulations and assessing the statistical analysis, our interest was focused on the impact of one concrete parameter: the rock fragment cover. The main reason was because experimental results showed significant correlations with runoff (positive) and sediment yield (negative). The results of our study show that the rock fragments at the pedon scale can act as mulch in Mediterranean vineyards, but a pavement of embedded rock fragments will trigger high runoff rates. Acknowledgments This research was funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant no. 603498 (RECARE Project). References Cerdà, A., 1999. Parent Material

  2. Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios

    Directory of Open Access Journals (Sweden)

    Jianwu Yan


    Full Text Available Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS. Our findings are summarized as follows. (i Spatiotemporal variation patterns of sensible heat flux (H and evapotranspiration (ET under the land cover scenarios (A2a or B2a and climate change scenario (A1B are unanimous. (ii Both H and ET take on a single peak pattern, and the peak occurs in June or July. (iii Based on the regional interannual variability analysis, H displays a downward trend (10% and ET presents an increasing trend (15%. (iv The annual average H and ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.

  3. Testing the Potential of Vegetation Indices for Land Use/cover Classification Using High Resolution Data (United States)

    Karakacan Kuzucu, A.; Bektas Balcik, F.


    Accurate and reliable land use/land cover (LULC) information obtained by remote sensing technology is necessary in many applications such as environmental monitoring, agricultural management, urban planning, hydrological applications, soil management, vegetation condition study and suitability analysis. But this information still remains a challenge especially in heterogeneous landscapes covering urban and rural areas due to spectrally similar LULC features. In parallel with technological developments, supplementary data such as satellite-derived spectral indices have begun to be used as additional bands in classification to produce data with high accuracy. The aim of this research is to test the potential of spectral vegetation indices combination with supervised classification methods and to extract reliable LULC information from SPOT 7 multispectral imagery. The Normalized Difference Vegetation Index (NDVI), the Ratio Vegetation Index (RATIO), the Soil Adjusted Vegetation Index (SAVI) were the three vegetation indices used in this study. The classical maximum likelihood classifier (MLC) and support vector machine (SVM) algorithm were applied to classify SPOT 7 image. Catalca is selected region located in the north west of the Istanbul in Turkey, which has complex landscape covering artificial surface, forest and natural area, agricultural field, quarry/mining area, pasture/scrubland and water body. Accuracy assessment of all classified images was performed through overall accuracy and kappa coefficient. The results indicated that the incorporation of these three different vegetation indices decrease the classification accuracy for the MLC and SVM classification. In addition, the maximum likelihood classification slightly outperformed the support vector machine classification approach in both overall accuracy and kappa statistics.

  4. the implications of land use/cover dynamics on resources

    African Journals Online (AJOL)


    Dec 4, 2017 ... Land use maps were produced using the GIS software packages of ... Keywords: Land use/cover, Dynamics, Remote Sensing Techniques, Geographic Information System, .... sporadic floods and landslides in Bambui which.

  5. SOIL Geo-Wiki: A tool for improving soil information (United States)

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael


    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference

  6. A simple semi-automatic approach for land cover classification from multispectral remote sensing imagery.

    Directory of Open Access Journals (Sweden)

    Dong Jiang

    Full Text Available Land cover data represent a fundamental data source for various types of scientific research. The classification of land cover based on satellite data is a challenging task, and an efficient classification method is needed. In this study, an automatic scheme is proposed for the classification of land use using multispectral remote sensing images based on change detection and a semi-supervised classifier. The satellite image can be automatically classified using only the prior land cover map and existing images; therefore human involvement is reduced to a minimum, ensuring the operability of the method. The method was tested in the Qingpu District of Shanghai, China. Using Environment Satellite 1(HJ-1 images of 2009 with 30 m spatial resolution, the areas were classified into five main types of land cover based on previous land cover data and spectral features. The results agreed on validation of land cover maps well with a Kappa value of 0.79 and statistical area biases in proportion less than 6%. This study proposed a simple semi-automatic approach for land cover classification by using prior maps with satisfied accuracy, which integrated the accuracy of visual interpretation and performance of automatic classification methods. The method can be used for land cover mapping in areas lacking ground reference information or identifying rapid variation of land cover regions (such as rapid urbanization with convenience.

  7. Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model (United States)

    Shellito, Peter J.; Small, Eric E.; Livneh, Ben


    Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.

  8. Effect of land-use/land-cover change on the future of rainfed agriculture in the Jenin Governorate, Palestine

    NARCIS (Netherlands)

    Thawaba, Salem; Abu-Madi, Maher; Özerol, Gül


    Land cover has been changed by humans throughout history. At the global level, population growth and socio-economic development have a significant impact on land resources. Recently, scholars added climate change as one of the major factors affecting land-cover transformation. In the West Bank of

  9. Soil microbial community response to land use and various soil ...

    African Journals Online (AJOL)

    Soil microbial community response to land use and various soil elements in a city landscape of north China. ... African Journal of Biotechnology ... Legumes played an important role in stimulating the growth and reproduction of various soil microbial populations, accordingly promoting the microbial catabolic activity.

  10. Use of multispectral satellite imagery and hyperspectral endmember libraries for urban land cover mapping at the metropolitan scale (United States)

    Priem, Frederik; Okujeni, Akpona; van der Linden, Sebastian; Canters, Frank


    The value of characteristic reflectance features for mapping urban materials has been demonstrated in many experiments with airborne imaging spectrometry. Analysis of larger areas requires satellite-based multispectral imagery, which typically lacks the spatial and spectral detail of airborne data. Consequently the need arises to develop mapping methods that exploit the complementary strengths of both data sources. In this paper a workflow for sub-pixel quantification of Vegetation-Impervious-Soil urban land cover is presented, using medium resolution multispectral satellite imagery, hyperspectral endmember libraries and Support Vector Regression. A Landsat 8 Operational Land Imager surface reflectance image covering the greater metropolitan area of Brussels is selected for mapping. Two spectral libraries developed for the cities of Brussels and Berlin based on airborne hyperspectral APEX and HyMap data are used. First the combined endmember library is resampled to match the spectral response of the Landsat sensor. The library is then optimized to avoid spectral redundancy and confusion. Subsequently the spectra of the endmember library are synthetically mixed to produce training data for unmixing. Mapping is carried out using Support Vector Regression models trained with spectra selected through stratified sampling of the mixed library. Validation on building block level (mean size = 46.8 Landsat pixels) yields an overall good fit between reference data and estimation with Mean Absolute Errors of 0.06, 0.06 and 0.08 for vegetation, impervious and soil respectively. Findings of this work may contribute to the use of universal spectral libraries for regional scale land cover fraction mapping using regression approaches.

  11. Assessment of Land-Use/Land-Cover Change and Forest Fragmentation in the Garhwal Himalayan Region of India

    Directory of Open Access Journals (Sweden)

    Amit Kumar Batar


    Full Text Available The Garhwal Himalaya has experienced extensive deforestation and forest fragmentation, but data and documentation detailing this transformation of the Himalaya are limited. The aim of this study is to analyse the observed changes in land cover and forest fragmentation that occurred between 1976 and 2014 in the Garhwal Himalayan region in India. Three images from Landsat 2 Multispectral Scanner System (MSS, Landsat 5 Thematic Mapper (TM, and Landsat 8 Operational Land Imager (OLI were used to extract the land cover maps. A cross-tabulation detection method in the geographic information system (GIS module was used to detect land cover changes during the 1st period (1976–1998 and 2nd period (1998–2014. The landscape fragmentation tool LFT v2.0 was used to construct a forest fragmentation map and analyse the forest fragmentation pattern and change during the 1st period (1976–1998 and 2nd period (1998–2014. The overall annual rate of change in the forest cover was observed to be 0.22% and 0.27% in the 1st period (1976–1998 and 2nd period (1998–2014, respectively. The forest fragmentation analysis shows that a large core forest has decreased throughout the study period. The total area of forest patches also increased from 1976 to 2014, which are completely degraded forests. The results indicate that anthropogenic activities are the main causes of the loss of forest cover and forest fragmentation, but that natural factors also contributed. An increase in the area of scrub and barren land also contributed to the accumulation of wasteland or non-forest land in this region. Determining the trend and the rate of land cover conversion is necessary for development planners to establish a rational land use policy.

  12. Effect of landslides on the structural characteristics of land-cover based on complex networks (United States)

    He, Jing; Tang, Chuan; Liu, Gang; Li, Weile


    Landslides have been widely studied by geologists. However, previous studies mainly focused on the formation of landslides and never considered the effect of landslides on the structural characteristics of land-cover. Here we define the modeling of the graph topology for the land-cover, using the satellite images of the earth’s surface before and after the earthquake. We find that the land-cover network satisfies the power-law distribution, whether the land-cover contains landslides or not. However, landslides may change some parameters or measures of the structural characteristics of land-cover. The results show that the linear coefficient, modularity and area distribution are all changed after the occurence of landslides, which means the structural characteristics of the land-cover are changed.

  13. Land Use and Land Cover Change in Sagarmatha National Park, a World Heritage Site in the Himalayas of Eastern Nepal

    Directory of Open Access Journals (Sweden)

    Rodney Garrard


    Full Text Available Land use and land cover (LULC changes that occurred during 1992–2011 in Sagarmatha National Park, a United Nations Educational, Scientific, and Cultural Organization World Heritage Site in the Himalayas of eastern Nepal, were evaluated using multitemporal satellite imagery in combination with land use data and sociological information gathered from semistructured interviews and workshops. We asked study participants about LULC changes, the causes of each change, and the likely duration of its effects, and used this information to produce high-resolution maps of local perceptions of LULC change. Satellite image analysis revealed that above 6000 m there has been a decrease in the area covered by snow and ice and a consequent expansion of glacial lakes and areas covered by rock and soil. Between 3000 and 6000 m, forest and farmland are decreasing, and areas under grazing, settlement, and shrubland are increasing. Such LULC changes within the protected area clearly indicate the prevailing danger of land degradation. Results from the interviews and workshops suggest that people tended to detect LULC change that was acute and direct, but were less aware of slower changes that could be identified by satellite imagery analysis. Most study participants said that land use changes were a result of rapid economic development and the consequent pressure on natural resources, especially in the tourism industry and especially below 6000 m elevation, as well as limitations to protected area management and a period of civil war. Human influence coupled with climate change may explain the changes at higher elevations, whereas anthropogenic activities are solely responsible in lower areas. Although global factors cannot be mitigated locally, many of the local drivers of LULC change could be addressed with improved management practices that aid local conservation and development in this high mountain ecosystem. A broader interdisciplinary approach to LULC change

  14. Soil erosion and runoff response in almond orchards under two shrub cover-crops strips in a high slope in semi-arid environment

    International Nuclear Information System (INIS)

    Carceles-Rodriguez, B.; Francia-Martinez, J. R.; Martinez-Raya, A.; Duran-Zuazo, V. H.; Rodriguez-Pleguezuelo, C. R.; Casado-Mateos, J. P.


    Soil erosion is one of the main physical processes of land degradation in Spain. Several studies in the Mediterranean environment have demonstrated the positive effect of vegetation covers on the reduction of water erosion and their indirect improvement of the soil physical and chemical properties, essentially by the incorporation of organic matter. (Author)

  15. Land cover change mapping using MODIS time series to improve emissions inventories (United States)

    López-Saldaña, Gerardo; Quaife, Tristan; Clifford, Debbie


    MELODIES is an FP7 funded project to develop innovative and sustainable services, based upon Open Data, for users in research, government, industry and the general public in a broad range of societal and environmental benefit areas. Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A land cover product was created for 2003 to 2015 and a bayesian approach was created to identified land cover changes. We will present the results of the time series development and the first exercises when creating the land cover and land cover changes products.

  16. Land cover change in coastal watersheds 1996 to 2010 (United States)

    Nate Herold


    Land use and land cover play a significant role as drivers of environmental change. Information on what is changing and where those changes are occurring is essential if we are to improve our understanding of...

  17. Determination of Land Use/ Land Cover Changes in Igneada Alluvial (Longos) Forest Ecosystem, Turkey (United States)

    Bektas Balcik, F.


    Alluvial (Longos) forests are one of the most fragile and threatened ecosystems in the world. Typically, these types of ecosystems have high biological diversity, high productivity, and high habitat dynamism. In this study, Igneada, Kirklareli was selected as study area. The region, lies between latitudes 41° 46' N and 41° 59' N and stretches between longitudes 27° 50' E and 28° 02' E and it covers approximately 24000 (ha). Igneada Longos ecosystems include mixed forests, streams, flooded (alluvial) forests, marshes, wetlands, lakes and coastal sand dunes with different types of flora and fauna. Igneada was classified by Conservation International as one of the world's top 122 Important Plant Areas, and 185 Important Bird Areas. These types of wild forest in other parts of Turkey and in Europe have been damaged due to anthropogenic effects. Remote sensing is very effective tool to monitor these types of sensitive regions for sustainable management. In this study, 1984 and 2011 dated Landsat 5 TM data were used to determine land cover/land use change detection of the selected region by using six vegetation indices such as Tasseled Cap index of greenness (TCG), brightness (TCB), and wetness (TCW), ratios of near-infrared to red image (RVI), normalized difference vegetation index (NDVI), and soil-adjusted vegetation index (SAVI). Geometric and radiometric corrections were applied in image pre-processing step. Selective Principle Component Analysis (PCA) change detection method was applied to the selected vegetation index imagery to generate change imagery for extracting the changed features between the year of 1984 and 2011. Accuracy assessment was applied based on error matrix by calculating overall accuracy and Kappa statistics.

  18. Detecting and quantifying land use/land cover dynamics in Wadla ...

    African Journals Online (AJOL)

    A study was conducted in Wadla Delanta Massif to investigate land use/cover dynamics over the last four decades (1973-2014) using satellite images (1973 MSS, 1995 TM and 2014 ETM+). Global positioning system ... in the study area. Keywords: GIS, Image classification, Remote sensing, Supervised classification ...

  19. Spatially heterogeneous land cover/land use and climatic risk factors of tick-borne feline cytauxzoonosis. (United States)

    Raghavan, Ram K; Almes, Kelli; Goodin, Doug G; Harrington, John A; Stackhouse, Paul W


    Feline cytauxzoonosis is a highly fatal tick-borne disease caused by a hemoparasitic protozoan, Cytauxzoon felis. This disease is a leading cause of mortality for cats in the Midwestern United States, and no vaccine or effective treatment options exist. Prevention based on knowledge of risk factors is therefore vital. Associations of different environmental factors, including recent climate were evaluated as potential risk factors for cytauxzoonosis using Geographic Information Systems (GIS). There were 69 cases determined to be positive for cytauxzoonosis based upon positive identification of C. felis within blood film examinations, tissue impression smears, or histopathologic examination of tissues. Negative controls totaling 123 were selected from feline cases that had a history of fever, malaise, icterus, and anorexia but lack of C. felis within blood films, impression smears, or histopathologic examination of tissues. Additional criteria to rule out C. felis among controls were the presence of regenerative anemia, cytologic examination of blood marrow or lymph node aspirate, other causative agent diagnosed, or survival of 25 days or greater after testing. Potential environmental determinants were derived from publicly available sources, viz., US Department of Agriculture (soil attributes), US Geological Survey (land-cover/landscape, landscape metrics), and NASA (climate). Candidate variables were screened using univariate logistic models with a liberal p value (0.2), and associations with cytauxzoonosis were modeled using a global multivariate logistic model (p<0.05). Spatial heterogeneity among significant variables in the study region was modeled using a geographically weighted regression (GWR) approach. Total Edge Contrast Index (TECI), grassland-coverage, humidity conditions recorded during the 9(th) week prior to case arrival, and an interaction variable, "diurnal temperature range × percent mixed forest area" were significant risk factors for

  20. From forest to farmland and moraine to meadow: Integrated modeling of Holocene land cover change (United States)

    Kaplan, J. O.


    Did humans affect global climate over the before the Industrial Era? While this question is hotly debated, the co-evolution of humans and the natural environment over the last 11,700 years had an undisputed role in influencing the development and present state of terrestrial ecosystems, many of which are highly valued today as economic, cultural, and ecological resources. Yet we still have a very incomplete picture of human-environment interactions over the Holocene, both spatially and temporally. In order to address this problem, we combined a global dynamic vegetation model with a new model of preindustrial anthropogenic land cover change. We drive these integrated models with paleoclimate from GCM scenarios, a new synthesis of global demographic, technological, and economic development over preindustrial time, and a global database of historical urbanization covering the last 8000 years. We simulate land cover and land use change, fire, soil erosion, and emissions of CO2 and methane (CH4) from 11,700 years before present to AD 1850. We evaluate our simulations in part with a new set of continental-scale reconstructions of land cover based on records from the Global Pollen Database. Our model results show that climate and tectonic change controlled global land cover in the early Holocene, e.g., shifts in forest biomes in northern continents show an expansion of temperate tree types far to the north of their present day limits, but that by the early Iron Age (1000 BC), humans in Europe, east Asia, and Mesoamerica had a larger influence than natural processes on the landscape. 3000 years before present, anthropogenic deforestation was widespread with most areas of temperate Europe and southwest Asia, east-central China, northern India, and Mesoamerica occupied by a matrix of natural vegetation, cropland and pastures. Burned area and emissions of CO2 and CH4 from wildfires declined slowly over the entire Holocene, as landscape fragmentation and changing agricultural

  1. Modeling Soil Moisture in Support of the Revegetation of Military Lands in Arid Regions. (United States)

    Caldwell, T. G.; McDonald, E. V.; Young, M. H.


    The National Training Center (NTC), the Army's primary mechanized maneuver training facility, covers approximately 2600 km2 within the Mojave Desert in southern California, and is the subject of ongoing studies to support the sustainability of military lands in desert environments. Revegetation of these lands by the Integrated Training Areas Management (ITAM) Program requires the identification of optimum growing conditions to reestablish desert vegetation from seed and seedling, especially with regard to the timing and abundance of plant-available water. Water content, soil water potential, and soil temperature were continuously monitored and used to calibrate the Simultaneous Heat And Water (SHAW) model at 3 re-seeded sites. Modeled irrigation scenarios were used to further evaluate the most effective volume, frequency, and timing of irrigation required to maximize revegetation success and minimize water use. Surface treatments including straw mulch, gravel mulch, soil tackifier and plastic sheet

  2. Land Use-Land Cover dynamics of Huluka watershed, Central Rift Valley, Ethiopia

    Directory of Open Access Journals (Sweden)

    Hagos Gebreslassie


    Full Text Available Land Use-Land Cover (LULC dynamic has of human kind age and is one of the phenomenons which interweave the socio economic and environmental issues in Ethiopia. Huluka watershed is one of the watersheds in Central Rift Valley of Ethiopia which drains to Lake Langano. Few decades ago the stated watershed was covered with dense acacia forest. But, nowadays like other part of Ethiopia, it is experiencing complex dynamics of LULC. The aim of this research was thus to evaluate the LULC dynamics seen in between 1973–2009. This was achieved through collecting qualitative and quantitative data using Geographic Information System (GIS and Remote Sensing (RS technique. Field observations, discussion with elders were also employed to validate results from remotely sensed data. Based on the result, eight major dynamic LULC classes were identified from the watershed. Of these LULC classes, only cultivated and open lands had shown continuous and progressive expansion mainly at the expense of grass, shrub and forest lands. The 25% and 0% of cultivated and open land of the watershed in 1973 expanded to 84% and 4% in 2009 respectively while the 29%, 18% and 22% of grass, shrub and forest land of the watershed in 1973 degraded to 3.5%, 4% and 1.5% in 2009 respectively. As a result, land units which had been used for pastoralist before 1973 were identified under mixed agricultural system after 2000. In the end, this study came with a recommendation of an intervention of concerned body to stop the rapid degradation of vegetation on the watershed.

  3. Evaluation of the behavior of water in soil under eucalipto and native forest covers

    Directory of Open Access Journals (Sweden)

    Geberson Ricardo de Paula


    Full Text Available Areas occupied by grasslands have been replaced by eucalyptus plantations, which modifies the landscape, the regional economy, and water dynamics in soils. Thus, this study aimed to evaluate the behavior of water in Oxisol in two vegetation land covers, a six years old eucalyptus plantation, and a native forest in regeneration process for twenty years. The study was developed in the Una River Basin from June 2009 to April 2011. Ninety six moisture sensors were installed (Watermark™ at depths of 20, 60, and 120 cm. It was observed that, upon the occurrence of rainfall, the superficial and intermediate layers had increased humidity, which did not occur in the deepest layer. It was found that there were differences in soil moisture measured in the areas of eucalyptus and native forest and throughout the study period humidity was maintained between field capacity and permanent wilting point, with no water restriction. Canopy temperature of the eucalyptus plantation remained lower, indicating that its evapotranspiration was higher than in the forest area. The differences in moisture can be explained by the difference between the physical properties of soils in the study areas, because although they have the same slope, receive the same insolation and are close to each other, soil covered by eucalyptus presented a water storage capacity 63% above the area with native forest. It was also observed that all rainfall reaching the soil surface infiltrated and there was no runoff in the two areas studied. It was concluded that the results of this research provide important insights about differences in the behavior of water in the soil when covered by eucalyptus or native forest. For this reason, we suggest further studies with greater geographic reach in paired areas with different slopes, aspects and soil types.

  4. Multisource Data Fusion Framework for Land Use/Land Cover Classification Using Machine Vision

    Directory of Open Access Journals (Sweden)

    Salman Qadri


    Full Text Available Data fusion is a powerful tool for the merging of multiple sources of information to produce a better output as compared to individual source. This study describes the data fusion of five land use/cover types, that is, bare land, fertile cultivated land, desert rangeland, green pasture, and Sutlej basin river land derived from remote sensing. A novel framework for multispectral and texture feature based data fusion is designed to identify the land use/land cover data types correctly. Multispectral data is obtained using a multispectral radiometer, while digital camera is used for image dataset. It has been observed that each image contained 229 texture features, while 30 optimized texture features data for each image has been obtained by joining together three features selection techniques, that is, Fisher, Probability of Error plus Average Correlation, and Mutual Information. This 30-optimized-texture-feature dataset is merged with five-spectral-feature dataset to build the fused dataset. A comparison is performed among texture, multispectral, and fused dataset using machine vision classifiers. It has been observed that fused dataset outperformed individually both datasets. The overall accuracy acquired using multilayer perceptron for texture data, multispectral data, and fused data was 96.67%, 97.60%, and 99.60%, respectively.

  5. How reliable is the offline couple of WRF and VIC model? And how does high quality land cover data impact the VIC model simulation? (United States)

    Tang, C.; Dennis, R. L.


    First, the ability of the offline coupling of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model to produce hydrological and climate variables was evaluated. The performance of the offline couple of WRF and VIC was assessed with respect to key simulated variables through a comparison with the calibrated VIC model simulation. A spatiotemporal comparison of the simulated evaporation (ET), soil moisture (SM), runoff, and baseflow produced by the VIC calibrated run (base data) and by the offline coupling run was conducted. The results showed that the offline couple of VIC with WRF was able to achieve good agreement in the simulation of monthly and daily soil moisture, and monthly evaporation. This suggests the VIC coupling should function without causing a large change in the moisture budget. However, the offline coupling showed most disagreement in daily and monthly runoff, and baseflow which is related to errors in WRF precipitation. Second, the sensitivity of the VIC model to the land cover was assessed by performing a sensitivity simulation using the National Land Cover Database (NLCD) instead of the older NLDAS/AVHRR data. Improved land cover is shown to achieve more accurate simulation of the streamflow.

  6. Cover stones on liquefiable soil bed under waves

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Hatipoglu, Figen; Fredsøe, Jørgen


    The paper describes the results of an experimental study on the behavior of cover stones on a liquefiable soil bed exposed to a progressive wave. The soil was silt with d50=0.098mm. Stones, the size of 4cm, were used as cover material. The effect of packing density of stones, and that of number...... of stone layers (including the effect of an intermediate filter layer) were investigated. Pore pressure was measured across the soil depth. The experiments show that the soil liquefaction depended mainly on two parameters: the packing density of stones, and the number of stone layers. When the liquefaction...

  7. Measuring land-use and land-cover change using the U.S. department of agriculture's cropland data layer: Cautions and recommendations (United States)

    Lark, Tyler J.; Mueller, Richard M.; Johnson, David M.; Gibbs, Holly K.


    Monitoring agricultural land is important for understanding and managing food production, environmental conservation efforts, and climate change. The United States Department of Agriculture's Cropland Data Layer (CDL), an annual satellite imagery-derived land cover map, has been increasingly used for this application since complete coverage of the conterminous United States became available in 2008. However, the CDL is designed and produced with the intent of mapping annual land cover rather than tracking changes over time, and as a result certain precautions are needed in multi-year change analyses to minimize error and misapplication. We highlight scenarios that require special considerations, suggest solutions to key challenges, and propose a set of recommended good practices and general guidelines for CDL-based land change estimation. We also characterize a problematic issue of crop area underestimation bias within the CDL that needs to be accounted for and corrected when calculating changes to crop and cropland areas. When used appropriately and in conjunction with related information, the CDL is a valuable and effective tool for detecting diverse trends in agriculture. By explicitly discussing the methods and techniques for post-classification measurement of land-cover and land-use change using the CDL, we aim to further stimulate the discourse and continued development of suitable methodologies. Recommendations generated here are intended specifically for the CDL but may be broadly applicable to additional remotely-sensed land cover datasets including the National Land Cover Database (NLCD), Moderate Resolution Imaging Spectroradiometer (MODIS)-based land cover products, and other regional, national, and global land cover classification maps.

  8. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River. (United States)

    Ouyang, Wei; Hao, Fanghua; Skidmore, Andrew K; Toxopeus, A G


    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and Water Assessment Tool (SWAT) model. SWAT is a physical hydrological model which uses the RUSLE equation as a sediment algorithm. Considering the spatial and temporal scale of the relationship between soil erosion and sediment yield, simulations were undertaken at monthly and annual temporal scales and basin and sub-basin spatial scales. The corresponding temporal and spatial Normalized Difference Vegetation Index (NDVI) information was summarized from MODIS data, which can integrate regional land cover and climatic features. The SWAT simulation revealed that the annual soil erosion and sediment yield showed similar spatial distribution patterns, but the monthly variation fluctuated significantly. The monthly basin soil erosion varied from almost no erosion load to 3.92 t/ha and the maximum monthly sediment yield was 47,540 tones. The inter-annual simulation focused on the spatial difference and relationship with the corresponding vegetation NDVI value for every sub-basin. It is concluded that, for this continental monsoon climate basin, the higher NDVI vegetation zones prevented sediment transport, but at the same time they also contributed considerable soil erosion. The monthly basin soil erosion and sediment yield both correlated with NDVI, and the determination coefficients of their exponential correlation model were 0.446 and 0.426, respectively. The relationships between soil erosion and sediment yield with vegetation NDVI indicated that the vegetation status has a significant impact on sediment formation and transport. The findings can be used to develop soil erosion conservation programs for the study area. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Constraining the Deforestation History of Europe: Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions

    Directory of Open Access Journals (Sweden)

    Jed O. Kaplan


    Full Text Available Anthropogenic land cover change (ALCC is the most important transformation of the Earth system that occurred in the preindustrial Holocene, with implications for carbon, water and sediment cycles, biodiversity and the provision of ecosystem services and regional and global climate. For example, anthropogenic deforestation in preindustrial Eurasia may have led to feedbacks to the climate system: both biogeophysical, regionally amplifying winter cold and summer warm temperatures, and biogeochemical, stabilizing atmospheric CO 2 concentrations and thus influencing global climate. Quantification of these effects is difficult, however, because scenarios of anthropogenic land cover change over the Holocene vary widely, with increasing disagreement back in time. Because land cover change had such widespread ramifications for the Earth system, it is essential to assess current ALCC scenarios in light of observations and provide guidance on which models are most realistic. Here, we perform a systematic evaluation of two widely-used ALCC scenarios (KK10 and HYDE3.1 in northern and part of central Europe using an independent, pollen-based reconstruction of Holocene land cover (REVEALS. Considering that ALCC in Europe primarily resulted in deforestation, we compare modeled land use with the cover of non-forest vegetation inferred from the pollen data. Though neither land cover change scenario matches the pollen-based reconstructions precisely, KK10 correlates well with REVEALS at the country scale, while HYDE systematically underestimates land use with increasing magnitude with time in the past. Discrepancies between modeled and reconstructed land use are caused by a number of factors, including assumptions of per-capita land use and socio-cultural factors that cannot be predicted on the basis of the characteristics of the physical environment, including dietary preferences, long-distance trade, the location of urban areas and social organization.

  10. Effect of land use types in Miesa Watershed on soil quality and ...

    African Journals Online (AJOL)

    This study was undertaken to investigate the effects of land use types on physicochemical and biological properties of soil and hence on soil fertility and soil productivity. In order to investigate soil fertility status, soil samples collected from different land use types (cultivated land, grazing land and natural forest) from the ...

  11. The effect of different tillage and cover crops on soil quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices (di...... that P improved soil quality compared to H and D, especially when combined with cover crop. We also conclude that D may benefit from cover crop to yield better soil friability and hence soil quality.......This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices...... (direct drilling (D), harrowing (H) to a depth of 8 cm and ploughing to a depth of 20 cm (P)) as main plot. The soil was cropped with cover crop (+CC) or left without cover crop (-CC) as split plot treatments in the main plots with different tillage treatments. We assessed topsoil structural quality...

  12. El Paso, TX NM 1:250,000 Quad USGS Land Use/Land Cover, 1986 (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  13. Las Cruces, NM TX 1:250,000 Quad USGS Land Use/Land Cover, 1986 (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  14. Saint Johns, AZ NM 1:250,000 Quad USGS Land Use/Land Cover, 1986 (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  15. Silver City, NM AZ 1:250,000 Quad USGS Land Use/Land Cover, 1986 (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  16. Land-Use and Land-Cover Mapping Using a Gradable Classification Method

    Directory of Open Access Journals (Sweden)

    Keigo Kitada


    Full Text Available Conventional spectral-based classification methods have significant limitations in the digital classification of urban land-use and land-cover classes from high-resolution remotely sensed data because of the lack of consideration given to the spatial properties of images. To recognize the complex distribution of urban features in high-resolution image data, texture information consisting of a group of pixels should be considered. Lacunarity is an index used to characterize different texture appearances. It is often reported that the land-use and land-cover in urban areas can be effectively classified using the lacunarity index with high-resolution images. However, the applicability of the maximum-likelihood approach for hybrid analysis has not been reported. A more effective approach that employs the original spectral data and lacunarity index can be expected to improve the accuracy of the classification. A new classification procedure referred to as “gradable classification method” is proposed in this study. This method improves the classification accuracy in incremental steps. The proposed classification approach integrates several classification maps created from original images and lacunarity maps, which consist of lacnarity values, to create a new classification map. The results of this study confirm the suitability of the gradable classification approach, which produced a higher overall accuracy (68% and kappa coefficient (0.64 than those (65% and 0.60, respectively obtained with the maximum-likelihood approach.

  17. REGULATION OF deflationary stability OF Polissya agrolandscapes soil cover

    Directory of Open Access Journals (Sweden)

    Barvinskyi A.V.


    Full Text Available In the Ukrainian Polissya soil cover is dominated by sod-podzolic soils, that due tolight particle size distribution and relatively small amount of humus, have weak aggregationand low resistance to deflation processes. Soil deflation here is often in the spring, when arable land have the lowest level of vegetation protection.Drywall southeast winds dry up much upper layers of soil, destroy its structure and cause local deflation, particularly in the areas of drained peat and mineral soils of sandyand sandy-loamygranulometric composition.Display of local deflation on the same land for several years, leading to significant loss of soil. The intensity of these hazards depends largely deflationary stability of the soil, of which the main criterion in the literature defined mechanical strength (cohesion of soil aggregates and main indicator - content in soil aggregates with a diameter greater than 1 mm. Based on experimental data obtained in the Kyiv Polissya proven ability to adjust the deflationarydurability of sod-podzolic sandy-loamy soils by rational combining fertilizer plants and chemical reclamation.Increasing the strength of the structure at the joint application of lime and fertilizers due, based on a close correlation, positive changes in soil absorbing complex caused by calcium of lime and humus content increase and improve its quality composition: accumulationof calcium humates that play a leading role in grouting units. In addition, liming of unsaturated bases soils prevents the destruction and removal of these most valuable in agriculturally parts thereof: silt fraction.When applying lime on organo-mineral background of relative content increased by 8,2-18,4%, and the application of some fertilizers - on the contrary, decreased by 10,2%. Liming of acid soils increases the "grain rate structuring" at 0,3-0,6% compared to organo-mineral background, while the separate application of fertilizers reduces it to 2,1-2,7%. Comparison of

  18. The importance of parameterization when simulating the hydrologic response of vegetative land-cover change (United States)

    White, Jeremy; Stengel, Victoria; Rendon, Samuel; Banta, John


    Computer models of hydrologic systems are frequently used to investigate the hydrologic response of land-cover change. If the modeling results are used to inform resource-management decisions, then providing robust estimates of uncertainty in the simulated response is an important consideration. Here we examine the importance of parameterization, a necessarily subjective process, on uncertainty estimates of the simulated hydrologic response of land-cover change. Specifically, we applied the soil water assessment tool (SWAT) model to a 1.4 km2 watershed in southern Texas to investigate the simulated hydrologic response of brush management (the mechanical removal of woody plants), a discrete land-cover change. The watershed was instrumented before and after brush-management activities were undertaken, and estimates of precipitation, streamflow, and evapotranspiration (ET) are available; these data were used to condition and verify the model. The role of parameterization in brush-management simulation was evaluated by constructing two models, one with 12 adjustable parameters (reduced parameterization) and one with 1305 adjustable parameters (full parameterization). Both models were subjected to global sensitivity analysis as well as Monte Carlo and generalized likelihood uncertainty estimation (GLUE) conditioning to identify important model inputs and to estimate uncertainty in several quantities of interest related to brush management. Many realizations from both parameterizations were identified as behavioral in that they reproduce daily mean streamflow acceptably well according to Nash-Sutcliffe model efficiency coefficient, percent bias, and coefficient of determination. However, the total volumetric ET difference resulting from simulated brush management remains highly uncertain after conditioning to daily mean streamflow, indicating that streamflow data alone are not sufficient to inform the model inputs that influence the simulated outcomes of brush management

  19. Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates (United States)

    Di Vittorio, A. V.; Mao, J.; Shi, X.; Chini, L.; Hurtt, G.; Collins, W. D.


    Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. Here we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO2 in 2004, and generates carbon uncertainty that is equivalent to 80% of the net effects of CO2 and climate and 124% of the effects of nitrogen deposition during 1850-2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. We conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.

  20. Land use/cover disturbance due to tourism in Jeseníky Mountain, Czech Republic: A remote sensing and GIS based approach

    Directory of Open Access Journals (Sweden)

    Mukesh Singh Boori


    Full Text Available The Jeseníky Mountains tourism in Czech Republic is unique for its floristic richness. This is caused mainly by the altitude division and polymorphism of the landscape, climate and soil structure. This study assesses the impacts of tourism on the land cover in the Jeseníky Mountain region by comparing multi-temporal Landsat imageries (1991, 2001 and 2013 to describe the rate and extent of land-cover changes. This was achieved through spectral classification of different land cover classes and by assessing the change in forest; settlements; pasture and agriculture in relation to increasing distances (5, 10 and 15 km from three tourism sites with the help of ArcGIS software. The results indicate that the area was deforested (11.13% from 1991 to 2001 than experienced forest regrowth (6.71% from 2001 to 2013. In the first decade pasture and agriculture areas increased and then in next decade decreased. The influence of tourism facilities on land cover is also variable. Around each of the tourism site sampled, there was a general trend of forest removal decreasing as the distance from each village increased, which indicates tourism does have a negative impact on forests. However there was an opposite trend from 2001 to 2013 that indicates conservation area. The interplay among global (tourism, climate, regional (national policies, large-river management and local (construction and agriculture, energy and water sources to support the tourism industry factors drives a distinctive but complex pattern of land-use and land-cover disturbance.

  1. Land Use and Land Cover (LULC) Change Detection in Islamabad and its Comparison with Capital Development Authority (CDA) 2006 Master Plan (United States)

    Hasaan, Zahra


    Remote sensing is very useful for the production of land use and land cover statistics which can be beneficial to determine the distribution of land uses. Using remote sensing techniques to develop land use classification mapping is a convenient and detailed way to improve the selection of areas designed to agricultural, urban and/or industrial areas of a region. In Islamabad city and surrounding the land use has been changing, every day new developments (urban, industrial, commercial and agricultural) are emerging leading to decrease in vegetation cover. The purpose of this work was to develop the land use of Islamabad and its surrounding area that is an important natural resource. For this work the eCognition Developer 64 computer software was used to develop a land use classification using SPOT 5 image of year 2012. For image processing object-based classification technique was used and important land use features i.e. Vegetation cover, barren land, impervious surface, built up area and water bodies were extracted on the basis of object variation and compared the results with the CDA Master Plan. The great increase was found in built-up area and impervious surface area. On the other hand vegetation cover and barren area followed a declining trend. Accuracy assessment of classification yielded 92% accuracies of the final land cover land use maps. In addition these improved land cover/land use maps which are produced by remote sensing technique of class definition, meet the growing need of legend standardization.

  2. A novel assessment of the role of land-use and land-cover change in the global carbon cycle, using a new Dynamic Global Vegetation Model version of the CABLE land surface model (United States)

    Haverd, Vanessa; Smith, Benjamin; Nieradzik, Lars; Briggs, Peter; Canadell, Josep


    In recent decades, terrestrial ecosystems have sequestered around 1.2 PgC y-1, an amount equivalent to 20% of fossil-fuel emissions. This land carbon flux is the net result of the impact of changing climate and CO2 on ecosystem productivity (CO2-climate driven land sink ) and deforestation, harvest and secondary forest regrowth (the land-use change (LUC) flux). The future trajectory of the land carbon flux is highly dependent upon the contributions of these processes to the net flux. However their contributions are highly uncertain, in part because the CO2-climate driven land sink and LUC components are often estimated independently, when in fact they are coupled. We provide a novel assessment of global land carbon fluxes (1800-2015) that integrates land-use effects with the effects of changing climate and CO2 on ecosystem productivity. For this, we use a new land-use enabled Dynamic Global Vegetation Model (DGVM) version of the CABLE land surface model, suitable for use in attributing changes in terrestrial carbon balance, and in predicting changes in vegetation cover and associated effects on land-atmosphere exchange. In this model, land-use-change is driven by prescribed gross land-use transitions and harvest areas, which are converted to changes in land-use area and transfer of carbon between pools (soil, litter, biomass, harvested wood products and cleared wood pools). A novel aspect is the treatment of secondary woody vegetation via the coupling between the land-use module and the POP (Populations Order Physiology) module for woody demography and disturbance-mediated landscape heterogeneity. Land-use transitions to and from secondary forest tiles modify the patch age distribution within secondary-vegetated tiles, in turn affecting biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink. The resulting secondary forest patch age distribution also influences the magnitude of the secondary forest harvest and clearance fluxes

  3. Modelling land cover change effects on catchment-to-lake sediment transfer (United States)

    Smith, Hugh; Peñuela Fernández, Andres; Sellami, Haykel; Sangster, Heather; Boyle, John; Chiverrell, Richard; Riley, Mark


    Measurements of catchment soil erosion and sediment transfer to streams and lakes are limited and typically short duration (physical and social records coupled with high-resolution, sub-annual simulations of catchment-to-lake soil erosion and sedimentation. This choice of modelling period represents a compromise between the length of record and data availability for model parameterisation. We combine historic datasets for climate and land cover from four lake catchments in Britain with a fully revised catchment-scale modelling approach based on the Morgan-Morgan-Finney model, called MMF-TWI, that incorporates new elements representing plant growth, soil water balance and variable runoff and sediment contributing areas. The catchments comprise an intensively-farmed lowland agricultural catchment and three upland catchments. Historic change simulations were compared with sedimentation rates determined from multiple dated cores taken from each lake. Our revised modelling approach produced generally comparable rates of lake sediment flux to those based on sediment archives. Moreover, these centennial scale records form the basis for examining hypothetical scenarios linked to changes in crop rotation (lowland) and riparian re-afforestation (uplands), as well as providing an extended historic baseline against which to compare future climate effects on runoff, erosion and lake sediment delivery.

  4. A procedure to obtain a refined European land use/cover map

    NARCIS (Netherlands)

    Batista e Silva, F.; Lavalle, C.; Koomen, E.


    Available land use/cover maps differ in their spatial extent and in their thematic, spatial, and temporal resolutions. Due to the costs of producing such maps, there is usually a trade-off between spatial extent and resolution. The only European-wide, consistent, and multi-temporal land use/cover

  5. Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands. (United States)

    Cohen, Justin M; Ernst, Kacey C; Lindblade, Kim A; Vulule, John M; John, Chandy C; Wilson, Mark L


    Identification of high-risk malaria foci can help enhance surveillance or control activities in regions where they are most needed. Associations between malaria risk and land-use/land-cover are well-recognized, but these environmental characteristics are closely interrelated with the land's topography (e.g., hills, valleys, elevation), which also influences malaria risk strongly. Parsing the individual contributions of land-cover/land-use variables to malaria risk requires examining these associations in the context of their topographic landscape. This study examined whether environmental factors like land-cover, land-use, and urban density improved malaria risk prediction based solely on the topographically-determined context, as measured by the topographic wetness index. The topographic wetness index, an estimate of predicted water accumulation in a defined area, was generated from a digital terrain model of the landscape surrounding households in two neighbouring western Kenyan highland communities. Variables determined to best encompass the variance in this topographic wetness surface were calculated at a household level. Land-cover/land-use information was extracted from a high-resolution satellite image using an object-based classification method. Topographic and land-cover variables were used individually and in combination to predict household-level malaria in the communities through an iterative split-sample model fitting and testing procedure. Models with only topographic variables were compared to those with additional predictive factors related to land-cover/land-use to investigate whether these environmental factors improved prediction of malaria based on the shape of the land alone. Variables related to topographic wetness proved most useful in predicting the households of individuals contracting malaria in this region of rugged terrain. Other variables related to human modification of the environment also demonstrated clear associations with

  6. Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Vulule John M


    Full Text Available Abstract Background Identification of high-risk malaria foci can help enhance surveillance or control activities in regions where they are most needed. Associations between malaria risk and land-use/land-cover are well-recognized, but these environmental characteristics are closely interrelated with the land's topography (e.g., hills, valleys, elevation, which also influences malaria risk strongly. Parsing the individual contributions of land-cover/land-use variables to malaria risk requires examining these associations in the context of their topographic landscape. This study examined whether environmental factors like land-cover, land-use, and urban density improved malaria risk prediction based solely on the topographically-determined context, as measured by the topographic wetness index. Methods The topographic wetness index, an estimate of predicted water accumulation in a defined area, was generated from a digital terrain model of the landscape surrounding households in two neighbouring western Kenyan highland communities. Variables determined to best encompass the variance in this topographic wetness surface were calculated at a household level. Land-cover/land-use information was extracted from a high-resolution satellite image using an object-based classification method. Topographic and land-cover variables were used individually and in combination to predict household-level malaria in the communities through an iterative split-sample model fitting and testing procedure. Models with only topographic variables were compared to those with additional predictive factors related to land-cover/land-use to investigate whether these environmental factors improved prediction of malaria based on the shape of the land alone. Results Variables related to topographic wetness proved most useful in predicting the households of individuals contracting malaria in this region of rugged terrain. Other variables related to human modification of the

  7. Development of a national geodatabase (Greece) for soil surveys and land evaluation using space technology and GIS (United States)

    Bilas, George; Dionysiou, Nina; Karapetsas, Nikolaos; Silleos, Nikolaos; Kosmas, Konstantinos; Misopollinos, Nikolaos


    This project was funded by OPEKEPE, Ministry of Agricultural Development and Food, Greece and involves development of a national geodatabase and a WebGIS that encompass soil data of all the agricultural areas of Greece in order to supply the country with a multi-purpose master plan for agricultural land management. The area mapped covered more than 385,000 ha divided in more than 9.000 Soil Mapping Units (SMUs) based on physiographic analysis, field work and photo interpretation of satellite images. The field work included description and sampling in three depths (0-30, 30-60 and >60 cm) of 2,000 soil profiles and 8,000 augers (sampling 0-30 and >30 cm). In total more than 22,000 soil samples were collected and analyzed for determining main soil properties associated with soil classification and soil evaluation. Additionally the project included (1) integration of all data in the Soil Geodatabase, (2) finalization of SMUs, (3) development of a Master Plan for Agricultural Land Management and (4) development and operational testing of the Web Portal for e-information and e-services. The integrated system is expected, after being fully operational, to provide important electronic services and benefits to farmers, private sector and governmental organizations. An e-book with the soil maps of Greece was also provided including 570 sheets with data description and legends. The Master Plan for Agricultural Land Management includes soil quality maps for 30 agricultural crops, together with maps showing soil degradation risks, such as erosion, desertification, salinity and nitrates, thus providing the tools for soil conservation and sustainable land management.

  8. Land use and land cover dynamics on the campus of Federal University of Lavras from 1964 to 2009

    Directory of Open Access Journals (Sweden)

    Elizabeth Ferreira


    Full Text Available This study identified, quantified and analyzed changes in land use and cover on the campus of Federal University of Lavras campus, located in Lavras city (Minas Gerais State. The 2009 QuickBird satellite imagery and 1985, 1979, 1971, 1964 vertical aerial photographs were used to produce a set of land use and land cover maps. The work started with the orthorectification of the QuickBird satellite imagery and vertical aerial photographs. The identification and definition of land cover and land use classes were obtained from field surveys in 2009. First, the land cover and land use maps were made from that information. Finally, the quantification and analysis of changes were performed at the imagery time range. The results showed that in 2009 the "urbanized area class" of the campus reached 65.79 ha and that the most significant increase of this class occurred between the years 1964 (6.24 ha and 1971 (24.4 ha. The smallest area of "forest land class" found on the campus was 38.38 ha in 1971, and from 1979 on this situation has been improved reaching 113.18 ha of "forest land class" in 2009. For the "water class" there was not any dam constructed yet in the campus before 1971. Most of the campus area, previously used for "agricultural land class" had a significant reduction within this category, from 384.19 ha in 1964 to 271.16 ha in 2009.

  9. A Review of Land-Cover Mapping Activities in Coastal Alabama and Mississippi (United States)

    Smith, Kathryn E.L.; Nayegandhi, Amar; Brock, John C.


    INTRODUCTION Land-use and land-cover (LULC) data provide important information for environmental management. Data pertaining to land-cover and land-management activities are a common requirement for spatial analyses, such as watershed modeling, climate change, and hazard assessment. In coastal areas, land development, storms, and shoreline modification amplify the need for frequent and detailed land-cover datasets. The northern Gulf of Mexico coastal area is no exception. The impact of severe storms, increases in urban area, dramatic changes in land cover, and loss of coastal-wetland habitat all indicate a vital need for reliable and comparable land-cover data. Four main attributes define a land-cover dataset: the date/time of data collection, the spatial resolution, the type of classification, and the source data. The source data are the foundation dataset used to generate LULC classification and are typically remotely sensed data, such as aerial photography or satellite imagery. These source data have a large influence on the final LULC data product, so much so that one can classify LULC datasets into two general groups: LULC data derived from aerial photography and LULC data derived from satellite imagery. The final LULC data can be converted from one format to another (for instance, vector LULC data can be converted into raster data for analysis purposes, and vice versa), but each subsequent dataset maintains the imprint of the source medium within its spatial accuracy and data features. The source data will also influence the spatial and temporal resolution, as well as the type of classification. The intended application of the LULC data typically defines the type of source data and methodology, with satellite imagery being selected for large landscapes (state-wide, national data products) and repeatability (environmental monitoring and change analysis). The coarse spatial scale and lack of refined land-use categories are typical drawbacks to satellite

  10. Land use, land cover, and drainage on the Albemarle-Pamlico Peninsula, Eastern North Carolina, 1974 (United States)

    Daniel, C.C.


    A land use, land cover, and drainage map of the 2,000-square-mile Albermarle-Pamlico peninsula of eastern North Carolina has been prepared, at a scale of 1:125,000, as part of a larger study of the effects of large-scale land clearing on regional hydrology. The peninsula includes the most extensive area of wetland in North Carolina and one of the largest in the country. In recent years the pace of land clearing on the peninsula has accelerated as land is being converted from forest, swamp, and brushland to agricultural use. Conversion of swamps to intensive farming operations requires profound changes in the landscape. Vegetation is uprooted and burned and ditches and canals are dug to remove excess water. What is the impact of these changes on ground-water supplies and on the streams and surrounding coastal waters which receive the runoff This map will aid in answering these and similar questions that have arisen about the patterns of land use and the artificial drainage system that removes excess water from the land. By showing both land use and drainage, this map can be used to identify those areas where water-related problems may occur and help assess the nature and causes of these problems. The map covers the entire area east of the Suffolk Scarp, an area of about 2,000 square miles, for the year 1974 using data from 1974-76. Land use and land cover were compiled and modified from the U.S. Geological Survey 's Rocky Mount and Manteo LUDA maps. Additional information came from U.S. Geological Survey orthophotoquads, Landsat imagery, and field checking. Drainage was mapped from orthophotoquads, some field inspection, and 7-1/2 minute topographic quadrangle maps.

  11. Limits and dynamics of methane oxidation in landfill cover soils (United States)

    In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a signi...

  12. EnviroAtlas - Paterson, NJ - Meter-Scale Urban Land Cover (MULC) Data (2010) (United States)

    U.S. Environmental Protection Agency — The Paterson, New Jersey EnviroAtlas Meter-Scale Urban Land Cover (MULC) data comprises approximately 66 km2 around the city of Paterson. The land cover data were...

  13. The Effect Of Land Cover/Land Use On Groundwater Resources In Southern Egypt (Luxor Area): Remote Sensing And Field Studies

    International Nuclear Information System (INIS)

    Faid, A.M.; Hinz, E.A.; Montgomery, H.


    The impact of land cover/land use on groundwater can be critical. Land cover / land use maps give an early warning for planners and developers to protect groundwater resources from depletion and preserve its sustain ability. These land cover / land use maps can be used for the planning of groundwater development to prevent the deterioration of the aquifer. The Research Institute for Groundwater of Egypt (RIGW) has carried out hydrogeological studies in 1990 to evaluate the potentiality of groundwater in Luxor area in southern Egypt close to the Nile valley. The region is characterized by a rapid and continuous increase in land reclamation and development on the fringes which surround the already heavily cultivated land within the Nile valley. This presented a need for continuous monitoring and information updating over a vast region in a short time and at a reasonable cost. This study illustrates how remote sensing techniques can be effectively used for monitoring changes in land cover / land use in an effort to aid groundwater management. Landsat Thematic Mapper (TM) data collected in 1984 and 2000 were processed and analyzed over the study area to produce land cover/land use maps. The Normalized Difference Vegetation Index (NDVI) technique is used for Landsat TM images of to quantify areas which are covered by vegetation. Results indicated significant increase in cultivated areas. Remote sensing results are compared with iso-piezo metric maps and iso-salinity maps that were produced in 1984 and 2000. Comparison of these maps indicates groundwater depletion and salinity increase from 1984 to 2000. We relate this to the increase of the area being cultivated

  14. Role of soil biology and soil functions in relation to land use intensity. (United States)

    Bondi, Giulia; Wall, David; Bacher, Matthias; Emmet-Booth, Jeremy; Graça, Jessica; Marongiu, Irene; Creamer, Rachel


    The delivery of the ecosystem's functions is predominantly controlled by soil biology. The biology found in a gram of soil contains more than ten thousand individual species of bacteria and fungi (Torsvik et al., 1990). Understanding the role and the requirements of these organisms is essential for the protection and the sustainable use of soils. Soil biology represents the engine of all the processes occurring in the soil and it supports the ecosystem services such as: 1) nutrient mineralisation 2) plant production 3) water purification and regulation and 4) carbon cycling and storage. During the last years land management type and intensity have been identified as major drivers for microbial performance in soil. For this reason land management needs to be appropriately studied to understand the role of soil biology within this complex interplay of functions. We aimed to study whether and how land management drives soil biological processes and related functions. To reach this objective we built a land use intensity index (LUI) able to quantify the impact of the common farming practices carried out in Irish grassland soils. The LUI is derived from a detailed farmer questionnaire on grassland management practices at 38 farms distributed in the five major agro-climatic regions of Ireland defined by Holden and Brereton (2004). Soils were classified based on their drainage status according to the Irish Soil Information System by Creamer et al. (2014). This detailed questionnaire is then summarised into 3 management intensity components: (i) intensity of Fertilisation (Fi), (ii) frequency of Mowing (Mi) and (iii) intensity of Livestock Grazing (Gi). Sites were sampled to assess the impact of land management intensity on microbial community structure and enzyme behaviour in relation to nitrogen, phosphorus and carbon cycling. Preliminary results for enzymes linked to C and N cycles showed higher activity in relation to low grazing pressure (low Gi). Enzymes linked to P

  15. Land Use and Land Cover - LAND_COVER_PRESETTLEMENT_IDNR_IN: Generalized Presettlement Vegetation Types of Indiana, Circa 1820 (Indiana Department of Natural Resources, Polygon Shapefile) (United States)

    NSGIC State | GIS Inventory — LAND_COVER_PRESETTLEMENT_IDNR_IN.SHP is a polygon shapefile showing generalized presettlement vegetation types of Indiana, circa 1820. The work was based on original...

  16. Soil bacterial diversity in degraded and restored lands of Northeast Brazil. (United States)

    Araújo, Ademir Sérgio Ferreira; Borges, Clovis Daniel; Tsai, Siu Mui; Cesarz, Simone; Eisenhauer, Nico


    Land degradation deteriorates biological productivity and affects environmental, social, and economic sustainability, particularly so in the semi-arid region of Northeast Brazil. Although some studies exist reporting gross measures of soil microbial parameters and processes, limited information is available on how land degradation and restoration strategies influence the diversity and composition of soil microbial communities. In this study we compare the structure and diversity of bacterial communities in degraded and restored lands in Northeast Brazil and determine the soil biological and chemical properties influencing bacterial communities. We found that land degradation decreased the diversity of soil bacteria as indicated by both reduced operational taxonomic unit (OTU) richness and Shannon index. Soils under native vegetation and restoration had significantly higher bacterial richness and diversity than degraded soils. Redundancy analysis revealed that low soil bacterial diversity correlated with a high respiratory quotient, indicating stressed microbial communities. By contrast, soil bacterial communities in restored land positively correlated with high soil P levels. Importantly, however, we found significant differences in the soil bacterial community composition under native vegetation and in restored land, which may indicate differences in their functioning despite equal levels of bacterial diversity.

  17. Geospatial Analysis of Land Use and Land Cover Changes for Discharge at Way Kualagaruntang Watershed in Bandar Lampung


    Yuniarti, Fieni; K, Dyah Indriana; Winarno, Dwi Joko


    Land use and land cover change in a watershed might drive some impacts, such as high amounts of discharge fluctuations. Way Kuala Garuntang Watersheed is one of watershed in Bandar Lampung that has changed significantly. This study analyzed land use and land cover change to determine how much its influence on discharce fluctuations based on Geographics Information System. The method used in this study comprised of hidrology, spatial and sensitivity analysis. Hidrology analysis based on daily ...

  18. A stochastic Forest Fire Model for future land cover scenarios assessment

    Directory of Open Access Journals (Sweden)

    M. D'Andrea


    Full Text Available Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary – each cell either contains a tree or it is empty – and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM, addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  19. LBA-ECO LC-01 Landsat TM Land Use/Land Cover, Northern Ecuadorian Amazon: 1986-1999 (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains Landsat TM imagery for the years 1986, 1989, 1996, and 1999, that have been classified into four land use/land cover (LULC) classes:...

  20. LBA-ECO LC-01 Landsat TM Land Use/Land Cover, Northern Ecuadorian Amazon: 1986-1999 (United States)

    National Aeronautics and Space Administration — This data set contains Landsat TM imagery for the years 1986, 1989, 1996, and 1999, that have been classified into four land use/land cover (LULC) classes: Forest,...

  1. Land Cover as a Framework For Assessing the Risk of Water Pollution (United States)

    James D. Wickham; Kurt H. Riitters; Robert V. O' Neill; Kenneth H. Reckhow; Timothy G. Wade; K. Bruce Jones


    A survey of numerous field studies shows that nitrogen and phosphorous export coefficients are significantly different across forest, agriculture, and urban land-cover types. We used simulations to estimate the land-cover composition at which there was a significant risk of nutrient loads representative of watersheds without forest cover. The results suggest that at...

  2. General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types (United States)

    Birkhofer, Klaus; Schöning, Ingo; Alt, Fabian; Herold, Nadine; Klarner, Bernhard; Maraun, Mark; Marhan, Sven; Oelmann, Yvonne; Wubet, Tesfaye; Yurkov, Andrey; Begerow, Dominik; Berner, Doreen; Buscot, François; Daniel, Rolf; Diekötter, Tim; Ehnes, Roswitha B.; Erdmann, Georgia; Fischer, Christiane; Foesel, Bärbel; Groh, Janine; Gutknecht, Jessica; Kandeler, Ellen; Lang, Christa; Lohaus, Gertrud; Meyer, Annabel; Nacke, Heiko; Näther, Astrid; Overmann, Jörg; Polle, Andrea; Pollierer, Melanie M.; Scheu, Stefan; Schloter, Michael; Schulze, Ernst-Detlef; Schulze, Waltraud; Weinert, Jan; Weisser, Wolfgang W.; Wolters, Volkmar; Schrumpf, Marion


    Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider

  3. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Directory of Open Access Journals (Sweden)

    Moslem Ladoni

    Full Text Available Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover and non-leguminous (winter rye cover crops on potentially mineralizable N (PMN and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management

  4. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems. (United States)

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip


    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row

  5. Usability Study to Assess the IGBP Land Cover Classification for Singapore

    Directory of Open Access Journals (Sweden)

    Nanki Sidhu


    Full Text Available Our research focuses on assessing the usability of the International Geosphere Biosphere Programme (IGBP classification scheme provided in the MODIS MCD12Q1-1 dataset for assessing the land cover of the city-state, Singapore. We conducted a user study with responses from 33 users by providing them with Google Earth images from different parts of Singapore, asking survey-takers to classify these images according to their understanding by the IGBP definitions provided. We also conducted interviews with experts from major governmental agencies working with satellite imagery, which highlighted the need for a detailed land classification for Singapore. In addition to the qualitative analysis of the IGBP land classification scheme, we carried out a validation of the MCD12Q1-1 remote sensing product against SPOT-5 imagery for our study area. The user study revealed that survey-takers were able to correctly classify urban areas, as well as densely forested areas. Misclassifications between Cropland and Mixed Forest classes were highest and were attributed by users to the broad terminology of the IGBP of the two land cover class definitions. For the accuracy assessment, we obtained validation points using weighted and unweighted stratified sampling. The overall classification accuracy for all 17 IGBP land classes is 62%. Upon selecting only the four most occurring IGBP land classes in Singapore, the classification accuracy improved to 71%. Validation of the MCD12Q1-1 against ground truth for Singapore revealed less-common land classes that may be of importance in a global context but are sources of error when the same product is applied at a smaller scale. Combining the user study with the accuracy assessment gives a comprehensive overview of the challenges associated with using global-level land cover data to derive localized land cover information specifically for smaller land masses like Singapore.

  6. A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data (United States)

    Stibig, H.-J.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; ,; Beuchle, R.; Fritz, S.; Mubareka, S.; Giri, C.


    Aim  Our aim was to produce a uniform ‘regional’ land-cover map of South and Southeast Asia based on ‘sub-regional’ mapping results generated in the context of the Global Land Cover 2000 project.Location  The ‘region’ of tropical and sub-tropical South and Southeast Asia stretches from the Himalayas and the southern border of China in the north, to Sri Lanka and Indonesia in the south, and from Pakistan in the west to the islands of New Guinea in the far east.Methods  The regional land-cover map is based on sub-regional digital mapping results derived from SPOT-VEGETATION satellite data for the years 1998–2000. Image processing, digital classification and thematic mapping were performed separately for the three sub-regions of South Asia, continental Southeast Asia, and insular Southeast Asia. Landsat TM images, field data and existing national maps served as references. We used the FAO (Food and Agriculture Organization) Land Cover Classification System (LCCS) for coding the sub-regional land-cover classes and for aggregating the latter to a uniform regional legend. A validation was performed based on a systematic grid of sample points, referring to visual interpretation from high-resolution Landsat imagery. Regional land-cover area estimates were obtained and compared with FAO statistics for the categories ‘forest’ and ‘cropland’.Results  The regional map displays 26 land-cover classes. The LCCS coding provided a standardized class description, independent from local class names; it also allowed us to maintain the link to the detailed sub-regional land-cover classes. The validation of the map displayed a mapping accuracy of 72% for the dominant classes of ‘forest’ and ‘cropland’; regional area estimates for these classes correspond reasonably well to existing regional statistics.Main conclusions  The land-cover map of South and Southeast Asia provides a synoptic view of the distribution of land cover of tropical and sub


    Directory of Open Access Journals (Sweden)

    G. M. Li


    Full Text Available According to the function, land space types are divided into key development areas, restricted development areas and forbidden development areas in Sichuan Province. This paper monitors and analyses the changes of land cover in different typical functional areas from 2010 to 2017, which based on ZY-3 high-score images data and combined with statistical yearbook and thematic data of Sichuan Province. The results show that: The land cover types of typical key development zones are mainly composed of cultivated land, forest land, garden land, and housing construction land, which accounts for the total area of land cover 87 %. The land cover types of typical restricted development zone mainly consists of forest land and grassland, which occupy 97.71 % of the total area of the surface coverage. The land cover types of the typical prohibition development zone mainly consist of forest land, grassland, desert and bared earth, which accounts for the total area of land cover 99.31 %.

  8. Land Cover Change Monitoring of Typical Functional Communities of Sichuan Province Based on ZY-3 Data (United States)

    Li, G. M.; Li, S.; Ying, G. W.; Wu, X. P.


    According to the function, land space types are divided into key development areas, restricted development areas and forbidden development areas in Sichuan Province. This paper monitors and analyses the changes of land cover in different typical functional areas from 2010 to 2017, which based on ZY-3 high-score images data and combined with statistical yearbook and thematic data of Sichuan Province. The results show that: The land cover types of typical key development zones are mainly composed of cultivated land, forest land, garden land, and housing construction land, which accounts for the total area of land cover 87 %. The land cover types of typical restricted development zone mainly consists of forest land and grassland, which occupy 97.71 % of the total area of the surface coverage. The land cover types of the typical prohibition development zone mainly consist of forest land, grassland, desert and bared earth, which accounts for the total area of land cover 99.31 %.

  9. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes (United States)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun


    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant

  10. Assessing the sensitivity of avian species abundance to land cover and climate (United States)

    LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R.; Dijak, William D.; Millspaugh, Joshua J.


    Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.

  11. Land User and Land Cover Maps of Europe: a Webgis Platform (United States)

    Brovelli, M. A.; Fahl, F. C.; Minghini, M.; Molinari, M. E.


    This paper presents the methods and implementation processes of a WebGIS platform designed to publish the available land use and land cover maps of Europe at continental scale. The system is built completely on open source infrastructure and open standards. The proposed architecture is based on a server-client model having GeoServer as the map server, Leaflet as the client-side mapping library and the Bootstrap framework at the core of the front-end user interface. The web user interface is designed to have typical features of a desktop GIS (e.g. activate/deactivate layers and order layers by drag and drop actions) and to show specific information on the activated layers (e.g. legend and simplified metadata). Users have the possibility to change the base map from a given list of map providers (e.g. OpenStreetMap and Microsoft Bing) and to control the opacity of each layer to facilitate the comparison with both other land cover layers and the underlying base map. In addition, users can add to the platform any custom layer available through a Web Map Service (WMS) and activate the visualization of photos from popular photo sharing services. This last functionality is provided in order to have a visual assessment of the available land coverages based on other user-generated contents available on the Internet. It is supposed to be a first step towards a calibration/validation service that will be made available in the future.


    Directory of Open Access Journals (Sweden)

    M. Voloshuk


    Full Text Available The authors consider theoretical and practical prospects of creating biofitocenozes on degraded lands. The problems of soil erosion in Ukraine are discussed. The division of lands into 5 groups is given in view of a degree eroded of a soil cover, exposing by their erosion, the parameters of a relief, etc. Show prospect of creation biofitocenozes on these lands, to select the greatest productive grass associations. The technological operations before crop and entering of various dozes of organic and mineral fertilizers are specified.

  13. Assessing and analysing the impact of land take pressures on arable land

    Directory of Open Access Journals (Sweden)

    E. Aksoy


    Full Text Available Land, and in particular soil, is a finite and essentially non-renewable resource. Across the European Union, land take, i.e. the increase of settlement area over time, annually consumes more than 1000 km2 of which half is actually sealed and hence lost under impermeable surfaces. Land take, and in particular soil sealing, has already been identified as one of the major soil threats in the 2006 European Commission Communication Towards a Thematic Strategy on Soil Protection and the Soil Thematic Strategy and has been confirmed as such in the report on the implementation of this strategy. The aim of this study is to relate the potential of land for a particular use in a given region with the actual land use. This allows evaluating whether land (especially the soil dimension is used according to its (theoretical potential. To this aim, the impact of several land cover flows related to urban development on soils with good, average, and poor production potentials were assessed and mapped. Thus, the amount and quality (potential for agricultural production of arable land lost between the years 2000 and 2006 was identified. In addition, areas with high productivity potential around urban areas, indicating areas of potential future land use conflicts for Europe, were identified.

  14. Effects of soil management techniques on soil water erosion in apricot orchards. (United States)

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi


    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide

  15. Simulating the effect of land use and climate change on upland soil carbon stock of Wales using ECOSSE (United States)

    Rani Nayak, Dali; Gottschalk, Pia; Evans, Chris; Smith, Pete; Smith, Jo


    Within Wales soils hold between 400-500 MtC, over half of this carbon is stored in organic and organo-mineral soil which cover less than 20% of the land area of Wales. It has been predicted that climate change will increasingly have an impact on the C stock of soils in Wales. Higher temperatures will increase the rate of decomposition of organic matter, leading to increased C losses. However increased net primary production (NPP), leading to increased inputs of organic matter, may offset this. Land use plays a major role in determining the level of soil C and the direction of change in status (soil as a source or sink). We present here an assessment of the effect of land use change and climate change on the upland soil carbon stock of Wales in 3 different catchments i.e. Migneint, Plynlimon and Pontbren using a process-based model of soil carbon and nitrogen dynamics, ECOSSE. The uncertainties introduced in the simulations by using only the data available at national scale are determined. The ECOSSE model (1,2) has been developed to simulate greenhouse gas emissions from both organic and mineral soils. ECOSSE was derived from RothC (3) and SUNDIAL (4,5) and predicts the impacts of changes in land use and climate on emissions and soil carbon stock. Simulated changes in soil C are dependent on the type of land use change, the soil type where the land use change is occurring, and the C content of soil under the initial and final land uses. At Migneint and Plynlimon, the major part of the losses occurs due to the conversion of semi-natural land to grassland. Reducing the land use change from semi-natural to grassland is the main measure needed to mitigate losses of soil C. At Pontbren, the model predicts a net gain in soil C with the predicted land use change, so there is no need to mitigate. Simulations of future changes in soil C to 2050 showed very small changes in soil C due to climate compared to changes due to land use change. At the selected catchments, changes

  16. Land Cover Classification from Multispectral Data Using Computational Intelligence Tools: A Comparative Study

    Directory of Open Access Journals (Sweden)

    André Mora


    Full Text Available This article discusses how computational intelligence techniques are applied to fuse spectral images into a higher level image of land cover distribution for remote sensing, specifically for satellite image classification. We compare a fuzzy-inference method with two other computational intelligence methods, decision trees and neural networks, using a case study of land cover classification from satellite images. Further, an unsupervised approach based on k-means clustering has been also taken into consideration for comparison. The fuzzy-inference method includes training the classifier with a fuzzy-fusion technique and then performing land cover classification using reinforcement aggregation operators. To assess the robustness of the four methods, a comparative study including three years of land cover maps for the district of Mandimba, Niassa province, Mozambique, was undertaken. Our results show that the fuzzy-fusion method performs similarly to decision trees, achieving reliable classifications; neural networks suffer from overfitting; while k-means clustering constitutes a promising technique to identify land cover types from unknown areas.


    Directory of Open Access Journals (Sweden)

    Chinyere Blessing Okebalama


    Full Text Available Land use change affects soil organic carbon (SOC storage in tropical soils, but information on the influence of land use change on segmental topsoil organic carbon stock is lacking. The study investigated SOC levels in Awgu (L, Okigwe (CL, Nsukka I (SL, and Nsukka II (SCL locations in southeastern Nigeria. Land uses considered in each location were the cultivated (manually-tilled and the adjacent uncultivated (4-5 year bush-fallow soils from which samples at 0-10, 10-20, and 20-30 cm topsoil depth were assessed. The SOC level decreased with topsoil depth in both land uses. Overall, the SOC level at 0-30 cm was between 285.44 and 805.05 Mg ha-1 amongst the soils.  The uncultivated sites stored more SOC than its adjacent cultivated counterpart at 0-10 and 10-20 cm depth, except in Nsukka II soils, which had significantly higher SOC levels in the cultivated than the uncultivated site. Nonetheless, at 20-30 cm depth, the SOC pool across the fallowed soils was statistically similar when parts of the same soil utilization type were tilled and cultivated. Therefore, while 4 to 5 years fallow may be a useful strategy for SOC stabilization within 20-30 cm topsoil depth in the geographical domain, segmental computation of topsoil organic carbon pool is critical.

  18. Response characteristics of soil fractal features to different land uses in typical purple soil watershed.

    Directory of Open Access Journals (Sweden)

    Bang-lin Luo

    Full Text Available As a fundamental characteristic of soil physical properties, the soil Particle Size Distribution (PSD is important in the research on soil moisture migration, solution transformation, and soil erosion. In this research, the PSD characteristics with distinct methods in different land uses are analyzed. The results show that the upper bound of the volume domain of the clay domain ranges from 5.743 μm to 5.749 μm for all land-use types. For the silt domain of purple soil, the value ranges among 286.852~286.966 μm. For all purple soil land-use types, the order of the volume domain fractal dimensions is D clayD silt(U>D sand (U>D sand and D silt>D silt(U>D sand>D sand(U, respectively. As it is compared with all Dvi, the D silt has the most significant correlativity to the soil texture and organic matter in different land uses of the typical purple soil watersheds. Therefore, Dsilt will be a potential indictor for evaluating the proportion of fine particles in the PSD, as well as a key measurement in soil quality and productivity studies.

  19. [Culturable psychrotolerant methanotrophic bacteria in landfill cover soil]. (United States)

    Kallistova, A Iu; Montonen, L; Jurgens, G; Munster, U; Kevbrina, M V; Nozhevnikova, A N


    Methanotrophs closely related to psychrotolerant members of the genera Methylobacter and Methylocella were identified in cultures enriched at 10@C from landfill cover soil samples collected in the period from April to November. Mesophilic methanotrophs of the genera Methylobacter and Methylosinus were found in cultures enriched at 20 degrees C from the same cover soil samples. A thermotolerant methanotroph related to Methylocaldum gracile was identified in the culture enriched at 40 degrees C from a sample collected in May (the temperature of the cover soil was 11.5-12.5 degrees C). In addition to methanotrophs, methylobacteria of the genera Methylotenera and Methylovorus and members of the genera Verrucomicrobium, Pseudomonas, Pseudoxanthomonas, Dokdonella, Candidatus Protochlamydia, and Thiorhodospira were also identified in the enrichment cultures. A methanotroph closely related to the psychrotolerant species Methylobacter tundripaludum (98% sequence identity of 16S r-RNA genes with the type strain SV96(T)) was isolated in pure culture. The introduction of a mixture of the methanotrophic enrichments, grown at 15 degrees C, into the landfill cover soil resulted in a decrease in methane emission from the landfill surface in autumn (October, November). The inoculum used was demonstrated to contain methanotrophs closely related to Methylobacter tundripaludum SV96.

  20. Highlighting continued uncertainty in global land cover maps for the user community

    International Nuclear Information System (INIS)

    Fritz, Steffen; See, Linda; McCallum, Ian; Schill, Christian; Obersteiner, Michael; Van der Velde, Marijn; Boettcher, Hannes; Havlík, Petr; Achard, Frédéric


    In the last 10 years a number of new global datasets have been created and new, more sophisticated algorithms have been designed to classify land cover. GlobCover and MODIS v.5 are the most recent global land cover products available, where GlobCover (300 m) has the finest spatial resolution of other comparable products such as MODIS v.5 (500 m) and GLC-2000 (1 km). This letter shows that the thematic accuracy in the cropland domain has decreased when comparing these two latest products. This disagreement is also evident spatially when examining maps of cropland and forest disagreement between GLC-2000, MODIS and GlobCover. The analysis highlights the continued uncertainty surrounding these products, with a combined forest and cropland disagreement of 893 Mha (GlobCover versus MODIS v.5). This letter suggests that data sharing efforts and the provision of more in situ data for training, calibration and validation are very important conditions for improving future global land cover products.

  1. Land use/land cover change geo-informative Tupu of Nujiang River in Northwest Yunnan Province (United States)

    Wang, Jin-liang; Yang, Yue-yuan; Huang, You-ju; Fu, Lei; Rao, Qing


    Land Use/Land Cover Change (LUCC) is the core components of global change researches. It is significant for understanding regional ecological environment and LUCC mechanism of large scale to develop the study of LUCC of regional level. Nujiang River is the upper reaches of a big river in the South Asia--Salween River. Nujiang River is a typical mountainous river which is 3200 kilometer long and its basin area is 32.5 × 105 square kilometer. It locates in the core of "Three Parallel Rivers" World Natural Heritage. It is one of international biodiversity conservation center of the world, the ecological fragile zone and key ecological construct