WorldWideScience

Sample records for soil fauna communities

  1. Effects of nitrogen addition on soil fauna communities in Larix gmelinii and Fraxinus mandshurica plantations

    Haifeng Zhuang; Yue Sun; Jiacun Gu; Yang Xu; Zhengquan Wang

    2010-01-01

    Soil fauna play a key role in regulating carbon allocation and nutrient cycling in terrestrial ecosystems. As soil fauna are sensitive to environmental changes, increases in soil nitrogen (N) availability resulting from global changes may profoundly influence the structure and function of soil faunal communities. However, the response of soil fauna in forest ecosystems to increases in soil N availability is still poorly understood. In order to explore the relationship between soil N availabil...

  2. Characteristics of Soil Fauna Communities and Habitat in Small- Holder Cocoa Plantation in South Konawe

    Laode Muhammad Harjoni Kilowasid; Tati Suryati Syamsudin; Franciscus Xaverius Susilo; Endah Sulistyawati; Hasbullah Syaf

    2013-01-01

    The composition of the soil fauna community have played an important role in regulating decomposition and nutrient cycling in agro-ecosystems (include cocoa plantation). Changes in food availability and conditions in the soil habitat can affected the abundance and diversity of soil fauna. This study aimed: (i) to analyze the pattern of changes in soil fauna community composition and characteristic of soil habitat based on the age increasing of cocoa plantation, and (ii) to identify taxa of so...

  3. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine

    2006-01-01

    The soil fauna communities were described for three dominant vegetation types in a high arctic site at Zackenberg, Northeast Greenland. Soil samples were extracted to quantify the densities of mites, collembolans, enchytraeids, diptera larvae, nematodes and protozoa. Rates of microbial respiration...... densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...

  4. [Community structure of soil fauna in Eucalyptus grandis plantations at different slope locations].

    Zhao, Yu; Zhong, Yu; Zhang, Jian; Yang, Wan-qin

    2010-09-01

    To understand the effects of slope location on the community structure of soil fauna in Eucalyptus grandis plantation, an investigation was made on the soil fauna in 3 E. grandis plantations at different slope locations in the hilly area of Sichuan Province from January to October 2009. A total of 39,2762 individuals were observed, belonging to 146 groups, 7 phyla, 16 classes, and 31 orders. The community composition, trophic group, diversity, and seasonal dynamics of soil fauna in the plantations all varied with slope. The abundance of macro-fauna, xeric meso- and micro-fauna, saprophagous macro-fauna, and omnivorous xeric meso- and micro-fauna increased with the decrease of slope, indicating that soil fauna had sensitive responses to the soil environmental factors affected by slope. Significant differences in the diversity of soil saprophagous macro-fauna and hygrophilous meso- and micro-fauna were observed at different slope locations, suggesting that these two faunal groups could be used as the indicators of the habitat heterogeneity of E. grandis plantations at different slope. Overall, slope location had definite effects on the community structure and distribution of soil fauna in the E. grandis plantations, but the effects were not statistically significant.

  5. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine

    2006-01-01

    The soil fauna communities were described for three dominant vegetation types in a high arctic site at Zackenberg, Northeast Greenland. Soil samples were extracted to quantify the densities of mites, collembolans, enchytraeids, diptera larvae, nematodes and protozoa. Rates of microbial respiration...... densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...... were also assessed. Collembolans were found in highest densities in dry heath soil, about 130,000 individuals m-2, more than twice as high as in mesic heath soils. Enchytraeids, diptera larvae and nematodes were also more abundant in the dry heath soil than in mesic heath soils, whereas protozoan...

  6. Effects of simulated acid rain on soil fauna community composition and their ecological niches.

    Wei, Hui; Liu, Wen; Zhang, Jiaen; Qin, Zhong

    2017-01-01

    Acid rain is one of the severest environmental issues globally. Relative to other global changes (e.g., warming, elevated atmospheric [CO 2 ], and nitrogen deposition), however, acid rain has received less attention than its due. Soil fauna play important roles in multiple ecological processes, but how soil fauna community responds to acid rain remains less studied. This microcosm experiment was conducted using latosol with simulated acid rain (SAR) manipulations to observe potential changes in soil fauna community under acid rain stress. Four pH levels, i.e., pH 2.5, 3.5, 4.5, and 5.5, and a neutral control of pH 7.0 were set according to the current pH condition and acidification trend of precipitation in southern China. As expected, we observed that the SAR treatments induced changes in soil fauna community composition and their ecological niches in the tested soil; the treatment effects tended to increase as acidity increased. This could be attributable to the environmental stresses (such as acidity, porosity and oxygen supply) induced by the SAR treatments. In addition to direct acidity effect, we propose that potential changes in permeability and movability of water and oxygen in soils induced by acid rain could also give rise to the observed shifts in soil fauna community composition. These are most likely indirect pathways of acid rain to affect belowground community. Moreover, we found that nematodes, the dominating soil fauna group in this study, moved downwards to mitigate the stress of acid rain. This is probably detrimental to soil fauna in the long term, due to the relatively severer soil conditions in the deep than surface soil layer. Our results suggest that acid rain could change soil fauna community and the vertical distribution of soil fauna groups, consequently changing the underground ecosystem functions such as organic matter decomposition and greenhouse gas emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Effect of Crop Residue Application to Soil Fauna Community and Mungbean Growth (Vigna radata

    SUGIYARTO

    2000-01-01

    Full Text Available Litterbag experiment was carried out to determine the effect of crop residue application to soil fauna community and mungbean growth. The experiment arranged in randomized complete design with triplicate. The four treatment application of crotalarian, rice straw and banana’s aerial stem residues as well as without residue application as control. Soil fauna community and mungbean growth measured at 8 weeks after mungbean sown. Soil fauna extracted by modified Barless-Tullgren extractor apparatus. Height and dry weight of mungbean measured as crop growth parameters. The results indicated that the soil fauna densities and diversities as well as the growth of mungbean tended to increase by the application of crop residues. The effect of the treatment decreasing in the following order: banana’s aerial stem residue > crotalarian residue > rice straw > without residue application. There were high correlation between mungbean growth and soil fauna diversities.© 2001 Jurusan Biologi FMIPA UNS SurakartaKey words:

  8. [Effects of rare earth elements on soil fauna community structure and their ecotoxicity to Holotrichia parallela].

    Li, Guiting; Jiang, Junqi; Chen, Jie; Zou, Yunding; Zhang, Xincai

    2006-01-01

    By the method of OECD filter paper contact, this paper studied the effects of applied rare earth elements on soil fauna community structure and their ecological toxicity to Holotrichia parallela in bean field. The results showed that there were no significant differences between the treatments and the control in soil fauna species, quantity of main species, and diversity index. Urgent and chronic toxic test showed that the differences between the treatments and the control were not significant. It was suggested that within the range of test dosages, rare earth elements had little ecological toxicity to Holotrichia parallela, and did not change the soil fauna community structure.

  9. Soil Fauna Communities and Soil Attributes in the Agroforests of Paraty

    Miguel Seabra Corrêa da Silva

    Full Text Available ABSTRACT We conducted the present study in Paraty, southeastern Brazil, in areas under different management regimes and plant cover. The study comprised two different agroforestry systems (AFS-1 and AFS-2, a secondary forest, and a cassava monoculture. We aimed at assessing the effects of land use on the soil fauna and its relationship with soil chemical (pH, Al, Ca, Mg, P, K, carbon, and organic matter and microbiological attributes (soil microbial biomass carbon - SMB-C, soil respiration – SR, metabolic quotient - qCO2, microbial biomass carbon - C-mic. During winter, AFS-2 showed higher abundance of microphagous, saprophagous, and total individuals than the other areas. AFS-1 and the forest showed an increased abundance of Formicidae and phytophagous groups from winter to summer. The soil fauna and community structure showed that the studied agroforests are under regeneration, becoming more similar to the native forest, where ecological processes are considered efficient.

  10. [Community structure of soil meso- and micro-fauna in different habitats of urbanized region].

    Qin, Zhong; Zhang, Jia-en; Li, Qing-fang

    2009-12-01

    Investigations were made in May, June, and November 2007 and January 2008 to study the structural characteristics and their seasonal variations of soil meso- and micro-fauna communities in six habitats of three land use types (forest land, constructed grassland and farmland) in Tianhe District of Guangzhou City. The horizontal spatial distribution of soil fauna differed with habitat. During the investigation periods, the Botanical Garden of South China Agricultural University had the highest individual number (1286) of soil mesa- and micro-fauna, while the farmland, especially in the Fenghuang Street area, had the lowest number of individuals and groups. The seasonal variation of the individual number was in order of autumn (1815) > spring (1623) > winter (1365) > summer (1276). Hierarchical clustering and detrended correspondence analysis also showed that the community composition of soil meso- and micro-fauna in different habitats exhibited distinct seasonal variation. In the same seasons, the community structure and composition of soil meso- and micro-fauna in different habitats were correlated to the degrees of human interferences and the properties of soil environment.

  11. [Soil meso- and micro-fauna community structures in different urban forest types in Shanghai, China.

    Jin, Shi Ke; Wang, Juan Juan; Zhu, Sha; Zhang, Qi; Li, Xiang; Zheng, Wen Jing; You, Wen Hui

    2016-07-01

    Soil meso- and micro-fauna of four urban forest types in Shanghai were investigated in four months which include April 2014, July 2014, October 2014 and January 2015. A total of 2190 soil fauna individuals which belong to 6 phyla, 15 classes and 22 groups were collected. The dominant groups were Nematoda and Arcari, accounting for 56.0% and 21.8% of the total in terms of individual numbers respectively. The common groups were Enchytraeidae, Rotatoria, Collembola and Hymenoptera and they accounted for 18.7% of the total in terms of individual numbers. There was a significant difference (PMetasequoia glyptostroboides forest, the smallest in Cinnamomum camphora forest. The largest groupe number was found in near-nature forest, the smallest was found in M. glyptostroboides forest. There was obvious seasonal dynamics in each urban forest type and green space which had larger density in autumn and larger groupe number in summer and autumn. In soil profiles, the degree of surface accumulation of soil meso- and micro-fauna in C. camphora forest was higher than in other forests and the vertical distribution of soil meso- and micro-fauna in near-nature forest was relatively homogeneous in four layers. Density-group index was ranked as: near-nature forest (6.953)> C. camphora forest (6.351)> Platanus forest (6.313)>M. glyptostroboides forest (5.910). The community diversity of soil fauna in each vegetation type could be displayed preferably by this index. It could be inferred through redundancy analysis (RDA) that the soil bulk density, organic matter and total nitrogen were the main environmental factors influencing soil meso- and micro-fauna community structure in urban forest. The positive correlations occurred between the individual number of Arcari, Enchytraeidae and soil organic matter and total nitrogen, as well as between the individual number of Diptera larvae, Rotatoria and soil water content.

  12. [Co-occurrence of soil fauna communities with changes in altitude on the northern slope of Changbai Mountain].

    Tong, Fuchun; Jin, Zhedong; Wang, Qingli; Xiao, Yihua

    2003-10-01

    The co-occurrence of soil fauna communities at different altitudes may reflect at some extent the relationships among communities, their coexistence, and the replacement of species along the altitude gradient. The continuous or disjunctive distribution of different species along altitude gradient not only reflected the environment variation at altitude gradient, but also the biological and ecological spatiality as well as the adaptability of species. The northern slope of Changbai Moutain has not only a high diversity in soil fauna types and species, but also a high variation of diversity pattern along the altitude gradient, which is a perfect transect for the research of biodiversity and gradient patterns. From 550 m to 2,560 m on the northern slope of Changbai Mountain, twenty-two plots were investigated with an interval of 100 m in altitude. By using Jaccard index, the co-occurrence of soil fauna communities at different altitudes was analyzed. For the species of different life forms or for all the species as a whole, the co-occurrence of soil faunae between neighboring communities was the highest, except for that between different soil fauna types. The peak and valley values of the co-occurrence of soil fauna communities along altitude gradient were matched with their gradient patterns, and the co-occurrence of soil faunae at different layers or all of the soil fauna communities were decreased with increasing altitude difference.

  13. The effect of glyphosate and nitrogen on plant communities and the soil fauna in terrestrial biotopes at field margins

    Damgaard, Christian; Strandberg, Beate; Dupont, Yoko

    were assessed at the ecosystem level by measuring biodiversity and functional traits. We have obtained an increased understanding of the causal relationship between plant communities and the soil fauna at the ecosystem level and increased knowledge on how and by what mechanisms important drivers...... that are known to affect plant communities may affect pollination and the soil fauna. The combined use of plant trait and soil fauna trait data in a full-factorial field experiment of glyphosate and nitrogen has never been explored before. The focus on plant and soil fauna traits rather than species enabled...... nitrogen, generally, resulted in increasing total plant cover and biomass, especially of fast-growing and competitive species as grasses and a few herbs such as Tanacetum vulgare. Using plant traits we found that increase in nitrogen promoted an increase in the average specific leaf area (SLA) and canopy...

  14. No Adverse Effect of Genetically Modified Antifungal Wheat on Decomposition Dynamics and the Soil Fauna Community – A Field Study

    Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas

    2011-01-01

    The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the

  15. No adverse effect of genetically modified antifungal wheat on decomposition dynamics and the soil fauna community--a field study.

    Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas

    2011-01-01

    The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the

  16. No adverse effect of genetically modified antifungal wheat on decomposition dynamics and the soil fauna community--a field study.

    Caroline Duc

    Full Text Available The cultivation of genetically modified (GM plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina, springtails (Isotomidae, annelids (Enchytraeidae and Diptera (Cecidomyiidae larvae. Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM

  17. Structure and function of soil fauna communities in Amazonian anthropogenic and natural ecosystems

    Höfer, Hubert; Hanagarth, Werner; Garcia, Marcos; Martius, Christopher; Franklin, Elizabeth; Römbke, Jörg; Beck, Ludwig

    2016-01-01

    The soil biological conditions of two 5-year-old polyculture tree plantations in Amazonia were studied comparatively to a 13-year-old secondary forest and a nearby undisturbed primary forest. The polycultures had been planted to regenerate the soil degraded by land preparation and a former rubber tree monoculture. Abundance and biomass of functional groups of soil meso- and macrofauna were measured at three-months-intervals over 2 years and litterbag experiments with fauna exclusion were carr...

  18. [Community traits of soil fauna in forestlands converted from cultivated lands in limestone red soil region of Ruichang, Jiangxi Province of China].

    Li, Tao; Liu, Yuan-Qiug; Guo, Sheng-Mao; Ke, Guo-Qing; Zhang, Zhao; Xiao, Xu-Bao; Liu, Wu

    2012-04-01

    This paper studied the variations of the community composition and individuals' number of soil fauna in limestone red soil region of Ruichang, Jiangxi Province after six years of converting cultivated lands into forestlands. Three converted forestlands, including the lands of mixed multiple-species forest, bamboo-broadleaved forest, and tree-seedling integration, were selected as test objects, with cultivated lands as the comparison. A total of 34 orders, 17 classes, and 6 phyla of soil fauna were observed in the converted forestlands. The dominant group was Nematoda, accounting for 86.7% of the total, whereas Acarina, Enchytraeidae, and Collembola were the common groups. In the cultivated lands, soil fauna had 21 orders, 10 classes, and 5 phyla. The dominant group was also Nematoda, accounting 86.7% of the total, and Acarina and Enchytraeidae were the common groups. In the converted forestlands, the group number of rare species was greater than that in the cultivated lands (30 vs. 18), and, except in winter, the group number and average density were significantly higher than those in the cultivated lands (P soil fauna in the soil profiles showed an obvious surface accumulation, which was more apparent in converted forestlands than in cultivated lands, and the individuals' number had significant differences between the surface (0-5 cm) layer and the 5-10 cm and 10-15 cm layers (P soil fauna in the converted forestlands had a seasonal variation ranked in the order of summer > autumn > spring > winter, and there was a significant difference between summer-autumn and spring-winter. The average density of the soil fauna also had a seasonal variation but ranked as autumn > summer > spring > winter, and the differences among the seasons were significant (P soil fauna was significantly higher in converted forestlands than in cultivated lands, and was the highest in mixed multiple-species forestland and the least in tree-seedling integration land.

  19. [Effects of global change on soil fauna diversity: A review].

    Wu, Ting-Juan

    2013-02-01

    Terrestrial ecosystem consists of aboveground and belowground components, whose interaction affects the ecosystem processes and functions. Soil fauna plays an important role in biogeochemical cycles. With the recognizing of the significance of soil fauna in ecosystem processes, increasing evidences demonstrated that global change has profound effects on soil faunima diversity. The alternation of land use type, the increasing temperature, and the changes in precipitation pattern can directly affect soil fauna diversity, while the increase of atmospheric CO2 concentration and nitrogen deposition can indirectly affect the soil fauna diversity by altering plant community composition, diversity, and nutrient contents. The interactions of different environmental factors can co-affect the soil fauna diversity. To understand the effects of different driving factors on soil fauna diversity under the background of climate change would facilitate us better predicting how the soil fauna diversity and related ecological processes changed in the future.

  20. Repression of fungal plant pathogens and fungal-related contaminants: Selected ecosystem services by soil fauna communities in agroecosystems

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Brunotte, Joachim; Weinert, Joachim

    2017-04-01

    In agroecosystems soil-borne fungal plant diseases are major yield-limiting factors which are difficult to control. Fungal plant pathogens, like Fusarium species, survive as a saprophyte in infected tissue like crop residues and endanger the health of the following crop by increasing the infection risk for specific plant diseases. In infected plant organs, these pathogens are able to produce mycotoxins. Mycotoxins like deoxynivalenol (DON) persist during storage, are heat resistant and of major concern for human and animal health after consumption of contaminated food and feed, respectively. Among fungivorous soil organisms, there are representatives of the soil fauna which are obviously antagonistic to a Fusarium infection and the contamination with mycotoxins. Specific members of the soil macro-, meso-, and microfauna provide a wide range of ecosystem services including the stimulation of decomposition processes which may result in the regulation of plant pathogens and the degradation of environmental contaminants. Investigations under laboratory conditions and in field were conducted to assess the functional linkage between soil faunal communities and plant pathogenic fungi (Fusarium culmorum). The aim was to examine if Fusarium biomass and the content of its mycotoxin DON decrease substantially in the presence of soil fauna (earthworms: Lumbricus terrestris, collembolans: Folsomia candida and nematodes: Aphelenchoides saprophilus) in a commercial cropping system managed with conservation tillage located in Northern Germany. The results of our investigations pointed out that the degradation performance of the introduced soil fauna must be considered as an important contribution to the biodegradation of fungal plant diseases and fungal-related contaminants. Different size classes within functional groups and the traits of keystone species appear to be significant for soil function and the provision of ecosystem services as in particular L. terrestris revealed to

  1. Development of metabarcoding for tracking changes of soil fauna community under stress by application of ash

    Qin, J; de Groot, G.A.; Hansen, L. H.

    Ash is a waste product from combustion of bio-fuel in power plants. Application of ash on soil ensures nutrient recycling, but detrimental ecotoxicological consequences may arise since ash is a complex mixture that may contain compounds affecting soil invertebrates and their food and habitat...... and species. DNA metabarcoding, which couples the principle of DNA barcoding with next generation sequencing technology, has the potential to simplify community diversity monitoring. However, sampling and DNA extraction methods for the purpose of soil microarthropod metabarcoding have not been yet fully...

  2. Environmental factors at different spatial scales governing soil fauna community patterns in fragmented forests.

    Martins da Silva, P.; Berg, M.P.; Serrano, A.R.M.; Dubs, F.; Sousa, J.P.

    2012-01-01

    Spatial and temporal changes in community structure of soil organisms may result from a myriad of processes operating at a hierarchy of spatial scales, from small-scale habitat conditions to species movements among patches and large-sale landscape features. To disentangle the relative importance of

  3. Disturbance-diversity relationships for soil fauna are explained by faunal community biomass in a salt marsh

    Thakur, M.P.; Berg, M.P.; Eisenhauer, N.; van Langevelde, Frank

    2014-01-01

    Disturbance-diversity relationships have long been studied in ecology with a unimodal relationship as the key prediction. Although this relationship has been widely contested, it is rarely tested for soil invertebrate fauna, an important component of terrestrial biodiversity. We tested

  4. Disturbance–diversity relationships for soil fauna are explained by faunal community biomass in a salt marsh

    Thakur, M.P.; Berg, M.P.; Eisenhauer, N.; Langevelde, van F.

    2014-01-01

    Disturbance–diversity relationships have long been studied in ecology with a unimodal relationship as the key prediction. Although this relationship has been widely contested, it is rarely tested for soil invertebrate fauna, an important component of terrestrial biodiversity. We tested

  5. Spatial Distribution of Soil Fauna In Long Term No Tillage

    Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.

    2012-04-01

    The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial

  6. Soil fauna: key to new carbon models

    Filser, Juliane; Faber, Jack H.; Tiunov, Alexei V.; Brussaard, Lijbert; Frouz, Jan; De Deyn, Gerlinde; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, Michel; Wall, Diana H.; Querner, Pascal; Eijsackers, Herman; José Jiménez, Juan

    2016-11-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential services provided by soils, policy makers depend on robust, predictive models identifying key drivers of SOM dynamics. Existing SOM models and suggested guidelines for future SOM modelling are defined mostly in terms of plant residue quality and input and microbial decomposition, overlooking the significant regulation provided by soil fauna. The fauna controls almost any aspect of organic matter turnover, foremost by regulating the activity and functional composition of soil microorganisms and their physical-chemical connectivity with soil organic matter. We demonstrate a very strong impact of soil animals on carbon turnover, increasing or decreasing it by several dozen percent, sometimes even turning C sinks into C sources or vice versa. This is demonstrated not only for earthworms and other larger invertebrates but also for smaller fauna such as Collembola. We suggest that inclusion of soil animal activities (plant residue consumption and bioturbation altering the formation, depth, hydraulic properties and physical heterogeneity of soils) can fundamentally affect the predictive outcome of SOM models. Understanding direct and indirect impacts of soil fauna on nutrient availability, carbon sequestration, greenhouse gas emissions and plant growth is key to the understanding of SOM dynamics in the context of global carbon cycling models. We argue that explicit consideration of soil fauna is essential to make realistic modelling predictions on SOM dynamics and to detect expected non-linear responses of SOM dynamics to global change. We present a decision framework, to be further developed through the activities of KEYSOM, a European COST Action, for when mechanistic SOM models

  7. Effects of Seasonal and Perennial Grazing on Soil Fauna Community and Microbial Biomass Carbon in the Subalpine Meadows of Yunnan, Southwest China

    LIU Shengjie; YANG Xiaodong; Anthony R.IVES; FENG Zhili; SHA Liqing

    2017-01-01

    Grazing and over-grazing may drive changes in the diversity and functioning of below-ground meadow ecosystems.A field soil survey was conducted to compare microbial biomass carbon (Cmin) and soil fauna communities in the two main grassland management systems in subalpine regions of Yunnan Province,China:perennial grazing currently practiced due to increasing herd sizes and traditional seasonal grazing.A three-year exclosure experiment was then conducted to further compare the effects of different grazing practices,including treatments of no mowing,perennial grazing (NM + G),mowing followed by seasonal grazing (M + G),mowing and no grazing (M + NG),and no mowing or grazing (NM + NG).The comparative survey result revealed that Cmin and total density of soil fauna were significantly lower at a perennially grazed site than at a seasonally grazed site.The experiment results showed that in comparison to non-grazing treatments (M + NG and NM + NG),grazing (NM + G and M + G) reduced total fauna density (by 150 individuals m-2) and the number of taxonomic groups present (by 0.32 taxa m-2).Mowing decreased Cmin (by 0.31 mg g-1).Furthermore,the NM + G treatment (perennial grazing) had the lowest density of Collembola (16.24 individuals m-2),one of the two most common taxonomic groups,although other taxonomic groups responded differently to the treatments.Treatment effects on soil fauna were consistent with those on above-ground grasses,in which C:N ratios were greatly reduced by grazing,with this effect being the greatest for the NM + G treatment.In contrast,different grazing treatments had little effect on C:N ratio of soil.Furthermore,the traditional grazing method (mowing followed by seasonal grazing) may have less severe effects on some taxonomic groups than perennial grazing.Therefore,an appropriate management should aim to protect soil fauna and microbes in this area from over-grazing and against further degradation.

  8. Soil invertebrate fauna affect N2O emissions from soil

    Kuiper, I.; Deyn, de G.B.; Thakur, M.P.; Groenigen, van J.W.

    2013-01-01

    Nitrous oxide (N2O) emissions from soils contribute significantly to global warming. Mitigation of N2O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses – a possible role for soil fauna

  9. The effect of soil fauna on carbon sequestration in soil

    Frouz, Jan; Pižl, Václav; Kaneda, Satoshi; Šimek, Miloslav

    2008-01-01

    Roč. 10, - (2008) ISSN 1029-7006. [EGU General Assembly 2008. 13.04.2008-18.04.2008, Vienna] Institutional research plan: CEZ:AV0Z60660521 Keywords : soil fauna * carbon sequestration * soil Subject RIV: EH - Ecology, Behaviour

  10. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China

    Shaojun Wang; Han Y. H. Chen; Yan Tan; Huan Fan; Honghua Ruan

    2016-01-01

    Soil fauna are critical for ecosystem function and sensitive to the changes of soil fertility. The effects of fertilization on soil fauna communities, however, remain poorly understood. We examined the effects of fertilization form and quantity on the abundance, diversity and composition of soil fauna across an age-sequence of poplar plantations (i.e., 4-, 9- and 20-yr-old) in the coastal region of eastern China. We found that the effects of fertilization on faunal abundance, diversity, and c...

  11. Recent progress in ecological studies of soil fauna

    Hasegawa, Motohiro; Fujii, Saori; Kaneda, Satoshi; Ikeda, Hiroshi; Hishi, Takuo; Hyodo, Fujio; Kobayashi, Makoto

    2017-01-01

    Progress in ecological studies of soil fauna includes studies of the role and effects of soil fauna on decomposition and soil carbon dynamics in relation to global environmental changes, the introduction of molecular biology approaches to such studies, feeding habit analysis using stable isotopes,

  12. Beech cupules as keystone structures for soil fauna.

    Melguizo-Ruiz, Nereida; Jiménez-Navarro, Gerardo; Moya-Laraño, Jordi

    2016-01-01

    Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, 'keystone structures', which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals-springtails, mites and enchytraeids-during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered 'keystone structures' that contribute to soil community maintenance. Therefore, beech trees may indirectly facilitate soil fauna

  13. Soil invertebrate fauna affect N2 O emissions from soil.

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. © 2013 John Wiley & Sons Ltd.

  14. [Responses of soil fauna to environment degeneration in the process of wind erosion desertification of Hulunbeir steppe].

    Lü, Shi-Hai; Lu, Xin-Shi; Gao, Ji-Xi

    2007-09-01

    To reveal the relationships between soil fauna and soil environmental factors in the process of steppe desertification, field survey combined with laboratory analysis was made to study the community structure, population density and biodiversity of soil fauna, and their relationships with the changes of soil organic matter, hydrolysable nitrogen, available phosphorus and moisture contents and soil pH at different stages of desertification of Hulunbeir steppe. The soil faunal specimens collected belonged to 4 phyla, 6 classes and 12 orders. Nematoda was the only dominant group of medium- and small-sized soil fauna, occupying 94.3% of the total, while Coleoptera and Hemiptera were the dominant groups of large-sized soil fauna, with the amount of 79.7%. The group amount, population density, diversity, and evenness of soil fauna had an obvious decreasing trend with the aggravation of steppe desertification. At serious stage of desertification, soil fauna vanished completely. The population density of soil fauna in 0-20 cm soil layer had significant linear correlations with soil nutrients and moisture contents, soil pH, and litter mass, indicating that soil fauna had stronger sensibility to the changes of soil environmental factors in the process of wind erosion desertification of Hulunbeir steppe.

  15. [Influence of different types of surface on the diversity of soil fauna in Beijing Olympic Park].

    Song, Ying-shi; Li, Xiao-wen; Li, Feng; Li, Hai-mei

    2015-04-01

    Soil fauna are impacted by urbanization. In order to explore the stress of different surface covers on diversity and community structure of soil fauna, we conducted this experiment in Beijing Olympic Park. In autumn of 2013, we used Baermann and Tullgren methods to study the diversity of soil fauna in the depth of 0-5 cm, 5-10 cm, 10-15 cm under four different land covers i.e. bared field (BF), totally impervious surface (TIS), partly impervious surface (PIS) and grassland (GL). The results showed that the total number of soil fauna in 100 cm3 was in order of GL (210) > PIS (193) > TIS (183) > BF (90), and the number of nematodes accounted for 72.0%-92.8% of the total number. On the vertical level, except for the TIS, the other three types of surface soil fauna had the surface gathered phenomenon. The Shannon diversity index and the Pielou evenness index of BF were lower, but the Simpson dominance index was higher than in the other land covers. The Shannon index and Margalef richness indes of GL were higher than those of the other land covers. The Shannon indexes of TIS and PIS were between the BF and GL. Except for the TIS and GL, the similarity indexes were between 0.4-0.5, indicating moderate non-similar characteristics. The diversity of soil fauna was significantly correlated with temperature, pH and available potassium.

  16. Ecological Diversity of Soil Fauna as Ecosystem Engineers in Small-Holder Cocoa Plantation in South Konawe

    Laode Muhammad Harjoni Kilowasid

    2012-05-01

    Full Text Available Taxa diversity within soil fauna functional groups can affected ecosystem functioning such as ecosystem engineers,which influence decomposition and nutrient cycling. The objective of this study is to describe ecological diversityvariation within soil fauna as ecosystem engineers in soil ecosystem of cocoa (Theobroma cacao L. plantation.Sampling was conducted during one year period from five different ages of plantation. Soil fauna removed from soilcore using hand sorting methods. A total of 39 genera of soil fauna as ecosystem engineers were found during thesestudies. Thirty five genera belong to the group of Formicidae (ants, three genera of Isoptera (termites, and onegenera of Oligochaeta (earthworms. Ecological diversity variation within ecosystem engineers was detected withSimpson indices for dominance and evenness. The highest diversity of ecosystem engineers was in the young ageof plantation. This study reinforces the importance biotic interaction which contributed to the distribution andabundance within soil fauna community as ecosystem engineers in small-holder cocoa plantation.

  17. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China.

    Wang, Shaojun; Chen, Han Y H; Tan, Yan; Fan, Huan; Ruan, Honghua

    2016-02-09

    Soil fauna are critical for ecosystem function and sensitive to the changes of soil fertility. The effects of fertilization on soil fauna communities, however, remain poorly understood. We examined the effects of fertilization form and quantity on the abundance, diversity and composition of soil fauna across an age-sequence of poplar plantations (i.e., 4-, 9- and 20-yr-old) in the coastal region of eastern China. We found that the effects of fertilization on faunal abundance, diversity, and composition differed among stand ages. Organic fertilizers increased the total abundance of soil fauna, whereas low level inorganic fertilizers imparted increases only in the 4- and 9-yr-old stands. The number of faunal groups did not change with fertilization, but Shannon's and Margalef diversity indices increased under low level organic fertilization, and decreased under inorganic fertilization in the 9- and 20-yr-old stands. Community composition of soil fauna differed strongly with fertilization and stand age. The changes in soil fauna were strongly associated with the changes in microbial biomass carbon, dissolved organic carbon and nitrogen, and available phosphorus and potassium. Our findings suggest that the responses of soil fauna to fertilization may be mediated through the fertilization effects on soil nutrient availability.

  18. Soil invertebrate fauna enhances grassland succession and diversity.

    De Deyn, Gerlinde B; Raaijmakers, Ciska E; Zoomer, H Rik; Berg, Matty P; de Ruiter, Peter C; Verhoef, Herman A; Bezemer, T Martijn; van der Putten, Wim H

    2003-04-17

    One of the most important areas in ecology is to elucidate the factors that drive succession in ecosystems and thus influence the diversity of species in natural vegetation. Significant mechanisms in this process are known to be resource limitation and the effects of aboveground vertebrate herbivores. More recently, symbiotic and pathogenic soil microbes have been shown to exert a profound effect on the composition of vegetation and changes therein. However, the influence of invertebrate soil fauna on succession has so far received little attention. Here we report that invertebrate soil fauna might enhance both secondary succession and local plant species diversity. Soil fauna from a series of secondary grassland succession stages selectively suppress early successional dominant plant species, thereby enhancing the relative abundance of subordinate species and also that of species from later succession stages. Soil fauna from the mid-succession stage had the strongest effect. Our results clearly show that soil fauna strongly affects the composition of natural vegetation and we suggest that this knowledge might improve the restoration and conservation of plant species diversity.

  19. Soil arthropod fauna from natural ecosites and reclaimed oil sands soils in northern Alberta

    Battigelli, J.P.; Leskiw, L.A. [Paragon Soil and Environmental Consulting Inc., Edmonton, AB (Canada)

    2006-07-01

    An understanding of soil invertebrates may facilitate current reclamation activities in the oil sands region of Alberta. This paper presented the results of a study investigating the density, diversity, and structure of soil arthropod assemblages in natural habitats and reclaimed sites. The purpose of the study was to establish a baseline inventory of soil arthropod assemblages in order to enable long-term monitoring of soil arthropod recolonization in disturbed sites. Nine natural ecosites were sampled for the study, including peat mix over secondary material over tailing sand; direct placement over tailing sand; peat mix over secondary over overburden; direct placement over overburden; peat mix over tailing sand; and peat mix over overburden. Samples were collected from previously established long-term soil and vegetation treatment plots in both natural ecosites and reclaimed soil sites located near Fort McMurray, Alberta. Results showed that densities of mesofauna were significantly higher in samples collected from natural ecosites. Acari and Collembola represented approximately 97 to 98 per cent of the fauna collected. It was also noted that the overall structure of the soil mesofauna community differed between natural soils and reclaimed soils. A significant reduction in the abundance of oribatid mites was observed in soils that had been reclaimed for over 34 years. Changes in the soil mesofauna community structure suggested that reclaimed soils continue to represent disturbed ecosites, as was indicated by higher proportions of prostigmatid mites and some collembolan families. Differences in community structure may influence soil ecosystem functions, including decomposition rates; nutrient recycling; soil structure; and fungal and bacterial biomass. It was concluded that further research is needed to examine oribatid mites and collembolan species diversity and community structure in reclaimed soils. 18 refs., 6 figs.

  20. Macrobenthic fauna community in the Middle Songkhla Lake, Southern Thailand

    Angsupanich, S.

    2005-02-01

    richness was in the SW monsoon season (light rain, June-August. Polychaetes and molluscs tended to decrease in the NE monsoon season with heavy rain from December-February, while crustaceans increased during this time. The best fitting of the environmental variables to explain the macrobenthic fauna community pattern of the Inner Songkhla Lake was an 8-variable combination of %clay, %silt, %organic carbon, soil pH, depth, dissolved oxygen, total suspended solid and temperature (harmonic rank correlation coefficient, ρw = 0.84.

  1. Soil fauna and diversity of animals in mining landscape of Karvina region Czech Republic

    Pullmanova, M.

    2006-01-01

    To study development of edaphon, esp. animals living on the top of the soil-epigeon, in relation to natural succession, were utilized the extreme different habitats from devastated landscape of Karvina region, Czech republic. Using the method of ground traps was collected numerous biological material of epigeon fauna at the spoil heap of the Dukla and Lazy face working area, in Karvina region. During two years of the research 2002-2004 was collected about 20 thousand examples. The fauna of epigeon, top horizon of the soil, was recovered and determined 24 taxons. The samples were analyzed according to several ecological criteria like an abundance, dominance, diversity and frequency. Special interest was paid to the succession and biodiversity of flora and fauna of spoil heap the reclamation process. Plants and animals that are adapted to specific conditions of life. First results show that the succession of community of edaphon is faster then succession of community of plants. (author)

  2. Preliminary Response of Soil Fauna to Simulated N Deposition in Three Typical Subtropical Forests

    XU Guo-Liang; MO Jiang-Ming; ZHOU Guo-Yi; FU Sheng-Lei

    2006-01-01

    A field-scale experiment arranged in a complete randomized block design with three N addition treatments including a control (no addition of N), a low N (5 g m-2 year-1), and a medium N (10 g m-2 year-1) was performed in each of the three typical forests, a pine (Pinus massoniana Lamb.) forest (PF), a pine-broadleaf mixed forest (MF) and a mature monsoon evergreen broadleaf forest (MEBF), of the Dinghushan Biosphere Reserve in subtropical China to study the response of soil fauna community to additions of N. Higher NH4+ and NO3- concentrations and a lower soil pH occurred in the medium N treatment of MEBF, whereas the NO3- concentration was the lowest in PF after the additions of N. The response of the density, group abundance and diversity index of soil fauna to addition of N varied with the forest type,and all these variables decreased with increasing N under MEBF but the trend was opposite under PF. The N treatments had no significant effects on these variables under MF. Compared with the control plots, the medium N treatment had significant negative effect on soil fauna under MEBF. The group abundance of soil fauna increased significantly with additions of higher N rates under PF. These results suggested that the response of soil fauna to N deposition varied with the forest type and N deposition rate, and soil N status is one of the important factors affecting the response of soil fauna to N deposition.

  3. Soil fauna through the landscape window: factors shaping surface-and soil-dwelling communities across spatial scales in cork-oak mosaics

    Martins da Silva, P.; Berg, M.P.; Alves da Silva, A.; Dias, S.; Leitão, P.J.; Chamberlain, D.; Niemelä, J.; Serrano, A.R.M.; Sousa, J.P.

    2015-01-01

    Context: The role of ecological processes governing community structure are dependent on the spatial distances among local communities and the degree of habitat heterogeneity at a given spatial scale. Also, they depend on the dispersal ability of the targeted organisms collected throughout a

  4. Soil fauna as an indicator of soil quality in forest stands, pasture and secondary forest

    Felipe Vieira da Cunha Neto

    2012-11-01

    Full Text Available The interactions between soil invertebrates and environmental variations are relatively unknown in the assessment of soil quality. The objective of this study was to evaluate soil quality in areas with different soil management systems, based on soil fauna as indicator, in Além Paraíba, Minas Gerais, Brazil. The soil invertebrate community was sampled using pitfall traps, in the dry and rainy seasons, from areas with five vegetation types (acacia, mimosa, eucalyptus, pasture, and secondary forest. The abundance of organisms and the total and average richness, Shannon's diversity index, the Pielou uniformity index, and change index V were determined. The fauna was most abundant in the areas of secondary forest and mimosa plantations in the dry season (111.3 and 31.7 individuals per trap per day, respectively. In the rainy season, the abundance of organisms in the three vegetation types did not differ. The highest values of average and total richness were recorded in the secondary forest in the dry season and in the mimosa stand in the rainy season. Shannon's index ranged from 1.57 in areas with acacia and eucalyptus in the rainy season to 3.19 in the eucalyptus area in the dry season. The uniformity index was highest in forest stands (eucalyptus, acacia and mimosa in the dry season, but higher in the rainy season in the pasture and secondary forest than in the forest stands. The change index V indicated that the percentage of extremely inhibited groups was lowest in the area with mimosa, both in the dry and rainy season (36 and 23 %, respectively. Of all forest stands, the mimosa area had the most abundant soil fauna.

  5. PERFUGIA AS A MECHANISM FOR THE RECOVERY OF SOIL FAUNA AFTER ECOSYSTEM DISTURBANCES

    K. B. Gongalsky

    2017-12-01

    Full Text Available Disturbances such as forest fires, industrial pollution, etc. are almost always heterogeneous, leaving less disturbed patches within the boundaries of disturbances. In addition to the traditionally considered source of soil invertebrates’ restoration by immigration from the surrounding unchanged biotopes, the role of locally undisturbed areas within the impact zones is shown. The presence of perfugia within the impact areas of various origin is revealed. Perfugia are locally less disturbed or undisturbed areas within a disturbed ecosystem where specimens or remnants of soil biota communities survive a disturbance. They are characterized by higher diversity and abundance of soil fauna in comparison to the main disturbed area. The heterogeneity of soil environment, the heterogeneity of its disturbance and the presence of perfugia serve as one of the factors in the recovery of soil fauna after the disturbances.

  6. Soil fauna: key to new carbon models

    Filser, Juliane; Faber, Jack H.; Tiunov, Alexei V.; Brussaard, Lijbert; Frouz, Jan; Deyn, Gerlinde; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, Michel; Wall, Diana H.; Querner, Pascal; Eijsackers, Herman; Jiménez, Juan José

    2016-01-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential services provided by soils, policy makers depend on robust, predictive models identifying key drivers of SOM dynamics. Existing SOM models and suggested guidelines for future SOM modelling are defined ...

  7. Soil fauna: key to new carbon models

    Filser, Juliane; Faber, J.H.; Tiunov, Alexei V.; Brussaard, L.; Frouz, J.; Deyn, de G.B.; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, M.; Wall, D.H.; Querner, Pascal; Eijsackers, Herman; Jimenez, Juan Jose

    2016-01-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential

  8. Toward a complete soil C and N cycle: incorporating the soil fauna.

    Osler, Graham H R; Sommerkorn, Martin

    2007-07-01

    Increasing pressures on ecosystems through global climate and other land-use changes require predictive models of their consequences for vital processes such as soil carbon and nitrogen cycling. These environmental changes will undoubtedly affect soil fauna. There is sufficient evidence that soil fauna have significant effects on all of the pools and fluxes in these cycles, and soil fauna mineralize more N than microbes in some habitats. It is therefore essential that their role in the C and N cycle be understood. Here we introduce a new framework that attempts to reconcile our current understanding of the role of soil fauna within the C and N cycle with biogeochemical models and soil food web models. Using a simple stoichiometric approach to integrate our understanding of N mineralization and immobilization with the C:N ratio of substrates and faunal life history characteristics, as used in food web studies, we consider two mechanisms through which soil fauna can directly affect N cycling. First, fauna that are efficient assimilators of C and that have prey with similar C:N ratios as themselves, are likely to contribute directly to the mineral N pool. Second, fauna that are inefficient assimilators of C and that have prey with higher C:N ratios than themselves are likely to contribute most to the dissolved organic matter (DOM) pool. Different groups of fauna are likely to contribute to these two pathways. Protists and bacteria-feeding nematodes are more likely to be important for N mineralization through grazing on microbial biomass, while the effects of enchytraeids and fungal-feeding microarthropods are most likely to be important for DOM production. The model is consistent with experimental evidence and, despite its simplicity, provides a new framework in which the effects of soil fauna on pools and fluxes can be understood. Further, the model highlights our gaps in knowledge, not only for effects of soil fauna on processes, but also for understanding of the

  9. [Early responses of soil fauna in three typical forests of south subtropical China to simulated N deposition addition].

    Xu, Guolian; Mo, Jiangming; Zhou, Guoyi

    2005-07-01

    In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.

  10. Artificial radionuclides in soil, flora and fauna

    Marej, A.N.

    1984-01-01

    Sources and ways of soil contamination by radionuclides, as well as the main regularities of radionuclide behaviour in soils, are discussed. Ways of radionuclide uptake by plants are discussed in detail, since radionuclide contamination of vegetation, and agricultural plants and pastures in particular, is one of the main factors, determining sanitary value of environmental contamination by radioactive substances

  11. [Interrelationships between soil fauna and soil environmental factors in China: research advance].

    Wang, Yi; Wei, Wei; Yang, Xing-zhong; Chen, Li-ding; Yang, Lei

    2010-09-01

    Soil fauna has close relations with various environmental factors in soil ecosystem. To explore the interrelationships between soil fauna and soil environmental factors is of vital importance to deep understand the dynamics of soil ecosystem and to assess the functioning of the ecosystem. The environmental factors affecting soil fauna can be classified as soil properties and soil external environment. The former contains soil basic physical and chemical properties, soil moisture, and soil pollution. The latter includes vegetation, land use type, landform, and climate, etc. From these aspects, this paper summarized the published literatures in China on the interrelationships between soil fauna and soil environmental factors. It was considered that several problems were existed in related studies, e.g., fewer researches were made in integrating soil fauna's bio-indicator function, research methods were needed to be improved, and the studies on the multi-environmental factors and their large scale spatial-temporal variability were in deficiency. Corresponding suggestions were proposed, i.e., more work should be done according to the practical needs, advanced experiences from abroad should be referenced, and comprehensive studies on multi-environmental factors and long-term monitoring should be conducted on large scale areas.

  12. Topography of Spoil Heaps and Its Role in Plant Succession and Soil Fauna Presence

    Walmsley A.

    2017-03-01

    Full Text Available The spoil heaps from brown coal mining without technical reclamation are interesting specific sites for ecological relationships observation. This research was aimed at investigating whether topographic features, which determine soil nutrient and moisture distribution, in combination with soil fauna (wireworm and earthworm presence, affect plant community composition at a spontaneously revegetated post mining area with an undulating surface. Two sites of different age with three types of topographic features were selected, soil moisture and nutrient contents were measured, and plant community composition and soil macrofauna community were sampled at each position. Wireworms were present at all positions and were most abundant at the bottoms of waves at the younger site; their presence was correlated with the presence of several plant species with high palatability for wireworms, but the direction of the interaction is not clear. Earthworms were only present at the older site and had the highest abundance at flat sections. Earthworm presence affected the amount of nitrogen in soil - the highest nitrogen content was at the site with the highest earthworm density and was followed by a higher diversity of plant community. The plant community composition was generally correlated with plant available nutrient content - especially P and N. We infer that topographic features affect nutrient and soil fauna distribution, which consequently influences the plant community composition.

  13. Soil fauna research in Poland: earthworms (Lumbricidae

    Pączka Grzegorz

    2015-06-01

    Full Text Available Living organisms are the foundation of ecosystem services. Of particular notice is zooedaphone, often underestimated and basically unknown to the general public. The present review summarizes the current state of knowledge related to earthworms occurring in natural and anthropogenically altered habitats in Poland, in the context of the requirement for protection of soil biodiversity.

  14. The role of spatial heterogeneity of the environment in soil fauna recovery after fires

    Gongalsky, K. B.; Zaitsev, A. S.

    2016-12-01

    Forest fires are almost always heterogeneous, leaving less-disturbed sites that are potentially suitable as habitats for soil-dwelling creatures. The recovery of large soil animal communities after fires is therefore dependent on the spatial structure of the burned habitats. The role of locally less disturbed sites in the survival of soil macrofauna communities along with traditionally considered immigration from the surrounding undisturbed habitats is shown by the example of burnt areas located in three geographically distant regions of European Russia. Such unburned soil cover sites (perfugia) occupy 5-10% of the total burned habitats. Initially, perfugia are characterized by much higher (200-300% of the average across a burned area) diversity and abundance of soil fauna. A geostatistical method made it possible to estimate the perfugia size for soil macrofauna at 3-8 m.

  15. Epigeal Fauna and Soil Chemical Attributes in Grazing and Regeneration Areas

    Leandro Ribeiro Nogueira

    2017-05-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the influence of natural pasture and spontaneous regeneration on soil chemical properties and epigeal fauna community using a secondary Atlantic Forest as reference. The study areas were located in Passa Vinte, Minas Gerais, Brazil. In each study area, pitfall traps were used to sample epigeal fauna in the dry and rainy seasons. Earth samples were collected at a depth of 0-5 cm in the dry and rainy seasons for analysis of chemical attributes. The pasture and regeneration areas showed an overall activity of epigeal fauna and functional groups similar to the forest area. However, the diversity evaluated by the Shannon and Pielou evenness indices and the total richness were lower than the observed in the forest. The best fertility attributes were observed in the forest and pasture areas.

  16. Plant parasite control and soil fauna diversity.

    Lavelle, Patrick; Blouin, Manuel; Boyer, Johnny; Cadet, Patrice; Laffray, Daniel; Pham-Thi, Anh-Thu; Reversat, Georges; Settle, William; Zuily, Yasmine

    2004-07-01

    The use of pesticides to control plant parasites and diseases has generated serious problems of public health and environmental quality, leading to the promotion of alternative Integrated Pest Management strategies that tend to rely more on natural processes and the active participation of farmers as observers and experimenters in their own fields. We present three case studies that point at different options provided by locally available populations of soil organisms, the maintenance of diverse populations of pests or increased resistance of plants to pest attacks by their interactions with earthworms and other useful soil organisms. These examples demonstrate the diversity of options offered by the non-planned agro-ecosystem diversity in pest control and the need to identify management options that maintain this biodiversity.

  17. Impact of agricultural practices on selected soil decomposers fauna

    Abdalatif, M. A.; Alrayah, A.; Azar, W. Z.

    2009-01-01

    Soil decomposers fauna i.e. collembolan, mites and nematodes were studied and compared between and within sites in relation to site, treatment and time of collection in Shambat arable and El Rwakeeb dry land. Comparison of results between sites showed that population density/volume of decomposers fauna sampled from Shambat site exceeded their assemblages sampled from El Rawakeeb site. Treatment application in form of cattle manure and neem leaves powder were observed to induce insignificant changes in the three faunal groups between the two sites. Temporal variations showed significant annual variations and insignificant seasonal variations between the two sites. Within each site, population density/volume of each of collembolan, mites and nematodes increased in response to cattle manure application in both sites. Whereas, neem leaves powder application induced a significant decrease in population density/volume of collembola in both sites. These results are generally attributed to variability of soil properties which may add to the suitability of Shambat soil to El Rawakeeb one for the survival of decomposers fauna. Within each site, increase in population density/volume of these fauna upon cattle manure application was attributed to ability of cattle manure to improve soil properties and to provide food. The negative effect of neem leaves powder on mites and nematodes was attributed to neem toxicity, whereas, its positive effects on collembolan was attributed to the ability of collembolan to withstand neem toxicity, collembolan probably physiologically resistant and the neem powder provided food, thus increasing its numbers compared to the central treatment.(Author)

  18. Contribution of soil fauna to soil functioning in degraded environments: a multidisciplinary approach

    Gargiulo, Laura; Mele, Giacomo; Moradi, Jabbar; Kukla, Jaroslav; Jandová, Kateřina; Frouz, Jan

    2016-04-01

    The restoration of the soil functions is essential for the recovery of highly degraded sites and, consequently, the study of the soil fauna role in the soil development in such environments has great potential from a practical point of view. The soils of the post-mining sites represent unique models for the study of the natural ecological succession because mining creates similar environments characterized by the same substrate, but by different ages according to the year of closure of mines. The aim of this work was to assess the contribution of different species of macrofauna on the evolution of soil structure and on the composition and activity of the microbial community in soil samples subjected to ecological restoration or characterized by spontaneous ecological succession. For this purpose, an experimental test was carried out in two sites characterized by different post-mining conditions: 1) natural succession, 2) reclamation with planting trees. These sites are located in the post-mining area of Sokolov (Czech Republic). For the experimental test repacked soil cores were prepared in laboratory with sieved soil sampled from the two sites. The soil cores were prepared maintaining the sequence of soil horizons present in the field. These samples were inoculated separately with two genera of earthworms (Lumbricus and Aporrectodea) and two of centipedes (Julida and Polydesmus). In particular, based on their body size, were inoculated for each cylinder 2 individuals of millipedes, 1 individual of Lumbricus and 4 individuals of Aporrectodea. For each treatment and for control samples 5 replicates were prepared and all samples were incubated in field for 1 month in the two original sampling sites. After the incubation the samples were removed from the field and transported in laboratory in order to perform the analysis of microbial respiration, of PLFA (phospholipid-derived fatty acids) and ergosterol contents and finally for the characterization of soil structure

  19. Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation

    Tao, Hsiao-Hang; Slade, Eleanor M.; Willis, Katherine J.; Caliman, Jean Pierre; Snaddon, Jake Lanion

    2016-01-01

    Optimizing the use of available soil management practices in oil palm plantations is crucial to enhance long-term soil fertility and productivity. However, this needs a thorough understanding of the functional responses of soil biota to these management practices. To address this knowledge gap, we used the bait lamina method to investigate the effects of different soil management practices on soil fauna feeding activity, and whether feeding activity was associated with management-mediated cha...

  20. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.

    García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H

    2013-08-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. © 2013 John Wiley & Sons Ltd/CNRS.

  1. [Microelement contents of litter, soil fauna and soil in Pinus koraiensis and broad-leaved mixed forest].

    Yin, Xiu-qin; Li, Jin-xia; Dong, Wei-hua

    2007-02-01

    The analysis on the Mn, Zn and Cu contents of litter, soil fauna and soil in Pinus korazenszis and broad-leaved mixed forest in Liangshui Natural Reserve of Xiaoxing' an Mountains showed that the test microelement contents in the litter, soil fauna and soil all followed the sequence of Mn > Zn > Cu, but varied with these environmental components, being in the sequence of soil > litter > soil fauna for Mn, soil fauna > litter and soil for Zn, and soil fauna > soil > litter for Cu. The change range of test microelement contents in litter was larger in broad-leaved forest than in coniferous forest. Different soil fauna differed in their microelement-enrichment capability, e. g. , earthworm, centipede, diplopod had the highest content of Mn, Zn and Cu, respectively. The contents of test microelements in soil fauna had significant correlations with their environmental background values, litter decomposition rate, food habit of soil fauna, and its absorbing selectivity and enrichment to microelements. The microelements contained in 5-20 cm soil layer were more than those in 0-5 cm soil layer, and their dynamics differed in various soil layers.

  2. Interactions between microbial-feeding and predatory soil fauna trigger N2O emissions

    Thakur, M.P.; Groenigen, van J.W.; Kuiper, I.; Deyn, de G.B.

    2014-01-01

    Recent research has shown that microbial-feeding invertebrate soil fauna species can significantly contribute to N2O emissions. However, in soil food webs microbial-feeding soil fauna interact with each other and with their predators, which affects microbial activity. To date we lack empirical tests

  3. Soil Fauna Transport Versus Radionuclide Migration (invited paper)

    Bunnenberg, C.; Taeschner, M.

    2000-01-01

    From a questionnaire on radioecological topics circulated in the framework of the IUR/EURADOS/EULEP Concerted Action supported by the EC it was concluded that the effect of soil fauna on the redistribution of radionuclides in soils has never been given sufficient attention. The limited data in existence suggest than faunal effects on displacement of radionuclides may be dominant over physicochemical migration. On the basis of a given dataset, an earthworm model is presented which shows that the activity decrease in the top soil layer due to bioturbation may compete with fast physicochemical migration at rates of 1 to 10 cm.y -1 . The model represents a suggestion of how to treat faunal actions and what kind of data are necessary to operate such models. (author)

  4. Farmers' knowledge and use of soil fauna in agriculture: a worldwide review

    Natasha Pauli

    2016-09-01

    Full Text Available General knowledge of the small, invisible, or hidden organisms that make soil one of the most biodiverse habitats on Earth is thought to be scarce, despite their importance in food systems and agricultural production. We provide the first worldwide review of high-quality research that reports on farmers' knowledge of soil organisms in agriculture. The depth of farmers' knowledge varied; some farming communities held detailed local taxonomies and observations of soil biota, or used soil biological activity as indicators of soil fertility, while others were largely unaware of soil fauna. Elicitation of soil biota knowledge was often incidental to the main research goal in many of the reviewed studies. Farmers are rarely deliberately or deeply consulted by researchers on their existing knowledge of soil biota, soil ecology, or soil ecological processes. Deeper understanding of how farmers use and value soil life can lead to more effective development of collaborative extension programs, policies, and management initiatives directed at maintaining healthy, living soils.

  5. On the role of soil fauna in providing soil functions - a meta study

    Lang, Birgit; Russell, David J.; Vogel, Hans-Jörg; Wollschläger, Ute

    2017-04-01

    Fertile soils are fundamental for the production of biomass and therefore for the provision of goods such as food or fuel. However, soils are threatened by e.g. land degradation, but once lost their functionality cannot simply be replaced as soils are complex systems developed over long time periods. Thus, to develop strategies for sustainable soil use and management, we need a comprehensive functional understanding of soil systems. To this end, the interdisciplinary research program "Soil as a Natural Resource for the Bio-Economy - BonaRes" was launched by the German Federal Government in 2015. One part of this program is the development of a Knowledge Centre for soil functions and services. As part of the Knowledge Centre, we focus on the identification and quantification of biological drivers of soil functions. Based on a systematic review of existing literature, we assess the importance of different soil faunal groups for the soil functions and processes most relevant to agricultural production (i.e. decomposition, mineralization, soil structuring. Additionally, we investigate direct impacts of soil fauna on soil properties (e.g. aggregation, pore volume). As site specific conditions such as climate, soil type or management practices affect soil fauna and their performance, these responses must also be taken into account. In the end, our findings will be used in the development of modeling tools aiming to predict the impacts of different management measures on soil ecosystem services and functions.

  6. Transient dwarfism of soil fauna during the Paleocene-Eocene Thermal Maximum.

    Smith, Jon J; Hasiotis, Stephen T; Kraus, Mary J; Woody, Daniel T

    2009-10-20

    Soil organisms, as recorded by trace fossils in paleosols of the Willwood Formation, Wyoming, show significant body-size reductions and increased abundances during the Paleocene-Eocene Thermal Maximum (PETM). Paleobotanical, paleopedologic, and oxygen isotope studies indicate high temperatures during the PETM and sharp declines in precipitation compared with late Paleocene estimates. Insect and oligochaete burrows increase in abundance during the PETM, suggesting longer periods of soil development and improved drainage conditions. Crayfish burrows and molluscan body fossils, abundant below and above the PETM interval, are significantly less abundant during the PETM, likely because of drier floodplain conditions and lower water tables. Burrow diameters of the most abundant ichnofossils are 30-46% smaller within the PETM interval. As burrow size is a proxy for body size, significant reductions in burrow diameter suggest that their tracemakers were smaller bodied. Smaller body sizes may have resulted from higher subsurface temperatures, lower soil moisture conditions, or nutritionally deficient vegetation in the high-CO(2) atmosphere inferred for the PETM. Smaller soil fauna co-occur with dwarf mammal taxa during the PETM; thus, a common forcing mechanism may have selected for small size in both above- and below-ground terrestrial communities. We predict that soil fauna have already shown reductions in size over the last 150 years of increased atmospheric CO(2) and surface temperatures or that they will exhibit this pattern over the next century. We retrodict also that soil fauna across the Permian-Triassic and Triassic-Jurassic boundary events show significant size decreases because of similar forcing mechanisms driven by rapid global warming.

  7. Transient dwarfism of soil fauna during the Paleocene-Eocene Thermal Maximum

    Smith, J.J.; Hasiotis, S.T.; Kraus, M.J.; Woody, D.T.

    2009-01-01

    Soil organisms, as recorded by trace fossils in paleosols of the Willwood Formation, Wyoming, show significant body-size reductions and increased abundances during the Paleocene-Eocene Thermal Maximum (PETM). Paleobotanical, paleopedologic, and oxygen isotope studies indicate high temperatures during the PETM and sharp declines in precipitation compared with late Paleocene estimates. Insect and oligochaete burrows increase in abundance during the PETM, suggesting longer periods of soil development and improved drainage conditions. Crayfish burrows and molluscan body fossils, abundant below and above the PETM interval, are significantly less abundant during the PETM, likely because of drier floodplain conditions and lower water tables. Burrow diameters of the most abundant ichnofossils are 30-46% smaller within the PETM interval. As burrow size is a proxy for body size, significant reductions in burrow diameter suggest that their tracemakers were smaller bodied. Smaller body sizes may have resulted from higher subsurface temperatures, lower soil moisture conditions, or nutritionally deficient vegetation in the high-CO2 atmosphere inferred for the PETM. Smaller soil fauna co-occur with dwarf mammal taxa during the PETM; thus, a common forcing mechanism may have selected for small size in both above- and below-ground terrestrial communities. We predict that soil fauna have already shown reductions in size over the last 150 years of increased atmospheric CO2 and surface temperatures or that they will exhibit this pattern over the next century. We retrodict also that soil fauna across the Permian-Triassic and Triassic-Jurassic boundary events show significant size decreases because of similar forcing mechanisms driven by rapid global warming.

  8. Species-specific effects of soil fauna on fungal foraging and decomposition.

    Crowther, Thomas W; Boddy, Lynne; Jones, T Hefin

    2011-10-01

    Decomposer fungi are primary decomposing agents in terrestrial soils. Their mycelial networks play an important role in nutrient mineralisation and distribution, but are also nutritious resources for various soil invertebrates. Global climate change is predicted to alter the diversity and community composition of these soil fauna. To understand whether changes in invertebrate species diversity are likely to affect fungal-mediated decomposition, this study compared the grazing potentials of different invertebrate taxa and functional groups. Specifically, the grazing impacts of seven invertebrate taxa on the growth and spatial distribution of six basidiomycete fungi growing from beech wood blocks in soil microcosms were explored. Wood decay rates by fungi were also compared. The consequences of grazing were both taxon- and species-specific. Generally, macro-invertebrates caused the greatest damage, while meso- and micro-invertebrates often stimulated mycelial growth. Invertebrate size, preferences and population dynamics are likely to influence grazing potentials. Effects of grazing varied between fungi, with mycelial morphology and biochemistry possibly influencing susceptibility. Heavy grazing indirectly increased fungal-mediated wood decomposition. Changes in invertebrate community composition are predicted to have consequences for fungal growth, activity and community structure in woodland soils. Abiotic climate change factors including CO(2) and temperature affect mycelial productivity directly, but the indirect effects, mediated through changes in the soil invertebrate community, may be equally important in controlling ecosystem functioning.

  9. Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa.

    Bokhorst, S.F.; Phoenix, G.K.; Bjerke, J.W.; Callaghan, T.V.; Huyer-Brugman, F.A.; Berg, M.P.

    2012-01-01

    Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate

  10. Influence of radioactive environment pollution upon soil fauna at the region of Chernobylsk Atomic Power Station

    Krivolutskij, D.A.; Pokarzhevskij, A.D.; Usachev, V.L.; Shein, G.N.; Nadvornyj, V.G.; Viktorov, A.G.

    1991-01-01

    Populations of soil fauna in the region of 30-km zone of Chernobylsk NPP accident were investigated. in July, September and October of 1986, in April of 1987 and in October of 1988. It is shown that number of soecies of soil microarthropods and their populations in soils of pine forests around the NPP reduced sharply during the first year after the accident, as compared to the standard. Decrease of number and biomass of earthworm populations was observed in soils of agroecosystems. Decrease of share young specimen was especially noticeable. Populations of settled specimens of soil fauna regenerated slowly during the second year after the accident, the second year after the accident, and regeneration of the total population of soil fauna in 30-km zone proceeded due to poupylations of migrating specimens. 2-2.5 years later the population and biomass of soil fauna in contaminated regions regerated completely

  11. A Comparative Study of the Soil Fauna in forests and cultivated land on sandy soils in Suriname

    Drift, van der J.

    1963-01-01

    1. In the coastal area of Suriname the soil and surface fauna were studied in various types of agricultural land, and compared with the fauna in the adjacent forests. 2. In primeval forest the soil macroarthropods are less numerous than in secondary forest (Formicidae excluded). They range generally

  12. Fauna-associated changes in chemical and biochemical properties of soil.

    Tripathi, G; Sharma, B M

    2006-12-01

    To study the impacts of abundance of woodlice, termites, and mites on some functional aspects of soil in order to elucidate the specific role of soil fauna in improving soil fertility in desert. Fauna-rich sites were selected as experimental sites and adjacent areas were taken as control. Soil samples were collected from both sites. Soil respiration was measured at both sites. The soil samples were sent to laboratory, their chemical and biochemical properties were analyzed. Woodlice showed 25% decrease in organic carbon and organic matter as compared to control site. Whereas termites and mites showed 58% and 16% decrease in organic carbon and organic matter. In contrast, available nitrogen (nitrate and ammonical both) and phosphorus exhibited 2-fold and 1.2-fold increase, respectively. Soil respiration and dehydrogenase activity at the sites rich in woodlice, termites and mites produced 2.5-, 3.5- and 2-fold increases, respectively as compared to their control values. Fauna-associated increase in these biological parameters clearly reflected fauna-induced microbial activity in soil. Maximum decrease in organic carbon and increase in nitrate-nitrogen and ammonical-nitrogen, available phosphorus, soil respiration and dehydrogenase activity were produced by termites and minimum by mites reflecting termite as an efficient soil improver in desert environment. The soil fauna-associated changes in chemical (organic carbon, nitrate-nitrogen, ammonical-nitrogen, phosphorus) and biochemical (soil respiration, dehydrogenase activity) properties of soil improve soil health and help in conservation of desert pedoecosystem.

  13. Water, Rather than Temperature, Dominantly Impacts How Soil Fauna Affect Dissolved Carbon and Nitrogen Release from Fresh Litter during Early Litter Decomposition

    Shu Liao

    2016-10-01

    Full Text Available Longstanding observations suggest that dissolved materials are lost from fresh litter through leaching, but the role of soil fauna in controlling this process has been poorly documented. In this study, a litterbag experiment employing litterbags with different mesh sizes (3 mm to permit soil fauna access and 0.04 mm to exclude fauna access was conducted in three habitats (arid valley, ecotone and subalpine forest with changes in climate and vegetation types to evaluate the effects of soil fauna on the concentrations of dissolved organic carbon (DOC and total dissolved nitrogen (TDN during the first year of decomposition. The results showed that the individual density and community abundance of soil fauna greatly varied among these habitats, but Prostigmata, Isotomidae and Oribatida were the dominant soil invertebrates. At the end of the experiment, the mass remaining of foliar litter ranged from 58% for shrub litter to 77% for birch litter, and the DOC and TDN concentrations decreased to 54%–85% and increased to 34%–269%, respectively, when soil fauna were not present. The effects of soil fauna on the concentrations of both DOC and TDN in foliar litter were greater in the subalpine forest (wetter but colder during the winter and in the arid valley (warmer but drier during the growing season, and this effect was positively correlated with water content. Moreover, the effects of fauna on DOC and TDN concentrations were greater for high-quality litter and were related to the C/N ratio. These results suggest that water, rather than temperature, dominates how fauna affect the release of dissolved substances from fresh litter.

  14. Soil fauna and organic amendment interactions affect soil carbon and crop performance in semi-arid West Africa

    Ouédraogo, E.; Brussaard, L.; Stroosnijder, L.

    2007-01-01

    A field experiment was conducted at Kaibo in southern Burkina Faso on an Eutric Cambisol during the 2000 rainy season to assess the interaction of organic amendment quality and soil fauna, affecting soil organic carbon and sorghum ( Sorghum bicolor L. Moench) performance. Plots were treated with the pesticides Dursban and Endosulfan to exclude soil fauna or left untreated. Sub-treatments consisted of surface-placed maize straw ( C/N ratio= 58), Andropogon straw ( C/N ratio= 153), cattle dung ...

  15. Soil fauna and its relation with environmental variables in soil management systems

    Dilmar Baretta

    Full Text Available The present study aims to generate knowledge about the soil fauna, its relation to other explanatory environmental variables, and, besides it, to select edaphic indicators that more contribute to separate the land use systems (LUS. Five different LUS were chosen: conventional tillage with crop rotation (CTCR; no-tillage with crop rotation (NTCR; conventional tillage with crop succession (CTCS; no-tillage with crop succession (NTCS and minimum tillage with crop succession (MTCS. The samples were made in the counties Chapecó, Xanxerê and Ouro Verde located in the state of Santa Catarina, Brazil, and were considered the true replicates of the LUS. In each site, nine points were sampled in a sampling grid of 3 x 3. At the same points, soil was sampled for the physical, chemical and biological attributes (environmental variables. Pitfall traps were used to evaluate the soil fauna. Data were analyzed using principal component analysis (PCA and canonical discriminant analysis (CDA. The soil fauna presented potential to be used as indictors of soil quality, since some groups proved to be sensible to changes of the environmental variables and to soil management and tillage. The soil management using crop rotation (NTCR and CTCR presented higher diversity, compared to the systems using crop succession (NTCS, MTCS and NTCS, evidencing the importance of the soil tillage, independent of the season (summer or winter. The variable that better contributed to explain these changes were the chemical variables (potassium, pH, calcium, organic matter, available phosphorus, potential acidity, and biological variables (Shannon diversity index, Collembola, Pielou equitability index and microbial biomass carbon, respectively.

  16. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow.

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes.

  17. [Impact of heavy snow storm and freezing rain disasters on soil fauna in Chinese fir plantation in southern China].

    Yan, Shao-kui; Zhang, Wei-dong; Liu, Yan-xin; Fu, Sheng-lei; Li, Yuan-liang; Wang, Si-long

    2009-01-01

    In January 2008, southern China suffered an unusual heavy snowstorm and freezing rain over a large area for almost a month long. This catastrophic event was the worst one in past 50 years, which brought the area a serious impact on the infrastructure, ecology, and environment. To understand the long-term impact of this catastrophic event on the forest ecosystems in this area, a field investigation was conducted on the soil fauna in a pure Chinese fir plantation and a mixed Chinese fir plantation-alder plantation in Huitong County of Hunan Province on March 23, 2008, the date 40 days after the heavy snowstorm and freezing rain. With the abundance and community composition as the main parameters and the monitoring data from the two plantations on March 23, 2007 as the reference, the flexibility and resistance of soil fauna to the disturbances of the catastrophic event was preliminarily evaluated. The results showed that there was a significant deviation of soil fauna communities in the two plantations from the reference. An outbreak increase in microfauna nematode abundance was found from 12216.9 ind x m(-2) to 118343.9 ind x m(-2) in pure Chinese fir plantation and from 25435.9 ind x m(-2) to 84573.0 ind x m(-2) in mixed Chinese fir plantation-alder plantation, while a 27.0% and 85.6% decrease of macrofauna abundance was found in the two plantations, respectively, compared with the reference. Mesofauna abundance also had a significant decrease in litter layer but not in soil. The abundance recovery displayed a trend from quick rate for microfauna to slow rate for macrofauna, which indicated that the soil fauna functional groups, in terms of body size, could be used as a vulnerable indicator in evaluating disturbance event and post-disturbance recovery. By using community ordinations, no shift in soil fauna community composition was detected 40 days after the catastrophic event, suggesting that the community composition of soil invertebrate had a high resistance to

  18. Soil fauna in forest and coffee plantations from the Sierra Nevada de Santa Mar ta, Colombia

    Camero R, Edgar

    2002-01-01

    Two research stations (M inca, 700 m altitude and Maria Ter esa, 790 m altitude) were established in the Sierra Nevada de Santa Mar ta in places to study the soil fauna associated with forest and coffee plantations. Soil fauna was collected using pitfall and Bailer's traps. Samples were taken from litter as well as from horizons 0, A and B. individuals collected were identified to family level. Diversity, abundance and frequency indexes were used to compare fauna composition at both sites. Significant differences were found between the two research sites as well as with data from other high altitude forest in the Sierra Nevada de Santa Mar ta

  19. Can the soil fauna of boreal forests recover from lead-derived stress in a shooting range area?

    Selonen, Salla; Liiri, Mira; Setälä, Heikki

    2014-04-01

    The responses of soil faunal communities to lead (Pb) contamination in a shooting range area and the recovery of these fauna after range abandonment were studied by comparing the communities at an active shotgun shooting range, an abandoned shooting range, and a control site, locating in the same forest. Despite the similar overall Pb pellet load at the shooting ranges, reaching up to 4 kg m(-2), Pb concentrations in the top soil of the abandoned range has decreased due to the accumulation of detritus on the soil surface. As a consequence, soil animal communities were shown to recover from Pb-related disturbances by utilizing the less contaminated soil layer. Microarthropods showed the clearest signs of recovery, their numbers and community composition being close to those detected at the control site. However, in the deepest organic soil layer, the negative effects of Pb were more pronounced at the abandoned than at the active shooting range, which was detected as altered microarthropod and nematode community structures, reduced abundances of several microarthropod taxa, and the total absence of enchytraeid worms. Thus, although the accumulation of fresh litter on soil surface can promote the recovery of decomposer communities in the top soil, the gradual release of Pb from corroding pellets may pose a long-lasting risk for decomposer taxa deeper in the soil.

  20. Ecological Diversity of Soil Fauna as Ecosystem Engineers in Small-Holder Cocoa Plantation in South Konawe

    Laode Muhammad Harjoni Kilowasid; Tati Suryati Syamsudin; Franciscus Xaverius Susilo; Endah Sulistyawati

    2012-01-01

    Taxa diversity within soil fauna functional groups can affected ecosystem functioning such as ecosystem engineers,which influence decomposition and nutrient cycling. The objective of this study is to describe ecological diversityvariation within soil fauna as ecosystem engineers in soil ecosystem of cocoa (Theobroma cacao L.) plantation.Sampling was conducted during one year period from five different ages of plantation. Soil fauna removed from soilcore using hand sorting methods. A total of ...

  1. Microbial biomass and soil fauna during the decomposition of cover crops in no-tillage system

    Luciano Colpo Gatiboni

    2011-08-01

    Full Text Available The decomposition of plant residues is a biological process mediated by soil fauna, but few studies have been done evaluating its dynamics in time during the process of disappearance of straw. This study was carried out in Chapecó, in southern Brazil, with the objective of monitoring modifications in soil fauna populations and the C content in the soil microbial biomass (C SMB during the decomposition of winter cover crop residues in a no-till system. The following treatments were tested: 1 Black oat straw (Avena strigosa Schreb.; 2 Rye straw (Secale cereale L.; 3 Common vetch straw (Vicia sativa L.. The cover crops were grown until full flowering and then cut mechanically with a rolling stalk chopper. The soil fauna and C content in soil microbial biomass (C SMB were assessed during the period of straw decomposition, from October 2006 to February 2007. To evaluate C SMB by the irradiation-extraction method, soil samples from the 0-10 cm layer were used, collected on eight dates, from before until 100 days after residue chopping. The soil fauna was collected with pitfall traps on seven dates up to 85 days after residue chopping. The phytomass decomposition of common vetch was faster than of black oat and rye residues. The C SMB decreased during the process of straw decomposition, fastest in the treatment with common vetch. In the common vetch treatment, the diversity of the soil fauna was reduced at the end of the decomposition process.

  2. [Composition and Density of Soil Fauna in the Region with Enhanced Radioactivity Level (Komi Republic, Vodnyi)].

    Kolesnikova, A A; Kudrin, A A; Konakova, T N; Taskaeva, A A

    2015-01-01

    Studies on the influence of high levels of radiation on soil fauna were carried out in 2012 in the territory formed as a result of the activity of the enterprise for extraction and production of radium from reservoir water and waste of uranium ore from 1931 to 1956. At present the local radioactive pollution in this area is caused by the presence of heavy natural radionuclides 226Ra, 238U and products of their disintegration in soils. The oppression of soil invertebrate.fauna in pine forests and meadows with high levels of radionuclides and heavy metals is revealed. Also shown is the decrease in the number and density of different taxonomic groups of invertebrates, reduction of the diversity and spectrum of trophic groups and vital forms in the area with a high content of radionuclides in soil. Our results are in agreement with the results obtained by the similar studies showing negative influence of high-level ionizing radiation on soil fauna.

  3. [Distribution pattern of meso-micro soil fauna in Eucalyptus grandis plantation].

    Huang, Yumei; Zhang, Jian; Yang, Wanqin

    2006-12-01

    In this paper, meso-micro soil fauna were extracted and collected by Baermann's and Tullgren' s method, and their distribution pattern in the Eucalyptus grandis plantation of Hongya County, Sichuan Province was studied. A total of 13 550 specimens were collected, belonging to 6 phyla, 13 classes, and 26 orders. Acarina, Nematoda, Collembola were the dominant groups, and Enchytraeidae was the frequent one. The group and individual numbers of meso-micro soil fauna varied with seasons, being the maximum in autumn or winter, fewer in summer, and the minimum in spring. The density of meso-micro soil fauna in soil profile decreased rapidly with increasing soil depth, but a converse distribution was observed from time to time in 5 - 10 cm and 10 - 15 cm soil layers. The meso-micro soil fauna collected by Baermann's and Tullgren's method had a density of 3. 333 x 10(3) - 2. 533 x 10(5) ind x m(-2) and 1.670 x 10(2) - 2.393 x 10(5) ind x m(-2), respectively, and the decreasing rate of the density with the increase of soil depth was higher for those collected by Tullgren's method. The density-group index of meso-micro soil fauna in the E. grandis plantation was the lowest in spring, but the highest in autumn or summer. There were no significant differences in the density of meso-micro soil fauna and in the density-group index between E. grandis plantation and Quercus acutissima secondary forest.

  4. Effects of of habitats and pesticides on aerobic capacity and survival of soil fauna.

    Tripathi, G; Sharma, B M

    2005-06-01

    Faunal health is largely dependent on their soil environment and available litter quality. So the effects of different soil habitats and pesticides on citrate synthase (CS) activity of soil fauna and its population were studied. The soil animals were collected from different pedoecosystems for habitat study. Whereas Vigna radiata based system was selected for pesticidal observations. The field was divided into five equal plots for control and treatment of gamma-BHC, quinalphos, carbaryl and cypermethrin. Soil fauna was collected by quadrat method and extracted by Tullgren funnel. Individuals of a species having similar sizes were collected for the estimation of CS activity. They were homogenized and fractions were obtained by differential centrifugation. The activity of CS was assayed spectrophotometrically. Citrate synthase (CS) activity of beetle (Rasphytus fregi), woodlouse (Porcellio laevis) and centipede (Scolopendra morsitans) varied significantly with respect to changes in different soil habitats. Though the CS activity of R. fregi, P. laevis, and S. morsitans differed among themselves but the highest activity of CS in these animals was in V. radiata and lowest in A. nilotica based pedoecosystem. The aerobic capacity of centipede was maximum followed by woodlouse and beetle. The treatment of gamma-BHC, quinalphos, carbaryl and cypermethrin significantly reduced the CS activity of these animals. Gamma-BHC showed maximum reduction in CS activity indicating highly toxic effect of organochlorine on aerobic metabolism of soil fauna. However, minimum reduction was observed in response to carbaryl (in beetle) or cypermethrin (in woodlouse/centipede) leading to impairment of aerobic capacity. The differences in pesticide effects might be assigned to the differences in chemical nature of pesticides and their interactions with below-ground fauna. Treatment of gamma-BHC and quinalphos reduced the population of Acari, Coleoptera, Collembola, other arthropods as well as

  5. Effects of ivermectin application on the diversity and function of dung and soil fauna: Regulatory and scientific background information

    Adler, Nicole; Blanckenhorn, Wolf U; Bachmann, Jean

    2016-01-01

    for veterinary medicinal products in the European Union includes a requirement for higher-tier tests when adverse effects on dung organisms are observed in single-species toxicity tests. However, no guidance documents for the performance of higher-tier tests are available. Hence, an international research...... on communities of dung-breeding insects and soil fauna under field conditions, the test method meets the requirements of a higher-tier test as mandated by the European Union. The present study provides contextual information on authorization requirements for veterinary medicinal products and on the structure...... project was undertaken to develop and validate a proposed test method under varying field conditions of climate, soil, and endemic coprophilous fauna at Lethbridge (Canada), Montpellier (France), Zurich (Switzerland), and Wageningen (The Netherlands). The specific objectives were to determine if fecal...

  6. The Fauna Biodiversity of Ikot Ondo Community Forest in Essien ...

    Osondu

    2012-05-24

    May 24, 2012 ... Abstract. Prolonged deforestation, poaching and wildlife habitat loss has been a serious threat to wildlife conservation in Nigeria, thereby endangering fauna diversity resources in the country. This study was carried out to determine the population estimate of wild fauna in the communal land of Ikot.

  7. Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna.

    Coyle, David R; Zalesny, Jill A; Zalesny, Ronald S; Wiese, Adam H

    2011-10-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high water usage rates. Maintaining ecological sustainability (i.e., the capacity for an ecosystem to maintain its function and retain its biodiversity over time) during tree establishment and development is an important component of plantation success, especially for belowground faunal populations. To determine the impact of solid waste leachate on soil micro- and meso-fauna, we compared soilfrom eight different Populus clones receiving municipal solid waste landfill leachate irrigation with clones receiving fertilized (N, P K) well water irrigation. Microfauna (i.e., nematodes) communities were more diverse in control soils. Mesofauna (i.e., insects) were associated with all clones; however, they were four times more abundant around trees found within the control plot than those that received leachate treatments. Nematode and insect abundance varied among Populus clones yet insect diversity was greater in the leachate-treated soils. Phytotechnologies must allow for soil faunal sustainability, as upsetting this balance could lead to great reductions in phytotechnology efficacy.

  8. Why should we care about soil fauna? Por que devemos nos importar com a fauna do solo?

    Jonathan Michael Anderson

    2009-08-01

    Full Text Available The reasons why we care about soil fauna are related to their intrinsic, utilitarian and functional values. The intrinsic values embrace aesthetic or moral reasons for conserving below-ground biodiversity. Unfortunately, the protection of soil invertebrates has rarely been a criterion for avoiding changes in land use and management. Utilitarian, or direct use values, have been investigated more extensively for fungi, bacteria and marine invertebrates than for soil fauna. However, some traditional remedies, novel enzymes and pharmaceutical compounds have been derived from earthworms, termites and other groups, and gut symbionts may provide microbial strains with interesting properties for biotechnology. The functional importance of soil invertebrates in ecosystem processes has been a major focus of research in recent decades. It is suggested herein that it is rarely possible to identify the role of soil invertebrates as rate determinants of soil processes at plot and ecosystem scales of hectares and above because other biophysical controls override their effects. There are situations, however, where the activities of functional groups of soil animals, even of species, are synchronised in space or time by plant events, resource inputs, seasonality or other perturbations to the system, and their emergent effects are detectable as higher order controls.As razões porque nos importamos com a fauna do solo estão relacionadas com seus valores intrínsecos, utilitários e funcionais. Os valores intrínsecos abrangem razões morais ou estéticas para conservar a biodiversidade subterrânea. Infelizmente, a proteção dos invertebrados do solo raramente tem sido um critério para evitar mudanças no manejo e uso da terra. Valores utilitários, ou de uso direto, têm sido pesquisados mais extensamente para fungos, bactérias e invertebrados marinhos do que para a fauna do solo. Contudo, alguns remédios tradicionais, enzimas novas e produtos farmac

  9. Evaluating the Applicability of Phi Coefficient in Indicating Habitat Preferences of Forest Soil Fauna Based on a Single Field Study in Subtropical China.

    Cui, Yang; Wang, Silong; Yan, Shaokui

    2016-01-01

    Phi coefficient directly depends on the frequencies of occurrence of organisms and has been widely used in vegetation ecology to analyse the associations of organisms with site groups, providing a characterization of ecological preference, but its application in soil ecology remains rare. Based on a single field experiment, this study assessed the applicability of phi coefficient in indicating the habitat preferences of soil fauna, through comparing phi coefficient-induced results with those of ordination methods in charactering soil fauna-habitat(factors) relationships. Eight different habitats of soil fauna were implemented by reciprocal transfer of defaunated soil cores between two types of subtropical forests. Canonical correlation analysis (CCorA) showed that ecological patterns of fauna-habitat relationships and inter-fauna taxa relationships expressed, respectively, by phi coefficients and predicted abundances calculated from partial redundancy analysis (RDA), were extremely similar, and a highly significant relationship between the two datasets was observed (Pillai's trace statistic = 1.998, P = 0.007). In addition, highly positive correlations between phi coefficients and predicted abundances for Acari, Collembola, Nematode and Hemiptera were observed using linear regression analysis. Quantitative relationships between habitat preferences and soil chemical variables were also obtained by linear regression, which were analogous to the results displayed in a partial RDA biplot. Our results suggest that phi coefficient could be applicable on a local scale in evaluating habitat preferences of soil fauna at coarse taxonomic levels, and that the phi coefficient-induced information, such as ecological preferences and the associated quantitative relationships with habitat factors, will be largely complementary to the results of ordination methods. The application of phi coefficient in soil ecology may extend our knowledge about habitat preferences and distribution

  10. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient.

    Vanbergen, Adam J; Watt, Allan D; Mitchell, Ruth; Truscott, Anne-Marie; Palmer, Stephen C F; Ivits, Eva; Eggleton, Paul; Jones, T Hefin; Sousa, José Paulo

    2007-09-01

    Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates-species with small range sizes-is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km(2)) and local (up to 200 m(2)) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together

  11. Soil fauna and organic amendment interactions affect soil carbon and crop performance in semi-arid West Africa

    Ouédraogo, E.; Brussaard, L.; Stroosnijder, L.

    2007-01-01

    A field experiment was conducted at Kaibo in southern Burkina Faso on an Eutric Cambisol during the 2000 rainy season to assess the interaction of organic amendment quality and soil fauna, affecting soil organic carbon and sorghum ( Sorghum bicolor L. Moench) performance. Plots were treated with the

  12. Response of soil fauna to simulated nitrogen deposition: a nursery experiment in subtropical China.

    Xu, Guo-Liang; Mo, Jiang-Ming; Fu, Sheng-Lei; Gundersen, Per; Zhou, Guo-Yi; Xue, Jing-Hua

    2007-01-01

    We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting in January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m2 x a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m2 x a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3- in the soil.

  13. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence.

    Zhang, Weidong; Chao, Lin; Yang, Qingpeng; Wang, Qingkui; Fang, Yunting; Wang, Silong

    2016-10-01

    Nitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.4, 1.6, and 4.0 mol·N·m -2 ·yr -1 ) and soil fauna exclusion (litter bags with 0.1 and 2 cm mesh size). Results showed that the plant litter decomposition rate is significantly reduced because of nitrogen addition; the strength of the nitrogen addition effect is closely related to the nitrogen addition levels. Plant litters with diverse quality responded to nitrogen addition differently. When soil fauna was present, the nitrogen addition effect on medium-quality or high-quality plant litter decomposition rate was -26% ± 5% and -29% ± 4%, respectively; these values are significantly higher than that of low-quality plant litter decomposition. The pattern is similar when soil fauna is absent. In general, the plant litter decomposition rate is decreased by soil fauna exclusion; an average inhibition of -17% ± 1.5% was exhibited across nitrogen addition treatment and litter quality groups. However, this effect is weakly related to nitrogen addition treatment and plant litter quality. We conclude that the variations in plant litter quality, nitrogen deposition, and soil fauna are important factors of decomposition and nutrient cycling in a subtropical forest ecosystem. © 2016 by the Ecological Society of America.

  14. Soil Fauna Alter the Effects of Litter Composition on Nitrogen Cycling in a Mineral Soil

    Plant chemical composition and the soil community are known to influence litter and soil organic matter decomposition. Although these two factors are likely to interact, their mechanisms and outcomes of interaction are not well understood. Studies of their interactive effects are...

  15. Effect of radioactive pollution of the environment on soil fauna in the region of the Chernobyl atomic station

    Krivolutskii, D.A.; Pokarzhevskii, A.D.; Usachev, V.L.; Shein, G.N.; Nadvornyi, V.G.; Viktorov, A.G.

    1991-01-01

    Investigations of soil fauna populations within a 30-km zone around the Chernobyl Atomic Energy Station between July 1986 and October 1988 showed a marked decrease in the first year after the accident in the species composition of soil microarthropods and in the abundance of their populations in soils of the local pine [Pinus] forests. The soils of agroecosystems showed a decrease in young individuals. In the second year after the accident, the populations of settled species of soil fauna recovered slowly, and recovery of the total abundance of soil fauna in the 30-km zone occurred due to populations of migrating species. After 2-2.5 years, the abundance and biomass of soil fauna populations in polluted areas had recovered

  16. [A comparative study on soil fauna in native secondary evergreen broad-leaved forest and Chinese fir plantation forests in subtropics].

    Yan, Shaokui; Wang, Silong; Hu, Yalin; Gao, Hong; Zhang, Xiuyong

    2004-10-01

    In this study, we investigated the response of soil animal communities to the replacement of native secondary forest by Chinese fir plantation forest and successive rotation of Chinese fir in subtropics. Three adjacent forest stands, i.e., native secondary evergreen broad-leaved forest stand (control) and Chinese fir plantation stands of first (20 yr) and second (20 yr) rotations were selected for the comparison of soil fauna. All animals were extracted from the floor litter and 0-15 cm soil layer of the stands in Summer, 2003 by using Tullgren method, wet funnel method and hand-sorting method. Compared to two Chinese fir plantation forests, the native secondary evergreen broad-leaved forest had a higher abundance and a higher taxonomic diversity of animals in soil and litter, but there were no significant differences in the biomass and productivity of soil fauna between all study stands. The abundance or diversity did not differ significantly between the first rotation and second rotation stands, too. The results supported that vegetation cover might be one of the main forces driving the development of soil animal communities, and the effect of successive rotation of Chinese fir on the development of soil fauna was a slow-running process.

  17. Observed trends of soil fauna in the Antarctic Dry Valleys: early signs of shifts predicted under climate change.

    Andriuzzi, W S; Adams, B J; Barrett, J E; Virginia, R A; Wall, D H

    2018-02-01

    Long-term observations of ecological communities are necessary for generating and testing predictions of ecosystem responses to climate change. We investigated temporal trends and spatial patterns of soil fauna along similar environmental gradients in three sites of the McMurdo Dry Valleys, Antarctica, spanning two distinct climatic phases: a decadal cooling trend from the early 1990s through the austral summer of February 2001, followed by a shift to the current trend of warming summers and more frequent discrete warming events. After February 2001, we observed a decline in the dominant species (the nematode Scottnema lindsayae) and increased abundance and expanded distribution of less common taxa (rotifers, tardigrades, and other nematode species). Such diverging responses have resulted in slightly greater evenness and spatial homogeneity of taxa. However, total abundance of soil fauna appears to be declining, as positive trends of the less common species so far have not compensated for the declining numbers of the dominant species. Interannual variation in the proportion of juveniles in the dominant species was consistent across sites, whereas trends in abundance varied more. Structural equation modeling supports the hypothesis that the observed biological trends arose from dissimilar responses by dominant and less common species to pulses of water availability resulting from enhanced ice melt. No direct effects of mean summer temperature were found, but there is evidence of indirect effects via its weak but significant positive relationship with soil moisture. Our findings show that combining an understanding of species responses to environmental change with long-term observations in the field can provide a context for validating and refining predictions of ecological trends in the abundance and diversity of soil fauna. © 2018 by the Ecological Society of America.

  18. Searching the soil: forensic importance of edaphic fauna after the removal of a corpse.

    Saloña, Marta I; Moraza, M Lourdes; Carles-Tolrá, Miguel; Iraola, Victor; Bahillo, Pablo; Yélamos, Tomás; Outerelo, Raimundo; Alcaraz, Rafael

    2010-11-01

    Arthropods at different stages of development collected from human remains in an advanced stage of decomposition (following autopsy) and from the soil at the scene are reported. The corpse was found in a mixed deciduous forest of Biscay (northern Spain). Soil fauna was extracted by sieving the soil where the corpse lay and placing the remains in Berlese-Tullgren funnels. Necrophagous fauna on the human remains was dominated by the fly Piophilidae: Stearibia nigriceps (Meigen, 1826), mites Ascidae: Proctolaelaps epuraeae (Hirschmann, 1963), Laelapidae: Hypoaspis (Gaeolaelaps) aculeifer (Canestrini, 1884), and the beetle Cleridae: Necrobia rufipes (de Geer, 1775). We confirm the importance of edaphic fauna, especially if the deceased is discovered in natural environs. Related fauna may remain for days after corpse removal and reveal information related to the circumstances of death. The species Nitidulidae: Omosita depressa (Linnaeus, 1758), Acaridae: Sancassania berlesei (Michael, 1903), Ascidae: Zerconopsis remiger (Kramer, 1876) and P. epuraeae, Urodinychidae: Uroobovella pulchella (Berlese, 1904), and Macrochelidae: Glyptholaspis americana (Berlese, 1888) were recorded for the first time in the Iberian Peninsula. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.

  19. Atmospheric deposition of mercury in Atlantic Forest and ecological risk to soil fauna

    Cristhy Buch, Andressa; Cabral Teixeira, Daniel; Fernandes Correia, Maria Elizabeth; Vieira Silva-Filho, Emmanoel

    2014-05-01

    The increasing levels of mercury (Hg) found in the atmosphere nowadays has a great contribution from anthropogenic sources and has been a great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. Certainly, the petroleum refineries have significant contribution, seen that 100 million m3 of crude oil are annually processed. These refineries contribute with low generation of solid waste; however, a large fraction of Hg can be emitted to the atmosphere. There are sixteen refineries in Brazil, three of them located in the state of Rio de Janeiro. The Hg is a toxic and hazardous trace element, naturally found in the earth crust. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of great importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transfer to the soil through litterfall, which play an important role as Hg sink. The Atlantic Forest of Brazil is the greater contributor of fauna and flora biodiversity in the world and, according to recent studies, this biome has the highest concentrations of mercury in litter in the world, as well as in China, at Subtropical Forest. Ecotoxicological assessments can predict the potential ecological risk of Hg toxicity in the soil can lead to impact the soil fauna and indirectly other trophic levels of the food chain within one or more ecosystems. This study aims to determine mercury levels that represent risks to diversity and functioning of soil fauna in tropical forest soils. The study is conducted in two forest areas inserted into conservation units of Rio de Janeiro state. One area is located next to an important petroleum refinery in activity since fifty-two years ago, whereas the other one is located next to other refinery under construction (beginning activities in 2015), which will

  20. Towards a methodology for removing and reconstructing soil protists with intact soil microbial communities

    Hu, Junwei; Tsegaye Gebremikael, Mesfin; Salehi Hosseini, Pezhman; De Neve, Stefaan

    2017-04-01

    Soil ecological theories on the role of soil fauna groups in soil functions are often tested in highly artificial conditions, i.e. on completely sterilized soils or pure quartz sand re-inoculated with a small selection of these fauna groups. Due to the variable sensitivity of different soil biota groups to gamma irradiation, the precise doses that can be administered, and the relatively small disturbance of soil physical and chemical properties (relative to e.g. autoclaving, freezing-thawing and chemical agents), gamma irradiation has been employed to selectively eliminate soil organisms. In recent research we managed to realistically estimate on the contribution of the entire nematode communities to C and N mineralization in soil, by selective removal of nematodes at 5 kGy gamma irradiation doses followed by reinoculation. However, we did not assess the population dynamics of protozoa in response to this irradiation, i.e. we could not assess the potential contribution of protists to the mineralization process. Selective removal of protists from soils with minimal disturbance of the soil microflora has never been attempted and constitutes a highly challenging but potentially groundbreaking technique in soil ecology. Accordingly, the objective of this research is to modify the successful methodology of selective elimination of nematodes, to selectively eliminate soil fauna including nematodes and protists with minimal effects on the soil microbial community and reconstruct soil protists and microbial communities in completely sterilized soil. To this end, we here compared two different approaches: 1) remove nematodes and protists while keeping the microbial community intact (through optimizing gamma irradiation doses); 2) reconstruct protists and microbial communities in sterilized soil (through adding multicellular fauna free pulverized soil). The experiment consists of 7 treatments with soil collected from 0 to 15 cm layer of an organically managed agricultural

  1. Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites

    Frouz, J.; Livečková, M.; Albrechtová, J.; Chroňáková, Alica; Cajthaml, Tomáš; Pižl, Václav; Háněl, Ladislav; Starý, Josef; Baldrian, Petr; Lhotáková, Z.; Šimáčková, H.; Cepáková, Šárka

    2013-01-01

    Roč. 309, December (2013), s. 87-95 ISSN 0378-1127 R&D Projects: GA ČR GAP504/12/1288; GA MŠk LC06066 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : bioturbation * earthworms * foliage chemistry * microorganisms * reclamation * soil fauna Subject RIV: EH - Ecology, Behaviour Impact factor: 2.667, year: 2013

  2. Effects of ivermectin application on the diversity and function of dung and soil fauna: Regulatory and scientific background information.

    Adler, Nicole; Bachmann, Jean; Blanckenhorn, Wolf U; Floate, Kevin D; Jensen, John; Römbke, Jörg

    2016-08-01

    The application of veterinary medical products to livestock can impact soil organisms in manure-amended fields or adversely affect organisms that colonize dung pats of treated animals and potentially retard the degradation of dung on pastures. For this reason, the authorization process for veterinary medicinal products in the European Union includes a requirement for higher-tier tests when adverse effects on dung organisms are observed in single-species toxicity tests. However, no guidance documents for the performance of higher-tier tests are available. Hence, an international research project was undertaken to develop and validate a proposed test method under varying field conditions of climate, soil, and endemic coprophilous fauna at Lethbridge (Canada), Montpellier (France), Zurich (Switzerland), and Wageningen (The Netherlands). The specific objectives were to determine if fecal residues of an anthelmintic with known insecticidal activity (ivermectin) showed similar effects across sites on 1) insects breeding in dung of treated animals, 2) coprophilous organisms in the soil beneath the dung, and 3) rates of dung degradation. By evaluating the effects of parasiticides on communities of dung-breeding insects and soil fauna under field conditions, the test method meets the requirements of a higher-tier test as mandated by the European Union. The present study provides contextual information on authorization requirements for veterinary medicinal products and on the structure and function of dung and soil organism communities. It also provides a summary of the main findings. Subsequent studies on this issue provide detailed information on different aspects of this overall project. Environ Toxicol Chem 2016;35:1914-1923. © 2015 SETAC. © 2015 SETAC.

  3. Soil ecological interactions: comparisons between tropical and subalpine forests

    Grizelle Gonzalez; Ruth E. Ley; Steven K. Schmidt; Xiaoming Zou; Timothy R. Seastedt

    2001-01-01

    Soil fauna can influence soil processes through interactions with the microbial community. Due to the complexity of the functional roles of fauna and their effects on microbes, little consensus has been reached on the extent to which soil fauna can regulate microbial activities. We quantified soil microbial biomass and maximum growth rates in control and fauna-excluded...

  4. [Contributions of soil fauna to litter decomposition in alpine/subalpine forests].

    Liu, Rui-Long; Li, Wei-Min; Yang, Wan-Qin; Tan, Bo; Wang, Wen-Jun; Xu, Zhen-Feng; Wu, Fu-Zhong

    2013-12-01

    A field experiment was conducted using the litterbag method to quantify the contribution of soil fauna to litter mass loss of Salix paraplesia, Sabina saltuaria, Betula albosinensis and Abies faxoniana during different key periods of the decomposition process of the first year (from November 2011 to October 2012). The results showed that the mass loss rate showed S. paraplesia > B. albosinensis > A. faxoniana > S. saltuaria, and the rate in the growing season was greater than in the freeze-thaw season. The contribution rate of soil fauna to the mass decomposition displayed as S. saltuaria (26.7%) > A. faxoniana (18.8%) > B. albosinensis (15.7%) > S. paraplesia (13.2%), which was higher in the freeze-thaw season than in the growing season for litter of B. albo-sinensis and A. faxoniana while vice versa for litter of B. albosinensis and A. faxoniana. The contribution of soil fauna was mainly related to organic C, P and N/P in the freeze-thaw season, while N, C/N, lignin and lignin/cellulose in the growing season.

  5. [Effects of canopy density on the functional group of soil macro fauna in Pinus massoniana plantations].

    Zhou, Hong Yang; Zhang, Dan Ju; Zhang, Jie; Zhao, Yan Bo; Zhao, Bo; Wei, Da Ping; Zhang, Jian

    2017-06-18

    In order to understand the effects of canopy density on the functional group characteristics of soil macrofauna in Pinus massoniana plantations, we divided the captured soil fauna into five types including xylophages, predators, saprophages, omnivores and fungal feeders. The results showed that 1) Saprozoic feeders had the highest percentage of total individuals, and the omnivores and xylophages occupied higher percentages of total taxa. 2) The individual and group number of the predators, and the group number of xylophages did not change significantly under 0.5-0.6 and then decreased significantly under 0.6-0.9 canopy density. 3) With the increasing canopy density, the individual an dgroup number of predators in litter layer decreased significantly, the saprozoic individual number in 5-10 cm soil layer represented irregular trends. The individual number of xylophage increased with the depth of soil, and the group number in litter layer, the individual and group number in 5-10 cm soil layer decreased significantly. 4) Pielou evenness of xylophage had no significant changes with the canopy density, all the other diversity index of xylophage and saprophage were various with the increasing canopy density. The predatory Simpson index was stable under 0.5-0.8, and then decreased significantly under 0.8-0.9 canopy density. 5) The CCA (canonical correlation analysis) indicated that soil bulk density and moisture content were the main environmental factors affecting functional groups of soil macro fauna. Moisture content greatly impacted on the number of saprophagous individuals. But xylophage and predators were mostly affected by soil bulk density, and the predatory Simpson index was mainly affected by soil pH value and total phosphorus. Our research indicated that the structure of soil macro faunal functional group under 0.7 canopy density was comparatively stable, which would facilitate the maintenance of soil fertility and ecological function in Pinus massoniana

  6. The influence of land use systems on soil and surface litter fauna in the western region of Santa Catarina

    Marie Luise Carolina Bartz

    Full Text Available The aim of this study was to evaluate the abundance of soil and surface litter fauna in the western region of Santa Catarina state, southern Brazil, in the following land use systems (LUS: no-tillage crops (NT, integrated crop-livestock (ICL, pasture (PA, Eucalyptus plantation (EP and native forest fragments (NF. Sampling was done in three counties in the western region of Santa Catarina: Xanxerê, Chapecó and São Miguel do Oeste, in two seasons (winter and summer. The evaluation of soil/litter fauna in each LUS was performed by installing nine "pitfall traps" per sampling grid (3 x 3. The counties are true replicas. The soil for the chemical attributes was collected at the same sampling points for soil fauna. Altogether, 17 taxa were identified in the five LUS. The presence of groups of fauna was influenced by the type of soil management used. The LUS NF and EP provide better soil conditions for the development of a higher diversity of soil fauna groups compared to other LUS, which showed varying degrees of human intervention, regardless of the sampling season (winter or summer. However, annual crop systems NT and ICL groups showed greater richness and total abundance when compared to the perennial systems (EP and PA. Principal component analysis is an important tool in the study of biological indicators of sustainability because it allows use of soil attributes (chemical and physical as explanatory environmental variables, which helps in the interpretation of ecological data.

  7. Fluoride concentrations in soils, vegetation samples and soil fauna in the direct vicinity of a pollution source

    Vogel, J.; Ottow, J.C.G.; Breimer, R.F.

    1989-01-01

    Fluoride analyses CF t = total F; F w = water soluble F and F HCI HCI-extractable F) of different soils, vegetation samples and soil fauna (Helix pomatia, Lumbricus spp., arthropodes) in a locally polluted area (for nearly 65 years) clearly revealed an F-accumulation in top soil, vegetation and animals. Based on 1N HCI-extractable fluoride, two contamination zones around the emitting industry could be identified. In the calcareous soils, leaching of fluoride seems to be insignificant because of a strong immobilization as CaF 2 . A highly significant correlation between the F HCI content of soils and Lumbricus spp. (with and without gut content) or Helix pomatia shells was found. Fluoride concentrations in washed leaves of Hedera helix and in decaying grass reached levels of 306 and 997 μgF/g respectively. Saprophagous soil arthropods contained high fluoride levels, up to 732 μgF/g in Armadillidium vulgare. (orig.)

  8. Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland.

    Simpson, Jake E; Slade, Eleanor; Riutta, Terhi; Taylor, Michele E

    2012-01-01

    British temperate broadleaf woodlands have been widely fragmented since the advent of modern agriculture and development. As a result, a higher proportion of woodland area is now subject to edge effects which can alter the efficiency of ecosystem functions. These areas are particularly sensitive to drought. Decomposition of detritus and nutrient cycling are driven by soil microbe and fauna coactivity. The bait lamina assay was used to assess soil fauna trophic activity in the upper soil horizons at five sites in Wytham Woods, Oxfordshire: two edge, two intermediate and one core site. Faunal trophic activity was highest in the core of the woodland, and lowest at the edge, which was correlated with a decreasing soil moisture gradient. The efficiency of the assay was tested using four different bait flavours: standardised, ash (Fraxinus excelsior L.), oak (Quercus robur L.), and sycamore (Acer pseudoplatanus L.). The standardised bait proved the most efficient flavour in terms of feeding activity. This study suggests that decomposition and nutrient cycling may be compromised in many of the UK's small, fragmented woodlands in the event of drought or climate change.

  9. Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland.

    Jake E Simpson

    Full Text Available British temperate broadleaf woodlands have been widely fragmented since the advent of modern agriculture and development. As a result, a higher proportion of woodland area is now subject to edge effects which can alter the efficiency of ecosystem functions. These areas are particularly sensitive to drought. Decomposition of detritus and nutrient cycling are driven by soil microbe and fauna coactivity. The bait lamina assay was used to assess soil fauna trophic activity in the upper soil horizons at five sites in Wytham Woods, Oxfordshire: two edge, two intermediate and one core site. Faunal trophic activity was highest in the core of the woodland, and lowest at the edge, which was correlated with a decreasing soil moisture gradient. The efficiency of the assay was tested using four different bait flavours: standardised, ash (Fraxinus excelsior L., oak (Quercus robur L., and sycamore (Acer pseudoplatanus L.. The standardised bait proved the most efficient flavour in terms of feeding activity. This study suggests that decomposition and nutrient cycling may be compromised in many of the UK's small, fragmented woodlands in the event of drought or climate change.

  10. Soil macroinvertebrate communities across a productivity gradient in deciduous forests of eastern North America

    Evelyn S. Wenk; Mac A. Callaham; Joseph O' Brien; Paul J. Hanson

    2016-01-01

    Within the temperate, deciduous forests of the eastern US, diverse soil-fauna communities are structured by a combination of environmental gradients and interactions with other biota. The introduction of non-native soil taxa has altered communities and soil processes, and adds another degree of variability to these systems. We sampled soil macroinvertebrate abundance...

  11. Effects of soil water content on the external exposure of fauna to radioactive isotopes.

    Beaugelin-Seiller, K

    2016-01-01

    Within a recent model intercomparison about radiological risk assessment for contaminated wetlands, the influence of soil saturation conditions on external dose rates was evidenced. This issue joined concerns of assessors regarding the choice of the soil moisture value to input in radiological assessment tools such as the ERICA Tool. Does it really influence the assessment results and how? This question was investigated under IAEA's Modelling and Data for Radiological Impacts Assessments (MODARIA) programme via 42 scenarios for which the soil water content varied from 0 (dry soil) to 100% (saturated soil), in combination with other parameters that may influence the values of the external dose conversion coefficients (DCCs) calculated for terrestrial organisms exposed in soil. A set of α, β, and γ emitters was selected in order to cover the range of possible emission energies. The values of their external DCCs varied generally within a factor 1 to 1.5 with the soil water content, excepted for β emitters that appeared more sensitive (DCCs within a factor of about 3). This may be of importance for some specific cases or for upper tiers of radiological assessments, when refinement is required. But for the general purpose of screening assessment of radiological impact on fauna and flora, current approaches regarding the soil water content are relevant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils

    Gladys I. Loranger; Kurt S. Pregitzer; John S. King

    2004-01-01

    Rising atmospheric CO2 concentrations may change soil fauna abundance. How increase of tropospheric ozone (O3t) concentration will modify these responses is still unknown. We have assessed independent and interactive effects of elevated [CO2] and [O3t] on selected groups of soil...

  13. Biosolids applied to agricultural land: Influence on structural and functional endpoints of soil fauna on a short- and long-term scale.

    Coors, Anja; Edwards, Mark; Lorenz, Pascale; Römbke, Jörg; Schmelz, Rüdiger M; Topp, Edward; Waszak, Karolina; Wilkes, Graham; Lapen, David R

    2016-08-15

    Biosolids have well-documented crop and soil benefits similar to other sources of organic amendment, but there is environmental concern due to biosolids-associated pollutants. The present study investigated two field sites that had received biosolids at commercial-scale rates in parallel to associated field sections which were managed similarly but without receiving biosolids (controls). The investigated endpoints were abundance and diversity of soil organisms (nematodes, enchytraeids and earthworms) and soil fauna feeding activity as measured by the bait lamina assay. Repeated sampling of one of the field sites following the only biosolids application demonstrated an enrichment effect typical for organic amendments, which was mostly exhausted after 44months. After an initial suppression, the proportion of free-living plant-parasitic nematodes tended to increase in the biosolids-amended soil over time. Yet, none of the endpoints at this site indicated significant negative effects resulting from the biosolids until 44months post application. In contrast to the repeatedly tilled first field site, the second one was left fallow after three biosolids applications, and was sampled 96months post last application. It was only at this field site that potential evidence for a long-term impact of biosolids was detected with regard to two endpoints: earthworm abundance and structure of the nematode assemblage. Agricultural management and correlation with abiotic soil parameters explained the observed difference in earthworm abundance. Yet, the development of a highly structured and mature nematode assemblage at the control but not at the biosolids-amended section of this fallow field could not be explained by such correlations nor by soil metal concentrations. Overall, the present study found only weak evidence for negative long-term impacts of biosolids applied at commercial rates on soil fauna. High-level community parameters such as the nematode structure index (SI

  14. Responses of the soil decomposer community to the radioactive contamination

    Svetlana, Maksimova

    2004-01-01

    The knowledge about biodiversity and about reasons and laws of dynamics of decomposer invertebrates has exclusively important (rather applied, or theoretical) significance for soil science. Earthworms and millipedes are probably the most important members of the soil biota and major contributors to total zoo-mass. Their activities are such that they are extremely important in maintaining soil fertility in a variety of ways. They play an important part in the redistribution of radionuclides accumulated in the natural biogeocenoses and accumulation of radionuclides in their bodies depends on their concentration in the habitat. Since radionuclides can limit biological activity, studies to estimate the tolerance of decomposer community to potentially toxic radiators are needed. The effect of radioactive contamination on the soil invertebrates and decomposition processes in the different biogeocenoses we intensively studied during 17 years after Chernobyl accident. The soil invertebrates were collected according to generally accepted method by M. Ghilyarov. Soil samples were 0,25 m 2 and animals were extracted from samples by hand sorting. Usually decomposition was affected by the presence of decomposer fauna. Considerable differences were found in the species number. The species composition of sites differed clearly. The study showed that the fauna was poorer under increasing levels of radioactive contamination. The higher radionuclide content was found to result in suppression of decomposer community. The results showed a vertical migration of earthworms to deeper soil layers with increasing of radioactive contamination. With the absence of decomposer fauna due to migration to the deeper layer and mortality, the layer of litter increased. The results show that the earthworms were of small size. Cocoon production decreased. Radioactive contamination altered the process of reproduction and age structure of decomposer fauna. The invertebrates collected from the

  15. Responses of the soil decomposer community to the radioactive contamination

    Svetlana, Maksimova [Institute of Zoology of National Academy of Sciences of Belarus, Minsk (Belarus)

    2004-07-01

    The knowledge about biodiversity and about reasons and laws of dynamics of decomposer invertebrates has exclusively important (rather applied, or theoretical) significance for soil science. Earthworms and millipedes are probably the most important members of the soil biota and major contributors to total zoo-mass. Their activities are such that they are extremely important in maintaining soil fertility in a variety of ways. They play an important part in the redistribution of radionuclides accumulated in the natural biogeocenoses and accumulation of radionuclides in their bodies depends on their concentration in the habitat. Since radionuclides can limit biological activity, studies to estimate the tolerance of decomposer community to potentially toxic radiators are needed. The effect of radioactive contamination on the soil invertebrates and decomposition processes in the different biogeocenoses we intensively studied during 17 years after Chernobyl accident. The soil invertebrates were collected according to generally accepted method by M. Ghilyarov. Soil samples were 0,25 m{sup 2} and animals were extracted from samples by hand sorting. Usually decomposition was affected by the presence of decomposer fauna. Considerable differences were found in the species number. The species composition of sites differed clearly. The study showed that the fauna was poorer under increasing levels of radioactive contamination. The higher radionuclide content was found to result in suppression of decomposer community. The results showed a vertical migration of earthworms to deeper soil layers with increasing of radioactive contamination. With the absence of decomposer fauna due to migration to the deeper layer and mortality, the layer of litter increased. The results show that the earthworms were of small size. Cocoon production decreased. Radioactive contamination altered the process of reproduction and age structure of decomposer fauna. The invertebrates collected from the

  16. Evaluation of hydrologic processes affecting soil movement in the Hagerman fauna area, Hagerman, Idaho

    Young, H.W.

    1984-01-01

    The Hagerman fauna area on the western slope of the Snake River canyon in south-central Idaho is one of the most important locations of upper Pliocene fossils in the world. The fossil beds are distributed vertically through a 500-foot stratigraphic section of the Glenns Ferry Formation. Accelerated soil movement caused by surface-water runoff from irrigated farmlands on the plateau above the canyon and discharge from springs and seeps along the slope of the canyon is eroding the fossil beds. Source of the springs and seeps is a perched aquifer, which is probably recharged by seepage losses from two irrigation canals that head near the canyon rim. Annual canal losses are about 1,900 acre-feet. Annual discharge from springs and seeps is about 420 acre-feet. Corrective measures that could be taken to stabilize the soil movement and preserve the fauna area include: (1) Lining or treating the canals, (2) eliminating the practice of flushing irrigation systems, (3) constructing road berms and cross dips, and (4) establishing an uncultivated strip of land between irrigated farmlands and the canyon rim. (USGS)

  17. Insect fauna in soil at different grassland ecosystems at Sobral, state of Ceará, Brazil

    Gislane dos Santos Sousa

    2013-02-01

    Full Text Available The aim of this study was perform a surveillance of the insect fauna in soil in three grassland ecosystems of experimental farm Vale do Acaraú of Universidade Estadual Vale do Acaraú at Sobral, state of Ceará, Brazil, by the using of traps soil, with fortnightly collections, from March 2011 to February 2012. To characterize the insect fauna established a distribution pattern, whereas the rates of occurrence and dominance of species grouped by order, as an indicator of the frequency and the occurrence of the amount of captured. At the end, we collected and identified a total of 17,008 specimens of insects belonging to 11 orders, namely: Blattariae, Coleoptera, Dermaptera, Diptera, Hemiptera, Hymenoptera, Isoptera, Lepidoptera, Odonata, Orthoptera and Mantodea. The Order Hymenoptera was the one that stood out the largest number of individuals captured, attributing the presence of large amount of ants, are still considered common to the three ecosystems studied, according to the method employed.

  18. Soil fauna and leaf species, but not species diversity, affect initial soil erosion in a subtropical forest plantation

    Seitz, Steffen; Goebes, Philipp; Assmann, Thorsten; Schuldt, Andreas; Scholten, Thomas

    2017-04-01

    litter layer was influenced by the presence (or absence) of soil meso- and macrofauna. Fauna presence increased soil erosion rates significantly by 58 %. It was assumed that this faunal effect arose from arthropods loosening and processing the soil surface as well as fragmenting and decomposing the protecting leaf litter covers. Thus, effects of this fauna group on sediment discharge have to be considered in soil erosion experiments.

  19. HUBUNGAN KEDEKATAN EKOLOGIS ANTARA FAUNA TANAH DENGAN KARAKTERISTIK TANAH GAMBUT YANG DIDRAINASE UNTUK HTI Acacia crassicarpa (Ecological Proximity Relationship Between Soil Fauna and The Characteristics of Drained Peatland for Industrial Plantation

    Yunita Lisnawati

    2014-10-01

    yang tinggi dan mempunyai tingkat kematangan yang masih rendah.   ABSTRACT Management of peatlands for HTI cultivation of Acacia crassicarpa begins by making drainage ditches and land clearing, followed by the preparation of land for planting. As for the maintenance activity, it includes weed control using herbicides and fertilizer. Management and maintenance activities certainly have implications for the ecological condition of peatlands, where the changes in ecological conditions due to land conversion will impact the abundance and diversity of soil fauna. Abundance and diversity of soil fauna and ecosystem function showed a very complex relationship not widely known this far.  Soil fauna tendency to select certain habitat is affected by several ecological factors, both biotic and abiotic. The study aims to assess the ecological proximity between the characteristics of peatland drained for HTI cultivation of A. crassicarpa and the abundance of soil fauna. The study was conducted in HTI peatlands of PT. Arara Abadi, Rasau Kuning District, Siak Regency, Riau. Soil fauna sampling was conducted by taking soil sample of 25 x 25 x 25 cm in size.  Separation of soil fauna from the soil was performed by a modification to a barlese funnel. Observed variables were the abundance and the diversity of soil fauna, peat maturity (C/N, water contentof peatand ground water table.  For observing ecological proximity, hierarchical analysis was used.  Result showed that the highest of soil fauna abundance was found in A. crassicarpa stand, 2 year’s old of age. The species diversity of soil fauna in research location included as medium abundant by H’ value 1,2. Formicidae was potential become a low level-humidity bioindicators of peatsoil, which described by those pattern : low water content and higher level of peat maturity. Entomobryidae was potential become a high water content  bioindicator and low level of peat maturity.

  20. Effects of Formica ants on soil fauna-results from a short-term exclusion and a long-term natural experiment.

    Lenoir, Lisette; Bengtsson, Jan; Persson, Tryggve

    2003-02-01

    Wood ants (Formica spp.) were hypothesised to affect the composition and greatly reduce the abundance of large-sized soil fauna by predation. This was tested in two ways. Firstly, a 4-year-long experimental study was carried out in a mixed forest. Five ant-free 1.3-m(2) plots were created by fenced exclosures within an ant territory. Five nearby plots had fences with entrances for the ants. In addition, five non-fenced control plots were selected. Soil fauna (e.g. Coleoptera, Diptera larvae, Collembola and Araneae) was sampled during the summers of 1997-2000. The soil fauna was affected by the exclosures but there was no detectable effect of ants on the soil fauna. Secondly, soil fauna was studied within a large-scale natural experiment in which the long-term (30 years) effects of red wood ants could be assessed inside and outside ant territories. This long-term natural experiment revealed no significant effects of ants on the abundance or composition of soil fauna. The results from the two studies indicate that the effects of wood ants on soil fauna are fairly small. The hypothesis that wood ants are key-stone predators on soil fauna could, thus, not be supported.

  1. Biocontrol of the toxigenic plant pathogen Fusarium culmorum by soil fauna in an agroecosystem.

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Weinert, Joachim; Brunotte, Joachim

    2017-08-01

    In 2011 and 2013, a field experiment was conducted in a winter wheat field at Adenstedt (northern Germany) to investigate biocontrol and interaction effects of important members of the soil food web (Lumbricus terrestris, Annelida; Folsomia candida, Collembola and Aphelenchoides saprophilus, Nematoda) on the phytopathogenic fungus Fusarium culmorum in wheat straw. Therefore, soil fauna was introduced in mesocosms in defined numbers and combinations and exposed to either Fusarium-infected or non-infected wheat straw. L. terrestris was introduced in all faunal treatments and combined either with F. candida or A. saprophilus or both. Mesocosms filled with a Luvisol soil, a cover of different types of wheat straw and respective combinations of faunal species were established outdoors in the topsoil of a winter wheat field after harvest of the crop. After a time span of 4 and 8 weeks, the degree of wheat straw coverage of mesocosms was quantified to assess its attractiveness for the soil fauna. The content of Fusarium biomass in residual wheat straw and soil was determined using a double-antibody sandwich (DAS)-ELISA method. In both experimental years, the infected wheat straw was incorporated more efficiently into the soil than the non-infected control straw due to the presence of L. terrestris in all faunal treatments than the non-infected control straw. In addition, Fusarium biomass was reduced significantly in all treatments after 4 weeks (2011: 95-99%; 2013:15-54%), whereupon the decline of fungal biomass was higher in faunal treatments than in non-faunal treatments and differed significantly from them. In 2011, Fusarium biomass of the faunal treatments was below the quantification limit after 8 weeks. In 2013, a decline of Fusarium biomass was observed, but the highest content of Fusarium biomass was still found in the non-faunal treatments after 8 weeks. In the soil of all treatments, Fusarium biomass was below the quantification limit. The earthworm species

  2. Efeito de restos da cultura do abacaxizeiro e de agrobio na fauna do solo Effect of residues of pineaplle plant and agrobio in the soil fauna

    Alecsandra de Almeida

    2010-12-01

    Full Text Available Objetivou-se avaliar o efeito de restos culturais de abacaxizeiro (Ananas comosus L. 'Smooth Cayenne' na fauna de artrópodes,em cultivos em campo. As mudas, do tipo filhote, foram plantadas no mês de junho, em um Latossolo Vermelho Amarelo, que recebeu 0, 30 e 60t/ha de restos de abacaxizeiro, aplicados superficialmente e incorporados a 10cm de profundidade, com e sem a adição do biofertilizante-Agrobio10% (v/v. Foram coletadas amostras a 05 cm de profundidade aos 90, 210, 330 e 450 dias após a aplicação dos resíduos. Identificou-se, durante os 15 meses de avaliações, o predomínio de Acari e Collembola. A maior densidade de animais foi observada na primeira amostragem, aos 90 dias após a adição dos restos. No entanto, diferenças na abundância da fauna de solo só foram observadas, 330 dias após a adição dos resíduos.This study was conducted under field conditions, in order to determine the effect of pineapple crop (Ananas comosus L. residues on the edaphic arthropod fauna. Slips were planted in June, in Red-Yellow Latossol , with crop residues in amounts of 0, 30 and 60 t/ha, placed on the surface or tilled under 10cm, with and without 10% (v/v Agrobio biofertilizer applied along with the residues and sprayed monthly at 3% (v/v two months after planting. Soil samples were collected from the top 5.0 cm of soil at 90, 210, 330 and 450 days after the application of residues. Over 15 months, the predominance of Acari and Collembolan was observed. The highest density of animals was observed in the first sample, at 90 days after the addition of residues. Nevertheless, differences in soil fauna abundance between treatments were not detected until 330 days after soil management with crop residues.

  3. [Diversity of soil fauna in corn fields in Huang-Huai-Hai Plain of China under effects of conservation tillage].

    Zhu, Qiang-Gen; Zhu, An-Ning; Zhang, Jia-Bao; Zhang, Huan-Chao; Huang, Ping; Zhang, Cong-Zhi

    2009-10-01

    An investigation was made on the abundance and diversity of soil fauna in the corn fields under conventional and conservation tillage in Huang-Huai-Hai Plain of China. The abundance and diversity of soil fauna were higher at corn maturing (September) than at its jointing stage (July), and higher at jointing stage under conservation tillage than under conventional tillage. Soil fauna mainly distributed in surface soil layer (0-10 cm), but still had a larger number in 10-20 cm layer under conservation tillage. The individuals of acari, diptera, diplura, and microdrile oligochaetes, especially those of acari, were higher under conservation tillage than under conventional tillage. At maturing stage, an obvious effect of straw-returning under conservation tillage was observed, i. e., the more the straw returned, the higher the abundance of soil fauna, among which, the individuals of collembola, acari, coleopteran, and psocoptera, especially those of collembolan, increased significantly. The abundance of collembola at both jointing and maturing stages was significantly positively correlated with the quantity of straw returned, suggesting that collembola played an important role in straw decomposition and nutrient cycling.

  4. Effects of Altered Temperature & Precipitation on Soil Bacterial & Microfaunal Communities as Mediated by Biological Soil Crusts

    Neher, Deborah A. [University of Vermont

    2004-08-31

    With increased temperatures in our original pot study we observed a decline in lichen/moss crust cover and with that a decline in carbon and nitrogen fixation, and thus a probable decline of C and N input into crusts and soils. Soil bacteria and fauna were affected negatively by increased temperature in both light and dark crusts, and with movement from cool to hot and hot to hotter desert climates. Crust microbial biomass and relative abundance of diazotrophs was reduced greatly after one year, even in pots that were not moved from their original location, although no change in diazotroph community structure was observed. Populations of soil fauna moved from cool to hot deserts were affected more negatively than those moved from hot to hotter deserts.

  5. Soil fauna across Central European sandstone ravines with temperature inversion: From cool and shady to dry and hot places

    Schlaghamerský, J.; Devetter, Miloslav; Háněl, Ladislav; Tajovský, Karel; Starý, Josef; Tuf, I.H.; Pižl, Václav

    2014-01-01

    Roč. 83, November (2014), s. 30-38 ISSN 0929-1393 Grant - others:EEA Financial Mechanism(NO) CZ0048 Institutional research plan: CEZ:AV0Z60660521 Institutional support: RVO:60077344 Keywords : soil fauna * ravines * gorges * environmental gradients * species richnes * drought Subject RIV: EH - Ecology, Behaviour Impact factor: 2.644, year: 2014

  6. Evaluation the impact of habitat quality on the soil fauna in Jajarm region

    G.A. Rassam

    2016-04-01

    Full Text Available The effects of land use, crop type and crop management on soil fauna were investigated with survey of four habitats in Jajarm. The habitats included rangelands, alfalfa (Medicago sativa L. fields and low-input and high-input of wheat (Triticum aestivum L. fields, each with four sample units. In each sample unit, the macrofauna collected with pitfall traps, sorted and counted in terms of family. The analysis of data conducted using of contrast analysis, analysis of similarities and principal component analysis (PCA. In rangelands the taxonomic richness, Simpson diversity index and abundance of macrofauna families tremendously were lower than agricultural habitats. These were attributed to low of plant diversity and pressure of livestock grazing. In alfalfa fields, increased abundance of beneficial macrofauna than wheat fields due to use not of chemical inputs, low disturbance and perennial of alfalfa. The crop management dad not has any significant impact on soil macrofauna. However, soil important macrofauna showed great tendency to occupancy in low-input wheat fields.

  7. Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage.

    Franco, André L C; Bartz, Marie L C; Cherubin, Maurício R; Baretta, Dilmar; Cerri, Carlos E P; Feigl, Brigitte J; Wall, Diana H; Davies, Christian A; Cerri, Carlos C

    2016-09-01

    Land use changes (LUC) from pasture to sugarcane (Saccharum spp.) crop are expected to add 6.4Mha of new sugarcane land by 2021 in the Brazilian Cerrado and Atlantic Forest biomes. We assessed the effects of these LUC on the abundance and community structure of animals that inhabit soils belowground through a field survey using chronosequences of land uses comprising native vegetation, pasture, and sugarcane along a 1000-km-long transect across these two major tropical biomes in Brazil. Macrofauna community composition differed among land uses. While most groups were associated with samples taken in native vegetation, high abundance of termites and earthworms appeared associated with pasture soils. Linear mixed effects analysis showed that LUC affected total abundance (X(2)(1)=6.79, p=0.03) and taxa richness (X(2)(1)=6.08, p=0.04) of soil macrofauna. Abundance increased from 411±70individualsm(-2) in native vegetation to 1111±202individualsm(-2) in pasture, but decreased sharply to 106±24individualsm(-2) in sugarcane soils. Diversity decreased 24% from native vegetation to pasture, and 39% from pasture to sugarcane. Thus, a reduction of ~90% in soil macrofauna abundance, besides a loss of ~40% in the diversity of macrofauna groups, can be expected when sugarcane crops replace pasture in Brazilian tropical soils. In general, higher abundances of major macrofauna groups (ants, coleopterans, earthworms, and termites) were associated with higher acidity and low contents of macronutrients and organic matter in soil. This study draws attention for a significant biodiversity loss belowground due to tropical LUC in sugarcane expansion areas. Given that many groups of soil macrofauna are recognized as key mediators of ecosystem processes such as soil aggregation, nutrients cycling and soil carbon storage, our results warrant further efforts to understand the impacts of altering belowground biodiversity and composition on soil functioning and agriculture performance

  8. Microbe-mediated plant-soil feedback in pioneer stages of secondary succession causes long-lasting historical contingency effects in plant community composition.

    Kardol, P.; Bezemer, T.M.; Putten, van der W.H.

    2006-01-01

    Soil microbes and soil fauna have been assumed to play a key role in interspecific plant competition and successional community development. It has been suggested that plants can influence their performance by changing the composition of their associated soil communities. Such feedback effects may

  9. Influence of the application of pre-emergent herbicides on the soil fauna of conventional sugarcane plantations

    Rodrigo Ferreira da Silva

    2012-09-01

    Full Text Available The goal of this work was to evaluate the influence of pre-emergent herbicides on the edaphic fauna community found in soils of conventional sugarcane plantations. The experimental design was in randomized blocks, in a 6x3 factorial, with six control treatments of weed plants (T1: fallow; T2: manual weeding; T3:Tebuthiuron to 1,200gia.ha-1; T4: Ametryn to 3,000gia.ha-1; T5: Tebuthiuron to 1,000gia.ha-1 + Ametryn to 1,500gia.ha-1, T6: Tebuthiuron to 1,200gia.ha-1 + Ametryn to 3,000gia.ha-1 and three evaluation times (0, 40, and 80 days after herbicide application: DAHA. The abundance, the groups of the organisms, Margalef’s richness index, Pielou´s uniformity index, Simpson’s dominance, Shannon’s diversity index, number of Collembola and above-ground dry mass were evaluated. There were no differences in the treatments for Margalef’s richness index, Pielou´s uniformity index, Simpson’s dominance and Shannon’s index. The abundance of organisms was higher at 80 DAHA in the manual weeding treatment. Tebuthiuron did not affect Collembola populations when used alone or in combination with ametryn. The treatment with the herbicide Ametryn to 3,000gia.ha-1 reduced Collembola populations in relation to the fallow treatment and manual weeding.

  10. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites

    Frouz, Jan; Prach, Karel; Pižl, Václav; Háněl, Ladislav; Starý, Josef; Tajovský, Karel; Materna, J.; Balík, Vladimír; Kalčík, Jiří; Řehounková, K.

    2008-01-01

    Roč. 44, č. 1 (2008), s. 109-121 ISSN 1164-5563 R&D Projects: GA ČR GA526/01/1055; GA ČR(CZ) GA526/06/0728; GA AV ČR 1QS600660505 Institutional research plan: CEZ:AV0Z60660521; CEZ:AV0Z60050516 Keywords : succession * soil microstructure * soil formation Subject RIV: EH - Ecology, Behaviour Impact factor: 0.888, year: 2008

  11. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    Kuperman, R.G. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  12. [Contribution of soil fauna to litter decomposition of Abies faxoniana and Rhododendron lapponicum across an alpine timberline ecotone in Western Sichuan, China.

    Wang, Li Feng; He, Run Lian; Yang, Lin; Chen, Ya Mei; Liu, Yang; Zhang, Jian

    2016-11-18

    Soil fauna is an important biological factor in regulation litter decomposition. In order to quantify the contributions of soil fauna to the mass losses of litter of two dominant species fir (Abies faxoniana) and rhododendron (Rhododendron lapponicum) in the alpine timberline ecotone (coniferous forest-timberline-alpine meadow) of western Sichuan, China, a field litterbag experiment was conducted from May 2013 to November 2014. Samples of air-dried leaf litter were placed in nylon litterbags of two different mesh sizes, i.e. 3.00 mm (with the soil animals) and 0.04 mm (excluded the soil animals). The results showed that the decomposition rate of A. faxoniana (k: 0.209-0.243) was higher than that of R. lapponicum (k: 0.173-0.189) across the timberline ecotone. Soil fauna had significant contributions to litter decomposition of two species, the contributions of soil fauna to mass loss showed a decreasing trend with increasing altitude. From the coniferous forest to the alpine meadow, the mass losses caused by soil fauna for the fir litter accounted for 15.2%, 13.2% and 9.8%, respectively and that for the rhododendron litter accounted for 20.1%, 17.5% and 12.4%, respectively. Meanwhile, the daily average contributions caused by soil fauna for the fir and rhododendron litter decomposition accounted for 0.17%, 0.13%, 0.12% and 0.26%, 0.25%, 0.23%, respectively. Relatively, soil fauna had more influence on alpine rhododendron decomposition. Two-way ANOVA showed that species, altitude and their interaction had significant impact on the litter mass loss and decomposition rate caused by soil fauna. The daily average contribution caused by soil fauna for the fir and rhododendron litter decomposition accounted for 0.25% and 0.44% in the first growing season, then 0.10% and 0.19% in the second growing season, both were higher than that of snow-covered season (0.07% and 0.12%). Regression analysis showed that the environmental factors (daily average temperature, freezing and

  13. Effects of the increased radium content in soil on the soil fauna

    Krivolutskij, D.A.; Druk, A.Ya.; Semenova, L.M.; Semyashkina, T.M.; Mikhal'tsova, Z.A.

    1978-01-01

    The effect of elevated radioactive background due to the presence of natural radionuclide of radium-226 on soil animals has been studied. The areas being studied (1-2 hectares) had the elevated radioactivity ranging from 50 to 4000 μR/hour and were located on an over-flood-lands terrace with meadow vegetation in the mid-taiga subzone. Histological examination of tegmental epithelium and middle intestine (tissues in direct contact with radium-contaminated soil) was performed on Dendrobaena octaedra (Sav.) and Dendrodrillus rubidus (Sav.) collected from areas with 4000μR/hour radioactivity. A comparison of the results with data obtained earlier for surface animals inhabiting the same areas has corroborated that settled animals inhabiting contaminated areas for a long time suffer from retardation of development and disturbances in the functioning of body epithelium and of the intestine. The effect of radiation on soil animals can be observed in areas with far lower radioactivity (100-200μR/hour), probably due to their closer contact with radium-contaminated soil. The most convenient object for monitoring of the effects of elevated background radioactivity is the earthworm, which is irradiated not only from outside but also from the smallowed soil

  14. Contribution to the Knowledge of the Soil-Fauna of new Guinea

    Hammen, van der L.

    1983-01-01

    A broad survey is given of the occurrence and distribution of microarthropods (and some other animals) in the soil of the following vegetation types in New Guinea: algal communities in the intertidal zone, beach forest, mangrove swamp forest, sago palm swamp, lowland swamp forest, forests on

  15. Characterization of soil fauna under the influence of mercury atmospheric deposition in Atlantic Forest, Rio de Janeiro, Brazil.

    Buch, Andressa Cristhy; Correia, Maria Elizabeth Fernandes; Teixeira, Daniel Cabral; Silva-Filho, Emmanoel Vieira

    2015-06-01

    The increasing levels of mercury (Hg) found in the atmosphere arising from anthropogenic sources, have been the object of great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of strong importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transference to the soil through litter, playing an important role as sink of this element. Soil microarthropods are keys to understanding the soil ecosystem, and for such purpose were characterized by the soil fauna of two Units of Forest Conservation of the state of the Rio de Janeiro, inwhich one of the areas suffer quite interference from petrochemicals and industrial anthropogenic activities and other area almost exempts of these perturbations. The results showed that soil and litter of the Atlantic Forest in Brazil tend to stock high mercury concentrations, which could affect the abundance and richness of soil fauna, endangering its biodiversity and thereby the functioning of ecosystems. Copyright © 2015. Published by Elsevier B.V.

  16. Microbial communities in blueberry soils

    Microbial communities thrive in the soil of the plant root zone and it is clear that these communities play a role in plant health. Although blueberry fields can be productive for decades, yields are sometimes below expectations and fields that are replanted sometimes underperform and/or take too lo...

  17. Interactions between fauna and environment in recent alluvial soils (Dunajec River, SE Poland)

    Mikuś, Paweł; Uchman, Alfred

    2017-04-01

    Recent riverine system is a particular place for interactions between fauna and the deposited sediments containing young and old alluvial soils. It is characterized by large energy gradients in relatively short time, which forces special adaptations of burrowing animals recorded in bioturbation structures. Predators produce mainly shelter burrows (interpreted as domichnia), and saprofags, especially earthworms, produce locomotion and feeding structures (pascichnia). Such structures have been studied in non- or poorly vegetated, sandy or muddy Holocene alluvia in the lower reach of the Dunajec River flowing through the Carpathian Foredeep in SE Poland. The observed burrows are mostly produced by a variety of organisms, including the European mole (Talpa europaea), common earthworm (Lumbricus terrestris), ground beetles (Carabidae), solitary bees (Ammophila), red fox (Vulpes vulpes), European beaver (Castor fiber), shrews (Soricidae), European otter (Lutra lutra), several species of mice (Muridae), voles (Myodae, Microtae), and the swallow sand martin (Riparia riparia). Burrows of a few species of ground beetles have been subjected to more detailed studies. Fertile deposits of older (early to middle Holocene) terraces, formed with many long-term interruptions in sedimentation processes, have a well-developed soil levels, more vulnerable to burrowing than recently deposited sediments. The terraces contain layers of sands and muds, which primary sedimentary structures and layer boundaries are completely or partly disturbed by bioturbation. Organic-rich muds have been moved up and down and mixed with sand. Moreover, sediments have been leached into open burrows during floods or rainfalls. In the natural levee sediments, mostly fine to medium sands, are horizontally burrowed, foremost by earthworms (Lumbricidae). Vertical, long (over 2 m deep) burrows of larger earthworms cross cut the natural levee sediments and enter buried soils. They were formed during a long period

  18. Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil across alpine/subarctic tundra communities

    M. Alatalo, Juha; K. Jägerbrand, Annika; Juhanson, Jaanis

    2017-01-01

    High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three...... contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from...

  19. The need for standardisation: Exemplified by a description of the diversity, community structure and ecological indices of soil nematodes

    Griffiths, B.S.; de Groot, G. Arjen; Laros, I.; Stone, D.; Geisen, S.

    2018-01-01

    Molecular approaches are offering a supplement to, or even the possibility of replacing morphological identification of soil fauna, because of advantages for throughput, coverage and objectivity. We determined ecological indices of nematode community data from four sets of duplicate soil cores,

  20. Variation in soil macro-fauna diversity in seven humus orders of a Parrotio-Carpinetum forest association on Chromic Cambisols of Shast-klateh area in Iran

    Izadi, M.; Habashi, H.; Waez-Mousavi, S. M.

    2017-03-01

    Soil biodiversity includes organisms which spend a part or all of their life cycle on or in the soil. Among soil-dwelling animals, macro-fauna as an important group of animals have important effects on the dynamics of soil organic matter and litter decomposition process. The humus forms interact with the climatic conditions, flora, as well as soil fauna, and microbial activity. In new humus form classifications, soil organisms play an important role in separation of humus horizons from one another. The subject of this study was to determine the diversity of macro fauna for different humus forms. We determined humus forms using morphological classification, and then 69 random samples were taken from plots of 100 cm2 in area, and soil macro-fauna species were collected by hand sorting method. Two classes of humus forms, including Mull (with three humus orders, namely Dysmull, Oligomull, and Mesomull,) and Amphi (with four humus orders, namely Leptoamphi, Eumacroamphi, Eumesoamphi, and Pachyamphi) were identified. A number of 13 macro-fauna orders were identified using identification key. Among the humus orders, Shannon diversity, Simpson evenness and Margalef richness indices were the highest in Pachyamphi order. Arthropod diversity in Pachyamphi humus order was higher than those of Mull. These results showed that diversity of soil macrofauna increase by increasing the thickness of the organic horizons (OL, OF, OH), especially OH horizon.

  1. Effect of leaf litter quantity and type on forest soil fauna and biological quality

    Zhizhong Yuan; Yang Cui; Shaokui Yan

    2013-01-01

    It is important to assess forest litter management. Here we examined the effects of leaf litter addition on the soil faunal community in Huitong subtropical forest region in Hunan Province, China. The microcosm experiment involving leaf-litter manipulation using a block and nested experimental design, respectively, was established in May, 2011. In the block design, the effects of litter quantity and its control were examined, while in the nested design a comparison was made of litter quality ...

  2. Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators.

    Cébron, Aurélie; Cortet, Jérôme; Criquet, Stéven; Biaz, Asmaa; Calvert, Virgile; Caupert, Cécile; Pernin, Céline; Leyval, Corinne

    2011-11-01

    A large number of soil bioindicators were used to assess biological diversity and activity in soil polluted with polycyclic aromatic hydrocarbons (PAHs) and the same soil after thermal desorption (TD) treatment. Abundance and biodiversity of bacteria, fungi, protozoa, nematodes and microarthropods, as well as functional parameters such as enzymatic activities and soil respiration, were assessed during a two year period of in situ monitoring. We investigated the influence of vegetation (spontaneous vegetation and Medicago sativa) and TD treatment on biological functioning. Multivariate analysis was performed to analyze the whole data set. A principal response curve (PRC) technique was used to evaluate the different treatments (various vegetation and contaminated vs. TD soil) contrasted with control (bare) soil over time. Our results indicated the value of using a number of complementary bioindicators, describing both diversity and functions, to assess the influence of vegetation on soil and discriminate polluted from thermal desorption (TD)-treated soil. Plants had an influence on the abundance and activity of all organisms examined in our study, favoring the whole trophic chain development. However, although TD-treated soil had a high abundance and diversity of microorganisms and fauna, enzymatic activities were weak because of the strong physical and chemical modifications of this soil. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. [Contribution of soil fauna to the mass loss of Betula albosinensis leaf litter at early decomposition stage of subalpine forest litter in western Sichuan].

    Xia, Lei; Wu, Fu-Zhong; Yang, Wan-Qin; Tan, Bo

    2012-02-01

    In order to quantify the contribution of soil fauna to the decomposition of birch (Betula albosinensis) leaf litter in subalpine forests in western Sichuan of Southwest China during freeze-thaw season, a field experiment with different mesh sizes (0.02, 0.125, 1 and 3 mm) of litterbags was conducted in a representative birch-fir (Abies faxoniana) forest to investigate the mass loss rate of the birch leaf litter from 26 October, 2010 to 18 April, 2011, and the contributions of micro-, meso- and macro-fauna to the decomposition of the leaf litter. Over the freeze-thaw season, 11.8%, 13.2%, 15.4% and 19.5% of the mass loss were detected in the litterbags with 0.02, 0. 125, 1 and 3 mm mesh sizes, respectively. The total contribution of soil fauna to the litter decomposition accounted for 39.5% of the mass loss, and the taxa and individual relative density of the soil fauna in the litterbags had the similar variation trend with that of the mass loss rate. The contribution rate of soil fauna to the leaf litter mass loss showed the order of micro- soil fauna played an important role in the litter decomposition in subalpine forests of western Sichuan during freeze-thaw season.

  4. Effects of acid rain and liming on the enchytraeid fauna in forest soils

    Graefe, U.

    1989-01-01

    The development of the enchytraeid community has been observed in a Solling beech forest over a period of 11 years. Eight out of 18 formerly established species have disappeared in one decade. The connection to soil chemical changes due to atmospheric deposition is discussed. A comparison of adjoining beech and spruce stands revealed considerably lower species numbers under spruce. The community under beech is developing in the direction of the species community in the spruce stand. Liming affects changes in the dominance structure. Mesophilic species are favoured, acidophilic are repressed. In an oak-beech stand near Hamburg even the recolonization by previously absent species was observed. Liming experiments with 25, 50 and 100 dt CaCO 3 /ha showed decreasing total abundance of enchytraeids proportional to the amount of lime. Species number, diversity and evenness increased with lime treatments up to 50 dt/ha. (orig.)

  5. Análise multivariada da fauna edáfica em diferentes sistemas de preparo e cultivo do solo Multivariate analysis of soil fauna under different soil tillage and crop management systems

    Dilmar Baretta

    2006-11-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito de sistemas de preparo e cultivo do solo sobre a diversidade de animais da fauna edáfica, por meio de técnicas de análise multivariada. Na análise canônica discriminante, os preparos conservacionistas com sucessão de culturas foram separados em relação aos tratamentos com rotação de culturas. Os grupos Acarina, Hymenoptera, Isopoda e Collembola, e o índice de Shannon (H foram os atributos que mais contribuíram para separar os tratamentos. A análise de correspondência mostrou forte associação dos grupos Acarina e Hymenoptera com o tratamento semeadura direta com sucessão de culturas, e do grupo Collembola com o preparo convencional.The objective of this work was to evaluate the effect of different soil tillage and crop management systems on soil fauna groups, by means of multivariate analysis. In the canonical discriminant analysis the conservation soil management systems with crop succession were discriminated in relation to other treatments with crop rotation. The groups Acarina, Hymenoptera, Isopoda, and Collembola, and the Shannon index (H showed the highest contribution for the discrimination between treatments. The correspondence analysis showed a strong association between Acarina and Hymenoptera groups with the treatment no-tillage with crop succession, and between Collembola group with the conventional tillage system.

  6. Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica.

    Ayres, Edward; Nkem, Johnson N; Wall, Diana H; Adams, Byron J; Barrett, J E; Broos, Emma J; Parsons, Andrew N; Powers, Laura E; Simmons, Breana L; Virginia, Ross A

    2008-12-01

    Antarctic ecosystems are often considered nearly pristine because levels of anthropogenic disturbance are extremely low there. Nevertheless, over recent decades there has been a rapid increase in the number of people, researchers and tourists, visiting Antarctica. We evaluated, over 10 years, the direct impact of foot traffic on the abundance of soil animals and soil properties in Taylor Valley within the McMurdo Dry Valleys region of Antarctica. We compared soils from minimally disturbed areas with soils from nearby paths that received intermediate and high levels of human foot traffic (i.e., up to approximately 80 passes per year). The nematodes Scottnema lindsayae and Eudorylaimus sp. were the most commonly found animal species, whereas rotifers and tardigrades were found only occasionally. On the highly trampled footpaths, abundance of S. lindsayae and Eudorylaimus sp. was up to 52 and 76% lower, respectively, than in untrampled areas. Moreover, reduction in S. lindsayae abundance was more pronounced after 10 years than 2 years and in the surface soil than in the deeper soil, presumably because of the longer period of disturbance and the greater level of physical disturbance experienced by the surface soil. The ratio of living to dead Eudorylaimus sp. also declined with increased trampling intensity, which is indicative of increased mortality or reduced fecundity. At one site there was evidence that high levels of trampling reduced soil CO(2) fluxes, which is related to total biological activity in the soil. Our results show that even low levels of human traffic can significantly affect soil biota in this ecosystem and may alter ecosystem processes, such as carbon cycling. Consequently, management and conservation plans for Antarctic soils should consider the high sensitivity of soil fauna to physical disturbance as human presence in this ecosystem increases.

  7. Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action

    David R. Coyle; Uma J. Nagendra; Melanie K. Taylor; J. Holly Campbell; Chelsea E. Cunard; Aaron H. Joslin; Abha Mundepi; Carly A. Phillips; Mac A. Callaham

    2017-01-01

    Environmental disturbances seem to be increasing in frequency and impact, yet we have little understanding of the belowground impacts of these events. Soil fauna, while widely acknowledged to be important drivers of biogeochemical function, soil structure and sustainability, and trophic interactions, are understudied compared to other belowground organisms such as...

  8. Produced water irrigation changes the soil mesofauna community in a semiarid agroecosystem.

    Ferreira, Raimundo Nonato Costa; Weber, Olmar Baller; Crisóstomo, Lindbergue Araujo

    2015-08-01

    The scarcity of water in semiarid regions requires alternative sources for irrigation to improve agricultural production. Here, we aimed to evaluate the effects of produced water from oil exploration on the structure of soil mesofauna during the dry and rainy seasons in irrigated sunflower and castor bean fields in a Brazilian semiarid region. Three irrigation treatments were applied on plots cultivated with castor beans and sunflowers: produced water treated by filtration (filtrated) or treated by reverse osmosis (reverse osmosis) and groundwater. The mesofauna under the biofuel crops was collected and identified during the dry and rainy seasons. Although the abundance and richness of the total fauna did not differ between seasons in sunflower plots, the community was altered. In castor beans, the abundance, richness, and community of mesofauna observed in plots irrigated with produced water differed from the groundwater treatment. Irrigation with produced water promotes important changes in soil fauna community that justify their assessment for the maintenance and monitoring of agroecosystems.

  9. Soil nematode community under the non-native trees in the Botanic Garden of Petrozavodsk State University

    Sushchuk Anna

    2016-12-01

    Full Text Available The particularities of soil nematode communities of the rhizosphere of non-native trees were studied in the Botanic Garden of Petrozavodsk State University (Republic of Karelia. Taxonomic diversity, abundance, community structure and ecological indices derived from nematode fauna analysis were used as the evaluation parameters. Nematode fauna included 51 genera, 6 of them were plant parasitic. The dominant eco-trophic group in the nematode community structure of coniferous trees was bacterial feeders; fungal feeders in most cases were observed in the second numbers. The contribution of bacterial feeders was decreased and plant parasites were increased in eco-trophic structure of nematode communities of deciduous trees in compared with coniferous trees. Analysis of ecological indices showed that the state of soil nematode communities reflects complex, structured (stable soil food web in the biocenoses with deciduous trees, and degraded (basal food web – under coniferous trees.

  10. Initial contents of residue quality parameters predict effects of larger soil fauna on decomposition of contrasting quality residues

    Ratikorn Sanghaw

    2017-10-01

    Full Text Available A 52-week decomposition study employing the soil larger fauna exclusion technique through litter bags of two mesh sizes (20 and 0.135 mm was conducted in a long-term (18 yr field experiment. Organic residues of contrasting quality of N, lignin (L, polyphenols (PP and cellulose (CL all in grams per kilogram: rice straw (RS: 4.5N, 22.2L, 3.9PP, 449CL, groundnut stover (GN: 21.2N, 71.4L, 8.1PP, 361CL, dipterocarp leaf litter (DP: 5.1N, 303L, 68.9PP, 271CL and tamarind leaf litter (TM: 11.6N, 190L, 27.7PP, 212CL were applied to soil annually to assess and predict soil larger fauna effects (LFE on decomposition based on the initial contents of the residue chemical constituents. Mass losses in all residues were not different under soil fauna inclusion and exclusion treatments during the early stage (up to week 4 after residue incorporation but became significantly higher under the inclusion than the exclusion treatments during the later stage (week 8 onwards. LFE were highest (2–51% under the resistant DP at most decomposition stages. During the early stage (weeks 1–4, both the initial contents of labile (N and CL and recalcitrant C, and recalcitrant C interaction with labile constituents of residues showed significant correlations (r = 0.64–0.90 with LFE. In the middle stage (week 16, LFE under resistant DP and TM had significant positive correlations with L, L + PP and L/CL. They were also affected by these quality parameters as shown by the multiple regression analysis. In the later stages (weeks 26–52, the L/CL ratio was the most prominent quality parameter affecting LFE. Keywords: Mesofauna and macrofauna, Microorganisms, Recalcitrant and labile compounds, Residue chemical composition, Tropical sandy soil

  11. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils.

    Spurgeon, David J; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I J

    2008-05-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated.

  12. Residue levels of molinate in rice field soil: their effects on populations of aquatic flora and fauna under recycling and non-recycling practices in the MUDA area

    Nashriyah Mat; Azimahtol Hawariah Lope Pihie

    2002-01-01

    A study to evaluate the effects of Molinate residue levels in rice field soil on populations of weed and aquatic fauna in the recycling and the non-recycling areas of Muda was carried out. Molinate residue levels in soil, Simpson Index of Diversity and Importance Value (IV) of weeds, and Sequential Comparison Index of aquatic fauna were measured. No marked variation between the recycled (B 111) and non-recycled (D 111) area was observed for the population parameters and residue levels measured. (Author)

  13. Diversity and Abundance of Soil Animals as Influenced by Long-Term Fertilization in Grey Desert Soil, China

    Maibo Jiang; Xihe Wang; Yunhao Liusui; Xueqing Sun; Chengyi Zhao; Hua Liu

    2015-01-01

    The relationship between soil fauna and different fertilizer management practices is of growing concern. The aim of this research was to investigate the response of soil fauna to fertilization regimes, to explore the relationships among the community of soil animals, soil moisture and crop yields. The application of organic fertilizers (i.e., sheep manure or crop residues) increased crop yields and promoted the number of individuals and species of soil fauna owing to the exogenous organic mat...

  14. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  15. Changes in soil nematode communities under the impact of fertilizers

    Gruzdeva, L. I.; Matveeva, E. M.; Kovalenko, T. E.

    2007-06-01

    Changes taking place in the communities of soil nematodes of an artificially sown meadow under the impact of annually applied mineral fertilizers have been studied in a field experiment for nine years. It is shown that changes in the species composition, trophic structure, and numbers of nematodes from different genera depend on the fertilizer applied and on the competitiveness of the plant species grown. The spectra of nematode genera sensitive to the complete mineral fertilizer (NPK) and to the particular nutrients have been identified with the use of a number of parameters, including the maturity index of nematode communities, the biotope preferences of the particular nematode genera, and the general pattern of nematode habitats. The results obtained in this study can be used to assess the effect of mineral fertilizers on the soil fauna and to suggest optimum application rates of mineral fertilizers ensuring the sustainable development of meadow herbs. The use of the data on the trophic structure of nematode communities for predicting the ways of organic matter decomposition in the soil is discussed.

  16. The effect of topsoil removal in restored heathland on soil fauna, topsoil microstructure, and cellulose decomposition : implications for ecosystem restoration

    Frouz, Jan; Van Diggelen, Rudy; Pizl, Vaclav; Stary, Josef; Hanel, Ladislav; Tajovsky, Karel; Kalcik, Jiri

    2009-01-01

    Communities of soil macrofauna, oribatid mites, and nematodes as well as vegetation and soil chemistry were studied on twelve plots representing three replicates of the following treatments: agricultural meadow, heathland, and heathland restored either by partial or complete topsoil removal 15 years

  17. Effect of residues of pineaplle plant and agrobio in the soil fauna

    Almeida, Alecsandra de; Correia, Maria Elizabeth Fernandes

    2010-01-01

    Objetivou-se avaliar o efeito de restos culturais de abacaxizeiro (Ananas comosus L.) 'Smooth Cayenne' na fauna de artrópodes,em cultivos em campo. As mudas, do tipo filhote, foram plantadas no mês de junho, em um Latossolo Vermelho Amarelo, que recebeu 0, 30 e 60t/ha de restos de abacaxizeiro, aplicados superficialmente e incorporados a 10cm de profundidade, com e sem a adição do biofertilizante-Agrobio10% (v/v). Foram coletadas amostras a 05 cm de profundidade aos 90, 210, 330 e 450 dias ap...

  18. Soil microbial community response to land use and various soil ...

    Soil microbial community response to land use and various soil elements in a city landscape of north China. ... African Journal of Biotechnology ... Legumes played an important role in stimulating the growth and reproduction of various soil microbial populations, accordingly promoting the microbial catabolic activity.

  19. Repeated Raking of Pine Plantations Alters Soil Arthropod Communities

    Holly K. Ober

    2014-04-01

    Full Text Available Terrestrial arthropods in forests are engaged in vital ecosystem functions that ultimately help maintain soil productivity. Repeated disturbance can cause abrupt and irreversible changes in arthropod community composition and thereby alter trophic interactions among soil fauna. An increasingly popular means of generating income from pine plantations in the Southeastern U.S. is annual raking to collect pine litter. We raked litter once per year for three consecutive years in the pine plantations of three different species (loblolly, Pinus taeda; longleaf, P. palustris; and slash, P. elliottii. We sampled arthropods quarterly for three years in raked and un-raked pine stands to assess temporal shifts in abundance among dominant orders of arthropods. Effects varied greatly among orders of arthropods, among timber types, and among years. Distinct trends over time were apparent among orders that occupied both high trophic positions (predators and low trophic positions (fungivores, detritivores. Multivariate analyses demonstrated that raking caused stronger shifts in arthropod community composition in longleaf and loblolly than slash pine stands. Results highlight the role of pine litter in shaping terrestrial arthropod communities, and imply that repeated removal of pine straw during consecutive years is likely to have unintended consequences on arthropod communities that exacerbate over time.

  20. Melaleuca alternifolia Essential Oil against the Lesser Mealworm (Alphitobius diaperinus and Its Possible Effect on the Soil Fauna

    A Volpato

    2016-03-01

    Full Text Available ABSTRACT The aim of this study was to evaluate the in vitro bioactivity of tea tree (Melaleuca alternifolia essential oil against larvae and adult forms of lesser mealworms (Alphitobius diaperinus and its influence on the soil fauna. Tests were performed in triplicate using pure tea tree oil (TTO; 1, 5, 10, 25, 50, and 100%, TTO nanoparticles (1, 3, and 7.5%, or terpinen-4-ol, the main compound of the tea tree oil, at the same concentrations of TTO. Larvae and adult mortality occurred at concentrations up to 10 and 50% of TTO, respectively. No larvicidal or insecticidal effect of TTO nanoparticles was observed. Terpinen-4-ol showed insecticidal and larvicidal effect at concentrations higher than 25%. The evaluation of TTO effect on soil organisms was performed by standard ecotoxicological tests (ISO with the springtail species Folsomia candida. Only TTO was used for ecotoxicological tests in doses of 1, 5, 10, 25, 50, and 100 mg kg-1 of soil. TTO had no negative effects on F. candida survival or reproduction. Therefore, it was concluded that M. alternifolia oil may be a new alternative for control of the lesser mealworm.

  1. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil

  2. Soil fungal community responses to global changes

    Haugwitz, Merian Skouw

    Global change will affect the functioning and structure of terrestrial ecosystems and since soil fungi are key players in organic matter decomposition and nutrient turnover, shifts in fungal community composition might have a strong impact on soil functioning. The main focus of this thesis...... was therefore to investigate the impact of global environmental changes on soil fungal communities in a temperate and subartic heath ecosystem. The objective was further to determine global change effects on major functional groups of fungi and analyze the influence of fungal community changes on soil carbon...... and nutrient availability and storage. By combining molecular methods such as 454 pyrosequencing and quantitative PCR of fungal ITS amplicons with analyses of soil enzymes, nutrient pools of carbon, nitrogen and phosphorus we were able to characterize soil fungal communities as well as their impact on nutrient...

  3. Propriedades químicas e fauna do solo influenciadas pela calagem em sistema semeadura direta Effects of liming on chemical properties and soil fauna in no-tillage system

    Henrique Cesar Almeida

    2007-10-01

    Full Text Available Este trabalho objetivou avaliar o efeito da calagem e sua influência sobre atributos químicos e de fauna do solo em um Cambissolo sob sistema de semeadura direta. O experimento vem sendo conduzido em Lages, SC, desde maio de 2001. Os tratamentos foram: semeadura direta com calcário incorporado na dose de 1 SMP (SD-inc e superficial nas doses de 1/5 SMP (SD-1/5sup e 1/2 SMP (SD-1/2sup. Como padrão, utilizou-se solo sem cultivo e sem aplicação de calcário, e uma área de pastagem perene com calcário incorporado na dose de 1 SMP (PI-inc. O solo foi amostrado nas camadas de 0-5; 5-10; 10-20cm para análise de Ca2+, Mg+2, Al3+, pH em água e em CaCl2; e de 0-10cm para carbono orgânico total e fauna do solo. A aplicação superficial de calcário no sistema de semeadura direta na maior dose (1/2 SMP elevou os teores de Ca2+ até 10cm de profundidade e de Mg+2 até a camada de 10 a 20cm. A abundância e a diversidade da fauna edáfica foram maiores nas áreas sob semeadura direta e pastagem, em relação ao solo sem cultivo, mostrando sensibilidade às alterações advindas do manejo do solo, mas sem correlação direta com as modificações químicas decorrentes da calagem.This research was aimed at evaluating the effect of liming and its influence on chemistry and fauna properties of a Cambisol under no-tillage system. The experiment has been carried out in Lages, SC, southern Brazil, since May 2001. The treatments were: no-tillage with incorporated lime in the rate of 1 SMP (NT-inc; superficial liming in the rate of 1/5 SMP (NT-1/5sup, and 1/2 SMP (NT-1/2sup. As control treatment, bare soil without cultivation without lime application (BS, and plots with perennial pasture with incorporate lime in the rate of 1 SMP (Pp-inc were used. Soil samples were collected in the layers of 0-5; 5-10; 10-20cm depth for analysis of Ca2+, Mg+2, Al3+, water and CaCl2 pH. Total organic carbon and soil fauna were analysed in the layer 0-10cm. The superficial

  4. Ecology of soil arthropod fauna in tropical forests: A review of studies from Puerto Rico

    Grizelle Gonzalez; María F. Barberena

    2017-01-01

    The majority of ecological studies in the tropics deal with organisms participating in grazing food webs, while few deal with the diversity of invertebrates in the soil, leaf litter or dead wood that participate in detrital food webs. For tropical forests, the status of information on soil animal diversity is limited, especially when compared to other ecosystems such...

  5. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils

    Spurgeon, David J.; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I.J.

    2008-01-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated. - Metal distributions and risks explained by balance of sources and soil property effects on fate

  6. Impact of Soil Texture on Soil Ciliate Communities

    Chau, J. F.; Brown, S.; Habtom, E.; Brinson, F.; Epps, M.; Scott, R.

    2014-12-01

    Soil water content and connectivity strongly influence microbial activities in soil, controlling access to nutrients and electron acceptors, and mediating interactions between microbes within and between trophic levels. These interactions occur at or below the pore scale, and are influenced by soil texture and structure, which determine the microscale architecture of soil pores. Soil protozoa are relatively understudied, especially given the strong control they exert on bacterial communities through predation. Here, ciliate communities in soils of contrasting textures were investigated. Two ciliate-specific primer sets targeting the 18S rRNA gene were used to amplify DNA extracted from eight soil samples collected from Sumter National Forest in western South Carolina. Primer sets 121F-384F-1147R (semi-nested) and 315F-959R were used to amplify soil ciliate DNA via polymerase chain reaction (PCR), and the resulting PCR products were analyzed by gel electrophoresis to obtain quantity and band size. Approximately two hundred ciliate 18S rRNA sequences were obtained were obtained from each of two contrasting soils. Sequences were aligned against the NCBI GenBank database for identification, and the taxonomic classification of best-matched sequences was determined. The ultimate goal of the work is to quantify changes in the ciliate community under short-timescale changes in hydrologic conditions for varying soil textures, elucidating dynamic responses to desiccation stress in major soil ciliate taxa.

  7. Study of microarthopod communities to assess soil quality in different managed vineyards

    Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M. R.; Corino, L.; Simoni, S.

    2015-01-01

    Land use influences the abundance and diversity of soil arthropods. The evaluation of the impact of different management strategies on soil quality is increasingly requested. The determination of communities' structures of edaphic fauna can represent an efficient tool. In this study, in some vineyards in Piedmont (Italy), the effects of two different management systems, organic and integrated pest management (IPM), on soil biota were evaluated. As microarthropods living in soil surface are an important component of soil ecosystem interacting with all the other system components, a multi disciplinary approach was adopted by characterizing also some soil physical and chemical characteristics (soil texture, soil pH, total organic carbon, total nitrogen, calcium carbonate). Soil samplings were carried out on Winter 2011 and Spring 2012. All specimens were counted and determined up to the order level. The biological quality of the soil was defined through the determination of ecological indices, such as QBS-ar, species richness and indices of Shannon-Weaver, Pielou, Margalef and Simpson. The mesofauna abundance was affected by both the type of management and the soil texture. The analysis of microarthropod communities by QBS-ar showed higher values in organic than in IPM managed vineyards; in particular, the values registered in organic vineyards were similar to those characteristic of preserved soils.

  8. ES1406 COST Action: Soil fauna: Key to Soil Organic Matter Dynamicsand Fertility. How far have we got?

    Jiménez, Juan; Filser, Juliane; Barot, Sébastien

    Soil organic matter (SOM) is key to soil fertility, climate change mitigation, combatting land degradation, and the conservation of above- and below-ground biodiversity and associated ecosystem services like decomposition, nutrient cycling, carbon sequestration, detoxification and maintenance...... of soil physico-chemical properties. SOM dynamics represent the balance between the input of plant material (residues, root-derived materials) and the output through decomposition (OM mineralization) by organisms, erosion and leaching. Approximately 20% of global CO2 emissions, one third of global CH4...... emissions and two thirds of N2O emissions originate from soils. In many soils, most of the macro-aggregate structure is formed by the activities of soil invertebrates and roots, with important consequences for soil organic matter dynamics, carbon sequestration and water infiltration at several spatial...

  9. An Open-source Low-cost Portable Apparatus for Soil Fauna Sampling

    Daliakopoulos, Ioannis; Wagner, Karl; Grillakis, Manolis; Apostolakis, Antonios; Tsanis, Ioannis

    2016-04-01

    A low-cost apparatus for the extraction of living soil animals from soil or litter samples is presented. The main unit consists of a modular bank system with three horizontal shelves designed to accommodate lamps and soil samples over funnel and jar systems for animal collection, thus serving as a practical and standardized modification of the well-documented Berlese-Tullgren funnel. Shelves are vertically adjustable, sliding on 5 mm threaded rods and securing with wing nuts for easy assembly/disassembly and stability. Shelf material is 4 mm plywood (or similar), laser-cut (or similar) to accommodate lamp sockets, tubes and funnels at respective levels. Soil samples are inserted in 10 cm tubes from standard Ø50 mm PVC piping that can also function as direct collection corers for softer soils. Tubes are fitted in the tube bank shelf, each directly under a 25 W reflector lamp and over a funnel and jar system. Lamps are located 25 mm over the tubes' top creating a relatively constant 10 oC temperature gradient that drives soil animals away from heat and light, and towards the bottom end of the tube which is fitted with a suitable fabric mesh. Standard 106 ml panelled jars, filled with a safe-to-handle preservative (e.g. propylene glycol) to the lower end of the funnel fitted in them, trap and preserve soil organisms until identification. The apparatus offers flat-pack portability and scalability using low-cost standard material. Design specifications and Drawing eXchange Format (dxf) files for apparatus reproduction are provided.

  10. Afforestation alters community structure of soil fungi.

    Carson, Jennifer K; Gleeson, Deirdre B; Clipson, Nicholas; Murphy, Daniel V

    2010-07-01

    Relatively little is known about the effect of afforestation on soil fungal communities. This study demonstrated that afforestation altered fungal community structure and that changes were correlated to pools of soil C. Pasture at three locations on the same soil type was afforested with Eucalyptus globulus or Pinus pinaster. The structure of fungal communities under the three land uses was measured after 13y using automated ribosomal intergenic spacer analysis (ARISA). Afforestation significantly altered the structure of fungal communities. The effect of location on the structure of fungal communities was limited to pasture soils; although these contained the same plant species, the relative composition of each species varied between locations. Differences in the structure of fungal communities between pasture, E. globulus and P. pinaster were significantly correlated with changes in the amount of total organic C and microbial biomass-C in soil. Afforestation of patches of agricultural land may contribute to conserving soil fungi in agricultural landscapes by supporting fungal communities with different composition to agricultural soils. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  11. Outdoor Terrestrial Model Ecosystems are suitable to detect pesticide effects on soil fauna: design and method development.

    Scholz-Starke, B; Nikolakis, A; Leicher, T; Lechelt-Kunze, C; Heimbach, F; Theissen, B; Toschki, A; Ratte, H T; Schäffer, A; Ross-Nickoll, M

    2011-11-01

    Terrestrial Model Ecosystems (TME) were developed as one higher-tier option to detect and assess effects of pesticides on soil communities in a 1 year study using lindane (gamma-HCH) as a persistent and toxic reference pesticide. TME contained intact soil cores (diameter 300 mm, height 400 mm) including indigenous soil communities of undisturbed grassland. Forty units were placed outdoors between spring 2005 and 2006. The TME experiment was designed to provide data that fulfill the requirements of the revised European regulation on plant protection products (regulation 1107/2009/EEC replacing guideline 91/414/EC) with a focus on structural endpoints such as soil organisms and their community structure in case higher-tier evaluation is triggered. The key objective was to evaluate the dynamics and stability of species-diverse microarthropod communities of undisturbed grassland over at least 1 year after application. In grassland soils, less selection pressure towards insensitive species compared to arable land was presumed. Sufficient numbers of organisms and numerous TME replicates ensured that a statistical evaluation could be performed to estimate the sensitivity of the organisms upon application of lindane applied at high rates of 7.5 and 75 kg ai/ha. The application rates resulted in nominal concentrations of 10 and 100 mg ai/kg dry soil referred to the top 5 cm soil layer of 10 TME each; 20 untreated TME served as controls and were used to study the natural dynamics and the variability of populations under field conditions. Results showed that the grassland from which the soil cores were sampled contained communities of soil organisms marked by typical diversity of improved grassland. Lindane applied at excessive rates caused clear dose-related and long-lasting effects on the communities of microarthropods. On the contrary, lumbricids, the total feeding activity (bait lamina) and the growth of plant biomass were not affected up to 1 year after application

  12. Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies

    Frouz, J.; Roubíčková, A.; Heděnec, P.; Tajovský, Karel

    2015-01-01

    Roč. 68, May-June (2015), s. 18-24 ISSN 1164-5563 Grant - others:GA ČR(CZ) GAP504/12/1288 Program:GA Institutional support: RVO:60077344 Keywords : Invertebrates * bioturbation * soil organic matter * carbon cycle * litter bag Subject RIV: EH - Ecology, Behaviour Impact factor: 1.951, year: 2015

  13. Soil fauna and plant litter decomposition in tropical and subalpine forests

    G. Gonzalez; T.R. Seastedt

    2001-01-01

    The decomposition of plant residues is influenced by their chemical composition, the physical-chemical environment, and the decomposer organisms. Most studies interested in latitudinal gradients of decomposition have focused on substrate quality and climate effects on decomposition, and have excluded explicit recognition of the soil organisms involved in the process....

  14. Soil fauna-microbe interactions: towards a conceptual framework for research.

    Hassall, M.; Adl, S.; Berg, M.P.; Griffiths, B.; Scheu, S.

    2006-01-01

    We explore the potential for applying broad ecological theories to interactions between soil animals and micro-organisms to generate a predictive framework within which more hypothesis led research can be undertaken. The paper stems from discussions during a workshop at the XIVth International

  15. Fauna of soil nematodes (Nematoda) in coal post-mining sites in Illinois, USA

    Háněl, Ladislav

    2013-01-01

    Roč. 77, č. 2 (2013), s. 103-112 ISSN 1211-376X R&D Projects: GA MŠk ME08019 Institutional research plan: CEZ:AV0Z60660521 Institutional support: RVO:60077344 Keywords : soil zoology * ecology * Nematoda * species and generic richness * faunal similarity Subject RIV: EH - Ecology, Behaviour

  16. Soil microbes and fauna under Bt maize or an isogenic control, with and without additional insecticide

    Griffiths, B. S.; Birch, A. N. E.; Caul, S.

    The experiment described is a component of the EU-funded project entitled 'Soil ecological and economic evaluation of genetically modified crops' (ECOGEN, www.ecogen.dk). The overall project has an emphasis on maize genetically modified to express the Bacillus thuringiensis toxin (Bt maize...

  17. THE ECONOMIC IMPORTANCE OF THE BIODIVERSITY OF THE INVERTEBRATES FAUNA IN THE CORN CULTURE SOIL IN COPSA MICA (SIBIU COUNTY ROMANIA

    Iuliana ANTONIE

    2014-10-01

    Full Text Available The goal of our researches is in bringing the scientific arguments of the necessity of including the biologic parameters, mainly of the invertebrates in the soil, in the evaluation studies of the impact upon the environment and the national strategies of monitoring of the soils quality. If the chemical analysis measure the quantity of the polluters, the invertebrates in the soil, especially the insects, reflect intensively the anthropologic influences, emphasizing the intensifications or inhibitions of their activity under the stress conditions. The study upon the invertebrates’ fauna was carried on in Copsa Mica area (Sibiu County in the corn agricultural ecosystem. The properties of the soil in this area are strongly changed by the industrial activity as a result of an accumulation of great quantities of heavy metals (lead, cadmium. The researches in this area are a part of a greater study upon the invertebrates’ fauna in the corn culture soil of the Sibiu County, researches that took place during 2011-2013. The technology applied in this area is a semi intensive one. For collecting the invertebrates there were used two methods: drilling the soil and pitfall traps. There were identified invertebrates belonging to 4 classes (Annelida, Arachnida, Chilopoda, Insecta and 11 orders (Haplotaxida, Aranea, Acari, Lithobiomorpha, Geophilomorpha, Collembola, Orthoptera, Heteroptera, Hymenoptera, Coleoptera, Diptera.

  18. Does introduced fauna influence soil erosion? A field and modelling assessment.

    Hancock, G R; Lowry, J B C; Dever, C; Braggins, M

    2015-06-15

    Pigs (Sus scrofa) are recognised as having significant ecological impacts in many areas of the world including northern Australia. The full consequences of the introduction of pigs are difficult to quantify as the impacts may only be detected over the long-term and there is a lack of quantitative information on the impacts of feral pigs globally. In this study the effect of feral pigs is quantified in an undisturbed catchment in the monsoonal tropics of northern Australia. Over a three-year period, field data showed that the areal extent of pig disturbance ranged from 0.3-3.3% of the survey area. The mass of material exhumed through these activities ranged from 4.3 t ha(-1) yr(-1) to 36.0 t ha(-1) yr(-1). The findings demonstrate that large introduced species such as feral pigs are disturbing large areas as well as exhuming considerable volumes of soil. A numerical landscape evolution and soil erosion model was used to assess the effect of this disturbance on catchment scale erosion rates. The modelling demonstrated that simulated pig disturbance in previously undisturbed areas produced lower erosion rates compared to those areas which had not been impacted by pigs. This is attributed to the pig disturbance increasing surface roughness and trapping sediment. This suggests that in this specific environment, disturbance by pigs does not enhance erosion. However, this conclusion is prefaced by two important caveats. First, the long term impact of soil disturbance is still very uncertain. Secondly, modelling results show a clear differentiation between those from an undisturbed environment and those from a post-mining landscape, in which pig disturbance may enhance erosion. Copyright © 2015. Published by Elsevier B.V.

  19. Effects of the neonicotinoids acetamiprid and thiacloprid in their commercial formulations on soil fauna.

    Renaud, Mathieu; Akeju, Tolutope; Natal-da-Luz, Tiago; Leston, Sara; Rosa, João; Ramos, Fernando; Sousa, José Paulo; Azevedo-Pereira, Henrique M V S

    2018-03-01

    Neonicotinoids are the most prominent group of insecticides in the world and are commercialized in over 120 countries for the control of agricultural pests mainly due to their broad-spectrum activity and versatility in application. Though non-target soil organisms are likely to be exposed during application, there is paucity of information in scientific literature regarding their sensitivity to neonicotinoids. This study attempts to fill this gap by evaluating, under laboratory conditions, the chronic toxicity of the neonicotinoids thiacloprid and acetamiprid, through their commercial formulations (CF), to the soil invertebrates Folsomia candida, Eisenia andrei and Enchytraeus crypticus. Results obtained indicate that the relative reproductive sensitivity of the test organisms can be expressed as: F. candida = E. andrei > E. crypticus (for acetamiprid CF) and E. andrei > F. candida > E. crypticus (for thiacloprid CF). To extrapolate from laboratory test results to field conditions, predicted environmental concentrations (PECs) and predicted no-effect concentrations were derived. Calculated toxicity-exposure ratios (TER = EC10/PEC) were below trigger values for acetamiprid and thiacloprid, when estimated with initial PEC. While estimated hazard quotients (HQ = PEC/PNEC), were greater than the European Commission trigger value. Therefore, with the current data under standard environmental risk assessment schemes it can be considered that the risk of thiacloprid and acetamiprid to the soil compartment is unacceptable. However, further research into the effects of these substances on different organisms is required to increase the confidence in the risk assessment estimates for instance, by calculating hazardous concentrations using species sensitivity distribution curves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fauna Data

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of fauna (animals), and environmental change derived from animal fossils. Parameter keywords describe what was measured in this data set. Additional summary...

  1. Changes in the enchytraeid fauna of a moder soil beech stand after liming. Veraenderungen der Enchytraeidenfauna in einem Sauerhumus-Buchenwald nach Bestandeskalkung

    Schoch-Boesken, J. (Duesseldorf Univ. (Germany). 2. Zoologisches Inst.); Greven, H. (Duesseldorf Univ. (Germany). 2. Zoologisches Inst.)

    1989-01-01

    A survey of the enchytraeid fauna before and two years after liming of a beech forest and comparison with an untreated area (Luzulo-Fagetum) reveal changes in the number of individuals/m[sup 2], number of species. Shannon-Weaver-Index and Evenness, particularly when individual soil horizons are considered. These changes obviously are related to the elevated pH of the soil after liming. pH-preferences of enchytraeids, whose dominances are strongly affected by liming, are shown. (orig.)

  2. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River.

    Peng, Yan; Yang, Wanqin; Li, Jun; Wang, Bin; Zhang, Chuan; Yue, Kai; Wu, Fuzhong

    2015-01-01

    Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm) was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana) and oak (Quercus baronii) in ecotone; cypress (Cupressus chengiana) and clovershrub (Campylotropis macrocarpa) in dry valley; and fir (Abies faxoniana) and birch (Betula albosinensis) in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8%) was observed in the ecotone, and the lowest contribution (0.4%-25.8%) was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter decomposition and

  3. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River.

    Yan Peng

    Full Text Available Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana and oak (Quercus baronii in ecotone; cypress (Cupressus chengiana and clovershrub (Campylotropis macrocarpa in dry valley; and fir (Abies faxoniana and birch (Betula albosinensis in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8% was observed in the ecotone, and the lowest contribution (0.4%-25.8% was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter

  4. Soil shapes community structure through fire.

    Ojeda, Fernando; Pausas, Juli G; Verdú, Miguel

    2010-07-01

    Recurrent wildfires constitute a major selecting force in shaping the structure of plant communities. At the regional scale, fire favours phenotypic and phylogenetic clustering in Mediterranean woody plant communities. Nevertheless, the incidence of fire within a fire-prone region may present strong variations at the local, landscape scale. This study tests the prediction that woody communities on acid, nutrient-poor soils should exhibit more pronounced phenotypic and phylogenetic clustering patterns than woody communities on fertile soils, as a consequence of their higher flammability and, hence, presumably higher propensity to recurrent fire. Results confirm the predictions and show that habitat filtering driven by fire may be detected even in local communities from an already fire-filtered regional flora. They also provide a new perspective from which to consider a preponderant role of fire as a key evolutionary force in acid, infertile Mediterranean heathlands.

  5. Soil bacterial community responses to global changes

    Bergmark, Lasse

    competing and very contrasting plant types (Calluna and Deschampsia) dominated the vegetation. This led to Manuscript 3 where the impact and responses of the climate change manipulations on the microbial community composition was investigated under the contrasting vegetation types. Our results show a high......Soil bacteria and archaea are essential for ecosystem functioning and plant growth through their degradation of organic matter and turnover of nutrients. But since the majority of soil bacteria and archaea are unclassified and “nonculturable” the functionality of the microbial community and its...... overall importance for ecosystem function in soil is poorly understood. Global change factors may affect the diversity and functioning of soil prokaryotes and thereby ecosystem functioning. To gain a better understanding of the effects of global changes it is of fundamental importance to classify...

  6. Soil conservation according the international community

    Nocera, Rachele

    2015-01-01

    The land is a finite resource. Desertification, climate change, pollution, human settlements and human activities, threaten the integrity of the soil and its ability to 'nourishing the planet'. In a growing awareness, the international community is by multiplying the action to promote overall defence and soil conservation measures, starting with the fight against desertification, with the aim of arriving at a Land Degradation Neutrality to 2050. [it

  7. Mosquito fauna and arbovirus surveillance in a coastal Mississippi community after Hurricane Katrina.

    Foppa, Ivo M; Evans, Christopher L; Wozniak, Arthur; Wills, William

    2007-06-01

    Hurricane Katrina caused massive destruction and flooding along the Gulf Coast in August 2005. We collected mosquitoes and tested them for arboviral infection in a severely hurricane-damaged community to determine species composition and to assess the risk of a mosquito-borne epidemic disease in that community about 6 wk after the landfall of Hurricane Katrina. Light-trap collections yielded 8,215 mosquitoes representing 19 species, while limited gravid-trap collections were not productive. The most abundant mosquito species was Culex nigripalpus, which constituted 73.6% of all specimens. No arboviruses were detected in any of the mosquitoes collected in this survey, which did not support the assertion that human risk for arboviral infection was increased in the coastal community 6 wk after the hurricane.

  8. Microbial community composition affects soil fungistasis.

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J A; Kowalchuk, George A; van Veen, Johannes A

    2003-02-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis.

  9. Effects of sulfadiazine on soil bacterial communities

    Hangler, Martin

    as fertilizers on agricultural lands they represent a route for antibiotics into the soil environment where they may persist and affect levels of antibiotic resistance in soil microbial communities over time. In this work the level of tolerance to the antibiotic sulfadiazine (SDZ) was studied in a number......Combating bacterial infections by antibiotic treatment is one of the greatest achievements in medicine. However, once administered antibiotic compounds are often not metabolized completely in humans and animals and are thus excreted, eventually ending up in sewage sludge or manure. As both are used......, whereas only a very weak PICT response was found for unfertilized soil. In conclusion, I show that fertilized soils are more conducive for PICT development, and therefore presumably also for selection of antibiotic resistance in individual bacteria, than unfertilized soil and that SDZ-loaded sludge can...

  10. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  11. [Effects of environmental factors on the ant fauna of restinga community in Rio de Janeiro, Brazil].

    Vargas, André B; Mayhé-Nunes, Antônio J; Queiroz, Jarbas M; Souza, Guilherme O; Ramos, Elaine F

    2007-01-01

    The effects of environmental factors on the richness, diversity and abundance of ants were studied in the Restinga da Marambaia, south coast of Rio de Janeiro State, Brazil. The samples were taken using pitfall traps in August/2004 (winter) and March/2005 (summer) in three different vegetation types: (1) herbaceous ridge palmoid (homogeneous habitat); (2) shrub dune thicket and (3) ridge forest (heterogeneous habitats). At each habitat a range of environmental attributes was recorded: soil temperature and humidity, percentage of soil covering by litter and litter depth. Ninety-two ant species belonging to 36 genera and eight subfamilies were recorded. Density of ant species and abundance varied significantly between habitats and seasons; ant diversity varied only between habitats. Homogeneous habitat had lower ant species density, abundance and diversity than heterogeneous habitats. The two first variables were positively correlated with litter depth and both were higher in summer than in winter samples. There were more species of Ponerinae and Ectatomminae in heterogeneous than in the homogeneous habitat, whereas the Formicinae species were more abundant in the later.

  12. Response of soil microbial and invertebrate communities to tracked vehicle disturbance in tallgrass prairie

    P.S. Althoff; T.C. Todd; S.J. Thien; M.A. Callaham

    2009-01-01

    Soil biota drive fundamental ecosystem processes such as decomposition, nutrient cycling, and maintenance of soil structure. They are especially active in grassland ecosystems such as the tallgrass by heterotrophic soil organisms. Because both soil microbes and soil fauna display perturbation responses that integrate the physical, chemical, and biological changes to...

  13. Community Structure and Seasonal Occurrence of Avian Fauna in Wetthigan Wildlife Sanctuary Magway Division, Myanmar (June, 2002 to July, 2003)

    Khin Gyee Maung

    2005-10-01

    Wetthigan Wildlife sanctuary is a small wetland in the dryzone area of Myanmar. It was established under the Department of Agricultural and Forest Notification No.275, since 1939; although there is no conservation management at present. The study period lasted for June, 2002 to July, 2003. A total of 130 bird species and their habitat requirements have been recorded from the seasonal survey. Biological observation on the flora and fauna in the sanctuary is being studied and classified as far as possible. The physical and chemical aspects are being studied in Monsoon, Winter and Summer. And then the impact of human activities were also have been investigated around the sanctuary during the study period. In Myanmar the most publics are lack of proper awareness on importance of conservation of wildlife that is the main threat to birds and habitat. Therefore, during the study period, the Environmental Education Programme have been presented at five primary schools in the study area. Finally, discussion and recommendations for the conservation of the avian community of the Wetthigan Wildlife Sancturary have been made based on the results of the present studies.

  14. Impact of (+/-)-catechin on soil microbial communities.

    Inderjit; Kaur, Rajwant; Kaur, Surinder; Callaway, Ragan M

    2009-01-01

    Catechin is a highly studied but controversial allelochemical reported as a component of the root exudates of Centaurea maculosa. Initial reports of high and consistent exudation rates and soil concentrations have been shown to be highly inaccurate, but the chemical has been found in root exudates at and much less frequently in soil but sporadically at high concentrations. Part of the problem of detection and measuring phytotoxicity in natural soils may be due to the confounding effect of soil microbes, and little is known about interactions between catechin and soil microbes. Here we tested the effect of catechin on soil microbial communities and the feedback of these effects to two plant species. We found that catechin inhibits microbial activity in the soil we tested, and by doing so appears to promote plant growth in the microbe-free environment. This is in striking contrast to other in vitro studies, emphasizing the highly conditional effects of the chemical and suggesting that the phytotoxic effects of catechin may be exerted through the microbes in some soils.

  15. Diversity and Spatial-Temporal Distribution of Soil Macrofauna Communities Along Elevation in the Changbai Mountain, China.

    Yin, Xiuqin; Qiu, Lili; Jiang, Yunfeng; Wang, Yeqiao

    2017-06-01

    The understanding of patterns of vertical variation and diversity of flora and fauna along elevational change has been well established over the past century. However, it is unclear whether there is an elevational distribution pattern for soil fauna. This study revealed the diversity and spatial-temporal distribution of soil macrofauna communities in different vegetation zones from forest to alpine tundra along elevation of the Changbai Mountain, China. The abundance, richness, and Shannon-Wiener diversity index of soil macrofauna communities were compared in four distinguished vegetation zones including the coniferous and broadleaved mixed forest zone, the coniferous forest zone, the subalpine dwarf birch (Betula ermanii) forest zone, and the alpine tundra zone. Soil macrofauna were extracted in May, July, and September of 2009. In each season, the abundance and richness of the soil macrofauna decreased with the ascending elevation. The Shannon-Wiener diversity indices of the soil macrofauna were higher in the vegetation zones of lower elevation than of higher elevation. Significant differences were observed in the abundance, richness, and Shannon-Wiener diversity index for the studied vegetation zones. Soil macrofauna congregated mainly to the litter layer in the low-elevation areas and in the 0-5 cm soil layer of the higher elevation areas. The results emphasized that the diversity of soil macrofauna communities decreased as the elevation increased and possess the distinct characteristics of zonation in the mountain ecosystem. The diversity and distribution of soil macrofauna communities were influenced by mean annual precipitation, altitude, annual radiation quantity, and mean annual temperature. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Edafic fauna under different straw levels in sugarcane crop

    Rossiana Ribeiro Lino de Abreu

    2014-09-01

    Full Text Available The organisms that constitute the soil fauna are highly relevant to the litter-soil compartments, because they act in important processes, such as fragmentation of the plant material, decomposition and nutrients cycling. This study aimed to evaluate the invertebrate fauna community in soil cultivated with sugarcane harvested without burning, considering the maintenance of different straw levels on the soil surface. Treatments consisted of different amounts of sugarcane straw: T0% (0 Mg ha-1; T25% (2.2 Mg ha-1; T50% (5.1 Mg ha-1; T75% (7.8 Mg ha-1; and T100% (12.0 Mg ha-1. Samples were collected in the dry season and late wet season, with "Pitfall" traps. The number of individuals per trap per day during the dry period ranged from 11.1 (T0% to 14.7 (T25% and, in the rainy season, from 15.11 (T0% to 33.15 (T75%. The highest Shannon values were observed during the rainy season, and the lowest values for diversity and equitability resulted in a higher incidence of Araneae and Formicidae groups. The amount of straw on soil showed no significant influence on ecological indices and total and average wealth. The harvest time affected the number of individuals, species wealth and Shannon and Pielou's indices. The maintenance of straw on the soil surface benefitted the soil fauna, concerning the conventional crop management.

  17. EFFECT OF ”KOMBA-KOMBA” PRUNING COMPOST AND PLANTING TIME OF MUNGBEAN IN INTERCROPPING WITH MAIZE ON YIELD AND SOIL FAUNA

    Laode Sabaruddin

    2014-02-01

    Full Text Available Soil fauna plays an important role in decomposition and nutrient mineralization. The objective of this research was to study the effect of "komba-komba" compost and planting time of mungbean intercropped with maize on yield and soil fauna. The research was conducted in research station of Agricultural Faculty, Haluoleo University. The experiment was laid out using split plot design with two factors ("komba-komba" compost and planting time of mungbean intercropped with maize. The result indicated that the highest net assimilation rate (NAR of mungbean 5.78 g per cm2 per week was obtained in the komba-komba compost 10 ton per ha with planting time of mungbean at 14 days after planting (DAP maize whereas NAR of maize 5.50 g per cm2 per week was obtained in the planting time of mungbean at 14 DAP maize. Coleoptera and Hymenoptera (Formicidae were dominant and Shannon's diversity index ranged between 0.32 and 1.28. LER values tended to increase with the addition of "komba-komba" compost in soil and time variation of planting mungbean intercropped with maize. The relation between Shannon's diversity and LER values was variable.

  18. Perception of the use of the wild fauna and strategies of predial conservation with rural communities

    Diaz J, Luisa; Moreno E, Felix A

    2003-01-01

    The study was to determine the rural population perception in regards of uses and relative availability of wildlife in the Iscala watershed. This information was needed to easy community participation in decisions such as designation of area for natural resources conservation needed to be included into the territorial environmental zones. The field works focus on people of the Iscala Centro, Norte and Sur driveways during a six-month period, Semi structured interviews were applied to 53 people. A list of 75 species including birds and mammals, identified during the field trip was elaborated. Besides, based on direct or indirect observation the way people use wildlife was discriminated as follows: food (21,3%), medicine (10,7%), pets (20%). They commonly use alive animals or death animals sub products such: as meat, skin, peaks, fat, blood, secretions and urine. According to people, 47% of wildlife species are considered as harmful animals. Incorporation and enhancement of community knowledge on environmental management will allow biodiversity conservation on the Iscala watershed

  19. Soil Fauna: Macroarthropods

    M.A. Callaham; D.A. Crossley; D.C. Coleman

    2012-01-01

    The macroarthropods are those large enough to be sampled as individuals, in contrast to the microarthropods that are sampled by extraction from a fragment of habitat (Section 25.3; Dindal, 1990; Borror et al., 1992; Arnett, 1993). Although smaller macroarthropods overlap in size with the larger microarthropods (Figure 25.2), the distinction between them is a practical...

  20. Case study of microarthropod communities to assess soil quality in different managed vineyards

    Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M. R.; Corino, L.; Simoni, S.

    2015-07-01

    Land use influences the abundance and diversity of soil arthropods. The evaluation of the impact of different management strategies on soil quality is increasingly sought, and the determination of community structures of edaphic fauna can represent an efficient tool. In the area of Langhe (Piedmont, Italy), eight vineyards characterized for physical and chemical properties (soil texture, soil pH, total organic carbon, total nitrogen, calcium carbonate) were selected. We evaluated the effect of two types of crop management, organic and integrated pest management (IPM), on abundance and biodiversity of microarthropods living at the soil surface. Soil sampling was carried out in winter 2011 and spring 2012. All specimens were counted and determined up to the order level. The biodiversity analysis was performed using ecological indexes (taxa richness, dominance, Shannon-Wiener, Buzas and Gibson's evenness, Margalef, equitability, Berger-Parker), and the biological soil quality was assessed with the BSQ-ar index. The mesofauna abundance was affected by both the type of management and sampling time. On the whole, a higher abundance was in organic vineyards (N = 1981) than in IPM ones (N = 1062). The analysis performed by ecological indexes showed quite a high level of biodiversity in this environment, particularly in May 2012. Furthermore, the BSQ-ar values registered were similar to those obtained in preserved soils.

  1. Soil invertebrate communities in stressed European ecosystems

    Butovsky, R.O. [All-Russian Research Institute for Nature Protection, Sadki-Znamenskoje (Russian Federation)

    2003-07-01

    Intensive landuse in Europe results in continual physical and chemical changes to land and soil. Soil invertebrates can be used for development of single- and multi-species test-systems for soil quality assessment under anthropogenous stress. The research was performed in 18 terrestrial ecosystems stressed by common anthropogenous impacts: recreation pressure, motorway or industrial pollution in Central Russia, Belgium and the Netherlands in 1983-2001. All three types of human stresses (recreation, motorway and industrial) induced similar changes of macroartropod and microarthropod communities. In stressed macroarthropod communities the decrease of abundance of non-specialized predators, chewing phytophagans, saprophagans and increase of abundance of rhyzophagans, sucking phytophagans and specialized predators was observed. All types of stresses increased or stabilized species diversity in macro- (in carabid beetles communities mainly increase of Harpalus and Amara species number, in weevils - Sitona species number etc.) and microarthropod (e.g. Mesostigmata mites species) communities. In stressed ecosystems sucking phytophagans have selective advantage as compared to chewing phytophagans, endoparasitoids as compared to ectoparasitoids, specialized predators as compared to non-specialized predators etc., meaning that the feeding strategy play an important regulatory role in the community. Saprophagans and phytophagans, consuming chemicals, e.g. heavy metals in large quantities, are in general highly sensitive groups. The most sensitive groups belonged to first and second order consumers. In putative trophic chains in roadside ecosystems, non-specialized zoophagans (predators) contained less copper and zinc, than specialized zoophagans and parasitoids. When compared to the peculiarities of distribution of pesticides (e.g. DDT) and radionuclides (Sr90 and Cs137) it happens that in terrestrial ecosystems heavy metals were primarily accumulated (1) in soil

  2. Spatial distribution patterns of soil mite communities and their relationships with edaphic factors in a 30-year tillage cornfield in northeast China.

    Liu, Jie; Gao, Meixiang; Liu, Jinwen; Guo, Yuxi; Liu, Dong; Zhu, Xinyu; Wu, Donghui

    2018-01-01

    Spatial distribution is an important topic in community ecology and a key to understanding the structure and dynamics of populations and communities. However, the available information related to the spatial patterns of soil mite communities in long-term tillage agroecosystems remains insufficient. In this study, we examined the spatial patterns of soil mite communities to explain the spatial relationships between soil mite communities and soil parameters. Soil fauna were sampled three times (August, September and October 2015) at 121 locations arranged regularly within a 400 m × 400 m monitoring plot. Additionally, we estimated the physical and chemical parameters of the same sampling locations. The distribution patterns of the soil mite community and the edaphic parameters were analyzed using a range of geostatistical tools. Moran's I coefficient showed that, during each sampling period, the total abundance of the soil mite communities and the abundance of the dominant mite populations were spatially autocorrelated. The soil mite communities demonstrated clear patchy distribution patterns within the study plot. These patterns were sampling period-specific. Cross-semivariograms showed both negative and positive cross-correlations between soil mite communities and environmental factors. Mantel tests showed a significant and positive relationship between soil mite community and soil organic matter and soil pH only in August. This study demonstrated that in the cornfield, the soil mite distribution exhibited strong or moderate spatial dependence, and the mites formed patches with sizes less than one hundred meters. In addition, in this long-term tillage agroecosystem, soil factors had less influence on the observed pattern of soil mite communities. Further experiments that take into account human activity and spatial factors should be performed to study the factors that drive the spatial distribution of soil microarthropods.

  3. Bacterial Communities in Malagasy Soils with Differing Levels of Disturbance Affecting Botanical Diversity

    Blasiak, Leah C.; Schmidt, Alex W.; Andriamiarinoro, Honoré; Mulaw, Temesgen; Rasolomampianina, Rado; Applequist, Wendy L.; Birkinshaw, Chris; Rejo-Fienena, Félicitée; Lowry, Porter P.; Schmidt, Thomas M.; Hill, Russell T.

    2014-01-01

    Madagascar is well-known for the exceptional biodiversity of its macro-flora and fauna, but the biodiversity of Malagasy microbial communities remains relatively unexplored. Understanding patterns of bacterial diversity in soil and their correlations with above-ground botanical diversity could influence conservation planning as well as sampling strategies to maximize access to bacterially derived natural products. We present the first detailed description of Malagasy soil bacterial communities from a targeted 16S rRNA gene survey of greater than 290,000 sequences generated using 454 pyrosequencing. Two sampling plots in each of three forest conservation areas were established to represent different levels of disturbance resulting from human impact through agriculture and selective exploitation of trees, as well as from natural impacts of cyclones. In parallel, we performed an in-depth characterization of the total vascular plant morphospecies richness within each plot. The plots representing different levels of disturbance within each forest did not differ significantly in bacterial diversity or richness. Changes in bacterial community composition were largest between forests rather than between different levels of impact within a forest. The largest difference in bacterial community composition with disturbance was observed at the Vohibe forest conservation area, and this difference was correlated with changes in both vascular plant richness and soil pH. These results provide the first survey of Malagasy soil bacterial diversity and establish a baseline of botanical diversity within important conservation areas. PMID:24465484

  4. FAUNA SILVESTRE

    Luis Fernando Osorio, Director 5 Simp. For.

    2012-10-01

    Full Text Available Comité científico del simposio Director Luis Fernando Osorio Vélez, Ph.D. Universidad Nacional de Colombia, sede Medellín. Colombia. Fauna silvestre Brian C. Bock, Ph.D. Universidad de Antioquia. Colombia. Jaime Polanía Vorenberg, Ph.D. Universidad Nacional de Colombia. Colombia. Joan Gastón Zamora Abrego, Ph.D. Universidad Nacional de Colombia. Colombia. Néstor Javier Mancera Rodríguez, Ph.D. Universidad Nacional de Colombia. Colombia. Sergio Solari, Ph.D. Universidad de Antioquia. Colombia.

  5. Fauna Europaea

    Pape, Thomas; Beuk, Paul; Pont, Adrian Charles

    2015-01-01

    density, and the more fertile habitats are extensively cultivated. This has undoubtedly increased the extinction risk for numerous species of brachyceran flies, yet with the recent re-discovery of Thyreophoracynophila (Panzer), there are no known cases of extinction at a European level. However, few......Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all extant multicellular European terrestrial and freshwater animals and their geographical distribution at the level of countries and major islands (east of the Urals and excluding...

  6. Study of microarthropod communities to assess soil quality in different managed vineyards

    Gagnarli, Elena; Vignozzi, Nadia; Valboa, Giuseppe; Bouneb, Mabrouk; Corino, Lorenzo; Goggioli, Donatella; Guidi, Silvia; Lottero, Mariarosa; Tarchi, Franca; Simoni, Sauro

    2014-05-01

    Land use type influences the abundance and diversity of soil arthropods. The evaluation of the effects of different crop managements on soil quality is commonly requested; it can be pursued by means of the determination of communities' structure of edaphic fauna. The development and application of biological indices may represent an efficient mean to assess soil quality. We evaluated the effect of crop managements (organic and Integrated Pest Management-IPM) in some vineyards in Piedmont (Italy) on soil biota in relation to some physical and chemical characteristics of the soil. The study was performed in eleven sites, including seven organic and four IPM managed vineyards located in the Costigliole d'Asti area. Samplings were carried out during the winter 2011 and the spring 2012. Soil samples were collected using a cylindrical soil core sampler (3cm diameter x 30cm height): each sample was a cylindrical soil core which was equally subdivided to study arthropod communities at different depth ranges. Additional samples were collected and analyzed for the following soil physical and chemical properties: texture (sedigraph method), pH (1:2.5 soil/water), total organic carbon (TOC), total nitrogen (NT) and calcium carbonate (dry combustion by CN analyzer). The extraction of microarthropods was performed using the selector Berlese-Tullgren. All specimens were counted and determined up to the order level. The influence of soil properties and of agronomic practices on the abundance of mesofauna was evaluated by multivariate analysis (MANOVA). The biological soil quality was also defined through the determination of biotic indices such as the qualitative and quantitative QBSar (Quality Biological Soil - arthropods), and biodiversity indices such as species richness and indices of Shannon-Wiener (H') and Simpson (D). Overall, more than four thousands arthropods were collected and the highest abundance was in biological management with about 2:1 ratio (biological vs

  7. Análise multivariada da fauna edáfica em diferentes sistemas de preparo e cultivo do solo Multivariate analysis of soil fauna under different soil tillage and crop management systems

    Dilmar Baretta; Álvaro Luiz Mafra; Julio Cesar Pires Santos; Cassandro Vidal Talamini do Amarante; Ildegardis Bertol

    2006-01-01

    O objetivo deste trabalho foi avaliar o efeito de sistemas de preparo e cultivo do solo sobre a diversidade de animais da fauna edáfica, por meio de técnicas de análise multivariada. Na análise canônica discriminante, os preparos conservacionistas com sucessão de culturas foram separados em relação aos tratamentos com rotação de culturas. Os grupos Acarina, Hymenoptera, Isopoda e Collembola, e o índice de Shannon (H) foram os atributos que mais contribuíram para separar os tratamentos. A anál...

  8. Diversity and Abundance of Soil Animals as Influenced by Long-Term Fertilization in Grey Desert Soil, China

    Maibo Jiang

    2015-08-01

    Full Text Available The relationship between soil fauna and different fertilizer management practices is of growing concern. The aim of this research was to investigate the response of soil fauna to fertilization regimes, to explore the relationships among the community of soil animals, soil moisture and crop yields. The application of organic fertilizers (i.e., sheep manure or crop residues increased crop yields and promoted the number of individuals and species of soil fauna owing to the exogenous organic matter that fertilizers provided for the survival and development of soil fauna. Furthermore, the treatments that applied sheep manure (i.e., sheep manure only or nitrogen, phosphorus, potassium and sheep manure plus were significantly beneficial for increasing crop yields and diversity of soil fauna compared to treatments with crop residues returned (i.e., crop residues returned only or nitrogen, phosphorus, potassium and crop residues returned to the field (p < 0.05 due to the response of soil fauna to diverse exogenous nutrients and the effect of soil fertility. Therefore, the finding that soil fauna abundance is significantly positively correlated with soil moisture and crop yield may mean the effects of fertilizer applications on soil animals were partly masked by the soil moisture and crop yield.

  9. Nematode Community Composition under Various Irrigation Schemes in a Citrus Soil Ecosystem.

    Porazinska, D L; McSorley, R; Duncan, L W; Graham, J H; Wheaton, T A; Parsons, L R

    1998-06-01

    Interest in the sustainability of farming practices has increased in response to environmental problems associated with conventional agricultural management often adopted for the production of herbaceous crops, ornamentals, and fruit crops. Availability of measures of the status of the soil ecosystem is of immediate importance, particularly for environmental assessment and monitoring programs. This study investigated the effects of various irrigation regimes (an example of an agricultural management practice) on the structure of the nematode fauna in a citrus orchard in the sandy ridge area of Central Florida. Ecological measures such as community structure indices, diversity indices, and maturity indices were assessed and related to irrigation intensity. Maturity index was an effective measure in distinguishing differences between irrigation regimes, whereas other indices of community structure were not. Of various nematode genera and trophic groups, only omnivores and the omnivore genera. Aporcelaimellus and Eudorylaimus responded to irrigation treatments.

  10. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  11. Earthworms and priming of soil organic matter - The impact of food sources, food preferences and fauna - microbiota interactions

    Potthoff, Martin; Wichern, Florian; Dyckmans, Jens; Joergensen, Rainer Georg

    2016-04-01

    Earthworms deeply interact with the processes of soil organic matter turnover in soil. Stabilization of carbon by soil aggregation and in the humus fraction of SOM are well known processes related to earthworm activity and burrowing. However, recent research on priming effects showed inconsistent effects for the impact of earthworm activity. Endogeic earthworms can induce apparent as well as true positive priming effects. The main finding is almost always that earthworm increase the CO2 production from soil. The sources of this carbon release can vary and seem to depend on a complex interaction of quantity and quality of available carbon sources including added substrates like straw or other compounds, food preferences and feeding behavior of earthworms, and soil properties. Referring to recent studies on earthworm effects on soil carbon storage and release (mainly Eck et al. 2015 Priming effects of Aporrectodea caliginosa on young rhizodeposits and old soil organic matter following wheat straw addition, European Journal of Soil Biology 70:38-45; Zareitalabad et al. 2010 Decomposition of 15N-labelled maize leaves in soil affected by endogeic geophagous Aporrectodea caliginosa, Soil Biology and Biochemistry 42(2):276-282; and Potthoff et al. 2001 Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought, Soil Biology and Biochemistry 33(4):583-591) we summaries the knowledge on earthworms and priming and come up with a conceptual approach and further research needs.

  12. The effect of native and introduced biofuel crops on the composition of soil biota communities

    Heděnec, Petr; Novotný, D.; Usťak, S.; Cajthaml, Tomáš; Slejška, A.; Šimáčková, H.; Honzík, R.; Kovářová, M.; Frouz, Jan

    2014-01-01

    Roč. 60, January (2014), s. 137-146 ISSN 0961-9534 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : soil fauna * energy crops * composition of soil fungi * microbial biomass * basal soil respiration Subject RIV: EH - Ecology, Behaviour Impact factor: 3.394, year: 2014

  13. Plant species richness sustains higher trophic levels of soil nematode communities after consecutive environmental perturbations.

    Cesarz, Simone; Ciobanu, Marcel; Wright, Alexandra J; Ebeling, Anne; Vogel, Anja; Weisser, Wolfgang W; Eisenhauer, Nico

    2017-07-01

    The magnitude and frequency of extreme weather events are predicted to increase in the future due to ongoing climate change. In particular, floods and droughts resulting from climate change are thought to alter the ecosystem functions and stability. However, knowledge of the effects of these weather events on soil fauna is scarce, although they are key towards functioning of terrestrial ecosystems. Plant species richness has been shown to affect the stability of ecosystem functions and food webs. Here, we used the occurrence of a natural flood in a biodiversity grassland experiment that was followed by a simulated summer drought experiment, to investigate the interactive effects of plant species richness, a natural flood, and a subsequent summer drought on nematode communities. Three and five months after the natural flooding, effects of flooding severity were still detectable in the belowground system. We found that flooding severity decreased soil nematode food-web structure (loss of K-strategists) and the abundance of plant feeding nematodes. However, high plant species richness maintained higher diversity and abundance of higher trophic levels compared to monocultures throughout the flood. The subsequent summer drought seemed to be of lower importance but reversed negative flooding effects in some cases. This probably occurred because the studied grassland system is well adapted to drought, or because drought conditions alleviated the negative impact of long-term soil waterlogging. Using soil nematodes as indicator taxa, this study suggests that high plant species richness can maintain soil food web complexity after consecutive environmental perturbations.

  14. Soil microbial community successional patterns during forest ecosystem restoration.

    Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V

    2011-09-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.

  15. Effects of heavy metals on soil microbial community

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  16. [Characteristics of ground-dwelling soil macro-arthropod communities in a biodiversity monitoring plot of black soil cropland, northeastern China].

    Liu, Jie; Gao, Mie Xiang; Wu, Dong Hui

    2017-12-01

    changed. It was indicated that biodiversity plot monitoring of black soil cropland had become important means to solve the formation and maintenance mechanism of soil fauna community through large-scale and long-term investigation.

  17. Microbial community composition of transiently wetted Antarctic Dry Valley soils.

    Niederberger, Thomas D; Sohm, Jill A; Gunderson, Troy E; Parker, Alexander E; Tirindelli, Joëlle; Capone, Douglas G; Carpenter, Edward J; Cary, Stephen C

    2015-01-01

    During the summer months, wet (hyporheic) soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DVs) become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here, we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~5 μg/cm(3) for chlorophyll a, respectively). Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira, and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridiplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

  18. Soil protist communities form a dynamic hub in the soil microbiome

    Xiong, Wu; Jousset, Alexandre; Guo, Sai; Karlsson, Ida; Zhao, Qingyun; Wu, Huasong; Kowalchuk, George A.; Shen, Qirong; Li, Rong; Geisen, Stefan

    2018-01-01

    Soil microbes are essential for soil fertility. However, most studies focus on bacterial and/or fungal communities, while the top-down drivers of this microbiome composition, protists, remain poorly understood. Here, we investigated how soil amendments affect protist communities and inferred

  19. Plant diversity and plant identity influence Fusarium communities in soil.

    LeBlanc, Nicholas; Kinkel, Linda; Kistler, H Corby

    2017-01-01

    Fusarium communities play important functional roles in soil and in plants as pathogens, endophytes, and saprotrophs. This study tests how rhizosphere Fusarium communities may vary with plant species, changes in the diversity of the surrounding plant community, and soil physiochemical characteristics. Fusarium communities in soil associated with the roots of two perennial prairie plant species maintained as monocultures or growing within polyculture plant communities were characterized using targeted metagenomics. Amplicon libraries targeting the RPB2 locus were generated from rhizosphere soil DNAs and sequenced using pyrosequencing. Sequences were clustered into operational taxonomic units (OTUs) and assigned a taxonomy using the Evolutionary Placement Algorithm. Fusarium community composition was differentiated between monoculture and polyculture plant communities, and by plant species in monoculture, but not in polyculture. Taxonomic classification of the Fusarium OTUs showed a predominance of F. tricinctum and F. oxysporum as well of the presence of a clade previously only found in the Southern Hemisphere. Total Fusarium richness was not affected by changes in plant community richness or correlated with soil physiochemical characteristics. However, OTU richness within two predominant phylogenetic lineages within the genus was positively or negatively correlated with soil physiochemical characteristics among samples within each lineage. This work shows that plant species, plant community richness, and soil physiochemical characteristics may all influence the composition and richness of Fusarium communities in soil.

  20. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico.

    Matthew W. Warren; Xiaoming Zou

    2002-01-01

    Tree plantations are increasingly common in tropical landscapes due to their multiple uses. Plantations vary in structure and composition, and these variations may alter soil fauna communities. Recent studies have demonstrated the important role of soil fauna in the regulation of plant litter decomposition in the tropics. However, little is known about how plantation...

  1. Soil microbial communities: Influence of geographic location and hydrocarbon pollutants

    Maila, MP

    2006-02-01

    Full Text Available The importance and relevance of the geographical origin of the soil sample and the hydrocarbons in determining the functional or species diversity within different bacterial communities was evaluated using the community level physiological profiles...

  2. Community level patterns in diverse systems: A case study of litter fauna in a Mexican pine-oak forest using higher taxa surrogates and re-sampling methods

    Moreno, Claudia E.; Guevara, Roger; Sánchez-Rojas, Gerardo; Téllez, Dianeis; Verdú, José R.

    2008-01-01

    Environmental assessment at the community level in highly diverse ecosystems is limited by taxonomic constraints and statistical methods requiring true replicates. Our objective was to show how diverse systems can be studied at the community level using higher taxa as biodiversity surrogates, and re-sampling methods to allow comparisons. To illustrate this we compared the abundance, richness, evenness and diversity of the litter fauna in a pine-oak forest in central Mexico among seasons, sites and collecting methods. We also assessed changes in the abundance of trophic guilds and evaluated the relationships between community parameters and litter attributes. With the direct search method we observed differences in the rate of taxa accumulation between sites. Bootstrap analysis showed that abundance varied significantly between seasons and sampling methods, but not between sites. In contrast, diversity and evenness were significantly higher at the managed than at the non-managed site. Tree regression models show that abundance varied mainly between seasons, whereas taxa richness was affected by litter attributes (composition and moisture content). The abundance of trophic guilds varied among methods and seasons, but overall we found that parasitoids, predators and detrivores decreased under management. Therefore, although our results suggest that management has positive effects on the richness and diversity of litter fauna, the analysis of trophic guilds revealed a contrasting story. Our results indicate that functional groups and re-sampling methods may be used as tools for describing community patterns in highly diverse systems. Also, the higher taxa surrogacy could be seen as a preliminary approach when it is not possible to identify the specimens at a low taxonomic level in a reasonable period of time and in a context of limited financial resources, but further studies are needed to test whether the results are specific to a system or whether they are general

  3. Effects of sewage sludge addition to Norway spruce seedlings on nitrogen availability and soil fauna in clear-cut areas

    Nieminen, Jouni K.; Räisänen, Mikko

    2013-01-01

    Anaerobically digested and composted sewage sludge (CSS) has been suggested to be a slow-release fertilizer in forestry and an alternative to quick-release inorganic fertilizers. The effects of CSS with or without added carbohydrate on inorganic nitrogen availability and on soil animals were tested in two Norway spruce plantations. Half of the seedlings were individually fertilized with CSS, and the rest were left as controls. Solid sucrose was added to half of the fertilized and untreated seedlings. Soil samples were taken in the autumn in the first and the second year after the treatments. CSS increased soil NH 4 –N (2100%), the proportion of soil NO 3 –N, and the N concentration of spruce needles. CSS greatly reduced the abundances of enchytraeids, tardigrades and collembolans, but increased the proportion and abundance of bacterial-feeding nematodes irrespective of carbohydrate addition. A better stabilization method needs to be developed before CSS can be used as a forest fertilizer. -- Highlights: •Spruces were fertilized with anaerobically digested and composted sewage sludge (CSS). •CSS increased soil N, proportion of NO 3 –N, and N concentration of spruce needles. •CSS reduced the abundances of enchytraeids, tardigrades and collembolans. •CSS increased the proportion and abundance of bacterial-feeding nematodes. •Sucrose did not reduce N pools or counteract negative CSS effects on soil animals. -- Composting and carbohydrate addition do not mitigate the harmful effects of anaerobically digested sewage sludge in boreal forest soil

  4. How ecosystems change following invasion by Robinia pseudoacacia: Insights from soil chemical properties and soil microbial, nematode, microarthropod and plant communities.

    Lazzaro, Lorenzo; Mazza, Giuseppe; d'Errico, Giada; Fabiani, Arturo; Giuliani, Claudia; Inghilesi, Alberto F; Lagomarsino, Alessandra; Landi, Silvia; Lastrucci, Lorenzo; Pastorelli, Roberta; Roversi, Pio Federico; Torrini, Giulia; Tricarico, Elena; Foggi, Bruno

    2018-05-01

    Biological invasions are a global threat to biodiversity. Since the spread of invasive alien plants may have many impacts, an integrated approach, assessing effects across various ecosystem components, is needed for a correct understanding of the invasion process and its consequences. The nitrogen-fixing tree Robinia pseudoacacia (black locust) is a major invasive species worldwide and is used in forestry production. While its effects on plant communities and soils are well known, there have been few studies on soil fauna and microbes. We investigated the impacts of the tree on several ecosystem components, using a multi-trophic approach to combine evidence of soil chemical properties and soil microbial, nematode, microarthropod and plant communities. We sampled soil and vegetation in managed forests, comparing those dominated by black locust with native deciduous oak stands. We found qualitative and quantitative changes in all components analysed, such as the well-known soil nitrification and acidification in stands invaded by black locust. Bacterial richness was the only component favoured by the invasion. On the contrary, abundance and richness of microarthropods, richness of nematodes, and richness and diversity of plant communities decreased significantly in invaded stands. The invasion process caused a compositional shift in all studied biotic communities and in relationships between the different ecosystem components. We obtained clear insights into the effects of invasion of managed native forests by black locust. Our data confirms that the alien species transforms several ecosystem components, modifying the plant-soil community and affecting biodiversity at different levels. Correct management of this aggressive invader in temperate forests is urgently required. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Analysis of soil whole- and inner-microaggregate bacterial communities

    Mummey, D L; Stahl, P D [University of Wyoming, Laramie, WY (United States). Dept. of Renewable Resources

    2004-07-01

    Although soil structure largely determines energy flows and the distribution and composition of soil microhabitats, little is known about how microbial community composition is influenced by soil structural characteristics and organic matter compartmentalization dynamics. A UV irradiation-based procedure was developed to specifically isolate inner-microaggregate microbial communities, thus providing the means to analyze these communities in relation to their environment. Whole- and inner-microaggregate fractions of undisturbed soil and soils reclaimed after disturbance by surface coal mining were analyzed using 16S rDNA terminal restriction fragment polymorphism (T-RFLP) and sequence analyses to determine salient bacterial community structural characteristics. We hypothesized that inner-microaggregate environments select for definable microbial communities and that, due to their sequestered environment, inner-microaggregate communities would not be significantly impacted by disturbance. However, T-RFLP analysis indicated distinct differences between bacterial populations of inner-microaggregates of undisturbed and reclaimed soils. While both undisturbed and reclaimed inner-microaggregate bacterial communities were dominated by Actinobacteria, undisturbed soils contained only Actinobacteridae, while in inner-microaggregates of reclaimed soils Rubrobacteridae predominate. Spatial stratification of division-level lineages within microaggregates was also seen. The fractionation methods employed in this study therefore represent a valuable tool for defining relationships between biodiversity and soil structure.

  6. Bacterial community structure at the microscale in two different soils

    Michelland, R.; Thioulouse, J.; Kyselková, Martina; Grundmann, G.L.

    2016-01-01

    Roč. 72, č. 3 (2016), s. 717-724 ISSN 0095-3628 Institutional support: RVO:60077344 Keywords : abundancy-occupancy relationship * bacteria community structure * frequency-occupancy relationship * microscale in soil * soil microbial diversity * soil structure Subject RIV: EH - Ecology, Behaviour Impact factor: 3.630, year: 2016

  7. Vertebrate herbivores influence soil nematodes by modifying plant communities

    Veen, G. F. (Ciska); Olff, Han; Duyts, Henk; van der Putten, Wim H.

    Abiotic soil properties, plant community composition, and herbivory all have been reported as important factors influencing the composition of soil communities. However, most studies thus far have considered these factors in isolation, whereas they strongly interact in the field. Here, we study how

  8. Managing soil microbial communities in grain production systems through cropping practices

    Gupta, Vadakattu

    2013-04-01

    Cropping practices can significantly influence the composition and activity of soil microbial communities with consequences to plant growth and production. Plant type can affect functional capacity of different groups of biota in the soil surrounding their roots, rhizosphere, influencing plant nutrition, beneficial symbioses, pests and diseases and overall plant health and crop production. The interaction between different players in the rhizosphere is due to the plethora of carbon and nutritional compounds, root-specific chemical signals and growth regulators that originate from the plant and are modulated by the physico-chemical properties of soils. A number of plant and environmental factors and management practices can influence the quantity and quality of rhizodeposition and in turn affect the composition of rhizosphere biota communities, microbe-fauna interactions and biological processes. Some of the examples of rhizosphere interactions that are currently considered important are: proliferation of plant and variety specific genera or groups of microbiota, induction of genes involved in symbiosis and virulence, promoter activity in biocontrol agents and genes correlated with root adhesion and border cell quality and quantity. The observation of variety-based differences in rhizodeposition and associated changes in rhizosphere microbial diversity and function suggests the possibility for the development of varieties with specific root-microbe interactions targeted for soil type and environment i.e. designer rhizospheres. Spatial location of microorganisms in the heterogeneous field soil matrix can have significant impacts on biological processes. Therefore, for rhizosphere research to be effective in variable seasonal climate and soil conditions, it must be evaluated in the field and within a farming systems context. With the current focus on security of food to feed the growing global populations through sustainable agricultural production systems there is a

  9. Effects of waste water irrigation on soil properties and soil fauna of spinach fields in a West African urban vegetable production system.

    Stenchly, Kathrin; Dao, Juliane; Lompo, Désiré Jean-Pascal; Buerkert, Andreas

    2017-03-01

    The usage of inadequately processed industrial waste water (WW) can lead to strong soil alkalinity and soil salinization of agricultural fields with negative consequences on soil properties and biota. Gypsum as a soil amendment to saline-sodic soils is widely used in agricultural fields to improve their soil physical, chemical and hence biological properties. This study aimed at analysing the effects of intensive WW irrigation on the structure and composition of soil-dwelling arthropods on spinach fields (Spinacia oleracea L.) in a West African urban vegetable production system. We used gypsum as a soil amendment with the potential to alleviate soil chemical stress resulting in a potentially positive impact on soil arthropods. A total of 32 plots were established that showed a gradient in soil pH ranging from slight to strong soil alkalinity and that were irrigated with WW (n = 12) or clean water (CW; n = 20), including eight plots into which gypsum was incorporated. Our study revealed a high tolerance of soil-dwelling arthropods for alkaline soils, but spinach fields with increased soil electrical conductivity (EC) showed a reduced abundance of Hymenoptera, Diptera and Auchenorrhyncha. Arthropod abundance was positively related to a dense spinach cover that in turn was not affected by WW irrigation or soil properties. Gypsum application reduced soil pH but increased soil EC. WW irrigation and related soil pH affected arthropod composition in the investigated spinach fields which may lead to negative effects on agronomical important arthropod groups such as pollinators and predators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Prokaryotic communities differ along a geothermal soil photic gradient.

    Meadow, James F; Zabinski, Catherine A

    2013-01-01

    Geothermal influenced soils exert unique physical and chemical limitations on resident microbial communities but have received little attention in microbial ecology research. These environments offer a model system in which to investigate microbial community heterogeneity and a range of soil ecological concepts. We conducted a 16S bar-coded pyrosequencing survey of the prokaryotic communities in a diatomaceous geothermal soil system and compared communities across soil types and along a conspicuous photic depth gradient. We found significant differences between the communities of the two different soils and also predictable differences between samples taken at different depths. Additionally, we targeted three ecologically relevant bacterial phyla, Cyanobacteria, Planctomycetes, and Verrucomicrobia, for clade-wise comparisons with these variables and found strong differences in their abundances, consistent with the autecology of these groups.

  11. Effects of biochar blends on microbial community composition in two coastal plain soils

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....

  12. Minerals in soil select distinct bacterial communities in their microhabitats.

    Carson, Jennifer K; Campbell, Louise; Rooney, Deirdre; Clipson, Nicholas; Gleeson, Deirdre B

    2009-03-01

    We tested the hypothesis that different minerals in soil select distinct bacterial communities in their microhabitats. Mica (M), basalt (B) and rock phosphate (RP) were incubated separately in soil planted with Trifolium subterraneum, Lolium rigidum or left unplanted. After 70 days, the mineral and soil fractions were separated by sieving. Automated ribosomal intergenic spacer analysis was used to determine whether the bacterial community structure was affected by the mineral, fraction and plant treatments. Principal coordinate plots showed clustering of bacterial communities from different fraction and mineral treatments, but not from different plant treatments. Permutational multivariate anova (permanova) showed that the microhabitats of M, B and RP selected bacterial communities different from each other in unplanted and L. rigidum, and in T. subterraneum, bacterial communities from M and B differed (Ppermanova also showed that each mineral fraction selected bacterial communities different from the surrounding soil fraction (P<0.05). This study shows that the structure of bacterial communities in soil is influenced by the mineral substrates in their microhabitat and that minerals in soil play a greater role in bacterial ecology than simply providing an inert matrix for bacterial growth. This study suggests that mineral heterogeneity in soil contributes to the spatial variation in bacterial communities.

  13. [Effect of the soil contamination with a potato cyst-forming nematode on the community structure of soil-inhabiting nematodes].

    Gruzdeva, L I; Suzhchuk, A A

    2008-01-01

    Nematode community structure of the potato fields with different infection levels of potato cyst-forming nematode (PCN) such as 10, 30 and 214 cysts per 100 g of soil has been investigated. The influence of specialized parasite on nematode fauna and dominance character of different ecological-trophic groups were described. Parasitic nematode genera in natural meadow biocenosis and agrocenoses without PCN are Paratylenchus, Tylenchorhynchus, and Helicotylenchus. It is established, that Paratylenchus nanus was the prevalent species among plant parasites at low infection level. Larvae of Globodera prevailed in the soil with middle and high infection levels and substituted individuals of other genera of parasitic nematodes. The fact of increase in number of hyphal-feeding nematode Aphelenchus avenae was revealed.

  14. Effects of sewage sludge addition to Norway spruce seedlings on nitrogen availability and soil fauna in clear-cut areas.

    Nieminen, Jouni K; Räisänen, Mikko

    2013-07-01

    Anaerobically digested and composted sewage sludge (CSS) has been suggested to be a slow-release fertilizer in forestry and an alternative to quick-release inorganic fertilizers. The effects of CSS with or without added carbohydrate on inorganic nitrogen availability and on soil animals were tested in two Norway spruce plantations. Half of the seedlings were individually fertilized with CSS, and the rest were left as controls. Solid sucrose was added to half of the fertilized and untreated seedlings. Soil samples were taken in the autumn in the first and the second year after the treatments. CSS increased soil NH4-N (2100%), the proportion of soil NO3-N, and the N concentration of spruce needles. CSS greatly reduced the abundances of enchytraeids, tardigrades and collembolans, but increased the proportion and abundance of bacterial-feeding nematodes irrespective of carbohydrate addition. A better stabilization method needs to be developed before CSS can be used as a forest fertilizer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The effect of topsoil removal in restored heathland on soil fauna, topsoil microstructure, and cellulose decomposition: implications for ecosystem restoration

    Frouz, Jan; van Diggelen, R.; Pižl, Václav; Starý, Josef; Háněl, Ladislav; Tajovský, Karel; Kalčík, Jiří

    2009-01-01

    Roč. 18, č. 14 (2009), s. 3963-3978 ISSN 0960-3115 Institutional research plan: CEZ:AV0Z60660521 Keywords : restoration * soil formation * oribatid mites Subject RIV: EH - Ecology, Behaviour Impact factor: 2.066, year: 2009

  16. Effect of farmyard manure and green manure crops on populations of mycophagous soil fauna and Rhizoctonia stem canker of potato

    Lootsma, M.; Scholte, K.

    1998-01-01

    Effects of organic soil amendments on populations of mycophagous springtails and nematodes and on Rhizoctonia solani stem canker of potato were investigated in two field experiments each lasting two years. The organic amendments consisted of three green manure crops (white mustard, forage rape and

  17. Windstorms as mediator of soil nematode community changes: Evidence from European spruce forest

    Renčo M.

    2017-03-01

    Full Text Available Nematode communities in a Norway spruce forest in High Tatra National Park, Slovakia were monitored for the period of several years (2006 and 2013. Unfortunately, in May 2014 natural windstorm damaged the forest. This disastrous event, together with preliminary obtained results allowed us to compare the direct impact of windstorm damage of forest habitat on soil nematode assemblages. The forest destruction by windstorm had a significant effect on the total nematode abundance, the abundance of omnivores and herbivores, as well as the nematode species diversity. The most dominant species, representing 55 % of the total nematode fauna, in the plot studied were Acrobeloides nanus followed by Malenchus exiguus, Filenchus vulgaris, Plectus communis, Plectus parvus and Tylencholaimus mirabilis. The abundance of bacterivorous signifi cantly increased after the windstorm, meanwhile the abundance of omnivores, fungivores, and herbivores ectoparasites and epidermal/root hair feeders showed an opposite trend. Of the evaluative indicators, Shannon species diversity (H’spp, maturity index (MI, maturity index 2-5 (MI2-5, sigma maturity index (ΣMI, enrichment index (EI and structure index (SI decreased significantly after windstorm. The EI and SI indexes characterized soil ecosystems before windstorm (2006 - 2013 as maturing with low or moderate disturbance, but soil ecosystems shortly after the windstorm (2014 were degraded and nutrient depleted. This also corresponded with graphical display of metabolic footprints characteristics of soil food web. Overall, the nematode communities differed significantly before and after forest damage. These results suggest the role of nematode communities as indicators of environment condition quality or its disruption.

  18. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    Yendi E. Navarro-Noya

    2015-01-01

    Full Text Available In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5, indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances clearly clustered the communities by pH.

  19. Soil communities promote temporal stability and species asynchrony in experimental grassland communities

    Pellkofer, Sarah; Van Der Heijden, Marcel G A; Schmid, Bernhard; Wagg, Cameron

    2016-01-01

    Background Over the past two decades many studies have demonstrated that plant species diversity promotes primary productivity and stability in grassland ecosystems. Additionally, soil community characteristics have also been shown to influence the productivity and composition of plant communities,

  20. Microbial community composition affects soil fungistasis

    De Boer, W.; Verheggen, P.; Klein Gunnewiek, P.J.A.; Kowalchuk, G.A.; Van Veen, J.A.

    2003-01-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis)

  1. Effects of microcystins contamination on soil enzyme activities and microbial community in two typical lakeside soils.

    Cao, Qing; Steinman, Alan D; Su, Xiaomei; Xie, Liqiang

    2017-12-01

    A 30-day indoor incubation experiment was conducted to investigate the effects of different concentrations of microcystin (1, 10, 100 and 1000 μg eq. MC-LR L -1 ) on soil enzyme activity, soil respiration, physiological profiles, potential nitrification, and microbial abundance (total bacteria, total fungi, ammonia-oxidizing bacteria and archaea) in two lakeside soils in China (Soil A from the lakeside of Lake Poyanghu at Jiujiang; Soil B from the lakeside of Lake Taihu at Suzhou). Of the enzymes tested, only phenol oxidase activity was negatively affected by microcystin application. In contrast, dehydrogenase activity was stimulated in the 1000 μg treatment, and a stimulatory effect also occurred with soil respiration in contaminated soil. The metabolic profiles of the microbial communities indicated that overall carbon metabolic activity in the soils treated with high microcystin concentrations was inhibited, and high concentrations of microcystin also led to different patterns of potential carbon utilization. High microcystin concentrations (100, 1000 μg eq. MC-LR L -1 in Soil A; 10, 100 1000 μg eq. MC-LR L -1 in Soil B) significantly decreased soil potential nitrification rate. Furthermore, the decrease in soil potential nitrification rate was positively correlated with the decrease of the amoA gene abundance, which corresponds to the ammonia-oxidizing bacterial community. We conclude that application of microcystin-enriched irrigation water can significantly impact soil microbial community structure and function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils.

    Alguacil, Maria Del Mar; Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-06-01

    We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels) were the main factors

  3. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils

    Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-01-01

    ABSTRACT We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. IMPORTANCE Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels

  4. Evaluation of soil microbial communities as influenced by crude oil ...

    sunny t

    2015-05-13

    May 13, 2015 ... Positive soil – microbes - plant interactions were observed. Key words: Species ... community composition based on groupings of fatty acids. (Broughton and ... microorganisms to adapt to changed environmental conditions ...

  5. Soil microbial community response to aboveground vegetation and ...

    lenovo

    2011-11-21

    Nov 21, 2011 ... magnitude, activity, structure and function of soil microbial community may .... CaO were quantified by inductively coupled plasmaatomic emission spectroscopy ...... Validation of signature polarlipid fatty acid biomarkers for ...

  6. Distinct soil bacterial communities revealed under a diversely managed agroecosystem.

    Raymon S Shange

    Full Text Available Land-use change and management practices are normally enacted to manipulate environments to improve conditions that relate to production, remediation, and accommodation. However, their effect on the soil microbial community and their subsequent influence on soil function is still difficult to quantify. Recent applications of molecular techniques to soil biology, especially the use of 16S rRNA, are helping to bridge this gap. In this study, the influence of three land-use systems within a demonstration farm were evaluated with a view to further understand how these practices may impact observed soil bacterial communities. Replicate soil samples collected from the three land-use systems (grazed pine forest, cultivated crop, and grazed pasture on a single soil type. High throughput 16S rRNA gene pyrosequencing was used to generate sequence datasets. The different land use systems showed distinction in the structure of their bacterial communities with respect to the differences detected in cluster analysis as well as diversity indices. Specific taxa, particularly Actinobacteria, Acidobacteria, and classes of Proteobacteria, showed significant shifts across the land-use strata. Families belonging to these taxa broke with notions of copio- and oligotrphy at the class level, as many of the less abundant groups of families of Actinobacteria showed a propensity for soil environments with reduced carbon/nutrient availability. Orders Actinomycetales and Solirubrobacterales showed their highest abundance in the heavily disturbed cultivated system despite the lowest soil organic carbon (SOC values across the site. Selected soil properties ([SOC], total nitrogen [TN], soil texture, phosphodiesterase [PD], alkaline phosphatase [APA], acid phosphatase [ACP] activity, and pH also differed significantly across land-use regimes, with SOM, PD, and pH showing variation consistent with shifts in community structure and composition. These results suggest that use of

  7. Fungal communities in soils along a vegetative ecotone.

    Karst, Justine; Piculell, Bridget; Brigham, Christy; Booth, Michael; Hoeksema, Jason D

    2013-01-01

    We investigated the community composition and diversity of soil fungi along a sharp vegetative ecotone between coastal sage scrub (CSS) and nonnative annual grassland habitat at two sites in coastal California. USA- We pooled soil samples across 29 m transects on either side of the ecotone at each of the two sites, and. using clone libraries of fungal ribosomal DNA, we identified 280 operational taxonomic units (OTUs) from a total 40 g soil. We combined information from partial LSU and ITS sequences and found that the majority of OTUs belonged to the phylum Ascomycota, followed by Basidiomycota. Within the Ascomycota. a quarter of OTUs were Sordariomycetes. 17% were Leotiomycet.es, 16% were Dothideomycetes and the remaining OTUs were distributed among the classes Eurotiomycetes, Pezizomycetes, Lecanoromycetes, Orbiliomycetes and Arthoniomycetes. Within the Basidiomycota. all OTUs but one belonged to the subphylum Agaricomycotina. We also sampled plant communities at the same sites to offer a point of comparison for patterns in richness of fungal communities. Fungal communities had higher alpha and beta diversity than plant communities; fungal communities were approximately 20 times as rich as plant communities and the majority of OTUs were found in single soil samples. Soils harbored a unique mycoflora that did not reveal vegetative boundaries or site differences. High alpha and beta diversity and possible sampling artifacts necessitate extensive sampling to reveal differentiation in these fungal communities.

  8. Plant community development is affected by nutrients and soil biota

    De Deyn, G.B.; Raaijmakers, C.E.; Van der Putten, W.H.

    2004-01-01

    1 Plant community development depends to a great extent on the availability of soil nutrients, but recent studies underline the role of symbiotic, herbivorous and pathogenic soil biota. We tested for interactions between these biotic and abiotic factors by studying the effects of additional

  9. Effects of sulfamethoxazole on soil microbial communities after adding substrate.

    Demoling, L.A.; Baath, E.; Greve, G.D.; Wouterse, M.; Schmitt, H.

    2009-01-01

    The effect of the antibiotic sulfamethoxazole (SMX) on soil bacteria was studied using two methods (leucine incorporation and Biolog plates) of estimating pollution-induced community tolerance (PICT). SMX was added to an agricultural soil in a microcosm setup. The addition of different substrates

  10. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    Kim, Brent F; Poulsen, Melissa N; Margulies, Jared D; Dix, Katie L; Palmer, Anne M; Nachman, Keeve E

    2014-01-01

    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  11. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    Brent F Kim

    Full Text Available Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  12. Ancestral knowledge about the use of flora and fauna in the indigenous community Tikuna from Cushillo Cocha, border with Peru-Colombia-Brazil

    Elsa Rengifo-Salgado

    2017-04-01

    Full Text Available In the present study, ancestral indigenous knowledge (ethno-knowledge of the indigenous community “Tikuna from Cushillo Cocha” is reported. The community is located in the province of Ramón Castilla, northeast of Loreto Region, Peru. Data was collected through participatory workshops, interviews and biological expeditions in order to collect plant species, observe animals and identify them in situ, always accompanied by local people considered them with experience and knowledge of their territory. A total of 247 species of flora and fauna were registered. In ethnobotany, 101 species were identified, grouped in seven categories of assigned uses by locals, being food and medicinal categories the most representative. For the case of ethnozoology, 146 species were identified, which are used in six categories, being food and pet categories the most relevant. It was evidenced that the forest is the main source for food, medical supplies, handicrafts, animals as pets to be sold and plants as ornamental, all these with important acceptance by the indigenous population.

  13. Canopy soil bacterial communities altered by severing host tree limbs

    Cody R. Dangerfield

    2017-09-01

    Full Text Available Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities.

  14. Effect of pesticides on soil microbial community.

    Lo, Chi-Chu

    2010-07-01

    According to guidelines for the approval of pesticides, information about effects of pesticides on soil microorganisms and soil fertility are required, but the relationships of different structures of pesticides on the growth of various groups of soil microorganisms are not easily predicted. Some pesticides stimulate the growth of microorganisms, but other pesticides have depressive effects or no effects on microorganisms. For examples, carbofuran stimulated the population of Azospirillum and other anaerobic nitrogen fixers in flooded and non-flooded soil, but butachlor reduced the population of Azospirillum and aerobic nitrogen fixers in non-flooded soil. Diuron and chlorotoluron showed no difference between treated and nontreated soil, and linuron showed a strong difference. Phosphorus(P)-contains herbicides glyphosate and insecticide methamidophos stimulated soil microbial growth, but other P-containing insecticide fenamiphos was detrimental to nitrification bacteria. Therefore, the following review presents some data of research carried out during the last 20 years. The effects of twenty-one pesticides on the soil microorganisms associated with nutrient and cycling processes are presented in section 1, and the applications of denaturing gradient gel electrophoresis (DGGE) for studying microbial diversity are discussed in section 2.

  15. Chloride concentration affects soil microbial community

    Gryndler, Milan; Rohlenová, Jana; Kopecký, Jan; Matucha, Miroslav

    2008-01-01

    Roč. 71, č. 7 (2008), s. 1401-1408 ISSN 0045-6535 R&D Projects: GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50380511 Keywords : soil chloride * terminal restriction fragments * soil microorganisms Subject RIV: EE - Microbiology, Virology Impact factor: 3.054, year: 2008

  16. Agroforestry management in vineyards: effects on soil microbial communities

    Montagne, Virginie; Nowak, Virginie; Guilland, Charles; Gontier, Laure; Dufourcq, Thierry; Guenser, Josépha; Grimaldi, Juliette; Bourgade, Emilie; Ranjard, Lionel

    2017-04-01

    Some vineyard practices (tillage, chemical weeding or pest management) are generally known to impact the environment with particular negative effects on the diversity and the abundance of soil microorganisms, and cause water and soil pollutions. In an agro-ecological context, innovative cropping systems have been developed to improve ecosystem services. Among them, agroforestry offers strategies of sustainable land management practices. It consists in intercropping trees with annual/perennial/fodder crop on the same plot but it is weakly referenced with grapevine. The present study assesses the effects of intercropped and neighbouring trees on the soil of three agroforestry vineyards, in south-western France regions. More precisely soils of the different plots were sampled and the impact of the distance to the tree or to the neighbouring trees (forest) on soil microbial community has been considered. Indigenous soil microbial communities were characterized by a metagenomic approach that consisted in extracting the molecular microbial biomass, then in calculating the soil fungi/bacteria ratio - obtained by qPCR - and then in characterizing the soil microbial diversity - through Illumina sequencing of 16S and 18S regions. Our results showed a significant difference between the soil of agroforestry vineyards and the soil sampled in the neighbouring forest in terms of microbial abundance and diversity. However, only structure and composition of bacterial community seem to be influenced by the implanted trees in the vine plots. In addition, the comparison of microbial co-occurrence networks between vine and forest plots as well as inside vine plots according to distance to the tree allow revealing a more sensitive impact of agroforestry practices. Altogether, the results we obtained build up the first references for concerning the soil of agroforestry vineyards which will be interpreted in terms of soil quality, functioning and sustainability.

  17. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.

    Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

    2014-01-01

    Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.

  18. Habitat constraints on the functional significance of soil microbial communities

    Nunan, Naoise; Leloup, Julie; Ruamps, Léo; Pouteau, Valérie; Chenu, Claire

    2017-04-01

    An underlying assumption of most ecosystem models is that soil microbial communities are functionally equivalent; in other words, that microbial activity under given set of conditions is not dependent on the composition or diversity of the communities. Although a number of studies have suggested that this assumption is incorrect, ecosystem models can adequately describe ecosystem processes, such as soil C dynamics, without an explicit description of microbial functioning. Here, we provide a mechanistic basis for reconciling this apparent discrepancy. In a reciprocal transplant experiment, we show that microbial communities are not always functionally equivalent. The data suggest that when the supply of substrate is restricted, then the functioning of different microbial communities cannot be distinguished, but when the supply is less restricted, the intrinsic functional differences among communities can be expressed. When the supply of C is restricted then C dynamics are related to the properties of the physical and chemical environment of the soil. We conclude that soil C dynamics may depend on microbial community structure or diversity in environments such as the rhizosphere or the litter layer, but are less likely to do so in oligotrophic environments such as the mineral layers of soil.

  19. Bioinformatic approaches reveal metagenomic characterization of soil microbial community.

    Zhuofei Xu

    Full Text Available As is well known, soil is a complex ecosystem harboring the most prokaryotic biodiversity on the Earth. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated the progress of soil ecological studies. However, how to effectively understand the underlying biological features of large-scale sequencing data is a new challenge. In the present study, we used 33 publicly available metagenomes from diverse soil sites (i.e. grassland, forest soil, desert, Arctic soil, and mangrove sediment and integrated some state-of-the-art computational tools to explore the phylogenetic and functional characterizations of the microbial communities in soil. Microbial composition and metabolic potential in soils were comprehensively illustrated at the metagenomic level. A spectrum of metagenomic biomarkers containing 46 taxa and 33 metabolic modules were detected to be significantly differential that could be used as indicators to distinguish at least one of five soil communities. The co-occurrence associations between complex microbial compositions and functions were inferred by network-based approaches. Our results together with the established bioinformatic pipelines should provide a foundation for future research into the relation between soil biodiversity and ecosystem function.

  20. Soil microbial communities and glyphosate decay in soils with different herbicide application history.

    Guijarro, Keren Hernández; Aparicio, Virginia; De Gerónimo, Eduardo; Castellote, Martín; Figuerola, Eva L; Costa, José Luis; Erijman, Leonardo

    2018-04-11

    This study evaluates the glyphosate dissipation under field conditions in three types of soil, and aims to determine the importance of the following factors in the environmental persistence of herbicide: i) soil bacterial communities, ii) soil physicochemical properties, iii) previous exposure to the herbicide. A soil without previous record of GP application (P0) and two agricultural soils, with 5 and >10years of GP exposure (A5 and A10) were subjected to the application of glyphosate at doses of 3mg·kg -1 . The concentration of GP and AMPA was determined over time and the dynamics of soil bacterial communities was evaluated using 16S ARN ribosomal gene amplicon-sequencing. The GP exposure history affected the rate but not the extent of GP biodegradation. The herbicide was degraded rapidly, but P0 soil showed a dissipation rate significantly lower than soils with agricultural history. In P0 soil, a significant increase in the relative abundance of Bacteroidetes was observed in response to herbicide application. More generally, all soils displayed shifts in bacterial community structure, which nevertheless could not be clearly associated to glyphosate dissipation, suggesting the presence of redundant bacteria populations of potential degraders. Yet the application of the herbicide prompted a partial disruption of the bacterial association network of unexposed soil. On the other hand, higher values of linear (Kd) and nonlinear (Kf) sorption coefficient in P0 point to the relevance of cation exchange capacity (CEC), clay and organic matter to the capacity of soil to adsorb the herbicide, suggesting that bioavailability was a key factor for the persistence of GP and AMPA. These results contribute to understand the relationship between bacterial taxa exposed to the herbicide, and the importance of soil properties as predictors of the possible rate of degradation and persistence of glyphosate in soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Factors causing spatial heterogeneity in soil properties, plant cover, and soil fauna in a non-reclaimed post-mining site

    Frouz, J.; Kalčík, Jiří; Velichová, V.

    2011-01-01

    Roč. 37, č. 11 (2011), s. 1910-1913 ISSN 0925-8574 R&D Projects: GA MŠk 2B08023 Institutional research plan: CEZ:AV0Z60660521 Keywords : soil chemistry * vegetation * invertebrates Subject RIV: EH - Ecology, Behaviour Impact factor: 3.106, year: 2011

  2. Permissiveness of soil microbial communities towards broad host range plasmids

    Klümper, Uli

    . Plasmids are implicated in the rapid spread of antibiotic resistance and the emergence of multi-resistant pathogenic bacteria, making it crucial to be able to quantify, understand, and, ideally, control plasmid transfer in mixed microbial communities. The fate of plasmids in microbial communities...... of microbial communities may be directly interconnected through transfer of BHR plasmids at a so far unrecognized level. The developed method furthermore enabled me to explore how agronomic practices may affect gene transfer in soil microbial communities. I compared bacterial communities extracted from plots...

  3. Effects of imidacloprid on soil microbial communities in different saline soils.

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  4. Effect of Soil Tillage Practices on Dynamic of Bacterial Communities in Soil

    Mirna Mrkonjić Fuka; Mihaela Blažinkov; Viviane Radl; Danijel Jug; Nataša Hulak; Sulejman Redžepović; Michael Schloter

    2016-01-01

    Several studies have indicated that intensive tillage has notable effect on properties of the soil microbiota that may influence numerous important soils functions, e.g. mobilization of nutrients or change of the overall emission rates of greenhouse gases. Therefore, the aim of our study was to investigate dynamic of microbial communities in soil planted with soybean under different tillage systems. Moreover, abundance of populations harboring the nitrous- oxide reductase gene (nosZ) a...

  5. Colonization patterns of soil microbial communities in the Atacama Desert.

    Crits-Christoph, Alexander; Robinson, Courtney K; Barnum, Tyler; Fricke, W Florian; Davila, Alfonso F; Jedynak, Bruno; McKay, Christopher P; Diruggiero, Jocelyne

    2013-11-20

    The Atacama Desert is one of the driest deserts in the world and its soil, with extremely low moisture, organic carbon content, and oxidizing conditions, is considered to be at the dry limit for life. Analyses of high throughput DNA sequence data revealed that bacterial communities from six geographic locations in the hyper-arid core and along a North-South moisture gradient were structurally and phylogenetically distinct (ANOVA test for observed operating taxonomic units at 97% similarity (OTU0.03), P microbial communities' diversity metrics (least squares linear regression for observed OTU0.03 and air RH and soil conductivity, P PCoA Spearman's correlation for air RH and soil conductivity, P <0.0001), indicating that water availability and salt content are key factors in shaping the Atacama soil microbiome. Mineralization studies showed communities actively metabolizing in all soil samples, with increased rates in soils from the southern locations. Our results suggest that microorganisms in the driest soils of the Atacama Desert are in a state of stasis for most of the time, but can potentially metabolize if presented with liquid water for a sufficient duration. Over geological time, rare rain events and physicochemical factors potentially played a major role in selecting micro-organisms that are most adapted to extreme desiccating conditions.

  6. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  7. Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu

    Wakelin, Steven; Gerard, Emily; Black, Amanda; Hamonts, Kelly; Condron, Leo; Yuan, Tong; Nostrand, Joy van; Zhou, Jizhong; O'Callaghan, Maureen

    2014-01-01

    Pollution induced community tolerance (PICT) to Cu 2+ , and co-tolerance to nanoparticulate Cu, ionic silver (Ag + ), and vancomycin were measured in field soils treated with Cu 2+ 15 years previously. EC 50 values were determined using substrate induced respiration and correlations made against soil physicochemical properties, microbial community structure, physiological status (qCO 2 ; metabolic quotient), and abundances of genes associated with metal and antibiotic resistance. Previous level of exposure to copper was directly (P  2+ , and also of nanoparticle Cu. However, Cu-exposed communities had no co-tolerance to Ag + and had increased susceptibly to vancomycin. Increased tolerance to both Cu correlated (P  + or vancomycin. • Tolerance not due to shifts in community composition or resistance genes. - Pollution induced community tolerance to Cu was linked with increased metabolic quotient but not changes in community composition or abundance of metal resistance genes in a field soil

  8. THE ECONOMIC IMPORTANCE OF THE EPIGEAL FAUNA IN THE CORN AGRICULTURAL ECOSYSTEM IN OCNA SIBIU (SIBIU COUNTY IN 2012

    Iuliana ANTONIE

    2013-12-01

    Full Text Available The arthropods have the role of biologic indicators, of diagnosis instruments regarding the negative effects of the human intervention in the structure and functioning of the agricultural ecosystems. Their presence or absence, the growth or lowering of their populations in the agricultural ecosystems can indicate the state of health of these systems and their good functioning. The aim of our researches is establishing the fauna structure of the community of arthropods at the soil level in the corn agricultural ecosystem in Ocna Sibiu, (Sibiu County; the characterization of the communities of invertebrates under the aspect of numerical abundance and of that of relative one; framing the entomologic fauna into a beneficial or pest one, the identification of the culture technology for the researched area. Regarding the applied researched methods, they were as follows: the using of pitfall traps (Barber traps that were at the level of the soil as well as the method of direct collecting of the fauna from the plants. As a result of our researches there was established the taxonomic and quantitative structure of the collected fauna through the methods of pitfall traps (Barber traps in Ocna Sibiu during 2012; there were identified 13 taxonomic groups. From the total of the collected agricultural fauna gathered by the help of pitfall traps in Ocna Sibiu locality there were identified 51 species of insects from which 30 were beneficial ones and 21 pest ones, the dominating order being Coleopteron with 35 species. The establishment of the group of arthropods, especially of the entomologic fauna, beneficial or pest indicates the equilibrium or the disequilibrium state from the researched corn three field systems. The ratio between the two types of fauna permits choosing the optimum method of maintaining the equilibrium between the species of the system and applying those measures of management in order to affect less the system in its assembly and to

  9. Effects of reforestation on ammonia-oxidizing microbial community composition and abundance in subtropical acidic forest soils.

    Wu, Ruo-Nan; Meng, Han; Wang, Yong-Feng; Gu, Ji-Dong

    2018-06-01

    Forest ecosystems have great ecological values in mitigation of climate change and protection of biodiversity of flora and fauna; re-forestry is commonly used to enhance the sequestration of atmospheric CO 2 into forest storage biomass. Therefore, seasonal and spatial dynamics of the major microbial players in nitrification, ammonia-oxidizing archaea (AOA) and bacteria (AOB), in acidic soils of young and matured revegetated forests were investigated to elucidate the changes of microbial communities during forest restoration, and compared to delineate the patterns of community shifts under the influences of environmental factors. AOA were more abundant than AOB in both young and matured revegetated forest soils in both summer and winter seasons. In summer, however, the abundance of amoA-AOA decreased remarkably (p < 0.01), ranging from 1.90 (± 0.07) × 10 8 copies per gram dry soil in matured forest to 5.04 (± 0.43) × 10 8 copies per gram dry soil in young forest, and amoA-AOB was below detection limits to obtain any meaningful values. Moreover, exchangeable Al 3+ and organic matter were found to regulate the physiologically functional nitrifiers, especially AOA abundance in acidic forest soils. AOB community in winter showed stronger correlation with the restoration status of revegetated forests and AOA community dominated by Nitrosotalea devanaterra, in contrast, was more sensitive to the seasonal and spatial variations of environmental factors. These results enrich the current knowledge of nitrification during re-forestry and provide valuable information to developmental status of revegetated forests for management through microbial analysis.

  10. Reintroduction of locally extinct vertebrates impacts arid soil fungal communities.

    Clarke, Laurence J; Weyrich, Laura S; Cooper, Alan

    2015-06-01

    Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high-throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored. © 2015 John Wiley & Sons Ltd.

  11. Soil Temperature and Moisture Effects on Soil Respiration and Microbial Community Abundance

    2015-04-13

    Bárcenas-Moreno, G., M. Gómez-Brandón, J. Rousk, and E. Bååth. 2009. Adaptation of soil microbial communities to temperature: Comparison of fungi and...ER D C/ CR RE L TR -1 5- 6 ERDC 6.2 Geospatial Research and Engineering (GRE) ARTEMIS TSP-SA Soil Temperature and Moisture Effects on... Soil Respiration and Microbial Community Abundance Co ld R eg io ns R es ea rc h an d En gi ne er in g La bo ra to ry Robyn A. Barbato

  12. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.

    Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D

    2017-02-01

    Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.

  13. Medicinal use of wild fauna by mestizo communities living near San Guillermo Biosphere Reserve (San Juan, Argentina).

    Hernandez, Jorge; Campos, Claudia M; Borghi, Carlos E

    2015-01-21

    Wild and domestic animals and their by-products are important ingredients in the preparation of curative, protective and preventive medicines. Despite the medicinal use of animals worldwide, this topic has received less attention than the use of medicinal plants. This study assessed the medicinal use of animals by mestizo communities living near San Guillermo MaB Reserve by addressing the following questions: What animal species and body parts are used? What ailments or diseases are treated with remedies from these species? To what extent do mestizo people use animals as a source of medicine? Is the use related to people's age? We conducted semi-structured interviews with 171 inhabitants (15-93 years old) of four villages close to the Reserve: Tudcúm, Angualasto, Malimán and Colangüil. We calculated the informant consensus factor and fidelity level to test homogeneity of knowledge and to know the importance of different medicinal uses for a given species. The medicinal use of animals was reported by 57% of the surveyed people. Seven species were mentioned: Rhea pennata, Lama guanicoe, Puma concolor, Pseudalopex sp., Lama vicugna, Lepus europaeus and Conepatus chinga. Several body parts were used: fat, leg, bezoar-stone, stomach, feather, meat, blood, feces, wool, and liver. The fat of R. pennata was the most frequently used animal part, followed by the bezoar stone and the leg of L. guanicoe. Animals were used to treat 22 ailments, with respiratory and nervous system disorders being the most frequently treated diseases with a high degree of consensus. Old people used animals as remedies more frequently than young residents, showing some differences among villages. A low number of animal species was mentioned as used for medicinal purposes, which could be explained by the perception of strong control related the legislation that bans hunting and the erosion of traditional knowledge produced by mestizaje. However, the presence of a traditional medicine is deeply

  14. Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida).

    Erdmann, Georgia; Scheu, Stefan; Maraun, Mark

    2012-06-01

    Most European forests are managed by humans. However, the manner and intensity of management vary. While the effect of forest management on above-ground communities has been investigated in detail, effects on the below-ground fauna remain poorly understood. Oribatid mites are abundant microarthropods in forest soil and important decomposers in terrestrial ecosystems. Here, we investigated the effect of four forest types (i.e., managed coniferous forests; 30 and 70 years old managed beech forests; natural beech forests) on the density, diversity and community structure of oribatid mites (Acari). The study was replicated at three regions in Germany: the Swabian Alb, the Hainich and the Schorfheide. To relate changes in oribatid mite community structure to environmental factors, litter mass, pH, C and N content of litter, fine roots and C content of soil were measured. Density of oribatid mites was highest in the coniferous forests and decreased in the order 30 years old, 70 years old, and natural beech forests. Mass of the litter layer and density of oribatid mites were strongly correlated indicating that the litter layer is an important factor regulating oribatid mite densities. Diversity of oribatid mites was little affected by forest type indicating that they harbor similar numbers of niches. Species composition differed between the forest types, suggesting different types of niches. The community structure of oribatid mites differed more strongly between the three regions than between the forest types indicating that regional factors are more important than effects associated with forest type.

  15. Streptomyces communities in soils polluted with heavy metals

    Grishko, V. N.; Syshchikova, O. V.

    2009-02-01

    The contents of differently mobile heavy metal compounds and their influence on the formation of microbial cenoses (particularly, streptomyces communities) in technogenically disturbed soils are considered. Elevated concentrations of mobile Cu, Zn, Ni, Cd, and Fe compounds are shown to determine structural-functional changes in microbial cenoses that are displayed in a decreasing number of microorganisms and a narrower spectrum of the streptomyces species. Some specific features of the formation of streptomyces communities in technogenic soils were revealed on the basis of the analysis of their species structure with the use of the Margalef, Berger-Parker, and Sorensen indices of biodiversity.

  16. Effects of Conversion from Boreal Forest to Arctic Steppe on Soil Communities and Ecosystem Carbon Pools

    Han, P. D.; Natali, S.; Schade, J. D.; Zimov, N.; Zimov, S. A.

    2014-12-01

    The end of the Pleistocene marked the extinction of a great variety of arctic megafauna, which, in part, led to the conversion of arctic grasslands to modern Siberian larch forest. This shift may have increased the vulnerability of permafrost to thawing because of changes driven by the vegetation shift; the higher albedo of grassland and low insulation of snow trampled by animals may have decreased soil temperatures and reduced ground thaw in the grassland ecosystem, resulting in protection of organic carbon in thawed soil and permafrost. To test these hypothesized impacts of arctic megafauna, we examined an experimental reintroduction of large mammals in northeast Siberia, initiated in 1988. Pleistocene Park now contains 23 horses, three musk ox, one bison, and several moose in addition to the native fauna. The park is 16 square km with a smaller enclosure (animals spend most of their time and our study was focused. We measured carbon-pools in forested sites (where scat surveys showed low animal use), and grassy sites (which showed higher use), within the park boundaries. We also measured thaw depth and documented the soil invertebrate communities in each ecosystem. There was a substantial difference in number of invertebrates per kg of organic soil between the forest (600 ± 250) and grassland (300 ± 250), though these differences were not statistically significant they suggest faster nutrient turnover in the forest or a greater proportion of decomposition by invertebrates than other decomposers. While thaw depth was deeper in the grassland (60 ± 4 cm) than in the forest (40 ± 6 cm), we did not detect differences in organic layer depth or percent organic matter between grassland and forest. However, soil in the grassland had higher bulk density, and higher carbon stocks in the organic and mineral soil layers. Although deeper thaw depth in the grassland suggests that more carbon is available to microbial decomposers, ongoing temperature monitoring will help

  17. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency.

    Cho, Hyunjun; Kim, Mincheol; Tripathi, Binu; Adams, Jonathan

    2017-07-01

    Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the "humpback" pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance-which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

  18. Perturbation of an arctic soil microbial community by metal nanoparticles

    Kumar, Niraj [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Shah, Vishal [Department of Biology, Dowling College, Oakdale, NY 11769 (United States); Walker, Virginia K., E-mail: walkervk@queensu.ca [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Department of Biology, School of Environmental Studies and Department of Microbiology and Immunology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2011-06-15

    Highlights: {yields} Silver, copper and silica nanoparticles had an impact on arctic soil {yields} A microbial community toxicity indicator was developed {yields} Community surveys using pyrosequencing confirmed a shift in bacterial biodiversity {yields} Troublingly, silver nanoparticles were highly toxic to a plant beneficial bacterium - Abstract: Technological advances allowing routine nanoparticle (NP) manufacture have enabled their use in electronic equipment, foods, clothing and medical devices. Although some NPs have antibacterial activity, little is known about their environmental impact and there is no information on the influence of NPs on soil in the possibly vulnerable ecosystems of polar regions. The potential toxicity of 0.066% silver, copper or silica NPs on a high latitude (>78{sup o}N) soil was determined using community level physiological profiles (CLPP), fatty acid methyl ester (FAME) assays and DNA analysis, including sequencing and denaturing gradient gel electrophoresis (DGGE). The results of these different investigations were amalgamated in order to develop a community toxicity indicator, which revealed that of the three NPs examined, silver NPs could be classified as highly toxic to these arctic consortia. Subsequent culture-based studies confirmed that one of the community-identified plant-associating bacteria, Bradyrhizobium canariense, appeared to have a marked sensitivity to silver NPs. Thus, NP contamination of arctic soils particularly by silver NPs is a concern and procedures for mitigation and remediation of such pollution should be a priority for investigation.

  19. Perturbation of an arctic soil microbial community by metal nanoparticles

    Kumar, Niraj; Shah, Vishal; Walker, Virginia K.

    2011-01-01

    Highlights: → Silver, copper and silica nanoparticles had an impact on arctic soil → A microbial community toxicity indicator was developed → Community surveys using pyrosequencing confirmed a shift in bacterial biodiversity → Troublingly, silver nanoparticles were highly toxic to a plant beneficial bacterium - Abstract: Technological advances allowing routine nanoparticle (NP) manufacture have enabled their use in electronic equipment, foods, clothing and medical devices. Although some NPs have antibacterial activity, little is known about their environmental impact and there is no information on the influence of NPs on soil in the possibly vulnerable ecosystems of polar regions. The potential toxicity of 0.066% silver, copper or silica NPs on a high latitude (>78 o N) soil was determined using community level physiological profiles (CLPP), fatty acid methyl ester (FAME) assays and DNA analysis, including sequencing and denaturing gradient gel electrophoresis (DGGE). The results of these different investigations were amalgamated in order to develop a community toxicity indicator, which revealed that of the three NPs examined, silver NPs could be classified as highly toxic to these arctic consortia. Subsequent culture-based studies confirmed that one of the community-identified plant-associating bacteria, Bradyrhizobium canariense, appeared to have a marked sensitivity to silver NPs. Thus, NP contamination of arctic soils particularly by silver NPs is a concern and procedures for mitigation and remediation of such pollution should be a priority for investigation.

  20. Effects of soil depth and plant-soil interaction on microbial community in temperate grasslands of northern China.

    Yao, Xiaodong; Zhang, Naili; Zeng, Hui; Wang, Wei

    2018-07-15

    Although the patterns and drivers of soil microbial community composition are well studied, little is known about the effects of plant-soil interactions and soil depth on soil microbial distribution at a regional scale. We examined 195 soil samples from 13 sites along a climatic transect in the temperate grasslands of northern China to measure the composition of and factors influencing soil microbial communities within a 1-m soil profile. Soil microbial community composition was measured using phospholipid fatty acids (PLFA) analysis. Fungi predominated in topsoil (0-10 cm) and bacteria and actinomycetes in deep soils (40-100 cm), independent of steppe types. This variation was explained by contemporary environmental factors (including above- and below-ground plant biomass, soil physicochemical and climatic factors) >58% in the 0-40 cm of soil depth, but soils. Interestingly, when we considered the interactive effects between plant traits (above ground biomass and root biomass) and soil factors (pH, clay content, and soil total carbon, nitrogen, phosphorous), we observed a significant interaction effect occurring at depths of 10-20 cm soil layer, due to different internal and external factors of the plant-soil system along the soil profile. These results improve understanding of the drivers of soil microbial community composition at regional scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Soil bacterial community shifts associated with sugarcane straw removal

    Pimentel, Laisa; Gumiere, Thiago; Andreote, Fernando; Cerri, Carlos

    2017-04-01

    In Brazil, the adoption of the mechanical unburned sugarcane harvest potentially increase the quantity of residue left in the field after harvesting. Economically, this material has a high potential for second generation ethanol (2G) production. However, crop residues have an essential role in diverse properties and processes in the soil. The greater part of the uncertainties about straw removal for 2G ethanol production is based on its effects in soil microbial community. In this sense, it is important to identify the main impacts of sugarcane straw removal on soil microbial community. Therefore, we conducted a field study, during one year, in Valparaíso (São Paulo state - Brazil) to evaluate the effects of straw decomposition on soil bacterial community. Specifically, we wanted: i) to compare the rates of straw removal and ii) to evaluate the effects of straw decomposition on soil bacterial groups over one year. The experiment was in a randomized block design with treatments arranged in strip plot. The treatments are different rates of sugarcane straw removal, namely: no removal, 50, 75 and 100% of straw removal. Soil sampling was carried out at 0, 4, 8 and 12 months after the sugarcane harvest (August 2015). Total DNA was extracted from soil using the PowersoilTM DNA Isolation kit. And the abundance of bacterial in each soil sample was estimated via quantification of 16S rRNA gene. The composition of the bacterial communities was estimated via terminal restriction fragment length polymorphism (T-RFLP) analysis, and the T-RF sizes were performed on a 3500 Genetic Analyzer. Finally, the results were examined with GeneMapper 4.1 software. There was bacterial community shifts through the time and among the rates of sugarcane straw removal. Bacterial community was firstly determined by the time scale, which explained 29.16% of total variation. Rates of straw removal explained 11.55% of shifts on bacterial community. Distribution through the time is an important

  2. Short-term effects of forest disturbances on soil nematode communities in European mountain spruce forests.

    Čerevková, A; Renčo, M; Cagáň, L

    2013-09-01

    The nematode communities in spruce forests were compared with the short-term effects of forest damage, caused by windstorm, wildfire and management practices of forest soils. Soil samples were collected in June and October from 2006 to 2008 in four different sites: (1) forest unaffected by the wind (REF); (2) storm-felled forest with salvaged timber (EXT); (3) modified forest affected by timber salvage (wood removal) and forest fire (FIR); and (4) storm-felled forest where timber had been left unsalvaged (NEX). Nematode analysis showed that the dominant species in all four investigated sites were Acrobeloides nanus and Eudorylaimus silvaticus. An increase of A. nanus (35% of the total nematode abundance) in the first year in the FIR site led to the highest total abundance of nematodes compared with other sites, where nematode abundance reached the same level in the third year. In the FIR site bacterial feeders appeared to be the most representative trophic group, although in the second and third year, after disturbance, the abundance of this trophic group gradually decreased. In the NEX site, the number of nematode species, population densities and Maturity Index were similar to that recorded for the FIR site. In EXT and NEX sites, the other dominant species was the plant parasitic nematode Paratylenchus microdorus. Analyses of nematodes extracted from different forest soil samples showed that the highest number of species and diversity index for species (H'spp) were in the REF site. Differences between the nematode fauna in REF and other localities were clearly depicted by cluster analysis. The greatest Structure Index and Enrichment Index values were also in REF. In the EXT site, the number of nematode species, their abundance, H'spp and Maturity Index were not significantly different from those recorded in the reference site.

  3. Impact of (±)-catechin on soil microbial communities

    Kaur, Rajwant; Kaur, Surinder

    2009-01-01

    Catechin is a highly studied but controversial allelochemical reported as a component of the root exudates of Centaurea maculosa. Initial reports of high and consistent exudation rates and soil concentrations have been shown to be highly inaccurate, but the chemical has been found in root exudates at and much less frequently in soil but sporadically at high concentrations. Part of the problem of detection and measuring phytotoxicity in natural soils may be due to the confounding effect of soil microbes, and little is known about interactions between catechin and soil microbes. Here we tested the effect of catechin on soil microbial communities and the feedback of these effects to two plant species. We found that catechin inhibits microbial activity in the soil we tested, and by doing so appears to promote plant growth in the microbe-free environment. This is in striking contrast to other in vitro studies, emphasizing the highly conditional effects of the chemical and suggesting that the phytotoxic effects of catechin may be exerted through the microbes in some soils. PMID:19704908

  4. Local knowledge and exploitation of the avian fauna by a rural community in the semi-arid zone of northeastern Brazil.

    Teixeira, Pedro Hudson Rodrigues; Thel, Thiago do Nascimento; Ferreira, Jullio Marques Rocha; de Azevedo, Severino Mendes; Junior, Wallace Rodrigues Telino; Lyra-Neves, Rachel Maria

    2014-12-24

    The present study examined the exploitation of bird species by the residents of a rural community in the Brazilian semi-arid zone, and their preferences for species with different characteristics. The 24 informants were identified using the "snowball" approach, and were interviewed using semi-structured questionnaires and check-sheets for the collection of data on their relationship with the bird species that occur in the region. The characteristics that most attract the attention of the interviewees were the song and the coloration of the plumage of a bird, as well as its body size, which determines its potential as a game species, given that hunting is an important activity in the region. A total of 98 species representing 32 families (50.7% of the species known to occur in the region) were reported during interviews, being used for meat, pets, and medicinal purposes. Three species were used as zootherapeutics - White-naped Jay was eaten whole as a cure for speech problems, the feathers of Yellow-legged Tinamou were used for snakebite, Smooth-billed Ani was eaten for "chronic cough" and Small-billed Tinamou and Tataupa Tinamou used for locomotion problems. The preference of the informants for characteristics such as birdsong and colorful plumage was a significant determinant of their preference for the species exploited. Birds with cynegetic potential and high use values were also among the most preferred species. Despite the highly significant preferences for certain species, some birds, such as those of the families Trochilidae, Thamnophilidae, and Tyrannidae are hunted randomly, independently of their attributes. The evidence collected on the criteria applied by local specialists for the exploitation of the bird fauna permitted the identification of the species that suffer hunting pressure, providing guidelines for the development of conservation and management strategies that will guarantee the long-term survival of the populations of these bird species in

  5. Plant stimulation of soil microbial community succession: how sequential expression mediates soil carbon stabilization and turnover

    Firestone, Mary [Univ. of California, Berkeley, CA (United States)

    2015-03-31

    It is now understood that most plant C is utilized or transformed by soil microorganisms en route to stabilization. Hence the composition of microbial communities that mediate decomposition and transformation of root C is critical, as are the metabolic capabilities of these communities. The change in composition and function of the C-transforming microbial communities over time in effect defines the biological component of soil C stabilization. Our research was designed to test 2 general hypotheses; the first two hypotheses are discussed first; H1: Root-exudate interactions with soil microbial populations results in the expression of enzymatic capacities for macromolecular, complex carbon decomposition; and H2: Microbial communities surrounding roots undergo taxonomic succession linked to functional gene activities as roots grow, mature, and decompose in soil. Over the term of the project we made significant progress in 1) quantifying the temporal pattern of root interactions with the soil decomposing community and 2) characterizing the role of root exudates in mediating these interactions.

  6. Soil inoculation with microbial communities - can this become a useful tool in soil remediation?

    Krug, Angelika; Wang, Fang; Dörfler, Ulrike; Munch, Jean Charles; Schroll, Reiner

    2010-05-01

    We artificially loaded different type of agricultural soils with model 14C-labelled chemicals, and we inoculated such soils with different microbial communities as well as isolated strains to enhance the mineralization of such chemicals. Inocula were introduced by different approaches: (i) soil inocula, (ii) application of isolated strain as well as microbial community via media, (iii) isolated strain as well as microbial community attached to a carrier material. Most of the inoculation experiments were conducted in laboratory but we also tested one of these approaches under real environmental conditions in lysimeters and we could show that the approach was successful. We already could show that inoculating soils with microbial communities attached on a specific carrier material shows the highest mineralization effectiveness and also the highest sustainability. Microbes attached on clay particles preserved their function over a long time period even if the specific microbial substrate was already degraded or at least not detectable any more. Additionally we already could show that in specific cases some soil parameters might reduce the effectiveness of such an approach. Results on isoproturon as a model for phenylurea-herbicides and 1,2,4-trichlorobenzene as an example for an industrially used chemical as well as the corresponding chemicals` degrading microbial communities and isolated strain will be presented.

  7. Soil microbial community of abandoned sand fields

    Elhottová, Dana; Szili-Kovács, T.; Tříska, Jan

    2002-01-01

    Roč. 47, č. 4 (2002), s. 435-440 ISSN 0015-5632 R&D Projects: GA ČR GA526/99/P033 Grant - others:OTKA(HU) T25739 Institutional research plan: CEZ:AV0Z6066911 Keywords : microbial community * abandoned fields Subject RIV: EH - Ecology, Behaviour Impact factor: 0.979, year: 2002

  8. Degradation and impact of phthalate plasticizers on soil microbial communities

    Cartwright, C.D.; Thompson, I.P.; Burns, R.G.

    2000-05-01

    To assess the impact of phthalates on soil microorganisms and to supplement the environmental risk assessment for these xenobiotics, soil was treated with diethyl phthalate (DEP) or di (2-ethyl hexyl) phthalate (DEHP) at 0.1 to 100 mg/g. Bioavailability and membrane disruption were proposed as the characteristics responsible for the observed fate and toxicity of both compounds. Diethyl phthalate was biodegraded rapidly in soil with a half-life of 0.75 d at 20 C, and was not expected to persist in the environment. The DEHP, although biodegradable in aqueous solution, was recalcitrant in soil, because of poor bioavailability and was predicted to account for the majority of phthalate contamination in the environment. Addition of DEP or DEHP to soil at a concentration similar to that detected in nonindustrial environments had no impact on the structural diversity or functional diversity (BIOLOG) of the microbial community. At concentrations representative of a phthalate spill, DEP reduced numbers of both total culturable bacteria and pseudomonads within 1 d. This was due to disruption of membrane fluidity by the lipophilic phthalate, a mechanism not previously attributed to phthalates. However, DEHP had no effect on the microbial community or membrane fluidity, even at 100 mg/g, and was predicted to have no impact on microbial communities in the environment.

  9. Community based bioremediation: grassroots responses to urban soil contamination

    Scott Kellogg

    2016-12-01

    Full Text Available The past 150 years of industrial processes have left a legacy of toxicity in the soils of today’s urban environments. Exposure to soil based pollutants disproportionately affects low-income communities who are frequently located within formerly industrialized zones. Both gardeners, who come into direct contact with soil, as well as those who eat the products grown in the soil, are at risk to exposure from industrial contaminants. Options for low-income communities for remediating contaminated soils are limited, with most remediation work being carried out by costly engineering firms. Even more problematic is the overall lack of awareness and available information regarding safety and best practices with soils. In response to these challenges, a grassroots movement has emerged that seeks to empower urban residents with the tools and information necessary to address residual industrial toxicity in their ecosystems. Focusing on methods that are simple and affordable, this movement wishes to remove the barriers of cost and technical expertise that may be otherwise prohibitive. This paper will give an overview of this exemplar of generative justice, looking at case studies of organizations that have been successful in implementing these strategies.

  10. Evaluation of soil microbial communities as influenced by crude oil ...

    Impact of petroleum pollution in a vulnerable Niger Delta ecosystem was investigated to assess interactions in a first-generation phytoremediation site of a crude oil freshly-spilled agricultural soil. Community-level approach for assessing patterns of sole carbon-source utilization by mixed microbial samples was employed to ...

  11. Effects of PAH-Contaminated Soil on Rhizosphere Microbial Communities

    Pritchina, Olga; Ely, Cairn; Smets, Barth F.

    2011-01-01

    Bacterial associations with plant roots are thought to contribute to the success of phytoremediation. We tested the effect of addition of a polycyclic aromatic hydrocarbon contaminated soil on the structure of the rhizosphere microbial communities of wheat (Triticum aestivum), lettuce (Lactuca...

  12. Ecology and living conditions of groundwater fauna

    Thulin, Barbara; Hahn, Hans Juergen

    2008-09-01

    probable because both Harpatocoida (Parastenocaris sp.) and Nematoda have been detected in the hyporheic zone in rivers and at shores of the Baltic. In addition, groundwater fauna has been reported from other formerly glaciated areas e.g. Northern Germany, Finland, Iceland, Ireland, North America and Siberia and Alpine regions. Glaciofluvial porous aquifers, especially eskers, and karstic aquifers as well as the hyporheic zone, have proved to offer the greatest chances of successful surveys of groundwater fauna. In Sweden endemic species are not expected to be found, except in karstic aquifers in Gotland and Oeland and some parts of the Swedish Mountains. The upper layers of aquifers in crystalline bedrock have only been surveyed at very few sites. Based on community structures of groundwater fauna, reliable statements on the strength of the surface water impact and the vulnerability of the aquifer are possible. Contacts between different water bodies are displayed by groundwater fauna because groundwater fauna communities mainly reflect the intensity of surface water intrusion at a certain point when compared to hydrochemical data indicating the origin of the water. The information provided by the groundwater assemblages of an aquifer can be used for an ecologically based assessment of groundwater. Ecologically based assessment has provided initial data showing that groundwater fauna is a good marker of mixing between surface water and groundwater at certain depths. Ecologically based assessment has hitherto been used for extraction wells and quality management in drinking water abstraction (standards are still to be established). Groundwater fauna assessments have also proved to be useful in management of wetlands and regulation under nature protection law

  13. Ecology and living conditions of groundwater fauna

    Thulin, Barbara [Geo Innova AB (Sweden); Hahn, Hans Juergen [Arbeitsgruppe Grundwasseroekologie, Univ. of Koblenz-Landau (Germany)

    2008-09-15

    probable because both Harpatocoida (Parastenocaris sp.) and Nematoda have been detected in the hyporheic zone in rivers and at shores of the Baltic. In addition, groundwater fauna has been reported from other formerly glaciated areas e.g. Northern Germany, Finland, Iceland, Ireland, North America and Siberia and Alpine regions. Glaciofluvial porous aquifers, especially eskers, and karstic aquifers as well as the hyporheic zone, have proved to offer the greatest chances of successful surveys of groundwater fauna. In Sweden endemic species are not expected to be found, except in karstic aquifers in Gotland and Oeland and some parts of the Swedish Mountains. The upper layers of aquifers in crystalline bedrock have only been surveyed at very few sites. Based on community structures of groundwater fauna, reliable statements on the strength of the surface water impact and the vulnerability of the aquifer are possible. Contacts between different water bodies are displayed by groundwater fauna because groundwater fauna communities mainly reflect the intensity of surface water intrusion at a certain point when compared to hydrochemical data indicating the origin of the water. The information provided by the groundwater assemblages of an aquifer can be used for an ecologically based assessment of groundwater. Ecologically based assessment has provided initial data showing that groundwater fauna is a good marker of mixing between surface water and groundwater at certain depths. Ecologically based assessment has hitherto been used for extraction wells and quality management in drinking water abstraction (standards are still to be established). Groundwater fauna assessments have also proved to be useful in management of wetlands and regulation under nature protection law

  14. Microbial Community Structure of Casing Soil During Mushroom Growth

    CAI Wei-Ming; YAO Huai-Ying; FENG Wei-Lin; JIN Qun-Li; LIU Yue-Yan; LI Nan-Yi; ZHENG Zhong

    2009-01-01

    The culturable bacterial population and phospholipid fatty acid (PLFA)profile of casing soil were investigated at different mushroom (Agaricus bisporusI cropping stages.The change in soil bacterial PLFAs was always accompanied by a change in the soil culturable bacterial population in the first flush.Comparatively higher culturable bacterial population and bacterial PLFAs were found in the casing soil at the primordia formation stage of the first flush.There was a significant increase in the ratio of fungal to bacterial PLFAs during mushroom growth.Multivariate analysis of PLFA data demonstrated that the mushroom cropping stage could considerably affect the microbial community structure of the casing soil.The bacterial population increased significantly from casing soil application to the primordia formation stage of the first flush.Casing soil application resulted in an increase in the ratio of gram-negative bacterial PLFAs to gram-positive bacterial PLFAs,suggesting that some gram-negative bacteria might play an important role in mushroom sporophore initiation.

  15. Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches

    Communities of soil nematodes impact ecosystem functions, including plant growth, decomposition, and nutrient cycling, all of which are vital processes in agriculture. We used complementary morphological and DNA metabarcoding analyses to characterize soil nematode communities in three cropping syste...

  16. Lithuanian mammal fauna review

    Linas Balciauskas

    1996-12-01

    Full Text Available Abstract Data on Lithuania mammal fauna are presented. From 78 mammal species recorded in Lithuania, 7 were seen only in the 17-18th centuries, two species are extinct. Recent Lithuanian mammal fauna contains 68 species. Five of them are observed occasionally. 63 mammal species are permant inhabitants, 18 included in the Red Data Book, mostly bats and dormice. 8 mammal species were introduced or reintroduced. Population tendencies of game animals are also considered.

  17. Tropical terrestrial model ecosystems for evaluation of soil fauna and leaf litter quality effects on litter consumption, soil microbial biomass and plant growth Efeitos de fauna de solo e qualidade de liteira sobre o consumo, biomassa microbiana e crescimento de plantas em modelo de ecossistemas terrestres tropicais

    Bernhard Förster

    2009-08-01

    Full Text Available The aim of this work was to evaluate whether terrestrial model ecosystems (TMEs are a useful tool for the study of the effects of litter quality, soil invertebrates and mineral fertilizer on litter decomposition and plant growth under controlled conditions in the tropics. Forty-eight intact soil cores (17.5-cm diameter, 30-cm length were taken out from an abandoned rubber plantation on Ferralsol soil (Latossolo Amarelo in Central Amazonia, Brazil, and kept at 28ºC in the laboratory during four months. Leaf litter of either Hevea pauciflora (rubber tree, Flemingia macrophylla (a shrubby legume or Brachiaria decumbens (a pasture grass was put on top of each TME. Five specimens of either Pontoscolex corethrurus or Eisenia fetida (earthworms, Porcellionides pruinosus or Circoniscus ornatus (woodlice, and Trigoniulus corallinus (millipedes were then added to the TMEs. Leaf litter type significantly affected litter consumption, soil microbial biomass and nitrate concentration in the leachate of all TMEs, but had no measurable effect on the shoot biomass of rice seedlings planted in top soil taken from the TMEs. Feeding rates measured with bait lamina were significantly higher in TMEs with the earthworm P. corethrurus and the woodlouse C. ornatus. TMEs are an appropriate tool to assess trophic interactions in tropical soil ecossistems under controlled laboratory conditions.O objetivo deste trabalho foi avaliar o modelo de ecossistema terrestre (TME como ferramenta para o estudo dos efeitos da qualidade da liteira, de invertebrados do solo e da fertilização mineral na decomposição da liteira e no crescimento das plantas em condições controladas. Foram coletados quarenta e oito cilindros de solo intacto (Latossolo Amarelo de 17,5 cm de diâmetro e 30 cm de comprimento em um seringal abandonado na Amazônia Central brasileira e mantidos a 28ºC em laboratório, por quatro meses. Folhas da liteira de Hevea pauciflora (seringueira, ou de Flemingia

  18. The Guadalupian Fauna

    Girty, George H.

    1908-01-01

    The first descriptions of the Guadalupian fauna were published nearly fifty years ago. This early account of Shumard's was meager enough, but gave promise of a facies interesting and novel among the known Carboniferous faunas of North America. The following pages add largely to our knowledge of Guadalupian life, and I believe more than make good any promise contained in the previous account. Nevertheless, even the collections of the Guadalupian fauna here described fail to do justice to its richness and diversity, and the present report is completed with the hope of returning to the subject after another visit to the Guadalupe Mountains. Although a description of this range and the adjacent region can be found elsewhere, a repetition of the more important facts will conduce to a better understanding of the geologic relations of the fauna described herein and will serve to illustrate the references to localities and horizons necessarily involved in the paleontologic discussion. The Guadalupe Mountains are situated chiefly in southeastern New Mexico, but extend across the border for a short distance into the trans-Pecos region of Texas. Save only for this southern extreme both their geology and their topography are practically unknown, and it should be understood that anything hereafter said of them relates only to that portion. These mountains form a north-south range of considerable height, which rises abruptly from an arid and treeless plain, stretching westward to more mountainous elevations, the Cornudas Mountains and the Sierra Tinaja Pinta. This plain is locally known as Crow Flats and forms a part of the Salt Basin (Pl. I). It is now used as cattle ranges, water being raised by windmills. The only permanent surface water consists of salt lakes - broad, shallow pools incrusted with saline deposits, which in the early days were extensively sought for domestic use. This water is of course unfit for consumption, but cattle seem as a rule not to mind the less

  19. Soil ecosystem functioning under climate change: plant species and community effects

    Kardol, Paul [ORNL; Cregger, Melissa [ORNL; Campany, Courtney E [ORNL; Classen, Aimee T [ORNL

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct

  20. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bacterial community analysis of contaminant soils from Chernobyl

    Sergeant, C.; Vesvres, M.H.; Chapon, V.; Berthomieu, C.; Piette, L.; Le Marrec, C.; Coppin, F.; Fevrier, L.; Martin-Garin, A.

    2010-01-01

    Complete text of publication follows: Shortly after the Chernobyl accident in 1986, vegetation, contaminated soil and other radioactive debris were buried in situ in trenches. The aims of this work are to analyse the structure of bacterial communities evolving in this environment since 20 years, and to evaluate the potential role of microorganisms in radionuclide migration in soils. Therefore, soil samples exhibiting contrasted radionuclides content were collected in and around the trench number 22. Bacterial communities were examined using a genetic fingerprinting method that allowed a comparative profiling of the samples (DGGE), with universal and group-specific PCR primers. Our results indicate that Chernobyl soil samples host a wide diversity of Bacteria, with stable patterns for Firmicutes and Actinobacteria and more variable for Proteobacteria. A collection of 650 aerobic and anaerobic culturable isolates was also constructed. A phylogenetic analysis of 250 heterotrophic aerobic isolates revealed that 5 phyla are represented: Beta-, Gamma-proteobacteria, Actinobacteria, Bacteroidetes and spore-forming Firmicutes, which is largely dominant. These collection will be screened for the presence of radionuclide-accumulating species in order to estimate the potential influence of microorganisms in radionuclides migration in soils

  2. Soil ecology of a rock outcrop ecosystem: Abiotic stresses, soil respiration, and microbial community profiles in limestone cedar glades

    Cartwright, Jennifer M.; Advised by Dzantor, E. Kudjo

    2015-01-01

    Limestone cedar glades are a type of rock outcrop ecosystem characterized by shallow soil and extreme hydrologic conditions—seasonally ranging from xeric to saturated—that support a number of plant species of conservation concern. Although a rich botanical literature exists on cedar glades, soil biochemical processes and the ecology of soil microbial communities in limestone cedar glades have largely been ignored. This investigation documents the abiotic stress regime of this ecosystem (shallow soil, extreme hydrologic fluctuations and seasonally high soil surface temperatures) as well as soil physical and chemical characteristics, and relates both types of information to ecological structures and functions including vegetation, soil respiration, and soil microbial community metabolic profiles and diversity. Methods used in this investigation include field observations and measurements of soil physical and chemical properties and processes, laboratory analyses, and microbiological assays of soil samples.

  3. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  4. Microbial community structure and soil pH correspond to methane production in Arctic Alaska soils.

    Wagner, Robert; Zona, Donatella; Oechel, Walter; Lipson, David

    2017-08-01

    While there is no doubt that biogenic methane production in the Arctic is an important aspect of global methane emissions, the relative roles of microbial community characteristics and soil environmental conditions in controlling Arctic methane emissions remains uncertain. Here, relevant methane-cycling microbial groups were investigated at two remote Arctic sites with respect to soil potential methane production (PMP). Percent abundances of methanogens and iron-reducing bacteria correlated with increased PMP, while methanotrophs correlated with decreased PMP. Interestingly, α-diversity of the methanogens was positively correlated with PMP, while β-diversity was unrelated to PMP. The β-diversity of the entire microbial community, however, was related to PMP. Shannon diversity was a better correlate of PMP than Simpson diversity across analyses, while rarefied species richness was a weak correlate of PMP. These results demonstrate the following: first, soil pH and microbial community structure both probably control methane production in Arctic soils. Second, there may be high functional redundancy in the methanogens with regard to methane production. Third, iron-reducing bacteria co-occur with methanogens in Arctic soils, and iron-reduction-mediated effects on methanogenesis may be controlled by α- and β-diversity. And finally, species evenness and rare species abundances may be driving relationships between microbial groups, influencing Arctic methane production. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Evaluation of methyl bromide alternatives efficacy against soil-borne pathogens, nematodes and soil microbial community.

    Hongwei Xie

    Full Text Available Methyl bromide (MB and other alternatives were evaluated for suppression of Fusarium spp., Phytophthora spp., and Meloidogyne spp. and their influence on soil microbial communities. Both Fusarium spp. and Phytophthora spp. were significantly reduced by the MB (30.74 mg kg-1, methyl iodide (MI: 45.58 mg kg-1, metham sodium (MS: 53.92 mg kg-1 treatments. MS exhibited comparable effectiveness to MB in controlling Meloidogyne spp. and total nematodes, followed by MI at the tested rate. By contrast, sulfuryl fluoride (SF: 33.04 mg kg-1 and chloroform (CF: 23.68 mg kg-1 showed low efficacy in controlling Fusarium spp., Phytophthora spp., and Meloidogyne spp. MB, MI and MS significantly lowered the abundance of different microbial populations and microbial biomass in soil, whereas SF and CF had limited influence on them compared with the control. Diversity indices in Biolog studies decreased in response to fumigation, but no significant difference was found among treatments in PLFA studies. Principal component and cluster analyses of Biolog and PLFA data sets revealed that MB and MI treatments greatly influenced the soil microbial community functional and structural diversity compared with SF treatment. These results suggest that fumigants with high effectiveness in suppressing soil-borne disease could significantly influence soil microbial community.

  6. Parental material and cultivation determine soil bacterial community structure and fertility.

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate

  7. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.

    Long, Xi-En; Yao, Huaiying; Wang, Juan; Huang, Ying; Singh, Brajesh K; Zhu, Yong-Guan

    2015-06-16

    Previous studies suggested that microbial photosynthesis plays a potential role in paddy fields, but little is known about chemoautotrophic carbon fixers in drained paddy soils. We conducted a microcosm study using soil samples from five paddy fields to determine the environmental factors and quantify key functional microbial taxa involved in chemoautotrophic carbon fixation. We used stable isotope probing in combination with phospholipid fatty acid (PLFA) and molecular approaches. The amount of microbial (13)CO2 fixation was determined by quantification of (13)C-enriched fatty acid methyl esters and ranged from 21.28 to 72.48 ng of (13)C (g of dry soil)(-1), and the corresponding ratio (labeled PLFA-C:total PLFA-C) ranged from 0.06 to 0.49%. The amount of incorporationof (13)CO2 into PLFAs significantly increased with soil pH except at pH 7.8. PLFA and high-throughput sequencing results indicated a dominant role of Gram-negative bacteria or proteobacteria in (13)CO2 fixation. Correlation analysis indicated a significant association between microbial community structure and carbon fixation. We provide direct evidence of chemoautotrophic C fixation in soils with statistical evidence of microbial community structure regulation of inorganic carbon fixation in the paddy soil ecosystem.

  8. Influence of mineral fertilization on edaphic fauna in Acacia auriculiformis (A. Cunn plantations

    Liliana Parente Ribeiro

    2014-02-01

    Full Text Available Fertilization and/or the accumulation of organic matter from plant residues can influence the composition of soil and litter community. The goal of this study was to evaluate the effects of P and K fertilization on total faunal and nematode faunal composition and richness in plant litter and soil for 360 days in an area reforested with Acacia auriculiformis (A. Cunn, located in the municipality of Conceição de Macabu in the State of Rio de Janeiro. For each treatment (fertilized and unfertilized plots, samples of litter and soil (to a depth of 5 cm were collected and transferred into a Berlese-Tüllgren funnels for the extraction of fauna. Mesofauna and macrofauna were quantified, and the major taxa identified. Nematodes were extracted by centrifugal flotation in sucrose solution and identified according to feeding habits. Density (number of individuals m-2 of total fauna, microphages, social insects and saprophages varied significantly per treatment and sampling time in both litter and soil. The total number of individuals collected was 5,127, and the total number of nematodes 894. Phosphorus and potassium fertilization resulted in an increase in total fauna density and richness in the litter due to an increased abundance of social insects, saprophages and herbivores. In the soil, fertilization increased the saprophage and predator densities. Saprophages were the predominant taxa in the litter, while social insects (Formicidae prevailed in the soil. Litter nematode populations were favored by mineral fertilization. Bacteriophages were the predominant nematode group in both litter and soil.

  9. Soil microbial community responses to acid exposure and neutralization treatment.

    Shin, Doyun; Lee, Yunho; Park, Jeonghyun; Moon, Hee Sun; Hyun, Sung Pil

    2017-12-15

    Changes in microbial community induced by acid shock were studied in the context of potential release of acids to the environment due to chemical accidents. The responses of microbial communities in three different soils to the exposure to sulfuric or hydrofluoric acid and to the subsequent neutralization treatment were investigated as functions of acid concentration and exposure time by using 16S-rRNA gene based pyrosequencing and DGGE (Denaturing Gradient Gel Electrophoresis). Measurements of soil pH and dissolved ion concentrations revealed that the added acids were neutralized to different degrees, depending on the mineral composition and soil texture. Hydrofluoric acid was more effectively neutralized by the soils, compared with sulfuric acid at the same normality. Gram-negative ß-Proteobacteria were shown to be the most acid-sensitive bacterial strains, while spore-forming Gram-positive Bacilli were the most acid-tolerant. The results of this study suggest that the Gram-positive to Gram-negative bacterial ratio may serve as an effective bio-indicator in assessing the impact of the acid shock on the microbial community. Neutralization treatments helped recover the ratio closer to their original values. The findings of this study show that microbial community changes as well as geochemical changes such as pH and dissolved ion concentrations need to be considered in estimating the impact of an acid spill, in selecting an optimal remediation strategy, and in deciding when to end remedial actions at the acid spill impacted site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Changes in Soil Bacterial Communities and Diversity in ...

    Silver-induced selective pressure is becoming increasingly important due to the growing use of silver (Ag) as an antimicrobial agent in biomedical and commercial products. With demonstrated links between environmental resistomes and clinical pathogens, it is important to identify microbial profiles related to silver tolerance/resistance. We investigated the effects of ionic Ag stress on soil bacterial communities and identified resistant/persistant bacterial populations. Silver treatments of 50 - 400 mg Ag kg-1 soil were established in five soils. Chemical lability measurements using diffusive gradients in thin-film devices confirmed that significant (albeit decreasing) labile Ag concentrations were present throughout the 9-month incubation period. Synchrotron X-ray absorption near edge structure spectroscopy demonstrate that this decreasing lability was due to changes in Ag speciation to less soluble forms such as Ag0 and Ag2S. Real-time PCR and Illumina MiSeq screening of 16S rRNA bacterial genes showed β-diversity in response to Ag pressure, and immediate and significant reductions in 16S rRNA gene counts with varying degrees of recovery. These effects were more strongly influenced by exposure time than by Ag dose at these rates. Ag-selected dominant OTUs principally resided in known persister taxa (mainly Gram positive), including metal-tolerant bacteria and slow-growing Mycobacteria. Soil microbial communities have been implicated as sources of an

  11. EFFECT OF DIFFERENT LEVELS AGROECOLOGICAL LOADS ON BIOCHEMICAL CHARACTERISTICS OF SOIL

    A. V. Shchur; D. V. Vinogradov; V. P. Valckho

    2016-01-01

    Aim. To study the effect of different levels of agri-environmental loads on the enzymatic activity of the soil.Methods. Isolation of soil fauna was conducted by thermogradient. Ecological characteristics of soil biota community was determined by ecological indices. The enzymatic activity of soil under different crops and at different levels of agri-environmental loads in our experiments was determined by methods proven in the laboratory soil enzymology Institute of Experimental Botany name V....

  12. [Soil catalase activity of main plant communities in Leymus chinensis grassland in northeast China].

    Lu, Ping; Guo, Jixun; Zhu, Li

    2002-06-01

    The seasonal dynamics of soil catalase activity of three different plants communities in Leymus chinensis grassland in northeast China were in a parabolas shape. The seasonal variation of Chloris virgata community was greater than those of Leymus chinensis community and Puccinellia tenuiflora community, and "seed effect" might be the main reason. The correlation between the activity of soil catalase in different soil layers and environmental factors were analyzed. The results showed that the activity of soil catalase was decreased gradually with depth of soil layer. The activity of soil catalase was closely correlated with rainfall and air temperature, and it was affected by soil temperature, soil moisture, and their interactions. The correlation between the activity and aboveground vegetation was very significant, and the growing condition of plant communities could be reflected by the activity of soil catalase.

  13. Yeasts dominate soil fungal communities in three lowland Neotropical rainforests.

    Dunthorn, Micah; Kauserud, Håvard; Bass, David; Mayor, Jordan; Mahé, Frédéric

    2017-10-01

    Forest soils typically harbour a vast diversity of fungi, but are usually dominated by filamentous (hyphae-forming) taxa. Compared to temperate and boreal forests, though, we have limited knowledge about the fungal diversity in tropical rainforest soils. Here we show, by environmental metabarcoding of soil samples collected in three Neotropical rainforests, that Yeasts dominate the fungal communities in terms of the number of sequencing reads and OTUs. These unicellular forms are commonly found in aquatic environments, and their hyperdiversity may be the result of frequent inundation combined with numerous aquatic microenvironments in these rainforests. Other fungi that are frequent in aquatic environments, such as the abundant Chytridiomycotina, were also detected. While there was low similarity in OTU composition within and between the three rainforests, the fungal communities in Central America were more similar to each other than the communities in South America, reflecting a general biogeographic pattern also seen in animals, plants and protists. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Soil Microbial Community Contribution to Small Headwater Stream Metabolism.

    Clapcott, J. E.; Gooderham, J. P.; Barmuta, L. A.; Davies, P. E.

    2005-05-01

    The temporal dynamics of sediment respiration were examined in seven small headwater streams in forested catchments in 2004. A strong seasonal response was observed with higher respiration rates in depositional zones than in gravel runs. The data were also examined in the context of proportional habitat distributions that highlighted the importance of high flow events in shaping whole stream metabolic budgets. This study specifically examines the question of terrestrial soil respiration contribution to whole stream metabolism by the controlled inundation of terrestrial soils. The experiment included six experimentally inundated terrestrial zones, six terrestrial controls, and six in-stream depositional zones. Sediment bacterial respiration was measured using 14C leucine incorporation and cotton strip bioassays were also employed to provide an indicative measure of sediment microbial activity. Despite high variability and exhibiting significantly lower bacterial activity than in-stream sediments, modelling using flow data and habitat mapping illustrated the important contribution of terrestrial soil respiration to the whole stream metabolic budgets of small headwater streams. In addition, microbial community composition examined using phospholipid fatty acid analysis clearly differentiated between terrestrial and aquatic communities. Freshly inundated terrestrial communities remained similar to un-inundated controls after 28 days.

  15. Impact of treated wastewater for irrigation on soil microbial communities.

    Ibekwe, A M; Gonzalez-Rubio, A; Suarez, D L

    2018-05-01

    The use of treated wastewater (TWW) for irrigation has been suggested as an alternative to use of fresh water because of the increasing scarcity of fresh water in arid and semiarid regions of the world. However, significant barriers exist to widespread adoption due to some potential contaminants that may have adverse effects on soil quality and or public health. In this study, we investigated the abundance and diversity of bacterial communities and the presence of potential pathogenic bacterial sequences in TWW in comparison to synthetic fresh water (SFW) using pyrosequencing. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity and abundance of different bacterial groups in TWW irrigated soils to soils treated with SFW. Shannon diversity index values (H') suggest that microbial diversity was not significantly different (P<0.086) between soils with TWW and SFW. Pyrosequencing detected sequences of 17 bacterial phyla with Proteobacteria (32.1%) followed by Firmicutes (26.5%) and Actinobacteria (14.3%). Most of the sequences associated with nitrifying bacteria, nitrogen-fixing bacteria, carbon degraders, denitrifying bacteria, potential pathogens, and fecal indicator bacteria were more abundant in TWW than in SFW. Therefore, TWW effluent may contain bacterial that may be very active in many soil functions as well as some potential pathogens. Published by Elsevier B.V.

  16. Resistance and Resilience of Soil Microbial Communities Exposed to Petroleum-Derived Compounds

    Modrzynski, Jakub Jan

    Functioning of soil microbial communities is generally considered resilient to disturbance, including chemical stress. Activities of soil microbial communities are often sustained in polluted environments due to exceptional plasticity of microbial communities and functional redundancy. Pollution......-induced community tolerance (PICT) often develops following chemical stress. Nonetheless, environmental pollution may severely disturb functioning of soil microbial communities, thereby threatening provision of important ecosystem services provided by microorganisms. Pollution with petroleum and petroleum......-derived compounds (PDCs) is a significant environmental problem on a global scale. Research addressing interactions between microorganisms and PDC pollution is dominated by studies of biodegradation, with less emphasis on microbial ecotoxicology. Soil microbial communities are generally considered highly resilient...

  17. Recovery of Soil Microbial Community Structure in a Wildfire Impacted Forest Soil

    Tate, Robert, III; Mikita, Robyn

    2010-05-01

    Wildfires are common disturbances that will increase in frequency and intensity as a result of conditions associated with the changing climate. In turn, forest fires exacerbate climate conditions by increasing carbon and atmospheric aerosols, and changing the surface albedo. Fires have significant economic, environmental, and ecological repercussions; however, we have a limited understanding on the effect of severe wildfires on the composition, diversity, and function of belowground microorganisms. The objective of this research was to examine the shift of the forest soil microbial community as a result of a severe wildfire in the New Jersey Pinelands. Over the span of two years following the fire, soil samples from the organic and mineral layers of the severely burned sites were collected six times. Samples were also collected twice from an unburned control site. It was hypothesized that soil microbial communities from severely burned samples collected shortly after the fire would be significantly different from (1) the unburned samples that serve as controls and (2) the severely burned samples collected more than a year after the fire. Microbial community composition was analyzed by principal component analysis and multivariate analysis of variance of molecular fingerprint data from denaturing gradient gel electrophoresis of bacterial and archaeal-specific amplicons. Bacterial community composition was significantly different among all the organic and mineral layer samples collected 2, 5, 13, and 17 months following the fire. This indicated a shift in the bacterial communities with time following the fire. Common phylotypes from the burned organic layer samples collected 2 months after the fire related closely to members of the phyla Cyanobacteria and Acidobacteria, whereas those from later samples (5, 13, and 17 months following the fire) were closely related to members of the genus Mycobacteria. Canonical correlation analysis was used to determine connections

  18. Temporal dynamics in microbial soil communities at anthrax carcass sites.

    Valseth, Karoline; Nesbø, Camilla L; Easterday, W Ryan; Turner, Wendy C; Olsen, Jaran S; Stenseth, Nils Chr; Haverkamp, Thomas H A

    2017-09-26

    Anthrax is a globally distributed disease affecting primarily herbivorous mammals. It is caused by the soil-dwelling and spore-forming bacterium Bacillus anthracis. The dormant B. anthracis spores become vegetative after ingestion by grazing mammals. After killing the host, B. anthracis cells return to the soil where they sporulate, completing the lifecycle of the bacterium. Here we present the first study describing temporal microbial soil community changes in Etosha National Park, Namibia, after decomposition of two plains zebra (Equus quagga) anthrax carcasses. To circumvent state-associated-challenges (i.e. vegetative cells/spores) we monitored B. anthracis throughout the period using cultivation, qPCR and shotgun metagenomic sequencing. The combined results suggest that abundance estimation of spore-forming bacteria in their natural habitat by DNA-based approaches alone is insufficient due to poor recovery of DNA from spores. However, our combined approached allowed us to follow B. anthracis population dynamics (vegetative cells and spores) in the soil, along with closely related organisms from the B. cereus group, despite their high sequence similarity. Vegetative B. anthracis abundance peaked early in the time-series and then dropped when cells either sporulated or died. The time-series revealed that after carcass deposition, the typical semi-arid soil community (e.g. Frankiales and Rhizobiales species) becomes temporarily dominated by the orders Bacillales and Pseudomonadales, known to contain plant growth-promoting species. Our work indicates that complementing DNA based approaches with cultivation may give a more complete picture of the ecology of spore forming pathogens. Furthermore, the results suggests that the increased vegetation biomass production found at carcass sites is due to both added nutrients and the proliferation of microbial taxa that can be beneficial for plant growth. Thus, future B. anthracis transmission events at carcass sites may be

  19. Soil microbial community composition is correlated to soil carbon processing along a boreal wetland formation gradient

    Chapman, Eric; Cadillo-Quiroz, Hinsby; Childers, Daniel L.; Turetsky, Merritt R.; Waldrop, Mark P.

    2017-01-01

    Climate change is modifying global biogeochemical cycles. Microbial communities play an integral role in soil biogeochemical cycles; knowledge about microbial composition helps provide a mechanistic understanding of these ecosystem-level phenomena. Next generation sequencing approaches were used to investigate changes in microbial functional groups during ecosystem development, in response to climate change, in northern boreal wetlands. A gradient of wetlands that developed following permafrost degradation was used to characterize changes in the soil microbial communities that mediate C cycling: a bog representing an “undisturbed” system with intact permafrost, and a younger bog and an older bog that formed following the disturbance of permafrost thaw. Reference 16S rRNA databases and several diversity indices were used to assess structural differences among these communities, to assess relationships between soil microbial community composition and various environmental variables including redox potential and pH. Rates of potential CO2 and CH4 gas production were quantified to correlate sequence data with gas flux. The abundance of organic C degraders was highest in the youngest bog, suggesting higher rates of microbial processes, including potential CH4 production. In addition, alpha diversity was also highest in the youngest bog, which seemed to be related to a more neutral pH and a lower redox potential. These results could potentially be driven by increased niche differentiation in anaerobic soils. These results suggest that ecosystem structure, which was largely driven by changes in edaphic and plant community characteristics between the “undisturbed” permafrost bog and the two bogs formed following permafrost thaw, strongly influenced microbial function.

  20. Soil factors involved in the diversity and structure of soil bacterial communities in commercial organic olive orchards in Southern Spain.

    Landa, B B; Montes-Borrego, M; Aranda, S; Soriano, M A; Gómez, J A; Navas-Cortés, J A

    2014-04-01

    Nowadays, there is a tendency in olive production systems to reduce tillage or keep a vegetative cover to reduce soil erosion and degradation. However, there is scarce information on the effects of different soil management systems (SMS) in soil bacterial community composition of olive groves. In this study, we have evaluated the effects of soil type and different SMS implemented to control weeds in the structure and diversity of bacterial communities of 58 soils in the two geographic areas that best represent the organic olive production systems in Spain. Bacterial community composition assessed by frequency and intensity of occurrence of terminal restriction profiles (TRFs) derived from terminal restriction fragment length polymorphism (T-RFLP) analysis of amplified 16S ribosomal deoxyribonucleic acid were strongly correlated with soil type/field site (Eutric/Calcaric) that differed mainly in soil particle size distribution and soil pH, followed by a strong effect of SMS, in that order. Canonical discriminant (CD) analysis of TRFs properly classified all of the olive orchard soils as belonging to their respective soil type or SMS. Furthermore, only a small set of TRFs were enough to clearly and significantly differentiate soil samples according to soil type or SMS. Those specific TRFs could be used as bioindicators to assess the effect of changes in SMS aimed to enhance soil quality in olive production systems. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Fauna Europaea - Orthopteroid orders

    Heller, K.-G.; Bohn, H.; Haas, F.; Willemse, F.; de Jong, Y.

    2016-01-01

    Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all extant European terrestrial and freshwater animals, their geographical distribution at the level of countries and major islands (west of the Urals and excluding the Caucasus region),

  2. The effects of mountain meadows management on soil fauna communities (on example of earthworms and oribatid mites)

    Pižl, Václav; Starý, Josef

    2001-01-01

    Roč. 7, - (2001), s. 87-96 ISSN 1211-7420 R&D Projects: GA ČR GA206/99/1410 Institutional research plan: CEZ:AV0Z6066911 Keywords : earthworms * oribatid mites * mountain meadows Subject RIV: EH - Ecology, Behaviour

  3. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    Maaike evan Agtmaal

    2015-07-01

    Full Text Available There is increasing evidence that microbial volatiles (VOCs play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial community composition would affect the production by soils of VOCs suppressing the plant-pathogenic oomycete Pythium. Using pyrosequencing of 16S ribosomal gene fragments we compared the composition of bacterial communities in sandy soils that had been exposed to anaerobic disinfestation (AD, a treatment used to kill harmful soil organisms, with the composition in untreated soils. Three months after the AD treatment had been finished, there was still a clear legacy effect of the former anaerobic stress on bacterial community composition with a strong increase in relative abundance of the phylum Bacteroidetes and a significant decrease of the phyla Acidobacteria, Planctomycetes, Nitrospirae, Chloroflexi and Chlorobi. This change in bacterial community composition coincided with loss of production of Pythium suppressing soil volatiles (VOCs and of suppression of Pythium impacts on Hyacinth root development. One year later, the composition of the bacterial community in the AD soils was reflecting that of the untreated soils. In addition, both production of Pythium-suppressing VOCs and suppression of Pythium in Hyacinth bioassays had returned to the levels of the untreated soil. GC/MS analysis identified several VOCs, among which compounds known to be antifungal, that were produced in the untreated soils but not in the AD soils. These compounds were again produced 15 months after the AD treatment. Our data indicate that soils exposed to a drastic stress can temporarily lose pathogen suppressive characteristics and that both loss and return of these suppressive characteristics coincides with shifts in the soil bacterial community composition. Our data are

  4. Soil fertility evaluation and management by smallholder farmer communities in northern Tanzania

    Mowo, J.G.; Janssen, B.H.; Oenema, O.; German, L.A.; Mrema, J.P.; Shemdoe, R.S.

    2006-01-01

    The objective of this paper is to compare soil fertility evaluation based on experience and knowledge of smallholder farmer communities with the evaluation by scientists based on soil analysis and model calculations. The role of the smallholder farmer community in soil fertility evaluation and

  5. Microbial community responses in forest mineral soil to compaction, organic matter removal, and vegetation control

    Matt D. Busse; Samual E. Beattie; Robert F. Powers; Filpe G. Sanchez; Allan E. Tiarks

    2006-01-01

    We tested three disturbance hypotheses in young conifer plantations: H1: soil compaction and removal of surface organic matter produces sustained changes in microbial community size, activity, and structure in mineral soil; H2: microbial community characteristics in mineral soil are linked to the recovery of plant diversity...

  6. Microbial Community Dynamics in Soil Depth Profiles Over 120,000 Years of Ecosystem Development

    Stephanie Turner

    2017-05-01

    Full Text Available Along a long-term ecosystem development gradient, soil nutrient contents and mineralogical properties change, therefore probably altering soil microbial communities. However, knowledge about the dynamics of soil microbial communities during long-term ecosystem development including progressive and retrogressive stages is limited, especially in mineral soils. Therefore, microbial abundances (quantitative PCR and community composition (pyrosequencing as well as their controlling soil properties were investigated in soil depth profiles along the 120,000 years old Franz Josef chronosequence (New Zealand. Additionally, in a microcosm incubation experiment the effects of particular soil properties, i.e., soil age, soil organic matter fraction (mineral-associated vs. particulate, O2 status, and carbon and phosphorus additions, on microbial abundances (quantitative PCR and community patterns (T-RFLP were analyzed. The archaeal to bacterial abundance ratio not only increased with soil depth but also with soil age along the chronosequence, coinciding with mineralogical changes and increasing phosphorus limitation. Results of the incubation experiment indicated that archaeal abundances were less impacted by the tested soil parameters compared to Bacteria suggesting that Archaea may better cope with mineral-induced substrate restrictions in subsoils and older soils. Instead, archaeal communities showed a soil age-related compositional shift with the Bathyarchaeota, that were frequently detected in nutrient-poor, low-energy environments, being dominant at the oldest site. However, bacterial communities remained stable with ongoing soil development. In contrast to the abundances, the archaeal compositional shift was associated with the mineralogical gradient. Our study revealed, that archaeal and bacterial communities in whole soil profiles are differently affected by long-term soil development with archaeal communities probably being better adapted to

  7. Edaphic fauna in a vegetation gradient in the Sete Cidades National Park.

    Nunes, L A P L; Araújo, A S F; Pessoa, M M C; Sousa, R S; Silva, J D C; Matos-Filho, C H A

    2018-04-09

    The vegetation physionomy and cover can show patterns of diversity and composition of the edaphic community, depending on the quantity and quality of litter in a specific habitat. The objective of this study was to evaluate the effect of the vegetation gradient formed by Graminoid Field (GRF), Cerrado Sensu Stricto (CSS), Cerradão (CRD) and Semideciduous Seasonal Forest (SSF) on density, diversity and composition of the edaphic fauna community in two seasons of the year, in the Sete Cidades National Park (Piauí state). For fauna sampling, a total of eight pitfall traps, distanced 10 m, were placed in each area in the central part of each system, where they remained for seven days. In the wet period, there was a tendency to increase the number of individuals as a function of the complexity of the vegetation formation, with the inverse occurring in the dry period. It was verified an environmental variation of the climatic factors temperature and humidity according to the vegetal formation, contributing to a heterogeneous distribution of the fauna. The GRF formation presented a significantly lower value of average richness only in the dry period. Regarding the variables of diversity and uniformity, they did not show drastic variations in relation to the vegetation gradient studied. The dominant groups in the vegetation gradient were Formicidae, Coleoptera, Aranae, Acari and Collembola, with reduction of the number of Coleoptera in the dry season. Principal component analysis (PCA) revealed greater differences in the composition of the communities between the vegetation formations for the rainy season. At this time, the formations SSF and CRD were associated to a greater diversity of invertebrates than CSS and GRF, demonstrating the influence of the vegetation complexity on the soil fauna community.

  8. Edaphic fauna in a vegetation gradient in the Sete Cidades National Park

    L. A. P. L. Nunes

    2018-04-01

    Full Text Available Abstract The vegetation physionomy and cover can show patterns of diversity and composition of the edaphic community, depending on the quantity and quality of litter in a specific habitat. The objective of this study was to evaluate the effect of the vegetation gradient formed by Graminoid Field (GRF, Cerrado Sensu Stricto (CSS, Cerradão (CRD and Semideciduous Seasonal Forest (SSF on density, diversity and composition of the edaphic fauna community in two seasons of the year, in the Sete Cidades National Park (Piauí state. For fauna sampling, a total of eight pitfall traps, distanced 10 m, were placed in each area in the central part of each system, where they remained for seven days. In the wet period, there was a tendency to increase the number of individuals as a function of the complexity of the vegetation formation, with the inverse occurring in the dry period. It was verified an environmental variation of the climatic factors temperature and humidity according to the vegetal formation, contributing to a heterogeneous distribution of the fauna. The GRF formation presented a significantly lower value of average richness only in the dry period. Regarding the variables of diversity and uniformity, they did not show drastic variations in relation to the vegetation gradient studied. The dominant groups in the vegetation gradient were Formicidae, Coleoptera, Aranae, Acari and Collembola, with reduction of the number of Coleoptera in the dry season. Principal component analysis (PCA revealed greater differences in the composition of the communities between the vegetation formations for the rainy season. At this time, the formations SSF and CRD were associated to a greater diversity of invertebrates than CSS and GRF, demonstrating the influence of the vegetation complexity on the soil fauna community.

  9. Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders

    Guo-Chun eDing

    2012-08-01

    Full Text Available Considering their key role for ecosystem processes, it is important to understand the response of microbial communities in unpolluted soils to pollution with polycyclic aromatic hydrocarbons (PAH. Phenanthrene, a model compound for PAH, was spiked to a Cambisol and a Luvisol soil. Total community DNA from phenanthrene-spiked and control soils collected on days 0, 21 and 63 were analyzed based on PCR-amplified 16S rRNA genefragments. Denaturing gradient gel electrophoresis (DGGE fingerprints of bacterial communities increasingly deviated with time between spiked and control soils. In taxon specific DGGE, significant responses of Alphaproteobacteria and Actinobacteria became only detectable after 63 days, while significant effects on Betaproteobacteria were detectable in both soils after 21 days. Comparison of the taxonomic distribution of bacteria in spiked and control soils on day 63 as revealed by pyrosequencing indicated soil type specific negative effects of phenanthrene on several taxa, many of them belonging to the Gamma-, Beta- or Deltaproteobacteria. Bacterial richness and evenness decreased in spiked soils. Despite the significant differences in the bacterial community structure between both soils on day 0, similar genera increased in relative abundance after PAH spiking, especially Sphingomonas and Polaromonas. However, this did not result in an increased overall similarity of the bacterial communities in both soils.

  10. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  11. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same

  12. Survival of a microbial soil community under Martian conditions

    Hansen, A. A.; Noernberg, P.; Merrison, J.; Lomstein, B. Aa.; Finster, K. W.

    2003-04-01

    Because of the similarities between Earth and Mars early history the hypothesis was forwarded that Mars is a site where extraterrestrial life might have and/or may still occur(red). Sample-return missions are planned by NASA and ESA to test this hypothesis. The enormous economic costs and the logistic challenges of these missions make earth-based model facilities inevitable. The Mars simulation system at University of Aarhus, Denmark allows microbiological experiments under Mars analogue conditions. Thus detailed studies on the effect of Mars environmental conditions on the survival and the activity of a natural microbial soil community were carried out. Changes in the soil community were determined with a suite of different approaches: 1) total microbial respiration activity was investigated with 14C-glucose, 2) the physiological profile was investigated by the EcoLog-system, 3) colony forming units were determined by plate counts and 4) the microbial diversity on the molecular level was accessed with Denaturing Gradient Gel Electrophoresis. The simulation experiments showed that a part of the bacterial community survived Martian conditions corresponding to 9 Sol. These and future simulation experiments will contribute to our understanding of the possibility for extraterrestrial and terrestrial life on Mars.

  13. Yeast Communities of Chestnut Soils under Vineyards in Dagestan

    Abdullabekova, D. A.; Magomedova, E. S.; Magomedov, G. G.; Aliverdieva, D. A.; Kachalkin, A. V.

    2017-12-01

    The study of yeast communities in chestnut soils (Kastanozems) under vineyards in the Republic of Dagestan made it possible to isolate 20 yeast species. Most of the yeasts under vineyards belonged to ascomycetes, among which species of the Saccharomycetaceae family (in particular, Saccharomyces cerevisiae) comprised a significant part. The obtained results indicate that the soils under vineyards keep the pool of microbial diversity and ensure preservation of many species typical for grapes. The method of enrichment culture on grape juice medium proved to be more efficient than other methods of analysis with respect to the number of isolated species and the rate of their detection. However, implementation of different techniques to study yeasts' diversity can give somewhat different results; a set of methods should be used for an integrated analysis.

  14. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-01-01

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha−1 yr−1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  15. Soil bacterial and fungal community responses to nitrogen addition across soil depths and microhabitat in an arid shrubland

    Rebecca C Mueller

    2015-09-01

    Full Text Available Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0-0.5 cm or 0-10 cm across the N-amendment gradient (0, 7 and 15 kg ha-1 yr-1. We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  16. Mineralogical composition changes of postagrogenic soils under different plant communities.

    Churilin, Nikita; Chizhikova, Natalia; Varlamov, Evgheni; Churilina, Alexandra

    2017-04-01

    Plant communities play the leading role in transformation of soil. The need of studying former arable lands increases due to large number of abandoned lands in Russia. It is necessary to study mineralogical composition of soils involved into natural processes to understand the trends of their development after agricultural activities in the past. The aim of the study is to identify changes in mineralogical composition of soils under the influence of different plant communities. Soils were sampled in the south of Arkhangelsk region, Ustyansky district, near Akichkin Pochinok village. Soils are formed on clay moraine of Moscow glaciation. Soil profiles were dug on interfluve. We selected 4 plant communities on different stages of succession: upland meadow with domination of sod grasses (Phleum pratense, Agrostis tenuis), 16-year-old birch forest where dominants are herbaceous plants such as Poa sp., Chamerion angustiflium, Agrostis tenuis, 16-year-old spruce forest with no herbaceous vegetation and 70-year-old bilberry spruce forest with domination of Vaccinium myrtillus and Vaccinium vitis-idaea. To separate soil fractions mineral content. We noticed a clear differentiation of studied soils both in the content of fraction and composition of minerals. Mineralogical composition and major mineral phases correlation of profiles under 70 years and 16 years of spruce forests are different. Mineralogical content in upper part of profile under the young spruce is more differentiated than in old spruce forest: the amount of quartz and kaolinite increases in upper horizon, although in this case the overall pattern of profile formation of clay material during podzolization remains unchanged. There is more substantial desilting under the birch forest, compared with profile under the spruce of same age within top 50 cm. Under the meadow vegetation we've discovered differentiation in mineral composition. Upper horizons contain smectite phase and differ from the underlying

  17. Effect of brushwood transposition on the leaf litter arthropod fauna in a cerrado area

    Paula Cristina Benetton Vergílio

    2013-10-01

    Full Text Available The results of ecological restoration techniques can be monitored through biological indicators of soil quality such as the leaf litter arthropod fauna. This study aimed to determine the immediate effect of brushwood transposition transferred from an area of native vegetation to a disturbed area, on the leaf litter arthropod fauna in a degraded cerrado area. The arthropod fauna of four areas was compared: a degraded area with signal grass, two experimental brushwood transposition areas, with and without castor oil plants, and an area of native cerrado. In total, 7,660 individuals belonging to 23 taxa were sampled. Acari and Collembola were the most abundant taxa in all studied areas, followed by Coleoptera, Diptera, Hemiptera, Hymenoptera, and Symphyla. The brushwood transposition area without castor oil plants had the lowest abundance and dominance and the highest diversity of all areas, providing evidence of changes in the soil community. Conversely, the results showed that the presence of castor oil plants hampered early succession, negatively affecting ecological restoration in this area.

  18. Intensive agriculture reduces soil biodiversity across Europe.

    Tsiafouli, Maria A; Thébault, Elisa; Sgardelis, Stefanos P; de Ruiter, Peter C; van der Putten, Wim H; Birkhofer, Klaus; Hemerik, Lia; de Vries, Franciska T; Bardgett, Richard D; Brady, Mark Vincent; Bjornlund, Lisa; Jørgensen, Helene Bracht; Christensen, Sören; Hertefeldt, Tina D'; Hotes, Stefan; Gera Hol, W H; Frouz, Jan; Liiri, Mira; Mortimer, Simon R; Setälä, Heikki; Tzanopoulos, Joseph; Uteseny, Karoline; Pižl, Václav; Stary, Josef; Wolters, Volkmar; Hedlund, Katarina

    2015-02-01

    Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems. © 2014 John Wiley

  19. Molecular characterization of soil bacterial community in a perhumid, low mountain forest.

    Lin, Yu-Te; Whitman, William B; Coleman, David C; Chih-Yu, Chiu

    2011-01-01

    Forest disturbance often results in changes in soil properties and microbial communities. In the present study, we characterized a soil bacterial community subjected to disturbance using 16S rRNA gene clone libraries. The community was from a disturbed broad-leaved, low mountain forest ecosystem at Huoshaoliao (HSL) located in northern Taiwan. This locality receives more than 4,000 mm annual precipitation, one of the highest precipitations in Taiwan. Based on the Shannon diversity index, Chao1 estimator, richness and rarefaction curve analysis, the bacterial community in HSL forest soils was more diverse than those previously investigated in natural and disturbed forest soils with colder or less humid weather conditions. Analysis of molecular variance also revealed that the bacterial community in disturbed soils significantly differed from natural forest soils. Most of the abundant operational taxonomic units (OTUs) in the disturbed soil community at HSL were less abundant or absent in other soils. The disturbances influenced the composition of bacterial communities in natural and disturbed forests and increased the diversity of the disturbed forest soil community. Furthermore, the warmer and humid weather conditions could also increase community diversity in HSL soils.

  20. Monitoring the Perturbation of Soil and Groundwater Microbial Communities Due to Pig Production Activities

    Hong, Pei-Ying; Yannarell, A. C.; Dai, Q.; Ekizoglu, M.; Mackie, R. I.

    2013-01-01

    This study aimed to determine if biotic contaminants originating from pig production farms are disseminated into soil and groundwater microbial communities. A spatial and temporal sampling of soil and groundwater in proximity to pig production farms

  1. Impact of electrokinetic remediation on microbial communities within PCP contaminated soil

    Lear, G.; Harbottle, M.J.; Sills, G.; Knowles, C.J.; Semple, K.T.; Thompson, I.P.

    2007-01-01

    Electrokinetic techniques have been used to stimulate the removal of organic pollutants within soil, by directing contaminant migration to where remediation may be more easily achieved. The effect of this and other physical remediation techniques on the health of soil microbial communities has been poorly studied and indeed, largely ignored. This study reports the impact on soil microbial communities during the application of an electric field within ex situ laboratory soil microcosms contaminated with pentachlorophenol (PCP; 100 mg kg -1 oven dry soil). Electrokinetics reduced counts of culturable bacteria and fungi, soil microbial respiration and carbon substrate utilisation, especially close to the acidic anode where PCP accumulated (36 d), perhaps exacerbated by the greater toxicity of PCP at lower soil pH. There is little doubt that a better awareness of the interactions between soil electrokinetic processes and microbial communities is key to improving the efficacy and sustainability of this remediation strategy. - Electrokinetics negatively impacted soil

  2. Belowground biotic complexity drives aboveground dynamics: a test of the soil community feedback model.

    Pendergast, Thomas H; Burke, David J; Carson, Walter P

    2013-03-01

    Feedbacks between soil communities and plants may determine abundance and diversity in plant communities by influencing fitness and competitive outcomes. We tested the core hypotheses of soil community feedback theory: plant species culture distinct soil communities that alter plant performance and the outcome of interspecific competition. We applied this framework to inform the repeated dominance of Solidago canadensis in old-field communities. In glasshouse experiments, we examined the effects of soil communities on four plant species' performance in monoculture and outcomes of interspecific competition. We used terminal restriction fragment length polymorphism (TRFLP) analysis to infer differences in the soil communities associated with these plant species. Soil community origin had strong effects on plant performance, changed the intensity of interspecific competition and even reversed whether plant species were limited by conspecifics or heterospecifics. These plant-soil feedbacks are strong enough to upend winners and losers in classic competition models. Plant species cultured significantly different mycorrhizal fungal and bacterial soil communities, indicating that these feedbacks are likely microbiotic in nature. In old-fields and other plant communities, these soil feedbacks appear common, fundamentally alter the intensity and nature of plant competition and potentially maintain diversity while facilitating the dominance of So. canadensis. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Intercropped Silviculture Systems, a Key to Achieving Soil Fungal Community Management in Eucalyptus Plantations

    Rachid, Caio T. C. C.; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed...

  4. Application of PCR-DGGE method for identification of nematode communities in pepper growing soil

    Nguyen, Thi Phuong; Ha, Duy Ngo; Nguyen, Huu Hung; Duong, Duc Hieu

    2017-01-01

    Soil nematodes play an important role in indication for assessing soil environments and ecosystems. Previous studies of nematode community analyses based on molecular identification have shown to be useful for assessing soil environments. Here we applied PCR-DGGE method for molecular analysis of five soil nematode communities (designed as S1 to S5) collected from four provinces in Southeastern Vietnam (Binh Duong, Ba Ria Vung Tau, Binh Phuoc and Dong Nai) based on SSU gene. By sequencing DNA ...

  5. Effect of soil properties and hydrology on Archaeal community composition in three temperate grasslands on peat

    Görres, Carolyn-Monika; Conrad, Ralf; Petersen, Søren O

    2013-01-01

    Grasslands established on drained peat soils are regarded as negligible methane (CH4) sources; however, they can still exhibit considerable soil CH4 dynamics. We investigated archaeal community composition in two different fen peat soils and one bog peat soil under permanent grassland in Denmark........ Overall, there seemed to be a significant coupling between peat type and archaeal community composition, with local hydrology modifying the strength of this coupling....

  6. Effects of forest conversion on soil microbial communities depend on soil layer on the eastern Tibetan Plateau of China.

    Ruoyang He

    Full Text Available Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT. Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA, respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus, microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.

  7. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.

    Deng, Qi; Cheng, Xiaoli; Hui, Dafeng; Zhang, Qian; Li, Ming; Zhang, Quanfa

    2016-01-15

    Afforestation may alter soil microbial community structure and function, and further affect soil carbon (C) and nitrogen (N) dynamics. Here we investigated soil microbial carbon and nitrogen (MBC and MBN) and microbial community [e.g. bacteria (B), fungi (F)] derived from phospholipid fatty acids (PLFAs) analysis in afforested (implementing woodland and shrubland plantations) and adjacent croplands in central China. Relationships of microbial properties with biotic factors [litter, fine root, soil organic carbon (SOC), total nitrogen (TN) and inorganic N], abiotic factors (soil temperature, moisture and pH), and major biological processes [basal microbial respiration, microbial metabolic quotient (qCO2), net N mineralization and nitrification] were developed. Afforested soils had higher mean MBC, MBN and MBN:TN ratios than the croplands due to an increase in litter input, but had lower MBC:SOC ratio resulting from low-quality (higher C:N ratio) litter. Afforested soils also had higher F:B ratio, which was probably attributed to higher C:N ratios in litter and soil, and shifts of soil inorganic N forms, water, pH and disturbance. Alterations in soil microbial biomass and community structure following afforestation were associated with declines in basal microbial respiration, qCO2, net N mineralization and nitrification, which likely maintained higher soil carbon and nitrogen storage and stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth

    Ziting Wang

    2017-07-01

    Full Text Available Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years conservation (chisel plow, zero and conventional (plow tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1 differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2 tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in

  9. Fungal Community Structure as an Indicator of Soil Agricultural Management Effects in the Cerrado

    Alana de Almeida Valadares-Pereira

    2017-11-01

    Full Text Available ABSTRACT Forest-to-agriculture conversion and soil management practices for soybean cropping are frequently performed in the Cerrado (Brazilian tropical savanna. However, the effects of these practices on the soil microbial communities are still unknown. We evaluated and compared the fungal community structure in soil from soybean cropland with soil under native Cerrado vegetation at different times of the year in the Tocantins State. Soil samples were collected in two periods after planting (December and in two periods during the soybean reproductive growth stage (February. Concomitantly, soil samples were collected from an area under native Cerrado vegetation surrounding the agricultural area. The soil DNA was analyzed using a fingerprinting method termed Automated Ribosomal Intergenic Space Analysis (ARISA to assess the fungal community structure in the soil. Differences in the fungal community structure in the soil were found when comparing soybean cropland with the native vegetation (R = 0.932 for sampling 1 and R = 0.641 for sampling 2. Changes in the fungal community structure after management practices for soybean planting in Cerrado areas were related to changes in soil properties, mainly in copper, calcium, and iron contents, cation exchange capacity, base saturation, and calcium to magnesium ratio. These results show the changes in the fungal community structure in the soil as an effect of agricultural soil management in Cerrado vegetation in the state of Tocantins.

  10. Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu.

    Wakelin, Steven; Gerard, Emily; Black, Amanda; Hamonts, Kelly; Condron, Leo; Yuan, Tong; van Nostrand, Joy; Zhou, Jizhong; O'Callaghan, Maureen

    2014-07-01

    Pollution induced community tolerance (PICT) to Cu(2+), and co-tolerance to nanoparticulate Cu, ionic silver (Ag(+)), and vancomycin were measured in field soils treated with Cu(2+) 15 years previously. EC50 values were determined using substrate induced respiration and correlations made against soil physicochemical properties, microbial community structure, physiological status (qCO2; metabolic quotient), and abundances of genes associated with metal and antibiotic resistance. Previous level of exposure to copper was directly (P < 0.05) associated with tolerance to addition of new Cu(2+), and also of nanoparticle Cu. However, Cu-exposed communities had no co-tolerance to Ag(+) and had increased susceptibly to vancomycin. Increased tolerance to both Cu correlated (P < 0.05) with increased metabolic quotient, potentially indicating that the community directed more energy towards cellular maintenance rather than biomass production. Neither bacterial or fungal community composition nor changes in the abundance of genes involved with metal resistance were related to PICT or co-tolerance mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Dryland photoautotrophic soil surface communities endangered by global change

    Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina

    2018-03-01

    Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth's terrestrial surface will decrease by about 25-40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

  12. Dryland photoautotrophic soil surface communities endangered by global change

    Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina

    2018-01-01

    Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth’s terrestrial surface will decrease by about 25–40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

  13. Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†

    Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.

    2011-01-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890

  14. Application of Sodium Silicate Enhances Cucumber Resistance to Fusarium Wilt and Alters Soil Microbial Communities

    Xingang Zhou

    2018-05-01

    Full Text Available Exogenous silicates can enhance plant resistance to pathogens and change soil microbial communities. However, the relationship between changes in soil microbial communities and enhanced plant resistance remains unclear. Here, effects of exogenous sodium silicate on cucumber (Cucumis sativus L. seedling resistance to Fusarium wilt caused by the soil-borne pathogen Fusarium oxysporum f.sp. cucumerinum Owen (FOC were investigated by drenching soil with 2 mM sodium silicate. Soil bacterial and fungal community abundances and compositions were estimated by real-time PCR and high-throughput amplicon sequencing; then, feedback effects of changes in soil biota on cucumber seedling resistance to FOC were assessed. Moreover, effects of sodium silicate on the growth of FOC and Streptomyces DHV3-2, an antagonistic bacterium to FOC, were investigated both in vitro and in the soil environment. Results showed that exogenous sodium silicate enhanced cucumber seedling growth and resistance to FOC. In bare soil, sodium silicate increased bacterial and fungal community abundances and diversities. In cucumber-cultivated soil, sodium silicate increased bacterial community abundances, but decreased fungal community abundances and diversities. Sodium silicate also changed soil bacterial and fungal communality compositions, and especially, decreased the relative abundances of microbial taxa containing plant pathogens but increased these with plant-beneficial potentials. Moreover, sodium silicate increased the abundance of Streptomyces DHV3-2 in soil. Soil biota from cucumber-cultivated soil treated with sodium silicate decreased cucumber seedling Fusarium wilt disease index, and enhanced cucumber seedling growth and defense-related enzyme activities in roots. Sodium silicate at pH 9.85 inhibited FOC abundance in vitro, but did not affect FOC abundance in soil. Overall, our results suggested that, in cucumber-cultivated soil, sodium silicate increased cucumber seedling

  15. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  16. Soil Parameters Drive the Structure, Diversity and Metabolic Potentials of the Bacterial Communities Across Temperate Beech Forest Soil Sequences.

    Jeanbille, M; Buée, M; Bach, C; Cébron, A; Frey-Klett, P; Turpault, M P; Uroz, S

    2016-02-01

    Soil and climatic conditions as well as land cover and land management have been shown to strongly impact the structure and diversity of the soil bacterial communities. Here, we addressed under a same land cover the potential effect of the edaphic parameters on the soil bacterial communities, excluding potential confounding factors as climate. To do this, we characterized two natural soil sequences occurring in the Montiers experimental site. Spatially distant soil samples were collected below Fagus sylvatica tree stands to assess the effect of soil sequences on the edaphic parameters, as well as the structure and diversity of the bacterial communities. Soil analyses revealed that the two soil sequences were characterized by higher pH and calcium and magnesium contents in the lower plots. Metabolic assays based on Biolog Ecoplates highlighted higher intensity and richness in usable carbon substrates in the lower plots than in the middle and upper plots, although no significant differences occurred in the abundance of bacterial and fungal communities along the soil sequences as assessed using quantitative PCR. Pyrosequencing analysis of 16S ribosomal RNA (rRNA) gene amplicons revealed that Proteobacteria, Acidobacteria and Bacteroidetes were the most abundantly represented phyla. Acidobacteria, Proteobacteria and Chlamydiae were significantly enriched in the most acidic and nutrient-poor soils compared to the Bacteroidetes, which were significantly enriched in the soils presenting the higher pH and nutrient contents. Interestingly, aluminium, nitrogen, calcium, nutrient availability and pH appeared to be the best predictors of the bacterial community structures along the soil sequences.

  17. Long-term Fertilization Structures Bacterial and Archaeal Communities along Soil Depth Gradient in a Paddy Soil

    Yunfu Gu

    2017-08-01

    Full Text Available Soil microbes provide important ecosystem services. Though the effects of changes in nutrient availability due to fertilization on the soil microbial communities in the topsoil (tilled layer, 0–20 cm have been extensively explored, the effects on communities and their associations with soil nutrients in the subsoil (below 20 cm which is rarely impacted by tillage are still unclear. 16S rRNA gene amplicon sequencing was used to investigate bacterial and archaeal communities in a Pup-Calric-Entisol soil treated for 32 years with chemical fertilizer (CF and CF combined with farmyard manure (CFM, and to reveal links between soil properties and specific bacterial and archaeal taxa in both the top- and subsoil. The results showed that both CF and CFM treatments increased soil organic carbon (SOC, soil moisture (MO and total nitrogen (TN while decreased the nitrate_N content through the profile. Fertilizer applications also increased Olsen phosphorus (OP content in most soil layers. Microbial communities in the topsoil were significantly different from those in subsoil. Compared to the CF treatment, taxa such as Nitrososphaera, Nitrospira, and several members of Acidobacteria in topsoil and Subdivision 3 genera incertae sedis, Leptolinea, and Bellilinea in subsoil were substantially more abundant in CFM. A co-occurrence based network analysis demonstrated that SOC and OP were the most important soil parameters that positively correlated with specific bacterial and archaeal taxa in topsoil and subsoil, respectively. Hydrogenophaga was identified as the keystone genus in the topsoil, while genera Phenylobacterium and Steroidobacter were identified as the keystone taxa in subsoil. The taxa identified above are involved in the decomposition of complex organic compounds and soil carbon, nitrogen, and phosphorus transformations. This study revealed that the spatial variability of soil properties due to long-term fertilization strongly shapes the bacterial

  18. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils.

    Jansa, Jan; Erb, Angela; Oberholzer, Hans-Rudolf; Smilauer, Petr; Egli, Simon

    2014-04-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil fungi, forming mutualistic symbiosis with a majority of terrestrial plant species. They are abundant in nearly all soils, less diverse than soil prokaryotes and other intensively studied soil organisms and thus are promising candidates for universal indicators of land management legacies and soil quality degradation. However, insufficient data on how the composition of indigenous AMF varies along soil and landscape gradients have hampered the definition of baselines and effect thresholds to date. Here, indigenous AMF communities in 154 agricultural soils collected across Switzerland were profiled by quantitative real-time PCR with taxon-specific markers for six widespread AMF species. To identify the key determinants of AMF community composition, the profiles were related to soil properties, land management and site geography. Our results indicate a number of well-supported dependencies between abundances of certain AMF taxa and soil properties such as pH, soil fertility and texture, and a surprising lack of effect of available soil phosphorus on the AMF community profiles. Site geography, especially the altitude and large geographical distance, strongly affected AMF communities. Unexpected was the apparent lack of a strong land management effect on the AMF communities as compared to the other predictors, which could be due to the rarity of highly intensive and unsustainable land management in Swiss agriculture. In spite of the extensive coverage of large geographical and soil gradients, we did not identify any taxon suitable as an indicator of land use among the six taxa we studied. © 2014 John Wiley & Sons Ltd.

  19. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community

    Cang Long; Zhou Dongmei; Alshawabkeh, Akram N.; Chen Haifeng

    2007-01-01

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary

  20. Copper pollution decreases the resistance of soil microbial community to subsequent dry-rewetting disturbance.

    Li, Jing; Wang, Jun-Tao; Hu, Hang-Wei; Ma, Yi-Bing; Zhang, Li-Mei; He, Ji-Zheng

    2016-01-01

    Dry-rewetting (DW) disturbance frequently occurs in soils due to rainfall and irrigation, and the frequency of DW cycles might exert significant influences on soil microbial communities and their mediated functions. However, how microorganisms respond to DW alternations in soils with a history of heavy metal pollution remains largely unknown. Here, soil laboratory microcosms were constructed to explore the impacts of ten DW cycles on the soil microbial communities in two contrasting soils (fluvo-aquic soil and red soil) under three copper concentrations (zero, medium and high). Results showed that the fluctuations of substrate induced respiration (SIR) decreased with repeated cycles of DW alternation. Furthermore, the resistance values of substrate induced respiration (RS-SIR) were highest in non-copper-stressed (zero) soils. Structural equation model (SEM) analysis ascertained that the shifts of bacterial communities determined the changes of RS-SIR in both soils. The rate of bacterial community variance was significantly lower in non-copper-stressed soil compared to the other two copper-stressed (medium and high) soils, which might lead to the higher RS-SIR in the fluvo-aquic soil. As for the red soil, the substantial increase of the dominant group WPS-2 after DW disturbance might result in the low RS-SIR in the high copper-stressed soil. Moreover, in both soils, the bacterial diversity was highest in non-copper-stressed soils. Our results revealed that initial copper stress could decrease the resistance of soil microbial community structure and function to subsequent DW disturbance. Copyright © 2015. Published by Elsevier B.V.

  1. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil

    Wang Ping; Wang Haizhen; Wu Laosheng; Di Hongjie; He Yan; Xu Jianming

    2012-01-01

    Biodegradation processes and changes in microbial community structure were investigated in black carbon (BC) amended soils in a laboratory experiment using two soils (black soil and red soil). We applied different percentages of charcoal as BC (0%, 0.5% and 1% by weight) with 100 mg kg −1 of phenanthrene. Soil samples were collected at different incubation times (0, 7, 15, 30, 60, 120 d). The amendment with BC caused a marked decrease in the dissipation (ascribed to mainly degradation and/or sequestration) of phenanthrene residues from soil. Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil, 0.5% BC amendments were higher. There were significant changes in the PLFA pattern in phenanthrene-spiked soils with time but BC had little effect on the microbial community structure of phenanthrene-spiked soils, as indicated by principal component analysis (PCA) of the PLFA signatures. - Highlights: ► Extracted phenanthrene increased substantially as the BC amount increased. ► Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil. ► BC caused a marked decrease in the dissipation of phenanthrene from soil. ► PLFA pattern in phenanthrene-spiked soils with time had significant changes. - BC amendments on phenanthrene extraction were different for two soils and time was a more effective factor in microbial community changes.

  2. Temperature adaptation of bacterial communities in experimentally warmed forest soils.

    Rousk, Johannes; Frey, Serita D; Bååth, Erland

    2012-10-01

    A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO 2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3-4 years of continuous 5 °C-warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, T min for bacterial growth, increased by 0.19 °C per 1 °C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q 10(5-15 °C) increased by 0.08 units per 1 °C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates. © 2012 Blackwell Publishing Ltd.

  3. Protist community in soil: Effects of different land-use types

    Santos, Susana; Schöler, Anne; Winding, Anne

    Soil protist microorganisms represent an important part of the soil microbial community being major players in providing ecosystem services. Changes in their community structure and dynamics may influence the rate and kind of soil formation and fertility. Corroborative studies indicate that protist...... microorganisms exhibit high levels of molecular and functional diversity in soils. However, studies questioning the protist diversity in soil and their variability across different soil land-use types, have received far less attention. The purpose of our study was to obtain relative abundances of flagellate......, cilliates and amoeboid soil protists, and to relate the expected changes in community composition to space and land-use. Within the EU FP7 project EcoFINDERS, soils were collected from six long-term observatories (LTO’s) scattered around Europe, covering different climatic zones and different vegetation...

  4. Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition.

    Sattin, Sarah R; Cleveland, Cory C; Hood, Eran; Reed, Sasha C; King, Andrew J; Schmidt, Steven K; Robeson, Michael S; Ascarrunz, Nataly; Nemergut, Diana R

    2009-12-01

    Past work in recently deglaciated soils demonstrates that microbial communities undergo shifts prior to plant colonization. To date, most studies have focused on relatively 'long' chronosequences with the ability to sample plant-free sites over at least 50 years of development. However, some recently deglaciated soils feature rapid plant colonization and questions remain about the relative rate of change in the microbial community in the unvegetated soils of these chronosequences. Thus, we investigated the forelands of the Mendenhall Glacier near Juneau, AK, USA, where plants rapidly establish. We collected unvegetated samples representing soils that had been ice-free for 0, 1, 4, and 8 years. Total nitrogen (N) ranged from 0.00 approximately 0.14 mg/g soil, soil organic carbon pools ranged from 0.6 approximately 2.3 mg/g soil, and both decreased in concentration between the 0 and 4 yr soils. Biologically available phosphorus (P) and pH underwent similar dynamics. However, both pH and available P increased in the 8 yr soils. Nitrogen fixation was nearly undetectable in the most recently exposed soils, and increased in the 8 yr soils to approximately 5 ng N fixed/cm(2)/h, a trend that was matched by the activity of the soil N-cycling enzymes urease and beta-l,4-N-acetyl-glucosa-minidase. 16S rRNA gene clone libraries revealed no significant differences between the 0 and 8 yr soils; however, 8 yr soils featured the presence of cyanobacteria, a division wholly absent from the 0 yr soils. Taken together, our results suggest that microbes are consuming allochtonous organic matter sources in the most recently exposed soils. Once this carbon source is depleted, a competitive advantage may be ceded to microbes not reliant on in situ nutrient sources.

  5. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility.

    Navarrete, Acacio Aparecido; Soares, Tielle; Rossetto, Raffaella; van Veen, Johannes Antonie; Tsai, Siu Mui; Kuramae, Eiko Eurya

    2015-09-01

    Here we show that verrucomicrobial community structure and abundance are extremely sensitive to changes in chemical factors linked to soil fertility. Terminal restriction fragment length polymorphism fingerprint and real-time quantitative PCR assay were used to analyze changes in verrucomicrobial communities associated with contrasting soil nutrient conditions in tropical regions. In case study Model I ("Slash-and-burn deforestation") the verrucomicrobial community structures revealed disparate patterns in nutrient-enriched soils after slash-and-burn deforestation and natural nutrient-poor soils under an adjacent primary forest in the Amazonia (R = 0.819, P = 0.002). The relative proportion of Verrucomicrobia declined in response to increased soil fertility after slash-and-burn deforestation, accounting on average, for 4 and 2 % of the total bacterial signal, in natural nutrient-poor forest soils and nutrient-enriched deforested soils, respectively. In case study Model II ("Management practices for sugarcane") disparate patterns were revealed in sugarcane rhizosphere sampled on optimal and deficient soil fertility for sugarcane (R = 0.786, P = 0.002). Verrucomicrobial community abundance in sugarcane rhizosphere was negatively correlated with soil fertility, accounting for 2 and 5 % of the total bacterial signal, under optimal and deficient soil fertility conditions for sugarcane, respectively. In nutrient-enriched soils, verrucomicrobial community structures were related to soil factors linked to soil fertility, such as total nitrogen, phosphorus, potassium and sum of bases, i.e., the sum of calcium, magnesium and potassium contents. We conclude that community structure and abundance represent important ecological aspects in soil verrucomicrobial communities for tracking the changes in chemical factors linked to soil fertility under tropical environmental conditions.

  6. Variations in soil microbial community structure induced by the conversion from paddy fields to upland fields

    Dai, X.

    2015-12-01

    Land-use conversion is an important factor influencing the carbon and nitrogen gas exchange between land and atmosphere, and soil microorganisms is main driver of soil carbon and nitrogen gas production. Understanding the effect of land-use conversion on soil microbial communities and its influencing factor is important for greenhouse gas emission reduction and soil organic carbon and nitrogen sequestration and stability. The influence of land use conversion on soil process was undergoing a dynamic change, but little research has been done to understand the effect on soil microbial communities during the initial years after land conversion. In the study, the influences of land-use conversion from double rice cropping (RR) to maize-maize (MM) and soybean-peanut (SP) double cropping systems on soil physical and chemical properties, and microbial community structure was studied after two years of the conversion in southern China. The results showed that land use conversion significantly changed soil properties, microbial communities and biomass. Soil pH significantly decreased by 0.50 and 0.52 after conversion to MM and SP, respectively. Soil TN and NH4-N also significantly decreased by 9%-15% and 60% after conversion to upland fields, respectively. The total PLFAs, bacterial, gram-positive bacterial (G+), gram-negative bacterial (G-) and actinomycetic PLFAs decreased significantly. The ng g-1 soil concentration of monounsaturated chain PLFAs 16:1ω7c and 18:1ω9t were significantly higher at paddy fields than at upland fields. No significant differences in soil properties, microbial communities and biomass were found between conversed MM and SP. Our results indicated that land use conversion, not crop type conversed had a significant effects on soil properties and microbial communities at the initial of land conversion. And soil pH was the key factor regulating the variations in soil microbial community structure after land use conversion from paddy to upland fields.

  7. Soil Microbial and Faunal Community Responses to Bt-Maize and Insecticide in Two Soils

    Griffiths, B. S.; Caul, S.; Thompson, J.

    2006-01-01

    The effects of maize (Zea mays L.), genetically modified to express the Cry1Ab protein (Bt), and an insecticide on soil microbial and faunal communities were assessed in a glasshouse experiment. Soil for the experiment was taken from field sites where the same maize cultivars were grown to allow...

  8. Divergent Responses of Forest Soil Microbial Communities under Elevated CO2 in Different Depths of Upper Soil Layers.

    Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye

    2018-01-01

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial

  9. Slow pyrolyzed biochars from crop residues for soil metal(loid) immobilization and microbial community abundance in contaminated agricultural soils.

    Igalavithana, Avanthi Deshani; Park, Jinje; Ryu, Changkook; Lee, Young Han; Hashimoto, Yohey; Huang, Longbin; Kwon, Eilhann E; Ok, Yong Sik; Lee, Sang Soo

    2017-06-01

    This study evaluated the feasibility of using biochars produced from three types of crop residues for immobilizing Pb and As and their effects on the abundance of microbial community in contaminated lowland paddy (P-soil) and upland (U-soil) agricultural soils. Biochars were produced from umbrella tree [Maesopsis eminii] wood bark [WB], cocopeat [CP], and palm kernel shell [PKS] at 500 °C by slow pyrolysis at a heating rate of 10 °C min -1 . Soils were incubated with 5% (w w -1 ) biochars at 25 °C and 70% water holding capacity for 45 d. The biochar effects on metal immobilization were evaluated by sequential extraction of the treated soil, and the microbial community was determined by microbial fatty acid profiles and dehydrogenase activity. The addition of WB caused the largest decrease in Pb in the exchangeable fraction (P-soil: 77.7%, U-soil: 91.5%), followed by CP (P-soil: 67.1%, U-soil: 81.1%) and PKS (P-soil: 9.1%, U-soil: 20.0%) compared to that by the control. In contrast, the additions of WB and CP increased the exchangeable As in U-soil by 84.6% and 14.8%, respectively. Alkalinity and high phosphorous content of biochars might be attributed to the Pb immobilization and As mobilization, respectively. The silicon content in biochars is also an influencing factor in increasing the As mobility. However, no considerable effects of biochars on the microbial community abundance and dehydrogenase activity were found in both soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The assumption of heterogeneous or homogeneous radioactive contamination in soil/sediment: does it matter in terms of the external exposure of fauna?

    Beaugelin-Seiller, K

    2014-12-01

    The classical approach to environmental radioprotection is based on the assumption of homogeneously contaminated media. However, in soils and sediments there may be a significant variation of radioactivity with depth. The effect of this heterogeneity was investigated by examining the external exposure of various sediment and soil organisms, and determining the resulting dose rates, assuming a realistic combination of locations and radionuclides. The results were dependent on the exposure situation, i.e., the organism, its location, and the quality and quantity of radionuclides. The dose rates ranged over three orders of magnitude. The assumption of homogeneous contamination was not consistently conservative (if associated with a level of radioactivity averaged over the full thickness of soil or sediment that was sampled). Dose assessment for screening purposes requires consideration of the highest activity concentration measured in a soil/sediment that is considered to be homogeneously contaminated. A more refined assessment (e.g., higher tier of a graded approach) should take into consideration a more realistic contamination profile, and apply different dosimetric approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The assumption of heterogeneous or homogeneous radioactive contamination in soil/sediment: does it matter in terms of the external exposure of fauna?

    Beaugelin-Seiller, K.

    2014-01-01

    The classical approach to environmental radioprotection is based on the assumption of homogeneously contaminated media. However, in soils and sediments there may be a significant variation of radioactivity with depth. The effect of this heterogeneity was investigated by examining the external exposure of various sediment and soil organisms, and determining the resulting dose rates, assuming a realistic combination of locations and radionuclides. The results were dependent on the exposure situation, i.e., the organism, its location, and the quality and quantity of radionuclides. The dose rates ranged over three orders of magnitude. The assumption of homogeneous contamination was not consistently conservative (if associated with a level of radioactivity averaged over the full thickness of soil or sediment that was sampled). Dose assessment for screening purposes requires consideration of the highest activity concentration measured in a soil/sediment that is considered to be homogeneously contaminated. A more refined assessment (e.g., higher tier of a graded approach) should take into consideration a more realistic contamination profile, and apply different dosimetric approaches. - Highlights: • Defining contamination as homogeneous may not be conservative for dose assessment. • The impact of source heterogeneity on dose is closely linked to the exposure scenario. • Dosimetric calculations (method and tool) should differ from screening to higher tiers

  12. Soil nematodes (Nematoda) in the Voděradské bučiny National Nature Reserve (Czech Republic) - an overall characterization of the fauna

    Háněl, Ladislav

    2015-01-01

    Roč. 79, č. 3 (2015), s. 215-234 ISSN 1211-376X R&D Projects: GA ČR(CZ) GA206/93/0276 Institutional support: RVO:60077344 Keywords : soil zoology * ecology * Nematoda * diversity Subject RIV: EH - Ecology, Behaviour

  13. The role of selected soil fauna as predators of Apethymus abdominalis Lep. (Hymenoptera: Tenthredinidae) in oak forests in the District Caiuti, Romania

    C. Ciornei; N. Popa; L. Ciuca; C. Rang

    2003-01-01

    The present study was initiated in 2001 in the oak forests from Trotus valley (Forest District Caiucti - Bacau, Romania) which were heavily infested by oak sawflies Apethymus abdominalis Lep. (Hymenoptera: Tenthredinidae), in order to understand better the role of soil-inhabitating predators in population regulation of this pest.

  14. Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils

    Romdhane, Sana; Devers-Lamrani, Marion; Barthelmebs, Lise; Calvayrac, Christophe; Bertrand, Cédric; Cooper, Jean-François; Dayan, Franck E.; Martin-Laurent, Fabrice

    2016-01-01

    The ecotoxicological impact of leptospermone, a β-triketone bioherbicide, on the bacterial community of two arable soils was investigated. Soil microcosms were exposed to 0 × (control), 1 × or 10 × recommended dose of leptospermone. The β-triketone was moderately adsorbed to both soils (i.e.,: Kfa ~ 1.2 and Koc ~ 140 mL g−1). Its dissipation was lower in sterilized than in unsterilized soils suggesting that it was mainly influenced by biotic factors. Within 45 days, leptospermone disappeared almost entirely from one of the two soils (i.e., DT50 < 10 days), while 25% remained in the other. The composition of the microbial community assessed by qPCR targeting 11 microbial groups was found to be significantly modified in soil microcosms exposed to leptospermone. Pyrosequencing of 16S rRNA gene amplicons showed a shift in the bacterial community structure and a significant impact of leptospermone on the diversity of the soil bacterial community. Changes in the composition, and in the α- and β-diversity of microbial community were transient in the soil able to fully dissipate the leptospermone, but were persistent in the soil where β-triketone remained. To conclude the bacterial community of the two soils was sensitive to leptospermone and its resilience was observed only when leptospermone was fully dissipated. PMID:27252691

  15. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Xu, Guo-Liang; Kuster, Thomas M; Günthardt-Goerg, Madeleine S; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  16. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Guo-Liang Xu

    Full Text Available Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm increased, but the percentage of large mites (body length >0.40 mm decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  17. Seasonal Exposure to Drought and Air Warming Affects Soil Collembola and Mites

    Xu, Guo-Liang; Kuster, Thomas M.; Günthardt-Goerg, Madeleine S.; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4°C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type. PMID:22905210

  18. Riqueza da fauna de formigas (Hymenoptera: Formicidae que habita as camadas superficiais do solo em Seara, Santa Catarina

    Rogério Rosa da Silva

    2004-01-01

    collected 81 ant species in 36 genera. These habitats share 39 ant species. Morisita-Horn similarity index indicated lower species overlap between soil and litter samples. The similarity values between sites can be considered medium. Overall, ordination analysis (nonmetric multidimensional scaling indicated differences in community structure between ant litter and subterranean ant faunas, and showed that the spatial distribution of subterranean species is aggregated. Our results indicate that there is a strong complementarity between these two faunistics segments. We conclude that the subterranean ant fauna is an important component of ant species richness in the soil; therefore survey protocols should include soil samples for a better assessments of the ant diversity in tropical forests.

  19. Temperature sensitivity of soil respiration rates enhanced by microbial community response.

    Karhu, Kristiina; Auffret, Marc D; Dungait, Jennifer A J; Hopkins, David W; Prosser, James I; Singh, Brajesh K; Subke, Jens-Arne; Wookey, Philip A; Agren, Göran I; Sebastià, Maria-Teresa; Gouriveau, Fabrice; Bergkvist, Göran; Meir, Patrick; Nottingham, Andrew T; Salinas, Norma; Hartley, Iain P

    2014-09-04

    Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.

  20. Soil and Cultivar Type Shape the Bacterial Community in the Potato Rhizosphere

    Inceoglu, Ozgul; Salles, Joana Falcao; van Elsas, Jan Dirk

    The rhizospheres of five different potato cultivars (including a genetically modified cultivar) obtained from a loamy sand soil and two from a sandy peat soil, next to corresponding bulk soils, were studied with respect to their community structures and potential function. For the former analyses,

  1. Soil fungal community and fuctional diversity assessments of agroecosystems in the Southern High Plains

    Soil fungi perform a variety of ecosystem functions that are crucial to maintaining agroecosystem sustainability including aggregate stability and soil carbon storage. The purpose of this study was to compare soil fungal communities and functional diversity in integrated crop and livestock (ICL) sy...

  2. RESPONSE OF SOIL MICROBIAL BIOMASS AND COMMUNITY COMPOSITION TO CHRONIC NITROGEN ADDITIONS AT HARVARD FOREST

    Soil microbial communities may respond to anthropogenic increases in ecosystem nitrogen (N) availability, and their response may ultimately feedback on ecosystem carbon and N dynamics. We examined the long-term effects of chronic N additions on soil microbes by measuring soil mi...

  3. Impact of simulated acid rain on soil microbial community function in Masson pine seedlings

    Lin Wang

    2014-09-01

    Conclusion: The results obtained indicated that the higher acid load decreased the soil microbial activity and no effects on soil microbial diversity assessed by Biolog of potted Masson pine seedlings. Simulated acid rain also changed the metabolic capability of the soil microbial community.

  4. Soil biota community structure and abundance under agricultural intensification and extensification

    Postma-Blaauw, M.B.; Goede, de R.G.M.; Bloem, J.; Faber, J.H.; Brussaard, L.

    2010-01-01

    Understanding the impacts of agricultural intensification and extensification on soil biota communities is useful in order to preserve and restore biological diversity in agricultural soils and enhance the role of soil biota in agroecosystem functioning. Over four consecutive years, we investigated

  5. The impact of genetically modified crops on soil microbial communities.

    Giovannetti, Manuela; Sbrana, Cristiana; Turrini, Alessandra

    2005-01-01

    Genetically modified (GM) plants represent a potential benefit for environmentally friendly agriculture and human health. Though, poor knowledge is available on potential hazards posed by unintended modifications occurring during genetic manipulation. The increasing amount of reports on ecological risks and benefits of GM plants stresses the need for experimental works aimed at evaluating the impact of GM crops on natural and agro-ecosystems. Major environmental risks associated with GM crops include their potential impact on non-target soil microorganisms playing a fundamental role in crop residues degradation and in biogeochemical cycles. Recent works assessed the effects of GM crops on soil microbial communities on the basis of case-by-case studies, using multimodal experimental approaches involving different target and non-target organisms. Experimental evidences discussed in this review confirm that a precautionary approach should be adopted, by taking into account the risks associated with the unpredictability of transformation events, of their pleiotropic effects and of the fate of transgenes in natural and agro-ecosystems, weighing benefits against costs.

  6. Long-term application of bioorganic fertilizers improved soil biochemical properties and microbial communities of an apple orchard soil

    Wang Lei

    2016-11-01

    Full Text Available Soil biochemical properties and microbial communities are usually considered as important indicators of soil health because of their association with plant nutrition. In this study, we investigated the impact of long-term application of bioorganic fertilizer (BOF on soil biochemical properties and microbial communities in the apple orchard soil of the Loess Plateau. The experiment included three treatments: (1 control without fertilization (CK; (2 chemical fertilizer application (CF; and (3 bioorganic fertilizer application (BOF. The high throughput sequencing was used to examine the bacterial and fungal communities in apple orchard soil. The results showed that the BOF treatment significantly increased the apple yield during the experimental time (2009-2015. The application of BOF significantly increased the activities of catalase and invertase compared to those in CK and CF treatments. The high throughput sequencing data showed that the application of BOF changed the microbial community composition of all soil depths considered (0-20cm, 20-40cm, and 40-60cm, e.g., the relative abundance of bio-control bacteria (Xanthomonadales, Lysobacter, Pseudomonas and Bacillus, Proteobacteria, Bacteroidetes, Ohtaekwangia, Ilyonectria and Lecanicillium was increased while that of Acidobacteria, Chloroflexi, Gp4, Gp6 and Sphaerobacter was decreased. The increase in apple yield after the application of BOF might be due to increase in organic matter, total nitrogen and catalase and invertase activities of soil and change in the bacterial community composition by enriching Bacillus, Pseudomonas, Lysobacter and Ohtaekwangia. These results further enhance the understanding on how BOFs alter soil microbial community composition to stimulate soil productivity.

  7. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.

    Fierer, Noah; Leff, Jonathan W; Adams, Byron J; Nielsen, Uffe N; Bates, Scott Thomas; Lauber, Christian L; Owens, Sarah; Gilbert, Jack A; Wall, Diana H; Caporaso, J Gregory

    2012-12-26

    For centuries ecologists have studied how the diversity and functional traits of plant and animal communities vary across biomes. In contrast, we have only just begun exploring similar questions for soil microbial communities despite soil microbes being the dominant engines of biogeochemical cycles and a major pool of living biomass in terrestrial ecosystems. We used metagenomic sequencing to compare the composition and functional attributes of 16 soil microbial communities collected from cold deserts, hot deserts, forests, grasslands, and tundra. Those communities found in plant-free cold desert soils typically had the lowest levels of functional diversity (diversity of protein-coding gene categories) and the lowest levels of phylogenetic and taxonomic diversity. Across all soils, functional beta diversity was strongly correlated with taxonomic and phylogenetic beta diversity; the desert microbial communities were clearly distinct from the nondesert communities regardless of the metric used. The desert communities had higher relative abundances of genes associated with osmoregulation and dormancy, but lower relative abundances of genes associated with nutrient cycling and the catabolism of plant-derived organic compounds. Antibiotic resistance genes were consistently threefold less abundant in the desert soils than in the nondesert soils, suggesting that abiotic conditions, not competitive interactions, are more important in shaping the desert microbial communities. As the most comprehensive survey of soil taxonomic, phylogenetic, and functional diversity to date, this study demonstrates that metagenomic approaches can be used to build a predictive understanding of how microbial diversity and function vary across terrestrial biomes.

  8. Spatial and temporal variation of archaeal, bacterial and fungal communities in agricultural soils

    de Cassia Pereira e Silva, Michele; Franco Dias, Armando Cavalcante; van Elsas, Jan Dirk; Salles, Joana Falcao

    2012-01-01

    Background: Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings: In this

  9. Microbial activity and community structure in two drained fen soils in the Ljubljana Marsh

    Kraigher, Barbara; Stres, Blaz; Hacin, Janez; Ausec, Luka; Mahne, Ivan; van Elsas, Jan D.; Mandic-Mulec, Ines

    Fen peatlands are specific wetland ecosystems containing high soil organic carbon (SOC). There is a general lack of knowledge about the microbial communities that abound in these systems. We examined the microbial activity and community structure in two fen soils differing in SOC content sampled

  10. Oribatid mite communities in contaminated soils nearby a lead and zinc smelting plant in Zanjan, Iran

    Jamshidian, M.K.; Saboori, A.; Akrami, M.A.; van Straalen, N.M.

    2015-01-01

    Many studies have shown that the composition of invertebrate communities in soil changes under the influence of stressors in the soil ecosystem. Conversely, an observed altered community structure may be indicative of stress. In this study we aimed to investigate responses of oribatid mite

  11. Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†

    Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.

    2011-01-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mini...

  12. Cenozoic Methane-Seep Faunas of the Caribbean Region.

    Steffen Kiel

    Full Text Available We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted 'Joes River fauna' consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted 'Bath Cliffs fauna' containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema. In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman's Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical 'Cenozoic' lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large

  13. Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH

    Michele C ePereira e Silva

    2012-03-01

    Full Text Available The milieu in soil in which microorganisms dwell is never constant. Conditions such as temperature, water availability, pH and nutrients frequently change, impacting the overall functioning of the soil system. To understand the effects of such factors on soil functioning, proxies (indicators of soil function are needed that, in a sensitive manner, reveal normal amplitude of variation. Thus, the so-called normal operating range (NOR of soil can be defined. In this study we determined different components of nitrification by analyzing, in eight agricultural soils, how the community structures and sizes of ammonia oxidizing bacteria and archaea (AOB and AOA, respectively, and their activity, fluctuate over spatial and temporal scales. The results indicated that soil pH and soil type are the main factors that influence the size and structure of the AOA and AOB, as well as their function. The nitrification rates varied between 0.11 ± 0.03 µgN.h-1.gdw-1 and 1.68 ± 0.11 µgN.h-1.gdw-1, being higher in soils with higher clay content (1.09 ± 0.12 µgN.h-1.gdw-1 and lower in soils with lower clay percentages (0.27 ± 0.04 µgN.h-1.gdw-1. Nitrifying activity was driven by soil pH, mostly related to its effect on AOA but not on AOB abundance. Regarding the influence of soil parameters, clay content was the main soil factor shaping the structure of both the AOA and AOB communities. Overall, the potential nitrifying activities were higher and more variable over time in the clayey than in the sandy soils. Whereas the structure of AOB fluctuated more (62.7 ± 2.10% the structure of AOA communities showed lower amplitude of variation (53.65 ± 3.37%. Similar trends were observed for the sizes of these communities. The present work represents a first step towards defining a NOR for soil nitrification. Moreover, the clear effect of soil texture established here suggests that the NOR should be defined in a soil-type-specific manner.

  14. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community.

    Hortal, S; Lozano, Y M; Bastida, F; Armas, C; Moreno, J L; Garcia, C; Pugnaire, F I

    2017-12-19

    Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.

  15. Impact of Lowland Rainforest Transformation on Diversity and Composition of Soil Prokaryotic Communities in Sumatra (Indonesia)

    Schneider, Dominik; Engelhaupt, Martin; Allen, Kara; Kurniawan, Syahrul; Krashevska, Valentyna; Heinemann, Melanie; Nacke, Heiko; Wijayanti, Marini; Meryandini, Anja; Corre, Marife D.; Scheu, Stefan; Daniel, Rolf

    2015-01-01

    Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use systems comprised rubber agroforests (jungle rubber), rubber plantations and oil palm plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 16,413 bacterial and 1679 archaeal operational taxonomic units at species level (97% genetic identity). Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaumarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota) dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to N ratio

  16. Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia

    Dominik eSchneider

    2015-12-01

    Full Text Available Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use system comprised rubber agroforests (jungle rubber, rubber plantation and oil plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 20,494 bacterial and 1,762 archaeal Operational Taxonomic Units at species level (97% genetic identity. Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaumarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to

  17. Digging a Little Deeper: Microbial Communities, Molecular Composition and Soil Organic Matter Turnover along Tropical Forest Soil Depth Profiles

    Pett-Ridge, J.; McFarlane, K. J.; Heckman, K. A.; Reed, S.; Green, E. A.; Nico, P. S.; Tfaily, M. M.; Wood, T. E.; Plante, A. F.

    2016-12-01

    Tropical forest soils store more carbon (C) than any other terrestrial ecosystem and exchange vast amounts of CO2, water, and energy with the atmosphere. Much of this C is leached and stored in deep soil layers where we know little about its fate or the microbial communities that drive deep soil biogeochemistry. Organic matter (OM) in tropical soils appears to be associated with mineral particles, suggesting deep soils may provide greater C stabilization. However, few studies have evaluated sub-surface soils in tropical ecosystems, including estimates of the turnover times of deep soil C, the sensitivity of this C to global environmental change, and the microorganisms involved. We quantified bulk C pools, microbial communities, molecular composition of soil organic matter, and soil radiocarbon turnover times from surface soils to 1.5m depths in multiple soil pits across the Luquillo Experimental Forest, Puerto Rico. Soil C, nitrogen, and root and microbial biomass all declined exponentially with depth; total C concentrations dropped from 5.5% at the surface to communities in surface soils (Acidobacteria and Proteobacteria) versus those below the active rooting zone (Verrucomicrobia and Thaumarchaea). High resolution mass spectrometry (FTICR-MS) analyses suggest a shift in the composition of OM with depth (especially in the water soluble fraction), an increase in oxidation, and decreasing H/C with depth (indicating higher aromaticity). Additionally, surface samples were rich in lignin-like compounds of plant origin that were absent with depth. Soil OM 14C and mean turnover times were variable across replicate horizons, ranging from 3-1500 years at the surface, to 5000-40,000 years at depth. In comparison to temperate deciduous forests, these 14C values reflect far older soil C. Particulate organic matter (free light fraction), with a relatively modern 14C was found in low but measureable concentration in even the deepest soil horizons. Our results indicate these

  18. Copper Pollution Increases the Resistance of Soil Archaeal Community to Changes in Water Regime.

    Li, Jing; Liu, Yu-Rong; Cui, Li-Juan; Hu, Hang-Wei; Wang, Jun-Tao; He, Ji-Zheng

    2017-11-01

    Increasing efforts have been devoted to exploring the impact of environmental stresses on soil bacterial communities, but the work on the archaeal community is seldom. Here, we constructed microcosm experiments to investigate the responses of archaeal communities to the subsequent dry-rewetting (DW) disturbance in two contrasting soils (fluvo-aquic and red soil) after 6 years of copper pollution. Ten DW cycles were exerted on the two soils with different copper levels, followed by a 6-week recovery period. In both soils, archaeal diversity (Shannon index) in the high copper-level treatments increased over the incubation period, and archaeal community structure changed remarkably as revealed by the non-metric multidimensional scaling ordinations. In both soils, copper pollution altered the response of dominant operational taxonomic units (OTUs) to the DW disturbance. Throughout the incubation and recovery period, the resistance of archaeal abundance to the DW disturbance was higher in the copper-polluted soils than soils without pollution. Taken together, copper pollution altered the response of soil archaeal diversity and community composition to the DW disturbance and increased the resistance of the archaeal abundance. These findings have important implications for understanding soil microbial responses to ongoing environmental change.

  19. Data from: Faunal community consequence of interspecific bark trait dissimilarity in early-stage decomposing logs

    Zuo, Juan; Berg, M.; Klein, R.; Nusselder, J.; Neurink, G.; Decker, O.; Hefting, M.M.; Sass-Klaassen, U.G.W.; Logtestijn, van R.S.P.; Goudzwaard, L.; Hal, van Jurgen; Sterck, F.J.; Poorter, L.; Cornelissen, J.H.C.

    2016-01-01

    Dead tree trunks have significant ecosystem functions related to biodiversity and biogeochemical cycles. When lying on the soil surface, they are colonized by an array of invertebrate fauna, but what determines their community composition is still unclear. We apply community assembly theory to

  20. Faunal community consequence of interspecific bark trait dissimilarity in early-stage decomposing logs

    Zuo, Juan; Berg, Matty P.; Klein, Roy; Nusselder, Jasper; Neurink, Gert; Decker, Orsi; Hefting, Mariet M.; Sass-Klaassen, Ute; van Logtestijn, Richard S P; Goudzwaard, Leo; van Hal, Jurgen; Sterck, Frank J.; Poorter, Lourens; Cornelissen, Johannes H C

    2016-01-01

    Dead tree trunks have significant ecosystem functions related to biodiversity and biogeochemical cycles. When lying on the soil surface, they are colonized by an array of invertebrate fauna, but what determines their community composition is still unclear. We apply community assembly theory to

  1. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent.

    Pawlett, Mark; Ritz, Karl; Dorey, Robert A; Rocks, Sophie; Ramsden, Jeremy; Harris, Jim A

    2013-02-01

    Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.

  2. Effects of habitat structure on the epifaunal community in Mussismilia corals: does coral morphology influence the richness and abundance of associated crustacean fauna?

    Nogueira, Marcos M.; Neves, Elizabeth; Johnsson, Rodrigo

    2015-06-01

    Coral habitat structures increase abundance and richness of organisms by providing niches, easy access to resources and refuge from predators. Corals harbor a great variety of animals; the variation in coral species morphology contributes to the heterogeneity and complexity of habitat types. In this report, we studied the richness and abundance of crustaceans (Decapoda, Copepoda, Peracarida and Ostracoda) associated with three species of Mussismilia exhibiting different growth morphologies, in two different coral reefs of the Bahia state (Caramuanas and Boipeba-Moreré, Brazil). Mussismilia hispida is a massive coral; M. braziliensis also has a massive growth pattern, but forms a crevice in the basal area of the corallum; M. harttii has a meandroid pattern. PERMANOVA analysis suggests significant differences in associated fauna richness among Mussismilia species, with higher values for M. harttii, followed by M. braziliensis and later by M. hispida. The same trend was observed for density, except that the comparison of M. braziliensis and M. hispida did not show differences. Redundancy and canonical correspondence analysis indicated that almost all of the crustacean species were more associated with the M. harttii colonies that formed a group clearly separated from colonies of M. braziliensis and M. hispida. We also found that the internal volume of interpolyp space, only present in M. harttii, was the most important factor influencing richness and abundance of all analyzed orders of crustaceans.

  3. Soil-borne bacterial structure and diversity does not reflect community activity in Pampa biome.

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world's biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated.

  4. Perceived Benefits of Participation and Risks of Soil Contamination in St. Louis Urban Community Gardens.

    Wong, Roger; Gable, Leah; Rivera-Núñez, Zorimar

    2018-06-01

    Community gardens are credited for promoting health within neighborhoods, by increasing healthy food intake and exercise frequency. These benefits, however, are potentially undermined as urban soils are often contaminated from industrial legacies. The purpose of this study was to examine the perceived benefits of participation and risks of soil contamination within urban community gardens, and factors associated with soil contamination concerns. Ninety-three gardeners were interviewed across 20 community gardens in St. Louis, Missouri between June and August 2015. Surveys included questions on demographics, gardening practices, and perceptions of community gardening. Multilevel logistic models assessed how gardener demographics, gardening practices, and garden characteristics were associated with soil contamination concerns. Common perceived benefits of community gardening were community building (68.8%), healthy and fresh food (35.5%), and gardening education (18.3%). Most gardeners (62.4%) were not concerned about soil contamination, but nearly half (48.4%) stated concerns about heavy metals. Black race was significantly associated with soil contamination concerns (OR 5.47, 95% CI 1.00-30.15, p = .04). Community gardens offer numerous social and health benefits. Although most gardeners were not concerned about soil contamination, black gardeners were more likely to have concerns. Garden leaders should provide resources to gardeners to learn about soil contamination and methods to manage their risk, particularly in minority neighborhoods.

  5. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers

    Ren Bai

    2017-05-01

    Full Text Available Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2 techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai, an Oxisol (Leizhou, and an Ultisol (Taoyuan along four profile depths (up to 70 cm in depth in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and

  6. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers.

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and

  7. Changes in soil temperature during prescribed burns impact local arthropod communities

    Verble-Pearson, Robin; Perry, Gad

    2016-04-01

    As wildfires increase in severity and intensity globally, the development of methods to assess their effects on soils is of increasing importance. We examined soil arthropod communities in the southern United States and estimated their abundance, species richness, and composition in areas recently impacted by prescribed burns. In addition, we placed thermal probes in soils and correlated soil temperatures to arthropod responses. Longer fire residence times resulted in greater soil heating which resulted in decreases in arthropod abundance and species richness and shifts in species composition. We believe that these results may be useful in developing tools to assess fire effects on soil systems.

  8. Assessment of Cu applications in two contrasting soils-effects on soil microbial activity and the fungal community structure.

    Keiblinger, Katharina M; Schneider, Martin; Gorfer, Markus; Paumann, Melanie; Deltedesco, Evi; Berger, Harald; Jöchlinger, Lisa; Mentler, Axel; Zechmeister-Boltenstern, Sophie; Soja, Gerhard; Zehetner, Franz

    2018-03-01

    Copper (Cu)-based fungicides have been used in viticulture to prevent downy mildew since the end of the 19th century, and are still used today to reduce fungal diseases. Consequently, Cu has built up in many vineyard soils, and it is still unclear how this affects soil functioning. The present study aimed to assess the short and medium-term effects of Cu contamination on the soil fungal community. Two contrasting agricultural soils, an acidic sandy loam and an alkaline silt loam, were used for an eco-toxicological greenhouse pot experiment. The soils were spiked with a Cu-based fungicide in seven concentrations (0-5000 mg Cu kg -1 soil) and alfalfa was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test Cu toxicity effects on total microbial biomass, basal respiration and enzyme activities. Fungal abundance was analysed by ergosterol at both samplings, and for the second sampling, fungal community structure was evaluated via ITS amplicon sequences. Soil microbial biomass C as well as microbial respiration rate decreased with increasing Cu concentrations, with EC 50 ranging from 76 to 187 mg EDTA-extractable Cu kg -1 soil. Oxidative enzymes showed a trend of increasing activity at the first sampling, but a decline in peroxidase activity was observed for the second sampling. We found remarkable Cu-induced changes in fungal community abundance (EC 50 ranging from 9.2 to 94 mg EDTA-extractable Cu kg -1 soil) and composition, but not in diversity. A large number of diverse fungi were able to thrive under elevated Cu concentrations, though within the order of Hypocreales several species declined. A remarkable Cu-induced change in the community composition was found, which depended on the soil properties and, hence, on Cu availability.

  9. Manipulating soil microbial communities in extensive green roof substrates.

    Molineux, Chloe J; Connop, Stuart P; Gange, Alan C

    2014-09-15

    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated, we added mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs. There are complex relationships between depth and type of substrate and the biomass of different microbial groups, with no clear pattern being observed. Following the addition of inoculants, bacterial groups tended to increase in biomass in shallower substrates, whereas fungal biomass change was dependent on depth and type of substrate. Increased fungal biomass was found in shallow plots containing more crushed concrete and deeper plots containing more crushed brick where compost tea (a live mixture of beneficial bacteria) was added, perhaps due to the presence of helper bacteria for arbuscular mycorrhizal fungi (AMF). Often there was not an additive affect of the microbial inoculations but instead an antagonistic interaction between the added AM fungi and the compost tea. This suggests that some species of microbes may not be compatible with others, as competition for limited resources occurs within the various substrates. The overall results suggest that microbial inoculations of green roof habitats are sustainable. They need only be done once for increased biomass to be found in subsequent years, indicating that this is a novel and viable method of enhancing roof community composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Conditionally Rare Taxa Contribute but Do Not Account for Changes in Soil Prokaryotic Community Structure

    Rachel Kaminsky

    2018-04-01

    Full Text Available The rare biosphere is predicted to aid in maintaining functional redundancy as well as contributing to community turnover across many environments. Recent developments have partially confirmed these hypotheses, while also giving new insights into dormancy and activity among rare communities. However, less attention has been paid to the rare biosphere in soils. This study provides insight into the rare biosphere’s contribution to soil microbial diversity through the study of 781 soil samples representing 24 edaphically diverse sites. Results show that Bray–Curtis dissimilarity for time-sensitive conditionally rare taxa (CRT does not correlate with whole community dissimilarity, while dissimilarity for space-sensitive CRT only weakly correlate with whole community dissimilarity. This adds to current understanding of spatiotemporal filtering of rare taxa, showing that CRT do not account for community variance across tested soils, but are under the same selective pressure as the whole community.

  11. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils

    Delgado-Balbuena, Laura; Bello-López, Juan M.; Navarro-Noya, Yendi E.; Rodríguez-Valentín, Analine; Luna-Guido, Marco L.; Dendooven, Luc

    2016-01-01

    Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the

  12. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils.

    Laura Delgado-Balbuena

    Full Text Available Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826 accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485 inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100% > earthworms applied (92% > organic material applied (77% > untreated soil (57% > surfactant applied (34% after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes, Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil

  13. Community structure analysis of soil ammonia oxidizers during vegetation restoration in southwest China.

    Liang, Yueming; He, Xunyang; Liang, Shichu; Zhang, Wei; Chen, Xiangbi; Feng, Shuzheng; Su, Yirong

    2014-03-01

    Soil ammonia oxidizers play a critical role in nitrogen cycling and ecological restoration. The composition and structure of soil ammonia oxidizers and their impacting factors were studied in four typical ecosystem soils, tussock (T), shrub (S), secondary forest (SF), and primary forest (PF), during vegetation restoration in the Karst region of Southwest China. The composition and structure of the ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities were characterized by sequencing the amoA and arch-amoA genes, respectively. The diversity of soil ammonia oxidizers (except in S) and plant Shannon diversity index gradually increased with vegetation restoration, and the ammonia oxidizer communities differed significantly (p soils. AOB Nitrosospira cluster 3b only appeared in PF and SF soils, while Nitrosospira cluster 3a species were found in all soils. Changes in AOB paralleled the changes in soil ammonium content that occurred with vegetation restoration. Redundancy analysis showed that the distribution of dominant AOB species was linked to pH, soil urease activity, and soil C/N ratio, whereas the distribution of dominant AOA species was mainly influenced by litter nitrogen content and C/N ratio. These results suggested that the composition and structure of the AOB community were more sensitive to changes in vegetation and soil ammonium content, and may be an important indicator of nitrogen availability in Karst ecosystem soils. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Soil microbial community profiles and functional diversity in limestone cedar glades

    Cartwright, Jennifer M.; Dzantor, E. Kudjo; Momen, Bahram

    2016-01-01

    Rock outcrop ecosystems, such as limestone cedar glades (LCGs), are known for their rare and endemic plant species adapted to high levels of abiotic stress. Soils in LCGs are thin (< 25 cm), soil-moisture conditions fluctuate seasonally between xeric and saturated, and summer soil temperatures commonly exceed 48 °C. The effects of these stressors on soil microbial communities (SMC) remain largely unstudied, despite the importance of SMC-plant interactions in regulating the structure and function of terrestrial ecosystems. SMC profiles and functional diversity were characterized in LCGs using community level physiological profiling (CLPP) and plate-dilution frequency assays (PDFA). Most-probable number (MPN) estimates and microbial substrate-utilization diversity (H) were positively related to soil thickness, soil organic matter (OM), soil water content, and vegetation density, and were diminished in alkaline soil relative to circumneutral soil. Soil nitrate showed no relationship to SMCs, suggesting lack of N-limitation. Canonical correlation analysis indicated strong correlations between microbial CLPP patterns and several physical and chemical properties of soil, primarily temperature at the ground surface and at 4-cm depth, and secondarily soil-water content, enabling differentiation by season. Thus, it was demonstrated that several well-described abiotic determinants of plant community structure in this ecosystem are also reflected in SMC profiles.

  15. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  16. The Impacts of Soil Fertility and Salinity on Soil Nitrogen Dynamics Mediated by the Soil Microbial Community Beneath the Halophytic Shrub Tamarisk.

    Iwaoka, Chikae; Imada, Shogo; Taniguchi, Takeshi; Du, Sheng; Yamanaka, Norikazu; Tateno, Ryunosuke

    2018-05-01

    Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.

  17. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid......-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse...... and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha(-1). We used culture-based enumerations of general bacteria, Pseudomonas...

  18. Diversity of bacterial communities along a petroleum contamination gradient in desert soils.

    Abed, Raeid M M; Al-Kindi, Sumaiya; Al-Kharusi, Samiha

    2015-01-01

    Microbial communities in oil-polluted desert soils have been rarely studied compared to their counterparts from freshwater and marine environments. We investigated bacterial diversity and changes therein in five desert soils exposed to different levels of oil pollution. Automated rRNA intergenic spacer (ARISA) analysis profiles showed that the bacterial communities of the five soils were profoundly different (analysis of similarities (ANOSIM), R = 0.45, P pollution levels. Multivariate analyses of ARISA profiles revealed that the microbial communities in the S soil, which contains the highest level of contamination, were different from the other soils and formed a completely separate cluster. A total of 16,657 ribosomal sequences were obtained, with 42-89 % of these sequences belonging to the phylum Proteobacteria. While sequences belonging to Betaproteobacteria, Gammaproteobacteria, Bacilli, and Actinobacteria were encountered in all soils, sequences belonging to anaerobic bacteria from the classes Deltaproteobacteria, Clostridia, and Anaerolineae were only detected in the S soil. Sequences belonging to the genus Terriglobus of the class Acidobacteria were only detected in the B3 soil with the lowest level of contamination. Redundancy analysis (RDA) showed that oil contamination level was the most determinant factor that explained variations in the microbial communities. We conclude that the exposure to different levels of oil contamination exerts a strong selective pressure on bacterial communities and that desert soils are rich in aerobic and anaerobic bacteria that could potentially contribute to the degradation of hydrocarbons.

  19. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  20. Long- term manure exposure increases soil bacterial community potential for plasmid uptake

    Musovic, Sanin; Klümper, Uli; Dechesne, Arnaud

    2014-01-01

    Microbial communities derived from soils subject to different agronomic treatments were challenged with three broad host range plasmids, RP4, pIPO2tet and pRO101, via solid surface filter matings to assess their permissiveness. Approximately 1 in 10 000 soil bacterial cells could receive and main......Microbial communities derived from soils subject to different agronomic treatments were challenged with three broad host range plasmids, RP4, pIPO2tet and pRO101, via solid surface filter matings to assess their permissiveness. Approximately 1 in 10 000 soil bacterial cells could receive...... and maintain the plasmids. The community permissiveness increased up to 100% in communities derived from manured soil. While the plasmid transfer frequency was significantly influenced by both the type of plasmid and the agronomic treatment, the diversity of the transconjugal pools was purely plasmid dependent...

  1. Combined analyses of bacterial, fungal and nematode communities in andosolic agricultural soils in Japan.

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols.

  2. The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature.

    Auffret, Marc D; Karhu, Kristiina; Khachane, Amit; Dungait, Jennifer A J; Fraser, Fiona; Hopkins, David W; Wookey, Philip A; Singh, Brajesh K; Freitag, Thomas E; Hartley, Iain P; Prosser, James I

    2016-01-01

    Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited.

  3. Effects of Biochar Blends on Microbial Community Composition in Two Coastal Plain Soils

    Thomas F. Ducey

    2015-11-01

    Full Text Available The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure. These impacts are modulated not only by the biochar composition, but also on the soil’s physicochemical characteristics. This indicates that soil characteristics must be considered prior to biochar amendment. A significant portion of the soils of the southeastern coastal plain are severely degraded and, therefore, candidates for biochar amendment to strengthen soil fertility. In this study we focused on two common soil series in the southeastern coastal plain, utilizing feedstocks endemic to the area. We chose feedstocks in four ratios (100% pine chip; 80:20 mixture of pine chip to poultry litter; 50:50 mixture of pine chip to poultry litter; 100% poultry litter prior to pyrolysis and soil amendment as a biochar product. Soil was analyzed for bioavailable nutrients via Mehlich-1 extractions, as well as microbial community composition using phospholipid fatty acid analysis (PLFA. Our results demonstrated significant shifts in microbial community composition in response to biochar amendment, the effects of which were greatest with 100% poultry litter biochar. Strong relationships between PLFAs and several Mehlich-1 extractable nutrients (Al, Cu, Fe, and P were observed.

  4. The effect of biochar and its interaction with the earthworm Pontoscolex corethrurus on soil microbial community structure in tropical soils.

    Jorge Paz-Ferreiro

    Full Text Available Biochar effects on soil microbial abundance and community structure are keys for understanding the biogeochemical cycling of nutrients and organic matter turnover, but are poorly understood, in particular in tropical areas. We conducted a greenhouse experiment in which we added biochars produced from four different feedstocks [sewage sludge (B1, deinking sewage sludge (B2, Miscanthus (B3 and pine wood (B4] at a rate of 3% (w/w to two tropical soils (an Acrisol and a Ferralsol planted with proso millet (Panicum milliaceum L.. The interactive effect of the addition of earthworms was also addressed. For this purpose we utilized soil samples from pots with or without the earthworm Pontoscolex corethrurus, which is a ubiquitous earthworm in tropical soils. Phospholipid fatty acid (PLFA measurements showed that biochar type, soil type and the presence of earthworms significantly affected soil microbial community size and structure. In general, biochar addition affected fungal but not bacterial populations. Overall, biochars rich in ash (B1 and B2 resulted in a marked increase in the fungi to bacteria ratio, while this ratio was unaltered after addition of biochars with a high fixed carbon content (B3 and B4. Our study remarked the contrasting effect that both, biochar prepared from different materials and macrofauna, can have on soil microbial community. Such changes might end up with ecosystem-level effects.

  5. Autogenic succession and deterministic recovery following disturbance in soil bacterial communities

    Jurburg, Stephanie D.; Nunes, Ines Marques; Stegen, James C.

    2017-01-01

    The response of bacterial communities to environmental change may affect local to global nutrient cycles. However the dynamics of these communities following disturbance are poorly understood, given that they are often evaluated over macro-ecological time scales and end-point measurements. In ord...... diversity and functional redundancy, respond to disturbances like many macro-ecological systems and exhibit path-dependent, autogenic dynamics during secondary succession. These results highlight the role of autogenic factors and successional dynamics in microbial recovery....... to understand the successional trajectory of soil bacterial communities following disturbances and the mechanisms controlling these dynamics at a scale relevant for these organisms, we subjected soil microcosms to a heat disturbance and followed the community composition of active bacteria over 50 days...... slowed down, and a stability phase (after 29 days), during which the community tended towards its original composition. Phylogenetic turnover patterns indicated that the community experienced stronger deterministic selection during recovery. Thus, soil bacterial communities, despite their extreme...

  6. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-07-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  7. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil.

    Zhanjun Liu

    Full Text Available Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK, NPK plus green manure (NPKG, NPK plus pig manure (NPKM, and NPK plus straw (NPKS on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC, activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72 was comparable to that of the NPK (0.77, NPKG (0.81 and NPKS (0.79 treatments but significantly lower compared with NPKM (0.85. The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil.

  8. Soil properties impacting denitrifier community size, structure, and activity in New Zealand dairy-grazed pasture

    Jha, Neha; Saggar, Surinder; Giltrap, Donna; Tillman, Russ; Deslippe, Julie

    2017-09-01

    Denitrification is an anaerobic respiration process that is the primary contributor of the nitrous oxide (N2O) produced from grassland soils. Our objective was to gain insight into the relationships between denitrifier community size, structure, and activity for a range of pasture soils. We collected 10 dairy pasture soils with contrasting soil textures, drainage classes, management strategies (effluent irrigation or non-irrigation), and geographic locations in New Zealand, and measured their physicochemical characteristics. We measured denitrifier abundance by quantitative polymerase chain reaction (qPCR) and assessed denitrifier diversity and community structure by terminal restriction fragment length polymorphism (T-RFLP) of the nitrite reductase (nirS, nirK) and N2O reductase (nosZ) genes. We quantified denitrifier enzyme activity (DEA) using an acetylene inhibition technique. We investigated whether varied soil conditions lead to different denitrifier communities in soils, and if so, whether they are associated with different denitrification activities and are likely to generate different N2O emissions. Differences in the physicochemical characteristics of the soils were driven mainly by soil mineralogy and the management practices of the farms. We found that nirS and nirK communities were strongly structured along gradients of soil water and phosphorus (P) contents. By contrast, the size and structure of the nosZ community was unrelated to any of the measured soil characteristics. In soils with high water content, the richnesses and abundances of nirS, nirK, and nosZ genes were all significantly positively correlated with DEA. Our data suggest that management strategies to limit N2O emissions through denitrification are likely to be most important for dairy farms on fertile or allophanic soils during wetter periods. Finally, our data suggest that new techniques that would selectively target nirS denitrifiers may be the most effective for limiting N2O

  9. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  10. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH

    Yuting Zhang

    2017-07-01

    Full Text Available Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007–2014 of applying chemical nitrogen, phosphorus and potassium (NPK fertilizers, composted manure or their combination to acidic (pH 5.8, near-neutral (pH 6.8 or alkaline (pH 8.4 Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (% of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%, Actinobacteria (19.7%, Chloroflexi (15.3% and Acidobacteria (12.6%; the medium dominant phyla were Bacterioidetes (5.3%, Planctomycetes (4.8%, Gemmatimonadetes (4.5%, Firmicutes (3.4%, Cyanobacteria (2.1%, Nitrospirae (1.8%, and candidate division TM7 (1

  11. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH.

    Zhang, Yuting; Shen, Hong; He, Xinhua; Thomas, Ben W; Lupwayi, Newton Z; Hao, Xiying; Thomas, Matthew C; Shi, Xiaojun

    2017-01-01

    Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007-2014) of applying chemical nitrogen, phosphorus and potassium (NPK) fertilizers, composted manure or their combination to acidic (pH 5.8), near-neutral (pH 6.8) or alkaline (pH 8.4) Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU) richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (%) of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%), Actinobacteria (19.7%), Chloroflexi (15.3%) and Acidobacteria (12.6%); the medium dominant phyla were Bacterioidetes (5.3%), Planctomycetes (4.8%), Gemmatimonadetes (4.5%), Firmicutes (3.4%), Cyanobacteria (2.1%), Nitrospirae (1.8%), and candidate division TM7 (1

  12. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest

    Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O.; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O.

    2016-01-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. PMID:26896139

  13. Seasonal variations in the diversity and abundance of diazotrophic communities across soils

    Pereira e Silva, Michele C.; Semenov, Alexander V.; van Elsas, Jan Dirk; Salles, Joana Falcao

    The nitrogen (N)-fixing community is a key functional community in soil, as it replenishes the pool of biologically available N that is lost to the atmosphere via anaerobic ammonium oxidation and denitrification. We characterized the structure and dynamic changes in diazotrophic communities, based

  14. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems

    Qisong Li

    2018-02-01

    Full Text Available Intercropping has been widely used to control disease and improve yield in agriculture. In this study, maize and peanut were used for non-separation intercropping (NS, semi-separation intercropping (SS using a nylon net, and complete separation intercropping (CS using a plastic sheet. In field experiments, two-year land equivalent ratios (LERs showed yield advantages due to belowground interactions when using NS and SS patterns as compared to monoculture. In contrast, intercropping without belowground interactions (CS showed a yield disadvantage. Meanwhile, in pot experiments, belowground interactions (found in NS and SS improved levels of soil-available nutrients (nitrogen (N and phosphorus (P and enzymes (urease and acid phosphomonoesterase as compared to intercropping without belowground interactions (CS. Soil bacterial community assay showed that soil bacterial communities in the NS and SS crops clustered together and were considerably different from the CS crops. The diversity of bacterial communities was significantly improved in soils with NS and SS. The abundance of beneficial bacteria, which have the functions of P-solubilization, pathogen suppression, and N-cycling, was improved in maize and peanut soils due to belowground interactions through intercropping. Among these bacteria, numbers of Bacillus, Brevibacillus brevis, and Paenibacillus were mainly increased in the maize rhizosphere. Burkholderia, Pseudomonas, and Rhizobium were mainly increased in the peanut rhizosphere. In conclusion, using maize and peanut intercropping, belowground interactions increased the numbers of beneficial bacteria in the soil and improved the diversity of the bacterial community, which was conducive to improving soil nutrient (N and P supply capacity and soil microecosystem stability.

  15. [Effects of wheat root exudates on cucumber growth and soil fungal community structure].

    Wu, Feng-Zhi; Li, Min; Cao, Peng; Ma, Ya-Fei; Wang, Li-Li

    2014-10-01

    With wheat as the donor plant and cucumber as the receptor plant, this study investigated the effects of root exudates from wheat cultivars with different allelopathic potentials (positive or negative) and companion cropping with wheat on soil fungal community structure by PCR-DGGE method and cucumber growth. Results showed that the wheat root exudates with positive allelopathic potential increased height and stem diameter of cucumber seedlings significantly, compared to the control seedlings (W) after 6 days and 12 days treatment, respectively. Also, wheat root exudates with both positive and negative allelopathic potential increased the seedling height of cucumber significantly after 18 days treatment. The wheat root exudates with different allelopathic potentials decreased the band number, Shannon and evenness indices of soil fungal community significantly in cucumber seedling rhizosphere, and those in the soil with the control seedlings (W) were also significantly higher than that in the control soil without seedlings (Wn) after 6 days treatment. The band number, Shannon and evenness indices in all the treatments were significantly higher than those in the control soil without seedlings (Wn) after 18 days treatment. Companion cropping with negative allelopathic potential wheat decreased the Shannon and evenness indices of soil fungi community significantly in the cucumber seedling rhizosphere, suggesting the wheat root exudates and companion cropping with wheat changed soil fungal community structure in the cucumber seedling rhizosphere. The results of DGGE map and the principal component analysis showed that companion cropping with wheat cultivars with different allelopathic potentials changed soil fungal community structure in cucumber seedling rhizosphere.

  16. Structure of Fungal Communities in Sub-Irrigated Agricultural Soil from Cerrado Floodplains

    Elainy Cristina A. M. Oliveira

    2016-05-01

    Full Text Available This study aimed to evaluate the influence of soybean cultivation on the fungal community structure in a tropical floodplain area. Soil samples were collected from two different soybean cropland sites and a control area under native vegetation. The soil samples were collected at a depth of 0–10 cm soil during the off-season in July 2013. The genetic structure of the soil fungal microbial community was analyzed using the automated ribosomal intergenic spacer analysis (ARISA technique. Among the 26 phylotypes with abundance levels higher than 1% detected in the control area, five were also detected in the area cultivated for five years, and none of them was shared between the control area and the area cultivated for eight years. Analysis of similarity (ANOSIM revealed differences in fungal community structure between the control area and the soybean cropland sites, and also between the soybean cropland sites. ANOSIM results were confirmed by multivariate statistics, which additionally revealed a nutrient-dependent relation for the fungal community structure in agricultural soil managed for eight consecutive years. The results indicated that land use affects soil chemical properties and richness and structure of the soil fungal microbial community in a tropical floodplain agricultural area, and the effects became more evident to the extent that soil was cultivated for soybean for more time.

  17. Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil.

    Bååth, E; Díaz-Raviña, M; Bakken, L R

    2005-11-01

    The effect of long-term elevated soil Pb levels on soil microbiota was studied at a forest site in Norway, where the soil has been severely contaminated with Pb since the last period of glaciation (several thousand years). Up to 10% Pb (total amount, w/w) has been found in the top layer. The microbial community was drastically affected, as judged from changes in the phospholipid fatty acid (PLFA) pattern. Specific PLFAs that were high in Pb-enriched soil were branched (especially br17:0 and br18:0), whereas PLFAs common in eukaryotic organisms such as fungi (18:2omega6,9 and 20:4) were low compared with levels at adjacent, uncontaminated sites. Congruent changes in the PLFA pattern were found upon analyzing the culturable part of the bacterial community. The high Pb concentrations in the soil resulted in increased tolerance to Pb of the bacterial community, measured using both thymidine incorporation and plate counts. Furthermore, changes in tolerance were correlated to changes in the community structure. The bacterial community of the most contaminated soils showed higher specific activity (thymidine and leucine incorporation rates) and higher culturability than that of control soils. Fungal colony forming units (CFUs) were 10 times lower in the most Pb-enriched soils, the species composition was widely different from that in control soils, and the isolated fungi had high Pb tolerance. The most commonly isolated fungus in Pb-enriched soils was Tolypocladium inflatum. Comparison of isolates from Pb-enriched soil and isolates from unpolluted soils showed that T. inflatum was intrinsically Pb-tolerant, and that the prolonged conditions with high Pb had not selected for any increased tolerance.

  18. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types.

    Sammy Frenk

    Full Text Available Increased availability of nanoparticle-based products will, inevitably, expose the environment to these materials. Engineered nanoparticles (ENPs may thus find their way into the soil environment via wastewater, dumpsters and other anthropogenic sources; metallic oxide nanoparticles comprise one group of ENPs that could potentially be hazardous for the environment. Because the soil bacterial community is a major service provider for the ecosystem and humankind, it is critical to study the effects of ENP exposure on soil bacteria. These effects were evaluated by measuring bacterial community activity, composition and size following exposure to copper oxide (CuO and magnetite (Fe3O4 nanosized (<50 nm particles. Two different soil types were examined: a sandy loam (Bet-Dagan and a sandy clay loam (Yatir, under two ENP concentrations (1%, 0.1%. Results indicate that the bacterial community in Bet-Dagan soil was more susceptible to change due to exposure to these ENPs, relative to Yatir soil. More specifically, CuO had a strong effect on bacterial hydrolytic activity, oxidative potential, community composition and size in Bet-Dagan soil. Few effects were noted in the Yatir soil, although 1% CuO exposure did cause a significant decreased oxidative potential and changes to community composition. Fe3O4 changed the hydrolytic activity and bacterial community composition in Bet-Dagan soil but did not affect the Yatir soil bacterial community. Furthermore, in Bet-Dagan soil, abundance of bacteria annotated to OTUs from the Bacilli class decreased after addition of 0.1% CuO but increased with 1% CuO, while in Yatir soil their abundance was reduced with 1% CuO. Other important soil bacterial groups, including Rhizobiales and Sphingobacteriaceae, were negatively affected by CuO addition to soil. These results indicate that both ENPs are potentially harmful to soil environments. Furthermore, it is suggested that the clay fraction and organic matter in

  19. Highly Heterogeneous Soil Bacterial Communities around Terra Nova Bay of Northern Victoria Land, Antarctica

    Lim, Hyoun Soo; Hong, Soon Gyu; Kim, Ji Hee; Lee, Joohan; Choi, Taejin; Ahn, Tae Seok; Kim, Ok-Sun

    2015-01-01

    Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment. PMID:25799273

  20. Coal mining activities change plant community structure due to air pollution and soil degradation.

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  1. Characterization and Low-Cost Remediation of Soils Contaminated by Timbers in Community Gardens.

    Heiger-Bernays, W; Fraser, A; Burns, V; Diskin, K; Pierotti, D; Merchant-Borna, K; McClean, M; Brabander, D; Hynes, H P

    2009-01-01

    Urban community gardens worldwide provide significant health benefits to those gardening and consuming fresh produce from them. Urban gardens are most often placed in locations and on land in which soil contaminants reflect past practices and often contain elevated levels of metals and organic contaminants. Garden plot dividers made from either railroad ties or chromated copper arsenate (CCA) pressure treated lumber contribute to the soil contamination and provide a continuous source of contaminants. Elevated levels of polycyclic aromatic hydrocarbons (PAHs) derived from railroad ties and arsenic from CCA pressure treated lumber are present in the gardens studied. Using a representative garden, we 1) determined the nature and extent of urban community garden soil contaminated with PAHs and arsenic by garden timbers; 2) designed a remediation plan, based on our sampling results, with our community partner guided by public health criteria, local regulation, affordability, and replicability; 3) determined the safety and advisability of adding city compost to Boston community gardens as a soil amendment; and 4) made recommendations for community gardeners regarding healthful gardening practices. This is the first study of its kind that looks at contaminants other than lead in urban garden soil and that evaluates the effect on select soil contaminants of adding city compost to community garden soil.

  2. A Greenhouse Assay on the Effect of Applied Urea Amount on the Rhizospheric Soil Bacterial Communities.

    Shang, Shuanghua; Yi, Yanli

    2015-12-01

    The rhizospheric bacteria play key role in plant nutrition and growth promotion. The effects of increased nitrogen inputs on plant rhizospheric soils also have impacted on whole soil microbial communities. In this study, we analyzed the effects of applied nitrogen (urea) on rhizospheric bacterial composition and diversity in a greenhouse assay using the high-throughput sequencing technique. To explore the environmental factors driving the abundance, diversity and composition of soil bacterial communities, the relationship between soil variables and the bacterial communities were also analyzed using the mantel test as well as the redundancy analysis. The results revealed significant bacterial diversity changes at different amounts of applied urea, especially between the control treatment and the N fertilized treatments. Mantel tests showed that the bacterial communities were significantly correlated with the soil nitrate nitrogen, available nitrogen, soil pH, ammonium nitrogen and total organic carbon. The present study deepened the understanding about the rhizospheric soil microbial communities under different amounts of applied urea in greenhouse conditions, and our work revealed the environmental factors affecting the abundance, diversity and composition of rhizospheric bacterial communities.

  3. The Arbuscular Mycorrhizal Fungus Funneliformis mosseae Alters Bacterial Communities in Subtropical Forest Soils during Litter Decomposition

    Heng Gui

    2017-06-01

    Full Text Available Bacterial communities and arbuscular mycorrhizal fungi (AMF co-occur in the soil, however, the interaction between these two groups during litter decomposition remains largely unexplored. In order to investigate the effect of AMF on soil bacterial communities, we designed dual compartment microcosms, where AMF (Funneliformis mosseae was allowed access (AM to, or excluded (NM from, a compartment containing forest soil and litterbags. Soil samples from this compartment were analyzed at 0, 90, 120, 150, and 180 days. For each sample, Illumina sequencing was used to assess any changes in the soil bacterial communities. We found that most of the obtained operational taxonomic units (OTUs from both treatments belonged to the phylum of Proteobacteria, Acidobacteria, and Actinobacteria. The community composition of bacteria at phylum and class levels was slightly influenced by both time and AMF. In addition, time and AMF significantly affected bacterial genera (e.g., Candidatus Solibacter, Dyella, Phenylobacterium involved in litter decomposition. Opposite to the bacterial community composition, we found that overall soil bacterial OTU richness and diversity are relatively stable and were not significantly influenced by either time or AMF inoculation. OTU richness at phylum and class levels also showed consistent results with overall bacterial OTU richness. Our study provides new insight into the influence of AMF on soil bacterial communities at the genus level.

  4. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure.

    Zhang, Chang; Nie, Shuang; Liang, Jie; Zeng, Guangming; Wu, Haipeng; Hua, Shanshan; Liu, Jiayu; Yuan, Yujie; Xiao, Haibing; Deng, Linjing; Xiang, Hongyu

    2016-07-01

    Heavy metals (HMs) contamination is a serious environmental issue in wetland soil. Understanding the micro ecological characteristic of HMs polluted wetland soil has become a public concern. The goal of this study was to identify the effects of HMs and soil physicochemical properties on soil microorganisms and prioritize some parameters that contributed significantly to soil microbial biomass (SMB) and bacterial community structure. Bacterial community structure was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Relationships between soil environment and microorganisms were analyzed by correlation analysis and redundancy analysis (RDA). The result indicated relationship between SMB and HMs was weaker than SMB and physicochemical properties. The RDA showed all eight parameters explained 74.9% of the variation in the bacterial DGGE profiles. 43.4% (contain the variation shared by Cr, Cd, Pb and Cu) of the variation for bacteria was explained by the four kinds of HMs, demonstrating HMs contamination had a significant influence on the changes of bacterial community structure. Cr solely explained 19.4% (pstructure, and Cd explained 17.5% (pstructure changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Response of microbial community of organic-matter-impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste.

    Hou, Jiaqi; Li, Mingxiao; Mao, Xuhui; Hao, Yan; Ding, Jie; Liu, Dongming; Xi, Beidou; Liu, Hongliang

    2017-01-01

    Rapid fermentation of food waste can be used to prepare soil conditioner. This process consumes less time and is more cost-effective than traditional preparation technology. However, the succession of the soil microbial community structure after long-term application of rapid fermentation-derived soil conditioners remains unclear. Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application of DRF-derived soil conditioner were investigated. Results showed that the treatment increased soil organic matter (SOM) accumulation and strawberry yield by 5.3 g/kg and 555.91 kg/ha, respectively. Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes became the dominant phyla, occupying 65.95%-77.52% of the bacterial sequences. Principal component analysis (PCA) results showed that the soil bacterial communities were largely influenced by the treatment. Redundancy analysis (RDA) results showed that the relative abundances of Gemmatimonadetes, Chloroflexi, Verrucomicrobia, Nitrospirae, and Firmicutes were significantly correlated with soil TC, TN, TP, NH4+-N, NO3--N, OM, and moisture. These communities were all distributed in the soil samples collected in the sixth year of application. Long-term treatment did not enhance the diversity of bacterial species but significantly altered the distribution of major functional bacterial communities in the soils. Application of DRF-derived soil conditioner could improve the soil quality and optimize the microbial community, ultimately enhancing fruit yields.

  6. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities.

    Buck, Joshua R; St Clair, Samuel B

    2012-01-01

    Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO(3) and NH(4) were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.

  7. Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils

    Doherty, Jennifer H.; Ji Baoming; Casper, Brenda B.

    2008-01-01

    Ecotypes of Sorghastrum nutans from a naturally metalliferous serpentine grassland and the tallgrass prairie were assessed for Ni tolerance and their utility in remediation of Ni-polluted soils. Plants were inoculated with serpentine arbuscular mycorrhizal (AM) root inoculum or whole soil microbial communities, originating from either prairie or serpentine, to test their effects on plant performance in the presence of Ni. Serpentine plants had marginally higher Ni tolerance as indicated by higher survival. Ni reduced plant biomass and AM root colonization for both ecotypes. The serpentine AM fungi and whole microbial community treatments decreased plant biomass relative to uninoculated plants, while the prairie microbial community had no effect. Differences in how the soil communities affect plant performance were not reflected in patterns of root colonization by AM fungi. Thus, serpentine plants may be suited for reclamation of Ni-polluted soils, but AM fungi that occur on serpentine do not improve Ni tolerance. - Ni tolerance of Sorghastrum nutans differs slightly between serpentine and prairie populations and is negatively affected by serpentine soil and root inoculation

  8. Analysis of the bacterial community changes in soil for septic tank effluent treatment in response to bio-clogging.

    Nie, J Y; Zhu, N W; Zhao, K; Wu, L; Hu, Y H

    2011-01-01

    Soil columns were set up to survey the bacterial community in the soil for septic tank effluent treatment. When bio-clogging occurred in the soil columns, the effluent from the columns was in poorer quality. To evaluate changes of the soil bacterial community in response to bio-clogging, the bacterial community was characterized by DNA gene sequences from soil samples after polymerase chain reaction coupled with denaturing gradient gel electrophoresis process. Correspondence analysis showed that Proteobacteria related bacteria were the main bacteria within the soil when treating septic tank effluent. However, Betaproteobacteria related bacteria were the dominant microorganisms in the normal soil, whereas Alphaproteobacteria related bacteria were more abundant in the clogged soil. This study provided insight into changes of the soil bacterial community in response to bio-clogging. The results can supply some useful information for the design and management of soil infiltration systems.

  9. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities

    Zhou, Xingang; Zhang, Jianhui; Gao, Danmei; Gao, Huan; Guo, Meiyu; Li, Li; Zhao, Mengliang; Wu, Fengzhi

    2017-01-01

    Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents.

  10. Soil Communities of Central Park, New York City: A Biodiversity Melting Pot

    Ramirez, K. S.; Leff, J. W.; Wall, D. H.; Fierer, N.

    2013-12-01

    The majority of earth's biodiversity lives in and makes up the soil, but the majority of soil biodiversity has yet to be characterized or even quantified. This may be especially true of urban soil systems. The last decade of advances in molecular, technical and bioinformatic techniques have contributed greatly to our understanding of belowground biodiversity, from global distribution to species counts. Yet, much of this work has been done in ';natural' systems and it is not known if established patterns of distribution, especially in relation to soil factors hold up in urban soils. Urban soils are intensively managed and disturbed, often by effects unique to urban settings. It remains unclear how urban pressures influence soil biodiversity, or if there is a defined or typical ';urban soil community'. Here we describe a study to examine the total soil biodiversity - Bacteria, Archaea and Eukarya- of Central Park, New York City and test for patterns of distribution and relationships to soil characteristics. We then compare the biodiversity of Central Park to 57 global soils, spanning a number of biomes from Alaska to Antarctica. In this way we can identify similarities and differences in soil communities of Central Park to soils from ';natural' systems. To generate a broad-scale survey of total soil biodiversity, 596 soil samples were collected from across Central Park (3.41 km2). Soils varied greatly in vegetation cover and soil characteristics (pH, moisture, soil C and soil N). Using high-throughput Illumina sequencing technology we characterized the complete soil community from 16S rRNA (Bacteria and Archaea) and 18S rRNA gene sequences (Eukarya). Samples were rarified to 40,000 sequences per sample. To compare Central Park to the 57 global soils the complete soil community of the global soils was also characterized using Illumina sequencing technology. All samples were rarified to 40,000 sequences per sample. The total measured biodiversity in Central Park was

  11. An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities

    Griffiths, B.S.; Ritz, Karl; Wheatley, R.

    2001-01-01

    , nitrate accumulation, respiratory growth response, community level physiological profile and decomposition). Neither was there a direct effect of biodiversity on the variability of the processes, nor on the stability of decomposition when the soils were perturbed by heat or copper. The biodiversity of......Microbial communities differing in biodiversity were established by inoculating sterile agricultural soil with serially diluted soil suspensions prepared from the parent soil. Three replicate communities of each dilution were allowed to establish an equivalent microbial biomass by incubation for 9...... months at 15°C, after which the biodiversity-ecosystem function relationship was examined for a range of soil processes. Biodiversity was determined by monitoring cultivable bacterial and fungal morphotypes, directly extracted eubacterial DNA and protozoan taxa. In the context of this study biodiversity...

  12. Research on soil microbial communities and enzymatic activity in tropical soils in puerto rico

    Soil enzymes are important components of soil quality and its health because of their involvement in ecosystem services related to biogeochemical cycling, global C and organic matter dynamics, and soil detoxification. This talk will provide an overview of the field of soil enzymology, the location a...

  13. Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling

    F. Allag; S. Bouharati; M. Belmahdi; R. Zegadi

    2014-01-01

    The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soil...

  14. Fauna Europaea: Helminths (Animal Parasitic)

    Gibson, D. I.; Bray, R. A.; Hunt, D.; Georgiev, B. B.; Scholz, Tomáš; Harris, P.D.; Bakke, T.A.; Pomajska, T.; Niewiadomska, K.; Kostadinova, Aneta; Tkach, V.; Bain, O.; Durette-Desset, M.-C.; Gibbons, L.; Moravec, František; Petter, A.; Dimitrova, Z.M.; Buchmann, K.; Valtonen, E. T.; de Jong, Y.

    -, č. 2 (2014), e1060 ISSN 1314-2828 Institutional support: RVO:60077344 Keywords : Acanthocephala * Biodiversity * Biodiversity Informatics * Cestoda * Fauna Europaea * Helminth * Monogenea * Nematoda * Parasite * Taxonomic indexing * Taxonomy * Trematoda * Zoology Subject RIV: EB - Genetics ; Molecular Biology

  15. Dynamic changes in functional gene copy numbers and microbial communities during degradation of pyrene in soils

    Peng Jingjing; Cai Chao; Qiao Min; Li Hong; Zhu Yongguan

    2010-01-01

    This study investigates the dynamics of pyrene degradation rates, microbial communities, and functional gene copy numbers during the incubation of pyrene-spiked soils. Spiking pyrene to the soil was found to have negligible effects on the bacterial community present. Our results demonstrated that there was a significant difference in nidA gene copy numbers between sampling dates in QZ soil. Mycobacterium 16S rDNA clone libraries showed that more than 90% mycobacteria detected were closely related to fast-growing PAH-degrading Mycobacterium in pyrene-spiked soil, while other sequences related to slow-growing Mycobacterium were only detected in the control soil. It is suggested that nidA gene copy number and fast-growing PAH-degrading Mycobacterium could be used as indicators to predict pyrene contamination and its degradation activity in soils. - nidA gene and fast-growing PAH-degrading Mycobacterium can serve as indicators for pyrene contamination.

  16. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions

    Sreejata Bandopadhyay

    2018-04-01

    Full Text Available Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs offer an environmentally sustainable alternative to conventional polyethylene (PE mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability.

  17. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions.

    Bandopadhyay, Sreejata; Martin-Closas, Lluis; Pelacho, Ana M; DeBruyn, Jennifer M

    2018-01-01

    Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs) offer an environmentally sustainable alternative to conventional polyethylene (PE) mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films) and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability.

  18. Effects of biochar on dechlorination of hexachlorobenzene and the bacterial community in paddy soil.

    Song, Yang; Bian, Yongrong; Wang, Fang; Herzberger, Anna; Yang, Xinglun; Gu, Chenggang; Jiang, Xin

    2017-11-01

    Anaerobic reductive dechlorination is an important degradation pathway for chlorinated organic contaminants in paddy soil. This study investigated the effects of amending paddy soil with wheat straw biochar on both the dechlorination of hexachlorobenzene (HCB), a typical highly chlorinated contaminant, and on the structure of soil bacteria communities. Soil amendment of 0.1% biochar did not significantly affect the dechlorination of HCB in the soil. However, biochar amendment at higher application levels (5%) stimulated the dechlorination of HCB in the first month of anaerobic incubation and inhibited the dechlorination of HCB after that period. The stimulation effect may be ascribed to the graphite carbon and carbon-centered persistent radicals, which are redox active, in biochar. The inhibiting effect could be partly ascribed to the reduced bioavailability of HCB in biochar-amended soils. High-throughput sequencing revealed that the amendment of biochar changed the soil bacterial community structure but not the bacterial abundances and diversities. The relative abundance of Dehalococcoidaceae in the tested soils showed a significant relationship with the dechlorination percentages of HCB, indicating that Dehalococcoidaceae may be the main HCB-dechlorinating bacteria in the studied paddy soil. The results indicated that low application levels of biochar did not affect the dechlorination of HCB in the paddy soil, while high application levels of biochar mainly inhibited the dechlorination of HCB due to the reduced bioavailability of HCB and the reduced abundances of certain dechlorinating bacteria in the biochar-amended paddy soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Soil classification predicts differences in prokaryotic communities across a range of geographically distant soils once pH is accounted for

    Morales, Sergio; Trouche, Blandine; Kaminsky, Rachel

    2017-01-01

    Agricultural land is typically managed based on visible plant life at the expense of the belowground majority. However, microorganisms mediate processes sustaining plant life and the soil environment. To understand the role of microbes we first must understand what controls soil microbial community assembly. We assessed the distribution and composition of prokaryotic communities from soils representing four geographic regions on the South Island of New Zealand. These soils are under three dif...

  20. Classification and Use of Natural and Anthropogenic Soils by Indigenous Communities of the Upper Amazon Region of Colombia.

    Peña-Venegas, C P; Stomph, T J; Verschoor, G; Echeverri, J A; Struik, P C

    Outsiders often oversimplify Amazon soil use by assuming that abundantly available natural soils are poorly suited to agriculture and that sporadic anthropogenic soils are agriculturally productive. Local perceptions about the potentials and limitations of soils probably differ, but information on these perceptions is scarce. We therefore examined how four indigenous communities in the Middle Caquetá River region in the Colombian Amazon classify and use natural and anthropogenic soils. The study was framed in ethnopedology: local classifications, preferences, rankings, and soil uses were recorded through interviews and field observations. These communities recognized nine soils varying in suitability for agriculture. They identified anthropogenic soils as most suitable for agriculture, but only one group used them predominantly for their swiddens. As these communities did not perceive soil nutrient status as limiting, they did not base crop-site selection on soil fertility or on the interplay between soil quality and performance of manioc genetic resources.

  1. Long-term oil contamination causes similar changes in microbial communities of two distinct soils.

    Liao, Jingqiu; Wang, Jie; Jiang, Dalin; Wang, Michael Cai; Huang, Yi

    2015-12-01

    Since total petroleum hydrocarbons (TPH) are toxic and persistent in environments, studying the impact of oil contamination on microbial communities in different soils is vital to oil production engineering, effective soil management and pollution control. This study analyzed the impact of oil contamination on the structure, activity and function in carbon metabolism of microbial communities of Chernozem soil from Daqing oil field and Cinnamon soil from Huabei oil field through both culture-dependent techniques and a culture-independent technique-pyrosequencing. Results revealed that pristine microbial communities in these two soils presented disparate patterns, where Cinnamon soil showed higher abundance of alkane, (polycyclic aromatic hydrocarbons) PAHs and TPH degraders, number of cultivable microbes, bacterial richness, bacterial biodiversity, and stronger microbial activity and function in carbon metabolism than Chernozem soil. It suggested that complicated properties of microbes and soils resulted in the difference in soil microbial patterns. However, the changes of microbial communities caused by oil contamination were similar in respect of two dominant phenomena. Firstly, the microbial community structures were greatly changed, with higher abundance, higher bacterial biodiversity, occurrence of Candidate_division_BRC1 and TAO6, disappearance of BD1-5 and Candidate_division_OD1, dominance of Streptomyces, higher percentage of hydrocarbon-degrading groups, and lower percentage of nitrogen-transforming groups. Secondly, microbial activity and function in carbon metabolism were significantly enhanced. Based on the characteristics of microbial communities in the two soils, appropriate strategy for in situ bioremediation was provided for each oil field. This research underscored the usefulness of combination of culture-dependent techniques and next-generation sequencing techniques both to unravel the microbial patterns and understand the ecological impact of

  2. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover.

    You, Yeming; Wang, Juan; Huang, Xueman; Tang, Zuoxin; Liu, Shirong; Sun, Osbert J

    2014-03-01

    Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study