WorldWideScience

Sample records for soil flux levels

  1. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  2. From COS ecosystem fluxes to GPP: integrating soil, branch and ecosystem fluxes.

    Science.gov (United States)

    Kooijmans, L.; Maseyk, K. S.; Vesala, T.; Mammarella, I.; Baker, I. T.; Seibt, U.; Sun, W.; Aalto, J.; Franchin, A.; Kolari, P.; Keskinen, H.; Levula, J.; Chen, H.

    2016-12-01

    The close coupling of Carbonyl Sulfide (COS) and CO2 due to a similar uptake pathway into plant stomata makes COS a promising new tracer that can potentially be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. Although ecosystem-scale measurements have been made at several sites, the contribution of different ecosystem components to the total COS budget is often unknown. Besides that, the average Leaf Relative Uptake (LRU) ratio needs to be better determined to accurately translate COS ecosystem fluxes into GPP estimates when the simple linear correlation between GPP estimates and COS plant uptake is used. We performed two campaigns in the summer of 2015 and 2016 at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests. A combination of COS measurements were made during both years, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes. In addition to these, branch chamber measurements were done in 2016 in an attempt to observe the LRU throughout the whole season. The LRU ratio shows an exponential correlation with photosynthetic active radiation (PAR) but is constant for PAR levels above 500 µmol m-2 s-1. Mid-day LRU values are 1.0 (aspen) and 1.5 (pine). The correlation between LRU and PAR can be explained by the fact that COS is hydrolyzed with the presence of the enzyme carbonic anhydrase, and is not light dependent, whereas the photosynthetic uptake of CO2 is. We observed nighttime fluxes on the order of 25-30 % of the daily maximum COS uptake. Soils are a small sink of COS and contribute to 3 % of the total ecosystem COS flux during daytime. In a comparison between observed and simulated fluxes from the Simple Biosphere (SiB) model, the modelled COS and CO2 ecosystem fluxes are on average 40 % smaller than the observed fluxes, however, the Ecosystem Relative Uptake (ERU) ratios are identical at a value of 1.9 ± 0

  3. Volatilisation of aromatic hydrocarbons from soil: part II, fluxes from coal tar contaminated soils residing below the soil surface

    International Nuclear Information System (INIS)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons from coal tar contaminated soil, placed below a 5 cm deep layer of uncontaminated soil, were measured in the laboratory over a period of 53 days. The contaminated soil originated from a former gasworks site and contained concentrations of 11 selected aromatic hydrocarbons between 50 to 840 μg/cm 3 . Where the microbial activity was inhibited, the fluxes stabilized on a semi-steady-state level for the monocyclic aromatic hydrocarbons, naphthalene and 1-methylnaphthalene after a period of 10-20 days. Fluxes of acenaphthene and fluorene were only measurable in an experiment that utilized a cover soil with a low organic content. The fluxes were predicted by a numerical model assuming that the compounds acted independently of each other and that local equilibrium between the air, water, and sorbed phases existed. The model overestimated the fluxes for all the detected aromatic hydrocarbons by a factor of 1.3 to 12. When the cover soil was adapted to degrade naphthalene, the fluxes of naphthalene and 1-methylnaphthalene approached the detection limit after 5 to 8 days. Thereafter the fluxes of these two compounds were less than predicted by the model employing half-life values of 0.5 and 1 day for naphthalene and 1-methylnaphthalene respectively. 10 refs., 6 figs., 7 tabs

  4. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    Science.gov (United States)

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  5. Diurnal Change of Soil Carbon Flux of Binhai New District

    Science.gov (United States)

    Wang, T. F.; Mao, T. Y.; Ye, W.

    2018-05-01

    In order to investigate the factors influencing diurnal change of soil carbon flux of Binhai New District. Field observation experiments were carried out by using LC pro-SD photosynthetic apparatus. The diurnal changes of soil carbon flux and its environmental factors such as atmosphere temperature and soil temperature were analysed. The results indicated that soil carbon flux appeared single diurnal pattern. The diurnal average of soil carbon flux ranked from 0.2761 to 2.3367μmo1/m2/s. Soil carbon flux varied significantly among different land use regimes(Pequations (Pquadratic correlations between soil carbon flux and soil temperature (10cm). And soil temperature could account for more than 32.27% of the soil carbon flux changes (P<0.05, R2=0.3227-0.7465).

  6. Soil surface CO2 fluxes on the Konza Prairie

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, Shoshi B.

    1990-01-01

    The utilization of a soil chamber to measure fluxes of soil-surface CO2 fluxes is described in terms of equipment, analytical methods, and estimate quality. A soil chamber attached to a gas-exchange system measures the fluxes every 5-15 min, and the data are compared to measurements of the CO2 fluxes from the canopy and from the soil + canopy. The soil chamber yields good measurements when operated in a closed system that is ported to the free atmosphere, and the CO2 flux is found to have a diurnal component.

  7. Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama

    Directory of Open Access Journals (Sweden)

    A. L. Matson

    2017-07-01

    Full Text Available Tropical lowland forest soils are significant sources and sinks of trace gases. In order to model soil trace gas flux for future climate scenarios, it is necessary to be able to predict changes in soil trace gas fluxes along natural gradients of soil fertility and climatic characteristics. We quantified trace gas fluxes in lowland forest soils at five locations in Panama, which encompassed orthogonal precipitation and soil fertility gradients. Soil trace gas fluxes were measured monthly for 1 (NO or 2 (CO2, CH4, N2O years (2010–2012 using vented dynamic (for NO only or static chambers with permanent bases. Across the five sites, annual fluxes ranged from 8.0 to 10.2 Mg CO2-C, −2.0 to −0.3 kg CH4-C, 0.4 to 1.3 kg N2O-N and −0.82 to −0.03 kg NO-N ha−1 yr−1. Soil CO2 emissions did not differ across sites, but they did exhibit clear seasonal differences and a parabolic pattern with soil moisture across sites. All sites were CH4 sinks; within-site fluxes were largely controlled by soil moisture, whereas fluxes across sites were positively correlated with an integrated index of soil fertility. Soil N2O fluxes were low throughout the measurement years, but the highest emissions occurred at a mid-precipitation site with high soil N availability. Net negative NO fluxes at the soil surface occurred at all sites, with the most negative fluxes at the low-precipitation site closest to Panama City; this was likely due to high ambient NO concentrations from anthropogenic sources. Our study highlights the importance of both short-term (climatic and long-term (soil and site characteristics factors in predicting soil trace gas fluxes.

  8. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems.

    Science.gov (United States)

    Zhou, Minghua; Butterbach-Bahl, Klaus; Vereecken, Harry; Brüggemann, Nicolas

    2017-03-01

    Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural

  9. Hydrocarbon and Carbon Dioxide Fluxes from Natural Gas Well Pad Soils and Surrounding Soils in Eastern Utah.

    Science.gov (United States)

    Lyman, Seth N; Watkins, Cody; Jones, Colleen P; Mansfield, Marc L; McKinley, Michael; Kenney, Donna; Evans, Jordan

    2017-10-17

    We measured fluxes of methane, nonmethane hydrocarbons, and carbon dioxide from natural gas well pad soils and from nearby undisturbed soils in eastern Utah. Methane fluxes varied from less than zero to more than 38 g m -2 h -1 . Fluxes from well pad soils were almost always greater than from undisturbed soils. Fluxes were greater from locations with higher concentrations of total combustible gas in soil and were inversely correlated with distance from well heads. Several lines of evidence show that the majority of emission fluxes (about 70%) were primarily due to subsurface sources of raw gas that migrated to the atmosphere, with the remainder likely caused primarily by re-emission of spilled liquid hydrocarbons. Total hydrocarbon fluxes during summer were only 39 (16, 97)% as high as during winter, likely because soil bacteria consumed the majority of hydrocarbons during summer months. We estimate that natural gas well pad soils account for 4.6 × 10 -4 (1.6 × 10 -4 , 1.6 × 10 -3 )% of total emissions of hydrocarbons from the oil and gas industry in Utah's Uinta Basin. Our undisturbed soil flux measurements were not adequate to quantify rates of natural hydrocarbon seepage in the Uinta Basin.

  10. Faunal Drivers of Soil Flux Dynamics via Alterations in Crack Structure

    Science.gov (United States)

    DeCarlo, Keita; Caylor, Kelly

    2016-04-01

    Organismal activity, in addition to its role in ecological feedbacks, has the potential to serve as instigators or enhancers of atmospheric and hydrologic processes via alterations in soil structural regimes. We investigated the biomechanical effect of faunal activity on soil carbon dynamics via changes in soil crack structure, focusing on three dryland soil systems: bioturbated, biocompacted and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer (IRGA). Results show that faunal influences play a divergent biomechanics role in bulk soil cracking: bioturbation induced by belowground fauna creates "surficial" (shallow, large, well-connected) networks relative to the "systematic" (deep, moderate, poorly connected) networks created by aboveground fauna. The latter also shows a "memory" of past wetting/drying events in the consolidated soil through a crack layering effect. These morphologies further drive differences in soil carbon flux: under dry conditions, bioturbated and control soils show a persistently high and low mean carbon flux, respectively, while biocompacted soils show a large diurnal trend, with daytime lows and nighttime highs comparable to the control and bioturbated soils, respectively. Overall fluxes under wet conditions are considerably higher, but also more variable, though higher mean fluxes are observed in the biocompacted and bioturbated soils. Our results suggest that the increased surface area in the bioturbated soils create enhanced but constant diffusive processes, whereas the increased thermal gradient in the biocompacted soils create novel convective processes that create high fluxes that are diurnal in nature.

  11. Soil surface CO2 fluxes and the carbon budget of a grassland

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-01-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  12. 222Rn flux and soil air concentration profiles in West-Germany. Soil 222Rn as tracer for gas transport in the unsaturated soil zone

    International Nuclear Information System (INIS)

    Doerr, H.; Muennich, K.O.

    1990-01-01

    Measurements of the 222 Rn activity concentration profile in the soil and the 222 Rn flux in West-Germany are presented. The spatial pattern of the 222 Rn flux depends more on soil type than on the 226 Ra activity of the soil material. The average 222 Rn flux from sandy soils is 1000-2000 dpm m -2 h -1 and 4000-6000 dpm m -2 h -1 froam loamy and clayey soils. Weekly 222 Rn flux measurements during a period of 1 year at a sandy site show no significant temporal variations. At a clayey site, the 222 Rn flux tends to be higher in summer than in winter. The permeability coefficient P Rn , obtained from simultaneous 222 Rn flux and concentration profile measurements in various soils, can be expressed as a function of the soil parameters total porosity ε 0 , soil moisture F, tortuosity k and the molecular diffusion coefficient D 0 of 222 Rn in air: P = D 0 ((ε 0 -F)/k-const.). The flux of any other gas into or out of the soil can thus be calculated from its measured concentration profile in the soil and from the 222 Rn permeability coefficient, replacing the molecular diffusion coefficient of 222 Rn by that of the specific gas under consideration. As an example, this method of flux determination is demonstrated for the soil CO 2 flux to the atmosphere and for the flux of atmospheric CH 4 into the soil. (author) 14 refs

  13. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  14. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  15. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    Science.gov (United States)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  17. Land Use, Land Use History, and Soil Type Affect Soil Greenhouse Gas Fluxes From Agricultural Landscapes of the East African Highlands

    Science.gov (United States)

    Wanyama, I.; Rufino, M. C.; Pelster, D. E.; Wanyama, G.; Atzberger, C.; van Asten, P.; Verchot, Louis V.; Butterbach-Bahl, K.

    2018-03-01

    This study aims to explain effects of soil textural class, topography, land use, and land use history on soil greenhouse gas (GHG) fluxes in the Lake Victoria region. We measured GHG fluxes from intact soil cores collected in Rakai, Uganda, an area characterized by low-input smallholder (soil cores were air dried and rewetted to water holding capacities (WHCs) of 30, 55, and 80%. Soil CO2, CH4, and N2O fluxes were measured for 48 h following rewetting. Cumulative N2O fluxes were highest from soils under perennial crops and the lowest from soils under annual crops (P soils had lower N2O fluxes than the clay soils (P soil CO2 fluxes were highest from eucalyptus plantations and lowest from annual crops across multiple WHC (P = 0.014 at 30% WHC and P soil cores from the top soil. This study reveals that land use and soil type have strong effects on GHG fluxes from agricultural land in the study area. Field monitoring of fluxes is needed to confirm whether these findings are consistent with what happens in situ.

  18. Measurements of flux and isotopic composition of soil carbon dioxide

    International Nuclear Information System (INIS)

    Gorczyca, Z.; Rozanski, K.; Kuc, T.

    2002-01-01

    The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)

  19. Landscape analysis of soil methane flux across complex terrain

    Science.gov (United States)

    Kaiser, Kendra E.; McGlynn, Brian L.; Dore, John E.

    2018-05-01

    Relationships between methane (CH4) fluxes and environmental conditions have been extensively explored in saturated soils, while research has been less prevalent in aerated soils because of the relatively small magnitudes of CH4 fluxes that occur in dry soils. Our study builds on previous carbon cycle research at Tenderfoot Creek Experimental Forest, Montana, to identify how environmental conditions reflected by topographic metrics can be leveraged to estimate watershed scale CH4 fluxes from point scale measurements. Here, we measured soil CH4 concentrations and fluxes across a range of landscape positions (7 riparian, 25 upland), utilizing topographic and seasonal (29 May-12 September) gradients to examine the relationships between environmental variables, hydrologic dynamics, and CH4 emission and uptake. Riparian areas emitted small fluxes of CH4 throughout the study (median: 0.186 µg CH4-C m-2 h-1) and uplands increased in sink strength with dry-down of the watershed (median: -22.9 µg CH4-C m-2 h-1). Locations with volumetric water content (VWC) below 38 % were methane sinks, and uptake increased with decreasing VWC. Above 43 % VWC, net CH4 efflux occurred, and at intermediate VWC net fluxes were near zero. Riparian sites had near-neutral cumulative seasonal flux, and cumulative uptake of CH4 in the uplands was significantly related to topographic indices. These relationships were used to model the net seasonal CH4 flux of the upper Stringer Creek watershed (-1.75 kg CH4-C ha-1). This spatially distributed estimate was 111 % larger than that obtained by simply extrapolating the mean CH4 flux to the entire watershed area. Our results highlight the importance of quantifying the space-time variability of net CH4 fluxes as predicted by the frequency distribution of landscape positions when assessing watershed scale greenhouse gas balances.

  20. Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods

    DEFF Research Database (Denmark)

    Kandel, Tanka P; Lærke, Poul Erik; Elsgaard, Lars

    2016-01-01

    One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre-deployment flu......One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre...... was placed on fixed collars, and CO2 concentration in the chamber headspace were recorded at 1-s intervals for 45 min. Fluxes were measured in different soil types (sandy, sandy loam and organic soils), and for various manipulations (tillage, rain and drought) and soil conditions (temperature and moisture......) to obtain a range of fluxes with different shapes of flux curves. The linear method provided more stable flux results during short enclosure times (few min) but underestimated initial fluxes by 15–300% after 45 min deployment time. Non-linear models reduced the underestimation as average underestimation...

  1. Soil greenhouse gas fluxes from different tree species on Taihang Mountain, North China

    Science.gov (United States)

    Liu, X. P.; Zhang, W. J.; Hu, C. S.; Tang, X. G.

    2014-03-01

    The objectives of this study were to investigate seasonal variation of greenhouse gas fluxes from soils on sites dominated by plantation (Robinia pseudoacacia, Punica granatum, and Ziziphus jujube) and natural regenerated forests (Vitex negundo var. heterophylla, Leptodermis oblonga, and Bothriochloa ischcemum), and to identify how tree species, litter exclusion, and soil properties (soil temperature, soil moisture, soil organic carbon, total N, soil bulk density, and soil pH) explained the temporal and spatial variation in soil greenhouse gas fluxes. Fluxes of greenhouse gases were measured using static chamber and gas chromatography techniques. Six static chambers were randomly installed in each tree species. Three chambers were randomly designated to measure the impacts of surface litter exclusion, and the remaining three were used as a control. Field measurements were conducted biweekly from May 2010 to April 2012. Soil CO2 emissions from all tree species were significantly affected by soil temperature, soil moisture, and their interaction. Driven by the seasonality of temperature and precipitation, soil CO2 emissions demonstrated a clear seasonal pattern, with fluxes significantly higher during the rainy season than during the dry season. Soil CH4 and N2O fluxes were not significantly correlated with soil temperature, soil moisture, or their interaction, and no significant seasonal differences were detected. Soil organic carbon and total N were significantly positively correlated with CO2 and N2O fluxes. Soil bulk density was significantly negatively correlated with CO2 and N2O fluxes. Soil pH was not correlated with CO2 and N2O emissions. Soil CH4 fluxes did not display pronounced dependency on soil organic carbon, total N, soil bulk density, and soil pH. Removal of surface litter significantly decreased in CO2 emissions and CH4 uptakes. Soils in six tree species acted as sinks for atmospheric CH4. With the exception of Ziziphus jujube, soils in all tree

  2. Field fluxes and speciation of arsines emanating from soils.

    Science.gov (United States)

    Mestrot, Adrien; Feldmann, Joerg; Krupp, Eva M; Hossain, Mahmud S; Roman-Ross, Gabriela; Meharg, Andrew A

    2011-03-01

    The biogeochemical cycle of arsenic (As) has been extensively studied over the past decades because As is an environmentally ubiquitous, nonthreshold carcinogen, which is often elevated in drinking water and food. It has been known for over a century that micro-organisms can volatilize inorganic As salts to arsines (arsine AsH(3), mono-, di-, and trimethylarsines, MeAsH(2), Me(2)AsH, and TMAs, respectively), but this part of the As cycle, with the exception of geothermal environs, has been almost entirely neglected because of a lack of suited field measurement approaches. Here, a validated, robust, and low-level field-deployable method employing arsine chemotrapping was used to quantify and qualify arsines emanating from soil surfaces in the field. Up to 240 mg/ha/y arsines was released from low-level polluted paddy soils (11.3 ± 0.9 mg/kg As), primarily as TMAs, whereas arsine flux below method detection limit was measured from a highly contaminated mine spoil (1359 ± 212 mg/kg As), indicating that soil chemistry is vital in understanding this phenomenon. In microcosm studies, we could show that under reducing conditions, induced by organic matter (OM) amendment, a range of soils varied in their properties, from natural upland peats to highly impacted mine-spoils, could all volatilize arsines. Volatilization rates from 0.5 to 70 μg/kg/y were measured, and AsH(3), MeAsH(2), Me(2)AsH, and TMAs were all identified. Addition of methylated oxidated pentavalent As, namely monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA), to soil resulted in elevated yearly rates of volatilization with up to 3.5% of the total As volatilized, suggesting that the initial conversion of inorganic As to MMAA limits the rate of arsine and methylarsines production by soils. The nature of OM amendment altered volatilization quantitatively and qualitatively, and total arsines release from soil showed correlation between the quantity of As and the concentration of dissolved organic

  3. Soil methane and CO2 fluxes in rainforest and rubber plantations

    Science.gov (United States)

    Lang, Rong; Blagodatsky, Sergey; Goldberg, Stefanie; Xu, Jianchu

    2017-04-01

    Expansion of rubber plantations in South-East Asia has been a land use transformation trend leading to losses of natural forest cover in the region. Besides impact on ecosystem carbon stocks, this conversion influences the dynamics of greenhouse gas fluxes from soil driven by microbial activity, which has been insufficiently studied. Aimed to understand how land use change affects the soil CO2 and CH4 fluxes, we measured surface gas fluxes, gas concentration gradient, and 13C signature in CH4 and soil organic matter in profiles in a transect in Xishuangbanna, including a rainforest site and three rubber plantation sites with age gradient. Gas fluxes were measured by static chamber method and open chamber respiration system. Soil gases were sampled from installed gas samplers at 5, 10, 30, and 75cm depth at representative time in dry and rainy season. The soil CO2 flux was comparable in rainforest and old rubber plantations, while young rubber plantation had the lowest rate. Total carbon content in the surface soil well explained the difference of soil CO2 flux between sites. All sites were CH4 sinks in dry season and uptake decreased in the order of rainforest, old rubber plantations and young rubber plantation. From dry season to rainy season, CH4 consumption decreased with increasing CH4 concentration in the soil profile at all depths. The enrichment of methane by 13CH4 shifted towards to lowerδ13C, being the evidence of enhanced CH4 production process while net surface methane flux reflected the consumption in wet condition. Increment of CH4 concentration in the profile from dry to rainy season was higher in old rubber plantation compared to rainforest, while the shifting of δ13CH4 was larger in rainforest than rubber sites. Turnover rates of soil CO2 and CH4 suggested that the 0-5 cm surface soil was the most active layer for gaseous carbon exchange. δ13C in soil organic matter and soil moisture increased from rainforest, young rubber plantation to old

  4. Annual and seasonal CO2 fluxes from Russian southern taiga soils

    International Nuclear Information System (INIS)

    Kurganova, I.; Lopes De Gerenyu, V.; Rozanova, L.; Sapronov, D.; Myakshina, T.; Kudeyarov, V.

    2003-01-01

    Annual and seasonal characteristics of CO 2 emission from five different ecosystems were studied in situ (Russia, Moscow Region) from November 1997 through October 2000. The annual behaviour of the soil respiration rate is influenced by weather conditions during a particular year. Annual CO 2 fluxes from the soils depend on land use of the soils and averaged 684 and 906 g C/m 2 from sandy Albeluvisols (sod-podzolic soils) under forest and grassland, respectively. Annual emission from clay Phaeozems (grey forest soils) was lower and ranged from 422 to 660 g C/m 2 ; the order of precedence was arable 2 fluxes caused by weather conditions ranged from 18% (forest ecosystem on Phaeozems) to 31% (agro-ecosystem). The contribution from the cold period (with snow, November-April) to the annual CO 2 flux was substantial and averaged 21% and 14% for natural and agricultural ecosystems, respectively. The CO 2 fluxes comprised approximately 48-51% in summer, 23-24% in autumn, 18-20% in spring and 7-10% in winter of the total annual carbon dioxide flux

  5. Soil heat flux measurements in an open forest

    NARCIS (Netherlands)

    vanderMeulen, MJW; Klaassen, W; Kiely, G

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  6. Soil Heat Flux Measurements in an Open Forest

    NARCIS (Netherlands)

    Meulen, M.W.J. van der; Klaassen, W.

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  7. A statistical model for horizontal mass flux of erodible soil

    International Nuclear Information System (INIS)

    Babiker, A.G.A.G.; Eltayeb, I.A.; Hassan, M.H.A.

    1986-11-01

    It is shown that the mass flux of erodible soil transported horizontally by a statistically distributed wind flow has a statistical distribution. Explicit expression for the probability density function, p.d.f., of the flux is derived for the case in which the wind speed has a Weibull distribution. The statistical distribution for a mass flux characterized by a generalized Bagnold formula is found to be Weibull for the case of zero threshold speed. Analytic and numerical values for the average horizontal mass flux of soil are obtained for various values of wind parameters, by evaluating the first moment of the flux density function. (author)

  8. [Effects of biological soil crust at different succession stages in hilly region of Loess Plateau on soil CO2 flux].

    Science.gov (United States)

    Wang, Ai-Guo; Zhao, Yun-Ge; Xu, Ming-Xiang; Yang, Li-Na; Ming, Jiao

    2013-03-01

    Biological soil crust (biocrust) is a compact complex layer of soil, which has photosynthetic activity and is one of the factors affecting the CO2flux of soil-atmosphere interface. In this paper, the soil CO, flux under the effects of biocrust at different succession stages on the re-vegetated grassland in the hilly region of Loess Plateau was measured by a modified LI-8100 automated CO, flux system. Under light condition, the soil CO2 flux under effects of cyanobacteria crust and moss crust was significantly decreased by 92% and 305%, respectively, as compared with the flux without the effects of the biocrusts. The decrement of the soil CO, flux by the biocrusts was related to the biocrusts components and their biomass. Under the effects of dark colored cyanobacteria crust and moss crust, the soil CO2 flux was decreased by 141% and 484%, respectively, as compared with that in bare land. The diurnal curve of soil CO2 flux under effects of biocrusts presented a trend of 'drop-rise-drop' , with the maximum carbon uptake under effects of cyanobacteria crust and moss crust being 0.13 and -1.02 micromol CO2.m-2.s-1 and occurred at about 8:00 and 9:00 am, respectively, while that in bare land was unimodal. In a day (24 h) , the total CO2 flux under effects of cyanobacteria crust was increased by 7.7% , while that under effects of moss crust was decreased by 29.6%, as compared with the total CO2 flux in bare land. This study suggested that in the hilly region of Loess Plateau, biocrust had significant effects on soil CO2 flux, which should be taken into consideration when assessing the carbon budget of the 'Grain for Green' eco-project.

  9. Effects of atmospheric deposition nitrogen flux and its composition on soil solution chemistry from a red soil farmland, southeast China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; Chan, Andrew; Mao, Jingdong

    2015-12-01

    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.

  10. Use of Neutron Probe to Quantify the Soil Moisture Flux in Layers of Cultivated Soil by Chickpea

    International Nuclear Information System (INIS)

    El- Gendy, R.W.

    2008-01-01

    This work aims to use the neutron moisture meter and the soil moisture retention curve to quantify the soil moisture flux in the soil profile of Nubarria soil in Egypt at 15, 30, 45, and 60-cm depths during the growth season of Chickpea. This method depends on the use of in situ θ measurements via neutron moisture meter and soil matric suction using model of the soil moisture retention curve at different soil depths, which can be determined in situ. Total hydraulic potential values at the different soil depths were calculated as a function (θ) using the derivative model. The gradient of hydraulic potential at any soil depth can be obtained by detecting of the hydraulic potential within the soil profile. The soil water fluxes at the different soil depths were calculated using In situ measured unsaturated hydraulic conductivity and the gradient of hydraulic potential, which correlated with soil moisture contents as measured by neutron probe. Values of hydraulic potentials after and before irrigation indicate that the direction of soil moisture movement was downward after irrigation and was different before next irrigation. Collecting active roots for water absorption of chickpea were defined from direction of soil water movement from up and down to a certain soil depth was 19 cm depth from the soil surface. Active rooting depth was 53 cm depth, which separates between evapotranspiration and gravity effects The soil water fluxes after and before the next irrigation of chickpea were 1.2453, 0.8613, 0.8197 and 0.6588 cm/hr and 0.0037, - 0.0270,- 0.1341, and 0.2545 cm/hr at 15, 30, 45 and 60 cm depths, respectively. The negative values at 30 and 45 cm depth before the next irrigation indicates there were up ward movement for soil water flux, where finding collecting active roots for water absorption of chickpea at 19 cm depth. Direction of soil water movement, soil water flux, collecting active roots for water absorption and active rooting depth can be determined using

  11. Dissolved organic carbon fluxes from soils in the Alaskan coastal temperate rainforest

    Science.gov (United States)

    D'Amore, D. V.; Edwards, R.; Hood, E. W.; Herendeen, P. A.; Valentine, D.

    2011-12-01

    Soil saturation and temperature are the primary factors that influence soil carbon cycling. Interactions between these factors vary by soil type, climate, and landscape position, causing uncertainty in predicting soil carbon flux from. The soils of the North American perhumid coastal temperate rainforest (NCTR) store massive amounts of carbon, yet there is no estimate of dissolved organic carbon (DOC) export from different soil types in the region. There are also no working models that describe the influence of soil saturation and temperature on the export of DOC from soils. To address this key information gap, we measured soil water table elevation, soil temperature, and soil and stream DOC concentrations to calculate DOC flux across a soil hydrologic gradient that included upland soils, forested wetland soils, and sloping bog soils in the NCTR of southeast Alaska. We found that increased soil temperature and frequent fluctuations of soil water tables promoted the export of large quantities of DOC from wetland soils and relatively high amounts of DOC from mineral soils. Average area-weighted DOC flux ranged from 7.7 to 33.0 g C m-2 y-1 across a gradient of hydropedologic soil types. The total area specific export of carbon as DOC for upland, forested wetland and sloping bog catchments was 77, 306, and 329 Kg C ha-1 y-1 respectively. The annual rate of carbon export from wetland soils in this region is among the highest reported in the literature. These findings highlight the importance of terrestrial-aquatic fluxes of DOC as a pathway for carbon loss in the NCTR.

  12. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research

    Directory of Open Access Journals (Sweden)

    D.-G. Kim

    2012-07-01

    Full Text Available The rewetting of dry soils and the thawing of frozen soils are short-term, transitional phenomena in terms of hydrology and the thermodynamics of soil systems. The impact of these short-term phenomena on larger scale ecosystem fluxes is increasingly recognized, and a growing number of studies show that these events affect fluxes of soil gases such as carbon dioxide (CO2, methane (CH4, nitrous oxide (N2O, ammonia (NH3 and nitric oxide (NO. Global climate models predict that future climatic change is likely to alter the frequency and intensity of drying-rewetting events and thawing of frozen soils. These future scenarios highlight the importance of understanding how rewetting and thawing will influence dynamics of these soil gases. This study summarizes findings using a new database containing 338 studies conducted from 1956 to 2011, and highlights open research questions. The database revealed conflicting results following rewetting and thawing in various terrestrial ecosystems and among soil gases, ranging from large increases in fluxes to non-significant changes. Studies reporting lower gas fluxes before rewetting tended to find higher post-rewetting fluxes for CO2, N2O and NO; in addition, increases in N2O flux following thawing were greater in warmer climate regions. We discuss possible mechanisms and controls that regulate flux responses, and recommend that a high temporal resolution of flux measurements is critical to capture rapid changes in gas fluxes after these soil perturbations. Finally, we propose that future studies should investigate the interactions between biological (i.e., microbial community and gas production and physical (i.e., porosity, diffusivity, dissolution changes in soil gas fluxes, apply techniques to capture rapid changes (i.e., automated measurements, and explore synergistic experimental and modelling approaches.

  13. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were ... mate source of energy for all physical and bio- logical processes ... May) account for major thunderstorm activity in the state and winter ...

  14. Impacts of soil incorporation of pre-incubated silica-rich rice residue on soil biogeochemistry and greenhouse gas fluxes under flooding and drying.

    Science.gov (United States)

    Gutekunst, Madison Y; Vargas, Rodrigo; Seyfferth, Angelia L

    2017-09-01

    Incorporation of silica-rich rice husk residue into flooded paddy soil decreases arsenic uptake by rice. However, the impact of this practice on soil greenhouse gas (GHG) emissions and elemental cycling is unresolved particularly as amended soils experience recurrent flooding and drying cycles. We evaluated the impact of pre-incubated silica-rich rice residue incorporation to soils on pore water chemistry and soil GHG fluxes (i.e., CO 2 , CH 4 , N 2 O) over a flooding and drying cycle typical of flooded rice cultivation. Soils pre-incubated with rice husk had 4-fold higher pore water Si than control and 2-fold higher than soils pre-incubated with rice straw, whereas the pore water As and Fe concentrations in soils amended with pre-incubated straw and husk were unexpectedly similar (maximum ~0.85μM and ~450μM levels, respectively). Pre-incubation of residues did not affect Si but did affect the pore water levels of As and Fe compared to previous studies using fresh residues where straw amended soils had higher As and Fe in pore water. The global warming potential (GWP) of soil GHG emissions decreased in the order straw (612±76g CO 2 -eqm -2 )>husk (367±42gCO 2 -eqm -2 )>ashed husk=ashed straw (251±26 and 278±28gCO 2 -eqm -2 )>control (186±23gCO 2 -eqm -2 ). The GWP increase due to pre-incubated straw amendment was due to: a) larger N 2 O fluxes during re-flooding; b) smaller contributions from larger CH 4 fluxes during flooded periods; and c) higher CH 4 and CO 2 fluxes at the onset of drainage. In contrast, the GWP of the husk amendment was dominated by CO 2 and CH 4 emissions during flooded and drainage periods, while ashed amendments increased CO 2 emissions particularly during drainage. This experiment shows that ashed residues and husk addition minimizes GWP of flooded soils and enhances pore water Si compared to straw addition even after pre-incubation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Measurement of DDT fluxes from a historically treated agricultural soil in Canada.

    Science.gov (United States)

    Kurt-Karakus, Perihan Binnur; Bidleman, Terry F; Staebler, Ralf M; Jones, Kevin C

    2006-08-01

    Organocohlorine pesticide (OCP) residues in agricultural soils are of concern due to the uptake of these compounds by crops, accumulation in the foodchain, and reemission from soils to the atmosphere. Although it has been about three decades since DDT was banned for agricultural uses in Canada, residues persist in soils of some agricultural areas. Emission of DDT compounds to the atmosphere from a historically treated field in southern Ontario was determined in fall 2004 and spring 2005. The sigmaDDTs concentration in the high organic matter (71%) soil was 19 +/- 4 microg g(-1) dry weight. Concentration gradients in the air were measured at 5, 20, 72, and 200 cm above soil using glass fiber filter-polyurethane foam cartridges. Air concentrations of sigmaDDTs averaged 5.7 +/- 5.1 ng m(-3) at 5 cm and decreased to 1.3 +/- 0.8 ng m(-3) at 200 cm and were 60-300 times higher than levels measured at a background site 30 km away. Soil-air fugacity fractions, fs/(fs + fa), of p,p'-DDE, p,p'-DDD, and p,p'-DDT ranged from 0.42 to 0.91 using air concentrations measured above the soil and > or = 0.99 using background air concentrations, indicating that the soil was a net source to the background air. Fractionation of DDT compounds during volatilization was predicted using either liquid-phase vapor pressures (PL) or octanol-air partition coefficients (KOA). Relative emissions of p,p'-DDE and p,p'-DDT were better described by PL than KOA, whereas either PL or KOA successfully accounted for the fractionation of p,p'-DDT and o,p'-DDT. Soil-to-air fluxes were calculated from air concentration gradients and turbulent exchange coefficients determined from micrometeorological measurements. Average fluxes of sigmaDDTs were 90 +/- 24 ng m(-2) h(-1) in fall and 660 +/- 370 ng m(-2) h(-1) in spring. Higher soil temperatures in spring accounted for the higher fluxes. A volatilization half-life of approximately 200 y was estimated for sigmaDDT in the upper 5 cm of the soil column, assuming

  16. Overestimation of soil CO2 fluxes from closed chamber measurements at low atmospheric turbulence biases the diurnal pattern and the annual soil respiration budget

    DEFF Research Database (Denmark)

    Brændholt, Andreas; Larsen, Klaus Steenberg; Ibrom, Andreas

    2016-01-01

    Abstract Precise quantification of the diurnal and seasonal variation of soil respiration (Rs) is crucial to correctly estimate annual soil carbon fluxes as well as to correctly interpret the response of Rs to biotic and abiotic factors on different time scale. In this study we found a systematic...... day time, i.e. following the course of soil temperatures. This effect on the diurnal pattern was due to low turbulence primarily occurring during night time. We calculated different annual Rs budgets by filtering out fluxes for different levels of u⋆. The highest annual Rs budget was found when...

  17. Seasonal soil CO2 flux under big sagebrush (Artemisia tridentata Nutt.)

    Science.gov (United States)

    Michael C. Amacher; Cheryl L. Mackowiak

    2011-01-01

    Soil respiration is a major contributor to atmospheric CO2, but accurate landscape-scale estimates of soil CO2 flux for many ecosystems including shrublands have yet to be established. We began a project to measure, with high spatial and temporal resolution, soil CO2 flux in a stand (11 x 25 m area) of big sagebrush (Artemisia tridentata Nutt.) at the Logan, Utah,...

  18. Quantitative comparison of in situ soil CO2 flux measurement methods

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  19. [Periodic characteristics of soil CO2 flux in mangrove wetland of Quanzhou Bay, China].

    Science.gov (United States)

    Wang, Zong-Lin; Wu, Yan-You; Xing, De-Ke; Liu, Rong-Cheng; Zhou Gui-Yao; Zhao, Kuan

    2014-09-01

    Mangrove wetland ecosystem in Quanzhou Bay in Fujian Province is newly restored with a regular semidiurnal tide. Soil CO2 concentration in the mangrove soil was determined by Li-840 portable gas analyzer, and periodic characteristics of soil CO2 emission was investigated. The soil CO2 flux in the wetland soil was relatively small because the mangrove was young. The change trends of soil CO2 concentration and flux with time were consistent in Kandelia obovate and Aegiceras corniculatum communities in the intertidal periods. The CO2 concentration and flux in the wetland soil were 557.08-2211.50 μmol · mol(-1) and -0.21-0.40 μmol · m(-2) · s(-1), respectively. The average CO2 flux in the wetland soil was 0.26 μmol · mol(-1) · s(-1) in the intertidal of morning and evening tides (early intertidal) and -0.01 μmol · m(-2) · s(-1) in the intertidal of evening and morning tides (late intertidal), respectively. At the same time after the tide, the concentration and flux of CO2 in the mangrove soil in early intertidal was higher than that in late intertidal. In early intertidal, the relationship between the flux and instantaneous concentration of CO2 in the wetland soil was expressed as a bell-shaped curve, and CO2 flux increased first and then decreased with the increasing CO2 concentration, which was in conformity with Gaussian distribution.

  20. PCB in soils and estimated soil-air exchange fluxes of selected PCB congeners in the south of Sweden

    International Nuclear Information System (INIS)

    Backe, Cecilia; Cousins, Ian T.; Larsson, Per

    2004-01-01

    PCB concentrations were studied in different soils to determine the spatial variation over a region of approximately 11 000 km 2 . PCB congener pattern was used to illustrate the spatial differences, as shown by principal component analysis (PCA). The relationship to different soil parameters was studied. PCB concentrations in soil showed a large variation between sampling-areas with median concentrations ranging between 2.3 and 332 ng g -1 (dw). Highest concentrations were found at two sites with sandy soils, one with extremely high organic carbon content. Both sites were located on the west coast of southern Sweden. Soils with similar soil textures (i.e. sandy silt moraine) did not show any significant differences in PCB concentrations. PCB congener composition was shown to differ between sites, with congener patterns almost site-specific. PCB in air and precipitation was measured and the transfer of chemicals between the soil and air compartments was estimated. Soil-air fugacity quotient calculations showed that the PCBs in the soil consistently had a higher fugacity than the PCBs in the air, with a median quotient value of 2.7. The gaseous fluxes between soil and air were estimated using standard modelling equations and a net soil-air flux estimated by subtracting bulk deposition from gaseous soil-air fluxes. It was shown that inclusion of vertical sorbed phase transport of PCBs in the soil had a large effect on the direction of the net soil-air exchange fluxes. - Soil-air exchange of PCBs is investigated and modelled across Sweden

  1. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  2. Human Effects and Soil Surface CO2 fluxes in Tropical Urban Green Areas, Singapore

    Science.gov (United States)

    Ng, Bernard; Gandois, Laure; Kai, Fuu Ming; Chua, Amy; Cobb, Alex; Harvey, Charles; Hutyra, Lucy

    2013-04-01

    Urban green spaces are appreciated for their amenity value, with increasing interest in the ecosystem services they could provide (e.g. climate amelioration and increasingly as possible sites for carbon sequestration). In Singapore, turfgrass occupies approximately 20% of the total land area and is readily found on both planned and residual spaces. This project aims at understanding carbon fluxes in tropical urban green areas, including controls of soil environmental factors and the effect of urban management techniques. Given the large pool of potentially labile carbon, management regimes are recognised to have an influence on soil environmental factors (temperature and moisture), this would affect soil respiration and feedbacks to the greenhouse effect. A modified closed dynamic chamber method was employed to measure total soil respiration fluxes. In addition to soil respiration rates, environmental factors such as soil moisture and temperature, and ambient air temperature were monitored for the site in an attempt to evaluate their control on the observed fluxes. Measurements of soil-atmosphere CO2 exchanges are reported for four experimental plots within the Singtel-Kranji Radio Transmission Station (103o43'49E, 1o25'53N), an area dominated by Axonopus compressus. Different treatments such as the removal of turf, and application of clippings were effected as a means to determine the fluxes from the various components (respiration of soil and turf, and decomposition of clippings), and to explore the effects of human intervention on observed effluxes. The soil surface CO2 fluxes observed during the daylight hours ranges from 2.835 + 0.772 umol m-2 s-1 for the bare plot as compared to 6.654 + 1.134 umol m-2 s-1 for the turfed plot; this could be attributed to both autotrophic and heterotrophic respiration. Strong controls of both soil temperature and soil moisture are observed on measured soil fluxes. On the base soils, fluxes were positively correlated to soil

  3. Capturing and Processing Soil GHG Fluxes Using the LI-COR LI-8100A

    Science.gov (United States)

    Xu, Liukang; McDermitt, Dayle; Hupp, Jason; Johnson, Mark; Madsen, Rod

    2015-04-01

    The LI-COR LI-8100A Automated Soil CO2 Flux System is designed to measure soil CO2 efflux using automated chambers and a non-steady state measurement protocol. While CO2 is an important gas in many contexts, it is not the only gas of interest for many research applications. With some simple plumbing modifications, many third party analyzers capable of measuring other trace gases, e.g. N2O, CH4, or 13CO2 etc., can be interfaced with the LI-8100A System, and LI-COR's data processing software (SoilFluxPro™) can be used to compute fluxes for these additional gases. In this paper we describe considerations for selecting an appropriate third party analyzer to interface with the system, how to integrate data into the system, and the procedure used to compute fluxes of additional gases in SoilFluxPro™. A case study is presented to demonstrate methane flux measurements using an Ultra-Portable Greenhouse Gas Analyzer (Ultra-Portable GGA, model 915-0011), manufactured by Los Gatos Research and integrated into the LI-8100A System. Laboratory and field test results show that the soil CO2 efflux based on the time series of CO2 data measured either with the LI-8100A System or with the Ultra-Portable GGA are essentially the same. This suggests that soil GHG fluxes measured with both systems are reliable.

  4. Scaling up carbonyl sulfide (COS) fluxes from leaf and soil to the canopy

    Science.gov (United States)

    Yang, Fulin; Yakir, Dan

    2016-04-01

    Carbonyl sulfide (COS) with atmospheric concentrations around 500 ppt is an analog of CO2 which can potentially serve as powerful and much needed tracer of photosynthetic CO2 uptake, and global gross primary production (GPP). However, questions remain regarding the application of this approach due to uncertainties in the contributions of different ecosystem components to the canopy scale fluxes of COS. We used laser quantum cascade spectroscopy in combination with soil and branch chambers, and eddy covariance measurements of net ecosystem exchange fluxes of COS and CO2 (NEE) in citrus orchard during the driest summer month to test our ability to integrate the chamber measurements into the ecosystem fluxes. The results indicated that: 1) Soil fluxes showed clear gradient from continuous uptake under the trees in wet soil of up to -4 pmol m-2s-1 (CO2 emission of ~0.5 umol m-2s-1) to emission in dry hot and exposed soil between rows of trees of up to +3 pmol m-2s-1 (CO2 emission of ~11 umol m-2s-1). In all cases a clear correlation between fluxes and soil temperature was observed. 2) At the leaf scale, midday uptake was ~5.5 pmol m-2s-1 (CO2 uptake of ~1.8 umol m-2s-1). Some nighttime COS uptake was observed in the citrus leaves consistent with nocturnal leaf stomatal conductance. Leaf relative uptake (LRU) of COS vs. CO2 was not constant over the diurnal cycle, but showed exponential correlation with photosynthetically active radiation (PAR) during the daytime. 3) At the canopy scale mid-day summer flux reached -12.0 pmol m-2s-1 (NEE ~6 umol m-2s-1) with the diurnal patterns of COS fluxes following those of CO2 fluxes during the daytime, but with small COS uptake fluxes maintained also during the night when significant CO2 emission fluxes were observed. The canopy-scale fluxes always indicated COS uptake, irrespective of the soil emission effects. GPP estimates were consistent with conventional indirect estimates based on NEE and nocturnal measurements. Scaling up

  5. Forest soil CO2 fluxes as a function of understory removal and N-fixing species addition.

    Science.gov (United States)

    Li, Haifang; Fu, Shenglei; Zhao, Hongting; Xia, Hanping

    2011-01-01

    We report on the effects of forest management practices of understory removal and N-fixing species (Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation (EUp), Acacia crassicarpa plantation (ACp), 10-species-mixed plantation (Tp), and 30-species-mixed plantation (THp) using the static chamber method in southern China. Four forest management treatments, including (1) understory removal (UR); (2) C. alata addition (CA); (3) understory removal and replacement with C. alata (UR+CA); and (4) control without any disturbances (CK), were applied in the above four forest plantations with three replications for each treatment. The results showed that soil CO2 fluxes rates remained at a high level during the rainy season (from April to September), followed by a rapid decrease after October reaching a minimum in February. Soil CO2 fluxes were significantly higher (P plantations under various management practices.

  6. Comparison of soil solution sampling techniques to assess metal fluxes from contaminated soil to groundwater.

    Science.gov (United States)

    Coutelot, F; Sappin-Didier, V; Keller, C; Atteia, O

    2014-12-01

    The unsaturated zone plays a major role in elemental fluxes in terrestrial ecosystems. A representative chemical analysis of soil pore water is required for the interpretation of soil chemical phenomena and particularly to assess Trace Elements (TEs) mobility. This requires an optimal sampling system to avoid modification of the extracted soil water chemistry and allow for an accurate estimation of solute fluxes. In this paper, the chemical composition of soil solutions sampled by Rhizon® samplers connected to a standard syringe was compared to two other types of suction probes (Rhizon® + vacuum tube and Rhizon® + diverted flow system). We investigated the effects of different vacuum application procedures on concentrations of spiked elements (Cr, As, Zn) mixed as powder into the first 20 cm of 100-cm columns and non-spiked elements (Ca, Na, Mg) concentrations in two types of columns (SiO2 sand and a mixture of kaolinite + SiO2 sand substrates). Rhizon® was installed at different depths. The metals concentrations showed that (i) in sand, peak concentrations cannot be correctly sampled, thus the flux cannot be estimated, and the errors can easily reach a factor 2; (ii) in sand + clay columns, peak concentrations were larger, indicating that they could be sampled but, due to sorption on clay, it was not possible to compare fluxes at different depths. The different samplers tested were not able to reflect the elemental flux to groundwater and, although the Rhizon® + syringe device was more accurate, the best solution remains to be the use of a lysimeter, whose bottom is kept continuously at a suction close to the one existing in the soil.

  7. Calibrating soil respiration measures with a dynamic flux apparatus using artificial soil media of varying porosity

    Science.gov (United States)

    John R. Butnor; Kurt H. Johnsen

    2004-01-01

    Measurement of soil respiration to quantify ecosystem carbon cyclingrequires absolute, not relative, estimates of soil CO2 efflux. We describe a novel, automated efflux apparatus that can be used to test the accuracy of chamber-based soil respiration measurements by generating known CO2 fluxes. Artificial soil is supported...

  8. Effects of a holiday week on urban soil CO2 flux: an intensive study in Xiamen, southeastern China

    Science.gov (United States)

    Ye, H.; Wang, K.; Chen, F.

    2012-12-01

    To study the effects of a holiday period on urban soil CO2 flux, CO2 efflux from grassland soil in a traditional park in the city of Xiamen was measured hourly from 28th Sep to 11th Oct, a period that included China's National Day holiday week in 2009. The results of this study revealed that: a) The urban soil CO2 emissions were higher before and after the holiday week and lower during the National Day holiday reflecting changes in the traffic cycles; b) A diurnal cycle where the soil CO2 flux decreased from early morning to noon was associated with CO2 uptake by vegetation which strongly offset vehicle CO2 emissions. The soil CO2 flux increased from night to early morning, associated with reduced CO2 uptake by vegetation; c) During the National Day holiday week in 2009, lower rates of soil respiration were measured after Mid-Autumn Day than earlier in the week, and this was related to a reduced level of human activities and vehicle traffic, reducing the CO2 concentration in the air. Urban holidays have a clear effect on soil CO2 flux through the interactions between vehicle, visitor and vegetation CO2 emissions which indirectly control the use of carbon by plant roots, the rhizosphere and soil microorganisms. Consequently, appropriate traffic controls and tourism travel plans can have positive effects on the soil carbon store and may improve local air quality.

  9. Portable Automation of Static Chamber Sample Collection for Quantifying Soil Gas Flux

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Morgan P.; Groh, Tyler A.; Parkin, Timothy B.; Williams, Ryan J.; Isenhart, Thomas M.; Hofmockel, Kirsten S.

    2018-01-01

    Quantification of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled is limited by the spacing between chambers and the availability of trained research technicians. An automated system for collecting gas samples from chambers in the field would eliminate the need for personnel to return to the chamber during a flux measurement period and would allow a single technician to sample multiple chambers simultaneously. This study describes Chamber Automated Sampling Equipment (FluxCASE) to collect and store chamber headspace gas samples at assigned time points for the measurement of soil gas flux. The FluxCASE design and operation is described, and the accuracy and precision of the FluxCASE system is evaluated. In laboratory measurements of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) concentrations of a standardized gas mixture, coefficients of variation associated with automated and manual sample collection were comparable, indicating no loss of precision. In the field, soil gas fluxes measured from FluxCASEs were in agreement with manual sampling for both N2O and CO2. Slopes of regression equations were 1.01 for CO2 and 0.97 for N2O. The 95% confidence limits of the slopes of the regression lines included the value of one, indicating no bias. Additionally, an expense analysis found a cost recovery ranging from 0.6 to 2.2 yr. Implementing the FluxCASE system is an alternative to improve the efficiency of the static chamber method for measuring soil gas flux while maintaining the accuracy and precision of manual sampling.

  10. Estimating the amount and distribution of radon flux density from the soil surface in China

    International Nuclear Information System (INIS)

    Zhuo Weihai; Guo Qiuju; Chen Bo; Cheng Guan

    2008-01-01

    Based on an idealized model, both the annual and the seasonal radon ( 222 Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil 226 Ra content and a global ecosystems database. Digital maps of the 222 Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average 222 Rn flux density from the soil surface across China was estimated to be 29.7 ± 9.4 mBq m -2 s -1 . Both regional and seasonal variations in the 222 Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil 226 Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China

  11. Aspect as a Driver of Soil Carbon and Water Fluxes in Desert Environments

    Science.gov (United States)

    Sutter, L., Jr.; Barron-Gafford, G.; Sanchez-Canete, E. P.

    2016-12-01

    Within dryland environments, precipitation and incoming energy are the primary determinants of carbon and water cycling. We know aspect can influence how much sun energy reaches the ground surface, but how does this spatial feature of the landscape propagate into temporal moisture and carbon flux dynamics? We made parallel measurements across north and south-facing slopes to examine the effects of aspect on soil temperature and moisture and the resulting soil carbon and water flux rates within a low elevation, desert site in the Santa Catalina-Jemez Critical Zone Observatory. We coupled spatially distributed measurements at a single point in time with diel patterns of soil fluxes at singular point and in response to punctuated rain events. Reponses concerning aspect after spring El Niño rainfall events were complex, with higher cumulative carbon flux on the south-facing slope two weeks post rain, despite higher daily flux values starting on the north-facing slope ten days after the rain. Additional summer monsoon rain events and dry season measurements will give further insights into patterns under hotter conditions of periodic inter-storm drought. We will complete a year-round carbon and water flux budget of this site by measuring throughout the winter rainfall months. Ultimately, our work will illustrate the interactive effects of a range of physical factors on soil fluxes. Critical zone soil dynamics, especially within dryland environments, are very complex, but capturing the uncertainty around these flux is necessary to understand concerning vertical carbon and water exchange and storage.

  12. Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland.

    Science.gov (United States)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Smula, Ewa; Rozanski, Kazimierz

    2014-06-01

    As urban atmosphere is depleted of (13)CO2, its imprint should be detectable in the local vegetation and therefore in its CO2 respiratory emissions. This work was aimed at characterising strength and isotope signature of CO2 fluxes from soil in urban areas with varying distances from anthropogenic CO2 emissions. The soil CO2 flux and its δ(13)C isotope signature were measured using a chamber method on a monthly basis from July 2009 to May 2012 within the metropolitan area of Krakow, Southern Poland, at two locations representing different levels of anthropogenic influence: a lawn adjacent to a busy street (A) and an urban meadow (B). The small-scale spatial variability of the soil CO2 flux was also investigated at site B. Site B revealed significantly higher summer CO2 fluxes (by approximately 46 %) than site A, but no significant differences were found between their δ(13)CO2 signatures.

  13. Field-scale evaluation of water fluxes and manure solution leaching in feedlot pen soils.

    Science.gov (United States)

    García, Ana R; Maisonnave, Roberto; Massobrio, Marcelo J; Fabrizio de Iorio, Alicia R

    2012-01-01

    Accumulation of beef cattle manure on feedlot pen surfaces generates large amounts of dissolved solutes that can be mobilized by water fluxes, affecting surface and groundwater quality. Our objective was to examine the long-term impacts of a beef cattle feeding operation on water fluxes and manure leaching in feedlot pens located on sandy loam soils of the subhumid Sandy Pampa region in Argentina. Bulk density, gravimetric moisture content, and chloride concentration were quantified. Rain simulation trials were performed to estimate infiltration and runoff rates. Using chloride ion as a tracer, profile analysis techniques were applied to estimate the soil moisture flux and manure conservative chemical components leaching rates. An organic stratum was found over the surface of the pen soil, separated from the underlying soil by a highly compacted thin layer (the manure-soil interface). The soil beneath the organic layer showed greater bulk density in the A horizon than in the control soil and had greater moisture content. Greater concentrations of chloride were found as a consequence of the partial sealing of the manure-soil interface. Surface runoff was the dominant process in the feedlot pen soil, whereas infiltration was the main process in control soil. Soil moisture flux beneath pens decreased substantially after 15 yr of activity. The estimated minimum leaching rate of chloride was 13 times faster than the estimated soil moisture flux. This difference suggests that chloride ions are not exclusively transported by advective flow under our conditions but also by solute diffusion and preferential flow. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Mazot, Agnès; Smid, Elaine R.; Schwendenmann, Luitgard; Delgado-Granados, Hugo; Lindsay, Jan

    2013-11-01

    The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m-2 day-1, with an average of 27.1 g m-2 day-1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.

  15. A naturally ventilated accumulator for integrating measurements of radon flux from soil

    International Nuclear Information System (INIS)

    Zhuo Weihai; Furukawa, Masahide; Tokonami, Shinji

    2007-01-01

    For long-term and large-scale measurements of the averaged 222 Rn fluxes from soils in the general environmental conditions, a simple measuring method was developed. 222 Rn exhaling from soils is accumulated by a naturally ventilated accumulator (NVA) and its concentration is measured with passive 222 Rn monitors set inside the NVA. The ventilation rate of the NVA is about 0.26 h -1 and it is hardly affected by the changes of meteorological conditions during field measurements. The air and soil conditions inside and outside of the NVA are nearly the same throughout the measurements. It indicates that the natural conditions of soils will not be significantly disturbed by the NVA. Field measurements confirmed that soil 222 Rn fluxes measured by the new method were in general agreement with the results measured by another commonly used method and theoretical estimations. As no electric power is needed as well as the operation and maintenance are easy, the low-cost system offers a promise as an improved technique for long-term measurements of soil 222 Rn fluxes in the general environmental conditions. (author)

  16. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Melling, Lulie; Hatano, Ryusuke

    2005-01-01

    Soil CO 2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO 2 flux ranged from 100 to 533 mg C/m 2 /h for the forest ecosystem, 63 to 245 mg C/m 2 /h for the sago and 46 to 335 mg C/m 2 /h for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO 2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO 2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C/m 2 /yr followed by oil palm at 1.5 kg C/m 2 /yr and sago at 1.1 kg C/m 2 /yr. The different dominant controlling factors in CO 2 flux among the studied ecosystems suggested that land use affected the exchange of CO 2 between tropical peatland and the atmosphere

  17. Soil CO 2 fluxes from direct seeding rice fields under two tillage practices in central China

    Science.gov (United States)

    Li, Cheng-fang; Kou, Zhi-kui; Yang, Jin-hua; Cai, Ming-li; Wang, Jin-ping; Cao, Cou-gui

    2010-07-01

    Agricultural practices affect the production and emission of carbon dioxide (CO 2) from paddy soils. It is crucial to understand the effects of tillage and N fertilization on soil CO 2 flux and its influencing factors for a better comprehension of carbon dynamics in subtropical paddy ecosystems. A 2-yr field study was conducted to assess the effects of tillage (conventional tillage [CT] and no-tillage [NT]) and N fertilization (0 and 210 kg N ha -1) on soil CO 2 fluxes during the 2008 and 2009 rice growing seasons in central China. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the split-plot treatment. The soil CO 2 fluxes were measured 24 times in 2008 and 17 times in 2009. N fertilization did not affect soil CO 2 emissions while tillage affected soil CO 2 emissions, where NT had similar soil CO 2 emissions to CT in 2008, but in 2009, NT significantly increased soil CO 2 emissions. Cumulative CO 2 emissions were 2079-2245 kg CO 2-C ha -1 from NT treatments, and 2084-2141 kg CO 2-C ha -1 from CT treatments in 2008, and were 1257-1401 kg CO 2-C ha -1 from NT treatments, and 1003-1034 kg CO 2-C ha -1 from CT treatments in 2009, respectively. Cumulative CO 2 emissions were significantly related to aboveground biomass and soil organic C. Before drainage of paddy fields, soil CO 2 fluxes were significantly related to soil temperature with correlation coefficients ( R) of 0.67-0.87 in 2008 and 0.69-0.85 in 2009; moreover, the Q 10 values ranged from 1.28 to 1.55 and from 2.10 to 5.21 in 2009, respectively. Our results suggested that NT rice production system appeared to be ineffective in decreasing carbon emission, which suggested that CO 2 emissions from integrated rice-based system should be taken into account to assess effects of tillage.

  18. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jacques, D.; Jessen, S.

    2014-01-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying...... mechanisms. Carbon dioxide partial pressure in the soil gas (pCO(2)), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO(2), alkalinity and the water flux...... to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 +/- 0.07 and 4.9 +/- 0.07 mu mol Cm-2 s(-1), respectively...

  19. A Numerical Model to Assess Soil Fluxes from Meteoric 10Be Data

    Science.gov (United States)

    Campforts, B.; Govers, G.; Vanacker, V.; Vanderborght, J.; Smolders, E.; Baken, S.

    2015-12-01

    Meteoric 10Be may be mobile in the soil system. The latter hampers a direct translation of meteoric 10Be inventories into spatial variations in erosion and deposition rates. Here, we present a spatially explicit 2D model that allows us to simulate the behaviour of meteoric 10Be in the soil system. The Be2D model is then used to analyse the potential impact of human-accelerated soil fluxes on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile including particle migration, chemical leaching and bioturbation, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes from creep, water and tillage erosion. Model simulations show that meteoric 10Be inventories can indeed be related to erosion and deposition, across a wide range of geomorphological and pedological settings. However, quantification of the effects of vertical mobility is essential for a correct interpretation of the observed spatial patterns in 10Be data. Moreover, our simulations suggest that meteoric 10Be can be used as a tracer to unravel human impact on soil fluxes when soils have a high retention capacity for meteoric meteoric 10Be. Application of the Be2D model to existing data sets shows that model parameters can reliably be constrained, resulting in a good agreement between simulated and observed meteoric 10Be concentrations and inventories. This confirms the suitability of the Be2D model as a robust tool to underpin quantitative interpretations of spatial variability in meteoric 10Be data for eroding landscapes.

  20. Soil CO2 flux in response to wheel traffic in a no-till system

    Science.gov (United States)

    Measurements of soil CO2 flux in the absence of living plants can be used to evaluate the effectiveness of soil management practices for C sequestration, but field CO2 flux is spatially variable and may be affected by soil compaction and percentage of total pore space filled with water (%WFPS). The ...

  1. Potentials and challenges associated with automated closed dynamic chamber measurements of soil CO2 fluxes

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Ceulemans, Reinhart

    2015-04-01

    Soil respiration fluxes are influenced by natural factors such as climate and soil type, but also by anthropogenic activities in managed ecosystems. As a result, soil CO2 fluxes show a large intra- and interannual as well as intra- and intersite variability. Most of the available soil CO2 flux data giving insights into this variability have been measured with manually closed static chambers, but technological advances in the past 15 years have also led to an increased use of automated closed chamber systems. The great advantage of automated chambers in comparison to manually operated chambers is the higher temporal resolution of the flux data. This is especially important if we want to better understand the effects of short-term events, e.g. fertilization or heavy rainfall, on soil CO2 flux variability. However, the chamber method is an invasive measurement method which can potentially alter soil CO2 fluxes and lead to biased measurement results. In the peer-reviewed literature, many papers compare the field performance and results of different closed static chamber designs, or compare manual chambers with automated chamber systems, to identify potential biases in CO2 flux measurements, and thus help to reduce uncertainties in the flux data. However, inter-comparisons of different automated closed dynamic chamber systems are still lacking. Here we are going to present a field comparison of the most-cited automated chamber system, the LI-8100A Automated Soil Flux System, with the also commercially available Greenhouse Gas Monitoring System AGPS. Both measurement systems were installed side by side at a recently harvested poplar bioenergy plantation (POPFULL, http://uahost.uantwerpen.be/popfull/) from April 2014 until August 2014. The plantation provided optimal comparison conditions with a bare field situation after the harvest and a regrowing canopy resulting in a broad variety of microclimates. Furthermore, the plantation was planted in a double-row system with

  2. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils

    Science.gov (United States)

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  3. Temporal and spatial variations of soil carbon dioxide, methane, and nitrous oxide fluxes in a Southeast Asian tropical rainforest

    Science.gov (United States)

    Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.

    2010-09-01

    To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the

  4. Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosystem, Northern Tibet.

    Science.gov (United States)

    Lu, Xuyang; Fan, Jihui; Yan, Yan; Wang, Xiaodan

    2013-01-01

    Soil carbon dioxide (CO2) emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m(-2) for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10) of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature.

  5. Ecosystem Warming Affects CO2 Flux in an Agricultural Soil

    Science.gov (United States)

    Global warming seems likely based on present-day climate predictions. Our objective was to characterize and quantify the interactive effects of ecosystem warming (i.e., canopy temperature, TS), soil moisture content ('S) and microbial biomass (BM: bacteria, fungi) on the intra-row soil CO2 flux (FS)...

  6. [Characteristics of mercury exchange flux between soil and atmosphere under the snow retention and snow melting control].

    Science.gov (United States)

    Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi

    2013-02-01

    Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange

  7. Soil fluxes of carbonyl sulfide (COS), carbon monoxide, and carbon dioxide in a boreal forest in southern Finland

    Science.gov (United States)

    Sun, Wu; Kooijmans, Linda M. J.; Maseyk, Kadmiel; Chen, Huilin; Mammarella, Ivan; Vesala, Timo; Levula, Janne; Keskinen, Helmi; Seibt, Ulli

    2018-02-01

    Soil is a major contributor to the biosphere-atmosphere exchange of carbonyl sulfide (COS) and carbon monoxide (CO). COS is a tracer with which to quantify terrestrial photosynthesis based on the coupled leaf uptake of COS and CO2, but such use requires separating soil COS flux, which is unrelated to photosynthesis, from ecosystem COS uptake. For CO, soil is a significant natural sink that influences the tropospheric CO budget. In the boreal forest, magnitudes and variabilities of soil COS and CO fluxes remain poorly understood. We measured hourly soil fluxes of COS, CO, and CO2 over the 2015 late growing season (July to November) in a Scots pine forest in Hyytiälä, Finland. The soil acted as a net sink of COS and CO, with average uptake rates around 3 pmol m-2 s-1 for COS and 1 nmol m-2 s-1 for CO. Soil respiration showed seasonal dynamics controlled by soil temperature, peaking at around 4 µmol m-2 s-1 in late August and September and dropping to 1-2 µmol m-2 s-1 in October. In contrast, seasonal variations of COS and CO fluxes were weak and mainly driven by soil moisture changes through diffusion limitation. COS and CO fluxes did not appear to respond to temperature variation, although they both correlated well with soil respiration in specific temperature bins. However, COS : CO2 and CO : CO2 flux ratios increased with temperature, suggesting possible shifts in active COS- and CO-consuming microbial groups. Our results show that soil COS and CO fluxes do not have strong variations over the late growing season in this boreal forest and can be represented with the fluxes during the photosynthetically most active period. Well-characterized and relatively invariant soil COS fluxes strengthen the case for using COS as a photosynthetic tracer in boreal forests.

  8. Land use and rainfall effect on soil CO2 fluxes in a Mediterranean agroforestry system

    Science.gov (United States)

    Quijano, Laura; Álvaro-Fuentes, Jorge; Lizaga, Iván; Navas, Ana

    2017-04-01

    Soils are the largest C reservoir of terrestrial ecosystems and play an important role in regulating the concentration of CO2 in the atmosphere. The exchange of CO2 between the atmosphere and soil controls the balance of C in soils. The CO2 fluxes may be influenced by climate conditions and land use and cover change especially in the upper soil organic layer. Understanding C dynamics is important for maintaining C stocks to sustain and improve soil quality and to enhance sink C capacity of soils. This study focuses on the response of the CO2 emitted to rainfall events from different land uses (i.e. forest, abandoned cultivated soils and winter cereal cultivated soils) in a representative Mediterranean agroforestry ecosystem in the central part of the Ebro basin, NE Spain (30T 4698723N 646424E). A total of 30 measurement points with the same soil type (classified as Calcisols) were selected. Soil CO2 flux was measured in situ using a portable EGM-4 CO2 analyzer PPSystems connected to a dynamic chamber system (model CFX-1, PPSystems) weekly during autumn 2016. Eleven different rainfall events were measured at least 24 hours before (n=7) and after the rainfall event (n=4). Soil water content and temperature were measured at each sampling point within the first 5 cm. Soil samples were taken at the beginning of the experiment to determine soil organic carbon (SOC) content using a LECO RC-612. The mean SOC for forest, abandoned and cultivated soils were 2.5, 2.7 and 0.6 %, respectively. The results indicated differences in soil CO2 fluxes between land uses. The field measurements of CO2 flux show that before cereal sowing the highest values were recorded in the abandoned soils varying from 56.1 to 171.9 mg CO2-C m-2 h-1 whereas after cereal sowing the highest values were recorded in cultivated soils ranged between 37.8 and 116.2 mg CO2-C m-2 h-1 indicating the agricultural impact on CO2 fluxes. In cultivated soils, lower mean CO2 fluxes were measured after direct seeding

  9. Rain-induced changes in soil CO2 flux and microbial community composition in a tropical forest of China.

    Science.gov (United States)

    Deng, Qi; Hui, Dafeng; Chu, Guowei; Han, Xi; Zhang, Quanfa

    2017-07-17

    Rain-induced soil CO 2 pulse, a rapid excitation in soil CO 2 flux after rain, is ubiquitously observed in terrestrial ecosystems, yet the underlying mechanisms in tropical forests are still not clear. We conducted a rain simulation experiment to quantify rain-induced changes in soil CO 2 flux and microbial community composition in a tropical forest. Soil CO 2 flux rapidly increased by ~83% after rains, accompanied by increases in both bacterial (~51%) and fungal (~58%) Phospholipid Fatty Acids (PLFA) biomass. However, soil CO 2 flux and microbial community in the plots without litters showed limited response to rains. Direct releases of CO 2 from litter layer only accounted for ~19% increases in soil CO 2 flux, suggesting that the leaching of dissolved organic carbon (DOC) from litter layer to the topsoil is the major cause of rain-induced soil CO 2 pulse. In addition, rain-induced changes in soil CO 2 flux and microbial PLFA biomass decreased with increasing rain sizes, but they were positively correlated with litter-leached DOC concentration rather than total DOC flux. Our findings reveal an important role of litter-leached DOC input in regulating rain-induced soil CO 2 pulses and microbial community composition, and may have significant implications for CO 2 losses from tropical forest soils under future rainfall changes.

  10. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  11. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    Science.gov (United States)

    Manohar, S. N.; Meijer, H. A. J.; Herber, M. A.

    2013-12-01

    Naturally occurring radioactive noble gas, radon (222Rn) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution of the radon flux density over the Earth's surface. Terrestrial gamma radiation is a useful proxy for generating radon flux maps. A previously reported radon flux map of Europe used terrestrial gamma radiation extracted from automated radiation monitoring networks. This approach failed to account for the influence of local artificial radiation sources around the detector, leading to under/over estimation of the reported radon flux values at different locations. We present an alternative approach based on soil radionuclides which enables us to generate accurate radon flux maps with good confidence. Firstly, we present a detailed comparison between the terrestrial gamma radiation obtained from the National Radiation Monitoring network of the Netherlands and the terrestrial gamma radiation calculated from soil radionuclides. Extending further, we generated radon flux maps of the Netherlands and Europe using our proposed approach. The modelled flux values for the Netherlands agree reasonably well with the two observed direct radon flux measurements (within 2σ level). On the European scale, we find that the observed radon flux values are higher than our modelled values and we introduce a correction factor to account for this difference. Our approach discussed in this paper enables us to develop reliable and accurate radon flux maps in countries with little or no information on radon flux values.

  12. Inferring 222Rn soil fluxes from ambient 222Rn activity and eddy covariance measurements of CO2

    Directory of Open Access Journals (Sweden)

    S. van der Laan

    2016-11-01

    Full Text Available We present a new methodology, which we call Single Pair of Observations Technique with Eddy Covariance (SPOT-EC, to estimate regional-scale surface fluxes of 222Rn from tower-based observations of 222Rn activity concentration, CO2 mole fractions and direct CO2 flux measurements from eddy covariance. For specific events, the regional (222Rn surface flux is calculated from short-term changes in ambient (222Rn activity concentration scaled by the ratio of the mean CO2 surface flux for the specific event to the change in its observed mole fraction. The resulting 222Rn surface emissions are integrated in time (between the moment of observation and the last prior background levels and space (i.e. over the footprint of the observations. The measurement uncertainty obtained is about ±15 % for diurnal events and about ±10 % for longer-term (e.g. seasonal or annual means. The method does not provide continuous observations, but reliable daily averages can be obtained. We applied our method to in situ observations from two sites in the Netherlands: Cabauw station (CBW and Lutjewad station (LUT. For LUT, which is an intensive agricultural site, we estimated a mean 222Rn surface flux of (0.29 ± 0.02 atoms cm−2 s−1 with values  > 0.5 atoms cm−2 s−1 to the south and south-east. For CBW we estimated a mean 222Rn surface flux of (0.63 ± 0.04 atoms cm−2 s−1. The highest values were observed to the south-west, where the soil type is mainly river clay. For both stations good agreement was found between our results and those from measurements with soil chambers and two recently published 222Rn soil flux maps for Europe. At both sites, large spatial and temporal variability of 222Rn surface fluxes were observed which would be impractical to measure with a soil chamber. SPOT-EC, therefore, offers an important new tool for estimating regional-scale 222Rn surface fluxes. Practical applications furthermore include

  13. Concentrations and flux measurements of volatile organic compounds (VOC) in boreal forest soil

    Science.gov (United States)

    Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana

    2017-04-01

    Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been measured in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC fluxes and concentrations of different horizons from boreal forest soil. The VOC concentrations and fluxes were measured from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC fluxes were measured using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also measured in each location from four different soil horizons with the measurement depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and fluxes of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were measured. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC fluxes and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC fluxes on the soil surface were measured in October, whereas the monoterpene concentrations in organic soil were highest in July

  14. Simple additive simulation overestimates real influence: altered nitrogen and rainfall modulate the effect of warming on soil carbon fluxes.

    Science.gov (United States)

    Ni, Xiangyin; Yang, Wanqin; Qi, Zemin; Liao, Shu; Xu, Zhenfeng; Tan, Bo; Wang, Bin; Wu, Qinggui; Fu, Changkun; You, Chengming; Wu, Fuzhong

    2017-08-01

    Experiments and models have led to a consensus that there is positive feedback between carbon (C) fluxes and climate warming. However, the effect of warming may be altered by regional and global changes in nitrogen (N) and rainfall levels, but the current understanding is limited. Through synthesizing global data on soil C pool, input and loss from experiments simulating N deposition, drought and increased precipitation, we quantified the responses of soil C fluxes and equilibrium to the three single factors and their interactions with warming. We found that warming slightly increased the soil C input and loss by 5% and 9%, respectively, but had no significant effect on the soil C pool. Nitrogen deposition alone increased the soil C input (+20%), but the interaction of warming and N deposition greatly increased the soil C input by 49%. Drought alone decreased the soil C input by 17%, while the interaction of warming and drought decreased the soil C input to a greater extent (-22%). Increased precipitation stimulated the soil C input by 15%, but the interaction of warming and increased precipitation had no significant effect on the soil C input. However, the soil C loss was not significantly affected by any of the interactions, although it was constrained by drought (-18%). These results implied that the positive C fluxes-climate warming feedback was modulated by the changing N and rainfall regimes. Further, we found that the additive effects of [warming × N deposition] and [warming × drought] on the soil C input and of [warming × increased precipitation] on the soil C loss were greater than their interactions, suggesting that simple additive simulation using single-factor manipulations may overestimate the effects on soil C fluxes in the real world. Therefore, we propose that more multifactorial experiments should be considered in studying Earth systems. © 2016 John Wiley & Sons Ltd.

  15. Inferring near surface soil temperature time series from different land uses to quantify the variation of heat fluxes into a shallow aquifer in Austria

    Science.gov (United States)

    Kupfersberger, Hans; Rock, Gerhard; Draxler, Johannes C.

    2017-09-01

    Different land uses exert a strong spatially distributed and temporal varying signal of heat fluxes from the surface in or out of the ground. In this paper we show an approach to quantify the heat fluxes into a groundwater body differentiating between near surface soil temperatures under grass, forest, asphalt, agriculture and surface water bodies and heat fluxes from subsurface structures like heated basements or sewage pipes. Based on observed time series of near surface soil temperatures we establish individual parameters (e.g. shift, moving average) of a simple empirical function that relates air temperature to soil temperature. This procedure is useful since air temperature time series are readily available and the complex energy flux processes at the soil atmosphere interface do not need to be described in detail. To quantify the heat flux from heated subsurface structures that have lesser depths to the groundwater table the 1D heat conduction module SoilTemp is developed. Based on soil temperature time series observed at different depths in a research lysimeter heat conduction and heat storage capacity values are calibrated disregarding their dependence on the water content. With SoilTemp the strong interaction between time series of groundwater temperature and groundwater level, near surface soil temperatures and the basement temperatures in heated buildings could be evaluated showing the dynamic nature of thermal gradients. The heat fluxes from urban areas are calculated considering the land use patterns within a spatial unit by mixing the heat fluxes from basements with those under grass and asphalt. The heat fluxes from sewage pipes and of sewage leakage are shown to be negligible for evaluated pipe diameters and sewage discharges. The developed methodology will allow to parameterize the upper boundary of heat transport models and to differentiate between the heat fluxes from different surface usages and their dynamics into the subsurface.

  16. COS as a proxy for photosynthesis: foliage and soil contributions to ecosystem COS flux

    Science.gov (United States)

    Erkkilä, Kukka-Maaria; Kooijmans, Linda; Aalto, Juho; Chen, Huilin; Mammarella, Ivan; Maseyk, Kadmiel; Pihlatie, Mari; Seibt, Ulli; Sun, Wu; Vesala, Timo

    2017-04-01

    Traditionally the photosynthetic sink of CO2 (described by gross primary production, GPP) is defined from ecosystem scale measurements of CO2 flux taking into account respiration defined from the nighttime CO2 flux data. The problem with this method is the accurate determination of ecosystem respiration, since the respiratory processes can vary remarkably between daytime and nighttime. Carbonyl sulfide (COS) has been suggested to be a useful proxy for GPP since plants take up COS in a similar way as CO2 via their stomata. In contrast to CO2, there is no back-flux (respiration) of COS by plants and GPP can be calculated directly from COS flux measurements. However, leaf relative uptake (LRU) ratio, that is used when converting COS flux into GPP with a linear relation, has been treated as a constant and needs to be better determined for more accurate GPP estimates. This presentation shows the preliminary results of a measurement campaign organized in Hyytiälä Scots pine (Pinus sylvestris) stand in southern Finland during the growing season 2016. COS fluxes from the soil were measured with soil chambers over different vegetations. Pine and aspen branches were measured with branch chambers and ecosystem scale exchange was monitored via eddy covariance measurements. Preliminary results show night-time ecosystem uptake of COS (negative flux) that is about 15% of the daily uptake. Soil chambers show constantly negative COS fluxes, although there is no uptake of CO2 and the soil flux is about 25% of the total ecosystem flux. Pine and aspen branches seem to be sinks of COS throughout the day indicating open stomata during night-time. These findings suggest that negative ecosystem COS flux can be explained by soil and vegetation uptake during night-time. From branch chamber measurements we were able to calculate the leaf relative uptake (LRU) separately for aspen and pine. We find that LRU has an exponential correlation with photosynthetic active radiation (PAR) when PAR

  17. Effect of freeze-thaw cycles on greenhouse gas fluxes from peat soils

    Science.gov (United States)

    Oh, H. D.; Rezanezhad, F.; Markelov, I.; McCarter, C. P. R.; Van Cappellen, P.

    2017-12-01

    The ongoing displacement of climate zones by global warming is increasing the frequency and intensity of freeze-thaw cycles in middle and high latitude regions, many of which are dominated by organic soils such as peat. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles influence greenhouse gas fluxes from peat using a newly developed experimental soil column system that simulates realistic soil temperature profiles during freeze-thaw cycles. We measured the surface and subsurface changes to gas and aqueous phase chemistry to delineate the diffusion pathways and quantify soil greenhouse gas fluxes during freeze-thaw cycles using sulfur hexafluoride (SF6) as a conservative tracer. Three peat columns were assembled inside a temperature controlled chamber with different soil structures. All three columns were packed with 40 cm of undisturbed, slightly decomposed peat, where the soil of two columns had an additional 10 cm layer on top (one with loose Sphagnum moss and one with an impermeable plug). The results indicate that the release of SF6 and CO2 gas from the soil surface was influenced by the recurrent development of a physical ice barrier, which prevented gas exchange between the soil and atmosphere during freezing conditions. With the onset of thawing a pulse of SF6 and CO2 occurred, resulting in a flux of 3.24 and 2095.52 µmol/m2h, respectively, due to the build-up of gases in the liquid-phase pore space during freezing. Additionally, we developed a model to determine the specific diffusion coefficients for each peat column. These data allow us to better predict how increased frequency and intensity of freeze-thaw cycles will affect greenhouse gas emissions in northern peat soils.

  18. Global observation-based diagnosis of soil moisture control on land surface flux partition

    Science.gov (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  19. Poly-use multi-level sampling system for soil-gas transport analysis in the vadose zone.

    Science.gov (United States)

    Nauer, Philipp A; Chiri, Eleonora; Schroth, Martin H

    2013-10-01

    Soil-gas turnover is important in the global cycling of greenhouse gases. The analysis of soil-gas profiles provides quantitative information on below-ground turnover and fluxes. We developed a poly-use multi-level sampling system (PMLS) for soil-gas sampling, water-content and temperature measurement with high depth resolution and minimal soil disturbance. It is based on perforated access tubes (ATs) permanently installed in the soil. A multi-level sampler allows extraction of soil-gas samples from 20 locations within 1 m depth, while a capacitance probe is used to measure volumetric water contents. During idle times, the ATs are sealed and can be equipped with temperature sensors. Proof-of-concept experiments in a field lysimeter showed good agreement of soil-gas samples and water-content measurements compared with conventional techniques, while a successfully performed gas-tracer test demonstrated the feasibility of the PMLS to determine soil-gas diffusion coefficients in situ. A field application of the PMLS to quantify oxidation of atmospheric CH4 in a field lysimeter and in the forefield of a receding glacier yielded activity coefficients and soil-atmosphere fluxes well in agreement with previous studies. With numerous options for customization, the presented tool extends the methodological choices to investigate soil-gas transport in the vadose zone.

  20. LBA-ECO TG-07 Soil CO2 Flux by Automated Chamber, Para, Brazil: 2001-2003

    Science.gov (United States)

    R.K. Varner; M.M. Keller

    2009-01-01

    Measurements of the soil-atmosphere flux of CO2 were made at the km 67 flux tower site in the Tapajos National Forest, Santarem, Para, Brazil. Eight chambers were set up to measure trace gas exchange between the soil and atmosphere about 5 times a day (during daylight and night) at this undisturbed forest site from April 2001 to April 2003. CO2 soil efflux data are...

  1. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Science.gov (United States)

    M. Mazur; C.P.J. Mitchell; C.S. Eckley; S.L. Eggert; R.K. Kolka; S.D. Sebestyen; E.B. Swain

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil-air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown.We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg...

  2. New stomatal flux-based critical levels for ozone effects on vegetation

    Science.gov (United States)

    Mills, Gina; Pleijel, Håkan; Braun, Sabine; Büker, Patrick; Bermejo, Victoria; Calvo, Esperanza; Danielsson, Helena; Emberson, Lisa; Fernández, Ignacio González; Grünhage, Ludger; Harmens, Harry; Hayes, Felicity; Karlsson, Per-Erik; Simpson, David

    2011-09-01

    The critical levels for ozone effects on vegetation have been reviewed and revised by the LRTAP Convention. Eight new or revised critical levels based on the accumulated stomatal flux of ozone (POD Y, the Phytotoxic Ozone Dose above a threshold flux of Y nmol m -2 PLA s -1, where PLA is the projected leaf area) have been agreed. For each receptor, data were combined from experiments conducted under naturally fluctuating environmental conditions in 2-4 countries, resulting in linear dose-response relationships with response variables specific to each receptor ( r2 = 0.49-0.87, p Norway spruce. For (semi-)natural vegetation, the critical level for effects on productive and high conservation value perennial grasslands was based on effects on important component species of the genus Trifolium (clover species). These critical levels can be used to assess protection against the damaging effects of ozone on food security, important ecosystem services provided by forest trees (roundwood production, C sequestration, soil stability and flood prevention) and the vitality of pasture.

  3. The role of soil weathering and hydrology in regulating chemical fluxes from catchments (Invited)

    Science.gov (United States)

    Maher, K.; Chamberlain, C. P.

    2010-12-01

    Catchment-scale chemical fluxes have been linked to a number of different parameters that describe the conditions at the Earth’s surface, including runoff, temperature, rock type, vegetation, and the rate of tectonic uplift. However, many of the relationships relating chemical denudation to surface processes and conditions, while based on established theoretical principles, are largely empirical and derived solely from modern observations. Thus, an enhanced mechanistic basis for linking global solute fluxes to both surface processes and climate may improve our confidence in extrapolating modern solute fluxes to past and future conditions. One approach is to link observations from detailed soil-based studies with catchment-scale properties. For example, a number of recent studies of chemical weathering at the soil-profile scale have reinforced the importance of hydrologic processes in controlling chemical weathering rates. An analysis of data from granitic soils shows that weathering rates decrease with increasing fluid residence times and decreasing flow rates—over moderate fluid residence times, from 5 days to 10 years, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than soil age. However, the importance of transport-controlled weathering is difficult to discern at the catchment scale because of the range of flow rates and fluid residence times captured by a single discharge or solute flux measurement. To assess the importance of transport-controlled weathering on catchment scale chemical fluxes, we present a model that links the chemical flux to the extent of reaction between the soil waters and the solids, or the fluid residence time. Different approaches for describing the distribution of fluid residence times within a catchment are then compared with the observed Si fluxes for a limited number of catchments. This model predicts high solute fluxes in regions with high run-off, relief, and

  4. Observing and modeling links between soil moisture, microbes and CH4 fluxes from forest soils

    Science.gov (United States)

    Christiansen, Jesper; Levy-Booth, David; Barker, Jason; Prescott, Cindy; Grayston, Sue

    2017-04-01

    Soil moisture is a key driver of methane (CH4) fluxes in forest soils, both of the net uptake of atmospheric CH4 and emission from the soil. Climate and land use change will alter spatial patterns of soil moisture as well as temporal variability impacting the net CH4 exchange. The impact on the resultant net CH4 exchange however is linked to the underlying spatial and temporal distribution of the soil microbial communities involved in CH4 cycling as well as the response of the soil microbial community to environmental changes. Significant progress has been made to target specific CH4 consuming and producing soil organisms, which is invaluable in order to understand the microbial regulation of the CH4 cycle in forest soils. However, it is not clear as to which extent soil moisture shapes the structure, function and abundance of CH4 specific microorganisms and how this is linked to observed net CH4 exchange under contrasting soil moisture regimes. Here we report on the results from a research project aiming to understand how the CH4 net exchange is shaped by the interactive effects soil moisture and the spatial distribution CH4 consuming (methanotrophs) and producing (methanogens). We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs and methanogens, soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient in a temperate rainforest on the Canadian Pacific coast. Furthermore, we conducted laboratory experiments to determine whether the net CH4 exchange from hydrologically contrasting forest soils responded differently to changes in soil moisture. Lastly, we modelled the microbial mediation of net CH4 exchange along the soil moisture gradient using structural equation modeling. Our study shows that it is possible to link spatial patterns of in situ net exchange of CH4 to microbial abundance of CH4 consuming and producing organisms. We also show that the microbial

  5. CO2, CH4 and N2O fluxes from soil of a burned grassland in Central Africa

    Directory of Open Access Journals (Sweden)

    R. Valentini

    2010-11-01

    Full Text Available The impact of fire on soil fluxes of CO2, CH4 and N2O was investigated in a tropical grassland in Congo Brazzaville during two field campaigns in 2007–2008. The first campaign was conducted in the middle of the dry season and the second at the end of the growing season, respectively one and eight months after burning. Gas fluxes and several soil parameters were measured in each campaign from burned plots and from a close-by control area preserved from fire. Rain events were simulated at each campaign to evaluate the magnitude and duration of the generated gas flux pulses. In laboratory experiments, soil samples from field plots were analysed for microbial biomass, net N mineralization, net nitrification, N2O, NO and CO2 emissions under different water and temperature soil regimes. One month after burning, field CO2 emissions were significantly lower in burned plots than in the control plots, the average daily CH4 flux shifted from net emission in the unburned area to net consumption in burned plots, no significant effect of fire was observed on soil N2O fluxes. Eight months after burning, the average daily fluxes of CO2, CH4 and N2O measured in control and burned plots were not significantly different. In laboratory, N2O fluxes from soil of burned plots were significantly higher than fluxes from soil of unburned plots only above 70% of maximum soil water holding capacity; this was never attained in the field even after rain simulation. Higher NO emissions were measured in the lab in soil from burned plots at both 10% and 50% of maximum soil water holding capacity. Increasing the incubation temperature from 25 °C to 37 °C negatively affected microbial growth, mineralization and nitrification activities but enhanced N2O and CO2 production. Results indicate that fire did not increase post-burning soil GHG emissions in this tropical grasslands characterized by acidic, well drained and nutrient-poor soil.

  6. BOREAS TGB-12 Soil Carbon and Flux Data of NSA-MSA in Raster Format

    Science.gov (United States)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Rapalee, Gloria; Davidson, Eric; Harden, Jennifer W.; Trumbore, Susan E.; Veldhuis, Hugo

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites. This data set provides: (1) estimates of soil carbon stocks by horizon based on soil survey data and analyses of data from individual soil profiles; (2) estimates of soil carbon fluxes based on stocks, fire history, drain-age, and soil carbon inputs and decomposition constants based on field work using radiocarbon analyses; (3) fire history data estimating age ranges of time since last fire; and (4) a raster image and an associated soils table file from which area-weighted maps of soil carbon and fluxes and fire history may be generated. This data set was created from raster files, soil polygon data files, and detailed lab analysis of soils data that were received from Dr. Hugo Veldhuis, who did the original mapping in the field during 1994. Also used were soils data from Susan Trumbore and Jennifer Harden (BOREAS TGB-12). The binary raster file covers a 733-km 2 area within the NSA-MSA.

  7. LBA-ECO TG-07 Soil Trace Gas Flux and Root Mortality, Tapajos National Forest

    Science.gov (United States)

    R.K. Varner; M.M. Keller

    2009-01-01

    This data set reports the results of an experiment that tested the short-term effects of root mortality on the soil-atmosphere fluxes of nitrous oxide, nitric oxide, methane, and carbon dioxide in a tropical evergreen forest. Weekly trace gas fluxes are provided for treatment and control plots on sand and clay tropical forest soils in two comma separated ASCII files....

  8. Nocturnal soil CO2 uptake and its relationship to sub-surface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland

    Science.gov (United States)

    Despite their prevalence, little attention has been given to quantifying aridland soil and ecosystem carbon fluxes over prolonged, annually occurring dry periods. We measured surface soil respiration (Rsoil), volumetric soil moisture and temperature in inter- and under-canopy soils, sub-surface soi...

  9. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    Science.gov (United States)

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  10. Grazing reduces soil greenhouse gas fluxes in global grasslands: a meta-analysis

    Science.gov (United States)

    Tang, Shiming; Tian, Dashuan; Niu, Shuli

    2017-04-01

    Grazing causes a worldwide degradation in grassland and likely alters soil greenhouse gas fluxes (GHGs). However, the general patterns of grazing-induced changes in grassland soil GHGs and the underlying mechanisms remain unclear. Thus, we synthesized 63 independent experiments in global grasslands that examined grazing impacts on soil GHGs (CO2, CH4 and N2O). We found that grazing with light or moderate intensity did not significantly influence soil GHGs, but consistently depressed them under heavy grazing, reducing CO2 emission by 10.55%, CH4 uptake by 19.24% and N2O emission by 28.04%. The reduction in soil CO2 was mainly due to decreased activity in roots and microbes (soil respiration per unit root and microbial biomass), which was suppressed by less water availability due to higher soil temperature induced by lower community cover under heavy grazing. N2O emission decreased with grazing-caused decline in soil total N. The inhibitory effect on methanotroph activities by water stress is responsible for the decreased CH4 uptake. Furthermore, grazing duration and precipitation also influenced the direction and magnitude of responses in GHGs fluxes. Overall, our results indicate that the reduction in soil CO2 and N2O emission under heavy grazing is partially compensated by the decrease in CH4 uptake, which is mainly regulated by variations in soil moisture.

  11. Greenhouse gases fluxes and soil thermal properties in a pasture in central Missouri.

    Science.gov (United States)

    Nkonglolo, Nsalambi Vakanda; Johnson, Shane; Schmidt, Kent; Eivazi, Frieda

    2010-01-01

    Fluctuations of greenhouse gases emissions and soil properties occur at short spatial and temporal scales, however, results are often reported for larger scales studies. We monitored CO2, CH4, and N2O fluxes and soil temperature (T), thermal conductivity (K), resistivity (R) and thermal diffusivity (D) from 2004 to 2006 in a pasture. Soil air samples for determination of CO2, CH4 and N20 concentrations were collected from static and vented chambers and analyzed within two hours of collection with a gas chromatograph. T, K, R and D were measured in-situ using a KD2 probe. Soil samples were also taken for measurements of soil chemical and physical properties. The pasture acted as a sink in 2004, a source in 2005 and again a sink of CH4 in 2006. CO2 and CH4 were highest, but N2O as well as T, K and D were lowest in 2004. Only K was correlated with CO2 in 2004 while T correlated with both N2O (r = 0.76, p = 0.0001) and CO2 (r = 0.88, p = 0.0001) in 2005. In 2006, all gases fluxes were significantly correlated with T, K and R when the data for the entire year were considered. However, an in-depth examination of the data revealed the existence of month-to-month shifts, lack of correlation and differing spatial structures. These results stress the need for further studies on the relationship between soil properties and gases fluxes. K and R offer a promise as potential controlling factors for greenhouse gases fluxes in this pasture.

  12. Soil nitrogen oxide fluxes from lowland forests converted to smallholder rubber and oil palm plantations in Sumatra, Indonesia

    Science.gov (United States)

    Hassler, Evelyn; Corre, Marife D.; Kurniawan, Syahrul; Veldkamp, Edzo

    2017-06-01

    Oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations cover large areas of former rainforest in Sumatra, Indonesia, supplying the global demand for these crops. Although forest conversion is known to influence soil nitrous oxide (N2O) and nitric oxide (NO) fluxes, measurements from oil palm and rubber plantations are scarce (for N2O) or nonexistent (for NO). Our study aimed to (1) quantify changes in soil-atmosphere fluxes of N oxides with forest conversion to rubber and oil palm plantations and (2) determine their controlling factors. In Jambi, Sumatra, we selected two landscapes that mainly differed in texture but were both on heavily weathered soils: loam and clay Acrisol soils. Within each landscape, we investigated lowland forests, rubber trees interspersed in secondary forest (termed as jungle rubber), both as reference land uses and smallholder rubber and oil palm plantations as converted land uses. In the loam Acrisol landscape, we conducted a follow-on study in a large-scale oil palm plantation (called PTPN VI) for comparison of soil N2O fluxes with smallholder oil palm plantations. Land-use conversion to smallholder plantations had no effect on soil N-oxide fluxes (P = 0. 58 to 0.76) due to the generally low soil N availability in the reference land uses that further decreased with land-use conversion. Soil N2O fluxes from the large-scale oil palm plantation did not differ with those from smallholder plantations (P = 0. 15). Over 1-year measurements, the temporal patterns of soil N-oxide fluxes were influenced by soil mineral N and water contents. Across landscapes, annual soil N2O emissions were controlled by gross nitrification and sand content, which also suggest the influence of soil N and water availability. Soil N2O fluxes (µg N m-2 h-1) were 7 ± 2 to 14 ± 7 (reference land uses), 6 ± 3 to 9 ± 2 (rubber), 12 ± 3 to 12 ± 6 (smallholder oil palm) and 42 ± 24 (large-scale oil palm). Soil NO fluxes (µg N m-2 h-1) were -0.6

  13. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.

    Science.gov (United States)

    Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D

    2012-09-04

    In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.

  14. Windthrow and fallow-forest successions impacts in soil carbon stocks and GHG fluxes spatial variability and dynamics in the Central Russia' reserve spruce ecosystems

    Science.gov (United States)

    Vasenev, Ivan; Ivanov, Alexey; Komarova, Tatyana; Valentini, Riccardo

    2015-04-01

    High spatial and temporal variability is mutual feature for most forest soils that is especially obvious in case of their carbon stocks and GHG fluxes. This phenomenon is generally well-known but not so often becomes the object of special precision investigation in detail and small scales so there are still serious gaps in its principal factors understanding due to their high bioclimatic, regional, landscape, tree species and temporal variability. Southern taiga is one of the most environmentally important world zonal forest ecosystems due to its still comparatively intensive carbon biogeochemical cycle and huge area in the northern Eurasia with strong anthropogenic impacts by Western & Central European and Southern & Eastern Asian regions. Central Forest Biospheric Reserve (Tver region, 360 km to North-West from Moscow) is the principal southern-taiga reserve in the European territory of Russia. Since start of its research activity in 1939 the reserve became the regional center of mature spruce ecosystem structure and dynamics investigation. In 1970-1980-s there have been done complex investigations of windthrow soil patterns and fallow-forest successions. Since middle of 1990-s the ecosystem-level GHG fluxes have been observed by eddy covariance method. Since 2012 the detailed year-round monitoring is running in the southern-taiga zonal station of the regional system RusFluxNet with especial attention on the soil carbon stocks and GHG fluxes spatial variability and dynamics due to windthrow and fallow-forest successions (in frame of RF Governmental projects #11.G34.31.0079 and #14.120.14.4266). Soil carbon dynamics is investigated in decades-hundred-year chronosequences of dominated parcels and different-size windthrow soil cover patterns, including direct investigation during last 33 years with detailed mapping, soil profile morphometrics and bulk density, morphogenetic and statistical analysis of mass data. Morphogenetic analysis of microrelief, soil profile

  15. BOREAS TF-3 NSA-OBS Tower Flux, Meteorological, and Soil Temperature Data

    Science.gov (United States)

    Wofsy, Steven; Sutton, Doug; Goulden, Mike; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-3) team collected tower flux, surface meteorological, and soil temperature data at the BOREAS Northern Study Area-Old Black Spruce (NSA-OBS) site continuously from the March 1994 through October 1996. The data are available in tabular ASCII files.

  16. Soil modern evolution impact on the C fluxes in Chernozems at the Middle Volga Region

    Science.gov (United States)

    Ramazanov, Sabir; Yashin, Ivan; Atenbekov, Ramiz; Vasenev, Ivan

    2017-04-01

    There are results of long-term stationary field research on the aridization impact on the carbon fluxes in the topsoil of Chernozemic soils in the representative agricultural and native forest-steppe landscapes in conditions of the Middle Volga region of Russia (educational-experimental farm "Mummovskoe", Saratov region). Especial attention is dedicated to the water-soluble organic substances (WSOS) which are better available for soil microorganisms that utilize them, enhancing CO2 emission. Dominated in the Middle-Volga natural and agro-landscapes soil conditions are unfavorable for mobile humic acid production and accumulation: organic acids and polyphenols gradually mobilized into solution from root excretions and crop residues or woody plant litter are quickly neutralized by calcium, magnesium or sodium ions in topsoil. Most arable Chernozems of the Middle-Volga region are actively degraded due to both topsoil CO2 emission and water-soluble organic substances fluxes in form of sodium and calcium humates and fulvates, as evidenced by sorption lysimetry data on the WSOS fluxes in 15-21 g/m2 over the vegetation period. Additional researches are necessary to evaluate the ratio between soil organic carbon losses through soil erosion processes, topsoil CO2 emission and WSOS profile and lateral fluxes in conditions of different land-use practice and climate conditions to develop the modern climate-smart farming systems in the Middle-Volga region agrolandscapes with potentially very prolific Chernozemic soils.

  17. Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach

    Directory of Open Access Journals (Sweden)

    Rose Luiza Moraes Tavares

    Full Text Available ABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80 for predicted and observed values.

  18. Using greenhouse gas fluxes to define soil functional types

    Energy Technology Data Exchange (ETDEWEB)

    Petrakis, Sandra; Barba, Josep; Bond-Lamberty, Ben; Vargas, Rodrigo

    2017-12-04

    Soils provide key ecosystem services and directly control ecosystem functions; thus, there is a need to define the reference state of soil functionality. Most common functional classifications of ecosystems are vegetation-centered and neglect soil characteristics and processes. We propose Soil Functional Types (SFTs) as a conceptual approach to represent and describe the functionality of soils based on characteristics of their greenhouse gas (GHG) flux dynamics. We used automated measurements of CO2, CH4 and N2O in a forested area to define SFTs following a simple statistical framework. This study supports the hypothesis that SFTs provide additional insights on the spatial variability of soil functionality beyond information represented by commonly measured soil parameters (e.g., soil moisture, soil temperature, litter biomass). We discuss the implications of this framework at the plot-scale and the potential of this approach at larger scales. This approach is a first step to provide a framework to define SFTs, but a community effort is necessary to harmonize any global classification for soil functionality. A global application of the proposed SFT framework will only be possible if there is a community-wide effort to share data and create a global database of GHG emissions from soils.

  19. Combining in situ and laboratory measurements of soil-atmosphere carbonyl sulfide fluxes from four different biomes across Europe

    Science.gov (United States)

    Kitz, Florian; Gomez-Brandon, Maria; Hammerle, Albin; Spielmann, Felix M.; Insam, Heribert; Ibrom, Andreas; Migliavacca, Mirco; Moreno, Gerardo; Noe, Steffen M.; Wohlfahrt, Georg

    2017-04-01

    Flux partitioning, the quantification of photosynthesis and respiration, is a major uncertainty in modelling the carbon cycle and in times when robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive gross primary production (GPP) from measurements of the carbonyl sulfide (COS) flux, the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite for using COS as a proxy for photosynthesis is a robust estimation of all non-leaf sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on their properties like soil temperature and soil water content. In 2016 we conducted field campaigns in Austria (managed temperate mountain grassland), Spain (savannah), Denmark (temperate beech forest) and Estonia (hemiboreal forest) to estimate the soil-atmosphere COS fluxes under ambient conditions in different biomes. We used self-built fused silica soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. At the grassland sites (Austria, Spain) vegetation was removed below the chambers, therefor more radiation reached the soil surface compared to natural conditions. The grassland sites were characterized by highly positive COS fluxes during daytime and COS fluxes around zero during nighttime. In contrast, the soils at the forest sites (Denmark, Estonia), characterized by less radiation on the soil surface, acted as a sink for COS. The impact of other abiotic factors, like soil water content and soil temperature, varied between the ecosystems. In addition to the field measurements soil and litter samples were taken at the study sites and used to measure COS fluxes under controlled conditions in the lab. Results from the

  20. Chemical fluxes in time through forest ecosystems in the UK - Soil response to pollution recovery

    International Nuclear Information System (INIS)

    Vanguelova, E.I.; Benham, S.; Pitman, R.; Moffat, A.J.; Broadmeadow, M.; Nisbet, T.; Durrant, D.; Barsoum, N.; Wilkinson, M.; Bochereau, F.; Hutchings, T.; Broadmeadow, S.; Crow, P.; Taylor, P.; Durrant Houston, T.

    2010-01-01

    Long term trend analysis of bulk precipitation, throughfall and soil solution elemental fluxes from 12 years monitoring at 10 ICP Level II forest sites in the UK reveal coherent national chemical trends indicating recovery from sulphur deposition and acidification. Soil solution pH increased and sulphate and aluminium decreased at most sites. Trends in nitrogen were variable and dependant on its form. Dissolved organic nitrogen increased in bulk precipitation, throughfall and soil solution at most sites. Nitrate in soil solution declined at sites receiving high nitrogen deposition. Increase in soil dissolved organic carbon was detected - a response to pollution recovery, changes in soil temperature and/or increased microbial activity. An increase of sodium and chloride was evident - a possible result of more frequent storm events at exposed sites. The intensive and integrated nature of monitoring enables the relationships between climate/pollutant exposure and chemical/biological response in forestry to be explored. - Forest soils are recovering from acid and sulphur pollution in the UK, but soil responses to nitrogen deposition and climatic changes are still uncertain.

  1. Chemical fluxes in time through forest ecosystems in the UK - Soil response to pollution recovery

    Energy Technology Data Exchange (ETDEWEB)

    Vanguelova, E.I., E-mail: elena.vanguelova@forestry.gsi.gov.u [Centre of Forestry and Climate Change, Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Benham, S.; Pitman, R.; Moffat, A.J. [Centre of Forestry and Climate Change, Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Broadmeadow, M. [Forestry Commission, England, Alice Holt, Farnham, Surrey GU10 4LH (United Kingdom); Nisbet, T.; Durrant, D.; Barsoum, N.; Wilkinson, M.; Bochereau, F.; Hutchings, T.; Broadmeadow, S.; Crow, P.; Taylor, P. [Centre of Forestry and Climate Change, Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Durrant Houston, T. [DG Joint Research Centre - European Commission, Institute for Environment and Sustainability, Land Management and Natural Hazards Unit - TP 261, Ispra, I-21027 (Italy)

    2010-05-15

    Long term trend analysis of bulk precipitation, throughfall and soil solution elemental fluxes from 12 years monitoring at 10 ICP Level II forest sites in the UK reveal coherent national chemical trends indicating recovery from sulphur deposition and acidification. Soil solution pH increased and sulphate and aluminium decreased at most sites. Trends in nitrogen were variable and dependant on its form. Dissolved organic nitrogen increased in bulk precipitation, throughfall and soil solution at most sites. Nitrate in soil solution declined at sites receiving high nitrogen deposition. Increase in soil dissolved organic carbon was detected - a response to pollution recovery, changes in soil temperature and/or increased microbial activity. An increase of sodium and chloride was evident - a possible result of more frequent storm events at exposed sites. The intensive and integrated nature of monitoring enables the relationships between climate/pollutant exposure and chemical/biological response in forestry to be explored. - Forest soils are recovering from acid and sulphur pollution in the UK, but soil responses to nitrogen deposition and climatic changes are still uncertain.

  2. Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands

    Directory of Open Access Journals (Sweden)

    D. Imer

    2013-09-01

    Full Text Available A profound understanding of temporal and spatial variabilities of soil carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O fluxes between terrestrial ecosystems and the atmosphere is needed to reliably quantify these fluxes and to develop future mitigation strategies. For managed grassland ecosystems, temporal and spatial variabilities of these three soil greenhouse gas (GHG fluxes occur due to changes in environmental drivers as well as fertilizer applications, harvests and grazing. To assess how such changes affect soil GHG fluxes at Swiss grassland sites, we studied three sites along an altitudinal gradient that corresponds to a management gradient: from 400 m a.s.l. (intensively managed to 1000 m a.s.l. (moderately intensive managed to 2000 m a.s.l. (extensively managed. The alpine grassland was included to study both effects of extensive management on CH4 and N2O fluxes and the different climate regime occurring at this altitude. Temporal and spatial variabilities of soil GHG fluxes and environmental drivers on various timescales were determined along transects of 16 static soil chambers at each site. All three grasslands were N2O sources, with mean annual soil fluxes ranging from 0.15 to 1.28 nmol m−2 s−1. Contrastingly, all sites were weak CH4 sinks, with soil uptake rates ranging from −0.56 to −0.15 nmol m−2 s−1. Mean annual soil and plant respiration losses of CO2, measured with opaque chambers, ranged from 5.2 to 6.5 μmol m−2 s−1. While the environmental drivers and their respective explanatory power for soil N2O emissions differed considerably among the three grasslands (adjusted r2 ranging from 0.19 to 0.42, CH4 and CO2 soil fluxes were much better constrained (adjusted r2 ranging from 0.46 to 0.80 by soil water content and air temperature, respectively. Throughout the year, spatial heterogeneity was particularly high for soil N2O and CH4 fluxes. We found permanent hot spots for soil N2O emissions as well as

  3. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    Science.gov (United States)

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  4. N2O fluxes in soils of contrasting textures fertilized with liquid and solid dairy cattle manures

    International Nuclear Information System (INIS)

    Rochette, P.; Angers, D.A.; Chantigny, M.H.; Gagnon, B.; Bertrand, N.

    2008-01-01

    Nitrous oxide (N 2 O) emissions from loamy and clay soils fertilized with liquid or solid dairy cattle manures and synthetic nitrogen (N) fertilizers were measured in this study in order to determine if the use of manure for silage maize production increased N 2 O emissions when compared with the application of N-based fertilizers. Manures and ammonium nitrate were applied on the soil surface and sampled. Silage corn was then planted over a period of 2 years between 2002 and 2003. Soil-surface fluxes of N 2 O were measured using non-flow through, non-steady-state chambers. Measurements were taken weekly over the study period, and all air samples were analyzed using gas chromatography. Soil temperature and moisture levels were also recorded. One-way analysis of variance (ANOVA) analyses were used to examine the effects of manure type on soil N 2 O concentrations; soil-surface N 2 O fluxes; soil mineral N content; soil temperature; and soil water content. Results of the study showed that between 60 and 90 per cent of N 2 O emissions occurred during the first 40 days of fertilizer application. The fertilization of the silage corn crop with dairy cattle manure resulted in N 2 O emissions greater than, or equal to, soils amended with synthetic N. Maize yields were also lower in the manured fields. No difference in N 2 O emissions was observed between the liquid and the solid manures. It was concluded that the main source of N 2 0 was nitrification in the loamy soils, and denitrification in clay soils. 41 refs., 4 tabs., 5 figs

  5. Inter-comparison of different direct and indirect methods to determine radon flux from soil

    International Nuclear Information System (INIS)

    Grossi, C.; Vargas, A.; Camacho, A.; Lopez-Coto, I.; Bolivar, J.P.; Xia Yu; Conen, F.

    2011-01-01

    The physical and chemical characteristics of radon gas make it a good tracer for use in the application of atmospheric transport models. For this purpose the radon source needs to be known on a global scale and this is difficult to achieve by only direct experimental methods. However, indirect methods can provide radon flux maps on larger scales, but their reliability has to be carefully checked. It is the aim of this work to compare radon flux values obtained by direct and indirect methods in a measurement campaign performed in the summer of 2008. Different systems to directly measure radon flux from the soil surface and to measure the related parameters terrestrial γ dose and 226 Ra activity in soil, for indirect estimation of radon flux, were tested. Four eastern Spanish sites with different geological and soil characteristics were selected: Teruel, Los Pedrones, Quintanar de la Orden and Madrid. The study shows the usefulness of both direct and indirect methods for obtaining radon flux data. Direct radon flux measurements by continuous and integrated monitors showed a coefficient of variation between 10% and 23%. At the same time, indirect methods based on correlations between 222 Rn and terrestrial γ dose rate, or 226 Ra activity in soil, provided results similar to the direct measurements, when these proxies were directly measured at the site. Larger discrepancies were found when proxy values were extracted from existing data bases. The participating members involved in the campaign study were the Institute of Energy Technology (INTE) of the Technical University of Catalonia (UPC), Huelva University (UHU), and Basel University (BASEL).

  6. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    International Nuclear Information System (INIS)

    Mazur, M.; Mitchell, C.P.J.; Eckley, C.S.; Eggert, S.L.; Kolka, R.K.; Sebestyen, S.D.; Swain, E.B.

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil–air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown. We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg emissions from the forest floor were monitored after two forest harvesting prescriptions, a traditional clear-cut and a clearcut followed by biomass harvest, and compared to an un-harvested reference plot. Gaseous Hg emissions were measured in quadruplicate at four different times between March and November 2012 using Teflon dynamic flux chambers. We also applied enriched Hg isotope tracers and separately monitored their emission in triplicate at the same times as ambient measurements. Clearcut followed by biomass harvesting increased ambient Hg emissions the most. While significant intra-site spatial variability was observed, Hg emissions from the biomass harvested plot (180 ± 170 ng m −2 d −1 ) were significantly greater than both the traditional clearcut plot (− 40 ± 60 ng m −2 d −1 ) and the un-harvested reference plot (− 180 ± 115 ng m −2 d −1 ) during July. This difference was likely a result of enhanced Hg 2+ photoreduction due to canopy removal and less shading from downed woody debris in the biomass harvested plot. Gaseous Hg emissions from more recently deposited Hg, as presumably representative of isotope tracer measurements, were not significantly influenced by harvesting. Most of the Hg tracer applied to the forest floor became sequestered within the ground vegetation and debris, leaf litter, and soil. We observed a dramatic lessening of tracer Hg emissions to near detection levels within 6 months. As post-clearcutting residues are increasingly used as a fuel or fiber resource, our observations suggest that gaseous Hg emissions from forest soils will increase, although it

  7. [Effects of fertilization on soil CO2 flux in Castanea mollissima stand].

    Science.gov (United States)

    Zhang, Jiao-Jiao; Li, Yong-Fu; Jiang, Pei-Kun; Zhou, Guo-Mo; Shen, Zhen-Ming; Liu, Juan; Wang, Zhan-Lei

    2013-09-01

    In June 2011-June 2012, a fertilization experiment was conducted in a typical Castanea mollissima stand in Lin' an of Zhejiang Province, East China to study the effects of inorganic and organic fertilization on the soil CO2 flux and the relationships between the soil CO2 flux and environmental factors. Four treatments were installed, i. e., no fertilization (CK), inorganic fertilization (IF), organic fertilization (OF), half organic plus half inorganic fertilization (OIF). The soil CO2 emission rate was determined by the method of static closed chamber/GC technique, and the soil temperature, soil moisture content, and soil water-soluble organic carbon (WSOC) concentration were determined by routine methods. The soil CO2 emission exhibited a strong seasonal pattern, with the highest rate in July or August and the lowest rate in February. The annual accumulative soil CO2 emission in CK was 27.7 t CO2 x hm(-2) x a(-1), and that in treatments IF, OF, and OIF was 29.5%, 47.0%, and 50.7% higher than the CK, respectively. The soil WSOC concentration in treatment IF (105.1 mg kg(-1)) was significantly higher than that in CK (76.6 mg x kg(-1)), but was obviously lower than that in treatments OF (133.0 mg x kg(-1)) and OIF (121.2 mg x kg(-1)). The temperature sensitivity of respiration (Q10) in treatments CK, IF, OF, and OIF was 1.47, 1.75, 1.49, and 1.57, respectively. The soil CO2 emission rate had significant positive correlations with the soil temperature at the depth of 5 cm and the soil WSOC concentration, but no significant correlation with soil moisture content. The increase of the soil WSOC concentration caused by fertilization was probably one of the reasons for the increase of soil CO2 emission from the C. mollissima stand.

  8. Soil Dissolved Organic Carbon Fluxes are Controlled by both Precipitation and Longer-Term Climate Effects on Boreal Forest Ecosystems

    Science.gov (United States)

    Hotchkiss, E. R.; Ziegler, S. E.; Edwards, K. A.; Bowering, K.

    2017-12-01

    Water acts as a control on the cycling of organic carbon (OC). Forest productivity responses to climate change are linked to water availability while water residence time is a major control on OC loss in aquatic ecosystems. However, controls on the export of terrestrial OC to the aquatic environment remains poorly understood. Transport of dissolved OC (DOC) through soils both vertically to deeper soil horizons and into aquatic systems is a key flux of terrestrial OC, but the climate drivers controlling OC mobilized from soils is poorly understood. We installed zero-tension lysimeters across similar balsam fir forest sites within three regions that span a MAT gradient of 5.2˚C and MAP of 1050-1500 mm. Using soil water collected over all seasons for four years we tested whether a warmer and wetter climate promotes greater DOC fluxes in ecosystems experiencing relatively high precipitation. Variability within and between years was compared to that observed across climates to test the sensitivity of this flux to shorter relative to longer-term climate effects on this flux. The warmest and wettest southern site exhibited the greatest annual DOC flux (25 to 28 g C m-2 y-1) in contrast to the most northern site (8 to 10 g C m -2 y-1). This flux represented 10% of litterfall C inputs across sites and surpassed the DOC export from associated forested headwater streams (1 to 16 g C m-2 y-1) suggesting terrestrial to aquatic interface processing. Historical climate and increased soil C inputs explain the greater DOC flux in the southern region. Even in years with comparable annual precipitation among regions the DOC flux differed by climate region. Furthermore, neither quantity nor form of precipitation could explain inter-annual differences in DOC flux within each region. Region specific relationships between precipitation and soil water flux instead suggest historical climate effects may impact soil water transport efficiency thereby controlling the regional variation in

  9. Carbon flux from plants to soil microbes is highly sensitive to nitrogen addition and biochar amendment

    Science.gov (United States)

    Kaiser, C.; Solaiman, Z. M.; Kilburn, M. R.; Clode, P. L.; Fuchslueger, L.; Koranda, M.; Murphy, D. V.

    2012-04-01

    The release of carbon through plant roots to the soil has been recognized as a governing factor for soil microbial community composition and decomposition processes, constituting an important control for ecosystem biogeochemical cycles. Moreover, there is increasing awareness that the flux of recently assimilated carbon from plants to the soil may regulate ecosystem response to environmental change, as the rate of the plant-soil carbon transfer will likely be affected by increased plant C assimilation caused by increasing atmospheric CO2 levels. What has received less attention so far is how sensitive the plant-soil C transfer would be to possible regulations coming from belowground, such as soil N addition or microbial community changes resulting from anthropogenic inputs such as biochar amendments. In this study we investigated the size, rate and sensitivity of the transfer of recently assimilated plant C through the root-soil-mycorrhiza-microbial continuum. Wheat plants associated with arbuscular mycorrhizal fungi were grown in split-boxes which were filled either with soil or a soil-biochar mixture. Each split-box consisted of two compartments separated by a membrane which was penetrable for mycorrhizal hyphae but not for roots. Wheat plants were only grown in one compartment while the other compartment served as an extended soil volume which was only accessible by mycorrhizal hyphae associated with the plant roots. After plants were grown for four weeks we used a double-labeling approach with 13C and 15N in order to investigate interactions between C and N flows in the plant-soil-microorganism system. Plants were subjected to an enriched 13CO2 atmosphere for 8 hours during which 15NH4 was added to a subset of split-boxes to either the root-containing or the root-free compartment. Both, 13C and 15N fluxes through the plant-soil continuum were monitored over 24 hours by stable isotope methods (13C phospho-lipid fatty acids by GC-IRMS, 15N/13C in bulk plant

  10. Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time

    OpenAIRE

    M. L. Kavvas; A. Ercan; J. Polsinelli

    2017-01-01

    In this study dimensionally consistent governing equations of continuity and motion for transient soil water flow and soil water flux in fractional time and in fractional multiple space dimensions in anisotropic media are developed. Due to the anisotropy in the hydraulic conductivities of natural soils, the soil medium within which the soil water flow occurs is essentially anisotropic. Accordingly, in this study the fractional dimensions in two horizontal and one vertical di...

  11. Long-term soil gas flux and root mortality, Tapajos National Forest

    Science.gov (United States)

    W. L. Silver; A. W. Thompson; M. E. McGroddy; R. K. Varner; J. R. Robertson; J. D. Dias; H. Silva; P. Crill; M. Keller

    2012-01-01

    This data set reports measurements of trace gas fluxes of methane (CH4), nitric oxide (N2O), nitrous oxide (NO), carbon dioxide (CO2) from soils at a study site in the Tapajos National Forest (TNF), near the km 83 on the Santarem-Cuiaba Highway south of Santarem, Para, Brazil. Data for root mass and carbon content, soil nitrogen (N), nitrification, and moisture content...

  12. Climatic sensitivity of dryland soil CO2 fluxes differs dramatically with biological soil crust successional state

    Science.gov (United States)

    Tucker, Colin; Ferrenberg, Scott; Reed, Sasha C.

    2018-01-01

    Arid and semiarid ecosystems make up approximately 41% of Earth’s terrestrial surface and are suggested to regulate the trend and interannual variability of the global terrestrial carbon (C) sink. Biological soil crusts (biocrusts) are common dryland soil surface communities of bryophytes, lichens, and/or cyanobacteria that bind the soil surface together and that may play an important role in regulating the climatic sensitivity of the dryland C cycle. Major uncertainties exist in our understanding of the interacting effects of changing temperature and moisture on CO2 uptake (photosynthesis) and loss (respiration) from biocrust and sub-crust soil, particularly as related to biocrust successional state. Here, we used a mesocosm approach to assess how biocrust successional states related to climate treatments. We subjected bare soil (Bare), early successional lightly pigmented cyanobacterial biocrust (Early), and late successional darkly pigmented moss-lichen biocrust (Late) to either ambient or + 5°C above ambient soil temperature for 84 days. Under ambient temperatures, Late biocrust mesocosms showed frequent net uptake of CO2, whereas Bare soil, Early biocrust, and warmed Late biocrust mesocosms mostly lost CO2 to the atmosphere. The inhibiting effect of warming on CO2 exchange was a result of accelerated drying of biocrust and soil. We used these data to parameterize, via Bayesian methods, a model of ecosystem CO2 fluxes, and evaluated the model with data from an autochamber CO2 system at our field site on the Colorado Plateau in SE Utah. In the context of the field experiment, the data underscore the negative effect of warming on fluxes both biocrust CO2 uptake and loss—which, because biocrusts are a dominant land cover type in this ecosystem, may extend to ecosystem-scale C cycling.

  13. DO3SE modelling of soil moisture to determine ozone flux to forest trees

    Directory of Open Access Journals (Sweden)

    M. Schaub

    2012-06-01

    Full Text Available The DO3SE (Deposition of O3 for Stomatal Exchange model is an established tool for estimating ozone (O3 deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme photochemical model to provide a policy tool capable of relating the flux-based risk of vegetation damage to O3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments has been the assumption that soil water deficits are not limiting O3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (gsto, and subsequent O3 flux. This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on gsto for a variety of forest tree species. This DO3SE soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing gsto relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to gsto, to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. These methods are evaluated against field data describing a variety of soil water variables, gsto and transpiration data for Norway spruce (Picea abies, Scots pine (Pinus sylvestris, birch (Betula pendula, aspen (Populus tremuloides, beech (Fagus sylvatica and holm oak (Quercus ilex collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and

  14. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Directory of Open Access Journals (Sweden)

    N. Brüggemann

    2011-11-01

    CO2 diffusion and dissolution processes within the soil profile. Finally, we highlight state-of-the-art stable isotope methodologies and their latest developments. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or currently impede the interpretation of isotopic signals in CO2 or organic compounds at the plant and ecosystem level. This review tries to identify present knowledge gaps in correctly interpreting carbon stable isotope signals in the plant-soil-atmosphere system and how future research approaches could contribute to closing these gaps.

  15. A system for measuring fluxes of trace gases to and from soil and vegetation with a chamber technique

    International Nuclear Information System (INIS)

    Johansson, Christer; Richter, Andreas; Backlin, Leif; Granat, Lennart

    1983-09-01

    A mobile system for measurements of gaseous fluxes of SO 2 NO x , O 3 and water vapour between the atmosphere and the vegetation soil system using a chamber technique is described. Equipment, instruments and instrumental sensitivities are listed. A gas-handling system including calibration procedures and information on the chamber construction is also presented. With this system it is possible to make measurements using a wide range of concentrations including subambient levels. The environment in the chamber can be kept very close to ambient conditions. The mechanisms regulating the flux can be studied. A limitation of this system is the problem of extrapolating the fluxes obtained to larger areas. (author)

  16. Soil Carbon Dioxide and Methane Fluxes in a Costa Rican Premontane Wet Forest

    Science.gov (United States)

    Hempel, L. A.; Schade, G. W.; Pfohl, A.

    2011-12-01

    A significant amount of the global terrestrial biomass is found in tropical forests, and soil respiration is a vital part of its carbon cycling. However, data on soil trace gas flux rates in the tropics are sparse, especially from previously disturbed regions. To expand the database on carbon cycling in the tropics, this study examined soil flux rate and its variability for CO2 and CH4 in a secondary premontane wet forest south of Arenal Volcano in Costa Rica. Data were collected over a six-week period in June and July 2011 during the transition from dry to wet season. Trace gas sampling was performed at three sub-canopy sites of different elevations. The soil is of volcanic origin with a low bulk density, likely an Andisol. An average KCl pH of 4.8 indicates exchangeable aluminum is present, and a NaF pH>11 indicates the soil is dominated by short-range order minerals. Ten-inch diameter PVC rings were used as static flux chambers without soil collars. To find soil CO2 efflux rates, a battery-powered LICOR 840A CO2-H2O Gas Analyzer was used to take measurements in the field, logging CO2 concentration every ten seconds. Additionally, six, 10-mL Nylon syringes were filled with gas samples at 0, 1, 7, 14, 21, and 28 minutes after closing the chambers. These samples were analyzed the same day with a SRI 8610 Gas Chromatograph for concentrations of CO2 and CH4. The average CO2 efflux calculated was 1.7±0.8E-2 g/m2/min, and did not differ between the applied analytical methods. Soil respiration depended strongly on soil moisture, with decreasing efflux rates at higher water-filled pore space values. An annual soil respiration rate of 8.5E3 g/m2/yr was estimated by applying the observed relationship between soil moisture and CO2 efflux to annual soil moisture measurements. The relatively high respiration rates could be caused by the high soil moisture and low soil bulk density, providing optimal conditions for microbial respiration. Several diurnal sampling periods at

  17. Assessing soil fluxes using meteoric 10Be: development and application of the Be2D model

    Science.gov (United States)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; Baken, Stijn; Smolders, Erik; Vanderborght, Jan

    2015-04-01

    Meteoric 10Be is a promising and increasingly popular tool to better understand soil fluxes at different timescales. Unlike other, more classical, methods such as the study of sedimentary archives it enables a direct coupling between eroding and deposition sites. However, meteoric 10Be can be mobilized within the soil. Therefore, spatial variations in meteoric 10Be inventories cannot directly be translated into spatial variations in erosion and sedimentation rates: a correct interpretation of measured 10Be inventories requires that both lateral and vertical movement of meteoric 10Be are accounted for. Here, we present a spatially explicit 2D model that allows to simulate the behaviour of meteoric 10Be in the soil system over timescales of up to 1 million year and use the model to investigate the impact of accelerated erosion on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility within the soil profile, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes. Different types of erosion such as creep, water and tillage erosion are supported. Model runs show that natural soil fluxes can be well reconstructed based on meteoric 10Be inventories, and this for a wide range of geomorphological and pedological conditions. However, extracting signals of human impact and distinguishing them from natural soil fluxes is only feasible when the soil has a rather high retention capacity so that meteoric 10Be is retained in the top soil layer. Application of the Be2D model to an existing data set in the Appalachian Mountains [West et al.,2013] using realistic parameter values for the soil retention capacity as well as for vertical advection resulted in a good agreement between simulated and observed 10Be inventories. This confirms the robustness of the model. We

  18. Methane and CO2 fluxes from peat soil, palm stems and field drains in two oil palm plantations in Sarawak, Borneo, on different tropical peat soil types.

    Science.gov (United States)

    Manning, Frances; Lip Khoon, Kho; Hill, Tim; Arn Teh, Yit

    2017-04-01

    Oil palm plantations have been expanding rapidly on tropical peat soils in the last 20 years, with 50 % of SE Asian peatlands now managed as industrial or small-holder plantations, up from 11% in 1990. Tropical peat soils are an important carbon (C) store, containing an estimated 17 % of total peatland C. There are large uncertainties as to the soil C dynamics in oil palm plantations on peat due to a shortage of available data. It is therefore essential to understand the soil C cycle in order to promote effective management strategies that optimise yields, whilst maintaining the high C storage capacity of the soil. Here we present CO2 and CH4 fluxes from two oil palm plantations in Sarawak, Malaysia on peat soils. Data were collected from different surface microforms within each plantation that experienced different surface management practices. These included the area next to the palm, in bare soil harvest paths, beneath frond piles, underneath cover crops, from the surface of drains, and from palm stems. Data were collected continuously over one year and analysed with different environmental variables, including soil temperature, WTD, O2, soil moisture and weather data in order to best determine the constraints on the dataset. Total soil respiration (Rtot) varied between 0.09 and 1.59 g C m-2 hr-1. The largest fluxes (0.59 - 1.59 g C m-2 hr-1) were measured next to the palms. Larger CO2 fluxes were observed beneath the cover crops than in the bare soil. This trend was attributed to priming effects from the input of fresh plant litter and exudates. Peat soil type was shown to have significantly different fluxes. The different plantations also had different environmental drivers best explaining the variation in Rtot - with soil moisture being the most significant variable on Sabaju series soil and soil temperature being the most significant environmental variable in the plantation with the Teraja series soil. Rtot was shown to reduce significantly with increasing

  19. Effects of land cover change on litter decomposition and soil greenhouse gas fluxes in subtropical Hong Kong

    Science.gov (United States)

    Ngar Wong, Chun; Lai, Derrick Yuk Fo

    2017-04-01

    Nowadays, over 50% of the world's population live in urbanized areas and the level of urbanization varies substantially across countries. Intense human activities and management associated with urbanization can alter the microclimate and biogeochemical processes in urban areas, which subsequently affect the provision of ecosystem services and functions. Litter decomposition and soil greenhouse gas (GHG) exchange play an important role in governing nutrient cycling and future climate change, respectively. Yet, the effects of urbanization on these two biogeochemical processes remain uncertain and not well understood, especially in subtropical and high-density cities. This study aims to examine the effects of urbanization on decomposition and GHG fluxes among four land covers- natural forest, urban forest, farmland and roadside planter, in Hong Kong based on litterbag experiment and closed chamber measurements for one full year. Litter decomposition rate was significantly lower in farmland than in other land cover types. Significant differences in CO2 emission were detected among the four land cover types (pmean N2O fluxes, respectively. The emission of CO2 was positively correlated with soil potassium content, while CH4 and N2O flux increased markedly with soil temperature and nitrate nitrogen content, respectively. The results obtained in this study will enhance our understanding on urban ecosystem and be useful for recommending sustainable management strategies for conservation of ecosystem services in urban areas.

  20. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia.

    Science.gov (United States)

    Chen, Guang C; Ulumuddin, Yaya I; Pramudji, Sastro; Chen, Shun Y; Chen, Bin; Ye, Yong; Ou, Dan Y; Ma, Zhi Y; Huang, Hao; Wang, Jing K

    2014-07-15

    The soil to atmosphere fluxes of greenhouse gases N2O, CH4 and CO2 and their relationships with soil characteristics were investigated in three tropical oceanic mangrove swamps (Teremaal, Likupang and Kema) in North Sulawesi, Indonesia. Mangrove soils in North Sulawesi were rich in organic carbon and nitrogen, but the greenhouse gas fluxes were low in these mangroves. The fluxes ranged -6.05-13.14 μmol m(-2)h(-1), -0.35-0.61 μmol m(-2)h(-1) and -1.34-3.88 mmol m(-2)h(-1) for N2O, CH4 and CO2, respectively. The differences in both N2O and CH4 fluxes among different mangrove swamps and among tidal positions in each mangrove swamp were insignificant. CO2 flux was influenced only by mangrove swamps and the value was higher in Kema mangrove. None of the measured soil parameters could explain the variation of CH4 fluxes among the sampling plots. N2O flux was negatively related to porewater salinity, while CO2 flux was negatively correlated with water content and organic carbon. This study suggested that the low gas emissions due to slow metabolisms would lead to the accumulations of organic matters in North Sulawesi mangrove swamps. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Meteoric 10Be as a tool to investigate human induced soil fluxes: a conceptual model

    Science.gov (United States)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; De Vente, Joris; Boix-Fayos, Carolina; Minella, Jean; Baken, Stijn; Smolders, Erik

    2014-05-01

    The use of meteoric 10Be as a tool to understand long term landscape behavior is becoming increasingly popular. Due its high residence time, meteoric 10Be allows in principle to investigate in situ erosion rates over time scales exceeding the period studied with classical approaches such as 137Cs. The use of meteoric 10Be strongly contributes to the traditional interpretation of sedimentary archives which cannot be unequivocally coupled to sediment production and could provide biased information over longer time scales (Sadler, 1981). So far, meteoric 10Be has successfully been used in geochemical fingerprinting of sediments, to date soil profiles, to assess soil residence times and to quantify downslope soil fluxes using accumulated 10Be inventories along a hill slope. However, less attention is given to the potential use of the tracer to directly asses human induced changes in soil fluxes through deforestation, cultivation and reforestation. A good understanding of the processes governing the distribution of meteoric 10Be both within the soil profile and at landscape scale is essential before meteoric 10Be can be successfully applied to assess human impact. We developed a spatially explicit 2D-model (Be2D) in order to gain insight in meteoric 10Be movement along a hillslope that is subject to human disturbance. Be2D integrates both horizontal soil fluxes and vertical meteoric 10Be movement throughout the soil prolife. Horizontal soil fluxes are predicted using (i) well studied geomorphical laws for natural erosion and soil formation as well as (ii) human accelerated water and tillage erosion. Vertical movement of meteoric 10Be throughout the soil profile is implemented by inserting depth dependent retardation calculated using experimentally determined partition coefficients (Kd). The model was applied to different environments such as (i) the Belgian loess belt, characterized by aeolian deposits enriched in inherited meteoric 10Be, (ii) highly degraded and stony

  2. Aeolian controls of soil geochemistry and weathering fluxes in high-elevation ecosystems of the Rocky Mountains, Colorado

    Science.gov (United States)

    Lawrence, Corey R.; Reynolds, Richard L.; Kettterer, Michael E.; Neff, Jason C.

    2013-01-01

    When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50–80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.

  3. Aeolian controls of soil geochemistry and weathering fluxes in high-elevation ecosystems of the Rocky Mountains, Colorado

    Science.gov (United States)

    Lawrence, Corey R.; Reynolds, Richard L.; Ketterer, Michael E.; Neff, Jason C.

    2013-04-01

    When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50-80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.

  4. Preliminary estimation of Vulcano of CO2 budget and continuous monitoring of summit soil CO2 flux

    OpenAIRE

    Inguaggiato, S.; Mazot, A.; Diliberto, I. S.; Rouwet, D.; Vita, F.; Capasso, G.; Bobrowski, N.; Inguaggiato, C.; Grassa, F.

    2008-01-01

    Total CO2 output from fumaroles, soil gases, bubbling and water dissolved gases were estimated at Vulcano Island, Italy. The fumaroles output has been estimated from SO2 plume flux, while soil flux emission has been carried out through 730 CO2 fluxes measured on the island surface, performed by means of accumulation chamber method. Vulcano Island, located in the Aeolian Archipelago, is an active volcano that has been in state of solphataric activity, since the last eru...

  5. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-01-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  6. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-14

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  7. Modeling surface energy fluxes from a patchwork of fields with different soils and crops

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2017-04-01

    Agroecosystems are a dominant terrestrial land-use on planet earth and cover about 36% of the ice-free surface (12% pasture, 26% agriculture) [Foley2011]. Within this land use type, management practices vary strongly due to climate, cultural preferences, degree of industrialization, soil properties, crop rotations, field sizes, degree of land use sustainability, water availability, sowing and harvest dates, tillage, etc. These management practices influence abiotic environmental factors like water flow and heat transport within the ecosystem leading to changes of land surface fluxes. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. Thus, the structure of turbulence and the albedo evolve during the cropping period and large variations of heat can be measured on the field scale [Aubinet2012]. One issue of local distributed mixture of different land use is the measurement process which makes it challenging to evaluate simulations. Unfortunately, for meteorological flux-measurements like the Flux-Gradient or the Eddy Covariance (EC) method, comparability with simulations only exists in the ideal case, where fields have to be completely uniform in land use and flat within the reach of the footprint. Then a model with one specific land use would have the same underlying source area as the measurement. An elegant method to avoid the shortcoming of grid cell resolution is the so called mixed approach, which was recently implemented into the ecosystem model framework Expert-N [Biernath et al. 2013]. The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the

  8. Fluxes of N2O and CH4 from forest and grassland lysimeter soils in response to simulated climate change

    Science.gov (United States)

    Weymann, Daniel; Brueggemann, Nicolas; Puetz, Thomas; Vereecken, Harry

    2015-04-01

    Central Europe is expected to be exposed to altered temperature and hydrological conditions, which will affect the vulnerability of nitrogen and carbon cycling in soils and thus production and fluxes of climate relevant trace gases. However, knowledge of the response of greenhouse gas fluxes to climate change is limited so far, but will be an important basis for future climate projections. Here we present preliminary results of an ongoing lysimeter field study which aims to assess the impact of simulated climate change on N2O and CH4 fluxes from a forest and a fertilized grassland soil. The lysimeters are part of the Germany-wide research infrastructure TERENO, which investigates feedbacks of climate change to the pedosphere on a long-term scale. Lysimeters (A = 1m2) were established in 2010 at high elevated sites (HE, 500 and 600 m.a.s.l.) and subsequently transferred along an altitudinal gradient to a low elevated site (LE, 100 m.a.s.l.) within the Eifel / Lower Rhine Valley Observatory in Western Germany, thereby resulting in a temperature increase of 2.3 K whereas precipitation decreased by 160 mm during the present study period. Systematic monitoring of soil-atmosphere exchange of N2O and CH4 based on weekly manual closed chamber measurements at HE and LE sites has started in August 2013. Furthermore, we routinely determine dissolved N2O and CH4 concentrations in the seepage water using a headspace equilibration technique and record water discharge in order to quantify leaching losses of both greenhouse gases. Cumulative N2O fluxes clearly responded to simulated climate change conditions and increased by 250 % and 600 % for the forest and the grassland soil, respectively. This difference between the HE and LE sites was mainly caused by an exceptionally heavy precipitation event in July 2014 which turned the LE site sustainably to a consistently higher emission level. Nonetheless, emissions remained rather small and ranged between 20 and 40 μg m-2 h-1. In

  9. [Temperature sensitivity of CO2 fluxes from rhizosphere soil mineralization and root decomposition in Pinus massoniana and Castanopsis sclerophylla forests].

    Science.gov (United States)

    Liu, Yu; Hu, Xiao-Fei; Chen, Fu-Sheng; Yuan, Ping-Cheng

    2013-06-01

    Rhizospheric and non-rhizospheric soils and the absorption, transition, and storage roots were sampled from the mid-subtropical Pinus massoniana and Castanopsis sclerophylla forests to study the CO2 fluxes from soil mineralization and root decomposition in the forests. The samples were incubated in closed jars at 15 degrees C, 25 degrees C, 35 degrees C, and 45 degrees C, respectively, and alkali absorption method was applied to measure the CO2 fluxes during 53 days incubation. For the two forests, the rhizospheric effect (ratio of rhizospheric to non-rhizospheric soil) on the CO2 flux from soil mineralization across all incubation temperature ranged from 1.12 to 3.09, with a decreasing trend along incubation days. There was no significant difference in the CO2 flux from soil mineralization between the two forests at 15 degrees C, but the CO2 flux was significantly higher in P. massoniana forest than in C. sclerophylla forest at 25 degrees C and 35 degrees C, and in an opposite pattern at 45 degrees C. At all incubation temperature, the CO2 release from the absorption root decomposition was higher than that from the transition and storage roots decomposition, and was smaller in P. massoniana than in C. sclerophylla forest for all the root functional types. The Q10 values of the CO2 fluxes from the two forests were higher for soils (1.21-1.83) than for roots (0.96-1.36). No significant differences were observed in the Q10 values of the CO2 flux from soil mineralization between the two forests, but the Q10 value of the CO2 flux from root decomposition was significantly higher in P. massoniana than in C. sclerophylla forest. It was suggested that the increment of CO2 flux from soil mineralization under global warming was far higher than that from root decomposition, and for P. massoniana than for C. sclerophylla forest. In subtropics of China, the adaptability of zonal climax community to global warming would be stronger than that of pioneer community.

  10. The influence of cockchafer larvae on net soil methane fluxes under different vegetation types - a mesocosm study

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Chesmore, David; Müller, Christoph

    2017-04-01

    The influence of land-use associated pest insects on net soil CH4 fluxes has received little attention thus far, although e.g. soil-dwelling Scarabaeidae larvae are qualitatively known to emit CH4. The project "CH4ScarabDetect" aims to provide the first quantitative estimate of the importance of soil-dwelling larvae of two important European agricultural and forest pest insect species - the common cockchafer (Melolontha melolontha) and the forest cockchafer (M. hippocastani) - for net soil CH4 fluxes. Here we present a mesocosm study within "CH4ScarabDetect" which tests the influence of different abundances of common cockchafer larvae on net soil CH4 fluxes under different vegetation types. In August 2016, 27 PVC boxes with a base area of 50 cm x 50 cm and a height of 40 cm were buried in planting beds previously used for cultivating vegetables. The bottom of each box was filled with a 10 cm thick layer of loam which was then covered with a 25 cm thick layer of loamy sand. The soil was hand-sieved prior to filling the boxes to remove any macrofauna. The mesocosms were planted with either turf, carrots or a combination of both. Of the resulting nine replicates per vegetation type, six were infested with one cockchafer larvae each in November 2016. In three of these infested mesocosms, the larvae abundance will be further increased to three in May 2017. This mesocosm study will continue until October 2017 during which measurements of net soil CH4 fluxes will be conducted with the chamber flux method twice per month. For the in situ separation of gross CH4 production and gross CH4 oxidation, the chamber method will be combined with a 13CH4 isotope pool dilution technique. Methane concentrations and their isotopic signatures in the collected gas samples will be analysed with a state-of-the-art CRDS analyzer (cavity ring-down spectroscopy, G2201-i) equipped with the Small Sample Isotope Module 2 - A0314 (Picarro Inc., USA). Different combinations of larvae abundance and

  11. Microbial and environmental controls of methane fluxes along a soil moisture gradient in a Pacific coastal temperate rainforest

    DEFF Research Database (Denmark)

    Christiansen, Jesper Riis; Levy-Booth, David; Prescott, Cindy E.

    2016-01-01

    , and nutrient availability in three typical forest types across a soil moisture gradient. CH4 displayed a spatial variability changing from a net uptake in the upland soils (3.9–46 µmol CH4 m−2 h−1) to a net emission in the wetter soils (0–90 μmol CH4 m−2 h−1). Seasonal variations of CH4 fluxes were related......Most studies of greenhouse gas fluxes from forest soils in the coastal rainforest have considered carbon dioxide (CO2), whereas methane (CH4) has not received the same attention. Soil hydrology is a key driver of CH4 dynamics in ecosystems, but the impact on the function and distribution...... of the underlying microbial communities involved in CH4 cycling and the resultant net CH4 exchange is not well understood at this scale. We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs (CH4 oxidizers) and methanogens (CH4 producers), soil hydrology...

  12. Soil Greenhouse Gas Fluxes in a Pacific Northwest Douglas-Fir Forest: Results from a Soil Fertilization and Biochar Addition Experiment

    Science.gov (United States)

    Hawthorne, I.; Johnson, M. S.; Jassal, R. S.; Black, T. A.

    2013-12-01

    Rising atmospheric concentrations of greenhouse gases (GHGs), carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), linked to current climate change has stimulated a scientific response to provide robust accounting of sources and sinks of these gases. There is an urgent need to increase awareness of land management impacts on GHG flux dynamics to facilitate the development of management strategies that minimize GHG emissions. Biochar (pyrolyzed organic matter) has been identified as a strategy to reduce net GHG fluxes from soils. This is due to its potential to sequester large amounts of carbon for significant time periods, as well as its modification of biotic and abiotic soil conditions, which in turn can alter the GHG balance. This study describes the effect of biochar and urea-N application on soil surface CO2, CH4 and N2O fluxes in a Pacific Northwest Douglas-fir forest on Vancouver Island, BC, Canada (49o 52' N, 125o 20' W). We used a randomized complete-block design with four replicates of the following treatments: i) control, ii) 5 Mg ha-1 biochar surface application, iii) 200 kg N ha-1 urea pellets surface application, and iv) 5 Mg ha-1 biochar plus 200 kg N ha-1 urea. Soil GHG flux measurements were made biweekly for two years beginning in September 2011 using a non-steady-state non-flow through chamber technique. Biochar was added in February 2012, with urea applied in March 2013. A collar made from 21-cm diameter x 11-cm long PVC piping was installed in each of the 16 plots between two large trees on the forest floor, penetrating the organic layer to the mineral soil at the 5-8 cm depth. A clear Plexiglas lid, equipped with a 10-cm long vent tube and 9-V fan, was placed on each collar when making measurements, with 20-mL samples of chamber headspace air collected at 0, 3, 6, 9 and 12 min using a medical syringe with 21-gauge needle inserted through a rubber septum in the chamber lid. Samples were injected into and transported in previously

  13. Landscape-scale soil moisture heterogeneity and its influence on surface fluxes at the Jornada LTER site: Evaluating a new model parameterization for subgrid-scale soil moisture variability

    Science.gov (United States)

    Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.

    2017-12-01

    Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting

  14. Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China.

    Science.gov (United States)

    Li, Chunhui; Liang, Handong; Liang, Ming; Chen, Yang; Zhou, Yi

    2018-03-30

    Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m -2  h -1 , and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m -2  h -1 ; no coal-fire area 19 and 32 ng m -2  h -1 ; and backfilling area 53 ng m -2  h -1 . Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield. Graphical abstract ᅟ.

  15. Aeolian nutrient fluxes following wildfire in sagebrush steppe: implications for soil carbon storage

    Directory of Open Access Journals (Sweden)

    N. J. Hasselquist

    2011-12-01

    Full Text Available Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C and nitrogen (N fluxes were as high as 235 g C m−1 d−1 and 19 g N m−1 d−1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes.

  16. Agricultural crops and soil treatment impacts on the daily and seasonal dynamics of CO2 fluxes in the field agroecosystems at the Central region of Russia

    Science.gov (United States)

    Mazirov, Ilya; Vasenev, Ivan; Meshalkina, Joulia; Yaroslavtsev, Alexis; Berezovskiy, Egor; Djancharov, Turmusbek

    2015-04-01

    The problem of greenhouse gases' concentrations increasing becomes more and more important due to global changes issues. The main component of greenhouse gases is carbon dioxide. The researches focused on its fluxes in natural and anthropogenic modified landscapes can help in this problem solution. Our research has been done with support of the RF Government grants # 11.G34.31.0079 and # 14.120.14.4266 and of FP7 Grant # 603542 LUC4C in the representative for Central Region of Russia field agroecosystems at the Precision Farming Experimental Field of Russian Timiryazev State Agrarian University with cultivated sod podzoluvisols, barley and oats - vetch grass mix (Moscow station of the RusFluxNet). The daily and seasonal dynamics of the carbon dioxide have been studied at the ecosystem level by the Eddy covariance method (2 stations) and at the soil level by the exposition chamber method (40 chambers) with mobile infra red gas analyzer (Li-Cor 820). The primary Eddy covariance monitoring data on CO2 fluxes and water vapor have been processed by EddyPro software developed by LI-COR Biosciences. According to the two-year monitoring data the daily CO2 sink during the vegetation season is usually approximately two times higher than its emission at night. Seasonal CO2 fluxes comparative stabilization has been fixed in case the plants height around 10-12 cm and it usually persist until the wax ripeness phase. There is strong dependence between the soil CO2 emission and the air temperature with the correlation coefficient 0.86 in average (due to strong input of the soil thin top functional subhorizon), but it drops essentially at the end of the season - till 0.38. The soil moisture impact on CO2 fluxes dynamics was less, with negative correlation at the end of the season. High daily dynamics of CO2 fluxes determines the protocol requirements for seasonal soil monitoring investigation with less limitation at the end of the season. The accumulated monitoring data will be

  17. Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil

    Energy Technology Data Exchange (ETDEWEB)

    Egbert Schwartz

    2008-12-15

    Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

  18. A Computational Model of Water Migration Flux in Freezing Soil in a Closed System

    Institute of Scientific and Technical Information of China (English)

    裘春晗

    2005-01-01

    A computational model of water migration flux of fine porous soil in frost heave was investigated in a closed system. The model was established with the heat-mass conservation law and from some previous experimental results. Through defining an auxiliary function an empirical function in the water migration flux, which is difficult to get, was replaced. The data needed are about the water content along the soft colunm after test with enough long time. We adopt the test data of sample soil colunms in [1] to verify the model. The result shows it can reflect the real situation on the whole.

  19. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    Science.gov (United States)

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  20. Spectral estimates of net radiation and soil heat flux

    International Nuclear Information System (INIS)

    Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P.J. Jr.; Jackson, R.D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under non advective conditions

  1. Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management.

    Science.gov (United States)

    Kooch, Yahya; Moghimian, Negar; Bayranvand, Mohammad; Alberti, Giorgio

    2016-06-01

    Conversions of land use/cover are associated with changes in soil properties and biogeochemical cycling, with implications for carbon (C), nitrogen (N), and trace gas fluxes. In an attempt to provide a comprehensive evaluation of the significance of different land uses (Alnus subcordata plantation, Taxodium distichum plantation, agriculture, and deforested areas) on soil features and on the dynamics of greenhouse gas (GHG) fluxes at local scale, this study was carried out in Mazandaran province, northern Iran. Sixteen samples per land use, from the top 10 cm of soil, were taken, from which bulk density, texture, water content, pH, organic C, total N, microbial biomass of C and N, and earthworm density/biomass were determined. In addition, the seasonal changes in the fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored over a year. Our results indicated that the different land uses were different in terms of soil properties and GHG fluxes. Even though the amount of the GHG varied widely during the year, the highest CO2 and CH4 fluxes (0.32 mg CO2 m(-2) day(-1) and 0.11 mg CH4 m(-2) day(-1), respectively) were recorded in the deforested areas. N2O flux was higher in Alnus plantation (0.18 mg N2O m(-2) day(-1)) and deforested areas (0.17 mg N2O m(-2) day(-1)) than at agriculture site (0.05 mg N2O m(-2) day(-1)) and Taxodium plantation (0.03 mg N2O m(-2) day(-1)). This study demonstrated strong impacts of land use change on soil-atmosphere trace gas exchanges and provides useful observational constraints for top-down and bottom-up biogeochemistry models.

  2. Long-term monitoring of soil gas fluxes with closed chambers using automated and manual systems

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A.; Crichton, I.; Ball, B.C.

    1999-10-01

    The authors describe two gas sample collection techniques, each of which is used in conjunction with custom made automated or manually operated closed chambers. The automated system allows automatic collection of gas samples for simultaneous analysis of multiple trace gas efflux from soils, permitting long-term monitoring. Since the manual system is cheaper to produce, it can be replicated more than the automated and used to estimate spatial variability of soil fluxes. The automated chamber covers a soil area of 0.5 m{sup 2} and has a motor driven lid that remains operational throughout a range of weather conditions. Both systems use gas-tight containers of robust metal construction, which give good sample retention, thereby allowing long-term storage and convenience of transport from remote locations. The containers in the automated system are filled by pumping gas from the closed chamber via a multiway rotary valve. Stored samples from both systems are analyzed simultaneously for N{sub 2}O and CO{sub 2} using automated injection into laboratory-based gas chromatographs. The use of both collection systems is illustrated by results from a field experiment on sewage sludge disposal to land where N{sub 2}O fluxes were high. The automated gas sampling system permitted quantification of the marked temporal variability of concurrent N{sub 2}O and CO{sub 2} fluxes and allowed improved estimation of cumulative fluxes. The automated measurement approach yielded higher estimates of cumulative flux because integration of manual point-in-time observations missed a number of transient high-flux events.

  3. Measurement of N2O and CH4 soil fluxes from garden, agricultural and natural soils using both closed and open chamber systems coupled with high-precision CRDS analyzer

    Science.gov (United States)

    He, Yonggang; Jacobson, Gloria; Alexander, Chris; Fleck, Derek; Hoffnagel, John; Del Campo, Bernardo; Rella, Chris

    2013-04-01

    Studying the emission and uptake of greenhouse gases from soil is essential for understanding, adapting to and ultimately mitigating the effects of climate change. To-date, majority of such studies have been focused on carbon dioxide (CO2 ) , however, in 2006 the EPA estimated that "Agricultural activities currently generate the largest share, 63 percent, of the world's anthropogenic non-carbon dioxide (non-CO2) emissions (84 percent of nitrous oxide [N2O] and 52 percent of methane[CH4]), and make up roughly 15 percent of all anthropogenic greenhouse gas emissions" (Prentice et al., 2001). Therefore, enabling accurate N2O and CH4 flux measurements in the field are clearly critical to our ability to better constrain carbon and nitrogen budgets, characterize soil sensitivities, agricultural practices, and microbial processes like denitrification and nitrification. To aide in these studies, Picarro has developed a new analyzer based on its proven, NIR technology platform, which is capable of measuring both N2O and CH4 down to ppb levels in a single, field-deployable analyzer. This analyzer measures N2O with a 1-sigma, precision of 3.5 ppb and CH4 with a 1-sigma precision of 3ppb on a 5 minute average. The instrument also has extremely low drift to enable accurate measurements with infrequent calibrations. The data rate of the analyzer is on the order of 5 seconds in order to capture fast, episodic emission events. One of the keys to making accurate CRDS measurements is to thoroughly characterize and correct for spectral interfering species. This is especially important for closed system soil chambers used on agricultural soils where a variety of soil amendments may be applied and gases not usually present in ambient air could concentrate to high levels. In this work, we present the results of analyzer interference testing and corrections completed for the interference of carbon dioxide, methane, ammonia, ethane, ethylene, acetylene, and water on N2O. In addition, we

  4. Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest?

    Science.gov (United States)

    J.L.M. van Haren; R.C. de Oliveira; N. Restrepo-Coupe; L. Hutyra; P. B. de Camargo; Michael Keller; S.R. Saleska

    2010-01-01

    [1] To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO2 and N2O fluxes close to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay‐rich forest sites in central Amazonia. We found that soil CO2 fluxes were 38% higher near large trees than at control sites >10...

  5. The impact of non-isothermal soil moisture transport on evaporation fluxes in a maize cropland

    Science.gov (United States)

    Shao, Wei; Coenders-Gerrits, Miriam; Judge, Jasmeet; Zeng, Yijian; Su, Ye

    2018-06-01

    The process of evaporation interacts with the soil, which has various comprehensive mechanisms. Multiphase flow models solve air, vapour, water, and heat transport equations to simulate non-isothermal soil moisture transport of both liquid water and vapor flow, but are only applied in non-vegetated soils. For (sparsely) vegetated soils often energy balance models are used, however these lack the detailed information on non-isothermal soil moisture transport. In this study we coupled a multiphase flow model with a two-layer energy balance model to study the impact of non-isothermal soil moisture transport on evaporation fluxes (i.e., interception, transpiration, and soil evaporation) for vegetated soils. The proposed model was implemented at an experimental agricultural site in Florida, US, covering an entire maize-growing season (67 days). As the crops grew, transpiration and interception became gradually dominated, while the fraction of soil evaporation dropped from 100% to less than 20%. The mechanisms of soil evaporation vary depending on the soil moisture content. After precipitation the soil moisture content increased, exfiltration of the liquid water flow could transport sufficient water to sustain evaporation from soil, and the soil vapor transport was not significant. However, after a sufficient dry-down period, the soil moisture content significantly reduced, and the soil vapour flow significantly contributed to the upward moisture transport in topmost soil. A sensitivity analysis found that the simulations of moisture content and temperature at the soil surface varied substantially when including the advective (i.e., advection and mechanical dispersion) vapour transport in simulation, including the mechanism of advective vapour transport decreased soil evaporation rate under wet condition, while vice versa under dry condition. The results showed that the formulation of advective soil vapor transport in a soil-vegetation-atmosphere transfer continuum can

  6. Direct nitrous oxide (N2O) fluxes from soils under different land use in Brazil—a critical review

    International Nuclear Information System (INIS)

    Meurer, Katharina H E; Franko, Uwe; Stange, Claus F; Rosa, Jaqueline Dalla; Madari, Beata E; Jungkunst, Hermann F

    2016-01-01

    Brazil typifies the land use changes happening in South America, where natural vegetation is continuously converted into agriculturally used lands, such as cattle pastures and croplands. Such changes in land use are always associated with changes in the soil nutrient cycles and result in altered greenhouse gas fluxes from the soil to the atmosphere. In this study, we analyzed literature values to extract patterns of direct nitrous oxide (N 2 O) emissions from soils of different ecosystems in Brazil. Fluxes from natural ecosystems exhibited a wide range: whereas median annual flux rates were highest in Amazonian and Atlantic rainforests (2.42 and 0.88 kg N ha −1 ), emissions from cerrado soils were close to zero. The decrease in emissions from pastures with increasing time after conversion was associated with pasture degradation. We found comparatively low N 2 O-N fluxes from croplands (−0.07 to 4.26 kg N ha −1 yr −1 , median 0.80 kg N ha −1 yr −1 ) and a low response to N fertilization. Contrary to the assumptions, soil parameters, such as pH, C org , and clay content emerged as poor predictors for N 2 O fluxes. This could be a result of the formation of micro-aggregates, which strongly affect the hydraulic properties of the soil, and consequently define nitrification and denitrification potentials. Since data from croplands mainly derived from areas that had been under natural cerrado vegetation before, it could explain the low emissions under agriculture. Measurements must be more frequent and regionally spread in order to enable sound national estimates. (topical review)

  7. SEASONAL SOIL FLUXES OF CARBON MONOXIDE IN BURNED AND UNBURNED BRAZILIAN SAVANNAS

    Science.gov (United States)

    Soil-atmosphere fluxes of carbon monoxide (CO) were measured from September 1999 through November 2000 in savanna areas in central Brazil (Cerrado) under different fire regimes using transparent and opaque static chambers. Studies focused on two vegetation types, cerrado stricto...

  8. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA

    Science.gov (United States)

    Lindsey E. Rustad; Ivan J. Fernandez

    1998-01-01

    The effect of soil warming on CO2 and CH4 flux from a spruce-fir forest soil was evaluated at the Howland Integrated Forest Study site in Maine, USA from 1993 to 1995. Elevated soil temperatures (~5 °C) were maintained during the snow-free season (May-November) in replicated 15 × 15-m plots using electric cables buried 1-2...

  9. Flux-gradient relationships and soil-water diffusivity from curves of water content versus time

    Energy Technology Data Exchange (ETDEWEB)

    Nofziger, D.L.; Ahuja, L.R.; Swartzendruber, D.

    Direct analysis of a family of curves of soil-water content vs. time at different fixed positions enables assessment of the flux-gradient relationship prior to the calculations of soil-water diffusivity. The method is evaluated on both smooth and random-error data generated from the solution of the horizontal soil-water intake problem with a known diffusivity function. Interpolation, differentiation, and intergration are carried out by least-squares curve fitting based on the 2 recently developed techniques of parabolic splines and sliding parabolas, with all computations performed by computer. Results are excellent for both smooth and random-error input data, whether in terms of recovering the original known diffusivity function, assessing the nature of the flux-gradient relationship, or in making the numerous checks and validations at various intermediate stages of computation. The method applies for any horizontal soil-wetting process independently of the specific boundary conditions, including water entry through a nonzero inlet resistance. It should be adaptable to horizontal dewatering, and extendable to vertical flow. (11 refs.)

  10. Soil fluxes of methane, nitrous oxide, and nitric oxide from aggrading forests in coastal Oregon

    Science.gov (United States)

    Erickson, Heather E.; Perakis, Steven S.

    2014-01-01

    Soil exchanges of greenhouse and other gases are poorly known for Pacific Northwest forests where gradients in nutrient availability and soil moisture may contribute to large variations in fluxes. Here we report fluxes of methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) over multiple seasons from three naturally N-rich, aggrading forests of coastal Oregon, USA. Mean methane uptake rates (3.2 mg CH4 m−2 d−1) were high compared with forests globally, negatively related to water-filled pore space (WFPS), but unrelated to N availability or temperature. Emissions of NO (6.0 μg NO–N m−2 h−1) exceeded N2O (1.4 μg N2O–N m−2 h−1), except when WFPS surpassed 55%. Spatial variation in NO fluxes correlated positively with soil nitrate concentrations (which generally exceeded ammonium concentrations, indicating the overall high N status for the sites) and negatively with soil pH, and at one site increased with basal area of N2-fixing red alder. Combined NO and N2O emissions were greatest from the site with highest annual net N mineralization and lowest needle litterfall C/N. Our findings of high CH4 uptake and NO/N2O ratios generally >1 most likely reflect the high porosity of the andic soils underlying the widespread regenerating forests in this seasonally wet region.

  11. CO and H2 uptake and emissions by soil: variability of fluxes and their isotopic signatures

    Science.gov (United States)

    Popa, Maria Elena; Chen, Qianjie; Ferrero Lopez, Noelia; Röckmann, Thomas

    2017-04-01

    In order to study the uptake and release of H2 and CO by soil, we performed long term, high frequency measurements with an automatic soil chamber at two sites in the Netherlands (Cabauw - grassland, and Speuld - forest). The measurements were performed over different seasons and cover in total a cumulated interval of about one year. These measurements allow determining separately, for each species, the two distinct fluxes i.e. uptake and release, and investigating their temporal variability and dependencies on environmental variables. Additional experiments were performed for determining the isotopic signatures of the H2 and CO uptake and release by soil. Flask samples were filled from the soil chamber, and then analyzed in the laboratory for the stable isotopic composition of H2 (δD) and CO (δ13C and δ18O). We find that both uptake and release are present at all times, regardless of the direction of the net flux. The emissions are significant for both species and at Cabauw, there are times and places where emissions outweigh the soil uptake. For each species, the two fluxes have different behavior and dependence on external variables, which indicates that they have different origins. The isotope results also support that, for both H2 and CO, uptake and emission occur simultaneously. We were able to determine separately the isotopic effects of the two fluxes. For both H2 and CO, soil uptake is associated with a small positive fractionation (the lighter molecule is taken up faster). The soil uptake fractionation (α = kheavy/klight) was 0.945 ± 0.004 for H2; for CO, the fractionation was 0.992 for 13C and 0.985 for 18O. The isotopic composition of the H2 emitted from the grassland was -530 ± 40 ‰, less depleted that what is expected from the isotopic equilibrium of H2 with water. For CO, the isotopic composition of the soil emission is depleted in 13C compared to atmospheric CO, and lower than the average isotopic composition of plant or soil organic matter.

  12. Land-Use Change, Soil Process and Trace Gas Fluxes in the Brazilian Amazon Basin

    Science.gov (United States)

    Melillo, Jerry M.; Steudler, Paul A.

    1997-01-01

    We measured changes in key soil processes and the fluxes of CO2, CH4 and N2O associated with the conversion of tropical rainforest to pasture in Rondonia, a state in the southwest Amazon that has experienced rapid deforestation, primarily for cattle ranching, since the late 1970s. These measurements provide a comprehensive quantitative picture of the nature of surface soil element stocks, C and nutrient dynamics, and trace gas fluxes between soils and the atmosphere during the entire sequence of land-use change from the initial cutting and burning of native forest, through planting and establishment of pasture grass and ending with very old continuously-pastured land. All of our work is done in cooperation with Brazilian scientists at the Centro de Energia Nuclear na Agricultura (CENA) through an extant official bi-lateral agreement between the Marine Biological Laboratory and the University of Sao Paulo, CENA's parent institution.

  13. [Characteristics of water and heat fluxes and its footprint climatology on farmland in low hilly region of red soil].

    Science.gov (United States)

    Li, Yang; Jing, Yuan Shu; Qin, Ben Ben

    2017-01-01

    The analysis of the characteristics and footprint climatology of farmland water and heat fluxes has great significance to strengthen regional climate resource management and improve the hydrothermal resource utilization in the region of red soil. Based on quality controlled data from large aperture scintillometer and automatic meteorological station in hilly region of red soil, this paper analyzed in detail the characteristics of farmland water and heat fluxes at different temporal scales and the corresponding source area distribution of flux measurement in the non-rainy season and crop growth period in hilly region of red soil. The results showed that the diurnal variation of water and heat fluxes showed a unimodal trend, but compared with the sunny day, the diurnal variation curves fluctuated more complicatedly on cloudy day. In the whole, either ten-day periods or month scale, the water and heat fluxes were greater in August than in September, while the net radiation flux was more distributed to latent heat exchange. The proportion of net radiation to latent heat flux decreased in September compared to August, but the sensible heat flux was vice versa. With combined effects of weather conditions (particularly wind), stability, and surface condition, the source areas of flux measurement at different temporal scales showed different distribution characteristics. Combined with the underlying surface crops, the source areas at different temporal scales also had different contribution sources.

  14. Assessment of Water and Nitrate-N deep percolation fluxes in soil as affected by irrigation and nutrient management practices

    Science.gov (United States)

    Tsehaye, Habte; Ceglie, Francesco; Mimiola, Giancarlo; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Many farming practices can result in contamination of groundwater, due to the downward migration of fertilizers and pesticides through the soil profile. The detrimental effects of this contamination are not limited to deterioration of chemical and physical properties of soils and waters, but also constitute a real risk to human and ecosystem health. Groundwater contamination may come from a very large array of chemicals. Nevertheless, on a global scale the main cause of pollution is a high nitrate concentration in the aquifer water. Nitrate concentrations of groundwater have constantly increased during the last decades, and the widespread use of commercial N fertilizers has been implicated as the main causative factor. It is often claimed that nutrient management in organic farming is more environmentally sustainable than its conventional counterpart. It is commonly presumed that organic agriculture causes only minimal environmental pollution. There is scientific evidence that organic management may enhance some soil physical and biological properties. In particular, soil fertility management strategies can affect soil properties and the related hydrological processes. It is thus crucial to quantify and predict management effects on soil properties in order to evaluate the effects of soil type, natural processes such as decomposition of organic matter, irrigation applications and preferential flow on the deep percolation fluxes of water and nitrates to the groundwater. In this study, we measured the water fluxes and the quality of water percolating below the root zone, underlying organic agriculture systems in greenhouse. Specifically, the aim was to examine the effects of application time and type of organic matter in the soil on the nitrate-N deep percolation fluxes under the following three organic soil fertility strategies in greenhouse tomato experiment: i. Organic input Substitution (which will be hereafter denoted SUBST) is represented as typical

  15. Remote sensing of soil radionuclide fluxes in a tropical ecosystem

    International Nuclear Information System (INIS)

    Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.

    1980-01-01

    We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant 137 Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose

  16. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture using the particle batch smoother

    Science.gov (United States)

    Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan; van de Giesen, Nick

    2016-04-01

    This study is focused on estimating surface sensible and latent heat fluxes from land surface temperature (LST) time series and soil moisture observations. Surface turbulent heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology and other climate-related fields, but in-situ measurements are costly and difficult. It has been demonstrated that the time series of LST contains information of energy partitioning and that surface turbulent heat fluxes can be determined from assimilation of LST. These studies are mainly based on two assumptions: (1) a monthly value of bulk heat transfer coefficient under neutral conditions (CHN) which scales the sum of the fluxes, and (2) an evaporation fraction (EF) which stays constant during the near-peak hours of the day. Previous studies have applied variational and ensemble approaches to this problem. Here the newly developed particle batch smoother (PBS) algorithm is adopted to test its capability in this application. The PBS can be seen as an extension of the standard particle filter (PF) in which the states and parameters within a fix window are updated in a batch using all observations in the window. The aim of this study is two-fold. First, the PBS is used to assimilate only LST time series into the force-restore model to estimate fluxes. Second, a simple soil water transfer scheme is introduced to evaluate the benefit of assimilating soil moisture observations simultaneously. The experiments are implemented using the First ISLSCP (International Satellite Land Surface Climatology Project) (FIFE) data. It is shown that the restored LST time series using PBS agrees very well with observations, and that assimilating LST significantly improved the flux estimation at both daily and half-hourly time scales. When soil moisture is introduced to further constrain EF, the accuracy of estimated EF is greatly improved. Furthermore, the RMSEs of retrieved fluxes are effectively reduced at both

  17. Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Yuying Wang

    Full Text Available The production and consumption of the greenhouse gases (GHGs methane (CH4, carbon dioxide (CO2 and nitrous oxide (N2O in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300 cm in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha(-1 year(-1 in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick's law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS. The top 0-60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm was not a major source or sink of GHG, rather it acted as a 'reservoir'. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile.

  18. Portable automation of static chamber sample collection for quantifying soil gas flux

    Science.gov (United States)

    The collection of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled in a given time period is limited by the spacing between chambers and the availability of trained research technicians. However, the static chamber method can limit spatial ...

  19. Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion

    Science.gov (United States)

    Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.; Smith, Jacqueline A.; Abbott, Mark B.

    2008-08-01

    . The interval between 20 and 18 ka was marked by near-Holocene levels of clastic sediment flux, and appears to have been an interval of much reduced ice extent. An abrupt increase in clastic sediment flux 18 ka heralded the onset of an interval of expanded ice cover that lasted until ˜14 ka. Clastic sediment flux declined thereafter to reach the lowest levels of the entire length of record during the early-middle Holocene. A middle Holocene climatic transition is apparent in nearly all records and likely reflects the onset of Neoglaciation and/or enhanced soil erosion in the tropical Andes.

  20. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method

    Science.gov (United States)

    Crevoisier, David; Voltz, Marc

    2013-04-01

    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute

  1. Effects of forest regeneration practices on the flux of soil CO2 after clear-cutting in subtropical China.

    Science.gov (United States)

    Wang, Yixiang; Zhu, Xudan; Bai, Shangbin; Zhu, Tingting; Qiu, Wanting; You, Yujie; Wu, Minjuan; Berninger, Frank; Sun, Zhibin; Zhang, Hui; Zhang, Xiaohong

    2018-04-15

    Reforestation after clear-cutting is used to facilitate rapid establishment of new stands. However, reforestation may cause additional soil disturbance by affecting soil temperature and moisture, thus potentially influencing soil respiration. Our aim was to compare the effects of different reforestation methods on soil CO 2 flux after clear-cutting in a Chinese fir plantation in subtropical China: uncut (UC), clear-cut followed by coppicing regeneration without soil preparation (CC), clear-cut followed by coppicing regeneration and reforestation with soil preparation, tending in pits and replanting (CCR P ), and clear-cut followed by coppicing regeneration and reforestation with overall soil preparation, tending and replanting (CCR O ). Clear-cutting significantly increased the mean soil temperature and decreased the mean soil moisture. Compared to UC, CO 2 fluxes were 19.19, 37.49 and 55.93 mg m -2 h -1 higher in CC, CCR P and CCR O , respectively (P soil temperature, litter mass and the mixing of organic matter with mineral soil. The results suggest that, when compared to coppicing regeneration, reforestation practices result in additional CO 2 released, and that regarding the CO 2 emissions, soil preparation and tending in pits is a better choice than overall soil preparation and tending. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    Science.gov (United States)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68

  3. The estimation of soil water fluxes using lysimeter data

    Science.gov (United States)

    Wegehenkel, M.

    2009-04-01

    The validation of soil water balance models regarding soil water fluxes in the field is still a problem. This requires time series of measured model outputs. In our study, a soil water balance model was validated using lysimeter time series of measured model outputs. The soil water balance model used in our study was the Hydrus-1D-model. This model was tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin, Germany. One potential source of error in lysimeter experiments is preferential flow caused by an artificial channeling of water due to the occurrence of air space between the soil monolith and the inside wall of the lysimeters. To analyse such sources of errors, Hydrus-1D was applied with different modelling procedures. The first procedure consists of a general uncalibrated appli-cation of Hydrus-1D. The second one includes a calibration of soil hydraulic parameters via inverse modelling of different percolation events with Hydrus-1D. In the third procedure, the model DUALP_1D was applied with the optimized hydraulic parameter set to test the hy-pothesis of the existence of preferential flow paths in the lysimeters. The results of the different modelling procedures indicated that, in addition to a precise determination of the soil water retention functions, vegetation parameters such as rooting depth should also be taken into account. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.

  4. Validation of a station-prototype designed to integrate temporally soil N2O fluxes: IPNOA Station prototype.

    Science.gov (United States)

    Laville, Patricia; Volpi, Iride; Bosco, Simona; Virgili, Giorgio; Neri, Simone; Continanza, Davide; Bonari, Enrico

    2016-04-01

    Nitrous oxide (N2O) flux measurements from agricultural soil surface still accounts for the scientific community as major challenge. The evaluations of integrated soil N2O fluxes are difficult because these emissions are lower than for the other greenhouse gases sources (CO2, CH4). They are also sporadic, because highly dependent on few environmental conditions acting as limiting factors. Within a LIFE project (IPNOA: LIFE11 ENV/IT/00032) a station prototype was developed to integrate annually N2O and CO2 emissions using automatically chamber technique. Main challenge was to develop a device enough durable to be able of measuring in continuous way CO2 and N2O fluxes with sufficient sensitivity to allow make reliable assessments of soil GHG measurements with minimal technical field interventions. The IPNOA station prototype was developed by West System SRL and was set up during 2 years (2014 -2015) in an experimental maize field in Tuscan. The prototype involved six automatic chambers; the complete measurement cycle was of 2 hours. Each chamber was closing during 20 min and biogas accumulations were monitoring in line with IR spectrometers. Auxiliary's measurements including soil temperatures and water contents as weather data were also monitoring. All data were managed remotely with the same acquisition software installed in the prototype control unit. The operation of the prototype during the two cropping years allowed testing its major features: its ability to evaluate the temporal variation of N2O soil fluxes during a long period with weather conditions and agricultural managements and to prove the interest to have continuous measurements of fluxes. The temporal distribution of N2O fluxes indicated that emissions can be very large and discontinuous over short periods less ten days and that during about 70% of the time N2O fluxes were around detection limit of the instrumentation, evaluated to 2 ng N ha-1 day-1. N2O emission factor assessments were 1.9% in 2014

  5. Soil heat flux calculation for sunlit and shaded surfaces under row crops: 1 - Model Development and sensitivity analysis

    Science.gov (United States)

    Soil heat flux at the surface (G0) is strongly influenced by whether the soil is shaded or sunlit, and therefore can have large spatial variability for incomplete vegetation cover, such as across the interrows of row crops. Most practical soil-plant-atmosphere energy balance models calculate G0 as a...

  6. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    International Nuclear Information System (INIS)

    Tangen, Brian A.; Finocchiaro, Raymond G.; Gleason, Robert A.

    2015-01-01

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH 4 ) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties. Results showed that the effects of land use on GHG fluxes and abiotic soil properties differed with respect to catchment zone (upland, wetland), wetland classification, geographic location, and year. Mean CH 4 fluxes from the uplands were predictably low (< 0.02 g CH 4 m −2 day −1 ), while wetland zone CH 4 fluxes were much greater (< 0.001–3.9 g CH 4 m −2 day −1 ). Mean cumulative seasonal CH 4 fluxes ranged from roughly 0–650 g CH 4 m −2 , with an overall mean of approximately 160 g CH 4 m −2 . These maximum cumulative CH 4 fluxes were nearly 3 times as high as previously reported in North America. The overall magnitude and variability of N 2 O fluxes from this study (< 0.0001–0.0023 g N 2 O m −2 day −1 ) were comparable to previously reported values. Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, and that when non-drained cropland catchments are restored, CH 4 fluxes generally are not different than the pre-restoration baseline. Conversely, when drained cropland catchments are restored, CH 4 fluxes are noticeably higher. Consequently, it is important to consider the type of wetland restoration (drained, non-drained) when assessing restoration benefits. Results also suggest that elevated N 2 O fluxes from cropland catchments likely would be reduced through restoration. The overall variability demonstrated by this study was consistent with findings of other wetland investigations and

  7. Greenhouse gas flux under warm-season perennial C4 grasses across different soil and climate gradients on the Islands of Hawaii

    Science.gov (United States)

    Pawlowski, M. N.; Crow, S. E.; Sumiyoshi, Y.; Wells, J.; Kikkawa, H. R.

    2011-12-01

    Agricultural soils can serve as either a sink or a source for atmospheric carbon (C) and other greenhouse gases (GHG). This is particularly true for tropical soils where influences from climate and soil gradients are wide ranging. Current estimates of GHG flux from soil are often under or overestimated due to high variability in sample sites and inconsistencies in land use and vegetation type, making extrapolation to new study systems difficult. This work aimed to identify patterns of trace fluxes of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) across two soil types and three species of warm season perennial C4 grasses: Pennisetum purpureum (Napier grass), Panicum maximum (Guinea grass) and Saccharum officinarum (sugar cane) on the islands of Oahu and Maui in Hawaii. Multiple static vented chambers were installed into replicate plots for each species; flux measurements were made during the growth, fertilization and harvest cycles at set time intervals for one hour and analyzed by gas chromatography. Initial results from Oahu indicate no significant differences in CO2 flux between the P. maximum and P. purpureum species after fertilization or at full growth. We observed an average flux of 143 mg m-2 h-1 and 155 mg m-2 h-1 for P. maximum and P. purpureum respectively at full growth for CO2 and 1.7 μg m-2 h-1and 0.3 μg m-2 h-1 for N2O. Additionally, N2O rates sampled after a typical fertilizer application were significantly greater than at full growth (p=0.0005) with flux rates of 25.2 μg m2h-1 and 30.3 μg m2h-1 for P. maximum and P. purpureum respectively. With a global warming potential of 310 for N2O, even short-term spikes following fertilizer application can cause long lasting effects of GHG emission from agricultural soils. CH4 flux was negligible for all species on the Oahu plots during these sample periods. Globally, water limitation is a major factor influencing the potential productivity of agricultural crops and the sustainability of

  8. A Global Database of Gas Fluxes from Soils after Rewetting or Thawing, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This database contains information compiled from published studies on gas flux from soil following rewetting or thawing. The resulting database includes 222 field...

  9. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments

    Science.gov (United States)

    Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  10. Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor

    Science.gov (United States)

    W. J. Massman; J. M. Frank

    2004-01-01

    Some fires can be beneficial to soils but, if a fire is sufficiently intense, soil can be irreversible altered. We measured soil temperatures and heat fluxes at several soil depths before, during, and after a controlled surface burn at Manitou Experimental Forest (southern Colorado, USA) to evaluate its effects on the soil's thermophysical properties (thermal...

  11. Summer fluxes of atmospheric greenhouse gases N{sub 2}O, CH{sub 4} and CO{sub 2} from mangrove soil in South China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.C. [Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR (China); Tam, N.F.Y., E-mail: bhntam@cityu.edu.hk [Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR (China); Ye, Y. [State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian (China)

    2010-06-01

    The atmospheric fluxes of N{sub 2}O, CH{sub 4} and CO{sub 2} from the soil in four mangrove swamps in Shenzhen and Hong Kong, South China were investigated in the summer of 2008. The fluxes ranged from 0.14 to 23.83 {mu}mol m{sup -2} h{sup -1}, 11.9 to 5168.6 {mu}mol m{sup -2} h{sup -1} and 0.69 to 20.56 mmol m{sup -2} h{sup -1} for N{sub 2}O, CH{sub 4} and CO{sub 2}, respectively. Futian mangrove swamp in Shenzhen had the highest greenhouse gas fluxes, followed by Mai Po mangrove in Hong Kong. Sha Kong Tsuen and Yung Shue O mangroves in Hong Kong had similar, low fluxes. The differences in both N{sub 2}O and CH{sub 4} fluxes among different tidal positions, the landward, seaward and bare mudflat, in each swamp were insignificant. The N{sub 2}O and CO{sub 2} fluxes were positively correlated with the soil organic carbon, total nitrogen, total phosphate, total iron and NH{sub 4}{sup +}-N contents, as well as the soil porosity. However, only soil NH{sub 4}{sup +}-N concentration had significant effects on CH{sub 4} fluxes.

  12. Potential feedbacks between snow cover, soil moisture and surface energy fluxes in Southern Norway

    Science.gov (United States)

    Brox Nilsen, Irene; Tallaksen, Lena M.; Stordal, Frode

    2017-04-01

    At high latitudes, the snow season has become shorter during the past decades because snowmelt is highly sensitive to a warmer climate. Snowmelt influences the energy balance by changing the albedo and the partitioning between latent and sensible heat fluxes. It further influences the water balance by changing the runoff and soil moisture. In a previous study, we identified southern Norway as a region where significant temperature changes in summer could potentially be explained by land-atmosphere interactions. In this study we hypothesise that changes in snow cover would influence the summer surface fluxes in the succeeding weeks or months. The exceptionally warm summer of 2014 was chosen as a test bed. In Norway, evapotranspiration is not soil moisture limited, but energy limited, under normal conditions. During warm summers, however, such as in 2014, evapotranspiration can be restricted by the available soil moisture. Using the Weather Research and Forecasting (WRF) model we replace the initial ground conditions for 2014 with conditions representative of a snow-poor spring and a snow-rich spring. WRF was coupled to Noah-MP at 3 km horizontal resolution in the inner domain, and the simulations covered mid-May through September 2014. Boundary conditions used to force WRF were taken from the Era-Interim reanalysis. Snow, runoff, soil moisture and soil temperature observational data were provided by the Norwegian Water Resources and Energy Directorate for validation. The validation shows generally good agreement with observations. Preliminary results show that the reduced snowpack, hereafter "sim1" increased the air temperature by up to 5 K and the surface temperature by up to 10 K in areas affected by snow changes. The increased snowpack, hereafter "sim2", decreased the air and surface temperature by the same amount. These are weekly mean values for the first eight simulation weeks from mid May. Because of the higher net energy available ( 100 Wm-2) in sim 1, both

  13. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat–soybean/fallow

    DEFF Research Database (Denmark)

    Liu, L; Hu, C; Yang, P

    2015-01-01

    Soil respiration and CH4 emissions play a significant role in the global carbon balance. However, in situ studies in agricultural soils on responses of soil respiration and CH4 fluxes to climate warming are still sparse, especially from long-term studies with year-round heating. A warming...... by affecting soil NH4 concentration. Across years, CH4 emissions were negatively correlated with soil temperature in N1 treatment. Soil respiration showed clear seasonal fluctuations, with the largest emissions during summer and smallest in winter. Warming and nitrogen fertilization had no significant effects...... on total cumulative soil CO2 fluxes. Soil respiration was positively correlated with microbial biomass C, and microbial biomass C was not affected significantly by warming or nitrogen addition. The lack of significant effects of warming on soil respiration may have resulted from: (1) warming-induced soil...

  14. CO2 Fluxes Monitoring at the Level of Field Agroecosystem in Moscow Region of Russia

    Science.gov (United States)

    Meshalkina, Joulia; Mazirov, Ilya; Samardzic, Miljan; Yaroslavtsev, Alexis; Valentini, Riccardo; Vasenev, Ivan

    2014-05-01

    The Central Russia is still one of the less GHG-investigated European areas especially in case of agroecosystem-level carbon dioxide fluxes monitoring by eddy covariance method. The eddy covariance technique is a statistical method to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The major assumption of the metod is that measurements at a point can represent an entire upwind area. Eddy covariance researches, which could be considered as repeated for the same area, are very rare. The research has been carried out on the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (Moscow, Russia) in 2013 under the support of RF Government grant No. 11.G34.31.0079. Arable derno-podzoluvisls have around 1 The results have shown high daily and seasonal dynamic of agroecosystem CO2 emission. Sowing activates soil microbiological activity and the average soil CO2 emission and adsorption are rising at the same time. CO2 streams are intensified after crop emerging from values of 3 to 7 μmol/s-m2 for emission, and from values of 5 to 20 μmol/s-m2 for adsorption. Stabilization of the flow has come at achieving plants height of 10-12 cm. The vegetation period is characterized by high average soil CO2 emission and adsorption at the same time, but the adsorption is significantly higher. The resulted CO2 absorption during the day is approximately 2-5 times higher than emissions at night. For example, in mid-June, the absorption value was about 0.45 mol/m2 during the day-time, and the emission value was about 0.1 mol/m2 at night. After harvesting CO2 emission is becoming essentially higher than adsorption. Autumn and winter data are fluctuate around zero, but for some periods a small predominance of CO2 emissions over the absorption may be observed. The daily dynamics of CO2 emissions depends on the air temperature with the correlation coefficient changes between 0.4 and 0.8. Crop stage, agrotechnological

  15. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    Science.gov (United States)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  16. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    Energy Technology Data Exchange (ETDEWEB)

    Tangen, Brian A., E-mail: btangen@usgs.gov; Finocchiaro, Raymond G., E-mail: rfinocchiaro@usgs.gov; Gleason, Robert A., E-mail: rgleason@usgs.gov

    2015-11-15

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH{sub 4}) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties. Results showed that the effects of land use on GHG fluxes and abiotic soil properties differed with respect to catchment zone (upland, wetland), wetland classification, geographic location, and year. Mean CH{sub 4} fluxes from the uplands were predictably low (< 0.02 g CH{sub 4} m{sup −2} day{sup −1}), while wetland zone CH{sub 4} fluxes were much greater (< 0.001–3.9 g CH{sub 4} m{sup −2} day{sup −1}). Mean cumulative seasonal CH{sub 4} fluxes ranged from roughly 0–650 g CH{sub 4} m{sup −2}, with an overall mean of approximately 160 g CH{sub 4} m{sup −2}. These maximum cumulative CH{sub 4} fluxes were nearly 3 times as high as previously reported in North America. The overall magnitude and variability of N{sub 2}O fluxes from this study (< 0.0001–0.0023 g N{sub 2}O m{sup −2} day{sup −1}) were comparable to previously reported values. Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, and that when non-drained cropland catchments are restored, CH{sub 4} fluxes generally are not different than the pre-restoration baseline. Conversely, when drained cropland catchments are restored, CH{sub 4} fluxes are noticeably higher. Consequently, it is important to consider the type of wetland restoration (drained, non-drained) when assessing restoration benefits. Results also suggest that elevated N{sub 2}O fluxes from cropland catchments likely would be reduced through restoration. The overall

  17. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    Directory of Open Access Journals (Sweden)

    S. E. Chadburn

    2017-11-01

    Full Text Available It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France. We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI, the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our

  18. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    Science.gov (United States)

    Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Van Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.

    2017-11-01

    It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that

  19. Air-soil exchange of PCBs: levels and temporal variations at two sites in Turkey.

    Science.gov (United States)

    Yolsal, Didem; Salihoglu, Güray; Tasdemir, Yücel

    2014-03-01

    Seasonal distribution of polychlorinated biphenyls (PCBs) at the air-soil intersection was determined for two regions: one with urban characteristics where traffic is dense (BUTAL) and the other representing the coastal zone (Mudanya). Fifty-one air and soil samples were simultaneously collected. Total PCB (Σ82 PCB) levels in the soil samples collected during a 1-year period ranged between 105 and 7,060 pg/g dry matter (dm) (BUTAL) and 110 and 2,320 pg/g dm (Mudanya). Total PCB levels in the gaseous phase were measured to be between 100 and 910 pg/m(3) (BUTAL) and 75 and 1,025 pg/m(3) (Mudanya). Variations in the concentrations were observed depending on the season. Though the PCB concentrations measured in the atmospheres of both regions in the summer months were high, they were found to be lower in winter. However, while soil PCB levels were measured to be high at BUTAL during summer months, they were found to be high during winter months in Mudanya. The direction and amount of the PCB movement were determined by calculating the gaseous phase change fluxes at air-soil intersection. While a general PCB movement from soil to air was found for BUTAL, the PCB movement from air to soil was calculated for the Mudanya region in most of the sampling events. During the warmer seasons PCB movement towards the atmosphere was observed due to evaporation from the soil. With decreases in the temperature, both decreases in the number of PCB congeners occurring in the air and a change in the direction of some congeners were observed, possibly caused by deposition from the atmosphere to the soil. 3-CB and 4-CB congeners were found to be dominant in the atmosphere, and 4-, 5-, and 6-CBs were found to dominate in the surface soils.

  20. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India.

    Science.gov (United States)

    Ahirwal, Jitendra; Maiti, Subodh Kumar; Singh, Ashok Kumar

    2017-04-01

    Open strip mining of coal results in loss of natural carbon (C) sink and increased emission of CO 2 into the atmosphere. A field study was carried out at five revegetated coal mine lands (7, 8, 9, 10 and 11years) to assess the impact of the reclamation on soil properties, accretion of soil organic C (SOC) and nitrogen (N) stock, changes in ecosystem C pool and soil CO 2 flux. We estimated the presence of C in the tree biomass, soils, litter and microbial biomass to determine the total C sequestration potential of the post mining reclaimed land. To determine the C sequestration of the reclaimed ecosystem, soil CO 2 flux was measured along with the CO 2 sequestration. Reclaimed mine soil (RMS) fertility increased along the age of reclamation and decreases with the soil depths that may be attributed to the change in mine soils characteristics and plant growth. After 7 to 11years of reclamation, SOC and N stocks increased two times. SOC sequestration (1.71MgCha -1 year -1 ) and total ecosystem C pool (3.72MgCha -1 year -1 ) increased with the age of reclamation (CO 2 equivalent: 13.63MgCO 2 ha -1 year -1 ). After 11years of reclamation, soil CO 2 flux (2.36±0.95μmolm -2 s -1 ) was found four times higher than the natural forest soils (Shorea robusta Gaertn. F). The study shows that reclaimed mine land can act as a source/sink of CO 2 in the terrestrial ecosystem and plays an important role to offset increased emission of CO 2 in the atmosphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Spatial analysis of soil erosion and sediment fluxes: a paired watershed study of two Rappahannock River tributaries, Stafford County, Virginia.

    Science.gov (United States)

    Ricker, Matthew C; Odhiambo, Ben K; Church, Joseph M

    2008-05-01

    Soil erosion is a serious problem in areas with expanding construction, agricultural production, and improper storm water management. It is important to understand the major processes affecting sediment delivery to surficial water bodies in order to tailor effective mitigation and outreach activities. This study analyzes how naturally occurring and anthropogenic influences, such as urbanization and soil disturbance on steep slopes, are reflected in the amount of soil erosion and sediment delivery within sub-watershed-sized areas. In this study, two sub-watersheds of the Rappahannock River, Horsepen Run and Little Falls Run, were analyzed using the Revised Universal Soil Loss Equation (RUSLE) and a sediment delivery ratio (SDR) to estimate annual sediment flux rates. The RUSLE/SDR analyses for Horsepen Run and Little Falls Run predicted 298 Mg/y and 234 Mg/y, respectively, but nearly identical per-unit-area sediment flux rates of 0.15 Mg/ha/y and 0.18 Mg/ha/y. Suspended sediment sampling indicated greater amounts of sediment in Little Falls Run, which is most likely due to anthropogenic influences. Field analyses also suggest that all-terrain vehicle crossings represent the majority of sediment flux derived from forested areas of Horsepen Run. The combined RUSLE/SDR and field sampling data indicate that small-scale anthropogenic disturbances (ATV trails and construction sites) play a major role in overall sediment flux rates for both basins and that these sites must be properly accounted for when evaluating sediment flux rates at a sub-watershed scale.

  2. Simultaneous Measurements of Soil CO2 and CH4 Fluxes Using Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Rachhpal S. Jassal

    2016-04-01

    Full Text Available We present a method of simultaneously measuring soil CO and CH fluxes using a laser-based cavity ring-down spectrometer (CRDS coupled to an automated non-steady-state chamber system. The differential equation describing the change in the greenhouse gas (GHG mixing ratio in the chamber headspace following lid closure is solved for the condition when a small flow rate of chamber headspace air is pulled through the CRDS by an external pump and exhausted to the atmosphere. The small flow rate allows calculation of fluxes assuming linear relationships between the GHG mixing ratios and chamber lid closure times of a few minutes. We also calibrated the chambers for effective volume ( and show that adsorption of the GHGs on the walls of the chamber caused to be 7% higher than the geometric volume, with the near-surface soil porosity causing another 4% increase in .

  3. Modeling the impacts of temperature and precipitation changes on soil CO2 fluxes from a Switchgrass stand recently converted from cropland.

    Science.gov (United States)

    Lai, Liming; Kumar, Sandeep; Chintala, Rajesh; Owens, Vance N; Clay, David; Schumacher, Joseph; Nizami, Abdul-Sattar; Lee, Sang Soo; Rafique, Rashad

    2016-05-01

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America and successfully adapted to diverse environmental conditions. It offers the potential to reduce soil surface carbon dioxide (CO2) fluxes and mitigate climate change. However, information on how these CO2 fluxes respond to changing climate is still lacking. In this study, CO2 fluxes were monitored continuously from 2011 through 2014 using high frequency measurements from Switchgrass land seeded in 2008 on an experimental site that has been previously used for soybean (Glycine max L.) in South Dakota, USA. DAYCENT, a process-based model, was used to simulate CO2 fluxes. An improved methodology CPTE [Combining Parameter estimation (PEST) with "Trial and Error" method] was used to calibrate DAYCENT. The calibrated DAYCENT model was used for simulating future CO2 emissions based on different climate change scenarios. This study showed that: (i) the measured soil CO2 fluxes from Switchgrass land were higher for 2012 which was a drought year, and these fluxes when simulated using DAYCENT for long-term (2015-2070) provided a pattern of polynomial curve; (ii) the simulated CO2 fluxes provided different patterns with temperature and precipitation changes in a long-term, (iii) the future CO2 fluxes from Switchgrass land under different changing climate scenarios were not significantly different, therefore, it can be concluded that Switchgrass grown for longer durations could reduce changes in CO2 fluxes from soil as a result of temperature and precipitation changes to some extent. Copyright © 2015. Published by Elsevier B.V.

  4. Lateral water flux in the unsaturated zone: A mechanism for the formation of spatial soil heterogeneity in a headwater catchment

    Science.gov (United States)

    John P. Gannon; Kevin J. McGuire; Scott W. Bailey; Rebecca R. Bourgault; Donald S. Ross

    2017-01-01

    Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table...

  5. Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests

    Czech Academy of Sciences Publication Activity Database

    Maier, M.; Macháčová, Kateřina; Lang, F.; Svobodová, Kateřina; Urban, Otmar

    2018-01-01

    Roč. 181, č. 1 (2018), s. 31-35 ISSN 1436-8730 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : ch4 * soil gas profile * gas flux * co2 * methanogenesis Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 2.102, year: 2016

  6. Quantifying landscape-level methane fluxes in subarctic Finland using a multiscale approach.

    Science.gov (United States)

    Hartley, Iain P; Hill, Timothy C; Wade, Thomas J; Clement, Robert J; Moncrieff, John B; Prieto-Blanco, Ana; Disney, Mathias I; Huntley, Brian; Williams, Mathew; Howden, Nicholas J K; Wookey, Philip A; Baxter, Robert

    2015-10-01

    Quantifying landscape-scale methane (CH4 ) fluxes from boreal and arctic regions, and determining how they are controlled, is critical for predicting the magnitude of any CH4 emission feedback to climate change. Furthermore, there remains uncertainty regarding the relative importance of small areas of strong methanogenic activity, vs. larger areas with net CH4 uptake, in controlling landscape-level fluxes. We measured CH4 fluxes from multiple microtopographical subunits (sedge-dominated lawns, interhummocks and hummocks) within an aapa mire in subarctic Finland, as well as in drier ecosystems present in the wider landscape, lichen heath and mountain birch forest. An intercomparison was carried out between fluxes measured using static chambers, up-scaled using a high-resolution landcover map derived from aerial photography and eddy covariance. Strong agreement was observed between the two methodologies, with emission rates greatest in lawns. CH4 fluxes from lawns were strongly related to seasonal fluctuations in temperature, but their floating nature meant that water-table depth was not a key factor in controlling CH4 release. In contrast, chamber measurements identified net CH4 uptake in birch forest soils. An intercomparison between the aerial photography and satellite remote sensing demonstrated that quantifying the distribution of the key CH4 emitting and consuming plant communities was possible from satellite, allowing fluxes to be scaled up to a 100 km(2) area. For the full growing season (May to October), ~ 1.1-1.4 g CH4  m(-2) was released across the 100 km(2) area. This was based on up-scaled lawn emissions of 1.2-1.5 g CH4  m(-2) , vs. an up-scaled uptake of 0.07-0.15 g CH4  m(-2) by the wider landscape. Given the strong temperature sensitivity of the dominant lawn fluxes, and the fact that lawns are unlikely to dry out, climate warming may substantially increase CH4 emissions in northern Finland, and in aapa mire regions in general. © 2015 The

  7. Water and nitrogen management effects on semiarid sorghum production and soil trace gas flux under future climate.

    Science.gov (United States)

    Duval, Benjamin D; Ghimire, Rajan; Hartman, Melannie D; Marsalis, Mark A

    2018-01-01

    External inputs to agricultural systems can overcome latent soil and climate constraints on production, while contributing to greenhouse gas emissions from fertilizer and water management inefficiencies. Proper crop selection for a given region can lessen the need for irrigation and timing of N fertilizer application with crop N demand can potentially reduce N2O emissions and increase N use efficiency while reducing residual soil N and N leaching. However, increased variability in precipitation is an expectation of climate change and makes predicting biomass and gas flux responses to management more challenging. We used the DayCent model to test hypotheses about input intensity controls on sorghum (Sorghum bicolor (L.) Moench) productivity and greenhouse gas emissions in the southwestern United States under future climate. Sorghum had been previously parameterized for DayCent, but an inverse-modeling via parameter estimation method significantly improved model validation to field data. Aboveground production and N2O flux were more responsive to N additions than irrigation, but simulations with future climate produced lower values for sorghum than current climate. We found positive interactions between irrigation at increased N application for N2O and CO2 fluxes. Extremes in sorghum production under future climate were a function of biomass accumulation trajectories related to daily soil water and mineral N. Root C inputs correlated with soil organic C pools, but overall soil C declined at the decadal scale under current weather while modest gains were simulated under future weather. Scaling biomass and N2O fluxes by unit N and water input revealed that sorghum can be productive without irrigation, and the effect of irrigating crops is difficult to forecast when precipitation is variable within the growing season. These simulation results demonstrate the importance of understanding sorghum production and greenhouse gas emissions at daily scales when assessing annual

  8. Effects of Long-Term CO2 Enrichment on Soil-Atmosphere CH4 Fluxes and the Spatial Micro-Distribution of Methanotrophic Bacteria.

    Science.gov (United States)

    Karbin, Saeed; Guillet, Cécile; Kammann, Claudia I; Niklaus, Pascal A

    2015-01-01

    Effects of elevated atmospheric CO2 concentrations on plant growth and associated C cycling have intensively been studied, but less is known about effects on the fluxes of radiatively active trace gases other than CO2. Net soil-atmosphere CH4 fluxes are determined by the balance of soil microbially-driven methane (CH4) oxidation and methanogenesis, and both might change under elevated CO2. Here, we studied CH4 dynamics in a permanent grassland exposed to elevated CO2 for 14 years. Soil-atmosphere fluxes of CH4 were measured using large static chambers, over a period of four years. The ecosystem was a net sink for atmospheric CH4 for most of the time except summer to fall when net CH4 emissions occurred. We did not detect any elevated CO2 effects on CH4 fluxes, but emissions were difficult to quantify due to their discontinuous nature, most likely because of ebullition from the saturated zone. Potential methanotrophic activity, determined by incubation of fresh sieved soil under standardized conditions, also did not reveal any effect of the CO2 treatment. Finally, we determined the spatial micro-distribution of methanotrophic activity at less than 5× atmospheric (10 ppm) and elevated (10000 ppm) CH4 concentrations, using a novel auto-radiographic technique. These analyses indicated that domains of net CH4 assimilation were distributed throughout the analyzed top 15 cm of soils, with no dependence on CH4 concentration or CO2 treatment. Our investigations suggest that elevated CO2 exerts no or only minor effects on CH4 fluxes in the type of ecosystem we studied, at least as long as soil moisture differences are small or absent as was the case here. The autoradiographic analyses further indicate that the spatial niche of CH4 oxidation does not shift in response to CO2 enrichment or CH4 concentration, and that the same type of methanotrophs may oxidize CH4 from atmospheric and soil-internal sources.

  9. Tree Stress and Mortality from Emerald Ash Borer Does Not Systematically Alter Short-Term Soil Carbon Flux in a Mixed Northeastern U.S. Forest

    Directory of Open Access Journals (Sweden)

    Jaclyn Hatala Matthes

    2018-01-01

    Full Text Available Invasive insect pests are a common disturbance in temperate forests, but their effects on belowground processes in these ecosystems are poorly understood. This study examined how aboveground disturbance might impact short-term soil carbon flux in a forest impacted by emerald ash borer (Agrilus planipennis Fairmaire in central New Hampshire, USA. We anticipated changes to soil moisture and temperature resulting from tree mortality caused by emerald ash borer, with subsequent effects on rates of soil respiration and methane oxidation. We measured carbon dioxide emissions and methane uptake beneath trees before, during, and after infestation by emerald ash borer. In our study, emerald ash borer damage to nearby trees did not alter soil microclimate nor soil carbon fluxes. While surprising, the lack of change in soil microclimate conditions may have been a result of the sandy, well-drained soil in our study area and the diffuse spatial distribution of canopy ash trees and subsequent canopy light gaps after tree mortality. Overall, our results indicate that short-term changes in soil carbon flux following insect disturbances may be minimal, particularly in forests with well-drained soils and a mixed-species canopy.

  10. A Portable, Low-Power Analyzer and Automated Soil Flux Chamber System for Measuring Wetland GHG Emissions

    Science.gov (United States)

    Nickerson, Nick; Kim-Hak, David; McArthur, Gordon

    2017-04-01

    Preservation and restoration of wetlands has the potential to help sequester large amounts of carbon due to the naturally high primary productivity and slow turnover of stored soil carbon. However, the anoxic environmental conditions present in wetland soils are also the largest natural contributor to global methane emissions. While it is well known that wetlands are net carbon sinks over long time scales, given the high global warming potential of methane, the short-term balances between C uptake and storage and loss as CO2 and CH4 need to be carefully considered when evaluating the climate effects of land-use change. It is relatively difficult to measure methane emissions from wetlands with currently available techniques given the temporally and spatially sporadic nature of the processes involved (methanogenesis, methane oxidation, ebullition, etc.). For example, using manual soil flux chambers can often only capture a portion of either the spatial or temporal variability, and often have other disadvantages associated with soil atmosphere disturbance during deployment in these relatively compressible wetland soils. Automated chamber systems offer the advantage of collecting high-resolution time series of gaseous fluxes while reducing some human and method induced biases. Additionally, new laser-based analyzers that can be used in situ alongside automated chambers offer a greater minimum detectable flux than can be achieved using alternative methods such as Gas Chromatography. Until recently these types of automated measurements were limited to areas that had good power coverage, as laser based systems were power intensive and could not easily be supplemented with power from field-available sources such as solar. Recent advances in laser technology has reduced the power needed and made these systems less power intensive and more field portable in the process. Here we present data using an automated chamber system coupled to a portable laser based greenhouse gas

  11. Methane Fluxes at the Tree Stem, Soil, and Ecosystem-scales in a Cottonwood Riparian Forest

    Science.gov (United States)

    Flanagan, L. B.; Nikkel, D. J.; Scherloski, L. M.; Tkach, R. E.; Rood, S. B.

    2017-12-01

    Trees can emit methane to the atmosphere that is produced by microbes inside their decaying stems or by taking up and releasing methane that is produced by microbes in adjacent, anoxic soil layers. The significance of these two methane production pathways for possible net release to the atmosphere depends on the magnitude of simultaneous oxidation of atmospheric methane that occurs in well-aerated, shallow soil zones. In order to quantify the significance of these processes, we made methane flux measurements using the eddy covariance technique at the ecosystem-scale and via chamber-based methods applied on the soil surface and on tree stems in a riparian cottonwood ecosystem in southern Alberta that was dominated by Populus tree species and their natural hybrids. Tree stem methane fluxes varied greatly among individual Populus trees and changed seasonally, with peak growing season average values of 4 nmol m-2 s-1 (tree surface area basis). When scaled to the ecosystem, the tree stem methane emissions (0.9 nmol m-2 s-1, ground area basis) were slightly higher than average soil surface methane uptake rates (-0.8 nmol m-2 s-1). In addition, we observed regular nighttime increases in methane concentration within the forest boundary layer (by 300 nmol mol-1 on average at 22 m height during July). The majority of the methane concentration build-up was flushed from the ecosystem to the well-mixed atmosphere, with combined eddy covariance and air column storage fluxes reaching values of 70-80 nmol m-2 s-1 for approximately one hour after sunrise. Daily average net methane emission rates at the ecosystem-scale were 4.4 nmol m-2 s-1 during July. Additional lab studies demonstrated that tree stem methane was produced via the CO2-reduction pathway, as tissue in the central stem of living Populus trees was being decomposed. This study demonstrated net methane emission from an upland, cottonwood forest ecosystem, resulting from microbe methane production in tree stems that

  12. Low methane flux from a constructed boreal wetland

    Science.gov (United States)

    Clark, M. G.; Humphreys, E.; Carey, S. K.

    2016-12-01

    The Sandhill Fen Watershed project in northern Alberta, Canada, is a pilot study in reconstructing a mixed upland and lowland boreal plain ecosystem. The physical construction of the 50 ha area was completed in 2012 and revegetation programs, through planting and seeding, began that same year and continued into 2013. Since then, the vegetation has developed a substantial cover over the reclaimed soil and peat substrates used to cap the engineered topography constructed from mine tailings. To monitor the dynamics of carbon cycling processes in this novel ecosystem, near weekly gas chamber measurements of methane fluxes were carried out over 3 growing seasons. Soil moisture, temperature and ion flux measurements, using Plant Root Simulator probes, were also collected alongside the gas flux plots. In the 3rd season, a transect was established in the lowlands along a moisture gradient to collect continuous reduction-oxidation potential measurements along with these other variables. Overall, methane effluxes remained low relative to what is expected for rewetted organic substrates. However, there is a trend over time towards increasing methane gas emissions that coincides with increasing fluxes of reduced metal ions and decreasing fluxes of sulphate in the fully saturated substrates. The suppressed levels of methane fluxes are possibly due to naturally occurring high levels of sulphate in the donor materials used to cap the ecosystem construction.

  13. ANALYSIS OF THE FLUX OF AN ENDOCRINE DISRUPTING DICARBOXIMIDE AND ITS DEGRADATION PRODUCTS FROM THE SOIL TO THE LOWER TROPOSPHERE

    Science.gov (United States)

    A method for measuring the atmospheric flux of the antiandrogenic dicarboxirnide, vinclozolin, and its degradation products was investigated. A nitric oxide laboratory chamber was modified to measure the flux of semi-volatile compounds. Pesticide application systems and soil in...

  14. A sampling strategy for estimating plot average annual fluxes of chemical elements from forest soils

    NARCIS (Netherlands)

    Brus, D.J.; Gruijter, de J.J.; Vries, de W.

    2010-01-01

    A sampling strategy for estimating spatially averaged annual element leaching fluxes from forest soils is presented and tested in three Dutch forest monitoring plots. In this method sampling locations and times (days) are selected by probability sampling. Sampling locations were selected by

  15. Detecting buried radium contamination using soil-gas and surface-flux radon meaurements

    International Nuclear Information System (INIS)

    Karp, K.E.

    1988-06-01

    The Technical Measurements Center (TMC) has investigated the effectiveness of using radon soil-gas under surface-flux measurments to locate radium contamination that is buried sufficiently deep to be undetectable by surface gamma methods. At the first test site studied, an indication of a buried source was revealed by mapping anomalous surface-flux and soil-gas concentrations in the near surface overburden. The mapped radon anomalies were found to correspond in rough outline to the shape of the areal extent of the deposit as determined by borehole gamma-ray logs. The 5.9pCi/g radium deposit, buried 2 feet below the surface, went undetected by conventional surface gamma measurements. Similar results were obtained at the second test site where radon and conventional surface gamma measurements were taken in an area having radium concentrations ranging from 13.3 to 341.0 pCi/g at a depth of 4 feet below the surface. The radon methods were found to have a detection limit for buried radium lower than that of the surface gamma methods, as evidenced by the discovery of the 13.3 pCi/g deposit which went undetected by the surface gamma methods. 15 refs., 33 figs., 8 tabs

  16. Impact of Sub-grid Soil Textural Properties on Simulations of Hydrological Fluxes at the Continental Scale Mississippi River Basin

    Science.gov (United States)

    Kumar, R.; Samaniego, L. E.; Livneh, B.

    2013-12-01

    Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked

  17. The impact of land-use change from forest to oil palm on soil greenhouse gas and volatile organic compound fluxes in Malaysian Borneo

    Science.gov (United States)

    Drewer, Julia; Leduning, Melissa; Kerdraon-Byrne, Deirdre; Sayer, Emma; Sentien, Justin; Skiba, Ute

    2017-04-01

    Monocultures of oil palm have expanded in SE Asia, and more recently also in Africa and South America, frequently replacing tropical forests. The limited data available clearly show that this conversion is associated with a potentially large greenhouse gas (GHG) burden. The physical process of land-use change, such is felling, drainage and ploughing can significantly increase emissions of N2O and soil CO2 respiration and decrease CH4 oxidation rates in the short term; and in the long-term regular nitrogen applications will impact in particular soil N2O fluxes. Little is known about volatile organic compound (VOC) fluxes from soil and litter in tropical forests and their speciation or about the links between GHG and VOC fluxes. VOC emissions are important as they directly and indirectly influence the concentrations and lifetimes of air pollutants and GHGs. For example, oxidation of VOCs generate tropospheric ozone which is also a potent GHG. Within ecosystems, monoterpenes can mediate plant-microbe and plant- interactions and protect photosynthesis during abiotic stress. However, little is known about monoterpene composition in the tropics - a widely recognized major global source of terpenoids to the atmosphere. These knowledge gaps make it difficult for developing countries in the tropics, especially SE Asia, to develop effective mitigation strategies. Current understanding of soil GHG fluxes associated with land-use change from forest to oil palm is not sufficient to provide reliable estimates of their carbon footprints and sustainability or advice on GHG mitigation strategies. To provide the necessary data we have installed a total of 56 flux chambers in logged forests, forest fragments and mature and young oil palm plantations as well as riparian zones within the SAFE landscape in SE Sabah (Stability of Altered Forest Ecosystems; http://www.safeproject.net). Soil respiration rates, N2O, CH4 and VOC fluxes together with soil moisture, pH, mineral and total C and

  18. SOIL 222Rn CONCENTRATION, CO2 AND CH4 FLUX MEASUREMENTS AROUND THE JWALAMUKHI AREA OF NORTH-WEST HIMALAYAS, INDIA.

    Science.gov (United States)

    Kumar, Arvind; Walia, Vivek; Yang, Tsanyao Frank; Fu, Ching-Chou; Singh, Surinder; Bajwa, Bikramjit Singh; Arora, Vishal

    2016-10-01

    Soil 222 Rn concentration, CO 2 and CH 4 flux measurements were conducted around the Jwalamukhi area of North-West Himalayas, India. During this study, around 37 soil gas points and flux measurements were taken with the aim to assure the suitability of this method in the study of fault zones. For this purpose, RAD 7 (Durridge, USA) was used to monitor radon concentrations, whereas portable diffuse flux meter (West Systems, Italy) was used for the CO 2 and CH 4 flux measurements. The recorded radon concentration varies from 6.1 to 34.5 kBq m -3 with an average value of 16.5 kBq m -3 The anomalous value of radon concentrations was recorded between Jwalamukhi thrust and Barsar thrust. The recorded average of CO 2 and CH 4 flux were 11.8 and 2.7 g m -2 day -1 , respectively. The good correlation between anomalous CO 2 flux and radon concentrations has been observed along the fault zone in the study area, suggesting that radon migration is dependent on CO 2 . © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Long-term enhanced winter soil frost alters growing season CO2 fluxes through its impact on vegetation development in a boreal peatland.

    Science.gov (United States)

    Zhao, Junbin; Peichl, Matthias; Nilsson, Mats B

    2017-08-01

    At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO 2 ) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that modify the peatland CO 2 exchange in response to altered winter soil frost, we conducted a snow exclusion experiment to enhance winter soil frost and to evaluate its short-term (1-3 years) and long-term (11 years) effects on CO 2 fluxes during subsequent growing seasons in a boreal peatland. In the first 3 years after initiating the treatment, no significant effects were observed on either gross primary production (GPP) or ecosystem respiration (ER). However, after 11 years, the temperature sensitivity of ER was reduced in the treatment plots relative to the control, resulting in an overall lower ER in the former. Furthermore, early growing season GPP was also lower in the treatment plots than in the controls during periods with photosynthetic photon flux density (PPFD) ≥800 μmol m -2  s -1 , corresponding to lower sedge leaf biomass in the treatment plots during the same period. During the peak growing season, a higher GPP was observed in the treatment plots under the low light condition (i.e. PPFD 400 μmol m -2  s -1 ) compared to the control. As Sphagnum moss maximizes photosynthesis at low light levels, this GPP difference between the plots may have been due to greater moss photosynthesis, as indicated by greater moss biomass production, in the treatment plots relative to the controls. Our study highlights the different responses to enhanced winter soil frost among plant functional types which regulate CO 2 fluxes, suggesting that winter climate change could considerably alter the growing season CO 2 exchange in boreal peatlands through its effect on vegetation development. © 2017 John Wiley & Sons Ltd.

  20. Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: Discrete surface chambers and continuous soil CO2 concentration probes

    Science.gov (United States)

    Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein; Daniel L. Welsch

    2008-01-01

    Soil CO2 efflux is a large respiratory flux from terrestrial ecosystems and a critical component of the global carbon (C) cycle. Lack of process understanding of the spatiotemporal controls on soil CO2 efflux limits our ability to extrapolate from fluxes measured at point scales to scales useful for corroboration with other ecosystem level measures of C exchange....

  1. Mercury baseline levels in Flemish soils (Belgium)

    International Nuclear Information System (INIS)

    Tack, Filip M.G.; Vanhaesebroeck, Thomas; Verloo, Marc G.; Van Rompaey, Kurt; Ranst, Eric van

    2005-01-01

    It is important to establish contaminant levels that are normally present in soils to provide baseline data for pollution studies. Mercury is a toxic element of concern. This study was aimed at assessing baseline mercury levels in soils in Flanders. In a previous study, mercury contents in soils in Oost-Vlaanderen were found to be significantly above levels reported elsewhere. For the current study, observations were extended over two more provinces, West-Vlaanderen and Antwerpen. Ranges of soil Hg contents were distinctly higher in the province Oost-Vlaanderen (interquartile range from 0.09 to 0.43 mg/kg) than in the other provinces (interquartile ranges from 0.7 to 0.13 and 0.7 to 0.15 mg/kg for West-Vlaanderen and Antwerpen, respectively). The standard threshold method was applied to separate soils containing baseline levels of Hg from the data. Baseline concentrations for Hg were characterised by a median of 0.10 mg Hg/kg dry soil, an interquartile range from 0.07 to 0.14 mg/kg and a 90% percentile value of 0.30 mg/kg. The influence of soil properties such as clay and organic carbon contents, and pH on baseline Hg concentrations was not important. Maps of the spatial distribution of Hg levels showed that the province Oost-Vlaanderen exhibited zones with systematically higher Hg soil contents. This may be related to the former presence of many small-scale industries employing mercury in that region. - Increased mercury levels may reflect human activity

  2. Small scale soil carbon and moisture gradients in a drained peat bog grassland and their influence on CO2, CH4 and N2O fluxes

    Science.gov (United States)

    Leiber-Sauheitl, K.; Fuß, R.; Freibauer, A.

    2012-04-01

    Due to the UNFCCC report requirements of each country on the emissions of greenhouse gases from key sources the joint research project "Organic Soils" was established in Germany. The project's objective is to improve the data set on greenhousegas emissions from organic soils in Germany. Within 12 German Project Catchments emissions from different types of organic soils, e.g. under different land uses and hydrological conditions, are measured. At the location "Großes Moor" near Gifhorn (Lower Saxony) the effects of small-scale soil organic carbon and groundwater level gradients on the GHG fluxes (CO2, CH4 and N2O) are quantified. The study area is located within a former peat bog altered by drainage and peat cutting, which is currently grassland under extensive agricultural use. The focus of the study is on the acquisition of CO2, CH4 and N2O fluxes on six sites via manual closed chambers. In order to calculate the annual CO2 exchange rate, values are interpolated on a 0.5 hour scale between measurement campaigns. In combination with continually logged meteorological parameters, such as the photosynthetic active radiation as well as air and soil temperatures, we calculate the daily CO2 ecosystem exchange of the different sites. During the 2011 campaign, CO2 was determined as the most important greenhouse gas. The groundwater table was the dominant variable influencing gas emissions. Another important factor was the vegetation composition. In detail, highest CO2 emissions occurred with a water table of 40-50 cm below ground level, temperatures above 10°C and low plant biomass amounts. Due to the more complex formation of N2O by a number of processes, each being promoted by different soil conditions, the measurement of N2O fluxes in the field was complemented by a laboratory experiment. In this, the use of stable isotope tracer techniques enabled us to quantify the contribution of single biochemical pathways to the overall formation of N2O under controlled

  3. Diffuse CO2 flux emissions from the soil in Las Cañadas caldera (Tenerife, Canary Islands)

    Science.gov (United States)

    Luengo-Oroz, Natividad; Torres, Pedro A.; Moure, David; D'Alessandro, Walter; Liuzzo, Marco; Longo, Manfredi; Pecoraino, Giovannella

    2014-05-01

    Starting in April 2004, unusual seismic activity was observed in the interior of the island of Tenerife (Canary Islands, Spain) with much evidence pointing to a reawakening of volcanic activity. During this seismic crisis, several events were felt by the population. Since then, a dense multiparametric monitoring network has been deployed all over the island by Instituto Geográfico Nacional (IGN). In the framework of this volcanic surveillance project, several geochemical studies have been accomplished. Measurements of diffuse CO2 flux from the soil have been carried out in some zones inside Las Cañadas caldera. This study has been performed during three different field campaigns in November 2012 and June and November 2013. The studied area includes two different zones known as Roques de García and Los Azulejos. Since several authors have reported the existence of fractures and faults all along both structures, the objectives of this work were to find anomalous CO2 fluxes from the soil and preferential degassing areas, identify possible hidden faults and study the origin of gas emanations in order to detect the presence of magmatic sources. More than 600 sampling sites have been measured with the accumulation chamber method in an area of about 1 km2. Soil gas has been sampled in points where high CO2 fluxes were detected for the determination of chemical and isotopic composition. The results of the gas prospection confirm the existence of CO2 degassing in the area. Some anomalous fluxes have been measured along previously inferred volcano-tectonic structures. The highest anomalies were found in Los Azulejos with values up to 1774 g/m2.d. Chemical analysis did not reveal significant concentrations of magmatic or geothermal gases except CO2. The latter showed concentrations at 50 cm depth within the soils up to 48% and a C-isotopic composition between -4.72 and -3.67 o indicating a prevailing magmatic origin.

  4. Measurements of NO and NH3 soil fluxes at the Savé super site in Benin, West Africa, during the DACCIWA field campaign.

    Science.gov (United States)

    Pacifico, Federica; Delon, Claire; Jambert, Corinne; Durand, Pierre; Lohou, Fabienne; Reinares Martinez, Irene; Brilouet, Pierre-Etienne; Brosse, Fabien; Pedruzo Bagazgoitia, Xabier; Dione, Cheikh; Gabella, Omar

    2017-04-01

    In the next decades South West Africa will be subject to a strong increase in anthropogenic emissions due to a massive growth in population and urbanization. The impact of global climate change, local or regional land use changes, and the strong sensitivity to the West African monsoon lead to complex interactions between surface emissions and atmospheric dynamics and chemistry. Anthropogenic pollutants are transported northward from the mega cities located on the coast, and react with biogenic emissions, leading to enhanced ozone (O3) production outside urban areas, as well as secondary organic aerosols formation, with detrimental effects on humans, animals, natural vegetation and crops. Nitrogen oxide (NO) emissions from soils, among other sources, directly influence NOx concentrations. Changes in NO sources will consequently modify the rate of O3 production. The largest source of ammonia (NH3) emissions is agriculture, via the application of synthetic fertilizer. When released into the atmosphere, NH3 increases the level of air pollution. Once deposited in water and soils, it can potentially cause two major types of environmental damage, acidification and eutrophication, both of which can harm sensitive vegetation systems, biodiversity and water quality. We investigate the role of soil fluxes of NO and NH3 on atmospheric chemistry in West Africa, making use of the observations taken in June and July 2016 at the Savé super-site, Benin (8°02'03" N, 2°29'11″ E), during the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) field campaign, which took place in June-July 2016. These observations also include meteorological and soil parameters such as air temperature and humidity (at 2 m height), radiation, soil temperature and moisture at different depths (5 cm and 10 cm). The climate in Savé is typical of a wet Guinea savanna, and the wet season takes place from June to October. Soil fluxes of NO and NH3 were measured on: bare soil, grassland

  5. Methane Flux of Amazonian Peatland Ecosystems: Large Ecosystem Fluxes with Substantial Contribution from Palm (maritia Flexuosa) STEM Emissions

    Science.gov (United States)

    Van Haren, J. L. M.; Cadillo-Quiroz, H.

    2015-12-01

    Methane (CH4) emissions through plants have long been known in wetlands. However, most measurements have focused on stem tops and leaves. Recently, measurements at the lower parts of stems have shown that stem emissions can exceed soil CH4 emissions in Asian peatlands (Pangala et al. 2013). The addition of stem fluxes to soil fluxes for total ecosystem fluxes has the potential to bridge the discrepancy between modeled to measured and bottom-up to top-down flux estimates. Our measurements in peatlands of Peru show that especially Mauritia flexuosa, a palm species, can emit very large quantities of CH4, although most trees emitted at least some CH4. We used flexible stem chambers to adapt to stems of any size above 5cm in diameter. The chambers were sampled in closed loop with a Gasmet DX4015 for flux measurements, which lasted ~5 minutes after flushing with ambient air. We found that M. flexuosa stem fluxes decrease with height along the stem and were positively correlated with soil fluxes. Most likely CH4 is transported up the stem with the xylem water. Measured M. flexuosa stem fluxes below 1.5m averaged 11.2±1.5 mg-C m-2 h-1 (±95% CI) with a maximum of 123±3.5 mg-C m-2 h-1 (±SE), whereas soil fluxes averaged 6.7±1.7 mg-C m-2 h-1 (±95% CI) with a maximum of 31.6±0.4 mg-C m-2 h-1 (±SE). Significant CH4 fluxes were measured up to 5 m height along the stems. Combined with the high density of ~150 M. flexuosa individuals per hectare in these peatlands and the consistent diameter of ~30cm, the high flux rates add ~20% to the soil flux. With anywhere between 1 and 5 billion M. flexuosa stems across Amazon basin wetlands, stem fluxes from this palm species could represent a major addition to the overall Amazon basin CH4 flux.

  6. Are Bavarian Forests (southern Germany) at risk from ground-level ozone? Assessment using exposure and flux based ozone indices

    International Nuclear Information System (INIS)

    Baumgarten, Manuela; Huber, Christian; Bueker, Patrick; Emberson, Lisa; Dietrich, Hans-Peter; Nunn, Angela J.; Heerdt, Christian; Beudert, Burkhard; Matyssek, Rainer

    2009-01-01

    Exposure and flux-based indices of O 3 risk were compared, at 19 forest locations across Bavaria in southern Germany from 2002 to 2005; leaf symptoms on mature beech trees found at these locations were also examined for O 3 injury. O 3 flux modelling was performed using continuously recorded O 3 concentrations in combination with meteorological and soil moisture data collected from Level II forest sites. O 3 measurements at nearby rural open-field sites proved appropriate as surrogates in cases where O 3 data were lacking at forest sites (with altitude-dependent average differences of about 10% between O 3 concentrations). Operational thresholds of biomass loss for both O 3 indices were exceeded at the majority of the forest locations, suggesting similar risk under long-term average climate conditions. However, exposure-based indices estimated higher O 3 risk during dry years as compared to the flux-based approach. In comparison, minor O 3 -like leaf injury symptoms were detected only at a few of the forest sites investigated. Relationships between flux-based risk thresholds and tree response need to be established for mature forest stands for validation of predicted growth reductions under the prevailing O 3 regimes. - Exposure- and flux-based ozone indices suggest Bavarian forests to be at risk from ozone; the flux-based index offers a means of incorporating stand-specific and ecological variables that influence risk.

  7. Temporal trends in N2O flux dynamics in a Danish wetland – effects of plant-mediated gas transport of N2O and O2 following changes in water level and soil mineral-N availability

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Struwe, Sten; Elberling, Bo

    2012-01-01

    in subsurface N2O and O2 concentrations, water level (WL), light intensity as well as mineral-N availability. Weekly concentration profiles showed that seasonal variations in N2O concentrations were directly linked to the position of the WL and O2 availability at the capillary fringe above the WL. N2O flux....... Complex interactions between seasonal changes in O2 and mineral-N availability following near-surface WL fluctuations in combination with plant-mediated gas transport by P. arundinacea controlled the subsurface N2O concentrations and gas transport mechanisms responsible for N2O fluxes across the soil......–atmosphere interface. Results demonstrate the necessity for addressing this high temporal variability and potential plant transport of N2O in future studies of net N2O exchange across the soil–atmosphere interface....

  8. Can Carbon Fluxes Explain Differences in Soil Organic Carbon Storage under Aspen and Conifer Forest Overstories?

    Directory of Open Access Journals (Sweden)

    Antra Boča

    2017-04-01

    Full Text Available Climate- and management-induced changes in tree species distributions are raising questions regarding tree species-specific effects on soil organic carbon (SOC storage and stability. Quaking aspen (Populus tremuloides Michx. is the most widespread tree species in North America, but fire exclusion often promotes the succession to conifer dominated forests. Aspen in the Western US have been found to store more SOC in the mineral soil than nearby conifers, but we do not yet fully understand the source of this differential SOC accumulation. We measured total SOC storage (0–50 cm, characterized stable and labile SOC pools, and quantified above- and belowground litter inputs and dissolved organic carbon (DOC fluxes during snowmelt in plots located in N and S Utah, to elucidate the role of foliage vs. root detritus in SOC storage and stabilization in both ecosystems. While leaf litterfall was twice as high under aspen as under conifers, input of litter-derived DOC with snowmelt water was consistently higher under conifers. Fine root (<2 mm biomass, estimated root detritus input, and root-derived DOC fluxes were also higher under conifers. A strong positive relationship between root and light fraction C content suggests that root detritus mostly fueled the labile fraction of SOC. Overall, neither differences in above- and belowground detritus C inputs nor in detritus-derived DOC fluxes could explain the higher and more stable SOC pools under aspen. We hypothesize that root–microbe–soil interactions in the rhizosphere are more likely to drive these SOC pool differences.

  9. Estimation of the soil heat flux/net radiation ratio based on spectral vegetation indexes in high-latitude Arctic areas

    International Nuclear Information System (INIS)

    Jacobsen, A.; Hansen, B.U.

    1999-01-01

    The vegetation communities in the Arctic environment are very sensitive to even minor climatic variations and therefore the estimation of surface energy fluxes from high-latitude vegetated areas is an important subject to be pursued. This study was carried out in July-August and used micro meteorological data, spectral reflectance signatures, and vegetation biomass to establish the relation between the soil heat flux/net radiation (G / Rn) ratio and spectral vegetation indices (SVIs). Continuous measurements of soil temperature and soil heat flux were used to calculate the surface ground heat flux by use of conventional methods, and the relation to surface temperature was investigated. Twenty-seven locations were established, and six samples per location, including the measurement of the surface temperature and net radiation to establish the G/Rn ratio and simultaneous spectral reflectance signatures and wet biomass estimates, were registered. To obtain regional reliability, the locations were chosen in order to represent the different Arctic vegetation communities in the study area; ranging from dry tundra vegetation communities (fell fields and dry dwarf scrubs) to moist/wet tundra vegetation communities (snowbeds, grasslands and fens). Spectral vegetation indices, including the simple ratio vegetation index (RVI) and the normalized difference vegetation index (NDVI), were calculated. A comparison of SVIs to biomass proved that RVI gave the best linear expression, and NDVI the best exponential expression. A comparison of SVIs and the surface energy flux ratio G / Rn proved that NDVI gave the best linear expression. SPOT HRV images from July 1989 and 1992 were used to map NDVI and G / Rn at a regional scale. (author)

  10. Regional-scale fluxes of zinc, copper, and nickel into and out of the agricultural soils of the Kermanshah province in western Iran.

    Science.gov (United States)

    Ahmadi Doabi, Shahab; Karami, Mahin; Afyuni, Majid

    2016-04-01

    It is important to study the status and trend of soil contamination with trace elements to make sustainable management strategies for agricultural soils. This study was conducted in order to model zinc (Zn), copper (Cu), and nickel (Ni) accumulation rates in agricultural soils of Kermanshah province using input and output fluxes mass balance and to evaluate the associated uncertainties. The input and output fluxes of Zn, Cu, and Ni into (from) the agricultural soils of Kermanshah province via livestock manure, mineral fertilizers, municipal waste compost, pesticides, atmospheric deposition, and crop removal were assessed for the period 2000-2014. The data were collected to compute the fluxes at both township and regional scales from available databases such as regional agricultural statistics. The basic units of the balance were 9 townships of Kermanshah province. Averaged over the entire study region, the estimated net fluxes of Zn, Cu, and Ni into agricultural soils were 341, 84, and131 g ha year(-1), with a range of 211 to 1621, 61 to 463, and 114 to 679 among the townships. The livestock manure was responsible for 55, 56, and 67 % of the total Zn, Cu, and Ni inputs at regional scale, while municipal waste compost and mineral fertilizers accounted for approximately 19, 38, and 15 % and 24, 4, and 14 % of the total Zn, Cu, and Ni inputs, respectively. Atmospheric deposition was a considerable source only for Ni and at township scale (7-29 % of total Ni input). For Zn, Cu, and Ni, the input-to-output ratio of the fluxes ranged from 1.8 to 48.9, 2 to 48.2, and 4 to 303 among townships and averaged 2.8, 3, and 9 for the entire study area, respectively. Considering that outputs other than with crop harvests are minor, this means that Zn, Cu, and Ni (in particular Ni) stocks are rapidly building up in soils of some parts of the study region. Uncertainties in the livestock manure and crop removal data were the main sources of estimation uncertainty in this study

  11. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests.

    Science.gov (United States)

    Grüning, Maren M; Simon, Judy; Rennenberg, Heinz; L-M-Arnold, Anne

    2017-01-01

    Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15 N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine ( Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth ( Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  12. Human footprints on greenhouse gas fluxes in cryogenic ecosystems

    Science.gov (United States)

    Karelin, D. V.; Goryachkin, S. V.; Zamolodchikov, D. G.; Dolgikh, A. V.; Zazovskaya, E. P.; Shishkov, V. A.; Kraev, G. N.

    2017-12-01

    Various human footprints on the flux of biogenic greenhouse gases from permafrost-affected soils in Arctic and boreal domains in Russia are considered. Tendencies of significant growth or suppression of soil CO2 fluxes change across types of human impact. Overall, the human impacts increase the mean value and variance of local soil CO2 flux. Human footprint on methane exchange between soil and atmosphere is mediated by drainage. However, all the types of human impact suppress the sources and increase sinks of methane to the land ecosystems. N2O flux grew under the considered types of human impact. Based on the results, we suggest that human footprint on soil greenhouse gases fluxes is comparable to the effect of climate change at an annual to decadal timescales.

  13. Comparison of soil CO2 fluxes by eddy-covariance and chamber methods in fallow periods of a corn-soybean rotation

    Science.gov (United States)

    Soil carbon dioxide (CO2) fluxes are typically measured by eddy-covariance (EC) or chamber (Ch) methods, but a long-term comparison has not been undertaken. This study was conducted to assess the agreement between EC and Ch techniques when measuring CO2 flux during fallow periods of a corn-soybean r...

  14. Rhizosphere C flux from tree roots to soil: spatial and temporal differences between sugar maple and yellow birch saplings

    Science.gov (United States)

    Phillips, R. P.; Fahey, T. J.

    2003-12-01

    Rhizosphere carbon flux (RCF) has rarely been measured for intact root-soil systems. We measured RCF for eight year-old saplings of sugar maple (Acer saccharum) and yellow birch (Betula allegheniensis) collected from Hubbard Brook Experimental Forest and transplanted into 35 cm diameter pots with native soil horizons intact. We hypothesized birch roots which support ectomycorrhizal fungi would release more C to the rhizosphere than sugar maple roots which support vesicular-arbuscular mycorrhizal fungi. Saplings (n=5) were pulse-labeled with 13CO2 at ambient CO2 concentrations for 4-6 hours, and the label was chased through rhizosphere and bulk soil pools in organic and mineral horizons for 7 days. We observed immediate appearance of the label in rhizosphere soil, and there was a striking difference in the temporal pattern of 13C concentration between species. In maple, peak concentration of the label appeared at day 1 and declined over time whereas in birch the label increased in concentration over the 7 day chase period. As a result, total RCF was 2-3 times greater from birch roots. We estimate at least 5% and 10% of NPP may be released from this flux pathway in sugar maple and yellow birch saplings respectively. These results suggest that rhizosphere C flux likely represents a substantial proportion of NPP in northern hardwood forests, and may be influenced by trees species and mycorrhizal association.

  15. Characterization of Soil Organic Matter in Peat Soil with Different Humification Levels using FTIR

    Science.gov (United States)

    Teong, I. T.; Felix, N. L. L.; Mohd, S.; Sulaeman, A.

    2016-07-01

    Peat soil is defined as an accumulation of the debris and vegetative under the water logging condition. Soil organic matter of peat soil was affected by the environmental, weather, types of vegetative. Peat soil was normally classified based on its level of humification. Humification can be defined as the transformation of numerous group of substances (proteins, carbohydrates, lipids, etc.) and individual molecules present in living organic matter into group of substances with similar properties (humic substances). During the peat transformation process, content of soil organic matter also will change. Hence, that is important to determine out the types of the organic compound. FTIR (Fourier Transform Infrared) is a machine which is used to differential soil organic matter by using infrared. Infrared is a types of low energy which can determine the organic minerals. Hence, FTIR can be suitable as an indicator on its level of humification. The main objective of this study is to identify an optimized method to characterization of the soil organic content in different level of humification. The case study areas which had been chosen for this study are Parit Sulong, Batu Pahat and UCTS, Sibu. Peat soil samples were taken by every 0.5 m depth until it reached the clay layer. However, the soil organic matter in different humification levels is not significant. FTIR is an indicator which is used to determine the types of soil, but it is unable to differentiate the soil organic matter in peat soil FTIR can determine different types of the soil based on different wave length. Generally, soil organic matter was found that it is not significant to the level of humification.

  16. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types

    NARCIS (Netherlands)

    Bai, Z.H.; Li, H.G.; Yang, X.Y.; Zhou, B.K.; Shi, X.J.; Wang, B.R.; Li, D.C.; Shen, J.B.; Chen, Q.; Qin, W.; Oenema, O.; Zhang, F.S.

    2013-01-01

    Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P

  17. On the derivation of specific yield and soil water retention characteristics in peatlands from rainfall, microrelief and water level data - Theory and Practice

    Science.gov (United States)

    Dettmann, Ullrich; Bechtold, Michel

    2016-04-01

    Water level depth is one of the crucial state variables controlling the biogeochemical processes in peatlands. For flat soil surfaces, water level depth dynamics as response to boundary fluxes are primarily controlled by the water retention characteristics of the soil in and above the range of the water level fluctuations. For changing water levels, the difference of the integrals of two soil moisture profiles (ΔAsoil), of a lower and a upper water level, is equal to the amount of water received or released by the soil. Dividing ΔAsoil by the water level change, results into a variable that is known as specific yield (Sy). For water level changes approaching the soil surface, changes in soil water storage are small due to the thin unsaturated zone that remains. Consequentially, Sy values approach zero with an abrupt transition to 1 in case of inundation. However, on contrary, observed water level rises due to precipitation events at various locations showed increasing Sy values for water level changes at shallow depths (Sy = precipitation/water level change; Logsdon et al., 2010). The increase of Sy values can be attributed in large parts to the influence of the microrelief on water level changes in these wet landscapes that are characterized by a mosaic of inundated and non-inundated areas. Consequentially, water level changes are dampened by partial inundation. In this situation, total Sy is composed of a spatially-integrated below ground and above ground contribution. We provide a general one-dimensional expression that correctly represents the effect of a microrelief on the total Sy. The one-dimensional expression can be applied for any soil hydraulic parameterizations and soil surface elevation frequency distributions. We demonstrate that Sy is influenced by the microrelief not only when surface storage directly contributes to Sy by (partial) inundation but also when water levels are lower than the minimum surface elevation. With the derived one

  18. Soil greenhouse gas emissions from afforested organic soil croplands and cutaway peatlands

    International Nuclear Information System (INIS)

    Maekiranta, P.; Hytoenen, J.; Aro, L.

    2007-01-01

    The effects of land-use and land-use change on soil greenhouse gas (GHG) fluxes are of concern due to Kyoto Protocol requirements. To quantify the soil GHG-fluxes of afforested organic soils in Finland, chamber measurements of soil CO 2 , CH 4 and N 2 O fluxes were made during the years 2002 to 2005 on twelve organic soil cropland and six cutaway peatland sites afforested 9 to 35 years ago. The annual soil CO 2 effluxes were statistically modelled using soil temperature as the driving variable and the annual CH 4 and N 2 O fluxes were estimated using the average fluxes during the measurement period. Soil CO 2 effluxes on afforested organic soil croplands varied from 207 to 539 g CO 2 -C m -2 a -1 and on cutaway peatlands from 276 to 479 g CO 2 -C m -2 a -1 . Both the afforested organic soil cropland and cutaway peatland sites acted mainly as small sinks for CH 4 ; the annual flux ranged from -0.32 to 0.61 g CH 4 -C m -2 . Afforested organic croplands emitted more N 2 O (from 0.1 to over 3.0 g N 2 O-N m -2 a -1 ) than cutaway peatland sites (from 0.01 to 0.48 g N 2 O-N m -2 a -1 ). Due to the decrease in soil CO 2 efflux, and no change in CH 4 and N 2 O fluxes, afforestation of organic croplands appears to decrease the greenhouse impact of these lands. (orig.)

  19. The Flux Database Concerted Action (invited paper)

    International Nuclear Information System (INIS)

    Mitchell, N.G.; Donnelly, C.E.

    2000-01-01

    The background to the IUR action on the development of a flux database for radionuclide transfer in soil-plant systems is summarised. The action is discussed in terms of the objectives, the deliverables and the progress achieved by the flux database working group. The paper describes the background to the current initiative, outlines specific features of the database and supporting documentation, and presents findings from the working group's activities. The aim of the IUR flux database working group is to bring together researchers to collate data from current experimental studies investigating aspects of radionuclide transfer in soil-plant systems. The database will incorporate parameters describing the time-dependent transfer of radionuclides between soil, plant and animal compartments. Work under the EC Concerted Action considers soil-plant interactions. This initiative has become known as the radionuclide flux database. It is emphasised that the word flux is used in this case simply to indicate the flow of radionuclides between compartments in time. (author)

  20. Termites as a factor of spatial differentiation of CO2 fluxes from the soils of monsoon tropical forests in Southern Vietnam

    Science.gov (United States)

    Lopes de Gerenyu, Valentin; Anichkin, Alexander

    2016-04-01

    Termites play the key role in biogeochemical transformation of organic matter acting as "moderators" of fluxes of carbon and other nutrients. They destroy not only leave litter but also coarse woody debris. Termites translocate considerable masses of dead organic materials into their houses, which leads to significant accumulations of organic matter in termite mounds. We studied the impact of termite mounds on redistribution of CO2 fluxes from soils in semi-deciduous monsoon tropical forests of southern Vietnam. Field study was performed in the Cat Tien National Park (11°21'-11°48'N, 107°10'-107°34'E). The spatial and temporary dynamics of CO2 fluxes from soils (Andosols) populated by termites were studied in plain lagerstroemia (Lagerstroemia calyculata Kurz) monsoon tropical forests. The rate of CO2 emission from the soil surface was measured by closed chamber method two-three times per month from November 2010 to December 2011. Permanent cylindrical PVC chambers (9 cm in diameter and 15 cm in height) were installed beyond the areas occupied by termite mounds (5 replications). Litter was not removed from the soil surface before the measurements. To estimate the spatial heterogeneity of the CO2 emission fluxes from soils populated by termites, a special 'termite' plot (TerPl) was equipped. It was 10×10 m in size and included three termite mounds: one mound built up by Globitermes sulphureus and two mounds populated by termites of the Odontotermes genus. Overall, 52 PVC chambers were installed permanently on the 'termite' plot (ca. 1 m apart from one another). The CO2 emission rate from TerPl was also measured by chamber closed method once in the dry season (April) and twice through the wet season (July and August). The average rate of CO2 emission from termite mounds was two times higher than that from the surrounding area (SurAr). In the dry season, it comprised 91±7 mg C/m2/h from the surrounding soils and 196±16 mg C/m2/h from the termite mounds. In the

  1. Impacts of land leveling on lowland soil physical properties

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2014-02-01

    Full Text Available The practice of land leveling alters the soil surface to create a uniform slope to improve land conditions for the application of all agricultural practices. The aims of this study were to evaluate the impacts of land leveling through the magnitudes, variances and spatial distributions of selected soil physical properties of a lowland area in the State of Rio Grande do Sul, Brazil; the relationships between the magnitude of cuts and/or fills and soil physical properties after the leveling process; and evaluation of the effect of leveling on the spatial distribution of the top of the B horizon in relation to the soil surface. In the 0-0.20 m layer, a 100-point geo-referenced grid covering two taxonomic soil classes was used in assessment of the following soil properties: soil particle density (Pd and bulk density (Bd; total porosity (Tp, macroporosity (Macro and microporosity (Micro; available water capacity (AWC; sand, silt, clay, and dispersed clay in water (Disp clay contents; electrical conductivity (EC; and weighted average diameter of aggregates (WAD. Soil depth to the top of the B horizon was also measured before leveling. The overall effect of leveling on selected soil physical properties was evaluated by paired "t" tests. The effect on the variability of each property was evaluated through the homogeneity of variance test. The thematic maps constructed by kriging or by the inverse of the square of the distances were visually analyzed to evaluate the effect of leveling on the spatial distribution of the properties and of the top of the B horizon in relation to the soil surface. Linear regression models were fitted with the aim of evaluating the relationship between soil properties and the magnitude of cuts and fills. Leveling altered the mean value of several soil properties and the agronomic effect was negative. The mean values of Bd and Disp clay increased and Tp, Macro and Micro, WAD, AWC and EC decreased. Spatial distributions of all

  2. One year of continuous measurements of soil CH4 and CO2 fluxes in a Japanese cypress forest: Temporal and spatial variations associated with Asian monsoon rainfall

    OpenAIRE

    Sakabe, Ayaka; Kosugi, Yoshiko; Takahashi, Kenshi; Itoh, Masayuki; Kanazawa, Akito; Makita, Naoki; Ataka, Mioko

    2015-01-01

    We examined the effects of Asian monsoon rainfall on CH[4] absorption of water-unsaturated forest soil. We conducted a 1 year continuous measurement of soil CH[4] and CO[2] fluxes with automated chamber systems in three plots with different soil characteristics and water content to investigate how temporal variations in CH[4] fluxes vary with the soil environment. CH[4] absorption was reduced by the “Baiu” summer rainfall event and peaked during the subsequent hot, dry period. Although CH[4] ...

  3. Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest

    International Nuclear Information System (INIS)

    Tamai, K.; Abe, T.; Araki, M.; Ito, H.

    1998-01-01

    Seasonal changes in the radiation budget and soil heat flux of a forest floor were measured in a mixed forest located in Kyoto, Japan. The basal area at breast height in the survey forest was about 15·82 m 2 ha −1 , for evergreen trees, and 12·46 m 2 ha −1 , for deciduous trees. The sky view factor was 16 and 22% at the survey site in the foliate and defoliate seasons, respectively. The small difference between the sky view factor in the two seasons was reflected in the seasonal change in the radiation budget of the forest floor. Namely, the net long-wave radiation changed rapidly in leafing and falling days, and the rate of net short-wave radiation was highest in April. The distinctive characteristic of the radiation budget was that the rates of available radiation in the daytime and at night were almost equal in September and October. Latent heat flux at the forest floor was estimated to be around 94 MJ m −2 annually, from our measurement with the simulation model. (author)

  4. Decontamination by replacing soil and soil cover with deep-level soil in flower beds and vacant places in Northern Fukushima Prefecture

    International Nuclear Information System (INIS)

    Sugiura, Hiroyuki; Kawano, Keisuke; Kayama, Yukihiko; Koube, Nobuyuki

    2012-01-01

    Radioactivity decontamination by replacing soil and soil cover with deep-level soil and soil cover in flower beds and a vacant place in Northern Fukushima Prefecture were studied, which experienced radioactive contamination due to the accident at the TEPCO's Fukushima Daiichi Nuclear Power Plant. Radioactivity counting rate 1 cm above the soil surface after replacing surface soil with uncontaminated deep-level soil decreased to 13.7% of the control in gardens. The concentration of radioactive cesium in the cover soil increased after 132 days; however, it decreased in the old surface soil under the cover soil in flower beds. A 10 cm deep-level soil cover placed by heavy machinery decreased the radiation dose rate to 70.8% of the control and radioactivity counting rate to 24.6% in the vacant place. Replacing the radioactively contaminated surface soil and soil cover with a deep-level soil was a reasonable decontamination method for the garden and vacant place because it is quick, cost effective and labour efficient. (author)

  5. Measurements of nitric oxide and ammonia soil fluxes from a wet savanna ecosystem site in West Africa during the DACCIWA field campaign

    Science.gov (United States)

    Pacifico, Federica; Delon, Claire; Jambert, Corinne; Durand, Pierre; Morris, Eleanor; Evans, Mat J.; Lohou, Fabienne; Derrien, Solène; Donnou, Venance H. E.; Houeto, Arnaud V.; Reinares Martinez, Irene; Brilouet, Pierre-Etienne

    2018-03-01

    It is important to correctly simulate biogenic fluxes from soil in atmospheric chemistry models at a local and regional scale to study air pollution and climate in an area of the world, West Africa, that has been subject to a strong increase in anthropogenic emissions due to a massive growth in population and urbanization. Anthropogenic pollutants are transported inland and northward from the mega cities located on the coast, where the reaction with biogenic emissions may lead to enhanced ozone production outside urban areas, as well as secondary organic aerosols formation, with detrimental effects on humans, animals, natural vegetation and crops. Here we present field measurements of soil fluxes of nitric oxide (NO) and ammonia (NH3) observed over four different land cover types, i.e. bare soil, grassland, maize field and forest, at an inland rural site in Benin, West Africa, during the DACCIWA field campaign in June and July 2016. We observe NO fluxes up to 48.05 ngN m-2 s-1. NO fluxes averaged over all land cover types are 4.79 ± 5.59 ngN m-2 s-1, maximum soil emissions of NO are recorded over bare soil. NH3 is dominated by deposition for all land cover types. NH3 fluxes range between -6.59 and 4.96 ngN m-2 s-1. NH3 fluxes averaged over all land cover types are -0.91 ± 1.27 ngN m-2 s-1 and maximum NH3 deposition is measured over bare soil. The observations show high spatial variability even for the same soil type, same day and same meteorological conditions. We compare point daily average measurements of NO emissions recorded during the field campaign with those simulated by GEOS-Chem (Goddard Earth Observing System Chemistry Model) for the same site and find good agreement. In an attempt to quantify NO emissions at the regional and national scale, we also provide a tentative estimate of total NO emissions for the entire country of Benin for the month of July using two distinct methods: upscaling point measurements and using the

  6. Importance of lateral flux and its percolation depth on organic carbon export in Arctic tundra soil: Implications from a soil leaching experiment: Changes of OC in Arctic Soil Leachate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaowen [Department of Geological Sciences, University of Florida, Gainesville Florida USA; Hutchings, Jack A. [Department of Geological Sciences, University of Florida, Gainesville Florida USA; Bianchi, Thomas S. [Department of Geological Sciences, University of Florida, Gainesville Florida USA; Liu, Yina [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Arellano, Ana R. [Department of Geological Sciences, University of Florida, Gainesville Florida USA; Schuur, Edward A. G. [Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff Arizona USA; Department of Biology, University of Florida, Gainesville Florida USA

    2017-04-01

    Temperature rise in the Arctic is causing deepening of active layers and resulting in the mobilization of deep permafrost dissolved organic matter (DOM). However, the mechanisms of DOM mobilization from Arctic soils, especially upper soil horizons which are drained most frequently through a year, are poorly understood. Here, we conducted a short-term leaching experiment on surface and deep organic active layer soils, from the Yukon River basin, to examine the effects of DOM transport on bulk and molecular characteristics. Our data showed a net release of DOM from surface soils equal to an average of 5% of soil carbon. Conversely, deep soils percolated with surface leachates retained up to 27% of bulk DOM-while releasing fluorescent components (up to 107%), indicating selective release of aromatic components (e.g. lignin, tannin), while retaining non-chromophoric components, as supported by spectrofluorometric and ultra high resolution mass spectroscopic techniques. Our findings highlight the importance of the lateral flux of DOM on ecosystem carbon balance as well as processing of DOM transport through organic active layer soils en route to rivers and streams. This work also suggests the potential role of leachate export as an important mechanism of C losses from Arctic soils, in comparison with the more traditional pathway from soil to atmosphere in a warming Arctic.

  7. Changes in Soil Carbon Stocks and Fluxes in Response to Altered Above- and Belowground Vegetation Inputs

    Science.gov (United States)

    Marañón-Jiménez, S.; Schuetze, C.; Cuntz, M.; García-Quirós, I.; Dienstbach, L.; Schrumpf, M.; Rebmann, C.

    2016-12-01

    The stimulation of vegetation productivity in response to rising atmospheric CO2 concentrations can potentially compensate climate change feedbacks. However, this will depend on the allocation of C resources of vegetation into biomass production versus root exudates and on the feedbacks with soil microorganisms. These dynamic adjustments of vegetation will result on changes in above- and belowground productivity and on the amount of C exported to root exudates. Consequent alteration of litter and rhizosphere detritus inputs to the soil and their interaction on controlling soil C sequestration capacity has been, however, rarely assessed. We hypothesize that above- and belowground vegetation exert a synergistic control of soil CO2 emissions, and that the activation of soil organic matter mineralization by the addition of labile organic substrates (i.e.: the priming effect) is altered by changes in the amount and in the quality of the carbon inputs. In order to elucidate these questions, different levels of litter addition were implemented on trenched (root exclusion) and non-trenched plots (with roots) in a temperate deciduous forest. Changes in the sensitivity of soil respiration to temperature and moisture were detected by measuring CO2 fluxes continuously at high temporal resolution with automatic chambers, whereas the spatial and seasonal variability was determined using portable chambers. Annual changes in soil carbon and nitrogen stocks provide additional information on the soil carbon sequestration in response to above- and belowground inputs. Both roots and litter inputs significantly enhanced soil CO2 effluxes soon after the implementation of the experiment. We detected synergistic effects between roots and litter inputs on soil CO2 emissions: When roots were present, carbon mineralized in response to litter addition was much higher than the total amount of carbon added in litter (ca. 170 g C m-2 y-1). Preliminary results of this study suggest that labile

  8. Seasonal change in precipitation, snowpack, snowmelt, soil water and streamwater chemistry, northern Michigan

    Science.gov (United States)

    Stottlemyer, R.; Toczydlowski, D.

    1999-01-01

    We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soil were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (C(B)), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. During the growing season high evapotranspiration increased subsurface flowpath depth which in turn removed weathering

  9. Vertical and lateral particle and element fluxes across soil catenas in southern Brazil

    Science.gov (United States)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie

    2016-04-01

    At the Earth's surface, mechanical disaggregation and chemical weathering transform bedrock into mobile regolith and soil. Downslope translocation of weathering products by lateral transport of soil particles and elements are determinant for the development of soil catenas. To grasp the rates of soil formation and development along catenas, we need better constraints on the vertical and lateral fluxes of particles and nutrients along hillslopes. Our study aims to analyze soil catena development in a spatio-temporal framework. The data are collected in the central part of the Rio Grande do Sul State in southern Brazil. The sampling area is located on the Serra Geral plateau composed by rhyodacite rocks (˜700 m.a.s.l). The climate is humid subtropical (Cfa), and the natural vegetation is characterized by deciduous tropical forest and native Araucaria angustifolia forests. Two soil catenas with different slope morphology were selected: a steep slope of 190m long with maximum slope angle of 24° , and a gentle one of 140m long with a maximum slope angle of 11° . In total, eight soil profiles were sampled and 67 soil and 8 saprock or bedrock samples have been analysed for total element composition. Bulk densities were determined on undisturbed soil samples. The soil thickness varies along catenas with soil depths of about 90 cm on the ridge top, 30 cm on the convex nose of the steep slope and >2 m on the foot slope. Chemical mass balance techniques are used to constrain chemical weathering intensities (CDF) and absolute chemical mass losses or gains (δj,w). In each one of the eight soil profiles, we notice important absolute chemical mass losses for the most mobile elements (Na, K and Ca). The mass transfer coefficients of Al and Fe do not show a clear pattern, and largely depend on soil depth and position along the soil catena. The weathering intensity of the soil and the absolute chemical mass transfer are correlated with the residence time of the soil. Our data

  10. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests

    Directory of Open Access Journals (Sweden)

    Maren M. Grüning

    2017-06-01

    Full Text Available Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15N net uptake capacity of fine roots as well as N pools in fine roots and needles in a Scots pine (Pinus sylvestris L. forest over an entire vegetation period. Plots were either infested by the nun moth (Lymantria monacha L. or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  11. Seasonal variations of nitrous oxide fluxes and soil denitrification rates in subtropical freshwater and brackish tidal marshes of the Min River estuary.

    Science.gov (United States)

    Wang, Xuming; Hu, Minjie; Ren, Hongchang; Li, Jiabing; Tong, Chuan; Musenze, Ronald S

    2018-03-01

    Estuarine tidal marshes provide favorable conditions for nitrous oxide (N 2 O) production. Saltwater intrusion caused by sea-level rise would exert complex effects on the production and emission of N 2 O in estuarine tidal marshes; however, few studies have been conducted on its effects on N 2 O emissions. Salinity gradients are a common occurrence in estuarine tidal marshes. Studies on production and emission of N 2 O in tidal marshes with different salinities may elucidate the impact of saltwater intrusion on the emission of greenhouse gases. This study explores the seasonal variations of N 2 O fluxes and soil denitrification rates in freshwater (Daoqingzhou wetland) and brackish (Shanyutan wetland) tidal marshes dominated by Cyperus malaccensis var. brevifolius (shichito matgrass) in the Min River estuary, southeastern China. N 2 O fluxes in both marshes showed strong temporal variability. The highest N 2 O fluxes were observed in the hot and wet summer months, whereas the lowest fluxes were observed in the cold winter and autumn months. N 2 O fluxes from the freshwater marsh (48.81±9.01μgm -2 h -1 ) were significantly higher (ptidal wetlands and exert a negative feedback on the climate system. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Greenhouse gas fluxes from agricultural soils under organic and non-organic management — A global meta-analysis

    International Nuclear Information System (INIS)

    Skinner, Colin; Gattinger, Andreas; Muller, Adrian; Mäder, Paul; Fließbach, Andreas; Stolze, Matthias; Ruser, Reiner; Niggli, Urs

    2014-01-01

    It is anticipated that organic farming systems provide benefits concerning soil conservation and climate protection. A literature search on measured soil-derived greenhouse gas (GHG) (nitrous oxide and methane) fluxes under organic and non-organic management from farming system comparisons was conducted and followed by a meta-analysis. Up to date only 19 studies based on field measurements could be retrieved. Based on 12 studies that cover annual measurements, it appeared with a high significance that area-scaled nitrous oxide emissions from organically managed soils are 492 ± 160 kg CO 2 eq. ha −1 a −1 lower than from non-organically managed soils. For arable soils the difference amounts to 497 ± 162 kg CO 2 eq. ha −1 a −1 . However, yield-scaled nitrous oxide emissions are higher by 41 ± 34 kg CO 2 eq. t −1 DM under organic management (arable and use). To equalize this mean difference in yield-scaled nitrous oxide emissions between both farming systems, the yield gap has to be less than 17%. Emissions from conventionally managed soils seemed to be influenced mainly by total N inputs, whereas for organically managed soils other variables such as soil characteristics seemed to be more important. This can be explained by the higher bioavailability of the synthetic N fertilisers in non-organic farming systems while the necessary mineralisation of the N sources under organic management leads to lower and retarded availability. Furthermore, a higher methane uptake of 3.2 ± 2.5 kg CO 2 eq. ha −1 a −1 for arable soils under organic management can be observed. Only one comparative study on rice paddies has been published up to date. All 19 retrieved studies were conducted in the Northern hemisphere under temperate climate. Further GHG flux measurements in farming system comparisons are required to confirm the results and close the existing knowledge gaps. - Highlights: • Lower area-scaled nitrous oxide emissions from soils managed organically compared

  13. SOIL FLUXES OF CO2, CO, NO AND N2O FROM AN OLD-PASTURE AND FROM NATIVE SAVANNA IN BRAZIL

    Science.gov (United States)

    We compared fluxes of CO2, CO, NO and N2O, soil microbial biomass, and N-mineralization rates in a 20-year old Brachiaria pasture and a native cerrado area (savanna in Central Brazil). In order to assess the spatial variability of CO2 fluxes, we tested the relation between elect...

  14. Effects of dairy manure management in annual and perennial cropping systems on soil microbial communities associated with in situ N2O fluxes

    Science.gov (United States)

    Dunfield, Kari; Thompson, Karen; Bent, Elizabeth; Abalos, Diego; Wagner-Riddle, Claudia

    2016-04-01

    Liquid dairy manure (LDM) application and ploughing events may affect soil microbial community functioning differently between perennial and annual cropping systems due to plant-specific characteristics stimulating changes in microbial community structure. Understanding how these microbial communities change in response to varied management, and how these changes relate to in situ N2O fluxes may allow the creation of predictive models for use in the development of best management practices (BMPs) to decrease nitrogen (N) losses through choice of crop, plough, and LDM practices. Our objectives were to contrast changes in the population sizes and community structures of genes associated with nitrifier (amoA, crenamoA) and denitrifier (nirK, nirS, nosZ) communities in differently managed annual and perennial fields demonstrating variation in N2O flux, and to determine if differences in these microbial communities were linked to the observed variation in N2O fluxes. Soil was sampled in 2012 and in 2014 in a 4-ha spring-applied LDM grass-legume (perennial) plot and two 4-ha corn (annual) treatments under fall or spring LDM application. Soil DNA was extracted and used to target N-cycling genes via qPCR (n=6) and for next-generation sequencing (Illumina Miseq) (n=3). Significantly higher field-scale N2O fluxes were observed in the annual plots compared to the perennial system; however N2O fluxes increased after plough down of the perennial plot. Nonmetric multidimensional scaling (NMS) indicated differences in N-cycling communities between annual and perennial cropping systems, and some communities became similar between annual and perennial plots after ploughing. Shifts in these communities demonstrated relationships with agricultural management, which were associated with differences in N2O flux. Indicator species analysis was used to identify operational taxonomic units (OTUs) most responsible for community shifts related to management. Nitrifying and denitrifying soil

  15. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    Science.gov (United States)

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications. © 2013.

  16. Experimental warming in a dryland community reduced plant photosynthesis and soil CO2 efflux although the relationship between the fluxes remained unchanged

    Science.gov (United States)

    Wertin, Timothy M.; Belnap, Jayne; Reed, Sasha C.

    2016-01-01

    1. Drylands represent our planet's largest terrestrial biome and, due to their extensive area, maintain large stocks of carbon (C). Accordingly, understanding how dryland C cycling will respond to climate change is imperative for accurately forecasting global C cycling and future climate. However, it remains difficult to predict how increased temperature will affect dryland C cycling, as substantial uncertainties surround the potential responses of the two main C fluxes: plant photosynthesis and soil CO2 efflux. In addition to a need for an improved understanding of climate effects on individual dryland C fluxes, there is also notable uncertainty regarding how climate change may influence the relationship between these fluxes.2. To address this important knowledge gap, we measured a growing season's in situphotosynthesis, plant biomass accumulation, and soil CO2 efflux of mature Achnatherum hymenoides (a common and ecologically important C3 bunchgrass growing throughout western North America) exposed to ambient or elevated temperature (+2°C above ambient, warmed via infrared lamps) for three years.3. The 2°C increase in temperature caused a significant reduction in photosynthesis, plant growth, and soil CO2 efflux. Of important note, photosynthesis and soil respiration appeared tightly coupled and the relationship between these fluxes was not altered by the elevated temperature treatment, suggesting C fixation's strong control of both above-ground and below-ground dryland C cycling. Leaf water use efficiency was substantially increased in the elevated temperature treatment compared to the control treatment.4. Taken together, our results suggest notable declines in photosynthesis with relatively subtle warming, reveal strong coupling between above- and below-ground C fluxes in this dryland, and highlight temperature's strong effect on fundamental components of dryland C and water cycles.

  17. Patterns and possible mechanisms of soil CO2 uptake in sandy soil.

    Science.gov (United States)

    Fa, Ke-Yu; Zhang, Yu-Qing; Wu, Bin; Qin, Shu-Gao; Liu, Zhen; She, Wei-Wei

    2016-02-15

    It has been reported that soils in drylands can absorb CO2, although the patterns and mechanisms of such a process remain under debate. To address this, we investigated the relationships between soil CO2 flux and meteorological factors and soil properties in Northwest China to reveal the reasons for "anomalous" soil CO2 flux in a desert ecosystem. Soil CO2 flux increased significantly and exponentially with surficial turbulence at the diel scale under dry conditions (Psoil CO2 flux demonstrated remarkable negative correlation with soil air pressure (Psoil water content was insufficient to dissolve the absorbed CO2 in dry conditions, but was sufficient in wet conditions. The concentration of soil HCO3(-) in the morning was higher than in the evening in dry conditions, but this pattern was reversed in wet conditions. These results imply that CO2 outgassing induced by turbulence, expansion of soil air, CO2 effusion from soil water, and carbonate precipitation during daytime can explain the abiotic diurnal CO2 release. Moreover, CO2 pumping from the atmosphere into the soil, caused mainly by carbonate dissolution, can account for nocturnal CO2 absorption in dry conditions. The abiotic soil CO2 flux pattern (CO2 absorption throughout the diel cycle) in wet conditions can be attributed to downward mass flow of soil CO2 and intensified soil air shrinkage, CO2 dissolving in soil water, and carbonate dissolution. These results provide a basis for determining the location of abiotic fixed carbon within soils in desert ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Analysis of the NASA AirMOSS Root Zone Soil Water and Soil Temperature from Three North American Ecosystems

    Science.gov (United States)

    Hagimoto, Y.; Cuenca, R. H.

    2015-12-01

    Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.

  19. SOIL ORGANIC CARBON LEVELS IN SOILS OF CONTRASTING LAND USES IN SOUTHEASTERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Chinyere Blessing Okebalama

    2017-12-01

    Full Text Available Land use change affects soil organic carbon (SOC storage in tropical soils, but information on the influence of land use change on segmental topsoil organic carbon stock is lacking. The study investigated SOC levels in Awgu (L, Okigwe (CL, Nsukka I (SL, and Nsukka II (SCL locations in southeastern Nigeria. Land uses considered in each location were the cultivated (manually-tilled and the adjacent uncultivated (4-5 year bush-fallow soils from which samples at 0-10, 10-20, and 20-30 cm topsoil depth were assessed. The SOC level decreased with topsoil depth in both land uses. Overall, the SOC level at 0-30 cm was between 285.44 and 805.05 Mg ha-1 amongst the soils.  The uncultivated sites stored more SOC than its adjacent cultivated counterpart at 0-10 and 10-20 cm depth, except in Nsukka II soils, which had significantly higher SOC levels in the cultivated than the uncultivated site. Nonetheless, at 20-30 cm depth, the SOC pool across the fallowed soils was statistically similar when parts of the same soil utilization type were tilled and cultivated. Therefore, while 4 to 5 years fallow may be a useful strategy for SOC stabilization within 20-30 cm topsoil depth in the geographical domain, segmental computation of topsoil organic carbon pool is critical.

  20. Integrating est.of ecosystem respiration from eddy covariance towers with automated measures of soil respiration: Exam. the dvlpt. and influence of hysteresis in soil respiratory fluxes along a woody plant gradient 2026

    Science.gov (United States)

    The physiognomic shift in ecosystem structure from a grassland to a woodland may alter the sensitivity of CO2 exchange to variations in growing-season temperatures and precipitation inputs. One large component of ecosystem flux is the efflux of CO2 from the soil (soil respiration, Rsoil), which is ...

  1. A comparison of cellulosic fuel yields and separated soil-surface CO2 fluxes in maize and prairie biofuel cropping systems

    Science.gov (United States)

    Nichols, Virginia A.

    It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize

  2. Shallow soil moisture – ground thaw interactions and controls – Part 2: Influences of water and energy fluxes

    Directory of Open Access Journals (Sweden)

    X. J. Guan

    2010-07-01

    Full Text Available The companion paper (Guan et al., 2010 demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the presence of surface water was the key control in variable soil moisture and frost table interactions among sites. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological and energy processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  3. Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa)

    Science.gov (United States)

    Brümmer, Christian; Papen, Hans; Wassmann, Reiner; Brüggemann, Nicolas

    2009-03-01

    The contribution of West African savanna ecosystems to global greenhouse gas budgets is highly uncertain. In this study we quantified soil-atmosphere CH4 and CO2 fluxes in the southwest of Burkina Faso from June to September 2005 and from April to September 2006 at four different agricultural fields planted with sorghum (n = 2), cotton, and peanut and at a natural savanna site with termite (Cubitermes fungifaber) mounds. During the rainy season both CH4 uptake and CH4 emission were observed in the savanna, which was on average a CH4 source of 2.79 and 2.28 kg CH4-C ha-1 a-1 in 2005 and 2006, respectively. The crop sites were an average CH4 sink of -0.67 and -0.70 kg CH4-C ha-1 a-1 in the 2 years, without significant seasonal variation. Mean annual soil respiration ranged between 3.86 and 5.82 t CO2-C ha-1 a-1 in the savanna and between 2.50 and 4.51 t CO2-C ha-1 a-1 at the crop sites. CH4 emission from termite mounds was 2 orders of magnitude higher than soil CH4 emissions, whereas termite CO2 emissions were of the same order of magnitude as soil CO2 emissions. Termite CH4 and CO2 release in the savanna contributed 8.8% and 0.4% to the total soil CH4 and CO2 emissions, respectively. At the crop sites, where termite mounds had been almost completely removed because of land use change, termite fluxes were insignificant. Mound density-based upscaling of termite CH4 fluxes resulted in a global termite CH4 source of 0.9 Tg a-1, which corresponds to 0.15% of the total global CH4 budget of 582 Tg a-1, hence significantly lower than those obtained previously by biomass-based calculations. This study emphasizes that land use change, which is of high relevance in this region, has particularly affected soil CH4 fluxes in the past and might still do so in the future.

  4. Greenhouse gas fluxes from agricultural soils under organic and non-organic management — A global meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Colin, E-mail: colin.skinner@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Gattinger, Andreas, E-mail: andreas.gattinger@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Muller, Adrian, E-mail: adrian.mueller@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Mäder, Paul, E-mail: paul.maeder@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Fließbach, Andreas, E-mail: andreas.fliessbach@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Stolze, Matthias, E-mail: matthias.stolze@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Ruser, Reiner, E-mail: reiner.ruser@uni-hohenheim.de [Fertilisation and Soil Matter Dynamics (340i), Institute of Crop Science, University of Hohenheim, Fruwirthstraße 20, 70599 Stuttgart (Germany); Niggli, Urs, E-mail: urs.niggli@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland)

    2014-01-01

    It is anticipated that organic farming systems provide benefits concerning soil conservation and climate protection. A literature search on measured soil-derived greenhouse gas (GHG) (nitrous oxide and methane) fluxes under organic and non-organic management from farming system comparisons was conducted and followed by a meta-analysis. Up to date only 19 studies based on field measurements could be retrieved. Based on 12 studies that cover annual measurements, it appeared with a high significance that area-scaled nitrous oxide emissions from organically managed soils are 492 ± 160 kg CO{sub 2} eq. ha{sup −1} a{sup −1} lower than from non-organically managed soils. For arable soils the difference amounts to 497 ± 162 kg CO{sub 2} eq. ha{sup −1} a{sup −1}. However, yield-scaled nitrous oxide emissions are higher by 41 ± 34 kg CO{sub 2} eq. t{sup −1} DM under organic management (arable and use). To equalize this mean difference in yield-scaled nitrous oxide emissions between both farming systems, the yield gap has to be less than 17%. Emissions from conventionally managed soils seemed to be influenced mainly by total N inputs, whereas for organically managed soils other variables such as soil characteristics seemed to be more important. This can be explained by the higher bioavailability of the synthetic N fertilisers in non-organic farming systems while the necessary mineralisation of the N sources under organic management leads to lower and retarded availability. Furthermore, a higher methane uptake of 3.2 ± 2.5 kg CO{sub 2} eq. ha{sup −1} a{sup −1} for arable soils under organic management can be observed. Only one comparative study on rice paddies has been published up to date. All 19 retrieved studies were conducted in the Northern hemisphere under temperate climate. Further GHG flux measurements in farming system comparisons are required to confirm the results and close the existing knowledge gaps. - Highlights: • Lower area-scaled nitrous

  5. Effects of biochar addition to soil on nitrogen fluxes in a winter wheat lysimeter experiment

    Science.gov (United States)

    Hüppi, Roman; Leifeld, Jens; Neftel, Albrecht; Conen, Franz; Six, Johan

    2014-05-01

    Biochar is a carbon-rich, porous residue from pyrolysis of biomass that potentially increases crop yields by reducing losses of nitrogen from soils and/or enhancing the uptake of applied fertiliser by the crops. Previous research is scarce about biochar's ability to increase wheat yields in temperate soils or how it changes nitrogen dynamics in the field. In a lysimeter system with two different soils (sandy/silt loam) nitrogen fluxes were traced by isotopic 15N enriched fertiliser to identify changes in nitrous oxide emissions, leaching and plant uptake after biochar addition. 20t/ha woodchip-waste biochar (pH=13) was applied to these soils in four lysimeters per soil type; the same number of lysimeters served as a control. The soils were cropped with winter wheat during the season 2012/2013. 170 kg-N/ha ammonium nitrate fertiliser with 10% 15N was applied in 3 events during the growing season and 15N concentrations where measured at different points in time in plant, soil, leachate and emitted nitrous oxide. After one year the lysimeter system showed no difference between biochar and control treatment in grain- and straw yield or nitrogen uptake. However biochar did reduce nitrous oxide emissions in the silt loam and losses of nitrate leaching in sandy loam. This study indicates potential reduction of nitrogen loss from cropland soil by biochar application but could not confirm increased yields in an intensive wheat production system.

  6. Inhibition effect of zinc in wastewater on the N2O emission from coastal loam soils.

    Science.gov (United States)

    Huang, Yan; Ou, Danyun; Chen, Shunyang; Chen, Bin; Liu, Wenhua; Bai, Renao; Chen, Guangcheng

    2017-03-15

    The effects of zinc (Zn) on nitrous oxide (N 2 O) fluxes from coastal loam soil and the abundances of soil nitrifier and denitrifier were studied in a tidal microcosm receiving livestock wastewater with different Zn levels. Soil N 2 O emission significantly increased due to discharge of wastewater rich in ammonia (NH 4 + -N) while the continuous measurements of gas flux showed a durative reduction in N 2 O flux by high Zn input (40mgL -1 ) during the low tide period. Soil inorganic nitrogen concentrations increased at the end of the experiment and even more soil NH 4 + -N was measured in the high-Zn-level treatment, indicating an inhibition of ammonia oxidation by Zn input. Quantitative PCR of soil amoA, narG and nirK genes encoding ammonia monooxygenase, nitrate reductase and nitrite reductase, respectively, showed that the microbial abundances involved in these metabolisms were neither affected by wastewater discharge nor Zn contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    Science.gov (United States)

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise. © 2015 John Wiley & Sons Ltd.

  8. Delta-Flux: An eddy covariance network for a climate-smart Lower Mississippi Basin

    Science.gov (United States)

    Runkle, Benjamin R. K.; Rigby, James R.; Reba, Michele L.; Anapalli, Saseendran S.; Bhattacharjee, Joydeep; Krauss, Ken W.; Liang, Lu; Locke, Martin A.; Novick, Kimberly A.; Sui, Ruixiu; Suvočarev, Kosana; White, Paul M.

    2017-01-01

    Networks of remotely monitored research sites are increasingly the tool used to study regional agricultural impacts on carbon and water fluxes. However, key national networks such as the National Ecological Observatory Network and AmeriFlux lack contributions from the Lower Mississippi River Basin (LMRB), a highly productive agricultural area with opportunities for soil carbon sequestration through conservation practices. The authors describe the rationale to create the new Delta-Flux network, which will coordinate efforts to quantify carbon and water budgets at seventeen eddy covariance flux tower sites in the LMRB. The network structure will facilitate climate-smart management strategies based on production-scale and continuous measurements of carbon and water fluxes from the landscape to the atmosphere under different soil and water management conditions. The seventeen instrumented field sites are expected to monitor fluxes within the most characteristic landscapes of the target area: row-crop fields, pasture, grasslands, forests, and marshes. The network participants are committed to open collaboration and efficient regionalization of site-level findings to support sustainable agricultural and forestry management and conservation of natural resources.

  9. Carbon dioxide flux measurements from a coastal Douglas-fir forest floor

    International Nuclear Information System (INIS)

    Drewitt, G.B.

    2002-01-01

    This thesis examined the process that affects the exchange of carbon between the soil and the atmosphere with particular attention to the large amounts of carbon stored in soils in the form of decaying organic matter. This forest floor measuring study was conducted in 2000 at a micro-meteorological tower flux site in a coastal temperature Douglas-fir forest. The measuring study involved half hourly measurements of both carbon dioxide and below-ground carbon dioxide storage. Measurements were taken at 6 locations between April and December to include a large portion of the growing season. Eddy covariance (EC) measurements of carbon dioxide flux above the forest floor over a two month period in the summer and the autumn were compared with forest floor measurements. Below-ground carbon dioxide mixing ratios of soil air were measured at 6 depths between 0.02 to 1 m using gas diffusion probes and a syringe sampling method. Maximum carbon dioxide fluxes measured by the soil chambers varied by a factor of 3 and a high spatial variability in soil carbon dioxide flux was noted. Forest floor carbon dioxide fluxes measured by each of the chambers indicated different sensitivities to soil temperature. Hysteresis in the flux temperature relationship over the year was evident. Reliable below-canopy EC measurements of the forest floor carbon dioxide flux were difficult to obtain because of the every low wind speeds below the forest canopy. The amount of carbon dioxde present in the soil increased rapidly with depth near the surface but less rapidly deeper in the soil. It was suggested that approximately half of the carbon dioxide produced below-ground comes from between the soil surface and the first 0.15 m of depth. Carbon dioxide fluxes from the floor of a Douglas-fir forest were found to be large compared to other, less productive ecosystems

  10. Determination of lead 210 atmospheric fluxes in Syria

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Shaik Khalil, H.

    2001-01-01

    Lead 210 atmospheric fluxes were determined by collecting 51 profiles from Syrian soil during 1998. Lead 210 fluxes in Syria calculated from lead 210 inventory in soil ranged from 15 Bq.m -2 .y -1 and 407 Bq.m -2 .y -1 with an average value of 128 Bq.m -2 .y -1 . the highest fluxes were found to be in Hama area due to the Gaab fault, which is considered as a radon source in the area. In addition, fluxes were also high in most sites, which are located in Syria valleys and around the lakes. Moreover, the study has indicated that there is no linear relation between lead 210 flux values and other parameters such as annual rainfall and bulk density of the soil. On the other hand, an effect, of those two factors on lead 210 distribution with depth has been observed. In addition, the results of variable lead 210 fluxes from site to another have proved that it is necessary, in order to obtain a representative mean value of lead 210 flux obtained in this study is within the worldwide range for lead 210 flux. (Author)

  11. Soil radon levels across the Amer fault

    International Nuclear Information System (INIS)

    Font, Ll.; Baixeras, C.; Moreno, V.; Bach, J.

    2008-01-01

    Soil radon levels have been measured across the Amer fault, which is located near the volcanic region of La Garrotxa, Spain. Both passive (LR-115, time-integrating) and active (Clipperton II, time-resolved) detectors have been used in a survey in which 27 measurement points were selected in five lines perpendicular to the Amer fault in the village area of Amer. The averaged results show an influence of the distance to the fault on the mean soil radon values. The dynamic results show a very clear seasonal effect on the soil radon levels. The results obtained support the hypothesis that the fault is still active

  12. Inference of soil hydrologic parameters from electronic soil moisture records

    Science.gov (United States)

    Soil moisture is an important control on hydrologic function, as it governs vertical fluxes from and to the atmosphere, groundwater recharge, and lateral fluxes through the soil. Historically, the traditional model parameters of saturation, field capacity, and permanent wilting point have been deter...

  13. New flux based dose–response relationships for ozone for European forest tree species

    International Nuclear Information System (INIS)

    Büker, P.; Feng, Z.; Uddling, J.; Briolat, A.; Alonso, R.; Braun, S.; Elvira, S.; Gerosa, G.; Karlsson, P.E.; Le Thiec, D.

    2015-01-01

    To derive O 3 dose–response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O 3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O 3 flux concept and represents a step forward in predicting O 3 damage to forests in a spatially and temporally varying climate. - Highlights: • We present new ozone flux based dose–response relationships for European trees. • The model-based study accounted for the soil water effect on stomatal flux. • Different statistically derived ozone flux thresholds were applied. • Climate region specific parameterisation often outperformed simplified parameterisation. • Findings could help redefining critical levels for ozone effects on trees. - New stomatal flux based ozone dose–response relationships for tree species are derived for the regional risk assessment of ozone effects on European forest ecosystems.

  14. Soil-surface CO2 flux and growth in a boreal Norway spruce stand: Effects of soil warming and nutrition

    International Nuclear Information System (INIS)

    Stroemgren, M.

    2001-01-01

    Global warming is predicted to affect the carbon balance of forests. A change in the carbon balance would give a positive or negative feedback to the greenhouse effect, which would affect global warming. The effects of long-term soil warming on growth, nutrient and soil-surface CO 2 flux (R) dynamics were studied in irrigated (I) and irrigated-fertilised (IL) stands of Norway spruce in northern Sweden. Soil temperature on heated plots (Ih and ILh) was maintained 5 deg C above that on unheated plots (Ic and ILc) from May to October, by heating cables. After six years' soil warming, stemwood production increased by 100% and 50% in the I and IL treatment, respectively. The main production increase occurred at the beginning of the season, probably as an effect of the earlier increase in soil temperature. In the 1h treatment, however, the growth increase was evident during the entire season. The effect of increased nitrogen (N) mineralisation on annual growth appeared to be stronger than the direct effect of warming. From 1995-2000, the total amount of N stored in aboveground tree parts increased by 100 and 475 kg N/ha on Ic and ILc plots, respectively. During the same period, 450 kg N fertiliser was added to the ILc plot. Soil warming increased the total amount of N stored in aboveground tree parts by 50 kg N/ha, independently of nutrient treatment. Soil warming did not significantly increase R, except in early spring, when R was 30-50% higher on heated compared to unheated plots. The extended growing season, however, increased annual respiration (RA) by 12-30% throughout. RA losses were estimated to be 0.6-0.7 kg C/ha/year. Use of relationships between R and soil temperature, derived from unheated plots, overestimated RA on heated plots by 50-80%. These results suggest that acclimation of root or microbial respiration or both to temperature had occurred, but the exact process(es) and their relative contribution are still unclear. In conclusion, the study showed that

  15. Theory of evapotranspiration. 2. Soil and intercepted water evaporation

    OpenAIRE

    Budagovskyi, Anatolij Ivanovič; Novák, Viliam

    2011-01-01

    Evaporation of water from the soil is described and quantified. Formation of the soil dry surface layer is quantitatively described, as a process resulting from the difference between the evaporation and upward soil water flux to the soil evaporating level. The results of evaporation analysis are generalized even for the case of water evaporation from the soil under canopy and interaction between evaporation rate and canopy transpiration is accounted for. Relationships describing evapotranspi...

  16. Effect of soil saturation on denitrification in a grassland soil

    Directory of Open Access Journals (Sweden)

    L. M. Cardenas

    2017-10-01

    Full Text Available Nitrous oxide (N2O is of major importance as a greenhouse gas and precursor of ozone (O3 destruction in the stratosphere mostly produced in soils. The soil-emitted N2O is generally predominantly derived from denitrification and, to a smaller extent, nitrification, both processes controlled by environmental factors and their interactions, and are influenced by agricultural management. Soil water content expressed as water-filled pore space (WFPS is a major controlling factor of emissions and its interaction with compaction, has not been studied at the micropore scale. A laboratory incubation was carried out at different saturation levels for a grassland soil and emissions of N2O and N2 were measured as well as the isotopocules of N2O. We found that flux variability was larger in the less saturated soils probably due to nutrient distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification could have occurred at the lower saturation, even though moisture was still high (71 % WFSP. The isotopocules data indicated isotopic similarities in the wettest treatments vs. the two drier ones. The results agreed with previous findings where it is clear there are two N pools with different dynamics: added N producing intense denitrification vs. soil N resulting in less isotopic fractionation.

  17. Vegetation, soil property and climatic controls over greenhouse gas fluxes in a blanket peatland hosting a wind farm

    Science.gov (United States)

    Armstrong, Alona; Waldron, Susan; Ostle, Nick; Whitaker, Jeanette

    2013-04-01

    Peatlands are important carbon (C) stores, with boreal and subarctic peatlands containing 15-30 % of the world soil carbon stock (Limpens et al., 2008). Research has demonstrated that greenhouse gas (GHG) fluxes in peatlands are influenced by vegetation, soil property and climatic variables, including plant functional type (PFT), water table height and temperature. In this paper we present data from Black Law Wind Farm, Scotland, where we examined the effect of a predicted wind turbine-induced microclimatic gradient and PFT on carbon dioxide (CO2) and methane (CH4) fluxes. Moreover, we determined the role of vegetation, soil property and climatic variables as predictors of the variation in CO2 and CH4 emissions. We measured CO2 and CH4 at 48 plots within Black Law Wind Farm at monthly intervals from May 2011 to April 2012. Four sampling sites were located along a predicted wind turbine-induced microclimatic gradient. At each site four blocks were established, each with plots in areas dominated by mosses, sedges and shrubs. Plant biomass and PFT (vegetation factors); soil moisture, water table height, peat depth, C content, nitrogen (N) content and C:N (soil properties); and soil temperature and photosynthetically active radiation (PAR) (climatic variables) were measured. Analysis of variance (ANOVA) models based on the microclimatic gradient site, PFT and season when measurements were made explained 58 %, 44 % and 49 % of the variation in ecosystem respiration, photosynthesis and CH4, respectively. Site, PFT, season and their interactions were all significant for respiration and photosynthesis (with the exception of the PFT*site interaction) but for CH4 only the main effects were significant. Parsimonious ANOVA models using the biotic, soil property and climatic explanatory data explained 62 %, 55 % and 49 % of the variation in respiration, photosynthesis and CH4, respectively. Published studies (Baidya Roy and Traiteur 2010; Zhou et al., 2012) and preliminary

  18. The effect of assimilating satellite derived soil moisture in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    NARCIS (Netherlands)

    van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W.

    2015-01-01

    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture and carbon fluxes as compared to e.g. Europe. To better constrain our

  19. Agriculture at the Edge: Landscape Variability of Soil C Stocks and Fluxes in the Tropical Andes

    Science.gov (United States)

    Riveros-Iregui, D. A.; Peña, C.

    2015-12-01

    Paramos, or tropical alpine grasslands occurring right above the forest tree-line (2,800 - 4,700 m), are among the most transformed landscapes in the humid tropics. In the Tropical Andes, Paramos form an archipelago-like pattern from Northern Colombia to Central Peru that effectively captures atmospheric moisture originated in the Amazon-Orinoco basins, while marking the highest altitude capable of sustaining vegetation growth (i.e., 'the edge'). This study investigates the role of land management on mediating soil carbon stocks and fluxes in Paramo ecosystems of the Eastern Cordillera of Colombia. Observations were collected at a Paramo site strongly modified by land use change, including active potato plantations, pasture, tillage, and land abandonment. Results show that undisturbed Paramos soils have high total organic carbon (TOC), high soil water content (SWC), and low soil CO2 efflux (RS) rates. However, Paramo soils that experience human intervention show lower TOC, higher and more variable RS rates, and lower SWC. This study demonstrates that changes in land use in Paramos affect differentially the accumulation and exchange of soil carbon with the atmosphere and offers implications for management and protection strategies of what has been deemed the fastest evolving biodiversity ecosystem in the world.

  20. The Systems Biology Markup Language (SBML) Level 3 Package: Flux Balance Constraints.

    Science.gov (United States)

    Olivier, Brett G; Bergmann, Frank T

    2015-09-04

    Constraint-based modeling is a well established modelling methodology used to analyze and study biological networks on both a medium and genome scale. Due to their large size, genome scale models are typically analysed using constraint-based optimization techniques. One widely used method is Flux Balance Analysis (FBA) which, for example, requires a modelling description to include: the definition of a stoichiometric matrix, an objective function and bounds on the values that fluxes can obtain at steady state. The Flux Balance Constraints (FBC) Package extends SBML Level 3 and provides a standardized format for the encoding, exchange and annotation of constraint-based models. It includes support for modelling concepts such as objective functions, flux bounds and model component annotation that facilitates reaction balancing. The FBC package establishes a base level for the unambiguous exchange of genome-scale, constraint-based models, that can be built upon by the community to meet future needs (e. g. by extending it to cover dynamic FBC models).

  1. Carbon Dioxide and Methane Flux Related to Forest Type and Managed and Unmanaged Conditions in the Great Dismal Swamp, USA

    Science.gov (United States)

    Gutenberg, L. W.; Krauss, K.; Qu, J. J.; Hogan, D. M.; Zhu, Z.; Xu, C.

    2017-12-01

    The Great Dismal Swamp in Virginia and North Carolina, USA, has been greatly impacted by human use and management for the last few hundred years through logging, ditching, and draining. Today, the once dominant cedar, cypress and pocosin forest types are fragmented due to logging and environmental change. Maple-gum forest has taken over more than half the remaining area of the swamp ecosystem, which is now a National Wildlife Refuge and State Park. The peat soils and biomass store a vast quantity of carbon compared with the size of the refuge, but this store is threatened by fire and drying. This study looks at three of the main forest types in the GDS— maple-sweet gum, tall pine pocosin, and Atlantic white cedar— in terms of their carbon dioxide and methane soil flux. Using static chambers to sample soil gas flux in locally representative sites, we found that cedar sites showed a higher carbon dioxide flux rate as the soil temperature increased than maple sites, and the rate of carbon dioxide flux decreased as soil moisture increased faster in cedar sites than in maple sites. Methane flux increased as temperature increased for pocosin, but decreased with temperature for cedar and maple. All of the methane fluxes increased as soil moisture increased. Cedar average carbon dioxide flux was statistically significantly different from both maple and pocosin. These results show that soil carbon gas flux depends on soil moisture and temperature, which are factors that are changing due to human actions, as well as on forest type, which is also the result of human activity. Some of these variables may be adjustable by the managers of the land. Variables other than forest type, temperature and soil moisture/inundation may also play a role in influencing soil flux, such as stand age, tree height, composition of the peat and nutrient availability, and source of moisture as some sites are more influenced by groundwater from ditches and some more by rainfall depending on the

  2. A method for measuring element fluxes in an undisturbed soil: nitrogen and carbon from earthworms

    International Nuclear Information System (INIS)

    Bouche, M.B.

    1984-01-01

    Data on chemical cycles, as nitrogen or carbon cycles, are extrapolated to the fields or ecosystems without the possibility for checking conclusions; i.e. from scientific knowledge (para-ecology). A new method, by natural introduction of an earthworm compartment into an undisturbed soil, with earthworms labelled both by isotopes ( 15 N, 14 C) and by staining is described. This method allows us to measure fluxes of chemicals. The first results, gathered during the improvement of the method in partly artificial conditions, are cross-checked with other data given by direct observation in the field. Measured flux (2.2 mg N/g fresh mass empty gut/day/15 0 C) is far more important than para-ecological estimations; animal metabolism plays directly an important role in nitrogen and carbon cycles. (author)

  3. Eddy covariance N2O flux measurements at low flux rates: results from the InGOS campaign in a Danish willow field.

    Science.gov (United States)

    Ibrom, Andreas; Brümmer, Christian; Hensen, Arjan; van Asperen, Hella; Carter, Mette S.; Gasche, Rainer; Famulari, Daniela; Kutsch, Werner; Pilegaard, Kim; Ambus, Per

    2014-05-01

    rates. All three EC systems showed 30 min. flux values varying around zero nmol m-2 s-1. This noise was considerably lower in the EC systems that used QCL analysers. The maximum daily averages of the uncorrected fluxes from two of the EC systems reached 0.26 (ICOS/HS50) and 0.28 (QCL/R3) nmol m-2 s-1.Spectral correction increased the flux estimates up to, e.g., 180% equivalent to 0.54 nmol m-2 s-1. The flux estimates from the soil chambers were with one exception higher than the flux estimates obtained from the EC systems with highest daily averages ranging from 0.1 up to 2 nmol m-2 s-1. These large differences were unexpected, because at least two of the EC systems were shown to accurately measure fluxes at such higher levels at another InGOS campaign in a fertilised Scottish grazed meadow. We use spectral analysis to examine the raw data for the effects of sensor noise on the flux estimates and discuss strategies on how to correct or account for it. Furthermore possible causes for the observed differences between the observed EC and chamber flux estimates will be discussed.

  4. Micrometeorological, evapotranspiration, and soil-moisture data at the Amargosa Desert Research site in Nye County near Beatty, Nevada, 2006-11

    Science.gov (United States)

    Arthur, Jonathan M.; Johnson, Michael J.; Mayers, C. Justin; Andraski, Brian J.

    2012-01-01

    This report describes micrometeorological, evapotranspiration, and soil-moisture data collected since 2006 at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada. Micrometeorological data include precipitation, solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, near-surface soil temperature, soil-heat flux, and soil-water content. Evapotranspiration (ET) data include latent-heat flux, sensible-heat flux, net radiation, soil-heat flux, soil temperature, air temperature, vapor pressure, and other principal energy-budget data. Soil-moisture data include periodic measurements of volumetric water-content at experimental sites that represent vegetated native soil, devegetated native soil, and simulated waste disposal trenches - maximum measurement depths range from 5.25 to 29.25 meters. All data are compiled in electronic spreadsheets that are included with this report.

  5. Chamber and Diffusive Based Carbon Flux Measurements in an Alaskan Arctic Ecosystem

    Science.gov (United States)

    Wilkman, E.; Oechel, W. C.; Zona, D.

    2013-12-01

    Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil flux work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil Flux System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 fluxes from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and fluxes of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, measuring soil gas concentration over a diffusive gradient in this way allows one to separate both net production and

  6. Are There Dangerous Levels of Lead in Local Soil?

    Science.gov (United States)

    Pita, I.

    2017-12-01

    The purpose of this experiment was to show that comparing random soil samples from areas in New Orleans; the Garden District will have the highest levels of lead in soil. My Independent variable was the soil samples collected from locations in the Garden District area of New Orleans, and other locations throughout New Orleans. The control was the soil samples collected from the local playground in the New Orleans area. My dependent variable was the lead soil test kit, using ppm (parts per million) of lead to show concentration. 400 ppm + in bare soil where children play is considered dangerous hazard levels. 1,000 + ppm in all other areas is considered dangerous hazard levels. The first step to my experiment, I collected soil samples from different locations throughout the Garden District area of New Orleans. The second step to my experiment, I conducted the lead soil testing in a controlled area at home in a well ventilated room, using all the necessary safety equipment needed, I began testing a 24 hour test period and a 48 hour test period. I then collected the data from both test. The results showed that soil samples from the Garden District area compared to the other sample locations had higher lead concentrations in the soil. This backed my hypothesis when comparing soil samples from areas in New Orleans, the Garden District will have the highest lead levels. In conclusion these experiments showed that with the soil samples collected, there were higher concentrations of lead in the soil from the Garden District area compared to the other areas where soil was collected. Reconstruction and renovations, from the devastation that Hurricane Katrina created, are evident of the lead in paint of older homes which now show the lead concentration in the soil. Lead is a lethal element if consumed or inhaled in high doses, which can damage key organs in our body, which can be deadly. Better awareness through social media, television, radio, doctors, studies, pamphlets

  7. Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture

    Science.gov (United States)

    Gherboudj, Imen; Beegum, S. Naseema; Marticorena, Beatrice; Ghedira, Hosni

    2015-10-01

    The mineral dust emissions from arid/semiarid soils were simulated over the MENA (Middle East and North Africa) region using the dust parameterization scheme proposed by Alfaro and Gomes (2001), to quantify the effect of the soil moisture and clay fraction in the emissions. For this purpose, an extensive data set of Soil Moisture and Ocean Salinity soil moisture, European Centre for Medium-Range Weather Forecasting wind speed at 10 m height, Food Agricultural Organization soil texture maps, MODIS (Moderate Resolution Imaging Spectroradiometer) Normalized Difference Vegetation Index, and erodibility of the soil surface were collected for the a period of 3 years, from 2010 to 2013. Though the considered data sets have different temporal and spatial resolution, efforts have been made to make them consistent in time and space. At first, the simulated sandblasting flux over the region were validated qualitatively using MODIS Deep Blue aerosol optical depth and EUMETSAT MSG (Meteosat Seciond Generation) dust product from SEVIRI (Meteosat Spinning Enhanced Visible and Infrared Imager) and quantitatively based on the available ground-based measurements of near-surface particulate mass concentrations (PM10) collected over four stations in the MENA region. Sensitivity analyses were performed to investigate the effect of soil moisture and clay fraction on the emissions flux. The results showed that soil moisture and soil texture have significant roles in the dust emissions over the MENA region, particularly over the Arabian Peninsula. An inversely proportional dependency is observed between the soil moisture and the sandblasting flux, where a steep reduction in flux is observed at low friction velocity and a gradual reduction is observed at high friction velocity. Conversely, a directly proportional dependency is observed between the soil clay fraction and the sandblasting flux where a steep increase in flux is observed at low friction velocity and a gradual increase is

  8. Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level.

    Science.gov (United States)

    Liu, Liming; Li, Yin; Zhu, Yang; Du, Guocheng; Chen, Jian

    2007-01-01

    Manipulation of cofactor (thiamine, biotin and Ca(2+)) levels as a potential tool to redistribute carbon flux was studied in Torulopsis glabrata. With sub-optimization of vitamin in fermentation medium, the carbon flux was blocked at the key node of pyruvate, and 69 g/L pyruvate was accumulated. Increasing the concentrations of thiamine and biotin could selectively open the valve of carbon flux from pyruvate to pyruvate dehydrogenase complex, the pyruvate carboxylase (PC) pathway and the channel into the TCA cycle, leading to the over-production of alpha-ketoglutarate. In addition, the activity of PC was enhanced with Ca(2+) present in fermentation medium. By combining high concentration's vitamins and CaCO(3) as the pH buffer, a batch culture was conducted in a 7-L fermentor, with the pyruvate concentration decreased to 21.8 g/L while alpha-ketoglutarate concentration increased to 43.7 g/L. Our study indicated that the metabolic flux could be redistributed to overproduce desired metabolites with manipulating the cofactor levels. Furthermore, the manipulation of vitamin level provided an alternative tool to realize metabolic engineering goals.

  9. Modeling radon flux from the earth's surface

    International Nuclear Information System (INIS)

    Schery, S.D.; Wasiolek, M.A.

    1998-01-01

    We report development of a 222 Rn flux density model and its use to estimate the 222 Rn flux density over the earth's land surface. The resulting maps are generated on a grid spacing of 1 0 x 1 0 using as input global data for soil radium, soil moisture, and surface temperature. While only a first approximation, the maps suggest a significant regional variation (a factor of three is not uncommon) and a significant seasonal variation (a factor of two is not uncommon) in 222 Rn flux density over the earth's surface. The estimated average global flux density from ice-free land is 34 ± 9 mBq m -2 s -1 . (author)

  10. The interaction between land use change, sediment fluxes and carbon dynamics: evaluating an integrated soil-landscape model at the millennial time-scale.

    Science.gov (United States)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle

    2015-04-01

    Soil-landscape modelling has received growing attention as it allows us to evaluate the interaction between earth surface and soil bio-physical processes. At the landscape scale, human-induced land use change has altered the balance between soil erosion and production, and largely modified sediment fluxes. Intensification in soil redistribution rates affects the interaction between soil chemical, physical and biological processes at the landscape scale. Here, we evaluate the SPEROS-LT model, a spatially explicit 3D model combining a dynamic representation of land use, soil erosion and deposition and the soil carbon cycle. We assess the impact of millennial-scale human-induced land use change on sediment fluxes and carbon dynamics in the Dijle catchement (central Belgium). The watershed has undergone a 3000 years continuous human-induced alteration of the vegetation covers for agricultural characterized by Our study is based on land use reconstructions for the last 3000 years, including massive deforestation for agriculture in Roman Times and the Middle Ages followed by urbanization in the last 150 years. Land use reconstructions rely on simple land use allocation rules based on slope gradients. SPEROS-LT is parametrized for erosion rates against available figures in the literature by changing the transport capacity and the transfer coefficient which defines the amount of flux transferred between different land uses. Carbon content profiles at steady state (i.e. without influence of erosion or deposition) are calibrated for each land use and for the first upper meter of soil by comparing modeled profiles to an averaged observed profiles in stable areas of the pedologic region. We present a model sensitivity analysis and a full validation of the predicted soil carbon storage (horizontally, i.e. in space, and vertically, i.e. with depth) using a large database of observational data. The results indicate (i) a good agreement of the erosion rates. Speros LT modeled

  11. Soil physical, chemical and gas-flux characterization from Picea mariana stands near Erickson Creek, Alaska

    Science.gov (United States)

    O'Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.

    2011-01-01

    Fire is a particularly important control on the carbon (C) balance of the boreal forest, and fire-return intervals and fire severity appear to have increased since the late 1900s in North America. In addition to the immediate release of stored C to the atmosphere through organic-matter combustion, fire also modifies soil conditions, possibly affecting C exchange between terrestrial and atmospheric pools for decades after the burn. The effects of fire on ecosystem C dynamics vary across the landscape, with topographic position and soil drainage functioning as important controls. The data reported here contributed to a larger U.S. Geological Survey (USGS) study, published in the journal Ecosystems by O'Donnell and others (2009). To evaluate the effects of fire and drainage on ecosystem C dynamics, we selected sample sites within the 2003 Erickson Creek fire scar to measure CO2 fluxes and soil C inventories in burned and unburned (control) sites in both upland and lowland black spruce (Picea mariana) forests. The results of this study suggested that although fire can create soil climate conditions which are more conducive to rapid decomposition, rates of C release from soils may be constrained after fire by changes in moisture and (or) substrate quality that impede rates of decomposition. Here, we report detailed site information, methodology, and data (in spreadsheet files) from that study.

  12. Modelling of cadmium fluxes on energy crop land

    International Nuclear Information System (INIS)

    Palm, V.

    1992-04-01

    The flux of cadmium on energy crop land is investigated. Three mechanisms are accounted for; Uptake by plant, transport with water, and sorption to soil. Sorption is described with Freundlich isotherms. The system is simulated mathematically in order to estimate the sensitivity and importance of different parameters on the cadmium flow and sorption. The water flux through the soil and the uptake by plants are simulated with a hydrological model, SOIL. The simulated time period is two years. The parameters describing root distribution and evaporation due to crop are taken from measurements on energy crop (Salix). The resulting water flux, water content in the soil profile and the water uptake into roots, for each day and soil compartment, are used in the cadmium sorption simulation. In the cadmium sorption simulation the flux and equilibrium chemistry of cadmium is calculated. It is shown that the amount of cadmium that accumulates in the plant, and the depth to which the applied cadmium reaches depends strongly on the constants in the sorption isotherm. With an application of 10 mg Cd/m 2 in the given range of Freundlich equations, the simulations gave a plant uptake of between 0 and 30 % of the applied cadmium in two years. At higher concentrations, where cadmium sorption can be described by nonlinear isotherms, more cadmium is present in soil water and is generally more bioavailable. 25 refs

  13. Effect of Wildfire on Sequoiadendron giganteum Growth and CO2 Flux

    Science.gov (United States)

    Barwegen, S.

    2016-12-01

    Due to global warming, parts of the United States are becoming drier than ever before. In 2015, we surpassed 9 million acres burned by wildfires nationally (Rice 2015). Wildfires are most common in the Western United States due to drought, and the fact that the summer months are drier than other areas such as the East Coast, so there is a higher risk for wildland fires (Donegan 2016). These high-growth forests that are more frequently burned by wildfires each year are located near mountain ranges on the west side of the United States. They are important to tourism, contain many endangered species, and need to maintain the natural cycle of fire and regrowth for the continued success of the native plant life. This project investigated the effect of burnt soil on Sequoiadendron giganteum trees. Three were grown in burnt potting soil that had been roasted over a grill for 45 minutes (which is the average destructive fire time), and the other three were the control group in unburned potting soil. We assessed growth by measuring height, color, photosynthetically active radiation (PAR), and CO2 flux to evaluate the health of the trees in the two soil conditions. We noted that after two weeks the trunks of the trees growing in burnt soil began to brown in color, and they lost leaves. Over the course of the experiment, the trees growing in burnt soil had reduced levels of photosynthesis as compared to the unburned soil (as measured by the net change in CO2 concentration in a sealed chamber over the course of fifteen minutes intervals). On average, the trees growing in burnt soil had flux rates that were 19.59 ppm CO2 /min. more than those growing in unburned soil. In the dark reactions, the burnt soil flux was 54.5 ppm CO2/min., while the unburned soil averaged 40.5 ppm CO2/min. Our results help quantify the impact of fire on delicate ecosystems that are experiencing an increase in fire activity caused by global warming.

  14. Comparison and analysis of empirical equations for soil heat flux for different cropping systems and irrigation methods

    Science.gov (United States)

    Irmak, A.; Singh, Ramesh K.; Walter-Shea, Elizabeth; Verma, S.B.; Suyker, A.E.

    2011-01-01

    We evaluated the performance of four models for estimating soil heat flux density (G) in maize (Zea mays L.) and soybean (Glycine max L.) fields under different irrigation methods (center-pivot irrigated fields at Mead, Nebraska, and subsurface drip irrigated field at Clay Center, Nebraska) and rainfed conditions at Mead. The model estimates were compared against measurements made during growing seasons of 2003, 2004, and 2005 at Mead and during 2005, 2006, and 2007 at Clay Center. We observed a strong relationship between the G and net radiation (Rn) ratio (G/Rn) and the normalized difference vegetation index (NDVI). When a significant portion of the ground was bare soil, G/Rn ranged from 0.15 to 0.30 and decreased with increasing NDVI. In contrast to the NDVI progression, the G/Rn ratio decreased with crop growth and development. The G/Rn ratio for subsurface drip irrigated crops was smaller than for the center-pivot irrigated crops. The seasonal average G was 13.1%, 15.2%, 10.9%, and 12.8% of Rn for irrigated maize, rainfed maize, irrigated soybean, and rainfed soybean, respectively. Statistical analyses of the performance of the four models showed a wide range of variation in G estimation. The root mean square error (RMSE) of predictions ranged from 15 to 81.3 W m-2. Based on the wide range of RMSE, it is recommended that local calibration of the models should be carried out for remote estimation of soil heat flux.

  15. A process-based 222radon flux map for Europe and its comparison to long-term observations

    Science.gov (United States)

    Karstens, U.; Schwingshackl, C.; Schmithüsen, D.; Levin, I.

    2015-11-01

    Detailed 222radon (222Rn) flux maps are an essential pre-requisite for the use of radon in atmospheric transport studies. Here we present a high-resolution 222Rn flux map for Europe, based on a parameterization of 222Rn production and transport in the soil. The 222Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water-table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. The implemented diffusion parameterization was tested against campaign-based 222Rn soil profile measurements. Monthly 222Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083° × 0.083° and compared to long-term direct measurements of 222Rn exhalation rates in different areas of Europe. The two realizations of the 222Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean 222Rn flux from soils in Europe is estimated to be 10 mBq m-2 s-1 (ERA-Interim/Land soil moisture) or 15 mBq m-2 s-1 (GLDAS (Global Land Data Assimilation System) Noah soil moisture) for the period 2006-2010. The corresponding seasonal variations with low fluxes in winter and high fluxes in summer range in the two realizations from ca. 7 to ca. 14 mBq m-2 s-1 and from ca. 11 to ca. 20 mBq m-2 s-1, respectively. These systematic differences highlight the importance of realistic soil moisture data for a reliable estimation of 222Rn exhalation rates. Comparison with observations suggests that the flux estimates based on the GLDAS Noah soil moisture model on average better

  16. A process-based 222radon flux map for Europe and its comparison to long-term observations

    International Nuclear Information System (INIS)

    Karstens, U.; Schwingshackl, C.; Schmithuesen, D.; Levin, I.

    2015-01-01

    Detailed 222 radon ( 222 Rn) flux maps are an essential pre-requisite for the use of radon in atmospheric transport studies. Here we present a high-resolution 222 Rn flux map for Europe, based on a parameterization of 222 Rn production and transport in the soil. The 222 Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water-table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. The implemented diffusion parameterization was tested against campaign-based 222 Rn soil profile measurements. Monthly 222 Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083 x 0.083 and compared to long-term direct measurements of 222 Rn exhalation rates in different areas of Europe. The two realizations of the 222 Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean 222 Rn flux from soils in Europe is estimated to be 10 mBq m -2 s -1 (ERA-Interim/Land soil moisture) or 15 mBq m -2 s -1 (GLDAS (Global Land Data Assimilation System) Noah soil moisture) for the period 2006-2010. The corresponding seasonal variations with low fluxes in winter and high fluxes in summer range in the two realizations from ca. 7 to ca. 14 mBq m -2 s -1 and from ca. 11 to ca. 20 mBq m -2 s -1 , respectively. These systematic differences highlight the importance of realistic soil moisture data for a reliable estimation of 222 Rn exhalation rates. Comparison with observations suggests that the flux estimates based on the GLDAS Noah soil moisture model on

  17. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Energy Technology Data Exchange (ETDEWEB)

    Eckley, Chris S., E-mail: eckley.chris@epa.gov [US Environmental Protection Agency, Region-10, Seattle, WA 98101 (United States); Tate, Mike T. [US Geological Survey, Middleton, WI 53562 (United States); Lin, Che-Jen [Center for Advances on Water and Air quality, Lamar University, Beaumont, TX 77710 (United States); Gustin, Mae [Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV 89557 (United States); Dent, Stephen [CDM Smith, Portland, OR 97205 (United States); Eagles-Smith, Collin [US Geological Survey, Corvallis, OR 97331 (United States); Lutz, Michelle A. [US Geological Survey, Middleton, WI 53562 (United States); Wickland, Kimberly P. [US Geological Survey Boulder, CO 80303 (United States); Wang, Bronwen [US Geological Survey, Anchorage, AK 99508 (United States); Gray, John E. [US Geological Survey, Denver, CO 80225 (United States); Edwards, Grant C. [Department of Environment and Geography, Macquarie University, North Ryde, NSW 2109 (Australia); Krabbenhoft, Dave P. [US Geological Survey, Middleton, WI 53562 (United States); Smith, David B. [US Geological Survey, Denver, CO 80225 (United States)

    2016-10-15

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  18. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    International Nuclear Information System (INIS)

    Eckley, Chris S.; Tate, Mike T.; Lin, Che-Jen; Gustin, Mae; Dent, Stephen; Eagles-Smith, Collin; Lutz, Michelle A.; Wickland, Kimberly P.; Wang, Bronwen; Gray, John E.; Edwards, Grant C.; Krabbenhoft, Dave P.; Smith, David B.

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  19. The effect of assimilating satellite-derived soil moisture data in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    NARCIS (Netherlands)

    van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W.

    2016-01-01

    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture, and carbon fluxes as compared to e.g. Europe. To better constrain our

  20. Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil.

    Science.gov (United States)

    Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher

    2014-02-18

    Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from

  1. Levels of concern for radioactive contaminations in soil according to soil protection standards

    International Nuclear Information System (INIS)

    Gellermann, R.; Barkowski, D.; Machtolf, M.

    2016-01-01

    In the paper the question is examined whether the established soil protection standards for carcinogenic substances are also applicable to the assessment of radioactive soil contamination. Referring to the methods applied in soil protection for evaluation of dose-effectrelations and estimations of carcinogenic risks as well as the calculation methods for test values in soil protection ''levels of concern'' for soil contamination by artificial radionuclides are derived. The values obtained are significantly larger than the values for unrestricted clearance of ground according to the German Radiation Protection Ordinance (StrlSchV). The thesis that soil is protected according to environmental standards provided that radiation protection requirements are met needs further checks but can be probably confirmed if the radiation protection requirements are clearly defined.

  2. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  3. Ecosystem respiration, methane and nitrous oxide fluxes from ecotopes in a rewetted extracted peatland in Sweden

    Directory of Open Access Journals (Sweden)

    S. Jordan

    2016-09-01

    Full Text Available Ecosystem respiration (carbon dioxide; CO2, methane (CH4 and nitrous oxide (N2O fluxes to the atmosphere were determined using an opaque closed chamber method within various ecotopes (vegetation covered, bare peat and open water in a rewetted extracted peatland and within an adjacent open poor fen in Sweden. Ecotopes had a significant impact on CO2 and CH4 fluxes to the atmosphere. Ecosystem respiration and CH4 emissions from the bare peat site, the constructed shallow lake and the open poor fen were low but were much higher from ecotopes with Eriophorum vaginatum tussocks and Eriophorum angustifolium. A combination of vascular plant cover and high soil temperatures enhanced ecosystem respiration, while a combination of vascular plant cover, high water table levels and high soil temperatures enhanced CH4 emissions. N2O emissions contributed little to total greenhouse gas (GHG fluxes from the soil-plant-water systems to the atmosphere. However, the overall climate impact of CH4 emissions from the study area did not exceed the impact of soil and plant respiration. With regard to management of extracted peatlands, the construction of a nutrient-poor shallow lake showed great potential for lowering GHG fluxes to the atmosphere.

  4. Soil CO 2 Flux in Hövsgöl National Park, Northern Mongolia

    Directory of Open Access Journals (Sweden)

    Avirmed Otgonsuren

    2008-06-01

    Full Text Available We investigated soil CO 2 fl ux and bare soil respiration in grasslands that are located at the southern edge of the Siberian boreal forest in Northern Mongolia. The study area has warmed by almost 1.8 o C over the last 40 years, and the soil and vegetation covers have been changed due to intense nomadic grazing pressure. Bare soil respiration is decreased with increasing grazing pressure, but there was no consistent pattern of total soil CO 2 fl ux under three distinct grazing levels. Bare soil respiration and soil CO 2 fl ux were higher on north-facing slopes than on south-facing slopes, due to high organic matter accumulation and the presence of permafrost. Both bare soil respiration and soil CO 2 fl ux were signi fi cantly higher in riparian areas compared with the lower and upper portions of the south-facing slope. Topography has a stronger effect on variability of soil CO 2 fl ux and bare soil respiration than variability induced by grazing. Inter-annual variability in soil CO 2 fl ux and bare soil respiration was very high, because of high variability in climate conditions.

  5. An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests

    Energy Technology Data Exchange (ETDEWEB)

    Sicard, Pierre, E-mail: pierre.sicard@acri-he.fr [ACRI-HE, 260 route du Pin Montard, BP 234, 06904 Sophia Antipolis cedex (France); De Marco, Alessandra [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), 76, Lungotevere Thaon de Revel, Rome (Italy); Dalstein-Richier, Laurence [GIEFS (Groupe International d' Etudes des Forêts Sud-européennes), 60, Avenue des Hespérides, 06300 Nice (France); Tagliaferro, Francesco [IPLA (Istituto per le Piante da Legno e l‘Ambiente), Corso Casale 476, 10132 Turin (Italy); Renou, Camille [ACRI-HE, 260 route du Pin Montard, BP 234, 06904 Sophia Antipolis cedex (France); Paoletti, Elena [IPSP-CNR (Consiglio Nazionale delle Ricerche — Istituto per la Protezione Sostenibile delle Piante), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence) (Italy)

    2016-01-15

    Southern forests are at the highest ozone (O{sub 3}) risk in Europe where ground-level O{sub 3} is a pressing sanitary problem for ecosystem health. Exposure-based standards for protecting vegetation are not representative of actual field conditions. A biologically-sound stomatal flux-based standard has been proposed, although critical levels for protection still need to be validated. This innovative epidemiological assessment of forest responses to O{sub 3} was carried out in 54 plots in Southeastern France and Northwestern Italy in 2012 and 2013. Three O{sub 3} indices, namely the accumulated exposure AOT40, and the accumulated stomatal flux with and without an hourly threshold of uptake (POD1 and POD0) were compared. Stomatal O{sub 3} fluxes were modeled (DO3SE) and correlated to measured forest-response indicators, i.e. crown defoliation, crown discoloration and visible foliar O{sub 3} injury. Soil water content, a key variable affecting the severity of visible foliar O{sub 3} injury, was included in DO3SE. Based on flux–effect relationships, we developed species-specific flux-based critical levels (CLef) for forest protection against visible O{sub 3} injury. For O{sub 3} sensitive conifers, CLef of 19 mmol m{sup −2} for Pinus cembra (high O{sub 3} sensitivity) and 32 mmol m{sup −2} for Pinus halepensis (moderate O{sub 3} sensitivity) were calculated. For broadleaved species, we obtained a CLef of 25 mmol m{sup −2} for Fagus sylvatica (moderate O{sub 3} sensitivity) and of 19 mmol m{sup −2} for Fraxinus excelsior (high O{sub 3} sensitivity). We showed that an assessment based on PODY and on real plant symptoms is more appropriated than the concentration-based method. Indeed, POD0 was better correlated with visible foliar O{sub 3} injury than AOT40, whereas AOT40 was better correlated with crown discoloration and defoliation (aspecific indicators). To avoid an underestimation of the real O{sub 3} uptake, we recommend the use of POD0 calculated for

  6. Carbon fluxes and the carbon budget in agroecosystems on agro-gray soils of the forest-steppe in the Baikal region

    Science.gov (United States)

    Pomazkina, L. V.; Sokolova, L. G.; Zvyagintseva, E. N.

    2013-06-01

    Field studies devoted to the transformation of the carbon cycle in agroecosystems on agro-gray soils (including soils contaminated with fluorides from aluminum smelters) in dependence on the changes in the hydrothermic conditions were performed for the first time within the framework of the long-term (1996-2010) soil monitoring in the forest-steppe zone of the Baikal region. The major attention was paid to the impact of the environmental factors on the synthesis and microbial destruction of organic carbon compounds. Certain differences in the fluxes and budget of carbon were found for the plots with cereal and row crops and for the permanent and annual fallow plots. The adverse effect of fluorides manifested itself in the enhanced C-CO2 emission under unfavorable water and temperature conditions. The long-term average C-CO2 emission from the soils contaminated with fluorides in agroecosystems with wheat after fallow was higher than that from the uncontaminated soil (179 and 198 g of C/m2, respectively) and higher than that in the agroecosystems with a potato monoculture (129 and 141 g of C/m2, respectively). At the same time, no significant variations in the content of the carbon of the microbial biomass (Cmicr) in dependence on the environmental factors were found. The utilization of carbon for respiration and for growth of the soil microorganisms on the contaminated soil were unbalanced in particular years and for the entire period of the observations. The ratio between the fluxes of the net mineralized and re-immobilized carbon was used for the integral assessment of the functioning regime of the agroecosystems and the loads on them. Independently from the soil contamination with fluorides, the loads on the agroecosystems with wheat were close to the maximum permissible value, and the loads on the agroecosystems with potatoes were permissible. It was shown that the carbon deficit in the uncontaminated soils was similar under the wheat and potatoes (-30 and -28 g

  7. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.

    Science.gov (United States)

    Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel

    2015-02-03

    A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes

  8. Carbon stocks and fluxes in managed peatlands in northern Borneo

    Science.gov (United States)

    Arn Teh, Yit; Manning, Frances; Cook, Sarah; Zin Zawawi, Norliyana; Sii, Longwin; Hill, Timothy; Page, Susan; Whelan, Mick; Evans, Chris; Gauci, Vincent; Chocholek, Melanie; Khoon Kho, Lip

    2017-04-01

    Oil palm is the largest agricultural crop in the tropics and accounts for 13 % of current tropical land area. Patterns of land-atmosphere exchange from oil palm ecosystems therefore have potentially important implications for regional and global C budgets due to the large scale of land conversion. This is particularly true for oil palm plantations on peat because of the large C stocks held by tropical peat soils that are potential sensitivity to human disturbance. Here we report preliminary findings on C stocks and fluxes from a long-term, multi-scale project in Sarawak, Malaysia that aims to quantify the impacts of oil palm conversion on C and greenhouse gas fluxes from oil palm recently established on peat. Land-atmosphere fluxes were determined using a combination of top-down and bottom-up methods (eddy covariance, canopy/stem and soil flux measurements, net primary productivity). Fluvial fluxes were determined by quantifying rates of dissolved and particulate organic C export. Ecosystem C dynamics were determined using the intensive C plot method, which quantified all major C stocks and fluxes, including plant and soil stocks, leaf litterfall, aboveground biomass production, root production, stem/canopy respiration, root-rhizosphere respiration, and heterotrophic soil respiration. Preliminary analysis indicates that vegetative aboveground biomass in these 7 year old plantations was 8.9-11.9 Mg C ha-1, or approximately one-quarter of adjacent secondary forest. Belowground biomass was 5.6-6.5 Mg C ha-1; on par with secondary forests. Soil C stocks in the 0-30 cm depth was 233.1-240.8 Mg C ha-1, or 32-36% greater than soil C stocks in secondary forests at the same depth (176.8 Mg C ha-1). Estimates of vegetative aboveground and belowground net primary productivity were 1.3-1.7 Mg C ha-1 yr-1 and 0.8-0.9 Mg C ha-1 yr-1, respectively. Fruit brunch production was approximately 67 Mg C ha-1over 7 yearsor 9.6 Mg C ha-1 yr-1. Total soil respiration rates were 18 Mg C ha

  9. EFFECT OF DIFFERENT LEVELS AGROECOLOGICAL LOADS ON BIOCHEMICAL CHARACTERISTICS OF SOIL

    OpenAIRE

    A. V. Shchur; D. V. Vinogradov; V. P. Valckho

    2016-01-01

    Aim. To study the effect of different levels of agri-environmental loads on the enzymatic activity of the soil.Methods. Isolation of soil fauna was conducted by thermogradient. Ecological characteristics of soil biota community was determined by ecological indices. The enzymatic activity of soil under different crops and at different levels of agri-environmental loads in our experiments was determined by methods proven in the laboratory soil enzymology Institute of Experimental Botany name V....

  10. Ozone flux of an urban orange grove: multiple scaled measurements and model comparisons

    Science.gov (United States)

    Alstad, K. P.; Grulke, N. E.; Jenerette, D. G.; Schilling, S.; Marrett, K.

    2009-12-01

    There is significant uncertainty about the ozone sink properties of the phytosphere due to a complexity of interactions and feedbacks with biotic and abiotic factors. Improved understanding of the controls on ozone fluxes is critical to estimating and regulating the total ozone budget. Ozone exchanges of an orange orchard within the city of Riverside, CA were examined using a multiple-scaled approach. We access the carbon, water, and energy budgets at the stand- to leaf- level to elucidate the mechanisms controlling the variability in ozone fluxes of this agro-ecosystem. The two initial goals of the study were 1. To consider variations and controls on the ozone fluxes within the canopy; and, 2. To examine different modeling and scaling approaches for totaling the ozone fluxes of this orchard. Current understanding of the total ozone flux between the atmosphere near ground and the phytosphere (F-total) include consideration of a fraction which is absorbed by vegetation through stomatal uptake (F-absorb), and fractional components of deposition on external, non-stomatal, surfaces of the vegetation (F-external) and soil (F-soil). Multiplicative stomatal-conductance models have been commonly used to estimate F-absorb, since this flux cannot be measured directly. We approach F-absorb estimates for this orange orchard using chamber measurement of leaf stomatal-conductance, as well as non-chamber sap-conductance collected on branches of varied aspect and sun/shade conditions within the canopy. We use two approaches to measure the F-total of this stand. Gradient flux profiles were measured using slow-response ozone sensors collecting within and above the canopy (4.6 m), and at the top of the tower (8.5 m). In addition, an eddy-covariance system fitted with a high-frequency chemiluminescence ozone system will be deployed (8.5 m). Preliminary ozone gradient flux profiles demonstrate a substantial ozone sink strength of this orchard, with diurnal concentration differentials

  11. Levels, distribution and air-soil exchange fluxes of polychlorinated biphenyls (PCBs) in the environment of Punjab Province, Pakistan.

    Science.gov (United States)

    Syed, Jabir Hussain; Malik, Riffat Naseem; Li, Jun; Zhang, Gan; Jones, Kevin C

    2013-11-01

    An initial survey of the concentrations of polychlorinated biphenyl (PCB) compounds in air and soils across industrial and agricultural areas of Punjab Province, Pakistan, was conducted from January to March 2011. The total concentration of all PCBs (31 PCBs) ranged from 34 to 389pgm(-3) in air and from 7 to 45ngg(-1) dry weight in soils, where both ranges were similar to the average ranges in other areas of the world. PCBs were elevated across industrial regions near urban and industrial sources. Consistently low air concentrations of PCBs at the agricultural sites suggest that they are less widespread or uniformly distributed in the Pakistani atmosphere. The calculated air and soil fugacity fraction values indicated that soils are a potential secondary source of PCBs in agricultural areas, whereas they are in equilibrium or atmospheric deposition in industrial and urban areas. TEQ concentrations of dioxin-like PCBs for soil samples met the Canadian standard. However, local authorities should address the human health threats from urban and industrial soils in Punjab Province, Pakistan. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Soil organic matter dynamics and CO2 fluxes in relation to landscape scale processes: linking process understanding to regional scale carbon mass-balances

    Science.gov (United States)

    Van Oost, Kristof; Nadeu, Elisabet; Wiaux, François; Wang, Zhengang; Stevens, François; Vanclooster, Marnik; Tran, Anh; Bogaert, Patrick; Doetterl, Sebastian; Lambot, Sébastien; Van wesemael, Bas

    2014-05-01

    In this paper, we synthesize the main outcomes of a collaborative project (2009-2014) initiated at the UCL (Belgium). The main objective of the project was to increase our understanding of soil organic matter dynamics in complex landscapes and use this to improve predictions of regional scale soil carbon balances. In a first phase, the project characterized the emergent spatial variability in soil organic matter storage and key soil properties at the regional scale. Based on the integration of remote sensing, geomorphological and soil analysis techniques, we quantified the temporal and spatial variability of soil carbon stock and pool distribution at the local and regional scales. This work showed a linkage between lateral fluxes of C in relation with sediment transport and the spatial variation in carbon storage at multiple spatial scales. In a second phase, the project focused on characterizing key controlling factors and process interactions at the catena scale. In-situ experiments of soil CO2 respiration showed that the soil carbon response at the catena scale was spatially heterogeneous and was mainly controlled by the catenary variation of soil physical attributes (soil moisture, temperature, C quality). The hillslope scale characterization relied on advanced hydrogeophysical techniques such as GPR (Ground Penetrating Radar), EMI (Electromagnetic induction), ERT (Electrical Resistivity Tomography), and geophysical inversion and data mining tools. Finally, we report on the integration of these insights into a coupled and spatially explicit model and its application. Simulations showed that C stocks and redistribution of mass and energy fluxes are closely coupled, they induce structured spatial and temporal patterns with non negligible attached uncertainties. We discuss the main outcomes of these activities in relation to sink-source behavior and relevance of erosion processes for larger-scale C budgets.

  13. Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120,000 years

    International Nuclear Information System (INIS)

    Tyler, S.W.; Chapman, J.B.; Conrad, S.H.; Hammermeister, D.P.; Blout, D.O.; Miller, J.J.; Sully, M.J.; Ginanni, J.M.

    1996-01-01

    The disposal of hazardous and radioactive waste in arid regions requires a thorough understanding of the occurrence of soil-water flux and recharge. Soil-water chemistry and isotopic data are presented from three deep vadose zone boreholes (> 230 m) at the Nevada Test Site, located in the Great Basin geographic province of the southwestern United States, to quantify soil-water flux and its relation to climate. The low water contents found in the soils significantly reduce the mixing of tracers in the subsurface and provide a unique opportunity to examine the role of climate variation on recharge in arid climates. Tracing techniques and core data are examined in this work to reconstruct the paleohydrologic conditions existing in the vadose zone well beyond the timescales typically investigated. Stable chloride and chlorine 36 profiles indicate that the soil waters deep in the vadose zone range in age from approximately 20,000 to 120,000 years. Secondary chloride bulges that are present in two of the three profiles support the concept of recharge occurring at or near the last two glacial maxima, when the climate of the area was considerably wetter and cooler. The stable isotopic composition of the soil water in the profiles is significantly more depleted in heavy isotopes than is modern precipitation, suggesting that recharge under the current climate is not occurring at this arid site. Past and present recharge appears to have been strongly controlled by surface topography, with increased incidence of recharge where runoff from the surrounding mountains may have been concentrated. The data obtained from this detailed drilling and sampling program shed new light on the behavior of water in thick vadose zones and, in particular, show the sensitivity of arid regions to the extreme variations in climate experienced by the region over the last two glacial maxima

  14. Changes in marsh soils for six months after a fire

    International Nuclear Information System (INIS)

    Schmalzer, P.A.; Hinkle, C.R.; Koller, A.M. Jr.

    1991-01-01

    In this study, the authors examined changes in the soil nutrient levels in marsh systems after fire. These studies were conducted in conjunction with studies of particulates and gases generated from biomass combustion and flux measures of methane and nitric oxide before and after the fire. Here data are presented through six months postfire, past the time during which flux measurements were made. These data indicate that changes in soil properties occur at different times after the fire and persist for different intervals, indicating the need for long-term postfire observations

  15. Influence of sustainable irrigation regimes and agricultural practices on the soil CO2 fluxes from olive groves in SE Spain

    Science.gov (United States)

    Marañón-Jiménez, Sara; Serrano-Ortíz, Penelope; Vicente-Vicente, Jose Luis; Chamizo, Sonia; Kowalski, Andrew S.

    2017-04-01

    Olive (Olea europaea) is the dominant agriculture plantation in Spain and its main product, olive oil, is vital to the economy of Mediterranean countries. Given the extensive surface dedicated to olive plantations, olive groves can potentially sequester large amounts of carbon and contribute to mitigate climate change. Their potential for carbon sequestration will, however, largely depend on the management and irrigation practices in the olive grove. Although soil respiration is the main path of C release from the terrestrial ecosystems to the atmosphere and a suitable indicator of soil health and fertility, the interaction of agricultural management practices with irrigation regimes on soil CO2 fluxes have not been assessed yet. Here we investigate the influence of the presence of herbaceous cover, use of artificial fertilizers and their interaction with the irrigation regime on the CO2 emission from the soil to the atmosphere. For this, the three agricultural management treatments were established in replicated plots in an olive grove in the SE of Spain: presence of herbaceous cover ("H"), exclusion of herbaceous cover by using herbicides ("NH"), and exclusion of herbaceous cover along with addition of artificial fertilizers (0.55 kg m-2 year-1 of N, P, K solid fertilizer in the proportion 20:10:10, "NHF"). Within each management treatment, three irrigation regimes were also implemented in a randomized design: no-irrigation ("NO") or rain fed, full irrigation (224 l week-1 per olive tree, "MAX"), and a 50% restriction (112 l week-1 per olive tree, "MED"). Soil respiration was measured every 2-3 weeks at 1, 3, and 5 meters from each olive tree together with soil temperature and soil moisture in order to account for the spatial and seasonal variability over the year. Soil respiration was higher when herbaceous cover was present compared to the herbaceous exclusion, whereas the addition of fertilizer did not exert any significant effect. Although the different

  16. Response of Soil Biogeochemistry to Freeze-thaw Cycles: Impacts on Greenhouse Gas Emission and Nutrient Fluxes

    Science.gov (United States)

    Rezanezhad, F.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2014-12-01

    Freeze-thaw is an abiotic stress applied to soils and is a natural process at medium to high latitudes. Freezing and thawing processes influence not only the physical properties of soil, but also the metabolic activity of soil microorganisms. Fungi and bacteria play a crucial role in soil organic matter degradation and the production of greenhouse gases (GHG) such as CO2, CH4 and N2O. Production and consumption of these atmospheric trace gases are the result of biological processes such as photosynthesis, aerobic respiration (CO2), methanogenesis, methanotrophy (CH4), nitrification and denitrification (N2O). To enhance our understanding of the effects of freeze-thaw cycles on soil biogeochemical transformations and fluxes, a highly instrumented soil column experiment was designed to realistically simulate freeze-thaw dynamics under controlled conditions. Pore waters collected periodically from different depths of the column and solid-phase analyses on core material obtained at the initial and end of the experiment highlighted striking geochemical cycling. CO2, CH4 and N2O production at different depths within the column were quantified from dissolved gas concentrations in pore water. Subsequent emissions from the soil surface were determined by direct measurement in the head space. Pulsed CO2 emission to the headspace was observed at the onset of thawing, however, the magnitude of the pulse decreased with each subsequent freeze-thaw cycle indicating depletion of a "freeze-thaw accessible" carbon pool. Pulsed CO2 emission was due to a combination of physical release of gases dissolved in porewater and entrapped below the frozen zone and changing microbial respiration in response to electron acceptor variability (O2, NO3-, SO42-). In this presentation, we focus on soil-specific physical, chemical, microbial factors (e.g. redox conditions, respiration, fermentation) and the mechanisms that drive GHG emission and nutrient cycling in soils under freeze-thaw cycles.

  17. Etched track technique to measure sup 2 sup 2 sup 2 Rn and sup 2 sup 2 sup 0 Rn fluxes on soil surface

    CERN Document Server

    Csige, I

    2003-01-01

    sup 2 sup 2 sup 2 Rn and sup 2 sup 2 sup 0 Rn in the human environment are considered to be a risk factor because of the radiation dose due to the inhalation of their short-lived daughters. Main source of radon is usually the soil; therefore the measurement of fluxes of sup 2 sup 2 sup 2 Rn and sup 2 sup 2 sup 0 Rn on soil surfaces is often a relevant parameter to characterise building site radon potential. An etched track detector technique was developed to measure long-time average sup 2 sup 2 sup 2 Rn and sup 2 sup 2 sup 0 Rn fluxes. (R.P.)

  18. Energy flux simulation in heterogeneous cropland - a two year study

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Biernath, Christian; Heinlein, Florian; Priesack, Eckart

    2016-04-01

    Recent studies show that uncertainties in regional and global climate and weather simulations are partly due to inadequate descriptions of the energy flux exchanges between the land surface and the atmosphere [Stainforth et al. 2005]. One major shortcoming is the limitation of the grid-cell resolution, which is recommended to be about at least 3x3 km² in most models due to limitations in the model physics. To represent each individual grid cell most models select one dominant soil type and one dominant land use type. This resolution, however, is often too coarse in regions where the spatial heterogeneity of soil and land use types are high, e.g. in Central Europe. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. An elegant method to avoid the shortcoming of grid cell resolution is the so called mosaic approach. This approach is part of the recently developed ecosystem model framework Expert-N [Biernath et al. 2013] . The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the soil-plant-atmosphere interface. The simulated energy fluxes were compared with eddy flux tower measurements between the respective fields at the research farm Scheyern, North-West of Munich, Germany. To perform these simulations, we coupled the ecosystem model Expert-N to an analytical footprint model [Mauder & Foken 2011] . The coupled model system has the ability to calculate the mixing ratio of the surface energy fluxes at a given point within one grid cell (in this case at the flux tower between the two fields). The approach accounts for the temporarily and spatially

  19. Measurements and modeling of gas fluxes in unsaturated mine waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Kabwe, L.K.

    2008-07-01

    A technique known as dynamic closed chamber (DDC) was recently developed to measure carbon dioxide (CO{sub 2}) fluxes from the soil surface to the atmosphere. The field application of the DCC was investigated in this thesis with a particular focus on quantifying reaction rates in 2 waste-rock piles at the Key Lake uranium mine in northern Saskatchewan. The dominant geochemical reactions in both waste-rock piles were not typical of acid rock drainage (ARD) waste-rock piles. The CO{sub 2} fluxes measured in this study occur in the organic material underlying the waste rocks. The study provided a complete suite of measurements needed to characterize spatial distribution of CO{sub 2} fluxes on larger-scale studies of waste-rock piles. In comparison to other CO{sub 2} flux measuring techniques, the DCC method accurately quantified field soil respiration and had an added advantage in terms of speed and repeatability. The DCC was also used to investigate CO{sub 2} fluxes under the climatic variables that affect soil water content in waste-rock piles. A simple model for predicting the effects of soil water content on CO{sub 2} diffusion coefficient and concentration profiles was developed and verified. It was concluded that the DCC method is suitable for field applications to quantify CO{sub 2} fluxes and to characterize the spatial and temporal dynamics of CO{sub 2} fluxes from unsaturated C-horizon soils and waste-rock piles.

  20. A Computational Model of Water Migration Flux in Freezing Soil in a Closed System%封闭系统正冻土水流的一个计算模型

    Institute of Scientific and Technical Information of China (English)

    裘春晗

    2005-01-01

    A computational model of water migration flux of fine porous soil in frost heave was investigated in a closed system. The model was established with the heat-mass conservation law and from some previous experimental results. Through defining an auxiliary function an empirical function in the water migration flux, which is difficult to get, was replaced. The data needed are about the water content along the soil column after test with enough long time. We adopt the test data of sample soil columns in [1] to verify the model. The result shows it can reflect the real situation on the whole.

  1. Carbon fluxes of surfaces vs. ecosystems. Advantages of measuring eddy covariance and soil respiration simultaneously in dry grassland ecosystems

    Czech Academy of Sciences Publication Activity Database

    Nagy, Z.; Pintér, K.; Pavelka, Marian; Dařenová, Eva; Balogh, J.

    2011-01-01

    Roč. 8, č. 9 (2011), s. 2523-2534 ISSN 1726-4170 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : carbon fluxes * ecosystems * grassland ecoystems * measuring eddy covariance * soil respiration Subject RIV: EH - Ecology, Behaviour Impact factor: 3.859, year: 2011

  2. The role of soil pH on soil carbonic anhydrase activity

    Science.gov (United States)

    Sauze, Joana; Jones, Sam P.; Wingate, Lisa; Wohl, Steven; Ogée, Jérôme

    2018-01-01

    Carbonic anhydrases (CAs) are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O) of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2-H2O isotopic exchange rate (kiso) in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content) affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content) played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation) that varied with soil texture. The reasons for this offset are still unknown.

  3. The role of soil pH on soil carbonic anhydrase activity

    Directory of Open Access Journals (Sweden)

    J. Sauze

    2018-01-01

    Full Text Available Carbonic anhydrases (CAs are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2–H2O isotopic exchange rate (kiso in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation that varied with soil texture. The reasons for this offset are still unknown.

  4. Effect of Verticillium dahliae soil inoculum levels on spinach seed infection

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Olesen, Merete Halkjær; Deleuran, Lise Christina

    2016-01-01

    Verticillium dahliae is a soilborne pathogen and a threat to spinach seed production. The aim of this study was to understand the relation between V. dahliae soil inoculum and infection in harvested seed. Quantitative polymerase chain reaction was used for quantification of the pathogen. Semifield...... experiments in which spinach was grown in soils with different inoculum levels enabled us to determine a threshold level for V. dahliae DNA of 0.003 ng/g of soil for seed infection to occur. Soils from production fields were sampled in 2013 and 2014 during and before planting, as well as the harvested seed....... Seed from plants grown in infested soils were infected with V. dahliae in samples from both the semifield and open-field experiments. Lower levels of pathogen were found in seed from spinach grown in soils with a scattered distribution of V. dahliae (one or two positive of three soil subsamples) than...

  5. Surface-Air Mercury Fluxes Across Western North America: A Synthesis of Spatial Trends and Controlling Variables.

    Science.gov (United States)

    Eckley, C.; Tate, M.; Lin, C. J.; Gustin, M. S.; Dent, S.; Eagles-Smith, C.; Lutz, M.; Wickland, K.; Wang, B.; Gray, J.; Edwards, G. C.; Krabbenhoft, D. P.; Smith, D. B.

    2016-12-01

    Mercury (Hg) emission and deposition can occur to and from soils and are an important component of the global atmospheric Hg budget. This presentation focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  6. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Science.gov (United States)

    Eckley, Chris S.; Tate, Michael T.; Lin, Che-Jen; Gustin, Mae S.; Dent, Stephen; Eagles-Smith, Collin A.; Lutz, Michelle A; Wickland, Kimberly; Wang, Bronwen; Gray, John E.; Edwards, Grant; Krabbenhoft, David P.; Smith, David

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  7. Soil Porewater Salinity Response to Sea-level Rise in Tidal Freshwater Forested Wetlands: A Modeling Study

    Science.gov (United States)

    Stagg, C. L.; Wang, H.; Krauss, K.; Conrads, P. A.; Swarzenski, C.; Duberstein, J. A.; DeAngelis, D.

    2017-12-01

    There is a growing concern about the adverse effects of salt water intrusion via tidal rivers and creeks into tidal freshwater forested wetlands (TFFWs) due to rising sea levels and reduction of freshwater flow. The distribution and composition of plant species, vegetation productivity, and biogeochemical functions including carbon sequestration capacity and flux rates in TFFWs have been found to be affected by increasing river and soil porewater salinities, with significant shifts occurring at a porewater salinity threshold of 3 PSU. However, the drivers of soil porewater salinity, which impact the health and ecological functions of TFFWs remains unclear, limiting our capability of predicting the future impacts of saltwater intrusion on ecosystem services provided by TFFWs. In this study, we developed a soil porewater salinity model for TFFWs based on an existing salt and water balance model with modifications to several key features such as the feedback mechanisms of soil salinity on evapotranspiration reduction and hydraulic conductivity. We selected sites along the floodplains of two rivers, the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) that represent landscape salinity gradients of both surface water and soil porewater from tidal influence of the Atlantic Ocean. These sites represent healthy, moderately and highly salt-impacted forests, and oligohaline marshes. The soil porewater salinity model was calibrated and validated using field data collected at these sites throughout 2008-2016. The model results agreed well with field measurements. Analyses of the preliminary simulation results indicate that the magnitude, seasonal and annual variability, and duration of threshold salinities (e.g., 3 PSU) tend to vary significantly with vegetation status and type (i.e., healthy, degraded forests, and oligohaline marshes), especially during drought conditions. The soil porewater salinity model could be coupled with a wetland soil biogeochemistry

  8. A process-based {sup 222}radon flux map for Europe and its comparison to long-term observations

    Energy Technology Data Exchange (ETDEWEB)

    Karstens, U. [Max-Planck-Instistut fuer Biogeochemie, Jena (Germany); Schwingshackl, C.; Schmithuesen, D.; Levin, I. [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik

    2015-07-01

    Detailed {sup 222}radon ({sup 222}Rn) flux maps are an essential pre-requisite for the use of radon in atmospheric transport studies. Here we present a high-resolution {sup 222}Rn flux map for Europe, based on a parameterization of {sup 222}Rn production and transport in the soil. The {sup 222}Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water-table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. The implemented diffusion parameterization was tested against campaign-based {sup 222}Rn soil profile measurements. Monthly {sup 222}Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083 x 0.083 and compared to long-term direct measurements of {sup 222}Rn exhalation rates in different areas of Europe. The two realizations of the {sup 222}Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean {sup 222}Rn flux from soils in Europe is estimated to be 10 mBq m{sup -2} s{sup -1} (ERA-Interim/Land soil moisture) or 15 mBq m{sup -2} s{sup -1} (GLDAS (Global Land Data Assimilation System) Noah soil moisture) for the period 2006-2010. The corresponding seasonal variations with low fluxes in winter and high fluxes in summer range in the two realizations from ca. 7 to ca. 14 mBq m{sup -2} s{sup -1} and from ca. 11 to ca. 20 mBq m{sup -2} s{sup -1}, respectively. These systematic differences highlight the importance of realistic soil moisture data for a reliable estimation of {sup 222}Rn exhalation rates. Comparison with

  9. Interpreting the variations in atmospheric methane fluxes observed above a restored wetland

    DEFF Research Database (Denmark)

    Herbst, Mathias; Friborg, Thomas; Ringgaard, Rasmus

    2011-01-01

    The eddy flux of methane (CH4) was measured over 14 months above a restored wetland in western Denmark. The average annual daily CH4 flux was 30.2mgm-2 d-1, but the daily emission rates varied considerably over time. Several factors were identified that explained some of this variation. (1) Grazing...... that the variability in the CH4 fluxes strongly affects the greenhouse gas sink strength of the restored wetland.......4 flux to soil temperature at 20cm depth was found for most of the study period, but not for parts of the summer season that coincided with a low water level in the river flowing through the wetland. (4) Additional variations in the CH4 emission rates were related to the spatial heterogeneity...

  10. Assessment of winter fluxes of CO2 and CH4 in boreal forest soils of central Alaska estimated by the profile method and the chamber method: a diagnosis of methane emission and implications for the regional carbon budget

    International Nuclear Information System (INIS)

    Kim, Yongwon; Ueyama, Masahito; Harazono, Yoshinobu; Tanaka, Noriyuki; Nakagawa, Fumiko; Tsunogai, Urumu

    2007-01-01

    This research was carried out to estimate the winter fluxes of CO 2 and CH 4 using the concentration profile method and the chamber method in black spruce forest soils in central Alaska during the winter of 2004/5. The average winter fluxes of CO 2 and CH 4 by chamber and profile methods were 0.24 ± 0.06 (SE; standard error) and 0.21 ± 0.06 gCO 2 -C/m2/d, and 21.4 ± 5.6 and 21.4 ± 14 μgCH 4 -C/m2/hr. This suggests that the fluxes estimated by the two methods are not significantly different based on a one-way ANOVA with a 95% confidence level. The hypothesis on the processes of CH 4 transport/production/emission in underlying snow-covered boreal forest soils is proven by the pressure differences between air and in soil at 30 cm depth. The winter CO 2 emission corresponds to 23% of the annual CO 2 emitted from Alaska black spruce forest soils, which resulted in the sum of mainly root respiration and microbial respiration during the winter based on the (delta) 13 CO 2 of -2.25%. The average wintertime emissions of CO 2 and CH 4 were 49 ± 13 gCO 2 -C/m 2 /season and 0.11 ± 0.07 gCH 4 -C/m 2 /season, respectively. This implies that winter emissions of CO 2 and CH 4 are an important part of the annual carbon budget in seasonally snow-covered terrain of typical boreal forest soils

  11. Measurement of trifluralin volatilization in the field: Relation to soil residue and effect of soil incorporation

    International Nuclear Information System (INIS)

    Bedos, C.; Rousseau-Djabri, M.F.; Gabrielle, B.; Flura, D.; Durand, B.; Barriuso, E.; Cellier, P.

    2006-01-01

    Volatilization may represent a major dissipation pathway for pesticides applied to soils or crops. A field experiment (September, 2002), consisted in volatilization fluxes measurements during 6 days, covering the periods before and after soil incorporation carried out 24 h after trifluralin spraying on bare soil. Evolution of concentration in soil was measured during 101 days, together with soil physical and meteorological variables. Volatilization fluxes were very high immediately after application (1900 ng m -2 s -1 ), decreased down to 100 ng m -2 s -1 in the following 24 h. Soil incorporation strongly abated trifluralin concentration in the air. 99% of the total volatilization losses recorded over the 6 days following application occurred before incorporation. Volatilization fluxes evidenced a diurnal cycle driven by environmental conditions. Soil trifluralin residues could still be quantified 101 days after application. Our results highlight the caution required when using soil degradation half-life values in the field for volatile compounds. - Losses by volatilization contribute significantly to soil dissipation of the herbicide trifluralin before its soil incorporation

  12. Review of State Soil Cleanup Levels for Dioxin (December 2009)

    Science.gov (United States)

    This final report summarizes a survey of state soil cleanup levels for dioxin and characterizes the science underlying these values. The objective of this project was to summarize existing state cleanup levels for dioxin in soil, together with their scientific bases where availa...

  13. Radium - 226 levels in some sudanese plants and soils

    International Nuclear Information System (INIS)

    Sam, A.K.

    1993-01-01

    The natural levels of 226 Ra in plant and soil samples have been studied. The field study was mainly conducted in western Sudan (Darfur and Kurdofan) where areas of high natural background radiation have been identified and Khartoum area was taken as a control to (i) assess in natural setting the soil-to-plant concentration ratios (concentration in dry sample / concentration in dry soil) of the naturally occurring radionuclide 226 Ra, (ii) establish base-line data on Radium activity concentration levels in environmental materials and (iii) explore the area of high natural radiation background in western Sudan.Low level gamma spectrometry, employing high purity germanium detector (HPGe) of relative efficiency 12%, has been used for the determination of 226 Ra activity concentrations in plant and soil samples. The mean Radium activity concentration found in soil ranged from 14.41 Bq/Kg to 79.08 Bq/Kg, the values correspond to the reported normal background levels of 226 Ra in soils worldwide. Radium activity concentrations found in Sudanese plants were significantly higher compared to those related to plants from normal background regions and significantly lower than those reported for plants from high background regions in other countries. The mean soil/plant concentration ratios (CRs) found in this study were 0.12, 0.15, 0.17 and 0.08 for whole plants, fruits and leafy vegetables, root vegetables and grains, respectively. These ranges of CR values are comparable with overall range of CR where environmental conditions are normal. The estimated daily intakes by individuals consuming foods of local origin were 1.00, 10.4 and 7.91 Bq/Day of radium Khour Abu Habil, Arkuri and Dumpir, respectively. Since the dietary habits were different, as it was noticed, these results have been much lower in comparison with those obtained from some European countries and United States. (author), 44 refs., 18 tabs., 13 figs

  14. Chemical and biological attributes of a lowland soil affected by land leveling

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2013-11-01

    Full Text Available The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC. Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.

  15. Phytoextraction of low level U-contaminated soil

    International Nuclear Information System (INIS)

    Vandenhove, H.A.; Hees, M. van

    2002-01-01

    The nuclear fuel cycle may be a source of environmental contamination. Uranium exploitation produces large quantities of wastes but also accidental spills at nuclear fuel production, reprocessing or waste treatment plants have led to soil contamination with uranium. U-contaminated soil is generally excavated, packaged and removed which is a costly enterprise. Soil washing has also shown promising in removing U from contaminated soil, but results in the generation of liquid wastes and the deterioration of soil properties. In contrast, phytoextraction, the use of plants to remove contaminants from polluted soil, allows for in situ treatment and does not generate liquid wastes. Furthermore, the contaminated site is covered by plants during phytoextraction and wind and water erosion will be reduced. The phytoextraction potential depends on the amount of radionuclides extracted and the biomass produced. Hyper-accumulating plants often have a low biomass production. Moreover, uranium soil-to-plant transfer factors (TF: ratio of U concentration in dry plant tissue to concentration in soil) rarely exceed a value of 0.1 gg -1 . With a TF of 0.1 gg -1 and a biomass yield of 15t dry weigh ha -1 only 0.1% of the soil uranium will be annually immobilised in the plant biomass. These figures clearly show that the phytoextraction option is not a feasible remediation option, unless the uranium bioavailability could be drastically increased. It was shown that citric acid addition to highly contaminated U contaminated soil increased the U-accumulation of Brassica juncea 1000-fold. The objective of the present paper is to find out if low level U contaminated soil can be phytoextracted in order to achieve proposed release limits

  16. Soil respiration and its role in Russia's terrestrial C flux balance for the Kyoto baseline year

    International Nuclear Information System (INIS)

    Stolbovoi, Vladimir

    2003-01-01

    This study introduces a transparent, operational model of estimating soil respiration (SR) to meet the requirements of the Kyoto Protocol of the United Nation Framework Convention on Climate Change within a framework of full carbon accounting (Nilsson et al.; 2000). By applying this model, we are able to define SR for the Kyoto 1990 baseline year for Russia (3200 Tg C), and establish soil emission thresholds for any spatial units, e.g. vegetation zones and land-use patterns. This model is built upon a fundamental biogeochemical cycle and provides a scientific basis for carbon management. SR comprised about 74% of the photosynthetically assimilated carbon in 1990, with the remainder accounted for in several areas. The carbon flux balance is, therefore, found to be closed for Russia. Our findings suggest that incomplete accounting is the reason for missing carbon globally

  17. Contribution of soil respiration to the global carbon equation.

    Science.gov (United States)

    Xu, Ming; Shang, Hua

    2016-09-20

    Soil respiration (Rs) is the second largest carbon flux next to GPP between the terrestrial ecosystem (the largest organic carbon pool) and the atmosphere at a global scale. Given their critical role in the global carbon cycle, Rs measurement and modeling issues have been well reviewed in previous studies. In this paper, we briefly review advances in soil organic carbon (SOC) decomposition processes and the factors affecting Rs. We examine the spatial and temporal distribution of Rs measurements available in the literature and found that most of the measurements were conducted in North America, Europe, and East Asia, with major gaps in Africa, East Europe, North Asia, Southeast Asia, and Australia, especially in dry ecosystems. We discuss the potential problems of measuring Rs on slope soils and propose using obliquely-cut soil collars to solve the existing problems. We synthesize previous estimates of global Rs flux and find that the estimates ranged from 50 PgC/yr to 98 PgC/yr and the error associated with each estimation was also high (4 PgC/yr to 33.2 PgC/yr). Using a newly integrated database of Rs measurements and the MODIS vegetation map, we estimate that the global annual Rs flux is 94.3 PgC/yr with an estimation error of 17.9 PgC/yr at a 95% confidence level. The uneven distribution of Rs measurements limits our ability to improve the accuracy of estimation. Based on the global estimation of Rs flux, we found that Rs is highly correlated with GPP and NPP at the biome level, highlighting the role of Rs in global carbon budgets. Copyright © 2016. Published by Elsevier GmbH.

  18. Modeling of phosphorus fluxes produced by wild fires at watershed scales.

    Science.gov (United States)

    Matyjasik, M.; Hernandez, M.; Shaw, N.; Baker, M.; Fowles, M. T.; Cisney, T. A.; Jex, A. P.; Moisen, G.

    2017-12-01

    River runoff is one of the controlling processes in the terrestrial phosphorus cycle. Phosphorus is often a limiting factor in fresh water. One of the factors that has not been studied and modeled in detail is phosporus flux produced from forest wild fires. Phosphate released by weathering is quickly absorbed in soils. Forest wild fires expose barren soils to intensive erosion, thus releasing relatively large fluxes of phosphorus. Measurements from three control burn sites were used to correlate erosion with phosphorus fluxes. These results were used to model phosphorus fluxes from burned watersheds during a five year long period after fires occurred. Erosion in our model is simulated using a combination of two models: the WEPP (USDA Water Erosion Prediction Project) and the GeoWEPP (GIS-based Water Erosion Prediction Project). Erosion produced from forest disturbances is predicted for any watershed using hydrologic, soil, and meteorological data unique to the individual watersheds or individual slopes. The erosion results are modified for different textural soil classes and slope angles to model fluxes of phosphorus. The results of these models are calibrated using measured concentrations of phosphorus for three watersheds located in the Interior Western United States. The results will help the United States Forest Service manage phosporus fluxes in national forests.

  19. An overview of the measurements of soil moisture and modeling of moisture flux in FIFE

    Science.gov (United States)

    Wang, J. R.

    1992-01-01

    Measurements of soil moisture and calculations of moisture transfer in the soil medium and at the air-soil interface were performed over a 15-km by 15-km test site during FIFE in 1987 and 1989. The measurements included intensive soil moisture sampling at the ground level and surveys at aircraft altitudes by several passive and active microwave sensors as well as a gamma radiation device.

  20. Physicochemical Characteristics and Heavy Metal Levels in Soil ...

    African Journals Online (AJOL)

    ADOWIE PERE

    weathering of mineral; the anthropogenic sources are associated mainly with ... al., 2013 reported high levels of Cd, Zn, Ni, Cr and. Pb from soil .... Determination of trace elements (Zn and Mn): 5 g of the dried ..... vehicles constitute principal source of Pb. Lead ..... Interaction between metals and soil organic matter in various.

  1. Flux Analysis of Free Amino Sugars and Amino Acids in Soils by Isotope Tracing with a Novel Liquid Chromatography/High Resolution Mass Spectrometry Platform.

    Science.gov (United States)

    Hu, Yuntao; Zheng, Qing; Wanek, Wolfgang

    2017-09-05

    Soil fluxomics analysis can provide pivotal information for understanding soil biochemical pathways and their regulation, but direct measurement methods are rare. Here, we describe an approach to measure soil extracellular metabolite (amino sugar and amino acid) concentrations and fluxes based on a 15 N isotope pool dilution technique via liquid chromatography and high-resolution mass spectrometry. We produced commercially unavailable 15 N and 13 C labeled amino sugars and amino acids by hydrolyzing peptidoglycan isolated from isotopically labeled bacterial biomass and used them as tracers ( 15 N) and internal standards ( 13 C). High-resolution (Orbitrap Exactive) MS with a resolution of 50 000 allowed us to separate different stable isotope labeled analogues across a large range of metabolites. The utilization of 13 C internal standards greatly improved the accuracy and reliability of absolute quantification. We successfully applied this method to two types of soils and quantified the extracellular gross fluxes of 2 amino sugars, 18 amino acids, and 4 amino acid enantiomers. Compared to the influx and efflux rates of most amino acids, similar ones were found for glucosamine, indicating that this amino sugar is released through peptidoglycan and chitin decomposition and serves as an important nitrogen source for soil microorganisms. d-Alanine and d-glutamic acid derived from peptidoglycan decomposition exhibited similar turnover rates as their l-enantiomers. This novel approach offers new strategies to advance our understanding of the production and transformation pathways of soil organic N metabolites, including the unknown contributions of peptidoglycan and chitin decomposition to soil organic N cycling.

  2. Flux Analysis of Free Amino Sugars and Amino Acids in Soils by Isotope Tracing with a Novel Liquid Chromatography/High Resolution Mass Spectrometry Platform

    Science.gov (United States)

    2017-01-01

    Soil fluxomics analysis can provide pivotal information for understanding soil biochemical pathways and their regulation, but direct measurement methods are rare. Here, we describe an approach to measure soil extracellular metabolite (amino sugar and amino acid) concentrations and fluxes based on a 15N isotope pool dilution technique via liquid chromatography and high-resolution mass spectrometry. We produced commercially unavailable 15N and 13C labeled amino sugars and amino acids by hydrolyzing peptidoglycan isolated from isotopically labeled bacterial biomass and used them as tracers (15N) and internal standards (13C). High-resolution (Orbitrap Exactive) MS with a resolution of 50 000 allowed us to separate different stable isotope labeled analogues across a large range of metabolites. The utilization of 13C internal standards greatly improved the accuracy and reliability of absolute quantification. We successfully applied this method to two types of soils and quantified the extracellular gross fluxes of 2 amino sugars, 18 amino acids, and 4 amino acid enantiomers. Compared to the influx and efflux rates of most amino acids, similar ones were found for glucosamine, indicating that this amino sugar is released through peptidoglycan and chitin decomposition and serves as an important nitrogen source for soil microorganisms. d-Alanine and d-glutamic acid derived from peptidoglycan decomposition exhibited similar turnover rates as their l-enantiomers. This novel approach offers new strategies to advance our understanding of the production and transformation pathways of soil organic N metabolites, including the unknown contributions of peptidoglycan and chitin decomposition to soil organic N cycling. PMID:28776982

  3. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    Science.gov (United States)

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should

  4. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    International Nuclear Information System (INIS)

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-01-01

    Soil properties and soil–atmosphere fluxes of CO 2 , CH 4 and N 2 O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO 2 -equivalent flux of 137.27 mg CO 2 m −2 h −1 , which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH 4 and N 2 O fluxes from Spartina soil were 13.77 and 1.14 μmol m −2 h −1 , respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation

  5. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yaping [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China); Chen, Guangcheng [Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian (China); Ye, Yong, E-mail: yeyong.xmu@gmail.com [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China)

    2015-09-01

    Soil properties and soil–atmosphere fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO{sub 2}-equivalent flux of 137.27 mg CO{sub 2} m{sup −2} h{sup −1}, which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH{sub 4} and N{sub 2}O fluxes from Spartina soil were 13.77 and 1.14 μmol m{sup −2} h{sup −1}, respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the

  6. Effects of soil water decline on diurnal and seasonal variations in sap flux density for differently aged Japanese cypress (Chamaecyparis obtusa trees

    Directory of Open Access Journals (Sweden)

    Kenji Tsuruta

    2014-01-01

    Full Text Available The effects of soil drought on transpiration are often neglected when predicting transpiration for forests in humid regions under the influence of the Asian monsoon. These effects have indeed been neglected for Japanese cypress, Chamaecyparis obtusa, a major plantation species in Japan and the surrounding area, probably because previous studies have reported no clear effects of soil drought on transpiration for Japanese cypress forests. However, a few studies have reported an apparent reduction in transpiration with soil drought for young Japanese cypress forests. It remains unclear whether such a reduction in transpiration is limited to young Japanese cypress forests or if it is not uncommon for mature Japanese cypress forests, which occupy a large area in Japan. To clarify this point, we conducted sap flux measurements in a year with soil drought on three differently aged Japanese cypress stands including mature (43 years old and relatively young (23 and 26 years old trees. In a diurnal time scale, a cross correlation analysis of sap flux density (Fd and vapor pressure deficit (VPD showed that the time lags between Fd and VPD were 1-3 h in dry soil conditions. These were larger than those of wet soil conditions (<1 h for all sample trees. Fd at a given VPD in dry soil conditions was smaller than that in wet soil conditions for all sample trees; a 28%–63% reduction in the rate of change in Fd was observed under dry soil conditions. Because our results were obtained when the non-exceedance probability of recorded monthly precipitation was 9%–18%, the results suggest the need to consider the effects of soil drought more extensively. Those effects should be considered for not only relatively young but also mature Japanese cypress when predicting diurnal and seasonal patterns of transpiration in years with soil drought, and when predicting inter-annual patterns of transpiration for Japanese cypress despite humid

  7. On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: Analysis of radiation and convection heat transfer

    International Nuclear Information System (INIS)

    Abdel-Ghany, Ahmed M.; Kozai, Toyoki

    2006-01-01

    A physical model for analyzing the radiative and convective heat transfer in a fog cooled, naturally ventilated greenhouse was developed for estimating the overall heat transmission coefficient based on the conduction, convection and thermal radiation heat transfer coefficients and for predicting the soil heat flux. The contribution of the water vapor of the inside air to the emission and absorption of thermal radiation was determined. Measurements of the outside and inside greenhouse environments to be used in the analysis were conducted around solar noon (12:19-13:00) on a hot sunny day to provide the maximum solar radiation transmission into the greenhouse. The net solar radiation flux measured at the greenhouse floor showed a reasonable agreement with the predicted value. The net fluxes were estimated around noon. The average net radiation (solar and thermal) at the soil surface was 220.0 W m -2 , the average soil heat flux was 155.0 W m -2 and the average contribution of the water vapor of the inside air to the thermal radiation was 22.0 W m -2 . The average overall heat transmission coefficient was 4.0 W m -2 C -1 and was in the range between 3.0 W m -2 C -1 and 6.0 W m -2 C -1 under the different hot summer conditions between the inside and outside of the naturally ventilated, fog cooled greenhouse

  8. Inventories and fluxes of 137Cs in the Syrian land

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Amin, Y.

    2005-03-01

    Cesium-137 inventories and atmospheric fluxes have been determined using radiocesium distributions in undistributed soil profiles, collected from 38 sites distributed all over the Syrian lands. Results have shown that 137 Cs inventories determination by Soil Layers Sum Method is more accurate than the Integration Method, where the best curve fitting of 137 Cs distribution with depth is difficult to establish. 137 Cs inventories ranged from 441 Bq.m - 2 and 13312 Bq.m - 2 using the Layers Sum Method with a mean value of 3679 Bq.m - 2; the highest values observed were in the coastal, middle and north east regions. This is due to the fact that most of Chernobyl accident atmospheric fall-out of cesium 137 had entered the Syrian land came from the west boarders (Mediterranean sea). While the lowest values were found to be in the samples collected from the east south region. In addition, 137 Cs flux ranged from 3.1 kBq m - 2y - 1 and 527.8 kBq m - 2 y - 1 with a mean value of 65.7 kBq m - 2y - 1. Moreover, there was a semi linear relationship found between 137 Cs flux and the height above sea level. While no linear relationship was found between 137 Cs flux and annual rainfall. On the other hand, the external radiation dose to Syrians that due to gamma-rays emitted from cesium 137 decay has been determined and reached a mean value of 166μ Sv.y - 1. This value is about 20% of the radiation dose received by the Syrian from naturally occurring radionuclides in soil. (Author)

  9. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    Science.gov (United States)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  10. Interpreting diel hysteresis between soil respiration and temperature

    Science.gov (United States)

    C. Phillips; N. Nickerson; D. Risk; B.J. Bond

    2011-01-01

    Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a...

  11. Determination of spatial continuity of soil lead levels in an urban residential neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    Shinn, N.J.; Bing-Canar, J.; Cailas, M.; Peneff, N.; Binns, H.J.

    2000-01-01

    This study uses geostatistical techniques to model and estimate soil lead levels in an urban, residential neighborhood. Sixty-two composite soil samples in a four-block area of brick and stone homes were obtained. The spatial continuity of soil lead levels was modeled with a semi-variogram, which was then used to estimate lead levels at unsampled locations, a process called kriging. Because soil lead levels were spatially correlated, it is likely that a nonrandom process generated the lead distribution found. This finding signifies the existence of lead sources which were tentatively identified on historical maps of the area and from past traffic volume patterns. The distribution of kriged estimates of soil lead levels provides an explanatory tool for exploring and identifying potential sources and may be useful for targeting urban soil abatement efforts.

  12. Levels of 137Cs and 40K in wood ash-amended soils

    International Nuclear Information System (INIS)

    Ohno, Tsutomu; Hess, C.T.

    1994-01-01

    Wood ash is a residual material produced at an annual rate of 1.5-3.0 million tons by wood burning power plants in the USA. Up to 80% of the wood ash generated in northeastern USA is landspread on agricultural soils. Recently, concern has arisen regarding the 137 Cs content of wood ash and levels of 137 Cs of wood ash-amended soils. The 137 Cs originated primarily from above ground nuclear weapons testing in the 1950s and 1960s. This study examined the total and pH 3, NH 4 OAc extractable levels of 137 Cs and 40 K in three soils incubated in the laboratory with 0, 3 and 9 g of wood ash on a calcium carbonate equivalence basis kg -1 soil. The wood ash contained 137 Cs and 40 K at 3920 and 21'700 pCi kg -1 , respectively. At the regulated wood ash application rate limit, 3 g wood ash (calcium carbonate equivalent basis) kg -1 of soil, there was no statistical difference from the control treatment in both total and soluble 137 Cs and 40 K levels. For one soil, there was an increase in the 137 Cs level when wood ash was amended at 9 g wood ash (calcium carbonate equivalent basis) kg -1 soil. The 137 Cs was strongly bound to the cation exchange sites of the soils with the average fraction soluble in pH 3, NH 4 OAc solution at 4.8% in the mineral soils and 0.9% in the organic soil. Considering the current limits on permitted wood ash application rates to soils, there was no statistically significant effect on the levels of 137 Cs or 40 K found in wood ash-amended soils

  13. Greenhouse gas fluxes of grazed and hayed wetland catchments in the U.S. Prairie Pothole Ecoregion

    Science.gov (United States)

    Finocchiaro, Raymond G.; Tangen, Brian A.; Gleason, Robert A.

    2014-01-01

    Wetland catchments are major ecosystems in the Prairie Pothole Region (PPR) and play an important role in greenhouse gases (GHG) flux. However, there is limited information regarding effects of land-use on GHG fluxes from these wetland systems. We examined the effects of grazing and haying, two common land-use practices in the region, on GHG fluxes from wetland catchments during 2007 and 2008. Fluxes of methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), along with soil water content and temperature, were measured along a topographic gradient every other week during the growing season near Ipswich, SD, USA. Closed, opaque chambers were used to measure fluxes of soil and plant respiration from native sod catchments that were grazed or left idle, and from recently restored catchments which were seeded with native plant species; half of these catchments were hayed once during the growing season. Catchments were adjacent to each other and had similar soils, soil nitrogen and organic carbon content, precipitation, and vegetation. When compared with idle catchments, grazing as a land-use had little effect on GHG fluxes. Likewise, haying had little effect on fluxes of CH4 and N2O compared with non-hayed catchments. Haying, however, did have a significant effect on combined soil and vegetative CO2 flux in restored wetland catchments owing to the immediate and comprehensive effect haying has on plant productivity. This study also examined soil conditions that affect GHG fluxes and provides cumulative annual estimates of GHG fluxes from wetland catchment in the PPR.

  14. Near-Continuous Isotopic Characterization of Soil N2O Fluxes from Maize Production

    Science.gov (United States)

    Anex, R. P.; Francis Clar, J.

    2015-12-01

    Isotopomer ratios of N2O and especially intramolecular 15N site preference (SP) have been proposed as indicators of the sources of N2O and for providing insight into the contributions of different microbial processes. Current knowledge, however, is mainly based on pure culture studies and laboratory flask studies using mass spectrometric analysis. Recent development of laser spectroscopic methods has made possible high-precision, in situ measurements. We present results from a maize production field in Columbia County, Wisconsin, USA. Data were collected from the fertilized maize phase of a maize-soybean rotation. N2O mole fractions and isotopic composition were determined using an automatic gas flux measurement system comprising a set of custom-designed automatic chambers, circulating gas paths and an OA-ICOS N2O Isotope Analyzer (Los Gatos Research, Inc., Model 914-0027). The instrument system allows for up to 15 user programmable soil gas chambers. Wide dynamic range and parts-per-billion precision of OA-ICOS laser absorption instrument allows for extremely rapid estimation of N2O fluxes. Current operational settings provide measurements of N2O and its isotopes every 20 seconds with a precision of 0.1 ± 0.050 PPB. Comparison of measurements from four chambers (two between row and two in-row) show very different aggregate N2O flux, but SP values suggest similar sources from nitrifier denitrification and incomplete bacterial denitrification. SP values reported are being measured throughout the current growing season. To date, the majority of values are consistent with an origin from bacterial denitrification and coincide with periods of high water filled pore space.

  15. Ecological Role of Soils upon Radioactive Contamination

    Science.gov (United States)

    Tsvetnov, Evgeny; Shcheglov, Alexei; Tsvenova, Olga

    2016-04-01

    The ecological role of soils upon radioactive contamination is clearly manifested in the system of notions about ecosystems services, i.e., benefits gained by humans from ecosystems and their components, including soils (Millennium Ecosystem Assessment, 2005). For the soils, these services are considered on the basis of soil functions in the biosphere that belong to the protective ecosystem functions within the group of soil functions known under the names of "Buffer and protective biogeocenotic shield" (at the level of particular biogeocenoses) and "Protective shield of the biosphere" (at the global biospheric level) (according to Dobrovol'skii & Nikitin, 2005). With respect to radionuclides, this group includes (1) the depositing function, i.e., the accumulation and long-term sequestration of radioactive substances by the soil after atmospheric fallout; (2) the geochemical function, i.e., the regulation of horizontal and vertical fluxes of radionuclides in the system of geochemically conjugated landscapes and in the soil-groundwater and soil-plant systems; and (3) the dose-forming function that is manifested by the shielding capacity of the soil with respect to the external ionizing radiation (lowering of the dose from external radiation) and by the regulation of the migration of radionuclides in the trophic chain (lowering of the dose from internal radiation). The depositing and geochemical functions of the soils are interrelated, which is seen from quantitative estimates of the dynamics of the fluxes of radionuclides in the considered systems (soil-plant, soil-groundwater, etc.). The downward migration of radionuclides into the lower soil layers proceeds very slowly: for decades, more than 90% of the pool of radionuclides is stored in the topmost 10 cm of the soil profile. In the first 3-5 years after the fallout, the downward migration of radionuclides with infiltrating water flows decreases from several percent to decimals and hundredths of percent from the

  16. Phytoextraction for clean-up of low-level uranium contaminated soil evaluated

    International Nuclear Information System (INIS)

    Vandenhove, H.; Hees, M. van

    2004-01-01

    Spills in the nuclear fuel cycle have led to soil contamination with uranium. In case of small contamination just above release levels, low-cost yet sufficiently efficient remedial measures are recommended. This study was executed to test if low-level U contaminated sandy soil from a nuclear fuel processing site could be phytoextracted in order to attain the required release limits. Two soils were tested: a control soil (317 Bq 238 U kg -1 ) and the same soil washed with bicarbonate (69 Bq 238 U kg -1 ). Ryegrass (Lolium perenne cv. Melvina) and Indian mustard (Brassica juncea cv. Vitasso) were used as test plants. The annual removal of soil activity by the biomass was less than 0.1%. The addition of citric acid (25 mmol kg -1 ) 1 week before the harvest increased U uptake up to 500-fold. With a ryegrass and mustard yield of 15,000 and 10,000 kg ha -1 , respectively, up to 3.5% and 4.6% of the soil activity could be removed annually by the biomass. With a desired activity reduction level of 1.5 and 5 for the bicarbonate-washed and control soil, respectively, it would take 10-50 years to attain the release limit. However, citric acid addition resulted in a decreased dry weight production

  17. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  18. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content

    Science.gov (United States)

    Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith

    2007-01-01

    Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...

  19. Competition for light and water in a coupled soil-plant system

    Science.gov (United States)

    Manoli, Gabriele; Huang, Cheng-Wei; Bonetti, Sara; Domec, Jean-Christophe; Marani, Marco; Katul, Gabriel

    2017-10-01

    It is generally accepted that resource availability shapes the structure and function of many ecosystems. Within the soil-plant-atmosphere (SPA) system, resource availability fluctuates in space and time whereas access to resources by individuals is further impacted by plant-to-plant competition. Likewise, transport and transformation of resources within an individual plant is governed by numerous interacting biotic and abiotic processes. The work here explores the co-limitations on water losses and carbon uptake within the SPA arising from fluctuating resource availability and competition. In particular, the goal is to unfold the interplay between plant access and competition for water and light, as well as the impact of transport/redistribution processes on leaf-level carbon assimilation and water fluxes within forest stands. A framework is proposed that couples a three-dimensional representation of soil-root exchanges with a one-dimensional description of stem water flow and storage, canopy photosynthesis, and transpiration. The model links soil moisture redistribution, root water uptake, xylem water flow and storage, leaf potential and stomatal conductance as driven by supply and demand for water and carbon. The model is then used to investigate plant drought resilience of overstory-understory trees simultaneously competing for water and light. Simulation results reveal that understory-overstory interactions increase ecosystem resilience to drought (i.e. stand-level carbon assimilation rates and water fluxes can be sustained at lower root-zone soil water potentials). This resilience enhancement originates from reduced transpiration (due to shading) and hydraulic redistribution in soil supporting photosynthesis over prolonged periods of drought. In particular, the presence of different rooting systems generates localized hydraulic redistribution fluxes that sustain understory transpiration through overstory-understory interactions. Such complex SPA dynamics

  20. EFFECT OF DIFFERENT LEVELS AGROECOLOGICAL LOADS ON BIOCHEMICAL CHARACTERISTICS OF SOIL

    Directory of Open Access Journals (Sweden)

    A. V. Shchur

    2016-01-01

    Full Text Available Aim. To study the effect of different levels of agri-environmental loads on the enzymatic activity of the soil.Methods. Isolation of soil fauna was conducted by thermogradient. Ecological characteristics of soil biota community was determined by ecological indices. The enzymatic activity of soil under different crops and at different levels of agri-environmental loads in our experiments was determined by methods proven in the laboratory soil enzymology Institute of Experimental Botany name V.F. Kuprevich and Belorussian Research Institute for Soil Science and Agricultural Chemistry.Results. Community soil biota is polydominant character, as evidenced by the values of environmental indices. It does not set a significant impact on the community agrotechnological loads of soil micro and mesofauna. Absolute figures soil phosphatase activity averaged over all embodiments without recourse formation were higher by 63% compared with plowing. Invertase and catalase activity was much higher in stubble on all variants of the experiment and selection of terms. The content of peroxidase lower under pure steam. The laws have taken place in respect of peroxidase activity, marked for polifenoloksidase activity.Main conclusion. There was no major change in the ecological characteristics of soil biota. In the enzymatic activity of soil influenced by sampling time, fertilizer system, soil tillage methods and cultivated crops.

  1. Experimental assessment of N2O background fluxes in grassland systems

    International Nuclear Information System (INIS)

    Neftel, Albrecht; Flechard, Chris; Ammann, Christof; Conen, Franz; Emmenegger, Lukas; Zeyer, Kerstin

    2007-01-01

    In the absence of, or between, fertilization events in agricultural systems, soils are generally assumed to emit N 2 O at a small rate, often described as the 'background' flux. In contrast, net uptake of N 2 O by soil has been observed in many field studies, but has not gained much attention. Observations of net uptake of N 2 O form a large fraction (about half) of all individual flux measurements in a long-term time series at our temperate fertilized grassland site. Individual uptake fluxes from chamber measurements are often not statistically significant but mean values integrated over longer time periods from days to weeks do show a clear uptake. An analysis of semi-continuous chamber flux data in conjunction with continuous measurements of the N 2 O concentration in the soil profile and eddy covariance measurements suggests that gross production and gross consumption of N 2 O are of the same order, and as consequence only a minor fraction of N 2 O molecules produced in the soil reaches the atmosphere

  2. Eddy-covariance methane flux measurements over a European beech forest

    Science.gov (United States)

    Gentsch, Lydia; Siebicke, Lukas; Knohl, Alexander

    2015-04-01

    The role of forests in global methane (CH4) turnover is currently not well constrained, partially because of the lack of spatially integrative forest-scale measurements of CH4 fluxes. Soil chamber measurements imply that temperate forests generally act as CH4 sinks. Upscaling of chamber observations to the forest scale is however problematic, if the upscaling is not constrained by concurrent 'top-down' measurements, such as of the eddy-covariance type, which provide sufficient integration of spatial variations and of further potential CH4 flux components within forest ecosystems. Ongoing development of laser absorption-based optical instruments, resulting in enhanced measurement stability, precision and sampling speed, has recently improved the prospects for meaningful eddy-covariance measurements at sites with presumably low CH4 fluxes, hence prone to reach the flux detection limit. At present, we are launching eddy-covariance CH4 measurements at a long-running ICOS flux tower site (Hainich National Park, Germany), located in a semi natural, unmanaged, beech dominated forest. Eddy-covariance measurements will be conducted with a laser spectrometer for parallel CH4, H2Ov and CO2 measurements (FGGA, Los Gatos Research, USA). Independent observations of the CO2 flux by the FGGA and a standard Infrared Gas Analyser (LI-7200, LI-COR, USA) will allow to evaluate data quality of measured CH4 fluxes. Here, we want to present first results with a focus on uncertainties of the calculated CH4 fluxes with regard to instrument precision, data processing and site conditions. In future, we plan to compare eddy-covariance flux estimates to side-by-side turbulent flux observations from a novel eddy accumulation system. Furthermore, soil CH4 fluxes will be measured with four automated chambers situated within the tower footprint. Based on a previous soil chamber study at the same site, we expect the Hainich forest site to act as a CH4 sink. However, we hypothesize that our

  3. Physical and biological controls over patterns of methane flux from wetland soils

    Science.gov (United States)

    Owens, S. M.; von Fischer, J. C.

    2006-12-01

    While methane (CH4) production and plant-facilitated gas transport both contribute to patterns of CH4 emissions from wetlands, the relative importance of each mechanism is uncertain. In flooded wetland soils, CH4 is produced by anaerobic methanogenic bacteria. In the absence of competing oxidizers (i.e. SO42-, NO3-, O2), CH4 production is limited by the availability of labile carbon, which is supplied from recent plant primary production (e.g. as root exudates) and converted by anaerobic fermenting bacteria into methanogenic substrate (e.g. acetate). Because diffusion of gases through saturated soils is extremely slow, the aerenchymous tissues of wetland plants provide the primary pathway for CH4 emissions in systems dominated by emergent vascular vegetation. Aerenchyma also function to shuttle atmospheric oxygen to belowground plant tissues for respiration. Consequentially, root radial oxygen loss results in an oxidized rhizosphere, which limits CH4 production and provides habitat for aerobic methanotrophic bacteria, potentially reducing CH4 emissions. To test the contribution of recent photosynthates on CH4 emissions, a shading experiment was conducted in a Juncus-dominated wetland in the Colorado Front Range. Shade treatments significantly reduced net ecosystem production (NEE) and gross primary production (GPP) compared to control plots (p=0.0194 and p=0.0551, respectively). While CH4 emissions did not significantly differ between treatments, CH4 flux rates were strongly correlated with NEE (p=0.0063) and GPP (p=0.0020), in support of the hypothesis that labile carbon from recent photosynthesis controls patterns of CH4 emissions. The relative importance of plant gas transport and methane consumption rates on CH4 emissions is not known. Methane flux is more tightly correlated with NEE than GPP, which may be explained by increased CH4 consumption or decreased CH4 production as a result of rhizospheric oxidation. The ability to predict future emissions of this

  4. Dynamics of soil biogeochemical gas emissions shaped by remolded aggregate sizes and carbon configurations under hydration cycles.

    Science.gov (United States)

    Ebrahimi, Ali; Or, Dani

    2018-01-01

    Changes in soil hydration status affect microbial community dynamics and shape key biogeochemical processes. Evidence suggests that local anoxic conditions may persist and support anaerobic microbial activity in soil aggregates (or in similar hot spots) long after the bulk soil becomes aerated. To facilitate systematic studies of interactions among environmental factors with biogeochemical emissions of CO 2 , N 2 O and CH 4 from soil aggregates, we remolded silt soil aggregates to different sizes and incorporated carbon at different configurations (core, mixed, no addition). Assemblies of remolded soil aggregates of three sizes (18, 12, and 6 mm) and equal volumetric proportions were embedded in sand columns at four distinct layers. The water table level in each column varied periodically while obtaining measurements of soil GHG emissions for the different aggregate carbon configurations. Experimental results illustrate that methane production required prolonged inundation and highly anoxic conditions for inducing measurable fluxes. The onset of unsaturated conditions (lowering water table) resulted in a decrease in CH 4 emissions while temporarily increasing N 2 O fluxes. Interestingly, N 2 O fluxes were about 80% higher form aggregates with carbon placement in center (anoxic) core compared to mixed carbon within aggregates. The fluxes of CO 2 were comparable for both scenarios of carbon sources. These experimental results highlight the importance of hydration dynamics in activating different GHG production and affecting various transport mechanisms about 80% of total methane emissions during lowering water table level are attributed to physical storage (rather than production), whereas CO 2 emissions (~80%) are attributed to biological activity. A biophysical model for microbial activity within soil aggregates and profiles provides a means for results interpretation and prediction of trends within natural soils under a wide range of conditions. © 2017 John

  5. Diffuse soil CO_2 degassing from Linosa island

    Directory of Open Access Journals (Sweden)

    Dario Cellura

    2014-06-01

    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 Normal 0 14 false false false IT X-NONE X-NONE MicrosoftInternetExplorer4 Herein, we present and discuss the result of 148 measurements of soil CO2 flux performed for the first time in Linosa island (Sicily Channel, Italy, a Plio-Pleistocene volcanic complex no longer active but still of interest owing to its location within a seismically active portion of the Sicily Channel rift system. The main purpose of this survey was to assess the occurrence of CO2 soil degassing, and compare flux estimations from this island with data of soil degassing from worldwide active volcanic as well as non-volcanic areas. To this aim soil CO2 fluxes were measured over a surface of about 4.2 km2 covering ~80% of the island. The soil CO2 degassing was observed to be mainly concentrated in the eastern part of the island likely due to volcano-tectonic lineaments, the presence of which is in good agreement with the known predominant regional faults system. Then, the collected data were interpreted using sequential Gaussian simulation that allowed estimating the total CO2 emissions of the island. Results show low levels of CO2 emissions from the soil of the island (~55 ton d-1 compared with CO2 emissions of currently active volcanic areas, such as Miyakejima (Japan and Vulcano (Italy. Results from this study suggest that soil degassing in Linosa is mainly fed by superficial organic activity with a moderate contribution of a deep CO2 likely driven by NW-SE trending active tectonic structures in the eastern part of the island.

  6. The magnitude and persistence of soil NO, N20, CH4, and C02 fluxes from burned tropical savanna in Brazil

    Science.gov (United States)

    Mark Poth; Iris Cofman Anderson; Heloisa Sinatora Miranda; Antonia Carlos Miranda; Philip J. Riggan

    1995-01-01

    Among all global ecosystems, tropical savannas are the most severely and extensively affected by anthropogenic burning. Frequency of fire in cerrado, a type of tropical savanna covering 25% of Brazil, is 2 to 4 years. In 1992 we measured soil fluxes of NO, N20, CH4, and C02 from cerrado sites that had...

  7. Soil invertebrate fauna affect N2O emissions from soil

    NARCIS (Netherlands)

    Kuiper, I.; Deyn, de G.B.; Thakur, M.P.; Groenigen, van J.W.

    2013-01-01

    Nitrous oxide (N2O) emissions from soils contribute significantly to global warming. Mitigation of N2O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses – a possible role for soil fauna

  8. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    Science.gov (United States)

    Berryman, Erin Michele; Ryan, Michael G.; Bradford, John B.; Hawbaker, Todd J.; Birdsey, R.

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with advancing tree size and age, and photosynthesis increases yet C partitioning to TBCF decreases in response to high soil fertility. We hypothesized that these causal relationships would result in predictable patterns of TBCF, and partitioning of C to TBCF, with natural variability in leaf area index (LAI), soil nitrogen (N), and tree height in subalpine forests in the Rocky Mountains, USA. Using three consecutive years of soil respiration data collected from 22 0.38-ha locations across three 1-km2 subalpine forested landscapes, we tested three hypotheses: (1) annual soil respiration and TBCF will show a hump-shaped relationship with LAI; (2) variability in TBCF unexplained by LAI will be related to soil nitrogen (N); and (3) partitioning of C to TBCF (relative to woody growth) will decline with increasing soil N and tree height. We found partial support for Hypothesis 1 and full support for Hypotheses 2 and 3. TBCF, but not soil respiration, was explained by LAI and soil N patterns (r2 = 0.49), and the ratio of annual TBCF to TBCF plus aboveground net primary productivity (ANPP) was related to soil N and tree height (r2 = 0.72). Thus, forest C partitioning to TBCF can vary even within the same forest type and region, and approaches that assume a constant fraction of TBCF relative to ANPP may be missing some of this variability. These relationships can aid with estimates of forest soil respiration and TBCF across landscapes, using spatially explicit forest data such as national inventories or remotely sensed data products.

  9. Water evaporation from bare soil at Paraiba, Brazil

    International Nuclear Information System (INIS)

    Lima, Jose Romualdo de Sousa; Antonino, Antonio Celso D.; Lira, Carlos A. Brayner de O.; Maciel Netto, Andre; Silva, Ivandro de Franca da; Souza, Jeffson Cavalcante de

    2002-01-01

    Measurements were accomplished in a 4,0 ha area in Centro de Ciencias Agrarias, UFPB, Areia City, Paraiba State, Brazil (6 deg C 58'S, 35 deg C 41'W and 645 m), aiming to determine water evaporation from bare soil, by energy and water balance approaches. Rain gauge, net radiometer, pyranometer and sensor for measuring the temperature and the relative humidity of the air and the speed of the wind, in two levels above the soil surface, were used to solve the energy balance equations. In the soil, two places were fitted with instruments, each one with two thermal probes, installed horizontally in the depths z1 = 2,0 cm and z2 = 8,0 cm, and a heat flux plate, for the measurement of the heat flux in the soil, the z1 = 5,0 cm. The measured data were stored every 30 minutes in a data logger. For the calculation of the water balance, three tensio-neutronics sites were installed, containing: an access tube for neutrons probe and eight tensiometers. The values of soil evaporation obtained by water balance were lower than obtained by energy balance because of the variability of the water balance terms. (author)

  10. Influence of moisture content on radon diffusion in soil

    International Nuclear Information System (INIS)

    Singh, M.; Ramola, R.C.; Singh, S.; Virk, H.S.

    1990-01-01

    Radon diffusion from soil has been studied as a function of the moisture content of the soil. A few simple experiments showed that up to a certain moisture content the radon diffusion increased with increasing moisture. A sharp rise in radon concentration occurred as the moisture was increased from the completely dry state to 13% water by weight. The radon flux was measured for columns of dry, moist and water saturated soil. The highest flux came from the column filled with moist soil. Water saturated soil gave the lowest flux because of the much lower diffusion coefficient of radon through water. (author)

  11. Relationship between soil contents and plasma levels of selenium ...

    African Journals Online (AJOL)

    The soil contents of trace elements selenium, chromium and manganese were measured to determine their impact on the plasma levels of 160 healthy adult Nigerians in five different experimental locations in Cross River and Akwa Ibom States, South - South Nigeria. The mean (±SD) soil selenium, chromium and ...

  12. Modeling energy fluxes in heterogeneous landscapes employing a mosaic approach

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2015-04-01

    Recent studies show that uncertainties in regional and global climate and weather simulations are partly due to inadequate descriptions of the energy flux exchanges between the land surface and the atmosphere. One major shortcoming is the limitation of the grid-cell resolution, which is recommended to be about at least 3x3 km² in most models due to limitations in the model physics. To represent each individual grid cell most models select one dominant soil type and one dominant land use type. This resolution, however, is often too coarse in regions where the spatial diversity of soil and land use types are high, e.g. in Central Europe. An elegant method to avoid the shortcoming of grid cell resolution is the so called mosaic approach. This approach is part of the recently developed ecosystem model framework Expert-N 5.0. The aim of this study was to analyze the impact of the characteristics of two managed fields, planted with winter wheat and potato, on the near surface soil moistures and on the near surface energy flux exchanges of the soil-plant-atmosphere interface. The simulated energy fluxes were compared with eddy flux tower measurements between the respective fields at the research farm Scheyern, North-West of Munich, Germany. To perform these simulations, we coupled the ecosystem model Expert-N 5.0 to an analytical footprint model. The coupled model system has the ability to calculate the mixing ratio of the surface energy fluxes at a given point within one grid cell (in this case at the flux tower between the two fields). This approach accounts for the differences of the two soil types, of land use managements, and of canopy properties due to footprint size dynamics. Our preliminary simulation results show that a mosaic approach can improve modeling and analyzing energy fluxes when the land surface is heterogeneous. In this case our applied method is a promising approach to extend weather and climate models on the regional and on the global scale.

  13. Estimation of Throughfall and Stemflow Bacterial Flux in a Subtropical Oak-Cedar Forest

    Science.gov (United States)

    Bittar, Thais B.; Pound, Preston; Whitetree, Ansley; Moore, L. Dean; Van Stan, John T.

    2018-02-01

    Transport pathways of microbes between ecosystem spheres (atmosphere, phyllosphere, and pedosphere) represent major fluxes in nutrient cycles and have the potential to affect microbially mediated biogeochemical processes. Novel data on bacterial fluxes from the phyllosphere to the pedosphere during rainfall via throughfall (rain dripping from/through the canopy) and stemflow (rain funneled down tree stems) are reported. Bacterial concentrations were quantified using flow cytometry and validated with quantitative polymerase chain reaction assays in rainfall samples from an oak-cedar forest in coastal Georgia (southeastern U.S.). Bacteria concentrations (cells mL-1) and storm-normalized fluxes (cells m-2 h-1, cells m-2 mm-1) were greater for cedar versus oak. Total bacterial flux was 1.5 × 1016 cells ha-1 yr-1. These previously unexamined bacterial fluxes are interpreted in the context of major elemental pools and fluxes in forests and could represent inoculum-level sources of bacteria (if alive), and organic matter and inorganic solute inputs (if lysed) to soils.

  14. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  15. Turbulent flux modelling with a simple 2-layer soil model and extrapolated surface temperature applied at Nam Co Lake basin on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    T. Gerken

    2012-04-01

    Full Text Available This paper introduces a surface model with two soil-layers for use in a high-resolution circulation model that has been modified with an extrapolated surface temperature, to be used for the calculation of turbulent fluxes. A quadratic temperature profile based on the layer mean and base temperature is assumed in each layer and extended to the surface. The model is tested at two sites on the Tibetan Plateau near Nam Co Lake during four days during the 2009 Monsoon season. In comparison to a two-layer model without explicit surface temperature estimate, there is a greatly reduced delay in diurnal flux cycles and the modelled surface temperature is much closer to observations. Comparison with a SVAT model and eddy covariance measurements shows an overall reasonable model performance based on RMSD and cross correlation comparisons between the modified and original model. A potential limitation of the model is the need for careful initialisation of the initial soil temperature profile, that requires field measurements. We show that the modified model is capable of reproducing fluxes of similar magnitudes and dynamics when compared to more complex methods chosen as a reference.

  16. Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices

    International Nuclear Information System (INIS)

    Kustas, W.P.; Daughtry, C.S.T.; Oevelen, P.J. van

    1993-01-01

    Relationships between leaf area index (LAI) and midday soil heat flux/net radiation ratio (G/R n ) and two more commonly used vegetation indices (VIs) were used to analytically derive formulas describing the relationship between G/R n and VI. Use of VI for estimating G/R n may be useful in operational remote sensing models that evaluate the spatial variation in the surface energy balance over large areas. While previous experimental data have shown that linear equations can adequately describe the relationship between G/Rn and VI, this analytical treatment indicated that nonlinear relationships are more appropriate. Data over bare soil and soybeans under a range of canopy cover conditions from a humid climate and data collected over bare soil, alfalfa, and cotton fields in an arid climate were used to evaluate model formulations derived for LAI and G/R n , LAI and VI, and VI and G/R n . In general, equations describing LAI-G/R n and LAI-VI relationships agreed with the data and supported the analytical result of a nonlinear relationship between VI and G/R n . With the simple ratio (NIR/Red) as the VI, the nonlinear relationship with G/R n was confirmed qualitatively. But with the normalized difference vegetation index (NDVI), a nonlinear relationship did not appear to fit the data. (author)

  17. Effects of phosphorus addition on nitrogen cycle and fluxes of N2O and CH4 in tropical tree plantation soils in Thailand

    Directory of Open Access Journals (Sweden)

    Taiki Mori

    2017-04-01

    Full Text Available An incubation experiment was conducted to test the effects of phosphorus (P addition on nitrous oxide (N2O emissions and methane (CH4 uptakes, using tropical tree plantation soils in Thailand. Soil samples were taken from five forest stands—Acacia auriculiformis, Acacia mangium, Eucalyptus camaldulensis, Hopea odorata, and Xylia xylocarpa—and incubated at 80% water holding capacity. P addition stimulated N2O emissions only in Xylia xylocarpa soils. Since P addition tended to increase net ammonification rates in Xylia xylocarpa soils, the stimulated N2O emissions were suggested to be due to the stimulated nitrogen (N cycle by P addition and the higher N supply for nitrification and denitrification. In other soils, P addition had no effects on N2O emissions or soil N properties, except that P addition tended to increase the soil microbial biomass N in Acacia auriculiformis soils. No effects of P addition were observed on CH4 uptakes in any soil. It is suggested that P addition on N2O and CH4 fluxes at the study site were not significant, at least under laboratory conditions.

  18. Nitrous oxide fluxes and nitrogen cycling along a pasture chronosequence in Central Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    B. Wick

    2005-01-01

    Full Text Available We studied nitrous oxide (N2O fluxes and soil nitrogen (N cycling following forest conversion to pasture in the central Amazon near Santarém, Pará, Brazil. Two undisturbed forest sites and 27 pasture sites of 0.5 to 60 years were sampled once each during wet and dry seasons. In addition to soil-atmosphere fluxes of N2O we measured 27 soil chemical, soil microbiological and soil physical variables. Soil N2O fluxes were higher in the wet season than in the dry season. Fluxes of N2O from forest soils always exceeded fluxes from pasture soils and showed no consistent trend with pasture age. At our forest sites, nitrate was the dominant form of inorganic N both during wet and dry season. At our pasture sites nitrate generally dominated the inorganic N pools during the wet season and ammonium dominated during the dry season. Net mineralization and nitrification rates displayed large variations. During the dry season net immobilization of N was observed in some pastures. Compared to forest sites, young pasture sites (≤2 years had low microbial biomass N and protease activities. Protease activity and microbial biomass N peaked in pastures of intermediate age (4 to 8 years followed by consistently lower values in older pasture (10 to 60 years. The C/N ratio of litter was low at the forest sites (~25 and rapidly increased with pasture age reaching values of 60-70 at pastures of 15 years and older. Nitrous oxide emissions at our sites were controlled by C and N availability and soil aeration. Fluxes of N2O were negatively correlated to leaf litter C/N ratio, NH4+-N and the ratio of NO3--N to the sum of NO3--N + NH4+-N (indicators of N availability, and methane fluxes and bulk density (indicators of soil aeration status during the wet season. During the dry season fluxes of N2O were positively correlated to microbial biomass N, β-glucosidase activity, total inorganic N stocks and NH4+-N. In our study region, pastures of all age emitted less N2O than

  19. Evaluation of Site and Continental Terrestrial Carbon Cycle Simulations with North American Flux Tower Observations

    Science.gov (United States)

    Raczka, B. M.; Davis, K. J.; Regional-Interim Synthesis Participants, N.; Site Level Interim Synthesis, N.; Regional/Continental Interim Synthesis Team

    2010-12-01

    Terrestrial carbon models are widely used to diagnose past ecosystem-atmosphere carbon flux responses to climate variability, and are a critical component of coupled climate-carbon model used to predict global climate change. The North American Carbon Program (NACP) Interim Regional and Site Interim Synthesis activities collected a broad sampling of terrestrial carbon model results run at both regional and site level. The Regional Interim Synthesis Activity aims to determine our current knowledge of the carbon balance of North America by comparing the flux estimates provided by the various terrestrial carbon cycle models. Moving beyond model-model comparison is challenging, however, because no continental-scale reference values exist to validate modeled fluxes. This paper presents an effort to evaluate the continental-scale flux estimates of these models using North American flux tower observations brought together by the Site Interim Synthesis Activity. Flux towers present a standard for evaluation of the modeled fluxes, though this evaluation is challenging because of the mismatch in spatial scales between the spatial resolution of continental-scale model runs and the size of a flux tower footprint. We compare model performance with flux tower observations at monthly and annual integrals using the statistical criteria of normalized standard deviation, correlation coefficient, centered root mean square deviation and chi-squared. Models are evaluated individually and according to common model characteristics including spatial resolution, photosynthesis, soil carbon decomposition and phenology. In general all regional models are positively biased for GPP, Re and NEE at both annual and monthly time scales. Further analysis links this result to a positive bias in many solar radiation reanalyses. Positively biased carbon fluxes are also observed for enzyme-kinetic models and models using no nitrogen limitation for soil carbon decomposition. While the former result is

  20. Research on radon flux reduction from uranium mill tailings

    International Nuclear Information System (INIS)

    Overmyer, R.F.; Thamer, B.J.; Nielson, K.K.; Rogers, V.C.

    1980-01-01

    Radon flux reduction from tailings may be accomplished by the use of an impermeable cover to contain the radon until it decays (half life is 2.8 days). The use of a thick, relatively impermeable cover can attenuate radon flux because a large fraction of the radon would decay before it diffuses through the cover into the atmosphere. This method of reducing radon flux may require soil cover thicknesses on the order of 10 feet. In some locations, obtaining 10 feet of soil to cover 200 acres of tailings may be difficult or may lead to other significant environmental impacts. The Department of Energy is sponsoring research to identify alternatives to thick soil covers for reducing radon flux from uranium tailings to meet the forthcoming standards. The two most effective and practical materials tested thus far are Calcilox and asphalt emulsion. Currently, asphalt emulsions are being tested at the Grand Junction tailings pile in Grand Junction, Colorado, by Battelle Pacific Northwest Laboratory. Other asphalt formulations, such as foamed asphalt that requires less water than asphalt emulsions, may be practical and will be tested this year. Some sulfur-based materials and sulfur-extended asphalt also appear promising and will be tested for effectiveness in reducing radon flux. It is also important to investigate methods of applying various stabilizers to inactive tailings piles in various physical conditions of moisture content, and physical stability. Finally, since the EPA standards for remedial action at tailings piles are stated in terms of radon flux, it is important that radon flux measurements be standardized so that reliable flux measurements can be obtained and directly compared among various laboratories

  1. Estimating Tritium Fluxes from the Shallow Unsaturated Zone to the Atmosphere in an Arid Environment Dominated by Creosote Bush (USGS-ADRS)

    Science.gov (United States)

    Garcia, C. A.; Andraski, B. J.; Wheatcraft, S. W.; Johnson, M. J.; Michel, R. L.; Stonestrom, D. A.

    2006-12-01

    Understanding the transport and fate of tritium is essential when evaluating options for low-level radioactive waste (LLRW) isolation. The magnitude and spatio-temporal variability of tritium transport from the shallow unsaturated zone to the atmosphere are being investigated adjacent to a LLRW facility at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in Southern Nevada. Site and community-scale tritium fluxes from the subsurface to the atmosphere were quantified using a simple gas-phase diffusive loading approach combining evaporation and transpiration fluxes with mass fractions of gas-phase tritium concentrations. A Priestly-Taylor model, calibrated with quarterly bare-soil evaporation measurements, was used to estimate continuous bare-soil evaporation from measured continuous eddy-covariance evapotransporation. Continuous transpiration was computed as the difference between measured evapotranspiration and estimated bare-soil evaporation. Tritium concentrations in plant water and soil-water vapor were measured along two transects perpendicular to the LLRW using azeotropic distillation of creosote bush (Larrea tridentata) foliage and soil vapor extraction from 0.5 and 1.5 m depths below land surface. A preliminary daily tritium flux estimate at a single plant site was 1.66 × 10-11 gm-2. Spatio- temporal variability over a 75-ha area and 2-yr period will be quantified using a combination of tritium concentration maps and continuous evaporation and transpiration flux estimates. Quantifying tritium fluxes from the shallow unsaturated zone to the atmosphere on a site and community-scale will improve knowledge and understanding of vertical contaminant transport in arid environments.

  2. Automated CO2, CH4 and N2O Fluxes from Tree Stems and Soils: Magnitudes, Temporal Patterns and Drivers

    Science.gov (United States)

    Barba, J.; Poyatos, R.; Vargas, R.

    2017-12-01

    The emissions of the main greenhouse gases (GHG; CO2, CH4 and N2O) through tree stems are still an uncertain component of the total GHG balance of forests. Despite that stem CO2 emissions have been studied for several decades, it is still unclear the drivers and spatiotemporal patterns of CH4 and N2O stem emissions. Additionally, it is unknown how stem emissions could be related to soil physiological processes or environmental conditions. We measured CO2, CH4 and N2O emissions hourly from April to July 2017 at two different heights (75 [LStem] and 150cm [HStem]) of bitternut hickory (Carya cordiformis) trees and adjacent soil locations in a forested area in the Mid Atlantic of the USA. We designed an automated system to continuously measure the three greenhouse gases (GHG) in stems and soils. Stem and soil CO2 emissions showed similar seasonal patterns with an average of 6.56±0.09 (soil), 3.72±0.05 (LStem) and 2.47±0.04 µmols m-2 s-1 (HStem) (mean±95% CI). Soil temperature controlled CO2 fluxes at both daily and seasonal scales (R2>0.5 for all cases), but there was no clear effect of soil moisture. The stems were a clear CH4 source with emissions decreasing with height (0.35±0.02 and 0.25±0.01 nmols m-2 s-1 for LStem and HStem, respectively) with no apparent seasonal pattern, and no clear relationship with environmental drivers (e.g., temperature, moisture). In contrast, soil was a CH4 sink throughout the experiment (-0.55±0.02 nmols m-2 s-1) and its seasonal pattern responded to moisture changes. Despite soil and stem N2O emissions did not show a seasonal pattern or apparent dependency on temperature or moisture, they showed net N2O emissions with a decrease in emissions with stem height (0.29±0.05 for soil, 0.38±0.06 for LStem and 0.28±0.05 nmols m-2 s-1 for HStem). The three GHG emissions decreased with stem height at similar rates (33%, 28% and 27% for CO2, CH4 and N2O, respectively). These results suggest that the gases were not produced in the stem

  3. Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Qinghu Jiang

    2016-09-01

    Full Text Available Soil organic carbon (SOC is an essential property for soil function, fertility and sustainability of agricultural systems. It can be measured with visible and near-infrared reflectance (VIS-NIR spectroscopy efficiently based on empirical equations and spectra data for air/oven-dried samples. However, the spectral signal is interfered with by soil moisture content (MC under in situ conditions, which will affect the accuracy of measurements and calibration transfer among different areas. This study aimed to (1 quantify the influences of MC on SOC prediction by VIS-NIR spectroscopy; and (2 explore the potentials of orthogonal signal correction (OSC and generalized least squares weighting (GLSW methods in the removal of moisture interference. Ninety-eight samples were collected from the Jianghan plain, China, and eight MCs were obtained for each sample by a rewetting process. The VIS-NIR spectra of the rewetted soil samples were measured in the laboratory. Partial least squares regression (PLSR was used to develop SOC prediction models. Specifically, three validation strategies, namely moisture level validation, transferability validation and mixed-moisture validation, were designed to test the potentials of OSC and GLSW in removing the MC effect. Results showed that all of the PLSR models generated at different moisture levels (e.g., 50–100, 250–300 g·kg−1 were moderately successful in SOC predictions (r2pre = 0.58–0.85, RPD = 1.55–2.55. These models, however, could not be transferred to soil samples with different moisture levels. OSC and GLSW methods are useful filter transformations improving model transferability. The GLSW-PLSR model (mean of r2pre = 0.77, root mean square error for prediction (RMSEP = 3.08 g·kg−1, and residual prediction deviations (RPD = 2.09 outperforms the OSC-PLSR model (mean of r2pre = 0.67, RMSEP = 3.67 g·kg−1, and RPD = 1.76 when the moisture-mixed protocol is used. Results demonstrated the use of OSC

  4. Development of a matrix approach to estimate soil clean-up levels for BTEX compounds

    International Nuclear Information System (INIS)

    Erbas-White, I.; San Juan, C.

    1993-01-01

    A draft state-of-the-art matrix approach has been developed for the State of Washington to estimate clean-up levels for benzene, toluene, ethylbenzene and xylene (BTEX) in deep soils based on an endangerment approach to groundwater. Derived soil clean-up levels are estimated using a combination of two computer models, MULTIMED and VLEACH. The matrix uses a simple scoring system that is used to assign a score at a given site based on the parameters such as depth to groundwater, mean annual precipitation, type of soil, distance to potential groundwater receptor and the volume of contaminated soil. The total score is then used to obtain a soil clean-up level from a table. The general approach used involves the utilization of computer models to back-calculate soil contaminant levels in the vadose zone that would create that particular contaminant concentration in groundwater at a given receptor. This usually takes a few iterations of trial runs to estimate the clean-up levels since the models use the soil clean-up levels as ''input'' and the groundwater levels as ''output.'' The selected contaminant levels in groundwater are Model Toxic control Act (MTCA) values used in the State of Washington

  5. Modelling soil water dynamics and crop water uptake at the field level

    NARCIS (Netherlands)

    Kabat, P.; Feddes, R.A.

    1995-01-01

    Parametrization approaches to model soil water dynamics and crop water uptake at field level were analysed. Averaging and numerical difficulties in applying numerical soil water flow models to heterogeneous soils are highlighted. Simplified parametrization approaches to the soil water flow, such as

  6. Tolerance of soil flagellates to increased NaCl levels

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    The ability of heterotrophic flagellates to survive and adapt to increasing salinities was investigated in this study. Whole soil samples were subjected to salinities corresponding to marine conditions and clonal cultures were used to perform growth and adaptation experiments at a wide range...... of different salinities (0-50 ppm). More morphotypes tolerant to elevated NaCl levels were found in road verge soil that was heavily exposed to de-icing salt than in less exposed soils, though there were fewer tolerant than intolerant morphotypes in all soils examined. Heterotrophic flagellates isolated...... on a freshwater medium from a non-exposed soil were unable to thrive at salinities above 15 ppt, and showed reduced growth rates even at low salt salinities (1-5 ppt). The findings suggest that heterotrophic soil flagellates are less tolerant to NaCl than their aquatic relatives, possibly due to their long...

  7. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem?

    Science.gov (United States)

    Fang, Qingqing; Wang, Guoqiang; Xue, Baolin; Liu, Tingxi; Kiem, Anthony

    2018-04-23

    In water-limited ecosystems, hydrological processes significantly affect the carbon flux. The semi-arid grassland ecosystem is particularly sensitive to variations in precipitation (PRE) and soil moisture content (SMC), but to what extent is not fully understood. In this study, we estimated and analyzed how hydrological variables, especially PRE at multi-temporal scales (diurnal, monthly, phenological-related, and seasonal) and SMC at different soil depths (0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm) affect the carbon flux. For these aims, eddy covariance data were combined with a Vegetation Photosynthesis and Respiration Model (VPRM) to simulate the regional gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem exchange of CO 2 (NEE). Interestingly, carbon flux showed no relationship with diurnal PRE or phenological-related PRE (precipitation in the growing season and non-growing season). However, carbon flux was significantly related to monthly PRE and to seasonal PRE (spring + summer, autumn). The GPP, R eco , and NEE increased in spring and summer but decreased in autumn with increasing precipitation due to the combined effect of salinization in autumn. The GPP, R eco , and NEE were more responsive to SMC at 0-20 cm depth than at deeper depths due to the shorter roots of herbaceous vegetation. The NEE increased with increasing monthly PRE because soil microbes responded more quickly than plants. The NEE significantly decreased with increasing SMC in shallow surface due to a hysteresis effect on water transport. The results of our study highlight the complex processes that determine how and to what extent PRE at multi-temporal scale and SMC at different depths affect the carbon flux response in a water-limited grassland. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity

    Science.gov (United States)

    Hung, H.-W.; Daniel, Sheng G.; Lin, T.-F.; Su, Y.; Chiou, C.T.

    2009-01-01

    Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.

  9. Amazon peatlands: quantifying ecosytem's stocks, GHG fluxes and their microbial connections

    Science.gov (United States)

    Cadillo-Quiroz, Hinsby; Lähteenoja, Outi; Buessecker, Steffen; van Haren, Joost

    2017-04-01

    Reports of hundreds of peatlands across basins in the West and Central Amazon suggest they play an important, previously not considered regional role in organic carbon (OC) and GHG dynamics. Amazon peatlands store ˜3-6 Gt of OC in their waterlogged soils with strong potential for conversion and release of GHG, in fact our recent, and others', efforts have confirmed variable levels of GHG emissions (CO2, N2O, CH4), as well as variable microbial communities across rich to poor soil peatlands. Here, we report early results of quantification of different components making up the aboveground C stocks, the rates and paths for GHG release, and microbial organisms occurring in three ecologically distinct peatland types in the Pastaza-Marañon region of the Peruvian Amazon. Evaluations were done in duplicated continuous monitoring plots established since 2015 at a "palm swamp" (PS), poor "pole forest" (pPF) and a rich "forested" (rF) peatlands. Although overall vegetation "structure" with a few dominant plus several low frequency species was common across the three sites, their botanical composition and tree density was highly contrasting. Aboveground C stocks content showed the following order among sites: rF>PS>pPF, and hence we tested whether this differences can have a direct effect on CH4 emissions rates. CH4 emissions rates from soils were observed in average at 11, 6, and 0.8 mg-C m-2 h-1for rF, PS, and pPF respectively. However, these estimated fluxes needed to be revised when we develop quantifications of CH4 emissions from tree stems. Tree stem fluxes were detected showing a broad variation with nearly nill emissions in some species all the way to maximum fluxes near to ˜90 mg-C m-2 h-1 in other species. Mauritia flexuosa, a highly dominant palm species in PS and ubiquitous to the region, showed the highest ranges of CH4 flux. In the PS site, overall CH4 flux estimate increased by ˜50% when including stem emission weighted by trees' species, density and heights

  10. Quantificação de fluxos de mercúrio gasoso na interface solo/atmosfera utilizando câmara de fluxo dinâmica: aplicação na bacia do Rio Negro Quantification of atmosphere - soil mercury fluxes by using a dynamic flux chamber: application at the Negro River basin, Amazon

    Directory of Open Access Journals (Sweden)

    Gabriella Magarelli

    2005-12-01

    Full Text Available Gaseous mercury sampling conditions were optimized and a dynamic flux chamber was used to measure the air/surface exchange of mercury in some areas of the Negro river basin with different vegetal coverings. At the two forest sites (flooding and non-flooding, low mercury fluxes were observed: maximum of 3 pmol m-2 h-1 - day and minimum of -1 pmol m-2 h-1 - night. At the deforested site, the mercury fluxes were higher and always positive: maximum of 26 pmol m-2 h-1 - day and 17 pmol m-2 h-1 - night. Our results showed that deforestation could be responsible for significantly increasing soil Hg emissions, mainly because of the high soil temperatures reached at deforested sites.

  11. Effect of soil moisture on the temperature sensitivity of Northern soils

    Science.gov (United States)

    Minions, C.; Natali, S.; Ludwig, S.; Risk, D.; Macintyre, C. M.

    2017-12-01

    Arctic and boreal ecosystems are vast reservoirs of carbon and are particularly sensitive to climate warming. Changes in the temperature and precipitation regimes of these regions could significantly alter soil respiration rates, impacting atmospheric concentrations and affecting climate change feedbacks. Many incubation studies have shown that both temperature and soil moisture are important environmental drivers of soil respiration; this relationship, however, has rarely been demonstrated with in situ data. Here we present the results of a study at six field sites in Alaska from 2016 to 2017. Low-power automated soil gas systems were used to measure soil surface CO2 flux from three forced diffusion chambers and soil profile concentrations from three soil depth chambers at hourly intervals at each site. HOBO Onset dataloggers were used to monitor soil moisture and temperature profiles. Temperature sensitivity (Q10) was determined at each site using inversion analysis applied over different time periods. With highly resolved data sets, we were able to observe the changes in soil respiration in response to changes in temperature and soil moisture. Through regression analysis we confirmed that temperature is the primary driver in soil respiration, but soil moisture becomes dominant beyond a certain threshold, suppressing CO2 flux in soils with high moisture content. This field study supports the conclusions made from previous soil incubation studies and provides valuable insights into the impact of both temperature and soil moisture changes on soil respiration.

  12. Winter time burst of CO2 from the High Arctic soils of Svalbard

    DEFF Research Database (Denmark)

    Friborg, Thomas; Hansen, Birger; Elberling, Bo

    of relatively few measurements which appear to give small and constant emission rates. Further, most studies of the processes behind winter time emission of CO2 conclude that the flux during this time of year can be linked to the respiratory release of CO2 from soil micro organisms, which is temperature...... the winter at a high arctic location in Svalbard (78°N). Measurements were conducted in the field during the winter season of 2004-2005 and show reliable and continuous measurements of CO2 fluxes down to a level of 0.01 ìmol m-2 s-1 and good correspondence with other types of soil chambers. Our results...... indicate that a substantial part of the annual CO2 emission from the ecosystem occur during the freeze in period, where more CO2 is emitted from the soil over a few weeks than the accumulated flux for the rest of the winter. During the coldest part of the...

  13. CO2 response to rewetting of hydrophobic soils - Can soil water repellency inhibit the 'Birch effect'?

    Science.gov (United States)

    Sanchez-Garcia, Carmen; Urbanek, Emilia; Doerr, Stefan

    2017-04-01

    Rewetting of dry soils is known to cause a short-term CO2 pulse commonly known as the 'Birch effect'. The displacement of CO2 with water during the process of wetting has been recognised as one of the sources of this pulse. The 'Birch effect' has been extensively observed in many soils, but some studies report a lack of such phenomenon, suggesting soil water repellency (SWR) as a potential cause. Water infiltration in water repellent soils can be severely restricted, causing overland flow or increased preferential flow, resulting in only a small proportion of soil pores being filled with water and therefore small gas-water replacement during wetting. Despite the suggestions of a different response of CO2 fluxes to wetting under hydrophobic conditions, this theory has never been tested. The aim of this study is to test the hypothesis that CO2 pulse does not occur during rewetting of water repellent soils. Dry homogeneous soils at water-repellent and wettable status have been rewetted with different amounts of water. CO2 flux as a response to wetting has been continuously measured with the CO2 flux analyser. Delays in infiltration and non-uniform heterogeneous water flow were observed in water repellent soils, causing an altered response in the CO2 pulse in comparison to typically observed 'Birch effect' in wettable systems. The main conclusion from the study is that water repellency not only affects water relations in soil, but has also an impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  14. Ozone Flux Measurement and Modelling on Leaf/Shoot and Canopy Scale

    Directory of Open Access Journals (Sweden)

    Ludger Grünhage

    calculated by SVAT models often based on the energy balance of the soil-vegetation-atmosphere system and on the big-leaf concept. This latter assumes the canopy as equivalent to a single leaf having a leaf area equal to the total area of all the plant’s leaves and lying at a certain height above the ground. The complexity of SVAT models ranges from one-dimensional to three-dimensional models. The most used are one-dimensional models in single-layer, dual-source or multi-layer version. The main uncertainties in flux modelling are currently associated to the estimation of the non-stomatal flux component and to the up-scaling process from leaf to canopy and stand level. For the latter a separate representation of sunlit and shaded leaves is recommended.

  15. Long term monitoring at Solfatara of Pozzuoli (Campi Flegrei, Italy): 1998-2014, fifteen years of soil CO2 flux measurement.

    Science.gov (United States)

    Cardellini, Carlo; Chiodini, Giovanni; Rosiello, Angelo; Bagnato, Emanuela; Avino, Rosario; Frondini, Francesco; Donnini, Marco; Caliro, Stefano

    2015-04-01

    With a flux of deeply derived fluids of ~5000 t/d and an energetic release of ~100 MW Solfatara of Pozzuoli is one of the largest studied volcanic-hydrothermal system of the world. Since 1998, soil CO2 flux surveys where performed using the accumulation chamber method over a large area (1.45 km2), including the volcanic apparatus and its surroundings. The statistical elaboration of CO2 flux, also coupled with the investigation of the CO2 efflux isotopic composition, allowed to characterize both the CO2 flux connected to by biological activity in the soil and that feed to the degassing of the hydrothermal system. A geostatistical elaboration of CO2 fluxes based on sequential Gaussian simulations, allowed to define the spatial structure of the degassing area, pointing out the presence of a well defined diffuse degassing structure interested by the release of deeply derived CO2 (Solfatara DDS). Solfatara DDS results well correlated to volcanic and tectonic structures interesting the crater area and the eastern area of Pisciarelli. With the same approach the total amount of CO2 release was estimated to range between 754 t/d and 1530 t/d in the last fifteen year (with an error in the estimate varying between 9 and 15 %). Also the extension of the DDS experienced relevant variations varying between 4.5x105 m2 to 12.3 x105 m2. In particular two major changes occurred in the extension of the DDS, the first consisted in its doubling in 2003-2004 and the second in further enlargement of ~ 30% in 2011-2012, the last occurring after period of decreasing trend which interrupted 4-5 years of relative stability. These variations mainly occurred external to the crater area in correspondence of a NE-SW fault system where fluxes increased from background to values typical of the endogenous source. The first event was previously correlated with the occurrence in 2000 of a relatively deep seismic swarm, which was interpreted as the indicator of the opening of an easy-ascent pathway

  16. Flux-Level Transit Injection Experiments with NASA Pleiades Supercomputer

    Science.gov (United States)

    Li, Jie; Burke, Christopher J.; Catanzarite, Joseph; Seader, Shawn; Haas, Michael R.; Batalha, Natalie; Henze, Christopher; Christiansen, Jessie; Kepler Project, NASA Advanced Supercomputing Division

    2016-06-01

    Flux-Level Transit Injection (FLTI) experiments are executed with NASA's Pleiades supercomputer for the Kepler Mission. The latest release (9.3, January 2016) of the Kepler Science Operations Center Pipeline is used in the FLTI experiments. Their purpose is to validate the Analytic Completeness Model (ACM), which can be computed for all Kepler target stars, thereby enabling exoplanet occurrence rate studies. Pleiades, a facility of NASA's Advanced Supercomputing Division, is one of the world's most powerful supercomputers and represents NASA's state-of-the-art technology. We discuss the details of implementing the FLTI experiments on the Pleiades supercomputer. For example, taking into account that ~16 injections are generated by one core of the Pleiades processors in an hour, the “shallow” FLTI experiment, in which ~2000 injections are required per target star, can be done for 16% of all Kepler target stars in about 200 hours. Stripping down the transit search to bare bones, i.e. only searching adjacent high/low periods at high/low pulse durations, makes the computationally intensive FLTI experiments affordable. The design of the FLTI experiments and the analysis of the resulting data are presented in “Validating an Analytic Completeness Model for Kepler Target Stars Based on Flux-level Transit Injection Experiments” by Catanzarite et al. (#2494058).Kepler was selected as the 10th mission of the Discovery Program. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.

  17. Freeze-Thaw Cycles and Soil Biogeochemistry: Implications for Greenhouse Gas emission

    Science.gov (United States)

    Rezanezhad, F.; Milojevic, T.; Oh, D. H.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2016-12-01

    Freeze-thaw cycles represent a major natural climate forcing acting on soils at middle and high latitudes. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles regulate carbon and nitrogen cycling and how these transformations influence greenhouse gas (GHG) fluxes. We present a novel approach, which combines the acquisition of physical and chemical data in a newly developed experimental soil column system. This system simulates realistic soil temperature profiles during freeze-thaw cycles. A high-resolution, Multi-Fiber Optode (MuFO) microsensor technique was used to detect oxygen (O2) continuously in the column at multiple depths. Surface and subsurface changes to gas and aqueous phase chemistry were measured to delineate the pathways and quantify soil respiration rates during freeze-thaw cycles. The results indicate that the time-dependent release of GHG from the soil surface is influenced by a combination of two key factors. Firstly, fluctuations in temperature and O2 availability affect soil biogeochemical activity and GHG production. Secondly, the recurrent development of a physical ice barrier prevents exchange of gaseous compounds between the soil and atmosphere during freezing conditions; removal of this barrier during thaw conditions increases GHG fluxes. During freezing, O2 levels in the unsaturated zone decreased due to restricted gas exchange with the atmosphere. As the soil thawed, O2 penetrated deeper into the soil enhancing the aerobic mineralization of organic carbon and nitrogen. Additionally, with the onset of thawing a pulse of gas flux occurred, which is attributed to the build-up of respiratory gases in the pore space during freezing. The latter implies enhanced anaerobic respiration as O2 supply ceases when the upper soil layer freezes.

  18. Tracey - a simulation model of trace element fluxes in soil-plant system for long-term assessment of a radioactive groundwater contamination

    Energy Technology Data Exchange (ETDEWEB)

    Gaerdenaes, Annemieke (Dept. of Soil and Environment, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)); Eckersten, Henrik (Dept. of Ecology and Crop Production, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)); Reinlert, Andre (Dept. of Physical Geography and Ecosystems Analysis, Lund Univ., Lund (Sweden)); Gustafsson, David; Jansson, Per-Erik (Dept. Land and WaterResources, Royal Inst. of Technology, Stockholm (Sweden)); Ekstroem, Per-Anders; Avila, Rodolfo (Facilia AB, Bromma (Sweden)); Greger, Maria (Dept. of Botany, Stockholm Univ., Stockholm (Sweden))

    2009-10-15

    We developed a general trace element model called Tracey to simulate dynamically the possible accumulation of radionuclides as a result of an long-term radioactive contamination of groundwater in terrestrial ecosystems. The overall objectives of the study are to: 1) Develop and evaluate a multi-compartmental model that dynamically simulates the transport and accumulation of a radionuclide in the soil-plant system at a time scale relevant for risk assessment of nuclear fuel waste; and 2) Asses the possible accumulation of radionuclide in terrestrial ecosystems due to an eventual long-term continuous radioactive groundwater contamination. Specific objectives were to assess: - The proportion of the contamination accumulated and where it is stored in the ecosystem. - The importance of the plant uptake approach for accumulation of radionuclides. - The most important radionuclide properties and ecosystem characteristics for accumulation and losses. - The proportion of the contamination lost and how is it lost. - The circumstances which stimulated export of radionuclides to other ecosystems. The model presented here, called Tracey, is a stand-alone version to allow for long simulation periods relevant for the time scale of risk assessment of nuclear waste (i.e. several thousand years) with time steps as short as one day. Tracey is a multi-compartmental model in which fluxes and storage of radionuclide are described for different plant parts and for several soil layers. Each layer includes pools of slowly and quickly decomposing litter, humus, solved and absorbed trace element. The trace element fluxes are assumed to be proportional to either water or carbon fluxes, these fluxes are simulated using the dynamic model CoupModel for fluxes of water, carbon, nitrogen and carbon in terrestrial ecosystems. Two different model approaches were used to describe plant uptake of radionuclides. The one called passive uptake approach is driven by water uptake and the one called active

  19. Boron levels in soils cropped to coffee and their relationships to ...

    African Journals Online (AJOL)

    Studies on boron levels in soils cropped to coffee were carried out in Ghana due to widespread reports on boron deficiency in soils of some coffee producing countries. Leaves and soils were sampled from Cocobod coffee plantations at Bogoso, Suhuma, Manso-Mim, Bunso and Bepong, which represent the main coffee ...

  20. Carbon cycling and gas exchange in soils

    International Nuclear Information System (INIS)

    Trumbore, S.E.

    1989-01-01

    This thesis summaries three independent projects, each of which describes a method which can be used to study the role of soils in regulating the atmospheric concentrations of CO 2 and other trace gases. The first chapter uses the distribution of natural and bomb produced radiocarbon in fractionated soil organic matter to quantify the turnover of carbon in soils. A comparison of 137 Cs and 14 C in the modern soil profiles indicates that carbon is transported vertically in the soil as dissolved organic material. The remainder of the work reported is concerned with the use of inert trace gases to explore the physical factors which control the seasonal to diel variability in the fluxes of CO 2 and other trace gases from soils. Chapter 2 introduces a method for measuring soil gas exchange rates in situ using sulfur hexafluoride as a purposeful tracer. The measurement method uses standard flux box technology, and includes simultaneous determination of the fluxes and soil atmosphere concentrations of CO 2 and CH 4 . In Chapter 3, the natural tracer 222 Rn is used as an inert analog for exchange both in the soils and forest canopy of the Amazon rain forest

  1. CARBON STORAGE AND FLUXES IN PONDEROSA PINE AT DIFFERENT SUCCESSIONAL STAGES

    Science.gov (United States)

    We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, and eddy flux estimates of net ecosystem exchange. The young site (Y site) was previously an old-growth pondero...

  2. Sorption behavior of cesium on various soils under different pH levels

    International Nuclear Information System (INIS)

    Giannakopoulou, F.; Haidouti, C.; Chronopoulou, A.; Gasparatos, D.

    2007-01-01

    In the present study we investigated the sorption behavior of Cs in four different soils (sandyloam, loam, clayloam and clay) by using batch experiment. Cs sorption characteristics of the studied soils were examined at 4 mg L -1 Cs concentration, at various pH levels, at room temperature and with 0.01 M CaCl 2 as a background electrolyte. Among different soils the decrease of k d (distribution coefficient) of cesium, at all pH levels, followed the sequence sandyloam > loam > clayloam > clay, indicating that the particle size fractions and especially the clay content plays predominant role on sorption of Cs. The effect of pH on cesium sorption displays a similar pattern for all soils, depending on soil type. At acid pH levels less cesium was sorbed, due to a greater competition with other cations for available sorption sites. The maximum sorption of Cs was observed at pH 8, where the negative charge density on the surface of the absorbents was the highest. For all soils was observed significantly lower Cs sorption at pH 10

  3. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Monique Y. [The University of Georgia Research Foundation, Athens, GA (United States)

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  4. Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration.

    Science.gov (United States)

    Ruehr, Nadine K; Buchmann, Nina

    2010-02-01

    Although soil respiration, a major CO(2) flux in terrestrial ecosystems, is known to be highly variable with time, the response of its component fluxes to temperature and phenology is less clear. Therefore, we partitioned soil respiration (SR) into microbial (MR) and root-rhizosphere respiration (RR) using small root exclusion treatments in a mixed mountain forest in Switzerland. In addition, fine root respiration (FRR) was determined with measurements of excised roots. RR and FRR were strongly related to each other (R(2) = 0.92, n = 7), with RR contributing about 46% and FRR about 32% to total SR. RR rates increased more strongly with temperature (Q(10) = 3.2) than MR rates (Q(10) = 2.3). Since the contribution of RR to SR was found to be higher during growing (50%) than during dormant periods (40%), we separated the 2-year data set into phenophases. During the growing period of 2007, the temperature sensitivity of RR (Q(10) = 2.5, R(2) = 0.62) was similar to that of MR (Q(10) = 2.2, R(2) = 0.57). However, during the dormant period of 2006/2007, RR was not related to soil temperature (R(2) = 0.44, n.s.), in contrast to MR (Q(10) = 7.2; R(2) = 0.92). To better understand the influence of plant activity on root respiration, we related RR and FRR rates to photosynthetic active radiation (both R(2) = 0.67, n = 7, P = 0.025), suggesting increased root respiration rates during times with high photosynthesis. During foliage green-up in spring 2008, i.e., from bud break to full leaf expansion, RR increased by a factor of 5, while soil temperature increased only by about 5 degrees C, leading to an extraordinary high Q(10) of 10.6; meanwhile, the contribution of RR to SR increased from 29 to 47%. This clearly shows that root respiration and its apparent temperature sensitivity highly depend on plant phenology and thus on canopy assimilation and carbon allocation belowground.

  5. Carbon Fluxes and Transport Along the Terrestrial Aquatic Continuum

    Science.gov (United States)

    Butman, D. E.; Kolka, R.; Fennel, K.; Stackpoole, S. M.; Trettin, C.; Windham-Myers, L.

    2017-12-01

    Terrestrial wetlands, inland surface waters, tidal wetlands and estuaries, and the coastal ocean are distinct aquatic ecosystems that integrate carbon (C) fluxes and processing among the major earth system components: the continents, oceans, and atmosphere. The development of the 2nd State of the Carbon Cycle Report (SOCCR2) noted that incorporating the C cycle dynamics for these ecosystems was necessary to reconcile some of the gaps associated with the North American C budget. We present major C stocks and fluxes for Canada, Mexico and the United States. North America contains nearly 42% of the global terrestrial wetland area. Terrestrial wetlands, defined as soils that are seasonally or permanently inundated or saturated, contain significant C stocks equivalent to 174,000 Tg C in the top 40 cm of soil. While terrestrial wetlands are a C sink of approximately 64 Tg C yr-1, they also emit 21 Tg of CH4 yr-1. Inland waters are defined as lakes, reservoirs, rivers, and streams. Carbon fluxes, which include lateral C export to the coast, riverine and lacustrine CO2 emissions, and C burial in lakes and reservoirs are estimated at 507 Tg yr-1. Estuaries and tidal wetlands assimilate C and nutrients from uplands and rivers, and their total C stock is 1,323 Tg C in the top 1 m of soils and sediment. Accounting for soil accretion, lateral C flux, and CO2 assimilation and emission, tidal wetlands and estuaries are net sinks with a total flux equal to 6 Tg C yr-1. The coastal ocean and sea shelfs, defined as non-estuarine waters within 200 nautical miles (370 km) of the coast, function as net sinks, with the air-sea exchange of CO2 estimated at 150 Tg C yr-1. In total, fluxes from these four aquatic ecosystems are equal to a loss of 302 Tg C yr-1. Including these four discrete fluxes in this assessment demonstrates the importance of linking hydrology and biogeochemical cycling to evaluate the impacts of climate change and human activities on carbon fluxes across the

  6. Uncertainty in soil carbon accounting due to unrecognized soil erosion.

    Science.gov (United States)

    Sanderman, Jonathan; Chappell, Adrian

    2013-01-01

    The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15-50% slower when an erosion rate of 15 t soil ha(-1)  yr(-1) was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3-1.0 t CO2  ha(-1)  yr(-1) . This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities. © 2012 Blackwell Publishing Ltd.

  7. Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling

    Directory of Open Access Journals (Sweden)

    S. Sabate

    2009-08-01

    Full Text Available Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ("ORCHIDEE", and the other a forest growth model particularly developed for Mediterranean simulations ("GOTILWA+", was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.

  8. Multivariate regulation of soil CO2 and N2 O pulse emissions from agricultural soils.

    Science.gov (United States)

    Liang, Liyin L; Grantz, David A; Jenerette, G Darrel

    2016-03-01

    Climate and land-use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2 ) and nitrous oxide (N2 O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2 ) and six (N2 O) orders of magnitude. Maximal CO2 and N2 O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2 O fluxes and altered their temperature sensitivities (Q10 ) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2 O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2 O flux, while significantly depressing the Q10 for CO2 , and having no effect on the Q10 for N2 O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions. © 2015 John Wiley & Sons Ltd.

  9. Plant uptake of 134Cs in relation to soil properties and time

    International Nuclear Information System (INIS)

    Massas, I.; Skarlou, V.; Haidouti, C.

    2002-01-01

    134 Cs uptake by sunflower and soybean plants grown on seven different soils and its relation to soil properties were studied in a greenhouse pot experiment. Soil in each pot was contaminated by dripping the 134 Cs in layers, and sunflower and soybean plants were grown for three and two successive periods, respectively. 134 Cs plant uptake was expressed as the transfer factor (TF) (Bq kg -1 plant/Bq kg -1 soil) and as the daily plant uptake (flux) (Bq pot -1 day -1 ) taking into account biomass production and growth time. For the studied soils and for both plants, no consistent trend of TFs with time was observed. The use of fluxes, in general, provided less variable results than TFs and stronger functional relationships. A negative power functional relationship between exchangeable potassium plus ammonium cations expressed as a percentage of cation exchange capacity of each soil and 134 Cs fluxes was found for the sunflower plants. A similar but weaker relationship was observed for soybean plants. The significant correlation between sunflower and soybean TFs and fluxes, as well as the almost identical highest/lowest 134 Cs flux ratios, in the studied soils, indicated a similar effect of soil characteristics on 134 Cs uptake by both plants. In all the studied soils, sunflower 134 Cs TFs and fluxes were significantly higher than the respective soybean values, while no significant difference was observed in potassium content and daily potassium plant uptake (flux) of the two plants

  10. Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types

    Directory of Open Access Journals (Sweden)

    A. Bargsten

    2010-05-01

    Full Text Available Nitric oxide (NO plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification, that occurs in the uppermost centimeter of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany. We performed laboratory incubation and flushing experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate. Net potential NO fluxes (in terms of mass of N from soil samples taken under different understories ranged from 1.7–9.8 ng m−2 s−1 (soil sampled under grass and moss cover, 55.4–59.3 ng m−2 s−1 (soil sampled under spruce cover, and 43.7–114.6 ng m−2 s−1 (soil sampled under blueberry cover at optimum water content and a soil temperature of 10 °C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss covered soils, between 1.0 and 1.1 for grass covered soils, 1.1 and 1.2 for spruce covered soils, and 1.3 and 1.9 for blueberry covered soils. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level only for NH4+. Therefore, as an alternative explanation for the differences in soil biogenic NO emission we consider more biological factors like understory

  11. Plant species influence on soil C after afforestation of Mediterranean degraded soils

    Science.gov (United States)

    Dominguez, Maria T.; García-Vargas, Carlos; Madejón, Engracia; Marañón, Teodoro

    2015-04-01

    Increasing C sequestration in terrestrial ecosystems is one of the main current environmental challenges to mitigate climate change. Afforestation of degraded and contaminated lands is one of the key strategies to achieve an increase in C sequestration in ecosystems. Plant species differ in their mechanisms of C-fixation, C allocation into different plant organs, and interaction with soil microorganisms, all these factors influencing the dynamics of soil C following the afforestation of degraded soils. In this work we examine the influence of different woody plant species on soil C dynamics in degraded and afforested Mediterranean soils. The soils were former agricultural lands that were polluted by a mining accident and later afforested with different native plant species. We analysed the effect of four of these species (Olea europaea var. sylvestris Brot., Populus alba L., Pistacia lentiscus L. and Retama sphaerocarpa (L.) Boiss.) on different soil C fractions, soil nutrient availability, microbial activity (soil enzyme activities) and soil CO2 fluxes 15 years after the establishment of the plantations. Results suggest that the influence of the planted trees and shrubs is still limited, being more pronounced in the more acidic and nutrient-poor soils. Litter accumulation varied among species, with the highest C accumulated in the litter under the deciduous species (Populus alba L.). No differences were observed in the amount of total soil organic C among the studied species, or in the concentrations of phenols and sugars in the dissolved organic C (DOC), which might have indicated differences in the biodegradability of the DOC. Microbial biomass and activity was highly influenced by soil pH, and plant species had a significant influence on soil pH in the more acidic site. Soil CO2 fluxes were more influenced by the plant species than total soil C content. Our results suggest that changes in total soil C stocks after the afforestation of degraded Mediterranean

  12. Determination of levels of polycyclic aromatic hydrocarbons in soil ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    mishandling, deliberate disposal, spilling and leakage of petroleum products ... and eventually seeps into water bodies (Olugboji and ... solubility in water and are highly lipophilic. In water .... detect levels of PAHs in soils even at low levels and.

  13. Influence of Acacia trees on soil nutrient levels in arid lands

    Science.gov (United States)

    De Boever, Maarten; Gabriels, Donald; Ouessar, Mohamed; Cornelis, Wim

    2014-05-01

    The potential of scattered trees as keystone structures in restoring degraded environments is gaining importance. Scattered trees have strong influence on their abiotic environment, mainly causing changes in microclimate, water budget and soil properties. They often function as 'nursing trees', facilitating the recruitment of other plants. Acacia raddiana is such a keystone species which persists on the edge of the Sahara desert. The study was conducted in a forest-steppe ecosystem in central Tunisia where several reforestation campaigns with Acacia took place. To indentify the impact of those trees on soil nutrients, changes in nutrient levels under scattered trees of three age stages were examined for the upper soil layer (0-10 cm) at five microsites with increasing distance from the trunk. In addition, changes in soil nutrient levels with depth underneath and outside the canopy were determined for the 0-30 cm soil layer. Higher concentrations of organic matter (OM) were found along the gradient from underneath to outside the canopy for large trees compared to medium and small trees, especially at microsites close to the trunk. Levels of soluble K, electrical conductivity (EC), available P, OM, total C and N decreased whereas pH and levels of soluble Mg increased with increasing distance from tree. Levels of soluble Ca and Na remained unchanged along the gradient. At the microsite closest to the trunk a significant decrease in levels of soluble K, EC, OM, available P, total C and N, while a significant increase in pH was found with increasing depth. The concentration of other nutrients remained unchanged or declined not differently underneath compared to outside the canopy with increasing depth. Differences in nutrient levels were largely driven by greater inputs of organic matter under trees. Hence, Acacia trees can affect the productivity and reproduction of understory species with the latter in term an important source of organic matter. This positive feedback

  14. Glyphosate-Induced Specific and Widespread Perturbations in the Metabolome of Soil Pseudomonas Species

    Directory of Open Access Journals (Sweden)

    Ludmilla Aristilde

    2017-06-01

    Full Text Available Previous studies have reported adverse effects of glyphosate on crop-beneficial soil bacterial species, including several soil Pseudomonas species. Of particular interest is the elucidation of the metabolic consequences of glyphosate toxicity in these species. Here we investigated the growth and metabolic responses of soil Pseudomonas species grown on succinate, a common root exudate, and glyphosate at different concentrations. We conducted our experiments with one agricultural soil isolate, P. fluorescens RA12, and three model species, P. putida KT2440, P. putida S12, and P. protegens Pf-5. Our results demonstrated both species- and strain-dependent growth responses to glyphosate. Following exposure to a range of glyphosate concentrations (up to 5 mM, the growth rate of both P. protegens Pf-5 and P. fluorescens RA12 remained unchanged whereas the two P. putida strains exhibited from 0 to 100% growth inhibition. We employed a 13C-assisted metabolomics approach using liquid chromatography-mass spectrometry to monitor disruptions in metabolic homeostasis and fluxes. Profiling of the whole-cell metabolome captured deviations in metabolite levels involved in the tricarboxylic acid cycle, ribonucleotide biosynthesis, and protein biosynthesis. Altered metabolite levels specifically in the biosynthetic pathway of aromatic amino acids (AAs, the target of toxicity for glyphosate in plants, implied the same toxicity target in the soil bacterium. Kinetic flux experiments with 13C-labeled succinate revealed that biosynthetic fluxes of the aromatic AAs were not inhibited in P. fluorescens Pf-5 in the presence of low and high glyphosate doses but these fluxes were inhibited by up to 60% in P. putida KT2440, even at sub-lethal glyphosate exposure. Notably, the greatest inhibition was found for the aromatic AA tryptophan, an important precursor to secondary metabolites. When the growth medium was supplemented with aromatic AAs, P. putida S12 exposed to a lethal

  15. Survey of radioactivity levels of soil in Shanghai

    International Nuclear Information System (INIS)

    Ren Lihua

    1993-01-01

    The gross α and β activities on soil were measured by a mode FJ-2600 air-flow type alpha and beta counter. 204 sampling points including 173 grid points and 31 special points were set in the whole city. The ranges of the gross α and β activities in soil at the grid points are 816.5-2056.1 Bq/kg and 633.2-896.4 Bq/kg respectively. All these values are within the normal range of background activities. Only few special points are beyond the normal range. The results of statistical test indicate that the gross α and β activities show a normal distribution and that the levels of gross activity correlate with the sampling point, soil type and the geomorphology. It seems that the wide range of background values is related to the differences in natural conditions, such as the terrestrial formation, the soil-forming parent materials, etc., and the human activity

  16. Lead levels in roadside soils and vegetation of Damascus city

    International Nuclear Information System (INIS)

    Othman, I.; Al-Oudat, M.; Al-Masri, M.S.

    1999-01-01

    Seasonal variations of lead concentration in roadside soils and plants in 12 sites in Damascus city have been investigated. Lead concentrations in soil were found to be varied from 78.4 ppm to 832 ppm; lower levels in the wet period than in the dry period were observed. While lead levels in roadside plants varied between 3.39 ppm to 13.28 ppm. The results have also shown that most of the vegetables grown on the roadside of Damascus city have high concentrations of lead and the normal washing does not decrease it to An acceptable level. (author)

  17. Soil dioxins levels at agriculture sites and natural preserve areas of Taiwan.

    Science.gov (United States)

    Jou, Jin-juh; Lin, Kae-Long; Chung, Jen-Chir; Liaw, Shu-Liang

    2007-08-17

    In this study, agriculture soil in Taiwan has been sampled and analyzed to determine the background level of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/DF) in the agricultural and nature preserve areas. Another objective is to investigate relationship between soil characteristics and air deposition in Taiwan. The results indicate that in nature preserve areas the topsoil shows an extraordinary profile of PCDD/DF compared to that in the air deposition. The PCDD/DF levels of the low-contaminated agricultural soils are compatible with those of the nature preserves soils. However, in the highly-contaminated agricultural soils, there is an abrupt jump in their concentrations, 10-100 times higher. The overall I-TEQ values of the background topsoils range from 0.101 to 15.2 ng I-TEQ/kg. Near industrial/urban areas in Taiwan the PCDD/DF are slightly higher compared to those in the low concentration group. Typically, the PCDD/DF background values found in this survey fall in the 90% confidence interval and can thus, be deemed the background levels in Taiwan. Ninety-five percent of these data are below the European and American soil standard of 10 ng I-TEQ/kg d.w. The PCDD/DF profile with one neighborhood soil sample was shown no significant difference.

  18. Statistical uncertainty analysis of radon transport in nonisothermal, unsaturated soils

    International Nuclear Information System (INIS)

    Holford, D.J.; Owczarski, P.C.; Gee, G.W.; Freeman, H.D.

    1990-10-01

    To accurately predict radon fluxes soils to the atmosphere, we must know more than the radium content of the soil. Radon flux from soil is affected not only by soil properties, but also by meteorological factors such as air pressure and temperature changes at the soil surface, as well as the infiltration of rainwater. Natural variations in meteorological factors and soil properties contribute to uncertainty in subsurface model predictions of radon flux, which, when coupled with a building transport model, will also add uncertainty to predictions of radon concentrations in homes. A statistical uncertainty analysis using our Rn3D finite-element numerical model was conducted to assess the relative importance of these meteorological factors and the soil properties affecting radon transport. 10 refs., 10 figs., 3 tabs

  19. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    Science.gov (United States)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of

  20. Ecological site‐based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands.

    Science.gov (United States)

    Webb, Nicholas P; Herrick, Jeffrey E; Duniway, Michael C

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation, or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explored how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting, and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass–succulent states across the ecological sites at the plot scale (0.25 ha). We identified vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area could be effectively controlled when bare ground cover was 100 cm in length was less than ∼35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the

  1. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J P; Sucksdorff, Y [Finnish Environment Agency, Helsinki (Finland)

    1997-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  2. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)

    1996-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  3. Temporal and spatial dynamics of mineral levels of forage, soil and ...

    African Journals Online (AJOL)

    Temporal and spatial dynamics of mineral levels of forage, soil and cattle blood ... In the plain lands, local variations occurred for soil phosphorus and magnesium. ... Rangeland improvement and supplementation strategies are suggested to ...

  4. A Mechanistically Informed User-Friendly Model to Predict Greenhouse Gas (GHG) Fluxes and Carbon Storage from Coastal Wetlands

    Science.gov (United States)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2015-12-01

    We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.

  5. Greenhouse gas fluxes in a drained peatland forest during spring frost-thaw event

    Directory of Open Access Journals (Sweden)

    M. K. Pihlatie

    2010-05-01

    Full Text Available Fluxes of greenhouse gases (GHG carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O were measured during a two month campaign at a drained peatland forest in Finland by the eddy covariance (EC technique (CO2 and N2O, and automatic and manual chambers (CO2, CH4 and N2O. In addition, GHG concentrations and soil parameters (mineral nitrogen, temperature, moisture content in the peat profile were measured. The aim of the measurement campaign was to quantify the GHG fluxes during freezing and thawing of the top-soil, a time period with potentially high GHG fluxes, and to compare different flux measurement methods. The forest was a net CO2 sink during the two months and the fluxes of CO2 dominated the GHG exchange. The peat soil was a small sink of atmospheric CH4 and a small source of N2O. Both CH4 oxidation and N2O production took place in the top-soil whereas CH4 was produced in the deeper layers of the peat, which were unfrozen throughout the measurement period. During the frost-thaw events of the litter layer distinct peaks in CO2 and N2O emissions were observed. The CO2 peak followed tightly the increase in soil temperature, whereas the N2O peak occurred with a delay after the thawing of the litter layer. CH4 fluxes did not respond to the thawing of the peat soil. The CO2 and N2O emission peaks were not captured by the manual chambers and hence we conclude that high time-resolution measurements with automatic chambers or EC are necessary to quantify fluxes during peak emission periods. Sub-canopy EC measurements and chamber-based fluxes of CO2 and N2O were comparable, although the fluxes of N2O measured by EC were close to the detection limit of the system. We conclude

  6. Stable oxygen isotope analysis reveal vegetation influence on soil water movement and ecosystem water fluxes in a semi-arid oak woodland

    Science.gov (United States)

    Piayda, Arndt; Dubbert, Maren; Werner, Christiane; Cuntz, Matthias

    2015-04-01

    Mechanistically disentangling the role and function of vegetation within the hydrological cycle is one of the key questions in the interdisciplinary field of ecohydrology. The presence of vegetation can have various impacts on soil water relations: transpiration of active vegetation causes great water losses, rainfall is intercepted, soil evaporation can be reduced and infiltration, hydraulic redistribution and translatory flow might be altered. In drylands, covering around 40% of the global land surface, the carbon cycle is closely coupled to water availability due to (seasonal) droughts. Specifically savannah type ecosystems, which cover large areas worldwide, are, due to their bi-layered structure, very suitable to study the effects of distinct vegetation types on the ecosystem water cycle. Oxygen isotope signatures (δ18O) have been used to partition ecosystem evapotranspiration (ET ) because of the distinct isotopic compositions of water transpired by leaves relative to soil evaporated vapor. Recent developments in laser spectroscopy enable measurements of δ18O in the vapor phase with high temporal resolution in the field and bear a novel opportunity to trace water movement within the ecosystem. In the present study, the effects of distinct vegetation layers (i.e. trees and herbaceous vegetation) on soil water infiltration and redistribution as well as ecosystem water fluxes in a Mediterranean cork-oak woodland are disentangled. An irrigation experiment was carried out using δ18O labeled water to quantify the distinct effects of trees and herbaceous vegetation on 1) infiltration and redistribution of water in the soil profile and 2) to disentangle the effects of tree cover on the contribution of unproductive soil evaporation and understory transpiration to total ET . First results proof that stable δ18O isotopes measured onsite with laser spectroscopy is a valuable tool to trace water movement in the soil showing a much higher sensitivity than common TDR

  7. Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery

    Directory of Open Access Journals (Sweden)

    Weiqiang Ma

    2009-01-01

    Full Text Available Surface fluxes are important boundary conditions for climatological modeling and Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A parameterization method based on ASTER data and field observations has been proposed and tested for deriving surface albedo, surface temperature, Normalized Difference Vegetation Index (NDVI, Modified Soil Adjusted Vegetation Index (MSAVI, vegetation coverage, Leaf Area Index (LAI, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the Coordinated Enhanced Observing Period (CEOP Asia-Australia Monsoon Project (CAMP on the Tibetan Plateau (CAMP/Tibet, located at the north Tibetan Plateau. The ASTER data of 24 July 2001, 29 November 2001 and 12 March 2002 was used in this paper for the case of summer, winter and spring. To validate the proposed methodology, the ground-measured surface variables (surface albedo and surface temperature and land surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in three different months over the study area are in good accordance with the land surface status. Also, the estimated land surface variables and land surface heat fluxes are in good accordance with ground measurements, and all their absolute percentage difference (APD is less than 10% in the validation sites

  8. Fluxes of radionuclides in the agricultural production after a nuclear accident: countermeasures and decontamination techniques; Flux des radionucleides dans les productions agricoles suite a un accident nucleaire: contre-mesures et techniques de rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Jouve, A. [CEA Centre d`Etudes Nucleaires de Cadarache, 13 -Saint-Paul-lez-Durance (France)]|[Universite de Provence, 13 - Marseille (France)

    1997-12-31

    This thesis deals with the radiological consequences of a nuclear accident through the radioactive contamination of the food chain and the subsequent countermeasures for decreasing the fluxes of radionuclides and decontaminating agricultural lands. After a brief summary of the radioprotection ground and context in case of a nuclear accident, this work surveys existing data on the fluxes of radionuclides in soils and from soil to plants. The research work focuses on both the prediction of the fluxes of radionuclides and possible countermeasures: the measurement of the bioavailability of radionuclides in the soil solution, its use in a mathematical expression to quantify the soil-to-plant transfer of caesium and strontium, and the perspectives of an innovative technique of soil decontamination. The obtained results show that based on 4 coefficients, it is possible to predict crop contamination within a 3 % confidence interval: the fluid solid distribution coefficient of radionuclides kd, the amount of chemical analogues of caesium and strontium, i.e. potassium and calcium, respectively, soil pH and a constant characterising the plant species that is concerned. However, it generally appears from soil to plant transfer studies that the reduction of the fluxes of radionuclides is not a promising way of radiological exposure mitigation after a nuclear accident. The work performed shows that it is more efficient to tackle the source of the contamination, i.e. decontaminate the soil. The proposed technique of soil scraping using a turf harvester appears to be the most advantageous among the tested options, for the decontamination of peat-bog meadows. (author).

  9. Fluxes of radionuclides in the agricultural production after a nuclear accident: countermeasures and decontamination techniques; Flux des radionucleides dans les productions agricoles suite a un accident nucleaire: contre-mesures et techniques de rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Jouve, A [CEA Centre d` Etudes Nucleaires de Cadarache, 13 -Saint-Paul-lez-Durance (France); [Universite de Provence, 13 - Marseille (France)

    1998-12-31

    This thesis deals with the radiological consequences of a nuclear accident through the radioactive contamination of the food chain and the subsequent countermeasures for decreasing the fluxes of radionuclides and decontaminating agricultural lands. After a brief summary of the radioprotection ground and context in case of a nuclear accident, this work surveys existing data on the fluxes of radionuclides in soils and from soil to plants. The research work focuses on both the prediction of the fluxes of radionuclides and possible countermeasures: the measurement of the bioavailability of radionuclides in the soil solution, its use in a mathematical expression to quantify the soil-to-plant transfer of caesium and strontium, and the perspectives of an innovative technique of soil decontamination. The obtained results show that based on 4 coefficients, it is possible to predict crop contamination within a 3 % confidence interval: the fluid solid distribution coefficient of radionuclides kd, the amount of chemical analogues of caesium and strontium, i.e. potassium and calcium, respectively, soil pH and a constant characterising the plant species that is concerned. However, it generally appears from soil to plant transfer studies that the reduction of the fluxes of radionuclides is not a promising way of radiological exposure mitigation after a nuclear accident. The work performed shows that it is more efficient to tackle the source of the contamination, i.e. decontaminate the soil. The proposed technique of soil scraping using a turf harvester appears to be the most advantageous among the tested options, for the decontamination of peat-bog meadows. (author).

  10. New Constraints on Terrestrial Surface-Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database.

    Science.gov (United States)

    Agnan, Yannick; Le Dantec, Théo; Moore, Christopher W; Edwards, Grant C; Obrist, Daniel

    2016-01-19

    Despite 30 years of study, gaseous elemental mercury (Hg(0)) exchange magnitude and controls between terrestrial surfaces and the atmosphere still remain uncertain. We compiled data from 132 studies, including 1290 reported fluxes from more than 200,000 individual measurements, into a database to statistically examine flux magnitudes and controls. We found that fluxes were unevenly distributed, both spatially and temporally, with strong biases toward Hg-enriched sites, daytime and summertime measurements. Fluxes at Hg-enriched sites were positively correlated with substrate concentrations, but this was absent at background sites. Median fluxes over litter- and snow-covered soils were lower than over bare soils, and chamber measurements showed higher emission compared to micrometeorological measurements. Due to low spatial extent, estimated emissions from Hg-enriched areas (217 Mg·a(-1)) were lower than previous estimates. Globally, areas with enhanced atmospheric Hg(0) levels (particularly East Asia) showed an emerging importance of Hg(0) emissions accounting for half of the total global emissions estimated at 607 Mg·a(-1), although with a large uncertainty range (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]). The largest uncertainties in Hg(0) fluxes stem from forests (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]), largely driven by a shortage of whole-ecosystem fluxes and uncertain contributions of leaf-atmosphere exchanges, questioning to what degree ecosystems are net sinks or sources of atmospheric Hg(0).

  11. Evaluation of the DayCent model to predict carbon fluxes in French crop sites

    Science.gov (United States)

    Fujisaki, Kenji; Martin, Manuel P.; Zhang, Yao; Bernoux, Martial; Chapuis-Lardy, Lydie

    2017-04-01

    Croplands in temperate regions are an important component of the carbon balance and can act as a sink or a source of carbon, depending on pedoclimatic conditions and management practices. Therefore the evaluation of carbon fluxes in croplands by modelling approach is relevant in the context of global change. This study was part of the Comete-Global project funded by the multi-Partner call FACCE JPI. Carbon fluxes, net ecosystem exchange (NEE), leaf area index (LAI), biomass, and grain production were simulated at the site level in three French crop experiments from the CarboEurope project. Several crops were studied, like winter wheat, rapeseed, barley, maize, and sunflower. Daily NEE was measured with eddy covariance and could be partitioned between gross primary production (GPP) and total ecosystem respiration (TER). Measurements were compared to DayCent simulations, a process-based model predicting plant production and soil organic matter turnover at daily time step. We compared two versions of the model: the original one with a simplified plant module and a newer version that simulates LAI. Input data for modelling were soil properties, climate, and management practices. Simulations of grain yields and biomass production were acceptable when using optimized crop parameters. Simulation of NEE was also acceptable. GPP predictions were improved with the newer version of the model, eliminating temporal shifts that could be observed with the original model. TER was underestimated by the model. Predicted NEE was more sensitive to soil tillage and nitrogen applications than measured NEE. DayCent was therefore a relevant tool to predict carbon fluxes in French crops at the site level. The introduction of LAI in the model improved its performance.

  12. Application of a visual soil examination and evaluation technique at site and farm level

    NARCIS (Netherlands)

    Sonneveld, M.P.W.; Heuvelink, G.B.M.; Moolenaar, S.W.

    2014-01-01

    Visual soil examination and evaluation (VSEE) techniques are semi-quantitative methods that provide rapid and cost-effective information on soil quality. These are mostly applied at site or field level, but there is an increased need for soil quality indicators at farm level to allow integration

  13. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  14. Mathematical model and simulations of radiation fluxes from buried radionuclides

    International Nuclear Information System (INIS)

    Ahmad Saat

    1999-01-01

    A mathematical model and a simple Monte Carlo simulations were developed to predict radiation fluxes from buried radionuclides. The model and simulations were applied to measured (experimental) data. The results of the mathematical model showed good acceptable order of magnitude agreement. A good agreement was also obtained between the simple simulations and the experimental results. Thus, knowing the radionuclide distribution profiles in soil from a core sample, it can be applied to the model or simulations to estimate the radiation fluxes emerging from the soil surface. (author)

  15. Using heat to characterize streambed water flux variability in four stream reaches

    Science.gov (United States)

    Essaid, H.I.; Zamora, C.M.; McCarthy, K.A.; Vogel, J.R.; Wilson, J.T.

    2008-01-01

    Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  16. Nuclear densimeter of soil simulated in MCNP-4C code

    International Nuclear Information System (INIS)

    Braga, Mario R.M.S.S.; Penna, Rodrigo; Vasconcelos, Danilo C.; Pereira, Claubia; Guerra, Bruno T.; Silva, Clemente J.G.C.

    2009-01-01

    The Monte Carlo code (MCNPX) was used to simulate a nuclear densimeter for measuring soil density. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on soil surface. Results from MCNP shown that scattered photon fluxes may be used to determining soil density. Linear regressions between scattered photons fluxes and soil density were calculated and shown correlation coefficients near unity. (author)

  17. Nitrous oxide fluxes and nitrogen cycling along a pasturechronosequence in Central Amazonia, Brazil

    Science.gov (United States)

    B. Wick; E. Veldkamp; W. Z. de Mello; M. Keller; P. Crill

    2005-01-01

    We studied nitrous oxide (N2O) fluxes and soil nitrogen (N) cycling following forest conversion to pasture in the central Amazon near Santarém, Pará, Brazil. Two undisturbed forest sites and 27 pasture sites of 0.5 to 60 years were sampled once each during wet and dry seasons. In addition to soil-atmosphere fluxes of N...

  18. A soil moisture-rainfall feedback mechanism. 1. Theory and observations

    International Nuclear Information System (INIS)

    Eltahir, E.A.B.

    1998-01-01

    This paper presents a hypothesis regarding the fundamental role of soil moisture conditions in land-atmosphere interactions. We propose that wet soil moisture conditions over any large region should be associated with relatively large boundary layer moist static energy, which favors the occurrence of more rainfall. Since soil moisture conditions themselves reflect past occurrence of rainfall, the proposed hypothesis implies a positive feedback mechanism between soil moisture and rainfall. This mechanism is based on considerations of the energy balance at the land-atmosphere boundary, in contrast to similar mechanisms that were proposed in the past and that were based on the concepts of water balance and precipitation recycling. The control of soil moisture on surface albedo and Bowen ratio is the fundamental basis of the proposed soil moisture-rainfall feedback mechanism. The water content in the upper soil layer affects these two important properties of the land surface such that both variables decrease with any increase in the water content of the top soil layer. The direct effect of soil moisture on surface albedo implies that wet soil moisture conditions enhance net solar radiation. The direct effect of soil moisture on Bowen ratio dictates that wet soil moisture conditions would tend to enhance net terrestrial radiation at the surface through cooling of surface temperature, reduction of upwards emissions of terrestrial radiation, and simultaneous increase in atmospheric water vapor content and downwards flux of terrestrial radiation. Thus, under wet soil moisture conditions, both components of net radiation are enhanced, resulting in a larger total flux of heat from the surface into the boundary layer. This total flux represents the sum of the corresponding sensible and latent heat fluxes. Simultaneously, cooling of surface temperature should be associated with a smaller sensible heat flux and a smaller depth of the boundary layer

  19. Estimating soil water evaporation using radar measurements

    Science.gov (United States)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  20. Static Vented Chamber and Eddy Covariance Methane Flux Comparisons in Mid-South US Rice

    Science.gov (United States)

    Reba, M. L.; Fong, B.; Adviento-Borbe, A.; Runkle, B.; Suvocarev, K.; Rival, I.

    2017-12-01

    Rice cultivation contributes higher amounts of GHG emissions (CO2 and CH4) due to flooded field conditions. A comparison between eddy covariance and static vented flux chamber measurement techniques is presented. Rice GHG emissions originating from plot level chambers may not accurately describe the aggregate effects of all the soil and micrometeorological variations across a production field. Eddy covariance (EC) is a direct, integrated field measurement of field scale trace gases. Flux measurements were collected in NE Arkansas production size rice fields (16 ha, 40 ac) during the 2015 and 2016 production seasons (June-August) in continuous flood (CF) irrigation. The study objectives included quantifying the difference between chamber and EC measurements, and categorizing flux behavior to growth stage and field history. EC daily average emissions correlated with chamber measurements (R2=0.27-0.54) more than average from 09:00-12:00 which encompassed chamber measurement times (R2=0.23-0.32). Maximum methane emissions occurred in the late afternoon from 14:00-18:00 which corresponded with maximum soil heat flux and air temperature. The total emissions from the study fields ranged from 27-117 kg CH4-C ha-1 season-1. The emission profile was lower in 2015, most likely due to higher rainfall and cooler temperatures during the growing season compared to 2016. These findings improve our understanding of GHG emissions at the field scale under typical production practices and validity of chamber and EC flux measurement techniques.

  1. Level of Fluoride in Soil, Grain and Water in Jalgaon District, Maharashtra, India.

    Science.gov (United States)

    Naik, Rahul Gaybarao; Dodamani, Arun Suresh; Vishwakarma, Prashanth; Jadhav, Harish Chaitram; Khairnar, Mahesh Ravindra; Deshmukh, Manjiri Abhay; Wadgave, Umesh

    2017-02-01

    Fluoride has an influence on both oral as well as systemic health. The major source of fluoride to body is through drinking water as well as through diet. Staple diet mainly depends on local environmental factors, food grains grown locally, its availability etc. Determination of fluoride level in these food grains is important. So, estimation of the amount of fluoride in grains and its relation to the sources of fluoride used for their cultivation viz., soil and water is important. To estimate the relation of fluoride concentration in grains (Jowar) with respect to that of soil and water used for their cultivation. Fifteen samples each of soil, water and grains were collected using standardized method from the same farm fields of randomly selected villages of Jalgaon district. Fluoride ion concentration was determined in laboratory using SPADNS technique. Mean difference in fluoride levels in between the groups were analyzed using ANOVA and Post-Hoc Tukey test. Linear regression method was applied to analyse the association of the fluoride content of grain with water and soil. There was a significant difference in between mean fluoride levels of soil and water (pwater and grain was found to be non significant (p=0.591). Also fluoride levels in all the three groups showed significant association with each other. Fluoride level of soil, grains and water should be adjusted to an optimum level. Soil has positive correlation with respect to uptake of fluoride by Jowar grains. So, Jowar grains with optimum fluoride content should be made available in the commercial markets so that oral and general health can be benefitted.

  2. Degradation of kresoxim-methyl in soil: impact of varying moisture, organic matter, soil sterilization, soil type, light and atmospheric CO2 level.

    Science.gov (United States)

    Khandelwal, Ashish; Gupta, Suman; Gajbhiye, Vijay T; Varghese, Eldho

    2014-09-01

    In the present investigation, persistence of kresoxim-methyl (a broad spectrum strobilurin fungicide) was studied in two different soil types of India namely Inceptisol and Ultisol. Results revealed that kresoxim-methyl readily form acid metabolite in soil. Therefore, residues of kresoxim-methyl were quantified on the basis of parent molecule alone and sum total of kresoxim-methyl and its acid metabolite. Among the two soil types, kresoxim-methyl and total residues dissipated at a faster rate in Inceptisol (T1/2 0.9 and 33.8d) than in Ultisol (T1/2 1.5 and 43.6d). Faster dissipation of kresoxim-methyl and total residues was observed in submerged soil conditions (T1/2 0.5 and 5.2d) followed by field capacity (T1/2 0.9 and 33.8d) and air dry (T1/2 2.3 and 51.0d) conditions. Residues also dissipated faster in 5% sludge amended soil (T1/2 0.7 and 21.1d) and on Xenon-light exposure (T1/2 0.5 and 8.0d). Total residues of kresoxim-methyl dissipated at a faster rate under elevated CO2 condition (∼550μLL(-)(1)) than ambient condition (∼385μLL(-)(1)). The study suggests that kresoxim-methyl alone has low persistence in soil. Because of the slow dissipation of acid metabolite, the total residues (kresoxim-methyl+acid metabolite) persist for a longer period in soil. Statistical analysis using SAS 9.3 software and Duncan's Multiple Range Test (DMRT) revealed the significant effect of moisture regime, organic matter, microbial population, soil type, light exposure and atmospheric CO2 level on the dissipation of kresoxim-methyl from soil (at 95% confidence level p<0.0001). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  4. The flux database concerted action

    International Nuclear Information System (INIS)

    Mitchell, N.G.; Donnelly, C.E.

    1999-01-01

    This paper summarizes the background to the UIR action on the development of a flux database for radionuclide transfer in soil-plant systems. The action is discussed in terms of the objectives, the deliverables and the progress achieved so far by the flux database working group. The paper describes the background to the current initiative and outlines specific features of the database and supporting documentation. Particular emphasis is placed on the proforma used for data entry, on the database help file and on the approach adopted to indicate data quality. Refs. 3 (author)

  5. Selected micrometeorological, soil-moisture, and evapotranspiration data at Amargosa Desert Research Site in Nye County near Beatty, Nevada, 2001-05

    Science.gov (United States)

    Johnson, Michael J.; Mayers, C. Justin; Garcia, C. Amanda; Andraski, Brian J.

    2007-01-01

    Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada, 2001-05. Evapotranspiration data were collected from February 2002 through the end of December 2005. Data were col-lected in support of ongoing research to improve the understanding of hydrologic and contaminant-transport processes in arid environments. Micrometeorological data include solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, precipitation, near-surface soil temperature, soil-heat flux and soil-water content. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily and hourly mean values. Daily maximum and minimum values are based on hourly mean values. Precipitation data output includes daily and hourly totals. Selected soil-moisture profiles at depth include periodic measurements of soil volumetric water-content measurements at nine neutron-probe access tubes to depths ranging from 5.25 to 29.25 meters. Evapotranspiration data include measurement of daily evapotranspiration and 15-minute fluxes of the four principal energy budget components of latent-heat flux, sensible-heat flux, soil-heat flux, and net radiation. Other data collected and used in equations to determine evapotranspiration include temperature and water content of soil, temperature and vapor pressure of air, and covariance values. Evapotranspiration and flux estimates during 15-minute intervals were calculated at a 0.1-second execution interval using the eddy covariance method. Data files included in this report contain the complete micrometeorological, soil-moisture, and evapotranspiration field data sets. These data files are presented in tabular Excel spreadsheet format. This report highlights selected data contained in the

  6. The effect of soilagrochemical properties on level of available phosphate in soil

    International Nuclear Information System (INIS)

    Zhang Yumei

    1985-01-01

    Superphosphate labelled with 32 P and 15 typies of soil were used to study the effect of various soil-agrochemical properties on the availability of phosphate. The level was figured with A value. The relations of A to soybean yield and soil-agro-chemical properties were analysed through Multiple regression

  7. Soil emission and uptake of carbonyl sulfide at a temperate mountain grassland

    Science.gov (United States)

    Kitz, Florian; Hammerle, Albin; Laterza, Tamara; Spielmann, Felix M.; Wohlfahrt, Georg

    2016-04-01

    Flux partitioning, i.e. inferring gross primary productivity (GPP) and ecosystem respiration from the measured net ecosystem carbon dioxide (CO2) exchange, is one uncertainty in modelling the carbon cycle and in times where robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive GPP by measuring carbonyl sulfide (COS), the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite to use COS as a proxy for canopy photosynthesis is a robust estimation of COS sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on properties like soil temperature and soil water content. The main aim of this study was to quantify the soil COS exchange and its drivers of a temperate mountain grassland in order to aid the use of COS as tracer for canopy CO2 and water vapor exchange. We conducted a field campaign with a Quantum cascade laser at a temperate mountain grassland to estimate the soil COS fluxes under ambient conditions and while simulating a drought. We used self-built fused silica (i.e. light-transparent) soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. Vegetation was removed within the chambers, therefor more radiation reached the soil surface compared to natural conditions. This might be the reason for highly positive fluxes during daytime more similar to agricultural study sites. To further investigate this large soil COS source we conducted within canopy concentration measurements near the soil surface and still recorded fluxes confirming the soil as a COS source during daytime. Results from the drought experiment suggested a strong impact of incoming radiation on soil COS fluxes followed by soil

  8. The rocky flats controversy on radionuclide soil action levels

    International Nuclear Information System (INIS)

    Earle, T.C.

    2004-01-01

    This report describes the Rocky Flats radionuclide soil action level controversy as a case study for the purpose of understanding the nature and value of stakeholder involvement in the management of radiological hazards. The report consists of three main sections. The first section outlines the Rocky Flats story, including the Cold War era, the post-Cold War era, and the transition between the two. This provides the context necessary to understand the radionuclide soil action level controversy, the main events of which are described in the second section. In the final section, the Rocky Flats case is briefly discussed within the framework of a general model of stakeholder involvement and the lessons learned from the case are identified. (author)

  9. Fluxes of radionuclides in the agricultural production after a nuclear accident: countermeasures and decontamination techniques

    International Nuclear Information System (INIS)

    Jouve, A.

    1997-01-01

    This thesis deals with the radiological consequences of a nuclear accident through the radioactive contamination of the food chain and the subsequent countermeasures for decreasing the fluxes of radionuclides and decontaminating agricultural lands. After a brief summary of the radioprotection ground and context in case of a nuclear accident, this work surveys existing data on the fluxes of radionuclides in soils and from soil to plants. The research work focuses on both the prediction of the fluxes of radionuclides and possible countermeasures: the measurement of the bioavailability of radionuclides in the soil solution, its use in a mathematical expression to quantify the soil-to-plant transfer of caesium and strontium, and the perspectives of an innovative technique of soil decontamination. The obtained results show that based on 4 coefficients, it is possible to predict crop contamination within a 3 % confidence interval: the fluid solid distribution coefficient of radionuclides kd, the amount of chemical analogues of caesium and strontium, i.e. potassium and calcium, respectively, soil pH and a constant characterising the plant species that is concerned. However, it generally appears from soil to plant transfer studies that the reduction of the fluxes of radionuclides is not a promising way of radiological exposure mitigation after a nuclear accident. The work performed shows that it is more efficient to tackle the source of the contamination, i.e. decontaminate the soil. The proposed technique of soil scraping using a turf harvester appears to be the most advantageous among the tested options, for the decontamination of peat-bog meadows. (author)

  10. Nutrient fluxes at the landscape level and the R* rule

    Science.gov (United States)

    Ju, Shu; DeAngelis, Donald L.

    2010-01-01

    Nutrient cycling in terrestrial ecosystems involves not only the vertical recycling of nutrients at specific locations in space, but also biologically driven horizontal fluxes between different areas of the landscape. This latter process can result in net accumulation of nutrients in some places and net losses in others. We examined the effects of such nutrient-concentrating fluxes on the R* rule, which predicts that the species that can survive in steady state at the lowest level of limiting resource, R*, can exclude all competing species. To study the R* rule in this context, we used a literature model of plant growth and nutrient cycling in which both nutrients and light may limit growth, with plants allocating carbon and nutrients between foliage and roots according to different strategies. We incorporated the assumption that biological processes may concentrate nutrients in some parts of the landscape. We assumed further that these processes draw nutrients from outside the zone of local recycling at a rate proportional to the local biomass density. Analysis showed that at sites where there is a sufficient biomass-dependent accumulation of nutrients, the plant species with the highest biomass production rates (roughly corresponding to the best competitors) do not reduce locally available nutrients to a minimum concentration level (that is, minimum R*), as expected from the R* rule, but instead maximize local nutrient concentration. These new results require broadening of our understanding of the relationships between nutrients and vegetation competition on the landscape level. The R* rule is replaced by a more complex criterion that varies across a landscape and reduces to the R* rule only under certain limiting conditions.

  11. Biochar soil amendment for waste-stream diversion, nutrient holding capacity, and carbon sequestration in two contrasting soils

    Science.gov (United States)

    Deem, L. M.; Crow, S. E.; Deenik, J. L.; Penton, C. R.; Yanagida, J.

    2013-12-01

    Biochar is organic matter that has been pyrolized under low oxygen conditions for use as a soil amendment. Currently biochar is viewed as a way to improve soil quality (e.g., increased nutrient and water holding capacity) and increase in soil carbon (C) sequestration. The use of biochar in soil is not new, yet little is known about the underlying mechanisms that control the interactions between biochar and soil following amendment. In the past, the effects of biochar addition on crop yields, soil properties and greenhouse gas (GHG) fluxes in both in-situ and controlled experiments have produced inconsistent results. These discrepancies may be uncovered in part by chemical and physical characterization of the biochar prior to amendment and identification of soil- and biochar-specific interactions. Furthermore, a more holistic consideration of the system may demonstrate the virtues of biochar amendment beyond the typical considerations of yield and gas flux. We expect that as the differences between the physical and chemical properties of the biochar and the soil increase, the impact on the soil quality metrics will also increase. For this study, we used a waste product (i.e., anaerobic digester sludge) biochar with 81.5% C, pH of 10.44, pH-independent charge for anion exchange capacity (AEC) and a pH-dependent charge for cation exchange capacity (CEC), 4.14% moisture content and 25.75 cmol¬c /kg exchangeable base cations. This biochar was incorporated into both a low and a high fertility Hawaiian field soil to quantitate biochar effects on crop yield, soil pH, CEC, AEC, hot and cold water extractable C and nitrogen, bulk density, phosphorus, soil microbial ecology, and GHG flux in varying soil conditions. Compared to the higher fertility soil, we hypothesized that the low fertility soil would demonstrate a greater increase in soil quality, including higher pH, CEC and water holding capacity. Two crop management practices were included with each soil: traditional

  12. Nitrate leaching, direct and indirect nitrous oxide fluxes from sloping cropland in the purple soil area, southwestern China

    International Nuclear Information System (INIS)

    Zhou Minghua; Zhu Bo; Butterbach-Bahl, Klaus; Wang Tao; Bergmann, Jessica; Brüggemann, Nicolas; Wang Zhenhua; Li Taikui; Kuang Fuhong

    2012-01-01

    This study provides a combined dataset on N loss pathways and fluxes from sloping cropland in the purple soil area, southwestern China. A lysimeter experiment was conducted to quantify nitrate leaching (May 2004–May 2010) and N 2 O emission (May 2009–May 2010) losses. Nitrate leaching was the dominant N loss pathway and annual leaching fluxes ranged from 19.2 to 53.4 kg N ha −1 , with significant differences between individual observation years (P 2 O emissions due to N fertilizer use were 1.72 ± 0.34 kg N ha −1 yr −1 , which corresponds to an emission factor of 0.58 ± 0.12%. However, indirect N 2 O emissions caused by nitrate leaching and surface runoff N losses, may contribute another 0.15–0.42 kg N ha −1 yr −1 . Our study shows that nitrate leaching lowered direct N 2 O emissions, highlighting the importance for a better understanding of the tradeoff between direct and indirect N 2 O emissions for the development of meaningful N 2 O emission strategies. - Highlights: ► High NO 3 − leaching losses lowered direct N 2 O emissions. ► Hydrological N losses induced un-neglected indirect N 2 O emissions. ► Considering both direct and indirect N 2 O emission is needed for reduction strategies. - High nitrate leaching losses from sloping croplands of purple soil are accompanied with reductions in direct N 2 O emissions and stimulations of indirect N 2 O emissions.

  13. Modélisation de la réponse des flux de respiration d'un sol forestier selon les principales variables climatiques

    Directory of Open Access Journals (Sweden)

    Marc Aubinet

    2004-01-01

    Full Text Available Modelling of the response of forest soil respiration fluxes to the main climatic variables. The objective of this article is to model the carbon dioxide (CO2 efflux to the atmosphere due to soil respiration. First, we will synthesize the main components of soil respiration fluxes as found in the literature. Then, we will present a system of automatic measurements, which was set up in a forest stand in Vielsalm (Ardennes, Belgium. This system recorded measurements of soil efflux and of climatic variables every 30 minutes. Its spatial resolution was limited to six collars of 20 cm diameter in a two-meter diameter curve. The measurements were analyzed according to their climatic components: temperature and relative soil water content. We analyzed 2 2 , 9 2 6 cycles of soil respiration measurements, and we followed a strict procedure of data selection in order to characterize soil respiration fluxes according to the main environmental components. We modelized those soil temperature-dependent fluxes with a Q1 0 function and A r r h e n i u s ' law with temperature-adjusted activation energ y, which both gave very similar results. Our best estimation for Q1 0 is 3.86 and for A in Arrhenius ' l a w, 17,479. We then adjusted two line segments beneath and beyond 0 . 2 7 m3.m- 3 of water in the soil in order to describe the response of respiration fluxes to soil moisture content. The soil temperature at 4.5 cm could explain over 86 % of the soil respiration fluxes. Relative moisture content narrows this by 2 % .

  14. Free atmospheric phosphine concentrations and fluxes in different wetland ecosystems, China

    International Nuclear Information System (INIS)

    Han Chao; Geng Jinju; Hong Yuning; Zhang Rui; Gu Xueyuan; Wang Xiaorong; Gao Shixiang; Glindemann, Dietmar

    2011-01-01

    Atmospheric phosphine (PH 3 ) fluxes from typical types of wetlands and PH 3 concentrations in adjacent atmospheric air were measured. The seasonal distribution of PH 3 in marsh and paddy fields were observed. Positive PH 3 fluxes are significantly related to high air temperature (summer season) and increased vegetation. It is concluded that vegetation speeds up the liberation of PH 3 from soils, while water coverage might function as a diffusion barrier from soils or sediments to the atmosphere. The concentrations of atmospheric PH 3 (ng m -3 ) above different wetlands decrease in the order of paddy fields (51.8 ± 3.1) > marsh (46.5 ± 20.5) > lake (37.0 ± 22.7) > coastal wetland (1.71 ± 0.73). Highest atmospheric PH 3 levels in marsh are found in summer. In paddy fields, atmospheric PH 3 concentrations in flourishing stages are higher than those in slowly growing stages. - Research highlights: → P could migrate as PH 3 gas in different wetland ecosystems. → Wetlands act as a source and sink of atmospheric PH 3 . → Positive PH 3 fluxes are significantly related to high temperature and increased vegetation. → Environmental PH 3 concentrations in China are generally higher. - Environmental PH 3 concentrations in China are generally higher compared to other parts of the world.

  15. Methane flux from boreal peatlands

    International Nuclear Information System (INIS)

    Crill, P.; Bartlett, K.; Roulet, N.

    1992-01-01

    The peatlands in the boreal zone (roughly 45 deg - 60 degN) store a significant reservoir of carbon, much of which is potentially available for exchange with the atmosphere. The anaerobic conditions that cause these soils to accumulate carbon also makes wet, boreal peatlands significant sources of methane to the global troposphere. It is estimated that boreal wetlands contribute approximately 19.5 Tg methane per year. The data available on the magnitude of boreal methane emissions have rapidly accumulated in the past twenty years. This paper offers a short review of the flux measured (with range roughly 1 - 2000 mg methane/m2d), considers environmental controls of the flux and briefly discusses how climate change might affect future fluxes

  16. Diffusive fractionation complicates isotopic partitioning of autotrophic and heterotrophic sources of soil respiration.

    Science.gov (United States)

    Moyes, Andrew B; Gaines, Sarah J; Siegwolf, Rolf T W; Bowling, David R

    2010-11-01

    Carbon isotope ratios (δ¹³C) of heterotrophic and rhizospheric sources of soil respiration under deciduous trees were evaluated over two growing seasons. Fluxes and δ¹³C of soil respiratory CO₂ on trenched and untrenched plots were calculated from closed chambers, profiles of soil CO₂ mole fraction and δ¹³C and continuous open chambers. δ¹³C of respired CO₂ and bulk carbon were measured from excised leaves and roots and sieved soil cores. Large diel variations (>5‰) in δ¹³C of soil respiration were observed when diel flux variability was large relative to average daily fluxes, independent of trenching. Soil gas transport modelling supported the conclusion that diel surface flux δ¹³C variation was driven by non-steady state gas transport effects. Active roots were associated with high summertime soil respiration rates and around 1‰ enrichment in the daily average δ¹³C of the soil surface CO₂ flux. Seasonal δ¹³C variability of about 4‰ (most enriched in summer) was observed on all plots and attributed to the heterotrophic CO₂ source. © 2010 Blackwell Publishing Ltd.

  17. Transfer mechanisms in cultivated soils of waste radionuclides from electronuclear power plants in the system river--irrigated soil--underground water level

    Energy Technology Data Exchange (ETDEWEB)

    Saas, A; Grauby, A

    1974-12-31

    From symposinm on environmentl behavior of radionuclides released in the nuclear industry; Aix-en-Provence, France (14 May 1973). The location of nuclear power plants by rivers whose waters are used for irrigation and industrial and domestic consumption necessities a profound study of the river-irrigated soil- ground water system. Mechanisms of radionuclide transport in cultivated soil are considered under three principal aspects: the effect of the quality of the river water, of the irrigation channels, and of the ground water level on the mobility of the radionuclides in the soil; the influence of the type of soil (the four types of soils considered are acid brown soil, calcic brown soil, chalky brown soil, and chalky alluvial soil); and the distribution of radionuclides in the soil (hydrosoluble forms can contminate the ground water level and these are the forms in which they are taken up by plants. A study was made on the following nuclides: /sup 22/Na, /sup 137/Cs, /sup 85/Sr, /Sup 54/Mn, /Sup 59/Fe, /Sup 60/ Co, /sup 65/Zn, /sup 124/Sb, /sup 141 in the cultivated soils permit the evaluation of the risks of contmination of the food chain and of the underground water. This study also showed new perspectives of the behavior of radionuclides as a function of their contmination of the organo-mineral wastes of industrial and domestic origin. This pollution interfers largely with the formation of stble complexes carried by the river to irrigated soils. The quality of the water determines the distribution of the radionuclides in the profile. The hydrosoluble complex persists in the soil and migrates toward the underground water level if they are not biodegradable. The stability of these forms as a function of the soil pH and of its physicochemical characteristics, as well as that of the radionuclides considered, permit the formulation of a new balance of the radionuclides in soils. The formulation of new proposals for the contml of nuclear sites is discussed. (tr-auth)

  18. The levels of uranium and thorium in soils and vegetables from Cornwall and Sutherland

    International Nuclear Information System (INIS)

    Nicholson, S.; Long, S.E.; McEwen, I.

    1990-02-01

    Soils from Sutherland and Cornwall may contain high natural levels of uranium and thorium. Samples of soil and vegetables were taken from agricultural land in these regions, and the levels of uranium and thorium were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Delayed Neutron Activation Analysis (DNAA). Mean levels of uranium and thorium in the soils were, respectively, 3.5 times and 1.5 times greater than the British average. Uptake factors were calculated from these data and found to be of the order 10 -4 to 10 -3 which is in agreement with published literature. The Tessier extraction scheme was applied to some of the soils and the low levels present in the ''exchangeables'' fraction are consistent with the uptake factors. (author)

  19. Effects of moderation level on core reactivity and. neutron fluxes in natural uranium fueled and heavy water moderated reactors

    International Nuclear Information System (INIS)

    Khan, M.J.; Aslam; Ahmad, N.; Ahmed, R.; Ahmad, S.I.

    2005-01-01

    The neutron moderation level in a nuclear reactor has a strong influence on core multiplication, reactivity control, fuel burnup, neutron fluxes etc. In the study presented in this article, the effects of neutron moderation level on core reactivity and neutron fluxes in a typical heavy water moderated nuclear research reactor is explored and the results are discussed. (author)

  20. Specific microbial gene abundances and soil parameters contribute to C, N, and greenhouse gas process rates after land use change in Southern Amazonian Soils

    Directory of Open Access Journals (Sweden)

    Daniel Renato Lammel

    2015-10-01

    Full Text Available Ecological processes regulating soil carbon (C and nitrogen (N cycles are still poorly understood, especially in the world’s largest agricultural frontier in Southern Amazonia. We analyzed soil parameters in samples from pristine rainforest and after land use change to pasture and crop fields, and correlated them with abundance of functional and phylogenetic marker genes (amoA, nirK, nirS, norB, nosZ, nifH, mcrA, pmoA, and 16S/18S rRNA. Additionally, we integrated these parameters using path analysis and multiple regressions. Following forest removal, concentrations of soil C and N declined, and pH and nutrient levels increased, which influenced microbial abundances and biogeochemical processes. A seasonal trend was observed, suggesting that abundances of microbial groups were restored to near native levels after the dry winter fallow. Integration of the marker gene abundances with soil parameters using path analysis and multiple regressions provided good predictions of biogeochemical processes, such as the fluxes of NO3, N2O, CO2, and CH4. In the wet season, agricultural soil showed the highest abundance of nitrifiers (amoA and Archaea, however forest soils showed the highest abundances of denitrifiers (nirK, nosZ and high N, which correlated with increased N2O emissions. Methanogens (mcrA and methanotrophs (pmoA were more abundant in forest soil, but methane flux was highest in pasture sites, which was related to soil compaction. Rather than analyzing direct correlations, the data integration using multivariate tools provided a better overview of biogeochemical processes. Overall, in the wet season, land use change from forest to agriculture reduced the abundance of different functional microbial groups related to the soil C and N cycles; integrating the gene abundance data and soil parameters provided a comprehensive overview of these interactions. Path analysis and multiple regressions addressed the need for more comprehensive approaches

  1. An estimate of potential threats levels to soil biodiversity in EU

    NARCIS (Netherlands)

    Gardi, C.; Jeffery, S.L.; Saltelli, A.

    2013-01-01

    Life within the soil is vital for maintaining life on Earth due to the numerous ecosystem services that it provides. However, there is evidence that pressures on the soil biota are increasing which may undermine some of these ecosystem services. Current levels of belowground biodiversity are

  2. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem.

    Science.gov (United States)

    C.K. Keller; T.M. White; R. O' Brien; J.L. Smith

    2006-01-01

    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground...

  3. Modelling stomatal ozone flux and deposition to grassland communities across Europe

    International Nuclear Information System (INIS)

    Ashmore, M.R.; Bueker, P.; Emberson, L.D.; Terry, A.C.; Toet, S.

    2007-01-01

    Regional scale modelling of both ozone deposition and the risk of ozone impacts is poorly developed for grassland communities. This paper presents new predictions of stomatal ozone flux to grasslands at five different locations in Europe, using a mechanistic model of canopy development for productive grasslands to generate time series of leaf area index and soil water potential as inputs to the stomatal component of the DO 3 SE ozone deposition model. The parameterisation of both models was based on Lolium perenne, a dominant species of productive pasture in Europe. The modelled seasonal time course of stomatal ozone flux to both the whole canopy and to upper leaves showed large differences between climatic zones, which depended on the timing of the start of the growing season, the effect of soil water potential, and the frequency of hay cuts. Values of modelled accumulated flux indices and the AOT40 index showed a five-fold difference between locations, but the locations with the highest flux differed depending on the index used; the period contributing to the accumulation of AOT40 did not always coincide with the modelled period of active ozone canopy uptake. Use of a fixed seasonal profile of leaf area index in the flux model produced very different estimates of annual accumulated total canopy and leaf ozone flux when compared with the flux model linked to a simulation of canopy growth. Regional scale model estimates of both the risks of ozone impacts and of total ozone deposition will be inaccurate unless the effects of climate and management in modifying grass canopy growth are incorporated. - Modelled stomatal flux of ozone to productive grasslands in Europe shows different spatial and temporal variation to AOT40, and is modified by management and soil water status

  4. NT-proBNP and troponin T levels differ after haemodialysis with a low versus high flux membrane

    OpenAIRE

    Laveborn, Emilie; Lindmark, Krister; Skagerlind, Malin; Stegmayr, Bernd

    2015-01-01

    BACKGROUND: Brain natriuretic peptide (BNP), N-terminal-proBNP (NT-proBNP), and high sensitive cardiac troponin T (TnT) are markers that are elevated in chronic kidney disease and correlate with increased risk of mortality. Data are conflicting on the effect of biomarker levels by hemodialysis (HD).Our aim was to clarify to what extent HD with low-flux (LF) versus high-flux (HF) membranes affects the plasma levels of BNP, NT-proBNP, and TnT. METHODS AND MATERIALS: 31 HD patients were included...

  5. {sup 137}Cs and {sup 210}Pb inventories in soils and sediments from Chapala Lake (Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Fernandez, A.C.; Perez-Bernal, L.H. [Unidad Academica Mazatlan, Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico (Mexico); Sanchez-Cabeza, J.A. [Unidad Academica de Procesos Oceanicos y Costeros, Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico (Mexico); Ontiveros-Cuadras, J.F. [Posgrado en Ciencias del Mar y Limnologia, Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico (Mexico)

    2014-07-01

    Chapala Lake is the largest natural freshwater reservoir in Mexico and it is located in Central Mexico, at 1524 m above sea level. The lake is considered to be fairly anthropized and it has experienced periods of extremely low water level as a result of recent climate change and water extraction. The study of recent manifestations of global change in Chapala Lake requires accurate {sup 210}Pb chronological reconstructions, taking into account the expected variability of sediment accumulation rates by using the Constant Flux model. For a reliable application of this dating model, it is important that {sup 210}Pb flux values in the lacustrine sedimentary record are in correspondence with the local atmospheric fluxes. With the aim to estimate the fluxes of the fallout radionuclides {sup 210}Pb and {sup 137}Cs in the region, sediment and soil cores were collected in the Chapala Lake. Sediment profiles were evaluated and estimated fluxes in sediments and soils were compared. Some geochemical properties (e.g. grain size distribution, organic matter concentration, XRF-derived elemental composition and magnetic susceptibility) were also evaluated to understand how diagenesis changes and sediment provenance can affect the {sup 210}Pb and {sup 137}Cs depth profiles and inventories. Document available in abstract form only. (authors)

  6. Activity, size, and flux of resuspended particles from Rocky Flats soil

    International Nuclear Information System (INIS)

    Langer, G.

    1982-01-01

    Wind erosion processes that resuspend soil from Rocky Flats (rf) sites known as the pad field and the east field were studied. The soil in these sites contains above background amounts of Pu and Am. The following five major areas of concern were studied: Pu levels in source area soil; total Pu activity and activity-particle size relationship in the wind resuspended dust; culpability of suspected source areas for Pu activity reported by the RF surveillance samplers; Pu activity in the respirable and coarse fraction of wind resuspended dust; Pu activity in resuspended dust from wind tunnel simulations of wind erosion. Results indicate that Pu attached to wind blown dust from the pad field and the east field at rf does not present a health hazard. The Pu carrying dust particles are too large (> 3 μm) to be respirable and most are above the inhalable size (> 10 μm). For the July 1981 to March 1982 period, 90% of the Pu collected by the surveillance samplers east of the pad field originated from this field. For those months 90% of the winds over 14 m/s originated from the two western quadrants. Winds over 14 m/s resuspend most of the dust. From April to June 1982 there were no winds over 14 m/s and Pu originated about equally from the pad and east field. Wind tunnel resuspension of dust varied as the 2.8 to 4.2 power of wind speed for a soil moisture range of 14 to 1% respectively. Above 14% moisture little dust was resuspended. No measurable respirable particles (< 3 μm) were resuspended

  7. PCDD/Fs atmospheric deposition fluxes and soil contamination close to a municipal solid waste incinerator.

    Science.gov (United States)

    Vassura, Ivano; Passarini, Fabrizio; Ferroni, Laura; Bernardi, Elena; Morselli, Luciano

    2011-05-01

    Bulk depositions and surface soil were collected in a suburban area, near the Adriatic Sea, in order to assess the contribution of a municipal solid waste incinerator to the area's total contamination with polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs and PCDFs). Samples were collected at two sites, situated in the area most affected by plant emissions (according to the results of the Calpuff air dispersion model), and at an external site, considered as a reference. Results show that the studied area is subject to low contamination, as far as these compounds are concerned. Deposition fluxes range from 14.3 pg m(-2)d(-1) to 89.9 pg m(-2)d(-1) (0.75 pg-TEQ m(-2)d(-1) to 3.73 pg-TEQ m(-2)d(-1)) and no significant flow differences are observed among the three monitored sites. Total soil concentration amounts to 93.8 ng kg(-1) d.w. and 1.35 ng-TEQ kg(-1)d.w, on average, and confirms a strong homogeneity in the studied area. Furthermore, from 2006 to 2009, no PCDD/Fs enrichment in the soil was noticed. Comparing the relative congener distributions in environmental samples with those found in stack emissions from the incineration plant, significant differences are observed in the PCDD:PCDF ratio and in the contribution of the most chlorinated congeners. From this study we can conclude that the incineration plant is not the main source of PCDD/Fs in the studied area, which is apparently characterized by a homogeneous and widespread contamination situation, typical of an urban area. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Measuring radon flux across active faults: Relevance of excavating and possibility of satellite discharges

    Energy Technology Data Exchange (ETDEWEB)

    Richon, Patrick, E-mail: patrick.richon@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France); Institut de Physique du Globe de Paris, Equipe Geologie des Systemes Volcaniques, 4 place Jussieu, UMR-7154 CNRS, F-75005 Paris (France); Klinger, Yann; Tapponnier, Paul [Institut de Physique du Globe de Paris, Equipe de Seismotectonique, 4 place Jussieu, UMR-7154 CNRS, F-75005 Paris (France); Li Chenxia [Institute of Geology, Chinese Earthquake Administration, P.O. Box 9803, 100029 Beijing (China); Van Der Woerd, Jerome [Institut de Physique du Globe de Strasbourg, CNRS, UMR-7516, INSU, Universite Louis Pasteur, Strasbourg I, 5 Rue Rene Descartes, F-67084 Strasbourg Cedex (France); Perrier, Frederic [Institut de Physique du Globe de Paris, Equipe de Geomagnetisme, 4 place Jussieu, UMR-7154 CNRS et Universite Paris 7 Denis-Diderot, F-75005 Paris (France)

    2010-02-15

    Searching for gas exhalation around major tectonic contacts raises important methodological issues such as the role of the superficial soil and the possible long distance transport. These effects have been studied on the Xidatan segment of the Kunlun Fault, Qinghai Province, China, using measurement of the radon-222 and carbon dioxide exhalation flux. A significant radon flux, reaching up to 538 +- 33 mBq m{sup -2} s{sup -1} was observed in a 2-3 m deep trench excavated across the fault. On the soil surface, the radon flux varied from 7 to 38 mBq m{sup -2} s{sup -1}, including on the fault trace, with an average value of 14.1 +- 1.0 mBq m{sup -2} s{sup -1}, similar to the world average. The carbon dioxide flux on the soil surface, with an average value of 12.9 +- 3.3 g m{sup -2} day{sup -1}, also remained similar to regular background values. It showed no systematic spatial variation up to a distance of 1 km from the fault, and no clear enhancement in the trench. However, a high carbon dioxide flux of 421 +- 130 g m{sup -2} day{sup -1} was observed near subvertical fractured phyllite outcrops on a hill located about 3 km north of the fault, at the boundary of the large-scale pull-apart basin associated with the fault. This high carbon dioxide flux was associated with a high radon flux of 607 +- 35 mBq m{sup -2} s{sup -1}. These preliminary results indicate that, at the fault trace, it can be important to measure gas flux at the bottom of a trench to remove superficial soil layers. In addition, gas discharges need to be investigated also at some distance from the main fault, in zones where morphotectonics features support associated secondary fractures.

  9. Diffusion probe for gas sampling in undisturbed soil

    DEFF Research Database (Denmark)

    Petersen, Søren O

    2014-01-01

    Soil-atmosphere fluxes of trace gases such as methane (CH4) and nitrous oxide (N2O) are determined by complex interactions between biological activity and soil conditions. Soil gas concentration profiles may, in combination with other information about soil conditions, help to understand emission...... controls. This note describes a simple and robust diffusion probe for soil gas sampling as part of flux monitoring programs. It can be deployed with minimum disturbance of in-situ conditions, also at sites with a high or fluctuating water table. Separate probes are used for each sampling depth...... on peat soils used for grazing showed soil gas concentrations of CH4 and N2O as influenced by topography, site conditions, and season. The applicability of the diffusion probe for trace gas monitoring is discussed....

  10. Design of a flux buffer based on the flux shuttle

    International Nuclear Information System (INIS)

    Gershenson, M.

    1991-01-01

    This paper discusses the design considerations for a flux buffer based on the flux-shuttle concept. Particular attention is given to the issues of flux popping, stability of operation and saturation levels for a large input. Modulation techniques used in order to minimize 1/f noise, in addition to offsets are also analyzed. Advantages over conventional approaches using a SQUID for a flux buffer are discussed. Results of computer simulations are presented

  11. Assessment of cobalt levels in wastewater, soil and vegetable ...

    African Journals Online (AJOL)

    User

    Key words: Cobalt level, Kubanni River, soil, vegetable, wastewater. INTRODUCTION. Cobalt is ... metals released into the environment from a variety of anthropogenic activities ..... Heavy Metal Stress in Plants, 2nd Edition,. Springer,. United.

  12. Soil erosion and sediment fluxes analysis: a watershed study of the Ni Reservoir, Spotsylvania County, VA, USA.

    Science.gov (United States)

    Pope, Ian C; Odhiambo, Ben K

    2014-03-01

    Anthropogenic forces that alter the physical landscape are known to cause significant soil erosion, which has negative impact on surface water bodies, such as rivers, lakes/reservoirs, and coastal zones, and thus sediment control has become one of the central aspects of catchment management planning. The revised universal soil loss equation empirical model, erosion pins, and isotopic sediment core analyses were used to evaluate watershed erosion, stream bank erosion, and reservoir sediment accumulation rates for Ni Reservoir, in central Virginia. Land-use and land cover seems to be dominant control in watershed soil erosion, with barren land and human-disturbed areas contributing the most sediment, and forest and herbaceous areas contributing the least. Results show a 7 % increase in human development from 2001 (14 %) to 2009 (21.6 %), corresponding to an increase in soil loss of 0.82 Mg ha(-1) year(-1) in the same time period. (210)Pb-based sediment accumulation rates at three locations in Ni Reservoir were 1.020, 0.364, and 0.543 g cm(-2) year(-1) respectively, indicating that sediment accumulation and distribution in the reservoir is influenced by reservoir configuration and significant contributions from bedload. All three locations indicate an increase in modern sediment accumulation rates. Erosion pin results show variability in stream bank erosion with values ranging from 4.7 to 11.3 cm year(-1). These results indicate that urban growth and the decline in vegetative cover has increased sediment fluxes from the watershed and poses a significant threat to the long-term sustainability of the Ni Reservoir as urbanization continues to increase.

  13. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    Science.gov (United States)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally

  14. Influence of altered precipitation pattern on greenhouse gas emissions and soil enzyme activities in Pannonian soils

    Science.gov (United States)

    Forstner, Stefan Johannes; Michel, Kerstin; Berthold, Helene; Baumgarten, Andreas; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Kitzler, Barbara

    2013-04-01

    Precipitation patterns are likely to be altered due to climate change. Recent models predict a reduction of mean precipitation during summer accompanied by a change in short-term precipitation variability for central Europe. Correspondingly, the risk for summer drought is likely to increase. This may especially be valid for regions which already have the potential for rare, but strong precipitation events like eastern Austria. Given that these projections hold true, soils in this area will receive water irregularly in few, heavy rainfall events and be subjected to long-lasting dry periods in between. This pattern of drying/rewetting can alter soil greenhouse gas fluxes, creating a potential feedback mechanism for climate change. Microorganisms are the key players in most soil carbon (C) and nitrogen (N) transformation processes including greenhouse gas exchange. A conceptual model proposed by Schimel and colleagues (2007) links microbial stress-response physiology to ecosystem-scale biogeochemical processes: In order to cope with decreasing soil water potential, microbes modify resource allocation patterns from growth to survival. However, it remains unclear how microbial resource acquisition via extracellular enzymes and microbial-controlled greenhouse gas fluxes respond to water stress induced by soil drying/rewetting. We designed a laboratory experiment to test for effects of multiple drying/rewetting cycles on soil greenhouse gas fluxes (CO2, CH4, N2O, NO), microbial biomass and extracellular enzyme activity. Three soils representing the main soil types of eastern Austria were collected in June 2012 at the Lysimeter Research Station of the Austrian Agency for Health and Food Safety (AGES) in Vienna. Soils were sieved to 2mm, filled in steel cylinders and equilibrated for one week at 50% water holding capacity (WHC) for each soil. Then soils were separated into two groups: One group received water several times per week (C=control), the other group received

  15. Grazing effects on ecosystem CO2 fluxes differ among temperate steppe types in Eurasia.

    Science.gov (United States)

    Hou, Longyu; Liu, Yan; Du, Jiancai; Wang, Mingya; Wang, Hui; Mao, Peisheng

    2016-07-01

    Grassland ecosystems play a critical role in regulating CO2 fluxes into and out of the Earth's surface. Whereas previous studies have often addressed single fluxes of CO2 separately, few have addressed the relation among and controls of multiple CO2 sub-fluxes simultaneously. In this study, we examined the relation among and controls of individual CO2 fluxes (i.e., GEP, NEP, SR, ER, CR) in three contrasting temperate steppes of north China, as affected by livestock grazing. Our findings show that climatic controls of the seasonal patterns in CO2 fluxes were both individual flux- and steppe type-specific, with significant grazing impacts observed for canopy respiration only. In contrast, climatic controls of the annual patterns were only individual flux-specific, with minor grazing impacts on the individual fluxes. Grazing significantly reduced the mean annual soil respiration rate in the typical and desert steppes, but significantly enhanced both soil and canopy respiration in the meadow steppe. Our study suggests that a reassessment of the role of livestock grazing in regulating GHG exchanges is imperative in future studies.

  16. Comparison and evaluation of model structures for the simulation of pollution fluxes in a tile-drained river basin.

    Science.gov (United States)

    Hoang, Linh; van Griensven, Ann; van der Keur, Peter; Refsgaard, Jens Christian; Troldborg, Lars; Nilsson, Bertel; Mynett, Arthur

    2014-01-01

    The European Union Water Framework Directive requires an integrated pollution prevention plan at the river basin level. Hydrological river basin modeling tools are therefore promising tools to support the quantification of pollution originating from different sources. A limited number of studies have reported on the use of these models to predict pollution fluxes in tile-drained basins. This study focused on evaluating different modeling tools and modeling concepts to quantify the flow and nitrate fluxes in the Odense River basin using DAISY-MIKE SHE (DMS) and the Soil and Water Assessment Tool (SWAT). The results show that SWAT accurately predicted flow for daily and monthly time steps, whereas simulation of nitrate fluxes were more accurate at a monthly time step. In comparison to the DMS model, which takes into account the uncertainty of soil hydraulic and slurry parameters, SWAT results for flow and nitrate fit well within the range of DMS simulated values in high-flow periods but were slightly lower in low-flow periods. Despite the similarities of simulated flow and nitrate fluxes at the basin outlet, the two models predicted very different separations into flow components (overland flow, tile drainage, and groundwater flow) as well as nitrate fluxes from flow components. It was concluded that the assessment on which the model provides a better representation of the reality in terms of flow paths should not only be based on standard statistical metrics for the entire river basin but also needs to consider additional data, field experiments, and opinions of field experts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Partitioning of water flux in a Sierra Nevada ponderosa pine plantation

    Science.gov (United States)

    Kurpius, M.R.; Panek, J.A.; Nikolov, N.T.; McKay, M.; Goldstein, Allen H.

    2003-01-01

    The weather patterns of the west side of the Sierra Nevada Mountains (cold, wet winters and hot, dry summers) strongly influence how water is partitioned between transpiration and evaporation and result in a specific strategy of water use by ponderosa pine trees (Pinus ponderosa) in this region. To investigate how year-round water fluxes were partitioned in a young ponderosa pine ecosystem in the Sierra Nevada Mountains, water fluxes were continually measured from June 2000 to May 2001 using a combination of sap flow and eddy covariance techniques (above- and below-canopy). Water fluxes were modeled at our study site using a biophysical model, FORFLUX. During summer and fall water fluxes were equally partitioned between transpiration and soil evaporation while transpiration dominated the water fluxes in winter and spring. The trees had high rates of canopy conductance and transpiration in the early morning and mid-late afternoon and a mid-day depression during the dry season. We used a diurnal centroid analysis to show that the timing of high canopy conductance and transpiration relative to high vapor pressure deficit (D) shifted with soil moisture: during periods of low soil moisture canopy conductance and transpiration peaked early in the day when D was low. Conversely, during periods of high soil moisture canopy conductance and transpiration peaked at the same time or later in the day than D. Our observations suggest a general strategy by the pine trees in which they maximize stomatal conductance, and therefore carbon fixation, throughout the day on warm sunny days with high soil moisture (i.e. warm periods in winter and late spring) and maximize stomatal conductance and carbon fixation in the morning through the dry periods. FORFLUX model estimates of evaporation and transpiration were close to measured/calculated values during the dry period, including the drought, but underestimated transpiration and overestimated evaporation during the wet period. ?? 2003

  18. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    Science.gov (United States)

    Tangen, Brian A.; Finocchiaro, Raymond G.; Gleason, Robert A.

    2015-01-01

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH4) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties.

  19. Improvements to measuring water flux in the vadose zone.

    Science.gov (United States)

    Masarik, Kevin C; Norman, John M; Brye, Kristofor R; Baker, John M

    2004-01-01

    Evaluating the impact of land use practices on ground water quality has been difficult because few techniques are capable of monitoring the quality and quantity of soil water flow below the root zone without disturbing the soil profile and affecting natural flow processes. A recently introduced method, known as equilibrium tension lysimetry, was a major improvement but it was not a true equilibrium since it still required manual intervention to maintain proper lysimeter suction. We addressed this issue by developing an automated equilibrium tension lysimeter (AETL) system that continuously matches lysimeter tension to soil-water matric potential of the surrounding soil. The soil-water matric potential of the bulk soil is measured with a heat-dissipation sensor, and a small DC pump is used to apply suction to a lysimeter. The improved automated approach reported here was tested in the field for a 12-mo period. Powered by a small 12-V rechargeable battery, the AETLs were able to continuously match lysimeter suction to soil-water matric potential for 2-wk periods with minimal human attention, along with the added benefit of collecting continuous soil-water matric potential data. We also demonstrated, in the laboratory, methods for continuous measurement of water depth in the AETL, a capability that quantifies drainage on a 10-min interval, making it a true water-flux meter. Equilibrium tension lysimeters have already been demonstrated to be a reliable method of measuring drainage flux, and the further improvements have created a more effective device for studying water drainage and chemical leaching through the soil matrix.

  20. Characterization of Soil Moisture Level for Rice and Maize Crops using GSM Shield and Arduino Microcontroller

    Science.gov (United States)

    Gines, G. A.; Bea, J. G.; Palaoag, T. D.

    2018-03-01

    Soil serves a medium for plants growth. One factor that affects soil moisture is drought. Drought has been a major cause of agricultural disaster. Agricultural drought is said to occur when soil moisture is insufficient to meet crop water requirements, resulting in yield losses. In this research, it aimed to characterize soil moisture level for Rice and Maize Crops using Arduino and applying fuzzy logic. System architecture for soil moisture sensor and water pump were the basis in developing the equipment. The data gathered was characterized by applying fuzzy logic. Based on the results, applying fuzzy logic in validating the characterization of soil moisture level for Rice and Maize crops is accurate as attested by the experts. This will help the farmers in monitoring the soil moisture level of the Rice and Maize crops.

  1. The variation of methane flux rates from boreal tree species at the beginning of the growing season

    Science.gov (United States)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2016-04-01

    Boreal forests are considered as net sink for atmospheric methane (CH4) because of the CH4 oxidizing bacteria in the aerobic soil layer. However, within the last decades it has become more evident that trees play an important role in the global CH4 budget by offering pathways for anaerobically produced CH4 from deeper soil layers to the atmosphere. Furthermore, trees may also act as independent sources of CH4. To confirm magnitude, variability and the origin of the tree mediated CH4 emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured tree stem and shoot CH4 exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in southern Finland (61° 51'N, 24° 17'E, 181 asl). The fluxes were measured from silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation and forest structure by using the static chamber technique. Scaffold towers were used for measurements at multiple stem heights and shoots. The aim was to study the vertical profile of CH4 fluxes at stem and shoot level and compare these fluxes among the studied species, and to observe temporal changes in CH4 flux over the beginning of the growing season. We found that all the trees emitted CH4 from their stems and shoots. Overall, the birches showed higher emissions compared to the spruces. The emission rates were considerably larger in the lower parts of the birch stems than upper parts, and these emissions increased during the growing season. The spruces had more variation in the stem CH4 flux, but the emission rates of the upper parts of the stem exceeded the birch emissions at the same height. The shoot fluxes of all the studied trees indicated variable CH4 emissions without a clear pattern regarding the vertical profile and

  2. Volatilisation of aromatic hydrocarbons from soil

    DEFF Research Database (Denmark)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons were measured in the laboratory from the surface of soils contaminated with coal tar Four soil samples from a former gasworks site were used for the experiments. The fluxes were quantified for 11 selected compounds, 4 mono- and 7 polycyclic...... aromatic hydrocarbons, for a period of up to 8 or 16 days. The concentrations of the selected compounds in the soils were between 0.2 and 3,100 mu g/g. The study included the experimental determination of the distribution coefficient of the aromatic hydrocarbons between the sorbed phase and the water under...... saturated conditions. The determined distribution coefficients showed that the aromatic hydrocarbons were more strongly sorbed to the total organic carbon including the coal tar pitch - by a factor of 8 to 25 - than expected for natural organic matter. The fluxes were also estimated using an analytical...

  3. Airborne exposure and soil levels associated with lead abatement of a steel tank.

    Science.gov (United States)

    Lange, John H

    2002-02-01

    This study reports on airborne exposure levels and soil concentrations of lead in regard to abatement of a steel structure (water tank). The tank was de-leaded by abrasive sand blasting. The ball of the tank had a lead surface level that exceeded the Environmental Protection Agency (EPA) definition of lead-based paint (LBP) (0.5% lead), but paint on stem and base was below this criterion. Personal and area airborne samples were collected during different activities of lead abatement of the tank. Summary results suggest during abrasive blasting of ball and stem/base personal exposure levels, as reported with arithmetic and geometric means, exceed the Occupational Safety and Health Administration (OSHA) permissible exposure limit (50 microg/m3). Highest personal exposure (occupational exposure) was associated with blasting of ball. Distribution of airborne and soil samples suggest non-normality and is best represented by a logarithmic form. Geometric standard deviations for air and soil lead support a non-normal distribution. Outlying values were found for personal and area air samples. Exposure levels associated with blasting stem/base section of tank support OSHA's policy requiring air monitoring of work at levels below the criterion established by EPA in identifying LBP. Area samples were statistically lower than personal samples associated with blasting ball and stem/base of tank. Exposure data suggest that workers performing abatement on steel structures have elevated lead exposure from surface lead. Respirator protection requirements are discussed. Soil lead concentration was suggested to decrease as distance increased from tank. Soil lead is suggested to be a result of deposition from LBP on tank surface. Minimal efforts were required to reduce average lead soil levels below EPA's upper acceptable criterion (1200 ppm Pb).

  4. Post-Fire Soil Respiration in Relation to the Burnt Wood Management

    Science.gov (United States)

    Marañón Jiménez, Sara; Castro, J.; Kowalski, A.; Serrano-Ortiz, P.; Ruiz, B.; Sancez-Canete, Ep; Zamora, R.

    2010-05-01

    Wildfires are the main cause of forests and understory destruction in Mediterranean areas. One of the most dramatic consequences is the perturbation of carbon fluxes. A high percentage of the CO2 emitted by the ecosystem after a wildfire is due to soil respiration, which represents the most important uncertainty in the global carbon cycle. In this study we have quantified the soil respiration and its seasonal variability in reforested pine forests in the National and Natural Park of Sierra Nevada which were burned in September of 2005. Measurement campaigns were carried out along two years in two experimental plots at different altitudinal levels (1500 and 2200 m a.s.l.), in which three post-fire silvicultural treatments of burned wood were established: 1) "Non-Intervention" (NI), leaving all of the burnt trees standing. 2) "Cut plus Lopping" (CL), a treatment where most of the trees were cut and felled, with the main branches also lopped off, but leaving all the cut biomass in situ covering partially the ground surface 3) "Salvage Logging" (SL), all trees were cut and the trunks and branches were removed. Soil respiration was highly determined by the effects derived of the altitudinal level, with the highest values at the lowest altitude. The seasonal precipitation regime had also a key role. Soil respiration kept a basal level during the summer drought, during this period the response to the altitudinal level and post-fire treatments were reduced. On the other hand, soil respiration boosted after rain events, when the differences between treatments became more pronounced. In general, especially under these conditions of absence of water limitation, the post-fire burnt wood treatment with the highest CO2 fluxes was that in which all the burnt wood biomass remained covering partially the soil surface ("Cut plus Lopping") while the lowest values were registered in the treatment in which the soil was bared ("Salvage Logging"). Results of this study are especially

  5. Assessment of human health risk of reported soil levels of metals and radionuclides in Port Hope

    International Nuclear Information System (INIS)

    1991-11-01

    Risk assessment methods are applied to the question of health implications of contaminated soil in the Port Hope area. Soil-related as well as other pathways of exposure are considered. Exposures to the reported levels of uranium, antimony, chromium, copper, nickel, cadmium, cobalt, selenium, and zinc in Port Hope soils are not expected to result in adverse health consequences. Oral exposure to arsenic in soil at the reported levels is estimated to result in incremental cancer risk levels in the negligible range (10 -5 ). Estimated exposures also fall well below suggested toxic thresholds for arsenic. For the two small areas within the >50 μg/g isopleth, assessment of exposure is difficult without more definitive data on soil concentrations in these zones. Contamination of soils with lead is overall quite limited. In general, the reported soil levels of lead are not anticipated to pose a hazard. The site with the highest concentrations of lead is located on the west bank of the Ganaraska River, a popular fishing area. Depending on the level and extent of contamination, as well as degree of contact with the site, potential exposures could exceed tolerable intakes for children. Exposures to the radionuclides Ra(226), Pb(210), and U(238) in soil at the reported levels are estimated to fall well within recommended population limits

  6. Critical level of radionuclides pollution estimation for different soil type of Ukrainian Polessye

    International Nuclear Information System (INIS)

    Kravets, A.; Pavlenko, Y.

    1996-01-01

    The successive development and adaptation of general algorithm of calculation of doses from intake 137 Cs and 90 Sr as a function of pollution level and a type of soil as a source of the human trophycal chains and its use in solution of reverse problem, namely- estimation of the critical level of radionuclides pollution for the main type of soil of Ukrainian Polessye has been proposed. Calculation was realized as a combination of dynamic model of migration of radionuclides in soil and spreadsheet form with Quattro Pro, version 4.0. (author)

  7. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels.

    Science.gov (United States)

    Pessoa, Luiz Guilherme Medeiros; Freire, Maria Betânia Galvão Dos Santos; Wilcox, Bradford Paul; Green, Colleen Heather Machado; De Araújo, Rômulo José Tolêdo; De Araújo Filho, José Coelho

    2016-11-01

    In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km 2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.

  8. Interaction between isoprene and ozone fluxes at ecosystem level in a poplar plantation and its impact at European level

    Science.gov (United States)

    Zenone, T.; Hendriks, C.; Brilli, F.; Gioli, B.; Portillo Estrada, M.; Schaap, M.; Ceulemans, R.

    2015-12-01

    The emissions of Biogenic volatile organic compounds (BVOCs) from vegetation, mainly in form of isoprenoids, play an important role in the tropospheric ozone (O3) formation. The potential large expansion of isoprene emitter species (e.g. poplar) as biofuels feedstock might impact the ground level O3 formation. Here we report the simultaneous observations, using the eddy covariance (EC) technique, of isoprene, O3 and CO2 fluxes in a short rotation coppice (SRC) of poplar. The impact of current poplar plantations and associated isoprene emissions on ground level ozone concentrations for Europe was evaluated using a chemistry transport model (CTM) LOTOS-EUROS. The isoprene fluxes showed a well-defined seasonal and daily cycle that mirrored with the stomata O3 uptake. The isoprene emission and the stomata O3 uptake showed significant statistical relationship especially at elevated temperature. Isoprene was characterized by a remarkable peak of emissions (e.g. 38 nmol m-2s-1) occurring for few days as a consequence of the rapid variation of the air and surface temperature. During these days the photosynthetic apparatus (i.e. the CO2 fluxes) and transpiration rates did not show significant variation while we did observe a variation of the energy exchange and a reduction of the bowen ratio. The response of isoprene emissions to ambient O3 concentration follows the common form of the hormetic dose-response curve with a considerable reduction of the isoprene emissions at [O3] > 80 ppbv indicating a potential damping effect of the O3 levels on isoprene. Under the current condition the impact of SRC plantations on ozone concentrations / formation is very limited in Europe. Our findings indicate that, even with future scenarios with more SRC, or conventional poplar plantations, the impact on Ozone formation is negligible.

  9. Integrative measurements focusing on carbon, energy and water fluxes at the forest site 'Hohes Holz' and the grassland 'Grosses Bruch'

    Science.gov (United States)

    Rebmann, Corinna; Claudia, Schütze; Sara, Marañón-Jiménez; Sebastian, Gimper; Matthias, Zink; Luis, Samaniego; Matthias, Cuntz

    2017-04-01

    The reduction of greenhouse gas (GHG) emissions and the optimization of Carbon sequestration by ecosystems have become priority objectives for current climate change policies. In this context, the long term research project TERENO and the research infrastructure ICOS have been established. The eddy covariance technique allows obtaining an integrative estimate of the ecosystem carbon, water and energy balances at the ecosystem level. The relative contributions of evaporation and transpiration as well as carbon sources and sinks need, however, to be determined separately for thorough process understanding. Two different ecosystem observatories have recently been established in the Magdeburger Börde: a deciduous forest (Hohes Holz) and a meadow (Grosses Bruch). A comprehensive system of instrumentation provides continuous data for the evaluation of energy, water and carbon fluxes at the 1500 ha large forest site, including a 50 m high eddy covariance (EC) tower for micrometeorological investigations in different heights above and below canopy, throughfall and stem flow sensors, a soil moisture and temperature sensor network, soil respiration chambers, sap flow sensors, and ancillary analysis of trees such a dendrometer and leaf area index measurements. Eddy covariance measurements allow the assessment of the carbon (Net Ecosystem Exchange, NEE) and water balance at the ecosystem scale. To better understand the contributing processes we partition water und carbon fluxes of the forest ecosystem by different methods. Tower-based data of NEE are therefore complemented and validated by continuous automatic and manual campaign measurements of soil effluxes and their drivers. Water fluxes into the ecosystem are partitioned by stem flow and throughfall measurements and a distributed soil moisture network. Gap fraction in the forest has a strong influence on the distribution on the water fluxes and is therefore determined on a regular basis. Since the establishment of the

  10. Effects of tree species, water and nitrogen on mycorrhizal C flux

    Science.gov (United States)

    Menyailo, O.; Matvienko, A.

    2012-12-01

    Mycorrhiza plays an important role in global carbon cycle, especially, in forest soils, yet the effect of tree species on the amount and timing of C transfer through roots to myccorhiza is largely unknown. We studied the C transport to mycorrhiza under 6 most commonly dominant in boreal forests tree species using the mesh collars installed at the Siberian afforestation experiment. The CO2 flux from mycorrhizal and non-mycorrhizal mesh collars indicated the mycorrhizal C flux. Tree species strongly differed in C flux to mycorrhiza: more C was transferred by deciduous species than by conifers. The mycorrhizal CO2 flux was not linked to soil temperature but rather to trees phenology and to photosynthetic activity. All tree species transfered more carbon to mycorrhiza during the second half of summer and in September, this is because all the carbon photosynthesized earlier is used for building the tree biomass. Seasonal variation in C transfer to mycorrhiza was much larger than hourly variation (within a day). Nitrogen application (50 kg/ha) increased mycorrhizal C flux only under Scots pine, but not under larch, thus the effect of N application is tree species dependent. We found under most tree species that more C was transferred by trees to mycorrhiza in root-free collars, where the soil moisture was higher than in collars with roots. This suggests that trees preferentially support those parts of mycorrhiza, which can gain extra-resources.

  11. A multi-layer box model of carbon dynamics in soil

    International Nuclear Information System (INIS)

    Kuc, T.

    2005-01-01

    A multi-layer box model (MLB) for quantification of carbon fluxes between soil and atmosphere has been developed. In the model, soil carbon reservoir is represented by two boxes: fast decomposition box (FDB) and slow decomposition box (SDB), characterised by substantially different turnover time (TT) of carbon compounds. Each box has an internal structure (sub-compartments) accounting for carbon deposited in consecutive time intervals. The rate of decomposition of carbon compounds in each sub-compartment is proportional to the carbon content. With the aid of the MLB model and the 14 C signature of carbon dioxide, the fluxes entering and leaving the boxes, turnover time of carbon in each box, and the ratio of mass of carbon in the slow and fast box (M s /M f ) were calculated. The MBL model yields the turnover time of carbon in the FDB (TT f ) ca. 14 for typical investigated soils of temperate climate ecosystems. The calculated contribution of the CO 2 flux originating from the slow box (F s ) to the total CO 2 flux into the atmosphere ranges from 12% to 22%. These values are in agreement with experimental observations at different locations. Assuming that the input flux of carbon (F i n) to the soil system is doubled within the period of 100 years, the soil buffering capacity for excess carbon predicted by the MLB model for typical soil parameters may vary in the range between 26% and 52%. The highest values are obtained for soils characterised by long TTf, and well developed old carbon pool. (author)

  12. Do soil organic carbon levels affect potential yields and nitrogen use efficiency?

    DEFF Research Database (Denmark)

    Oelofse, Myles; Markussen, Bo; Knudsen, Leif

    2015-01-01

    Soil organic carbon (SOC) is broadly recognised as an important parameter affecting soil quality, and can therefore contribute to improving a number of soil properties that influence crop yield. Previous research generally indicates that soil organic carbon has positive effects on crop yields......, the yield with no fertiliser N application and the N use efficiency would be positively affected by SOC level. A statistical model was developed to explore relationships between SOC and potential yield, yields at zero N application and N use efficiency (NUE). The model included a variety of variables...

  13. Optimal determination of the parameters controlling biospheric CO{sub 2} fluxes over Europe using eddy covariance fluxes and satellite NDVI measurements

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, Tuula [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Research; Ciais, Philippe; Moulin, Cyril [UMR CEA-CNRS, Gif-sur-Yvette (France). Laboratoire des Sciences du Climat et de l' Environnement; Chevillard, Anne [CEA, Fontenay-aux-Roses (France). DPRE/SERGD/LEIRPA

    2004-04-01

    Ecosystem CO{sub 2} flux measurements using the eddy covariance method were compared with the biospheric CO{sub 2} exchange estimates of a regional scale atmospheric model. The model described the seasonal patterns quite well, but underestimated the amplitude of the fluxes, especially at the northern sites. Two model parameters, photosynthetic efficiency for light use and Q{sub 10} for soil respiration, were re-evaluated on a diurnal and seasonal basis using the results from flux measurements. In most cases the photosynthetic efficiency was higher than the earlier estimate. The resulting flux was very sensitive to the value of photosynthetic efficiency, while changes in Q{sub 10} did not have a significant effect.

  14. A study of radon levels in the soil of Nasir's College of Agriculture - Yemen

    International Nuclear Information System (INIS)

    Ali, Taher M.; Ahmed, Hayel A.; Zumalian, Abubaker A.

    2000-01-01

    The radon diffusion in the atmosphere and dwelling interior comes from one source, it is the soil. Emitting alpha particles, radon daughters may be deposited in to the lungs and cause health hazards, so for this reason, estimation of radon levels in soil and dwelling were done in may countries. in the present work, we have used the passive dosimeters (SSNTD s ) containing (Cr-39) detectors. The dosimeters were distributed at the surface of the ground, in the soil horizontally (at depth 50 cm) and in soil with depth. The overall mean for radon levels in soil horizontally was (1.28 ± 0.05) KBq/m 3 and the mean radon concentration at the surface of the ground was (0.42 ± 0.03) KBq/m 3 . It is found that radon concentration increases as the depth increases up to (90 cm) depth after that radon levels decrease as the depth increases. (author)

  15. Wetland Ecohydrology: stochastic description of water level fluctuations across the soil surface

    Science.gov (United States)

    Tamea, S.; Muneepeerakul, R.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I.

    2009-12-01

    Wetlands provide a suite of social and ecological critical functions such as being habitats of disease-carrying vectors, providing buffer zones against hurricanes, controlling sediment transport, filtering nutrients and contaminants, and a repository of great biological diversity. More recently, wetlands have also been recognized as crucial for carbon storage in the context of global climate change. Despite such importance, quantitative approaches to many aspects of wetlands are far from adequate. Therefore, improving our quantitative understanding of wetlands is necessary to our ability to maintain, manage, and restore these invaluable environments. In wetlands, hydrologic factors and ecosystem processes interplay and generate unique characteristics and a delicate balance between biotic and abiotic elements. The main hydrologic driver of wetland ecosystems is the position of the water level that, being above or below ground, determines the submergence or exposure of soil. When the water level is above the soil surface, soil saturation and lack of oxygen causes hypoxia, anaerobic functioning of microorganisms and anoxic stress in plants, that might lead to the death of non-adapted organisms. When the water level lies below the soil surface, the ecosystem becomes groundwater-dependent, and pedological and physiological aspects play their role in the soil water balance. We propose here a quantitative description of wetland ecohydrology, through a stochastic process-based water balance, driven by a marked compound Poisson noise representing rainfall events. The model includes processes such as rainfall infiltration, evapotranspiration, capillary rise, and the contribution of external water bodies, which are quantified in a simple yet realistic way. The semi-analytical steady-state probability distributions of water level spanning across the soil surface are validated with data from the Everglades (Florida, USA). The model and its results allow for a quantitative

  16. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  17. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  18. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Directory of Open Access Journals (Sweden)

    Jiangbao Xia

    Full Text Available Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL, soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC declined significantly, whereas the salt content (SC and absolute soil solution concentration (CS decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m and shallow water levels (0.6 m respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m.The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  19. Warming alters energetic structure and function but not resilience of soil food webs

    Science.gov (United States)

    Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico

    2017-12-01

    Climate warming is predicted to alter the structure, stability, and functioning of food webs1-5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, the effects of warming on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments that test the interactive effects of warming with forest canopy disturbance and drought on energy flux in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7 °C, +3.4 °C) to closed-canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy flux to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates the reduction in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses in ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests.

  20. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China.

    Science.gov (United States)

    Cui, Qian; Song, Changchun; Wang, Xianwei; Shi, Fuxi; Yu, Xueyang; Tan, Wenwen

    2018-03-01

    Climate warming is expected to increasingly influence boreal peatlands and alter their greenhouse gases emissions. However, the effects of warming on N 2 O fluxes and the N 2 O budgets were ignored in boreal peatlands. Therefore, in a boreal peatland of permafrost zone in Northeast China, a simulated warming experiment was conducted to investigate the effects of warming on N 2 O fluxes in Betula. Fruticosa community (B. Fruticosa) and Ledum. palustre community (L. palustre) during the growing seasons from 2013 to 2015. Results showed that warming treatment increased air temperature at 1.5m aboveground and soil temperature at 5cm depth by 0.6°C and 2°C, respectively. The average seasonal N 2 O fluxes ranged from 6.62 to 9.34μgm -2 h -1 in the warming plot and ranged from 0.41 to 4.55μgm -2 h -1 in the control plots. Warming treatment increased N 2 O fluxes by 147% and transformed the boreal peatlands from a N 2 O sink to a source. The primary driving factors for N 2 O fluxes were soil temperature and active layer depth, whereas soil moisture showed a weak correlation with N 2 O fluxes. The results indicated that warming promoted N 2 O fluxes by increasing soil temperature and active layer depth in a boreal peatland of permafrost zone in Northeast China. Moreover, elevated N 2 O fluxes persisted in this region will potentially drive a noncarbon feedback to ongoing climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Soil Surface Runoff Scheme for Improving Land-Hydrology and Surface Fluxes in Simple SiB (SSiB)

    Science.gov (United States)

    Sud, Y. C.; Mocko, David M.

    1999-01-01

    Evapotranspiration on land is hard to measure and difficult to simulate. On the scale of a GCM grid, there is large subgrid-scale variability of orography, soil moisture, and vegetation. Our hope is to be able to tune the biophysical constants of vegetation and soil parameters to get the most realistic space-averaged diurnal cycle of evaporation and its climatology. Field experiments such as First ISLSCP Field Experiment (FIFE), Boreal Ecosystem-Atmosphere Study (BOREAS), and LBA help a great deal in improving our evapotranspiration schemes. However, these improvements have to be matched with, and coupled to, consistent improvement in land-hydrology; otherwise, the runoff problems will intrinsically reflect on the soil moisture and evapotranspiration errors. Indeed, a realistic runoff simulation also ensures a reasonable evapotranspiration simulation provided the precipitation forcing is reliable. We have been working on all of the above problems to improve the simulated hydrologic cycle. Through our participation in the evaluation and intercomparison of land-models under the behest of Global Soil Wetness Project (GSWP), we identified a few problems with Simple SiB (SSIB; Xue et al., 1991) hydrology in regions of significant snowmelt. Sud and Mocko (1999) show that inclusion of a separate snowpack model, with its own energy budget and fluxes with the atmosphere aloft and soil beneath, helps to ameliorate some of the deficiencies of delayed snowmelt and excessive spring season runoff. Thus, much more realistic timing of melt water generation was simulated with the new snowpack model in the subsequent GSWP re-evaluations using 2 years of ISLSCP Initiative I forcing data for 1987 and 1988. However, we noted an overcorrection of the low meltwater infiltration of SSiB. While the improvement in snowmelt timing was found everywhere, the snowmelt infiltration has became excessive in some regions, e.g., Lena river basin. This leads to much reduced runoff in many basins as

  2. Identifying Factors Causing Variability in Greenhouse Gas (GHG) Fluxes in a Polygonal Tundra Landscape

    Science.gov (United States)

    Arora, B.; Wainwright, H. M.; Vaughn, L. S.; Curtis, J. B.; Torn, M. S.; Dafflon, B.; Hubbard, S. S.

    2017-12-01

    Greenhouse gas (GHG) flux variations in Arctic tundra environments are important to understand because of the vast amount of soil carbon stored in these regions and the potential of these regions to convert from a global carbon sink to a source under warmer conditions. Multiple factors potentially contribute to GHG flux variations observed in these environments, including snowmelt timing, growing season length, active layer thickness, water table variations, and temperature fluctuations. The objectives of this study are to investigate temporal variability in CO2 and CH4 fluxes at Barrow, AK over three successive growing seasons (2012-14) and to determine the factors influencing this variability using a novel entropy-based classification scheme. We analyzed soil, vegetation, and climate parameters as well as GHG fluxes at multiple locations within low-, flat- and high-centered polygons at Barrow, AK as part of the Next Generation Ecosystem Experiment (NGEE) Arctic project. Entropy results indicate that different environmental factors govern variability in GHG fluxes under different spatiotemporal settings. In particular, flat-centered polygons are more likely to become significant sources of CO2 during warm and dry years as opposed to high-centered polygons that contribute considerably to CO2 emissions during cold and wet years. In contrast, the highest CH4 emissions were always associated with low-centered polygons. Temporal variability in CO2 fluxes was primarily associated with factors affecting soil temperature and/or vegetation dynamics during early and late season periods. Temporal variability in CH4 fluxes was primarily associated with changes in vegetation cover and its covariability with primary controls such as seasonal thaw—rather than direct response to changes in soil moisture. Overall, entropy results document which factors became important under different spatiotemporal settings, thus providing clues concerning the manner in which ecosystem

  3. Evaluating the Performance of a Surface Barrier on Reducing Soil-Water Flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.; Clayton, Ray E.

    2012-08-31

    One of the most common effective techniques for contaminant remediation in the vadose zone is to use a surface barrier to reduce or eliminate soil-water flow to reduce the contaminant flux to the underlying groundwater. Confirming the reduction of the soil-water flux rate is challenging because of the difficulty of determining the very low soil-water flux beneath the barrier. We propose a hydraulic-conductivity factor, fK, as a conservative indicator for quantifying the reduction of soil-water flow. The factor can be calculated using the measured soil-water content or pressure but does not require the knowledge of the saturated hydraulic conductivity or the hydraulic gradient. The formulas were tested by comparing with changes in hydraulic conductivity, K, from a drainage experiment. The pressure-based formula was further applied to evaluate the performance of the interim surface barrier at T Tank Farm on Hanford Site. Three years after barrier emplacement, the hydraulic conductivity decreased by a factor between 3.8 and 13.0 at the 1-, 2- and 5-m depths. The difference between the conductivity-reduction factor and the flux-rate-reduction factor, fq, was quantified with a numerical simulation. With the calculated fK, the numerically determined fK/fq ratio, and the assumed pre-barrier soil-water flux rate of 100 mm yr-1, the estimated soil-water flux rate 3 years after barrier emplacement was no more than 8.5 mm yr-1 at or above the 5-m depth.

  4. Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels.

    Science.gov (United States)

    Zheng, S; Wang, C; Shen, Z; Quan, Y; Liu, X

    2015-01-01

    This study presents an efficient heavy metal (HM) control method in HM-contaminated wetlands with varied soil moisture levels through the introduction of extrinsic arbuscular mycorrhizal fungi (AMF) into natural wetland soil containing indigenous AMF species. A pot culture experiment was designed to determine the effect of two soil water contents (5-8% and 25-30%), five extrinsic AMF inoculants (Glomus mosseae, G. clarum, G. claroideum, G. etunicatum, and G. intraradices), and HM contamination on root colonization, plant growth, and element uptake of common reed (Phragmites australis (Cav.) Trin. ex Steudel) plantlets in wetland soils. This study showed the prevalence of mycorrhizae in the roots of all P. australis plantlets, regardless of extrinsic AMF inoculations, varied soil moisture or HM levels. It seems that different extrinsic AMF inoculations effectively lowered HM concentrations in the aboveground tissues of P. australis at two soil moisture levels. However, metal species, metal concentrations, and soil moisture should also be very important factors influencing the elemental uptake performance of plants in wetland ecosystems. Besides, the soil moisture level significantly influenced plant growth (including height, and shoot and root dry weight (DW)), and extrinsic AMF inoculations differently affected shoot DW.

  5. Phosphorus critical levels and availability in lowland soils cultivated with flooded rice

    Directory of Open Access Journals (Sweden)

    Mariano Isabela Orlando dos Santos

    2002-01-01

    Full Text Available Lowland soils present a great potential for the flooded rice crop. This work aimed to estimate critical levels of P in waterlogged soils cultivated with rice using Mehlich 1 and anion exchange resin as soil-P extractors, compare the performance of these extractors as for the evaluation of the P availability, and study the soil-P fractions involved in the P nutrition of the rice crop. Studied soils consisted of four Histosols: Low Humic Gley (GP, Aluvial (A, Humic Gley (GH and Bog Soil (O which were previously cultivated with beans. The experimental design was completely randomized, in a factorial scheme, using four soils, five P rates (75, 150, 300, 500 and 800 mg dm-3 and two liming treatments (with and without liming, with three replicates. After 60 days of flooding, soil samples were submitted to P extraction by Mehlich 1 and resin, and phosphorous fractionation. Two rice plants were cultivated in pots containing 3 dm³ of waterlogged soils. The labile P and the moderately labile P of the soils contributed for rice nutrition. The two tested extractors presented efficiency in the evaluation of P availability for the rice cultivated in lowland waterlogged soils.

  6. Tracey - a simulation model of trace element fluxes in soil-plant system for long-term assessment of a radioactive groundwater contamination

    International Nuclear Information System (INIS)

    Gaerdenaes, Annemieke; Eckersten, Henrik; Reinlert, Andre; Gustafsson, David; Jansson, Per-Erik; Ekstroem, Per-Anders; Avila, Rodolfo; Greger, Maria

    2009-10-01

    We developed a general trace element model called Tracey to simulate dynamically the possible accumulation of radionuclides as a result of an long-term radioactive contamination of groundwater in terrestrial ecosystems. The overall objectives of the study are to: 1) Develop and evaluate a multi-compartmental model that dynamically simulates the transport and accumulation of a radionuclide in the soil-plant system at a time scale relevant for risk assessment of nuclear fuel waste; and 2) Asses the possible accumulation of radionuclide in terrestrial ecosystems due to an eventual long-term continuous radioactive groundwater contamination. Specific objectives were to assess: - The proportion of the contamination accumulated and where it is stored in the ecosystem. - The importance of the plant uptake approach for accumulation of radionuclides. - The most important radionuclide properties and ecosystem characteristics for accumulation and losses. - The proportion of the contamination lost and how is it lost. - The circumstances which stimulated export of radionuclides to other ecosystems. The model presented here, called Tracey, is a stand-alone version to allow for long simulation periods relevant for the time scale of risk assessment of nuclear waste (i.e. several thousand years) with time steps as short as one day. Tracey is a multi-compartmental model in which fluxes and storage of radionuclide are described for different plant parts and for several soil layers. Each layer includes pools of slowly and quickly decomposing litter, humus, solved and absorbed trace element. The trace element fluxes are assumed to be proportional to either water or carbon fluxes, these fluxes are simulated using the dynamic model CoupModel for fluxes of water, carbon, nitrogen and carbon in terrestrial ecosystems. Two different model approaches were used to describe plant uptake of radionuclides. The one called passive uptake approach is driven by water uptake and the one called active

  7. Using a spatially-distributed hydrologic biogeochemistry model with nitrogen transport to study the spatial variation of carbon stocks and fluxes in a Critical Zone Observatory

    Science.gov (United States)

    Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.

    2017-12-01

    Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation

  8. Assessing the net effect of long-term drainage on a permafrost ecosystem through year-round eddy-covariance flux measurements

    Science.gov (United States)

    Kittler, F.; Heimann, M.; Goeckede, M.; Zimov, S. A.; Zimov, N.

    2014-12-01

    Permafrost regions in the Northern high latitudes play a key role in the carbon budget of the earth system because of their massive carbon reservoir and the uncertain feedback processes with future climate change. For an improved understanding of mechanisms and drivers dominating permafrost carbon cycling, more observations in high-latitude regions are needed. Particularly the contribution of wintertime fluxes to the annual carbon budget and the impact of disturbances on biogeochemical and biogeophysical ecosystem properties, and the resulting modification of the carbon cycle, have rarely been studied to date. In summer of 2013, we established a new eddy-covariance station for continuous, year-round monitoring of carbon fluxes and their environmental drivers near Cherskii in Northeast Siberia (68.75°N, 161.33°E). Parts of the observation area have been disturbed by drainage since 2004, altering the soil water conditions in a way that is expected for degrading ice-rich permafrost under a warming climate. With two eddy-covariance towers running in parallel over the disturbed (drained) area and a reference area nearby, respectively, we can directly infer the disturbance effect on the carbon cycle budgets and the dominating biogeochemical mechanisms. This study presents findings based on 16 months of continuous eddy-covariance CO2 flux measurements (July 2013 - October 2014) for both observation areas. At both towers, we observed systematic, non-zero flux contributions outside the growing seasons that significantly altered annual CO2 budgets. A direct comparison of fluxes between the two disturbance regimes indicates a net reduction of the sink strength for CO2 in the disturbed area during the growing season, mostly caused by reduced CO2 uptake with low water levels in late summer. Moreover, shifts in soil temperatures and snow cover caused by reduced soil water levels result in lower net CO2 emissions during the winter at the drained area, which is partly

  9. Does historical wildfire activity alter metal fluxes to northern lakes?

    Science.gov (United States)

    Pelletier, N.; Chetelat, J.; Vermaire, J. C.; Palmer, M.; Black, J.; Pellisey, J.; Tracz, B.; van der Wielen, S.

    2017-12-01

    Current drought conditions in northwestern Canada are conducive to more frequent and severe wildfires that may mobilize mercury and other metals accumulated in soil and biomass. There is evidence that wildfires can remobilize and transport mercury within and outside catchments by atmospheric volatilization, particulate emissions and catchment soil erosion. However, the effect of fires on mercury fluxes to nearby lake sediments remains unclear. In this study, we use a combination of 10 dated lake sediment cores and four nearby ombrotrophic peatland cores to investigate the effects of wildfires on mercury fluxes to lake sediments. Lakes varying in catchment size and distance from recent fire events were sampled. Mercury concentrations in the environmental archives were measured, and macroscopic charcoal particles (>100 um) were counted at high resolution in the sediments to observe the co-variation of the local fire history and mercury fluxes. Mercury flux recorded in ombrotrophic peat cores provided an estimate of the historical atmospheric mercury flux from local and regional atmospheric deposition. The mercury flux recorded in lake sediments corresponds to the sum of direct atmospheric deposition and catchment transport. In combination, these archives will allow for the partitioning of mercury loading attributable to catchment transport from direct atmospheric deposition. After correcting the fluxes for particle focusing and terragenic elements input, flux from different lakes will be compared based on their catchment size and their temporal and spatial proximity known fire events. Altogether, our preliminary results using these paleolimnological methods will provide new insights on mercury transport processes that are predicted to become more important under a changing climate.

  10. The moisture response of soil heterotrophic respiration: interaction with soil properties

    DEFF Research Database (Denmark)

    Moyano, F E; Vasilyeva, N; Bouckaert, L

    2012-01-01

    the heterotrophic respiration response to moisture have limited empirical support and introduce an uncertainty of at least 4% in global soil carbon stock predictions by 2100. The necessity of improving the representation of this relationship in models has been highlighted in recent studies. Here we present a data......Soil moisture is of primary importance for predicting the evolution of soil carbon stocks and fluxes, both because it strongly controls organic matter decomposition and because it is predicted to change at global scales in the following decades. However, the soil functions used to model......-driven analysis of soil moisture-respiration relations based on 90 soils. With the use of linear models we show how the relationship between soil heterotrophic respiration and different measures of soil moisture is consistently affected by soil properties. The empirical models derived include main effects...

  11. Determination of lead levels in roadside soil and plants in Damascus city

    International Nuclear Information System (INIS)

    Othman, I; Al-Oudat, M.; Al-Masri, M.S.

    1997-04-01

    Seasonal variations of lead concentration in roadside soils and plants in 12 sites in Damascus city have been investigated. Lead concentrations in soil were found to be varied from 78.4 ppm to 832 ppm; lower levels in the wet period than in the dry period were observed. While lead levels in roadside plants varied between 3.39 ppm to 13.28 ppm. The results have also shown that most of the vegetables grown on the roadside of Damascus city have high concentrations of lead and the normal washing does not decrease it to unacceptable level. (author). 15 refs., 9 tabs

  12. Four-year measurement of methane flux over a temperate forest with a relaxed eddy accumulation method

    Science.gov (United States)

    Sakabe, A.; Kosugi, Y.; Ueyama, M.; Hamotani, K.; Takahashi, K.; Iwata, H.; Itoh, M.

    2013-12-01

    Forests are generally assumed to be an atmospheric methane (CH4) sink (Le Mer and Roger, 2001). However, under Asian monsoon climate, forests are subject to wide spatiotemporal range in soil water status, where forest soils often became water-saturated condition heterogeneously. In such warm and humid conditions, forests may act as a CH4 source and/or sink with considerable spatiotemporal variations. Micrometeorological methods such as eddy covariance (EC) method continuously measure spatially-representative flux at a canopy scale without artificial disturbance. In this study, we measured CH4 fluxes over a temperate forest during four-year period using a CH4 analyzer based on tunable diode laser spectroscopy detection with a relaxed eddy accumulation (REA) method (Hamotani et al., 1996, 2001). We revealed the amplitude and seasonal variations of canopy-scale CH4 fluxes. The REA method is the attractive alternative to the EC method to measure trace-gas flux because it allows the use of analyzers with an optimal integration time. We also conducted continuous chamber measurements on forest floor to reveal spatial variations in soil CH4 fluxes and its controlling processes. The observations were made in an evergreen coniferous forest in central Japan. The site has a warm temperate monsoon climate with wet summer. Some wetlands were located in riparian zones along streams within the flux footprint area. For the REA method, the sonic anemometer (SAT-550, Kaijo) was mounted on top of the 29-m-tall tower and air was sampled from just below the sonic anemometer to reservoirs according to the direction of vertical wind velocity (w). After accumulating air for 30 minutes, the air in the reservoirs was pulled into a CO2/H2O gas analyzer (LI-840, Li-Cor) and a CH4 analyzer (FMA-200, Los Gatos Research). Before entering the analyzers, the sampled air was dried using a gas dryer (PD-50 T-48; Perma Pure Inc.). The REA flux is obtained from the difference in the mean concentrations

  13. Eddy Covariance Measurements Over a Maize Field: The Contribution of Minor Flux Terms to the Energy Balance Gap

    Science.gov (United States)

    Smidt, J.; Ingwersen, J.; Streck, T.

    2015-12-01

    The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap

  14. Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil

    Directory of Open Access Journals (Sweden)

    C. A. Sierra

    2012-08-01

    Full Text Available Representing the response of soil carbon dynamics to global environmental change requires the incorporation of multiple tools in the development of predictive models. An important tool to construct and test models is the incorporation of bomb radiocarbon in soil organic matter during the past decades. In this manuscript, we combined radiocarbon data and a previously developed empirical model to explore decade-scale soil carbon dynamics in a temperate forest ecosystem at the Harvard Forest, Massachusetts, USA. We evaluated the contribution of different soil C fractions to both total soil CO2 efflux and microbially respired C. We tested the performance of the model based on measurable soil organic matter fractions against a decade of radiocarbon measurements. The model was then challenged with radiocarbon measurements from a warming and N addition experiment to test multiple hypotheses about the different response of soil C fractions to the experimental manipulations. Our results showed that the empirical model satisfactorily predicts the trends of radiocarbon in litter, density fractions, and respired CO2 observed over a decade in the soils not subjected to manipulation. However, the model, modified with prescribed relationships for temperature and decomposition rates, predicted most but not all the observations from the field experiment where soil temperatures and nitrogen levels were increased, suggesting that a larger degree of complexity and mechanistic relations need to be added to the model to predict short-term responses and transient dynamics.

  15. Processes affecting the movement of organochlorine pesticides (OCPs) between soil and air in an industrial site in Turkey.

    Science.gov (United States)

    Bozlaker, Ayse; Muezzinoglu, Aysen; Odabasi, Mustafa

    2009-11-01

    Soil and atmospheric concentrations, dry deposition and soil-air gas exchange of organochlorine pesticides (OCPs) were investigated at an industrial site in Aliaga, Izmir, Turkey. Current-use pesticides, endosulfan and chlorpyrifos, had the highest atmospheric levels in summer and winter. Summertime total (gas+particle) OCP concentrations in air were higher, probably due to increased volatilization at higher temperatures and seasonal local/regional applications of current-use pesticides. Particle deposition fluxes were generally higher in summer than in winter. Overall average dry particle deposition velocity for all the OCPs was 4.9+/-4.1 cm s(-1) (average+/-SD). SigmaDDXs (sum of p,p'-DDT, p,p'-DDD, and p,p'-DDE) were the most abundant OCPs in Aliaga soils (n=48), probably due to their heavy historical use and persistence. Calculated fugacity ratios and average net gas fluxes across the soil-air interface indicated volatilization for alpha-CHL, gamma-CHL, heptachlorepoxide, cis-nonachlor, trans-nonachlor, and p,p'-DDT in summer, and for alpha-CHL, gamma-CHL, trans-nonachlor, endosulfan sulfate, and p,p'-DDT in winter. For the remaining OCPs, soil acted as a sink during both seasons. Comparison of the determined fluxes showed that dry particle, gas-phase, and wet deposition are significant OCP input mechanisms to the soil in the study area.

  16. Variation in salt marsh CO2 fluxes across a latitudinal gradient along the US Atlantic coast

    Science.gov (United States)

    Forbrich, I.; Nahrawi, H. B.; Leclerc, M.; O'Connell, J. L.; Mishra, D. R.; Fogarty, M. C.; Edson, J. B.; Lule, A. V.; Vargas, R.; Giblin, A. E.; Alber, M.

    2017-12-01

    Salt marshes occur at the dynamic interface of land and ocean, where they play an important role as sink and source of nutrients, carbon (C) and sediment. They often are strong carbon sinks, because they continuously accumulate soil organic matter and sediment to keep their position relative to sea level. Decadal average C sequestration rates can be inferred from soil carbon density and mass accumulation rates, but little information about biological and climatic controls on C cycling and storage in these systems exists. In this study, we report measurements of atmospheric CO2 exchange from salt marshes along the US Atlantic coast from Massachusetts to Georgia. These measurements were made over periods from one to five years. Spartina alterniflora is the dominant vegetation at all sites. At the northern most site, Plum Island Ecosystems (PIE) LTER, and the southern most site, Georgia Coastal Ecosystems (GCE) LTER, flux measurements over several years have shown variations in the net CO2 flux influenced by the local climate. For example, annual net C uptake at the PIE LTER over 5 years (2013-2017) depends on rainfall in the growing season (June-August) which modulates soil salinity levels. This pattern is not as evident at the GCE LTER (2014-2015). Furthermore, the growing season length differs between both sites. Based on the CO2 flux measurements, a temperature threshold of 15o C limits the net C uptake at both sites and daily rates of net C uptake are generally smaller during the longer growing season in Georgia. Nevertheless, gross primary production (GPP) is similar for both sites. We will extend this analysis to include sites from Delaware and North Carolina to assess controls (e.g. leaf area using MODIS vegetation indices, temperature, photoperiod) on Spartina phenology and CO2 exchange.

  17. Radioactivity level of soil around Baqiao coal-fired power plant in China

    International Nuclear Information System (INIS)

    Lu, Xinwei; Zhao, Caifeng; Chen, Cancan; Liu, Wen

    2012-01-01

    Natural radioactivity level of soil around Baqiao coal-fired power plant in China was determined using gamma ray spectrometry. The concentrations of 226 Ra, 232 Th and 40 K in the studied soil samples range from 27.6 to 48.8, 44.4 to 61.4 and 640.2 to 992.2 Bq kg −1 with an average of 36.1, 51.1 and 733.9 Bq kg −1 , respectively, which are slightly higher than the average values of Shaanxi soil. The radium equivalent activity, the air absorbed dose rate and the annual effective dose rate were calculated and compared with the internationally reported or reference values. The radium equivalent activities of the studied samples are below the internationally accepted values. The air absorbed dose rate and the annual effective dose rate received by the local residents due to the natural radionuclides in soil are slightly higher than the mean value of Xi'an and worldwide. - Highlights: ► Natural radioactivity in soil around the coal-fired power plant was determined. ► Radiological parameters were used to assess radiation hazard. ► The coal-fired power plant has affected the local radioactivity level.

  18. Copper and lead levels in crops and soils of the Holland Marsh Area-Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Czuba, M.; Hutchinson, T.C.

    1980-01-01

    A study was made of the occurrence, distribution, and concentrations of the heavy metals copper (Cu) and lead (Pb) in the soils and crops of the important horticultural area north of Toronto known as the Holland Marsh. The soils are deep organic mucks (> 85% organic matter), derived by the drainage of black marshland soils, which has been carried out over the past 40 years. A comparison is made between the Pb and Cu concentrations in undrained, uncultivated areas of the marsh and in the intensively used horticultural area. Analyses show a marked accumulation of Cu in surface layers of cultivated soils, with a mean surface concentration of 130 ppM, declining to 20 ppM at a 32-cm depth. Undrained (virgin) soils of the same marshes had < 20 ppM at all depths. Lead concentrations also declined through the profile, from concentrations of 22 to 10 ppM. In comparison, undrained areas had elevated Pb levels. Cultivation appeared to have increased Cu, but lowered Pb in the marsh. Copper and lead levels found in the crops were generally higher in the young spring vegetables than in the mature fall ones. Leafy crops, especially lettuce (Lactuca L.) and celery (Apium graveolens), accumulated higher Pb levels in their foliage compared with levels in root crops. Cultivation procedures, including past pesticide applications and fertilizer additions, appeared to be principal sources of Cu. Mobility from the soil and into the plant for these elements in the marsh muck soils is discussed.

  19. Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea.

    Science.gov (United States)

    Kim, Eun Jung; Choi, Sung-Deuk; Chang, Yoon-Seok

    2011-11-01

    To investigate the influence of biomass burning on the levels of polycyclic aromatic hydrocarbons (PAHs) in soils, temporal trends and profiles of 16 US Environmental Protection Agency priority PAHs were studied in soil and ash samples collected 1, 5, and 9 months after forest fires in South Korea. The levels of PAHs in the burnt soils 1 month after the forest fires (mean, 1,200 ng/g dry weight) were comparable with those of contaminated urban soils. However, 5 and 9 months after the forest fires, these levels decreased considerably to those of general forest soils (206 and 302 ng/g, respectively). The burnt soils and ash were characterized by higher levels of light PAHs with two to four rings, reflecting direct emissions from biomass burning. Five and 9 months after the forest fires, the presence of naphthalene decreased considerably, which indicates that light PAHs were rapidly volatilized or degraded from the burnt soils. The temporal trend and pattern of PAHs clearly suggests that soils in the forest-fire region can be contaminated by PAHs directly emitted from biomass burning. However, the fire-affected soils can return to the pre-fire conditions over time through the washout and wind dissipation of the ash with high content of PAHs as well as vaporization or degradation of light PAHs.

  20. Detection of soil moisture impact in convective initiation in the central region of Mexico

    Science.gov (United States)

    Dolores, Edgar; Caetano, Ernesto

    2017-04-01

    Soil moisture is important for understanding hydrological cycle variability in many regions. Local surface heat and moisture fluxes represent a major source of convective rainfall in Mexico during the summer, driven by positive evaporation-precipitation feedback. The effects of soil moisture are directly reflected in the limitation of evapotranspiration, affecting the development of the planetary boundary layer and, therefore, the initiation and intensity of convective precipitation. This study presents preliminary analysis of the role of soil moisture in convective initiations in central Mexico, for which a methodology for the detection of convective initiations similar to Taylor (2015) has been considered. The results show that the moisture fluxes from the surface influence the development of convection favored by mesoscale circulations at low levels. Initiations are more frequent in regions less humid than their surroundings with the very strong signal during the month of September. The knowledge of the soil predisposition to allow the development of deep convection suggests an alternative tool for the prediction of convective rains in Mexico.