WorldWideScience

Sample records for soil disturbance effects

  1. [Effect of trampling disturbance on soil infiltration of biological soil crusts].

    Science.gov (United States)

    Shi, Ya Fang; Zhao, Yun Ge; Li, Chen Hui; Wang, Shan Shan; Yang, Qiao Yun; Xie, Shen Qi

    2017-10-01

    The effect of trampling disturbance on soil infiltration of biological soil crusts was investigated by using simulated rainfall. The results showed that the trampling disturbance significantly increased soil surface roughness. The increasing extent depended on the disturbance intensity. Soil surface roughness values at 50% disturbance increased by 91% compared with the undisturbed treatment. The runoff was delayed by trampling disturbance. A linear increase in the time of runoff yield was observed along with the increasing disturbance intensity within 20%-50%. The time of runoff yield at 50% disturbance increased by 169.7% compared with the undisturbed treatment. Trampling disturbance increased soil infiltration and consequently decreased the runoff coefficient. The cumulative infiltration amount at 50% disturbance increased by 12.6% compared with the undisturbed treatment. Soil infiltration significant decreased when biocrusts were removed. The cumulative infiltration of the treatment of biocrusts removal decreased by 30.2% compared with the undisturbed treatment. Trampling disturbance did not significantly increase the soil loss when the distur bance intensity was lower than 50%, while the biocrusts removal resulted in 10 times higher in soil erosion modulus. The trampling disturbance of lower than 50% on biocrusts might improve soil infiltration and reduce the risk of runoff, thus might improve the soil moisture without obviously increa sing the soil loss.

  2. A meta-analysis of soil microbial biomass responses to forest disturbances

    Directory of Open Access Journals (Sweden)

    Sandra Robin Holden

    2013-06-01

    Full Text Available Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm and biotic (insect, pathogen disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7%, 19.1%, and 41.7% reductions in microbial biomass, respectively. In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics.

  3. Mammalian engineers drive soil microbial communities and ecosystem functions across a disturbance gradient.

    Science.gov (United States)

    Eldridge, David J; Delgado-Baquerizo, Manuel; Woodhouse, Jason N; Neilan, Brett A

    2016-11-01

    The effects of mammalian ecosystem engineers on soil microbial communities and ecosystem functions in terrestrial ecosystems are poorly known. Disturbance from livestock has been widely reported to reduce soil function, but disturbance by animals that forage in the soil may partially offset these negative effects of livestock, directly and/or indirectly by shifting the composition and diversity of soil microbial communities. Understanding the role of disturbance from livestock and ecosystem engineers in driving soil microbes and functions is essential for formulating sustainable ecosystem management and conservation policies. We compared soil bacterial community composition and enzyme concentrations within four microsites: foraging pits of two vertebrates, the indigenous short-beaked echidna (Tachyglossus aculeatus) and the exotic European rabbit (Oryctolagus cuniculus), and surface and subsurface soils along a gradient in grazing-induced disturbance in an arid woodland. Microbial community composition varied little across the disturbance gradient, but there were substantial differences among the four microsites. Echidna pits supported a lower relative abundance of Acidobacteria and Cyanobacteria, but a higher relative abundance of Proteobacteria than rabbit pits and surface microsites. Moreover, these microsite differences varied with disturbance. Rabbit pits had a similar profile to the subsoil or the surface soils under moderate and high, but not low disturbance. Overall, echidna foraging pits had the greatest positive effect on function, assessed as mean enzyme concentrations, but rabbits had the least. The positive effects of echidna foraging on function were indirectly driven via microbial community composition. In particular, increasing activity was positively associated with increasing relative abundance of Proteobacteria, but decreasing Acidobacteria. Our study suggests that soil disturbance by animals may offset, to some degree, the oft-reported negative

  4. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency.

    Science.gov (United States)

    Cho, Hyunjun; Kim, Mincheol; Tripathi, Binu; Adams, Jonathan

    2017-07-01

    Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the "humpback" pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance-which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

  5. Influence of Disturbance on Soil Respiration in Biologically Crusted Soil during the Dry Season

    Directory of Open Access Journals (Sweden)

    Wei Feng

    2013-01-01

    Full Text Available Soil respiration (Rs is a major pathway for carbon cycling and is a complex process involving abiotic and biotic factors. Biological soil crusts (BSCs are a key biotic component of desert ecosystems worldwide. In desert ecosystems, soils are protected from surface disturbance by BSCs, but it is unknown whether Rs is affected by disturbance of this crust layer. We measured Rs in three types of disturbed and undisturbed crusted soils (algae, lichen, and moss, as well as bare land from April to August, 2010, in Mu Us desert, northwest China. Rs was similar among undisturbed soils but increased significantly in disturbed moss and algae crusted soils. The variation of Rs in undisturbed and disturbed soil was related to soil bulk density. Disturbance also led to changes in soil organic carbon and fine particles contents, including declines of 60–70% in surface soil C and N, relative to predisturbance values. Once BSCs were disturbed, Q10 increased. Our findings indicate that a loss of BSCs cover will lead to greater soil C loss through respiration. Given these results, understanding the disturbance sensitivity impact on Rs could be helpful to modify soil management practices which promote carbon sequestration.

  6. Grazing disturbance increases transient but decreases persistent soil seed bank.

    Science.gov (United States)

    Ma, Miaojun; Walck, Jeffrey L; Ma, Zhen; Wang, Lipei; Du, Guozhen

    2018-04-30

    Very few studies have examined whether the impacts of grazing disturbance on soil seed banks occur directly or indirectly through aboveground vegetation and soil properties. The potential role of the seed bank in alpine wetland restoration is also unknown. We used SEM (structural equation modeling) to explore the direct effect of grazing disturbance on the seed bank and the indirect effect through aboveground vegetation and soil properties. We also studied the role of the seed bank on the restoration potential in wetlands with various grazing intensities: low (fenced, winter grazed only), medium (seasonally grazed), and high (whole-year grazed). For the seed bank, species richness and density per plot showed no difference among grazing intensities for each depth (0-5, 5-10, 10-15 cm) and for the whole depth (0-15 cm) in spring and summer. There was no direct effect of grazing disturbance on seed bank richness and density both in spring and summer, and also no indirect effect on the seed bank through its direct effect on vegetation richness and abundance. Grazing disturbance indirectly increased spring seed bank density but decreased summer seed bank density through its direct effect (negative correlation) on soil moisture and total nitrogen and its indirect effect on vegetation abundance. Species composition of the vegetation changed with grazing regime, but that of the seed bank did not. An increased trend of similarity between the seed bank and aboveground vegetation with increased grazing disturbance was found in the shallow depth and in the whole depth only in spring. Although there was almost no change in seed bank size with grazing intensities, grazing disturbance increased the quantity of transient seeds but decreased persistent seeds. Persistent seeds stored in the soil could play a crucial role in vegetation regeneration and in restoration of degraded wetland ecosystems. The seed bank should be an integral part of alpine wetland restoration programs.

  7. Visually Determined Soil Disturbance Classes Used as Indices of Forest Harvesting Disturbance

    Science.gov (United States)

    W. Michael Aust; James A. Burger; Emily A. Carter; David P. Preston; Steven C. Patterson

    1998-01-01

    Visual estimates of soil and site disturbances are used by foresters, soil scientists, logging supervisors. and machinery operators to minimize harvest disturbances to forest sites, to evaluate compliance with forestry Best Management Practices (BMPs), and to determine the need for ameliorative practices such as tnechanical site preparation. Although estimates are...

  8. Effect of typhoon disturbance on soil respiration dynamic in a tropical broadleaves plantation in southern Taiwan

    Science.gov (United States)

    Chiang, Po-Neng; Yu, Jui-Chu; Lai, Yen-Jen

    2017-04-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Reforestation is one of the best solutions to mitigate warming gases release and to store in soil. Typhoon is one of the most hazards to disturb forest ecosystem and change carbon cycle. Typhoon disturbance is also affect soil carbon cycle such as soil respiration, carbon storage. Therefore, the objective of this study is to clarify the effect of typhoon disturbance on soil respiration dynamic in a tropical broadleaves plantation in southern Taiwan. Fourteen broadleaved tree species were planted in 2002-2005. Twelves continuous soil respiration chambers was divided two treatments (trench and non-trench) and observed since 2011 to 2014. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Forest biometric such as tree high, DBH, litterfall was measured in 2011-2014. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Soil respiration was related with season variation in research site. Soil temperature showed significantly exponential related with soil respiration in research site (p<0.001).However, soil respiration showed significantly negative relationship with total amount of litterfall (p<0.001), suggesting that the tree was still young and did not reach crown closure.

  9. Nutrient Release from Disturbance of Infiltration System Soils during Construction

    Directory of Open Access Journals (Sweden)

    Daniel P. Treese

    2012-01-01

    Full Text Available Subsurface infiltration and surface bioretention systems composed of engineered and/or native soils are preferred tools for stormwater management. However, the disturbance of native soils, especially during the process of adding amendments to improve infiltration rates and pollutant removal, may result in releases of nutrients in the early life of these systems. This project investigated the nutrient release from two soils, one disturbed and one undisturbed. The disturbed soil was collected intact, but had to be air-dried, and the columns repacked when soil shrinkage caused bypassing of water along the walls of the column. The undisturbed soil was collected and used intact, with no repacking. The disturbed soil showed elevated releases of nitrogen and phosphorus compared to the undisturbed soil for approximately 0.4 and 0.8 m of runoff loading, respectively. For the undisturbed soil, the nitrogen release was delayed, indicating that the soil disturbance accelerated the release of nitrogen into a very short time period. Leaving the soil undisturbed resulted in lower but still elevated effluent nitrogen concentrations over a longer period of time. For phosphorus, these results confirm prior research which demonstrated that the soil, if shown to be phosphorus-deficient during fertility testing, can remove phosphorus from runoff even when disturbed.

  10. Excavation/Fill/Soil Disturbance, Self-Study #31419

    Energy Technology Data Exchange (ETDEWEB)

    Grogin, Phillip W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-06

    This course, Excavation/Fill/Soil Disturbance Self-Study (#31419), presents an overview of the hazards, controls, and requirements that affect safe excavations at Los Alamos National Laboratory (LANL). An overview of the LANL excavation/fill/soil disturbance permit (EXID permit) approval process is also presented, along with potholing requirements for planning and performing excavations at LANL.

  11. Disentangling the long-term effects of disturbance on soil biogeochemistry in a wet tropical forest ecosystem.

    Science.gov (United States)

    Gutiérrez Del Arroyo, Omar; Silver, Whendee L

    2018-04-01

    Climate change is increasing the intensity of severe tropical storms and cyclones (also referred to as hurricanes or typhoons), with major implications for tropical forest structure and function. These changes in disturbance regime are likely to play an important role in regulating ecosystem carbon (C) and nutrient dynamics in tropical and subtropical forests. Canopy opening and debris deposition resulting from severe storms have complex and interacting effects on ecosystem biogeochemistry. Disentangling these complex effects will be critical to better understand the long-term implications of climate change on ecosystem C and nutrient dynamics. In this study, we used a well-replicated, long-term (10 years) canopy and debris manipulation experiment in a wet tropical forest to determine the separate and combined effects of canopy opening and debris deposition on soil C and nutrients throughout the soil profile (1 m). Debris deposition alone resulted in higher soil C and N concentrations, both at the surface (0-10 cm) and at depth (50-80 cm). Concentrations of NaOH-organic P also increased significantly in the debris deposition only treatment (20-90 cm depth), as did NaOH-total P (20-50 cm depth). Canopy opening, both with and without debris deposition, significantly increased NaOH-inorganic P concentrations from 70 to 90 cm depth. Soil iron concentrations were a strong predictor of both C and P patterns throughout the soil profile. Our results demonstrate that both surface- and subsoils have the potential to significantly increase C and nutrient storage a decade after the sudden deposition of disturbance-related organic debris. Our results also show that these effects may be partially offset by rapid decomposition and decreases in litterfall associated with canopy opening. The significant effects of debris deposition on soil C and nutrient concentrations at depth (>50 cm), suggest that deep soils are more dynamic than previously believed, and can serve as

  12. Soil bacteria show different tolerance ranges to an unprecedented disturbance

    NARCIS (Netherlands)

    Nunes, Ines; Jurburg, Stephanie; Jacquiod, Samuel; Brejnrod, Asker; Salles, Joana Falcao; Prieme, Anders; Sorensen, Soren J.

    Soil microbial communities have remarkable capacities to cope with ceaseless environmental changes, but little is known about their adaptation potential when facing an unprecedented disturbance. We tested the effect of incremental dose of microwaving on soil bacteria as a model of unprecedented

  13. Nutrient Release from Disturbance of Infiltration System Soils during Construction

    OpenAIRE

    Daniel P. Treese; Shirley E. Clark; Katherine H. Baker

    2012-01-01

    Subsurface infiltration and surface bioretention systems composed of engineered and/or native soils are preferred tools for stormwater management. However, the disturbance of native soils, especially during the process of adding amendments to improve infiltration rates and pollutant removal, may result in releases of nutrients in the early life of these systems. This project investigated the nutrient release from two soils, one disturbed and one undisturbed. The disturbed soil was collected i...

  14. Elements and rationale for a common approach to assess and report soil disturbance.

    Science.gov (United States)

    Mike Curran; Doug Maynard; Ron Heninger; Tom Terry; Steve Howes; Doug Stone; Tom Niemann; Richard E. Miller

    2008-01-01

    Soil disturbance from forest practices ranges from barely perceptible to very obvious, and from positive to nil to negative effects on forest productivity and 1 or hydrologic function. Currently, most public and private landholders and various other interested parties have different approaches to describing this soil disturbance. More uniformity is needed to describe,...

  15. Extreme CO2 disturbance and the resilience of soil microbial communities

    Science.gov (United States)

    McFarland, Jack W.; Waldrop, Mark P.; Haw, Monica

    2013-01-01

    direct (microaerobiosis) and indirect (loss of plant C inputs) effects of elevated soil CO2 flux have significant impacts on the composition and overall structural trajectory of soil microbial populations within disturbed areas.

  16. PERFUGIA AS A MECHANISM FOR THE RECOVERY OF SOIL FAUNA AFTER ECOSYSTEM DISTURBANCES

    Directory of Open Access Journals (Sweden)

    K. B. Gongalsky

    2017-12-01

    Full Text Available Disturbances such as forest fires, industrial pollution, etc. are almost always heterogeneous, leaving less disturbed patches within the boundaries of disturbances. In addition to the traditionally considered source of soil invertebrates’ restoration by immigration from the surrounding unchanged biotopes, the role of locally undisturbed areas within the impact zones is shown. The presence of perfugia within the impact areas of various origin is revealed. Perfugia are locally less disturbed or undisturbed areas within a disturbed ecosystem where specimens or remnants of soil biota communities survive a disturbance. They are characterized by higher diversity and abundance of soil fauna in comparison to the main disturbed area. The heterogeneity of soil environment, the heterogeneity of its disturbance and the presence of perfugia serve as one of the factors in the recovery of soil fauna after the disturbances.

  17. Biological soil crusts across disturbance-recovery scenarios: effect of grazing regime on community dynamics

    Science.gov (United States)

    Concostrina-Zubiri, L.; Huber-Sannwald, E.; Martínez, I.; Flores Flores, J. L.; Reyes-Agüero, J. A.; Escudero, A.; Belnap, Jayne

    2014-01-01

    Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.

  18. Functional traits of soil invertebrates as indicators for exposure to soil disturbance.

    Science.gov (United States)

    Hedde, Mickaël; van Oort, Folkert; Lamy, Isabelle

    2012-05-01

    We tested a trait-based approach to link a soil disturbance to changes in invertebrate communities. Soils and macro-invertebrates were sampled in sandy soils contaminated by long-term wastewater irrigation, adding notably organic matter and trace metals (TM). We hypothesized that functional traits of invertebrates depict ways of exposure and that exposure routes relate to specific TM pools. Geophages and soft-body invertebrates were chosen to inform on exposure by ingestion or contact, respectively. Trait-based indices depicted more accurately effects of pollution than community density and diversity did. Exposure by ingestion had more deleterious effects than by contact. Both types of exposed invertebrates were influenced by TM, but geophages mainly responded to changes in soil organic matter contents. The trait-based approach requires to be applied in various conditions to uncorrelate specific TM impacts from those of other environmental factors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Validating visual disturbance types and classes used for forest soil monitoring protocols

    Science.gov (United States)

    D. S. Page-Dumroese; A. M. Abbott; M. P. Curran; M. F. Jurgensen

    2012-01-01

    We describe several methods for validating visual soil disturbance classes used during forest soil monitoring after specific management operations. Site-specific vegetative, soil, and hydrologic responses to soil disturbance are needed to identify sensitive and resilient soil properties and processes; therefore, validation of ecosystem responses can provide information...

  20. Functional traits of soil invertebrates as indicators for exposure to soil disturbance

    International Nuclear Information System (INIS)

    Hedde, Mickaël; Oort, Folkert van; Lamy, Isabelle

    2012-01-01

    We tested a trait-based approach to link a soil disturbance to changes in invertebrate communities. Soils and macro-invertebrates were sampled in sandy soils contaminated by long-term wastewater irrigation, adding notably organic matter and trace metals (TM). We hypothesized that functional traits of invertebrates depict ways of exposure and that exposure routes relate to specific TM pools. Geophages and soft-body invertebrates were chosen to inform on exposure by ingestion or contact, respectively. Trait-based indices depicted more accurately effects of pollution than community density and diversity did. Exposure by ingestion had more deleterious effects than by contact. Both types of exposed invertebrates were influenced by TM, but geophages mainly responded to changes in soil organic matter contents. The trait-based approach requires to be applied in various conditions to uncorrelate specific TM impacts from those of other environmental factors. - Highlights: ► We linked pollution, exposure routes and impacts on soil invertebrates. ► Proportions of exposed animals accurately depicted pollution effects. ► Exposure by ingestion had more deleterious effects than exposure by contact. ► Geophages decline reflected changes in soil organic matter. ► Soft-body proportions were mainly influenced by TM pools. - A trait-based approach hierarchized impacts of soil pollution on soil invertebrate communities following ways of exposure

  1. Misrepresentation of hydro-erosional processes in rainfall simulations using disturbed soil samples

    Science.gov (United States)

    Thomaz, Edivaldo L.; Pereira, Adalberto A.

    2017-06-01

    Interrill erosion is a primary soil erosion process which consists of soil detachment by raindrop impact and particle transport by shallow flow. Interill erosion affects other soil erosion sub-processes, e.g., water infiltration, sealing, crusting, and rill initiation. Interrill erosion has been widely studied in laboratories, and the use of a sieved soil, i.e., disturbed soil, has become a standard method in laboratory experiments. The aims of our study are to evaluate the hydro-erosional response of undisturbed and disturbed soils in a laboratory experiment, and to quantify the extent to which hydraulic variables change during a rainstorm. We used a splash pan of 0.3 m width, 0.45 m length, and 0.1 m depth. A rainfall simulation of 58 mm h- 1 lasting for 30 min was conducted on seven replicates of undisturbed and disturbed soils. During the experiment, several hydro-physical parameters were measured, including splashed sediment, mean particle size, runoff, water infiltration, and soil moisture. We conclude that use of disturbed soil samples results in overestimation of interrill processes. Of the nine assessed parameters, four displayed greater responses in the undisturbed soil: infiltration, topsoil shear strength, mean particle size of eroded particles, and soil moisture. In the disturbed soil, five assessed parameters displayed greater responses: wash sediment, final runoff coefficient, runoff, splash, and sediment yield. Therefore, contextual soil properties are most suitable for understanding soil erosion, as well as for defining soil erodibility.

  2. Soil disturbance as a grassland restoration measure

    DEFF Research Database (Denmark)

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success...... to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration...

  3. Construction of disturbed and intact soil blocks to develop percolating soil based treatment systems for dirty water from dairy farms.

    Science.gov (United States)

    Brookman, S K E; Chadwick, D R; Headon, D M

    2002-03-01

    Intact soil blocks with a surface area of 1.8 x 1.6 m, 1.0 m deep, were excavated in a coarse sandy loam. The sides of the soil blocks were supported with plywood before using hydraulic rams to force a steel cutting plate beneath them. Disturbed soil blocks of the same depth as the intact blocks were also established. Experiments were conducted to determine purification efficiencies for biological oxygen demand (BOD), molybdate reactive phosphorus (MRP), nitrate and ammonium-N after the application of dirty water. A preliminary experiment is described where a low application of dirty water was applied to the soil blocks, 2 mm day(-1). In addition, a chloride tracer was conducted for the duration of the experiment. Disturbed soil had a purification efficiency for BOD of 99% compared to 96% from intact soil (Pammonium-N were 100 and 99%, respectively, for the intact and disturbed soils. Nitrate-N concentration increased in leachate from both treatments reaching maximum concentrations of 15 and 8 mg l(-1) from disturbed and intact soils, respectively. Chloride traces for each soil block followed similar patterns with 47 and 51% loss from disturbed and intact soils, respectively.

  4. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    Science.gov (United States)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed

  5. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.

    Science.gov (United States)

    Chiquoine, Lindsay P; Abella, Scott R; Bowker, Matthew A

    2016-06-01

    biocrusts rapidly restored biocrust communities and soil stability such that restored areas were similar to undisturbed desert within three years. Using salvaged biocrust as inoculum can be an effective tool in ecological restoration because of its efficacy and simple implementation. Although salvaging biocrust material can be technically difficult and potentially costly, utilizing opportunities to salvage material in planned future disturbance can provide additional land management tools.

  6. Impact of Site Disturbances from Harvesting and Logging on Soil Physical Properties and Pinus kesiya Tree Growth.

    Science.gov (United States)

    Missanjo, Edward; Kamanga-Thole, Gift

    2014-01-01

    A study was conducted to determine the impacts of soil disturbance and compaction on soil physical properties and tree growth and the effectiveness of tillage in maintaining or enhancing site productivity for intensively managed Pinus kesiya Royle ex Gordon sites in Dedza, Malawi. The results indicate that about fifty-two percent of the area of compacted plots was affected by the vehicular traffic. Seventy percent of the trees were planted on microsites with some degree of soil disturbance. Soil bulk density at 0-20 cm depth increased from 0.45 to 0.66 Mg m(-3) in the most compacted portions of traffic lanes. Soil strength in traffic lanes increased at all 60 cm depth but never exceeded 1200 kPa. Volumetric soil water content in compacted traffic lanes was greater than that in noncompacted soil. Total soil porosity decreased 13.8% to 16.1% with compaction, while available water holding capacity increased. The study revealed no detrimental effects on tree height and diameter from soil disturbance or compaction throughout the three growing season. At the ages of two and three, a tree volume index was actually greater for trees planted on traffic lanes than those on nondisturbed soil.

  7. Medium-long term soil resilience against different disturbances: wildfires, silvicultural treatments and climate change

    Science.gov (United States)

    Hedo de Santiago, Javier; Borja, Manuel Esteban Lucas; de las Heras, Jorge

    2016-04-01

    Soils of semiarid Mediterranean forest ecosystems are very fragile and sensitive to changes due to different anthropogenic and natural disturbances. The increasing vulnerability of semiarid lands within this world framework has generated growing awareness in the field of research, with highly intensified study into soils properties. One of the main problems of Mediterranean forests is wildfire disturbance. Fire should be considered more an ecological factor but, in contrast to the role of fire, it is now a closely related factor to human action. On the other hand, to improve the recovery of forest communities after fire, silvicultural treatments are needed and, for that matter, another disturbance is added to the ecosystem. By last, climate change is also affecting the fire regime increasing fire frequency and burned area, enhancing the destructiveness to Mediterranean ecosystems. After all of these three disturbances, changes in vegetation dynamics and soil properties are expected to occur due to the plant-soil feedback. Soil plays an essential role in the forest ecosystem's fertility and stability and specifically soil microorganisms, which accomplish reactions to release soil nutrients for vegetation development, for that is essential to enlarge knowledge about soil properties resilience in semiarid forest ecosystems. Physico-chemical and microbiological soil properties, and enzyme activities have been studied in two Aleppo pine forest stands that have suffered three disturbances: 1) a wildfire event, 2) silvicultural treatments (thinning) and 3) an artificial drought (simulating climate change) and results showed that soil recovered after 15 years. Final results showed that soils have been recovered from the three disturbances at the medium-long term.

  8. Climate change and physical disturbance cause similar community shifts in biological soil crusts

    Science.gov (United States)

    Ferrenberg, Scott; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. While there has been long-standing concern over impacts of 5 physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is also increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, USA, we examined the effects of 10 years of experimental warming and altered precipitation (in full-factorial design) on biocrust communities, and compared the effects of altered climate with those of long-term physical 10 disturbance (>10 years of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increased cyanobacteria cover, with more variable effects 15 on lichens. While the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed by the climate treatments used in our study.

  9. Review of municipal sludge use as a soil amendment on disturbed lands

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Hendrickson, P.L.

    1990-08-01

    The US Department of Energy is examining options of improving soil conditions at Hanford reclamation sites. One promising technology is the incorporation of municipal sewage sludge into the soil profile. This report reviews the potential benefits and adverse consequences of sludge use in land reclamation. Land reclamation comprises those activities instigated to return a mechanically disturbed site to some later successional state. Besides the introduction of suitable plant species to disturbed lands, reclamation generally requires measures to enhance long-term soil nutrient content, moisture retention or drainage, and mitigation of toxic effects from metals and pH. One of the more effective means of remediating adverse soil characteristics is the application of complex organic manures such as municipal sewage sludge. Sewage sludges contain complete macro- and micronutrients necessary to sustain plant growth. The application of sewage sludge may reestablish microbial activity in sterile soils. Physical properties, such as water-holding capacity and percentage water-stable aggregates, also improve with the addition of sewage sludge. Sludge applications may also increase the rate of degradation of some hydrocarbon pollutants in soils. Potential adverse impacts associated with the application of sewage sludge to land include negative public perception of human waste products; concerns regarding pathogen buildup and spread in the soils, plants, and water; entrance and accumulation of heavy metals in the food chain; salt accumulation in the soil and ground water; leaching of nitrates into ground water; and accumulation of other potentially toxic substances, such as boron and synthetic hydrocarbons, in the soil, plants, and food chain. 56 refs., 10 tabs.

  10. Juvenile tree growth on some volcanic ash soils disturbed by prior forest harvest.

    Science.gov (United States)

    J. Michael Geist; John W. Hazard; Kenneth W. Seidel

    2008-01-01

    The effects of mechanical disturbance from traditional ground-based logging and site preparation on volcanic ash soil and associated tree growth were investigated by using two study approaches in a retrospective study. This research was conducted on volcanic ash soils within previously harvested units in the Blue Mountains of northeast Oregon and southwest Washington....

  11. Soil and biomass carbon re-accumulation after landslide disturbances

    Science.gov (United States)

    Schomakers, Jasmin; Jien, Shih-Hao; Lee, Tsung-Yu; Huang-Chuan, Jr.; Hseu, Zeng-Yei; Lin, Zan Liang; Lee, Li-Chin; Hein, Thomas; Mentler, Axel; Zehetner, Franz

    2017-07-01

    In high-standing islands of the Western Pacific, typhoon-triggered landslides occasionally strip parts of the landscape of its vegetative cover and soil layer and export large amounts of biomass and soil organic carbon (OC) from land to the ocean. After such disturbances, new vegetation colonizes the landslide scars and OC starts to re-accumulate. In the subtropical mountains of Taiwan and in other parts of the world, bamboo (Bambusoideae) species may invade at a certain point in the succession of recovering landslide scars. Bamboo has a high potential for carbon sequestration because of its fast growth and dense rooting system. However, it is still largely unknown how these properties translate into soil OC re-accumulation rates after landslide disturbance. In this study, a chronosequence was established on four former landslide scars in the Central Mountain Range of Taiwan, ranging in age from 6 to 41 years post disturbance as determined by landslide mapping from remote sensing. The younger landslide scars were colonized by Miscanthus floridulus, while after approx. 15 to 20 years of succession, bamboo species (Phyllostachys) were dominating. Biomass and soil OC stocks were measured on the recovering landslide scars and compared to an undisturbed Cryptomeria japonica forest stand in the area. After initially slow re-vegetation, biomass carbon accumulated in Miscanthus stands with mean annual accretion rates of 2 ± 0.5 Mg C ha- 1 yr- 1. Biomass carbon continued to increase after bamboo invasion and reached 40% of that in the reference forest site after 41 years of landslide recovery. Soil OC accumulation rates were 2.0 Mg C ha- 1 yr- 1, 6 to 41 years post disturbance reaching 64% of the level in the reference forest. Our results from this in-situ study suggest that recovering landslide scars are strong carbon sinks once an initial lag period of vegetation re-establishment is overcome.

  12. Autogenic succession and deterministic recovery following disturbance in soil bacterial communities

    DEFF Research Database (Denmark)

    Jurburg, Stephanie D.; Nunes, Ines Marques; Stegen, James C.

    2017-01-01

    The response of bacterial communities to environmental change may affect local to global nutrient cycles. However the dynamics of these communities following disturbance are poorly understood, given that they are often evaluated over macro-ecological time scales and end-point measurements. In ord...... diversity and functional redundancy, respond to disturbances like many macro-ecological systems and exhibit path-dependent, autogenic dynamics during secondary succession. These results highlight the role of autogenic factors and successional dynamics in microbial recovery....... to understand the successional trajectory of soil bacterial communities following disturbances and the mechanisms controlling these dynamics at a scale relevant for these organisms, we subjected soil microcosms to a heat disturbance and followed the community composition of active bacteria over 50 days...... slowed down, and a stability phase (after 29 days), during which the community tended towards its original composition. Phylogenetic turnover patterns indicated that the community experienced stronger deterministic selection during recovery. Thus, soil bacterial communities, despite their extreme...

  13. Advances in modeling soil erosion after disturbance on rangelands

    Science.gov (United States)

    Research has been undertaken to develop process based models that predict soil erosion rate after disturbance on rangelands. In these models soil detachment is predicted as a combination of multiple erosion processes, rain splash and thin sheet flow (splash and sheet) detachment and concentrated flo...

  14. A computational model of pile vertical vibration in saturated soil based on the radial disturbed zone of pile driving

    International Nuclear Information System (INIS)

    Li Qiang; Shi Qian; Wang Kuihua

    2010-01-01

    In this study, a simplified computational model of pile vertical vibration was developed. The model was based on the inhomogeneous radial disturbed zone of soil in the vicinity of a pile disturbed by pile driving. The model contained two regions: the disturbed zone, which was located in the immediate vicinity of the pile, and the undisturbed region, external to the disturbed zone. In the model, excess pore pressure in the disturbed zone caused by pile driving was assumed to follow a logarithmic distribution. The relationships of stress and strain in the disturbed zone were based on the principle of effective stress under plain strain conditions. The external zone was governed by the poroelastic theory proposed by Biot. With the use of a variable separation method, an analytical solution in the frequency domain was obtained. Furthermore, a semi-analytical solution was attained by employing a numerical convolution method. Numerical results from the frequency and time domain indicated that the equivalent radius of the disturbed zone and the ratio of excess pore pressure had a significant effect on pile dynamic response. However, actual interactions between pile and soil will be weaker due to the presence of the radial disturbed zone, which is caused by pile driving. Consequently, the ideal undisturbed model overestimates the interaction between pile and soil; however, the proposed model reflects the interaction of pile and soil better than the perfect contact model. Numerical results indicate that the model can account for the time effect of pile dynamic tests.

  15. Do traits of invasive species influence decomposition and soil respiration of disturbed ecosystems?

    Science.gov (United States)

    Wells, A. J.; Balster, N. J.

    2009-12-01

    Large-scale landscape disturbances typically alter the terrestrial carbon cycle leading to shifts in pools of soil carbon. Restoration of disturbed landscapes with prairie vegetation has thus been practiced with the intent of increasing carbon accrual in soils. However, since disturbed soils are prone to invasion by non-native invasive species, many ecological restorations have resulted in unexpected outcomes, which may be explained by differences in plant traits such as tissue quality and biomass allocation. Typically, the tissue of invasive species has lower C:N ratios relative to native species, and consequently, faster decomposition rates, which potentially can alter the balance in soil carbon. The primary objective of this research was to compare the effects of native prairie species versus non-native invasive species on the carbon cycling within a novel environment: a recently dewatered basin in southwestern Wisconsin following dam removal. We hypothesized that a higher invasive to native species ratio would result in faster litter decomposition and a higher rate of soil respiration. To test this hypothesis, we seeded newly exposed sediments with native prairie seeds in 2005, annually collected aboveground plant biomass (by species per plot), calculated decomposition rate of native and invasive litter (underneath both canopy types), and measured soil respiration during the growing season of 2009. After four years of seeding, the aboveground biomass of the native vegetation has increased significantly (p invasive species biomass has decreased from 459 to 296 g m-2. Senesced tissue from mixed native species had a higher C:N ratio, 27:1 (43% C: 1.6% N), than tissue from mixed invasive species, 24:1 (35% C: 1.5% N). However, after 7 months, we found that the rate of decomposition depended on both litter type and plant canopy type (p invasive plant tissue had a slightly faster decomposition rate than the native litter and this rate was elevated under invasive

  16. Regenerative role of seed banks following an intense soil disturbance

    Science.gov (United States)

    Luzuriaga, Arantzazu L.; Escudero, Adrián; Olano, José Miguel; Loidi, Javier

    2005-02-01

    Our main aim was to determine the contribution of the seed bank to vegetation regeneration following a disturbance consisting in a deep ploughing and a thorough homogenisation of a perennial grassland. In the seed bank prior to disturbance, seed distribution through the vertical soil profile was evaluated to determine the initial seed species structure. Then, several characteristics of the shallow seed bank and the extant vegetation were evaluated prior and following field disturbance: seed species composition and abundance, and species composition of the aboveground vegetation. The contribution of seed rain versus seed bank was evaluated by means of the comparison of the vegetation developed in plots filled with sterilised soil (seed bank removal) and the vegetation developed in non-sterilised plots in the field. The distribution of seeds through the profile indicated a sharp decline in abundance with depth, and it was probably linked to propagule morphology, with small and rounded seeds proner to being buried deeper than larger seeds. In the grassland prior to disturbance, the aboveground vegetation and seed bank species composition showed very low similarity index, most likely because during the 5 years following field abandonment, sheep pressure had caused a faster change in aboveground vegetation species composition than in seed bank species composition. Ploughing and homogenisation of the grassland led to low seed abundance in the shallow soil layer caused by dilution of the seed bank. Regardless of impoverishment in seed abundance and species richness, comparison between sterilised and non-sterilised plots showed that the seed bank acted as an effective source of colonising species and determined the aboveground species composition. To summarise, this study outlines the importance of considering several characteristics of the seed bank, such as species composition and seed abundance, in the understanding of the function of seed bank and dynamics of the

  17. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    Science.gov (United States)

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  18. Soil respiration response to experimental disturbances over 3 years

    Science.gov (United States)

    Amy Concilio; Siyan Ma; Soung-Ryoul Ryu; Malcolm North; Jiquan Chen

    2006-01-01

    Soil respiration is a major pathway for carbon cycling in terrestrial ecosystems yet little is known about its response to natural and anthropogenic disturbances. This study examined soil respiration response to prescribed burning and thinning treatments in an old-growth, mixed-conifer forest on the western slope of the Sierra Nevada Mountains. Experimental treatments...

  19. How development and disturbance of biological soil crust do affect runoff and erosion in drylands?

    Energy Technology Data Exchange (ETDEWEB)

    Chamizo, S.; Canton, Y.; Afana, A.; Lazaro, R.; Domingo, F.; Sole-Benet, A.

    2009-07-01

    Deserts and semiarid ecosystems (shrub lands and grasslands) are the largest terrestrial biome, covering more than 40% of the Earth's terrestrial surface and Biological Soil Crusts (BSCs) are the predominant surface type in most of those ecosystems covering up to 70% of its surface. BSCs have been demonstrated to be very vulnerable to disturbance due to human activities and their loss has been implicated as a factor leading to accelerate soil erosion and other forms of land degradation. Incorporation of the response of different type of soil crusts and the effects of the their disturbance is likely to improve the prediction of runoff and water erosion models in arid and semi-arid catchments. The aim of this work is to analyse the influence of crust disturbance on infiltration and erosion. Extreme rainfall simulations at micro plots scale were performed in two semiarid ecosystems with different lithology and conditions of occurrence of BSCs: El Cautivo and Amoladeras. (Author) 10 refs.

  20. How development and disturbance of biological soil crust do affect runoff and erosion in drylands?

    International Nuclear Information System (INIS)

    Chamizo, S.; Canton, Y.; Afana, A.; Lazaro, R.; Domingo, F.; Sole-Benet, A.

    2009-01-01

    Deserts and semiarid ecosystems (shrub lands and grasslands) are the largest terrestrial biome, covering more than 40% of the Earth's terrestrial surface and Biological Soil Crusts (BSCs) are the predominant surface type in most of those ecosystems covering up to 70% of its surface. BSCs have been demonstrated to be very vulnerable to disturbance due to human activities and their loss has been implicated as a factor leading to accelerate soil erosion and other forms of land degradation. Incorporation of the response of different type of soil crusts and the effects of the their disturbance is likely to improve the prediction of runoff and water erosion models in arid and semi-arid catchments. The aim of this work is to analyse the influence of crust disturbance on infiltration and erosion. Extreme rainfall simulations at micro plots scale were performed in two semiarid ecosystems with different lithology and conditions of occurrence of BSCs: El Cautivo and Amoladeras. (Author) 10 refs.

  1. Drivers of increased organic carbon concentrations in stream water following forest disturbance: Separating effects of changes in flow pathways and soil warming

    Science.gov (United States)

    Schelker, J.; Grabs, T.; Bishop, K.; Laudon, H.

    2013-12-01

    disturbance such as clear-cutting has been identified as an important factor for increasing dissolved organic carbon (DOC) concentrations in boreal streams. We used a long-term data set of soil temperature, soil moisture, shallow groundwater (GW) levels, and stream DOC concentrations from three boreal first-order streams to investigate mechanisms causing these increases. Clear-cutting was found to alter soil conditions with warmer and wetter soils during summer. The application of a riparian flow concentration integration model (RIM) explained a major part of variation in stream [DOC] arising from changing flow pathways in riparian soils during the pretreatment period (r2 = 0.4-0.7), but less well after the harvest. Model residuals were sensitive to changes in soil temperature. The linear regression models for the temperature dependence of [DOC] in soils were not different in the disturbed and undisturbed catchments, whereas a nonlinear response to soil moisture was found. Overall these results suggest that the increased DOC mobilization after forest disturbance is caused by (i) increased GW levels leading to increased water fluxes in shallow flow path in riparian soils and (ii) increased soil temperature increasing the DOC availability in soils during summer. These relationships indicate that the mechanisms of DOC mobilization after forest disturbance are not different to those of undisturbed catchments, but that catchment soils respond to the higher hydro-climatic variation observed after clear-cutting. This highlights the sensitivity of boreal streams to changes in the energy and water balance, which may be altered as a result of both land management and climate change.

  2. Effects of sand burial and wind disturbances on moss soil crusts in a revegetated area of the Tennger Desert, Northern China

    Science.gov (United States)

    Jia, R. L.; Li, X. R.; Liu, L. C.; Gao, Y. H.

    2012-04-01

    Sand burial and wind are two predominant natural disturbances in the desert ecosystems worldwide. However, the effects of sand burial and wind disturbances on moss soil crusts are still largely unexplored. In this study, two sets of experiments were conducted separately to evaluated the effects of sand burial (sand depth of 0, 1, 2, 3 and 4 mm) and wind blowing (wind speed of 0.2, 3, 6 and 9ms-1) on ecophysiological variables of two moss soil crusts collected from a revegetated area of the Tengger Desert, Northern China. Firstly, the results from the sand burial experiment revealed that respiration rate was significantly decreased and that moss shoot elongation was significantly increased after burial. In addition, Bryum argenteum crust showed the fastest speed of emergence and highest tolerance index, followed by Didymodon vinealis crust. This sequence was consistent with the successional order of the two moss crusts that happened in our study area, indicating that differential sand burial tolerance explains their succession sequence. Secondly, the results from the wind experiment showed that CO2 exchange, PSII photochemical efficiency, photosynthetic pigments, shoot upgrowth, productivity and regeneration potential of the two moss soil crust mentioned above were all substantially depressed. Furthermore, D. vinealis crust exhibited stronger wind resistance than B. argenteum crust from all aspects mentioned above. And this is comparison was identical with their contrasting microhabitats with B. argenteum crust being excluded from higher wind speed microsites in the windward slopes, suggesting that the differential wind resistance of moss soil crusts explains their microdistribution pattern. In conclusion, the ecogeomorphological processes of moss soil crusts in desert ecosystems can be largely determined by natural disturbances caused by sand burial and wind blowing in desert ecosystems.

  3. Logging Options to Minimize Soil Disturbance in the Northern Lake States

    Science.gov (United States)

    Douglas M. Stone

    2002-01-01

    Forest harvesting is likely to have greater impacts on site productivity than any other activity during the rotation. We determined effects of commercial, winter-logging of four aspen-dominated stands on site disturbance and development of regeneration on clay soils in western Upper Michigan. A large skidder caused deep rutting on 20% of a site in a thinning that...

  4. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance

    Science.gov (United States)

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-01-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future. PMID:23389106

  5. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China.

    Science.gov (United States)

    Hu, Tongxin; Sun, Long; Hu, Haiqing; Guo, Futao

    2017-01-01

    In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent) after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April) in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%-5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth) was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%-79% of the soil respiration variability in winter snow-covering period (November to March). Mean spring freeze-thaw cycle (FTC) period (April) soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.

  6. A detrimental soil disturbance prediction model for ground-based timber harvesting

    Science.gov (United States)

    Derrick A. Reeves; Matthew C. Reeves; Ann M. Abbott; Deborah S. Page-Dumroese; Mark D. Coleman

    2012-01-01

    Soil properties and forest productivity can be affected during ground-based harvest operations and site preparation. The degree of impact varies widely depending on topographic features and soil properties. Forest managers who understand site-specific limits to ground-based harvesting can alter harvest method or season to limit soil disturbance. To determine the...

  7. Disturbance, neutral theory, and patterns of beta diversity in soil communities.

    Science.gov (United States)

    Maaß, Stefanie; Migliorini, Massimo; Rillig, Matthias C; Caruso, Tancredi

    2014-12-01

    Beta diversity describes how local communities within an area or region differ in species composition/abundance. There have been attempts to use changes in beta diversity as a biotic indicator of disturbance, but lack of theory and methodological caveats have hampered progress. We here propose that the neutral theory of biodiversity plus the definition of beta diversity as the total variance of a community matrix provide a suitable, novel, starting point for ecological applications. Observed levels of beta diversity (BD) can be compared to neutral predictions with three possible outcomes: Observed BD equals neutral prediction or is larger (divergence) or smaller (convergence) than the neutral prediction. Disturbance might lead to either divergence or convergence, depending on type and strength. We here apply these ideas to datasets collected on oribatid mites (a key, very diverse soil taxon) under several regimes of disturbances. When disturbance is expected to increase the heterogeneity of soil spatial properties or the sampling strategy encompassed a range of diverging environmental conditions, we observed diverging assemblages. On the contrary, we observed patterns consistent with neutrality when disturbance could determine homogenization of soil properties in space or the sampling strategy encompassed fairly homogeneous areas. With our method, spatial and temporal changes in beta diversity can be directly and easily monitored to detect significant changes in community dynamics, although the method itself cannot inform on underlying mechanisms. However, human-driven disturbances and the spatial scales at which they operate are usually known. In this case, our approach allows the formulation of testable predictions in terms of expected changes in beta diversity, thereby offering a promising monitoring tool.

  8. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China.

    Directory of Open Access Journals (Sweden)

    Tongxin Hu

    Full Text Available In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%-5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%-79% of the soil respiration variability in winter snow-covering period (November to March. Mean spring freeze-thaw cycle (FTC period (April soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.

  9. Different Recovery Processes of Soil Ammonia Oxidizers from Flooding Disturbance.

    Science.gov (United States)

    Ye, Fei; Ma, Mao-Hua; Op den Camp, Huub J M; Chatzinotas, Antonis; Li, Lei; Lv, Ming-Quan; Wu, Sheng-Jun; Wang, Yu

    2018-04-11

    Understanding how microorganisms respond to environmental disturbance is one of the key focuses in microbial ecology. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are responsible for ammonia oxidation which is a crucial step in the nitrogen cycle. Although the physiology, distribution, and activity of AOA and AOB in soil have been extensively investigated, their recovery from a natural disturbance remains largely unknown. To assess the recovery capacities, including resistance and resilience, of AOA and AOB, soil samples were taken from a reservoir riparian zone which experienced periodically water flooding. The samples were classified into three groups (flooding, recovery, and control) for a high-throughput sequencing and quantitative PCR analysis. We used a relative quantitative index of both the resistance (RS) and resilience (RL) to assess the variation of gene abundance, alpha-diversity, and community composition. The AOA generally demonstrated a better recovery capability after the flooding disturbance compared to AOB. In particular, AOA were more resilient after the flooding disturbance. Taxa within the AOA and AOB showed different RS and RL values, with the most abundant taxa showing in general the highest RS indices. Soil NH 4 + and Fe 2+ /Fe 3+ were the main variables controlling the key taxa of AOA and AOB and probably influenced the resistance and resilience properties of AOA and AOB communities. The distinct mechanisms of AOA and AOB in maintaining community stability against the flooding disturbance might be linked to the different life-history strategies: the AOA community was more likely to represent r-strategists in contrast to the AOB community following a K-life strategy. Our results indicated that the AOA may play a vital role in ammonia oxidation in a fluctuating habitat and contribute to the stability of riparian ecosystem.

  10. [Changes in vegetation and soil characteristics under tourism disturbance in lakeside wetland of northwest Yunnan Plateau, Southwest China].

    Science.gov (United States)

    Tang, Ming-Yan; Yang, Yong-Xing

    2014-05-01

    The characteristics of vegetation and soil were investigated in Bita Lake and Shudu Lake wetlands in northwest Yunnan Plateau under tourism disturbance. The 22 typical plots in the wetlands were classified into 4 types by TWINSPAN, including primary wetland, light degradation, moderate degradation, and severe degradation. Along the degradation gradient, the plant community density, coverage, species number and Shannon diversity index increased and the plant height decreased in Bita Lake and Shudu Lake wetlands, and Whittaker diversity index increased in Bita Lake wetland. Plant species number, soil organic matter, total nitrogen, porosity, available nitrogen, available phosphorus and available potassium contents were higher in Shudu Lake wetland than in Bita Lake wetland, but the plant density, height, soil total potassium and pH were opposite. Canonical correspondence analysis (CCA) by importance values of 42 plants and 11 soil variables showed that soil organic matter, total nitrogen and total potassium were the key factors on plant species distribution in Bita Lake and Shudu Lake wetlands under tourism disturbance. TWINSPAN classification and analysis of vegetation-soil characteristics indicated the effects of tourism disturbance in Bita Lake wetland were larger than in Shudu Lake wetland.

  11. Copper pollution decreases the resistance of soil microbial community to subsequent dry-rewetting disturbance.

    Science.gov (United States)

    Li, Jing; Wang, Jun-Tao; Hu, Hang-Wei; Ma, Yi-Bing; Zhang, Li-Mei; He, Ji-Zheng

    2016-01-01

    Dry-rewetting (DW) disturbance frequently occurs in soils due to rainfall and irrigation, and the frequency of DW cycles might exert significant influences on soil microbial communities and their mediated functions. However, how microorganisms respond to DW alternations in soils with a history of heavy metal pollution remains largely unknown. Here, soil laboratory microcosms were constructed to explore the impacts of ten DW cycles on the soil microbial communities in two contrasting soils (fluvo-aquic soil and red soil) under three copper concentrations (zero, medium and high). Results showed that the fluctuations of substrate induced respiration (SIR) decreased with repeated cycles of DW alternation. Furthermore, the resistance values of substrate induced respiration (RS-SIR) were highest in non-copper-stressed (zero) soils. Structural equation model (SEM) analysis ascertained that the shifts of bacterial communities determined the changes of RS-SIR in both soils. The rate of bacterial community variance was significantly lower in non-copper-stressed soil compared to the other two copper-stressed (medium and high) soils, which might lead to the higher RS-SIR in the fluvo-aquic soil. As for the red soil, the substantial increase of the dominant group WPS-2 after DW disturbance might result in the low RS-SIR in the high copper-stressed soil. Moreover, in both soils, the bacterial diversity was highest in non-copper-stressed soils. Our results revealed that initial copper stress could decrease the resistance of soil microbial community structure and function to subsequent DW disturbance. Copyright © 2015. Published by Elsevier B.V.

  12. Vulnerability of high-latitude soil organic carbon in North America to disturbance

    Science.gov (United States)

    Grosse, Guido; Harden, Jennifer W.; Turetsky, Merritt; McGuire, A. David; Camill, Philip; Tarnocai, Charles; Frolking, Steve; Schuur, Edward A.G.; Jorgenson, Torre; Marchenko, Sergei; Romanovsky, Vladimir; Wickland, Kimberly P.; French, Nancy; Waldrop, Mark P.; Bourgeau-Chavez, Laura L.; Striegl, Robert G.

    2011-01-01

    This synthesis addresses the vulnerability of the North American high-latitude soil organic carbon (SOC) pool to climate change. Disturbances caused by climate warming in arctic, subarctic, and boreal environments can result in significant redistribution of C among major reservoirs with potential global impacts. We divide the current northern high-latitude SOC pools into (1) near-surface soils where SOC is affected by seasonal freeze-thaw processes and changes in moisture status, and (2) deeper permafrost and peatland strata down to several tens of meters depth where SOC is usually not affected by short-term changes. We address key factors (permafrost, vegetation, hydrology, paleoenvironmental history) and processes (C input, storage, decomposition, and output) responsible for the formation of the large high-latitude SOC pool in North America and highlight how climate-related disturbances could alter this pool's character and size. Press disturbances of relatively slow but persistent nature such as top-down thawing of permafrost, and changes in hydrology, microbiological communities, pedological processes, and vegetation types, as well as pulse disturbances of relatively rapid and local nature such as wildfires and thermokarst, could substantially impact SOC stocks. Ongoing climate warming in the North American high-latitude region could result in crossing environmental thresholds, thereby accelerating press disturbances and increasingly triggering pulse disturbances and eventually affecting the C source/sink net character of northern high-latitude soils. Finally, we assess postdisturbance feedbacks, models, and predictions for the northern high-latitude SOC pool, and discuss data and research gaps to be addressed by future research.

  13. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance.

    Science.gov (United States)

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-06-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future.

  14. Disturbance of Ultisol soil based on interactions between furrow openers and coulters for the no-tillage system

    Energy Technology Data Exchange (ETDEWEB)

    Francetto, T.R.; Alonço, A. dos S.; Brandelero, C.; Machado, O.D. da C.; Veit, A.A.; Carpes, D.P.

    2016-11-01

    The present study evaluated the effect of different associations between coulters and fertilizer furrow openers on soil disturbance, furrow depth and width, according to forward speed. The study was conducted on a farm in Santa Maria (Brazil/RS), in soil classified as sandy loam Ultisol. The experiment consisted of 24 combinations of treatments with three replications in a 2×3×4 factorial experiment. The combinations were formed by the interaction of the factors including: two types of furrow openers (hoe and double-disc), three types of coulters (no-coulter, smooth and offset fluted) and four levels of forward speed (1.11, 1.67, 2.22 and 2.78 m/s). Soil elevation and soil disturbance area profiles were obtained with the use of a micro profilometer, and disturbance values were calculated with the aid of computer software program Auto Cad. The disturbance area was not affected by speed; it was greater when using the hoe opener, and in association with the offset fluted coulter. Speed was inversely proportional to the depth of the furrows made by the hoe opener. Furthermore, the hoe caused the greatest furrow width (0.26 m) in comparison with the double-disc (0.24 m). The use of different coulters associated with furrow openers increased this variable (0.23 m for the no-coulter condition, 0.25 m with smooth and 0.26 m with offset fluted). The use of coulters combined with furrow openers reduces soil swelling, in approximately 8% for the smooth and 20% for the offset fluted. (Author)

  15. [Effects of grazing disturbance on soil active organic carbon in mountain forest-arid valley ecotone in the upper reaches of Minjiang River].

    Science.gov (United States)

    Liu, Shan-Shan; Zhang, Xing-Hua; Gong, Yuan-Bo; Li, Yuan; Wang, Yan; Yin, Yan-Jie; Ma, Jin-Song; Guo, Ting

    2014-02-01

    Effects of grazing disturbance on the soil carbon contents and active components in the four vegetations, i.e., artificial Robinia pseudoacacia plantation, artificial poplar plantation, Berberis aggregate shrubland and grassland, were studied in the mountain forest-arid valley ecotone in the upper Minjiang River. Soil organic carbon and active component contents in 0-10 cm soil layer were greater than in 10-20 cm soil layer at each level of grazing disturbance. With increasing the grazing intensity, the total organic carbon (TOC), light fraction organic carbon (LFOC), particulate organic carbon (POC) and easily oxidized carbon (LOC) contents in 0-10 cm soil layer decreased gradually in the artificial R. pseudoacacia plantation. The LFOC content decreased, the POC content increased, and the TOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the artificial poplar plantation. The POC content decreased, and the TOC, LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the B. aggregate shrubland. The POC and TOC contents decreased, and the LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the grassland. The decreasing ranges of LOC, LFOC and POC contents were 0.1-7.9 times more than that of TOC content. There were significant positive relationships between TOC and LOC, LFOC and POC, suggesting that the active organic carbon components could reflect the change of soil total carbon content.

  16. The combined effects of moss-dominated biocrusts and vegetation on erosion and soil moisture and implications for disturbance on the Loess Plateau, China.

    Science.gov (United States)

    Bu, Chongfeng; Wu, Shufang; Han, Fengpeng; Yang, Yongsheng; Meng, Jie

    2015-01-01

    Biological soil crusts (BSCs, or biocrusts) have important positive ecological functions such as erosion control and soil fertility improvement, and they may also have negative effects on soil moisture in some cases. Simultaneous discussions of the two-sided impacts of BSCs are key to the rational use of this resource. This study focused on the contribution of BSCs while combining with specific types of vegetation to erosion reduction and their effects on soil moisture, and it addressed the feasibility of removal or raking disturbance. Twelve plots measuring 4 m × 2 m and six treatments (two plots for each) were established on a 15° slope in a small watershed in the Loess Plateau using BSCs, bare land (as a control, BL), Stipa bungeana Trin. (STBU), Caragana korshinskii Kom. (CAKO), STBU planted with BSCs (STBU+BSCs) and CAKO planted with BSCs (CAKO+BSCs). The runoff, soil loss and soil moisture to a depth of 3 m were measured throughout the rainy season (from June to September) of 2010. The results showed that BSCs significantly reduced runoff by 37.3% and soil loss by 81.0% and increased infiltration by 12.4% in comparison with BL. However, when combined with STBU or CAKO, BSCs only made negligible contributions to erosion control (a runoff reduction of 7.4% and 5.7% and a soil loss reduction of 0.7% and 0.3%). Generally, the soil moisture of the vegetation plots was lower in the upper layer than that of the BL plots, although when accompanied with a higher amount of infiltration, this soil moisture consumption phenomenon was much clearer when combining vegetation with BSCs. Because of the trivial contributions from BSCs to erosion control and the remaining exacerbated consumption of soil water, moderate disturbance by BSCs should be considered in plots with adequate vegetation cover to improve soil moisture levels without a significant erosion increase, which was implied to be necessary and feasible.

  17. Biological soil crust and disturbance controls on surface hydrology in a semi-arid ecosystem

    Science.gov (United States)

    Faist, Akasha M; Herrick, Jeffrey E.; Belnap, Jayne; Van Zee, Justin W; Barger, Nichole N

    2017-01-01

    Biological soil crust communities (biocrusts) play an important role in surface hydrologic processes in dryland ecosystems, and these processes may then be dramatically altered with soil surface disturbance. In this study, we examined biocrust hydrologic responses to disturbance at different developmental stages on sandy soils on the Colorado Plateau. Our results showed that all disturbance (trampling, scalping and trampling+scalping) of the early successional light cyanobacterial biocrusts generally reduced runoff. In contrast, trampling well-developed dark-cyano-lichen biocrusts increased runoff and sediment loss relative to intact controls. Scalping did not increase runoff, implying that soil aggregate structure was important to the infiltration process. Well-developed, intact dark biocrusts generally had lower runoff, low sediment loss, and highest aggregate stability whereas the less-developed light biocrusts were highest in runoff and sediment loss when compared to the controls. These results suggest the importance of maintaining the well-developed dark biocrusts, as they are beneficial for lowering runoff and reducing soil loss and redistribution on the landscape. These data also suggest that upslope patches of light biocrust may either support water transport to downslope vegetation patches or alternatively this runoff may place dark biocrust patches at risk of disruption and loss, given that light patches increase runoff and thus soil erosion potential.

  18. Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales

    Science.gov (United States)

    Pointing, Stephen B.; Belnap, Jayne

    2014-01-01

    This review considers the regional scale of impacts arising from disturbance to desert soil ecosystems. Deserts occupy over one-third of the Earth’s terrestrial surface, and biological soil covers are critical to stabilization of desert soils. Disturbance to these can contribute to massive destabilization and mobilization of dust. This results in dust storms that are transported across inter-continental distances where they have profound negative impacts. Dust deposition at high altitudes causes radiative forcing of snowpack that leads directly to altered hydrological regimes and changes to freshwater biogeochemistry. In marine environments dust deposition impacts phytoplankton diazotrophy, and causes coral reef senescence. Increasingly dust is also recognized as a threat to human health.

  19. Soil respiration patterns in root gaps 27 years after small scale experimental disturbance in Pinus contorta forests

    Science.gov (United States)

    Baker, S.; Berryman, E.; Hawbaker, T. J.; Ewers, B. E.

    2015-12-01

    While much attention has been focused on large scale forest disturbances such as fire, harvesting, drought and insect attacks, small scale forest disturbances that create gaps in forest canopies and below ground root and mycorrhizal networks may accumulate to impact regional scale carbon budgets. In a lodgepole pine (Pinus contorta) forest near Fox Park, WY, clusters of 15 and 30 trees were removed in 1988 to assess the effect of tree gap disturbance on fine root density and nitrogen transformation. Twenty seven years later the gaps remain with limited regeneration present only in the center of the 30 tree plots, beyond the influence of roots from adjacent intact trees. Soil respiration was measured in the summer of 2015 to assess the influence of these disturbances on carbon cycling in Pinus contorta forests. Positions at the centers of experimental disturbances were found to have the lowest respiration rates (mean 2.45 μmol C/m2/s, standard error 0.17 C/m2/s), control plots in the undisturbed forest were highest (mean 4.15 μmol C/m2/s, standard error 0.63 C/m2/s), and positions near the margin of the disturbance were intermediate (mean 3.7 μmol C/m2/s, standard error 0.34 C/m2/s). Fine root densities, soil nitrogen, and microclimate changes were also measured and played an important role in respiration rates of disturbed plots. This demonstrates that a long-term effect on carbon cycling occurs when gaps are created in the canopy and root network of lodgepole forests.

  20. Climate is a stronger driver of tree and forest growth rates than soil and disturbance

    NARCIS (Netherlands)

    Toledo, M.; Poorter, L.; Peña-Claros, M.; Alarcón, A.; Balcázar, J.; Leaño, C.; Licona, J.C.; Llanque, O.; Vroomans, V.; Zuidema, P.; Bongers, F.

    2011-01-01

    1. Essential resources such as water, nutrients and light vary over space and time and plant growth rates are expected to vary accordingly. We examined the effects of climate, soil and logging disturbances on diameter growth rates at the tree and stand level, using 165 1-ha permanent sample plots

  1. Dynamic soil properties in response to anthropogenic disturbance

    Science.gov (United States)

    Vanacker, Veerle; Ortega, Raúl

    2013-04-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedbacks between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. Here, we study dynamic soil properties for a rapidly changing anthropogenic landscape, and focus on the coupling between physical erosion, soil production and soil chemical weathering. The archaeological site of Santa Maria de Melque (Toledo, Central Spain) was selected for its remarkably long occupation history dating back to the 7th century AD. As part of the agricultural complex, four retention reservoirs were built in the Early Middle Ages. The sedimentary archive was used to track the evolution in sedimentation rates and geochemical properties of the sediment. Catchment-wide soil erosion rates vary slightly between the various occupation phases (7th century-now), but are of the same magnitude as the cosmogenic nuclide-derived erosion rates. However, there exists large spatial variation in physical erosion rates that are coupled with chemical weathering intensities. The sedimentary records suggest that there are important changes in the spatial pattern of sediment source areas through time as a result of changing land use patterns

  2. Soil respiration of the Dahurian Larch (Larix gmelinii) forest and the response to fire disturbance in Da Xing'an Mountains, China

    Science.gov (United States)

    Tongxin Hu; Long Sun; Haiqing Hu; David R. Weise; Futao Guo

    2017-01-01

    Despite the high frequency of wildfire disturbances in boreal forests in China, the effects of wildfires on soil respiration are not yet well understood. We examined the effects of fire severity on the soil respiration rate (Rs) and its component change in a Dahurian Larch (Larix gmelinii) in Northeast China. The results showed...

  3. The structure of salt marsh soil mesofauna food webs - The prevalence of disturbance.

    Science.gov (United States)

    Haynert, Kristin; Kiggen, Mirijam; Klarner, Bernhard; Maraun, Mark; Scheu, Stefan

    2017-01-01

    Mesofauna taxa fill key trophic positions in soil food webs, even in terrestrial-marine boundary habitats characterized by frequent natural disturbances. Salt marshes represent such boundary habitats, characterized by frequent inundations increasing from the terrestrial upper to the marine pioneer zone. Despite the high abundance of soil mesofauna in salt marshes and their important function by facilitating energy and carbon flows, the structure, trophic ecology and habitat-related diet shifts of mesofauna species in natural salt marsh habitats is virtually unknown. Therefore, we investigated the effects of natural disturbance (inundation frequency) on community structure, food web complexity and resource use of soil mesofauna using stable isotope analysis (15N, 13C) in three salt marsh zones. In this intertidal habitat, the pioneer zone is exposed to inundations twice a day, but lower and upper salt marshes are less frequently inundated based on shore height. The mesofauna comprised 86 species / taxa dominated by Collembola, Oribatida and Mesostigmata. Shifts in environmental disturbances influenced the structure of food webs, diversity and density declined strongly from the land to the sea pointing to the importance of increasing levels of inundation frequency. Accordingly, the reduced diversity and density was associated by a simplification of the food web in the pioneer zone as compared to the less inundated lower and upper salt marsh with a higher number of trophic levels. Strong variations in δ15N signatures demonstrated that mesofauna species are feeding at multiple trophic levels. Primary decomposers were low and most mesofauna species functioned as secondary decomposers or predators including second order predators or scavengers. The results document that major decomposer taxa, such as Collembola and Oribatida, are more diverse than previously assumed and predominantly dwell on autochthonous resources of the respective salt marsh zone. The results further

  4. The effects of drought and disturbance on the growth and developmental instability of loblolly pine (Pinus taeda L.)

    Science.gov (United States)

    Graham, John H.; Duda, Jeffrey J.; Brown, Michelle L.; Kitchen, Stanley G.; Emlen, John M.; Malol, Jagadish; Bankstahl, Elizabeth; Krzysik, Anthony J.; Balbach, Harold E.; Freeman, D. Carl

    2012-01-01

    Ecological indicators provide early warning of adverse environmental change, helping land managers adaptively manage their resources while minimizing costly remediation. In 1999 and 2000, we studied two such indicators, growth and developmental instability, of loblolly pine (Pinus taeda L.) influenced by mechanized infantry training at Fort Benning, Georgia. Disturbed areas were used for military training; tracked and wheeled vehicles damaged vegetation and soils. Highly disturbed sites had fewer trees, diminished ground cover, warmer soils in the summer, and more compacted soils with a shallower A-horizon. We hypothesized that disturbance would decrease the growth of needles, branches, and tree rings, increase the complexity of tree rings, and increase the developmental instability of needles. Contrary to our expectations, however, disturbance enhanced growth in the first year of the study, possibly by reducing competition. In the second year, a drought reduced growth of branches and needles, eliminating the stimulatory effect of disturbance. Growth-ring widths increased with growing-season precipitation, and decreased with growing-season temperature over the last 40 years. Disturbance had no effect on tree-ring complexity, as measured by the Hurst exponent. Within-fascicle variation of current-year needle length, a measure of developmental instability, differed among the study populations, but appeared unrelated to mechanical disturbance or drought.

  5. Effects of Climate and Ecosystem Disturbances on Biogeochemical Cycling in a Semi-Natural Terrestrial Ecosystem

    International Nuclear Information System (INIS)

    Beier, Claus; Schmidt, Inger Kappel; Kristensen, Hanne Lakkenborg

    2004-01-01

    The effects of increased temperature and potential ecosystem disturbances on biogeochemical cycling were investigated by manipulation of temperature in a mixed Calluna/grass heathland in Denmark. A reflective curtain covered the vegetation during the night to reduce the heat loss of IR radiation from the ecosystem to the atmosphere. This 'night time warming' was done for 3 years and warmed the air and soil by 1.1 deg. C. Warming was combined with ecosystem disturbances, including infestation by Calluna heather beetles (Lochmaea suturalis Thompson) causing complete defoliation of Calluna leaves during the summer 2000, and subsequent harvesting of all aboveground biomass during the autumn. Small increases in mineralisation rates were induced by warming and resulted in increased leaching of nitrogen from the organic soil layer. The increased nitrogen leaching from the organic soil layer was re-immobilised in the mineral soil layer as warming stimulated plant growth and thereby increased nitrogen immobilisation. Contradictory to the generally moderate effects of warming, the heather beetle infestation had very strong effects on mineralisation rates and the plant community. The grasses completely out-competed the Calluna plants which had not re-established two years after the infestation, probably due to combined effects of increased nutrient availability and the defoliation of Calluna. On the short term, ecosystem disturbances may have very strong effects on internal ecosystem processes and plant community structure compared to the more long-term effects of climate change

  6. Bacterial Communities in Malagasy Soils with Differing Levels of Disturbance Affecting Botanical Diversity

    Science.gov (United States)

    Blasiak, Leah C.; Schmidt, Alex W.; Andriamiarinoro, Honoré; Mulaw, Temesgen; Rasolomampianina, Rado; Applequist, Wendy L.; Birkinshaw, Chris; Rejo-Fienena, Félicitée; Lowry, Porter P.; Schmidt, Thomas M.; Hill, Russell T.

    2014-01-01

    Madagascar is well-known for the exceptional biodiversity of its macro-flora and fauna, but the biodiversity of Malagasy microbial communities remains relatively unexplored. Understanding patterns of bacterial diversity in soil and their correlations with above-ground botanical diversity could influence conservation planning as well as sampling strategies to maximize access to bacterially derived natural products. We present the first detailed description of Malagasy soil bacterial communities from a targeted 16S rRNA gene survey of greater than 290,000 sequences generated using 454 pyrosequencing. Two sampling plots in each of three forest conservation areas were established to represent different levels of disturbance resulting from human impact through agriculture and selective exploitation of trees, as well as from natural impacts of cyclones. In parallel, we performed an in-depth characterization of the total vascular plant morphospecies richness within each plot. The plots representing different levels of disturbance within each forest did not differ significantly in bacterial diversity or richness. Changes in bacterial community composition were largest between forests rather than between different levels of impact within a forest. The largest difference in bacterial community composition with disturbance was observed at the Vohibe forest conservation area, and this difference was correlated with changes in both vascular plant richness and soil pH. These results provide the first survey of Malagasy soil bacterial diversity and establish a baseline of botanical diversity within important conservation areas. PMID:24465484

  7. Revegetation and soil development on anthropogenic disturbances in shrub tundra, 50 years following construction of the CANOL No. 1 pipeline, N.W.T

    International Nuclear Information System (INIS)

    Harper, K.A.

    1994-01-01

    An intensive study of long-term revegetation patterns of erect deciduous shrub tundra on anthropogenic disturbances was conducted in the summer of 1993 within the CANOL pipeline corridor, Northwest Territories. Soil development, primary and secondary succession were investigated on 10 m by 20 m sites in vehicle tracks and borrow pits. Data were collected on the cover of all vascular and non-vascular species. Soil temperature, pH, organic matter, moisture and particle size composition were determined. Patterns in plant species composition and soil characteristics among disturbance types were examined using detrended correspondence analysis. The importance of the measured abiotic factors in explaining the differences in species composition was revealed by canonical correspondence analysis. Significant differences in species composition were evident among disturbance types. Different taxonomic groups exhibited different responses to disturbance. Soil samples in linear disturbances were analogous to those in undisturbed areas. Warmer, drier and less acidic soils in borrow pits contained less organic matter and fine particles than undisturbed soils. Soil temperature was considered the most important measured environmental variable in accounting for the revegetation patterns on disturbance with the microclimate stations. Comparison with a similar study on revegetation in the CANOL corridor in 1978 suggest that revegetation and soil development are proceeding faster on linear disturbances than borrow pits. 150 figs., 37 figs., 28 tabs

  8. From dust to dose: Effects of forest disturbance on increased inhalation exposure.

    Science.gov (United States)

    Whicker, Jeffrey J; Pinder, John E; Breshears, David D; Eberhart, Craig F

    2006-09-15

    Ecosystem disturbances that remove vegetation and disturb surface soils are major causes of excessive soil erosion and can result in accelerated transport of soils contaminated with hazardous materials. Accelerated wind erosion in disturbed lands that are contaminated is of particular concern because of potential increased inhalation exposure, yet measurements regarding these relationships are lacking. The importance of this was highlighted when, in May of 2000, the Cerro Grande fire burned over roughly 30% of Los Alamos National Laboratory (LANL), mostly in ponderosa pine (Pinus ponderosa) forest, and through areas with soils containing contaminants, particularly excess depleted and natural uranium. Additionally, post-fire thinning was performed in burned and unburned forests on about 25% of LANL land. The first goal of this study was to assess the potential for increased inhalation dose from uranium contaminated soils via wind-driven resuspension of soil following the Cerro Grande Fire and subsequent forest thinning. This was done through analysis of post-disturbance measurements of uranium air concentrations and their relationships with wind velocity and seasonal vegetation cover. We found a 14% average increase in uranium air concentrations at LANL perimeter locations after the fire, and the greatest air concentrations occurred during the months of April-June when wind velocities are highest, no snow cover, and low vegetation cover. The second goal was to develop a methodology to assess the relative contribution of each disturbance type towards increasing public and worker exposure to these resuspended soils. Measurements of wind-driven dust flux in severely burned, moderately burned, thinned, and unburned/unthinned forest areas were used to assess horizontal dust flux (HDF) in these areas. Using empirically derived relationships between measurements of HDF and respirible dust, coupled with onsite uranium soil concentrations, we estimate relative increases in

  9. Infiltration of water in disturbed soil columns as affected by clay dispersion and aggregate slaking

    OpenAIRE

    Amezketa, E.; Aragües, R.; Gazol, R.

    2004-01-01

    Soil crusting negatively affects the productivity and sustainability of irrigated agriculture, reducing water infiltration and plant emergence, and enhancing surface runoff and erosion. Clay dispersion and slaking of the aggregates at the soil surface are the main processes responsible for crusting. The infiltration rates (IR) of ten arid-zone soils in disturbed soil columns were measured and their relative susceptibilities to dispersion and slaking were determined. It was also examined wheth...

  10. Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Mariana Regina Durigan

    2017-03-01

    Full Text Available Anthropogenic forest disturbance and land use change (LUC in the Amazon region is the main source of greenhouse gas emissions to the atmosphere in Brazil, due to the carbon (C and nitrogen (N emitted from vegetation clearance. Land use conversion associated with management practices plays a key role in the distribution and origin of C in different soil organic matter (SOM fractions. Here, we show how changing land use systems have influenced soil C and N stocks, SOM physical fractions, and the origin of SOM in the Santarém region of the eastern Brazilian Amazon. Soil C and N stocks were calculated for the surface layer of 0–30 cm. Anthropogenic disturbances to the standing forest, such as selective logging and wildfires, led to significant declines in soil C and N stocks. However, in the long-term, the conversion of the Amazon forest to pasture did not have a noticeable effect on soil C and N stocks, presumably because of additional inputs from pasture grasses. However, the conversion to cropland did lead to reductions in soil C and N content. According to the physical fractionation of SOM, LUC altered SOM quality, but silt and clay remained the combined fraction that contributed the most to soil C storage. Our results emphasize the importance of implementing more sustainable forest management systems, whilst also calling further attention to the need for fire monitoring systems, helping to ensure the resilience of C and N stocks and sequestration in forest soils; thereby contributing towards urgently needed ongoing efforts to mitigate climate change.

  11. Assessing and mitigating the effects of windblown soil on rare and common vegetation.

    Science.gov (United States)

    Gleason, Sean M; Faucette, Dave T; Toyofuku, Mai M; Torres, Carlos A; Bagley, Calvin F

    2007-12-01

    Acting under the auspices of the US Endangered Species Act, we quantified wind erosion and its effects on rare and common plant species on a semi-arid military installation in Hawaii. Our goal was to develop management strategies, based on local data, to aid the conservation of rare and common indigenous plants and their habitats. We collected windblown soil coming off of roads and other disturbed soils to assess likely impacts to plants occurring at certain heights and distances from disturbed surfaces. We then subjected plants in a glasshouse to windblown dust treatments, designed from our field data to simulate erosion events, and evaluated the effect of these treatments on photosynthesis and survival. We also designed several field experiments to examine the in-situ effects of windblown soil and soil substrate on germination, growth rate, and survival of indigenous and nonindigenous plants. We conclude from these experiments that most direct effects of windblown soil to plants can be effectively mitigated by locating roads and training areas at least 40 m from sensitive plant habitats and through vegetation management to maintain at least 11% aerial cover on disturbed surfaces. Effects of soil type on germination, growth, and survival was species-specific, emphasizing the importance of species trials prior to, or during, rehabilitation efforts.

  12. Quality of Irrigation Water Affects Soil Functionality and Bacterial Community Stability in Response to Heat Disturbance.

    Science.gov (United States)

    Frenk, Sammy; Hadar, Yitzhak; Minz, Dror

    2018-02-15

    Anthropogenic activities alter the structure and function of a bacterial community. Furthermore, bacterial communities structured by the conditions the anthropogenic activities present may consequently reduce their stability in response to an unpredicted acute disturbance. The present mesocosm-scale study exposed soil bacterial communities to different irrigation water types, including freshwater, fertilized freshwater, treated wastewater, and artificial wastewater, and evaluated their response to a disturbance caused by heat. These effectors may be considered deterministic and stochastic forces common in agricultural operations of arid and semiarid regions. Bacterial communities under conditions of high mineral and organic carbon availability (artificial wastewater) differed from the native bacterial community and showed a proteobacterial dominance. These bacterial communities had a lower resistance to the heat treatment disturbance than soils under conditions of low resource availability (high-quality treated wastewater or freshwater). The latter soil bacterial communities showed a higher abundance of operational taxonomic units (OTUs) classified as Bacilli These results were elucidated by soil under conditions of high resource availability, which lost higher degrees of functional potential and had a greater bacterial community composition change. However, the functional resilience, after the disturbance ended, was higher under a condition of high resource availability despite the bacterial community composition shift and the decrease in species richness. The functional resilience was directly connected to the high growth rates of certain Bacteroidetes and proteobacterial groups. A high stability was found in samples that supported the coexistence of both resistant OTUs and fast-growing OTUs. IMPORTANCE This report presents the results of a study employing a hypothesis-based experimental approach to reveal the forces involved in determining the stability of a

  13. From dust to dose: Effects of forest disturbance on increased inhalation exposure

    International Nuclear Information System (INIS)

    Whicker, Jeffrey J.; Pinder, John E.; Breshears, David D.; Eberhart, Craig F.

    2006-01-01

    Ecosystem disturbances that remove vegetation and disturb surface soils are major causes of excessive soil erosion and can result in accelerated transport of soils contaminated with hazardous materials. Accelerated wind erosion in disturbed lands that are contaminated is of particular concern because of potential increased inhalation exposure, yet measurements regarding these relationships are lacking. The importance of this was highlighted when, in May of 2000, the Cerro Grande fire burned over roughly 30% of Los Alamos National Laboratory (LANL), mostly in ponderosa pine (Pinus ponderosa) forest, and through areas with soils containing contaminants, particularly excess depleted and natural uranium. Additionally, post-fire thinning was performed in burned and unburned forests on about 25% of LANL land. The first goal of this study was to assess the potential for increased inhalation dose from uranium contaminated soils via wind-driven resuspension of soil following the Cerro Grande Fire and subsequent forest thinning. This was done through analysis of post-disturbance measurements of uranium air concentrations and their relationships with wind velocity and seasonal vegetation cover. We found a 14% average increase in uranium air concentrations at LANL perimeter locations after the fire, and the greatest air concentrations occurred during the months of April-June when wind velocities are highest, no snow cover, and low vegetation cover. The second goal was to develop a methodology to assess the relative contribution of each disturbance type towards increasing public and worker exposure to these resuspended soils. Measurements of wind-driven dust flux in severely burned, moderately burned, thinned, and unburned/unthinned forest areas were used to assess horizontal dust flux (HDF) in these areas. Using empirically derived relationships between measurements of HDF and respirible dust, coupled with onsite uranium soil concentrations, we estimate relative increases in

  14. Recurrence and frequency of disturbance have cumulative effect on methanotrophic activity, abundance, and community structure.

    Directory of Open Access Journals (Sweden)

    Adrian eHo

    2016-01-01

    Full Text Available Alternate prolonged drought and heavy rainfall is predicted to intensify with global warming. Desiccation-rewetting events alter the soil quality and nutrient concentrations which drive microbial-mediated processes, including methane oxidation, a key biogeochemical process catalyzed by methanotrophic bacteria. Although aerobic methanotrophs showed remarkable resilience to a suite of physical disturbances induced as a single event, their resilience to recurring disturbances is less known. Here, using a rice field soil in a microcosm study, we determined whether recurrence and frequency of desiccation-rewetting impose an accumulating effect on the methanotrophic activity. The response of key aerobic methanotroph subgroups (type Ia, Ib, and II were monitored using qPCR assays, and was supported by a t-RFLP analysis. The methanotrophic activity was resilient to recurring desiccation-rewetting, but increasing the frequency of the disturbance by two-fold significantly decreased methane uptake rate. Both the qPCR and t-RFLP analyses were congruent, showing the dominance of type Ia/Ib methanotrophs prior to disturbance, and after disturbance, the recovering community was predominantly comprised of type Ia (Methylobacter methanotrophs. Both type Ib and type II (Methylosinus/Methylocystis methanotrophs were adversely affected by the disturbance, but type II methanotrophs showed recovery over time, indicating relatively higher resilience to the disturbance. This revealed distinct, yet unrecognized traits among the methanotroph community members. Our results show that recurring desiccation-rewetting before a recovery in community abundance had an accumulated effect, compromising methanotrophic activity. While methanotrophs may recover well following sporadic disturbances, their resilience may reach a ‘tipping point’ where activity no longer recovered if disturbance persists and increase in frequency.

  15. Short-term effects of forest disturbances on soil nematode communities in European mountain spruce forests.

    Science.gov (United States)

    Čerevková, A; Renčo, M; Cagáň, L

    2013-09-01

    The nematode communities in spruce forests were compared with the short-term effects of forest damage, caused by windstorm, wildfire and management practices of forest soils. Soil samples were collected in June and October from 2006 to 2008 in four different sites: (1) forest unaffected by the wind (REF); (2) storm-felled forest with salvaged timber (EXT); (3) modified forest affected by timber salvage (wood removal) and forest fire (FIR); and (4) storm-felled forest where timber had been left unsalvaged (NEX). Nematode analysis showed that the dominant species in all four investigated sites were Acrobeloides nanus and Eudorylaimus silvaticus. An increase of A. nanus (35% of the total nematode abundance) in the first year in the FIR site led to the highest total abundance of nematodes compared with other sites, where nematode abundance reached the same level in the third year. In the FIR site bacterial feeders appeared to be the most representative trophic group, although in the second and third year, after disturbance, the abundance of this trophic group gradually decreased. In the NEX site, the number of nematode species, population densities and Maturity Index were similar to that recorded for the FIR site. In EXT and NEX sites, the other dominant species was the plant parasitic nematode Paratylenchus microdorus. Analyses of nematodes extracted from different forest soil samples showed that the highest number of species and diversity index for species (H'spp) were in the REF site. Differences between the nematode fauna in REF and other localities were clearly depicted by cluster analysis. The greatest Structure Index and Enrichment Index values were also in REF. In the EXT site, the number of nematode species, their abundance, H'spp and Maturity Index were not significantly different from those recorded in the reference site.

  16. Redistribution of soil nitrogen, carbon and organic matter by mechanical disturbance during whole-tree harvesting in northern hardwoods

    Science.gov (United States)

    Ryan, D.F.; Huntington, T.G.; Wayne, Martin C.

    1992-01-01

    To investigate whether mechanical mixing during harvesting could account for losses observed from forest floor, we measured surface disturbance on a 22 ha watershed that was whole-tree harvested. Surface soil on each 10 cm interval along 81, randomly placed transects was classified immediately after harvesting as mineral or organic, and as undisturbed, depressed, rutted, mounded, scarified, or scalped (forest floor scraped away). We quantitatively sampled these surface categories to collect soil in which preharvest forest floor might reside after harvest. Mechanically mixed mineral and organic soil horizons were readily identified. Buried forest floor under mixed mineral soil occurred in 57% of mounds with mineral surface soil. Harvesting disturbed 65% of the watershed surface and removed forest floor from 25% of the area. Mechanically mixed soil under ruts with organic or mineral surface soil, and mounds with mineral surface soil contained organic carbon and nitrogen pools significantly greater than undisturbed forest floor. Mechanical mixing into underlying mineral soil could account for the loss of forest floor observed between the preharvest condition and the second growing season after whole-tree harvesting. ?? 1992.

  17. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils.

    Science.gov (United States)

    Park, Jong Yol; Huwe, Bernd

    2016-06-01

    We investigated the effect of solution pH and soil structure on transport of sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in combination with batch sorption tests and column experiments. Sorption isotherms properly conformed to Freundlich model, and sorption potential of the antibiotics is as follows; sulfadimethoxine > sulfamethoxazole > sulfamethazine. Decreasing pH values led to increased sorption potential of the antibiotics on soil material in pH range of 4.0-8.0. This likely resulted from abundance of neutral and positive-charged sulfonamides species at low pH, which electrostatically bind to sorption sites on soil surface. Due to destruction of macropore channels, lower hydraulic conductivities of mobile zone were estimated in the disturbed soil columns than in the undisturbed soil columns, and eventually led to lower mobility of the antibiotics in disturbed column. The results suggest that knowledge of soil structure and solution condition is required to predict fate and distribution of sulfonamide antibiotics in environmental matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia

    Science.gov (United States)

    Howe, A. J.; Rodríguez, J. F.; Saco, P. M.

    2009-08-01

    The aim of this work was to quantify the soil carbon storage and sequestration rates of undisturbed natural wetlands and disturbed wetlands subject to restriction of tidal flow and subsequent rehabilitation in an Australian estuary. Disturbed and undisturbed estuarine wetlands of the Hunter estuary, New South Wales, Australia were selected as the study sites for this research. Vertical accretion rates of estuarine substrates were combined with soil carbon concentrations and bulk densities to determine the carbon store and carbon sequestration rates of the substrates tested. Relationships between estuary water level, soil evolution and vertical accretion were also examined. The carbon sequestration rate of undisturbed wetlands was lower (15% for mangrove and 55% for saltmarsh) than disturbed wetlands, but the carbon store was higher (65% for mangrove and 60% for saltmarsh). The increased carbon sequestration rate of the disturbed wetlands was driven by substantially higher rates of vertical accretion (95% for mangrove and 345% for saltmarsh). Estuarine wetland carbon stores were estimated at 700-1000 Gg C for the Hunter estuary and 3900-5600 Gg C for New South Wales. Vertical accretion and carbon sequestration rates of estuarine wetlands in the Hunter are at the lower end of the range reported in the literature. The comparatively high carbon sequestration rates reported for the disturbed wetlands in this study indicate that wetland rehabilitation has positive benefits for regulation of atmospheric carbon concentrations, in addition to more broadly accepted ecosystem services.

  19. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance

    Science.gov (United States)

    Yi, Shuhua; McGuire, A. David; Harden, Jennifer; Kasischke, Eric; Manies, Kristen L.; Hinzman, Larry; Liljedahl, Anna K.; Randerson, J.; Liu, Heping; Romanovsky, Vladimir E.; Marchenko, Sergey S.; Kim, Yongwon

    2009-01-01

    Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postburn measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in model-data comparison, the model demonstrates substantial ability in simulating the dynamics of evapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity.

  20. Geomorphology, disturbance, and the soil and vegetation of two subtropical wet steepland watersheds of Puerto Rico.

    Science.gov (United States)

    Ariel E. Lugo F.N. Scatena

    1995-01-01

    Relationships between landforms, soil nutrients, forest structure, and the relative importance of different disturbances were quantified in two subtropical wet steepland watersheds in Puerto Rico. Ridges had fewer landslides and treefall gaps, more above-ground biomass, older aged stands, and greater species richness than other landscape positions. Ridge soils had...

  1. Earthworms – good indicators for forest disturbance

    Directory of Open Access Journals (Sweden)

    YAHYA KOOCH

    2014-08-01

    Full Text Available In temperate forests, formation of canopy gaps by windthrow is a characteristic natural disturbance event. Little work has been done on the effects of canopy gaps on soil properties and fauna, especially earthworms as ecosystem engineers. We conducted a study to examine the reaction of earthworms (density/biomass and different soil properties (i.e., soil moisture, pH, organic matter, total N, and available Ca to different canopy gap areas in 25-ha areas of Liresar district beech forest located in a temperate forest of Mazandaran province in the north of Iran. Soil samples were taken at 0-15, 15-30 and 30-45 cm depths from gap center, gap edge and closed canopy using core soil sampler with 81 cm2 cross section. The earthworms were collected simultaneously with the soil sampling by hand sorting method. Our study supports that the canopy gap will create a mosaic of environmental conditions. Earthworm's density and biomass tended to be higher in small canopy gaps compared with the other canopy gap areas. Earthworm's population showed decreasing trend from closed canopy to disturbed sites (gap edge and gap center. The top soil was more appropriate to presence of earthworms although ecological groups have occupied different soil layers. As a conclusion, earthworms can be introduced as good bio-indicator of environmental changes that occur by disturbance.

  2. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa.

    Science.gov (United States)

    Stork, N E; Srivastava, D S; Eggleton, P; Hodda, M; Lawson, G; Leakey, R R B; Watt, A D

    2017-08-01

    Lawton et al. (1998) found, in a highly cited study, that the species richness of 8 taxa each responds differently to anthropogenic disturbance in Cameroon forests. Recent developments in conservation science suggest that net number of species is an insensitive measure of change and that understanding which species are affected by disturbance is more important. It is also recognized that all disturbance types are not equal in their effect on species and that grouping species according to function rather than taxonomy is more informative of responses of biodiversity to change. In a reanalysis of most of the original Cameroon data set (canopy and ground ants, termites, canopy beetles, nematodes, and butterflies), we focused on changes in species and functional composition rather than richness and used a more inclusive measure of forest disturbance based on 4 component drivers of change: years since disturbance, tree cover, soil compaction, and degree of tree removal. Effects of disturbance on compositional change were largely concordant between taxa. Contrary to Lawton et al.'s findings, species richness for most groups did not decline with disturbance level, providing support for the view that trends in species richness at local scales do not reflect the resilience of ecosystems to disturbance. Disturbance affected species composition more strongly than species richness for butterflies, canopy beetles, and litter ants. For these groups, disturbance caused species replacements rather than just species loss. Only termites showed effects of disturbance on species richness but not composition, indicating species loss without replacement. Although disturbance generally caused changes in composition, the strength of this relationship depended on the disturbance driver. Butterflies, litter ants, and nematodes were correlated with amount of tree cover, canopy beetles were most strongly correlated with time since disturbance, and termites were most strongly correlated with

  3. Influence of relief and vegetation on soil properties in a disturbed chernozem soil landscape

    Science.gov (United States)

    Raab, Thomas; Hirsch, Florian; Vasserman, Oleksandr; Raab, Alexandra; Naeth, Anne

    2017-04-01

    In central and southeastern Alberta, chernozems dominate the soil landscape and are divided into several groups that follow the climate gradient from Northwest to Southeast: Dark Grey Chernozems, Black Chernozems, Dark Brown Chernozems; Brown Chernozems. Principles controlling development and distribution of these chernozem subtypes along the ecotone transect are quite well known. However, intensive land use over the last century has affected soils that originally have formed under natural conditions during the Holocene in more than 10,000 years. There is a lack of knowledge regarding soil development in these landscapes on the decadal to centennial time scale. Within this time frame the most important factor of soil formation may be relief, although this has not been properly studied. This study aims to compare soil properties in a typical chernozem landscape where soils have been highly disturbed and parent materials have been re-arranged by surface coal mining. We hypothesize that within 50 years, soils develop with significant differences based on vegetation type and slope aspect. Our study site is the former Diplomat Mine near Forestburg, Alberta where spoils form a small scale ridge and graben topography. The south facing slopes of the piles are covered by grassland, whereas on the north exposition has trees and shrubs. Samples were taken from six sites with differences in topography and vegetation type. Diplomate T1 is at the top of the ridge with grassland, Diplomate S1 is on the southern slope with grassland, Diplomate N1 is on the northern slope with trees, and Diplomate N2 is on the northern slope with shrubs. For comparison we took samples from two sites without slope aspect. One site was an undisturbed grassland (Diplomate Z1) and the other sites were reclaimed piles (Diplomate R1). At each site, five soil profiles were examined and volumetrically sampled (250 cm3 steel ring) in steps of five centimeters to a depth of 30 centimeters. We present first

  4. Ecological investigations on plant associations in differently disturbed heavy-metal contaminated soils of Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, W

    1968-01-01

    In different areas of Great Britain comparing ecological studies have been made on disturbed and undisturbed heavy metal contaminated soils. In Grizedale (Pennine), sampling of an undisturbed transect having high levels of major nutrients showed marked differentiation within a small area, only related to the plant available levels of zinc, copper, and lead. However, studies on disturbed heavy metal soils and spoil-heaps revealed a low water capacity and a low supply of major nutrients, particularly of N and P. These suggest that here both the enrichment of heavy metals and the considerable decrease of other nutrients are important in determining the heavy metal vegetation, and in maintaining it against other species. The quantity of zinc in plants is not related to the total or plant-available amount of zinc in soil, but confirmed physiological experiments on the influence of phosphorus and different zinc compounds (complexed or inorganic) on the uptake and distribution of zinc in Thlaspi alpestre and Minnartia rerum. Also an antagonism between lead and copper was revealed. 24 references.

  5. Host-specific effects of soil microbial filtrates prevail over those of arbuscular mycorrhizae in a fragmented landscape.

    Science.gov (United States)

    Pizano, Camila; Mangan, Scott A; Graham, James H; Kitajima, Kaoru

    2017-09-01

    Plant-soil interactions have been shown to determine plant community composition in a wide range of environments. However, how plants distinctly interact with beneficial and detrimental organisms across mosaic landscapes containing fragmented habitats is still poorly understood. We experimentally tested feedback responses between plants and soil microbial communities from adjacent habitats across a disturbance gradient within a human-modified tropical montane landscape. In a greenhouse experiment, two components of soil microbial communities were amplified; arbuscular mycorrhizal fungi (AMF) and a filtrate excluding AMF spores from the soils of pastures (high disturbance), coffee plantations (intermediate disturbance), and forest fragments (low disturbance), using potted seedlings of 11 plant species common in these habitats (pasture grass, coffee, and nine native species). We then examined their effects on growth of these same 11 host species with reciprocal habitat inoculation. Most plant species received a similar benefit from AMF, but differed in their response to the filtrates from the three habitats. Soil filtrate from pastures had a net negative effect on plant growth, while filtrates from coffee plantations and forests had a net positive effect on plant growth. Pasture grass, coffee, and five pioneer tree species performed better with the filtrate from "away" (where these species rarely occur) compared to "home" (where these species typically occur) habitat soils, while four shade-tolerant tree species grew similarly with filtrates from different habitats. These results suggest that pastures accumulate species-specific soil enemies, while coffee plantations and forests accumulate beneficial soil microbes that benefit pioneer native plants and coffee, respectively. Thus, compared to AMF, soil filtrates exerted stronger habitat and host-specific effects on plants, being more important mediators of plant-soil feedbacks across contrasting habitats. © 2017 by

  6. A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil environmental conditions and carbon dynamics of black spruce forests

    Science.gov (United States)

    Shuhua Yi; A. David McGuire; Eric Kasischke; Jennifer Harden; Kristen Manies; Michelle Mack; Merritt. Turetsky

    2010-01-01

    Ecosystem models have not comprehensively considered how interactions among fire disturbance, soil environmental conditions, and biogeochemical processes affect ecosystem dynamics in boreal forest ecosystems. In this study, we implemented a dynamic organic soil structure in the Terrestrial Ecosystem Model (DOS-TEM) to investigate the effects of fire on soil temperature...

  7. Evaluating the effectiveness of mulch application to store carbon belowground: Short-term effects of mulch application on soluble soil and microbial C and N in agricultural soils with low and high organic matter

    Science.gov (United States)

    Chen, Janet; Heiling, Maria; Resch, Christian; Gruber, Roman; Dercon, Gerd

    2017-04-01

    Agricultural soils have the potential to contain a large pool of carbon and, depending on the farming techniques applied, can either effectively store carbon belowground, or further release carbon, in the form of CO2, into the atmosphere. Farming techniques, such as mulch application, are frequently proposed to increase carbon content belowground and improve soil quality and can be used in efforts to reduce greenhouse gas levels, such as in the "4 per 1000" Initiative. To test the effectiveness of mulch application to store carbon belowground in the short term and improve soil nutrient quality, we maintained agricultural soils with low and high organic carbon content (disturbed top soil from local Cambisols and Chernozems) in greenhouse mesocosms (70 cm deep with a radius of 25 cm) with controlled moisture for 4 years. Over the 4 years, maize and soybean were grown yearly in rotation and mulch was removed or applied to soils once plant material was harvested at 2 ton/ha dry matter. In addition, soil disturbance was kept to a minimum, with only surface disturbance of a few centimeters to keep soil free from weeds. After 4 years, we measured effects of mulch application on soluble soil and microbial carbon and nitrogen in the mesocosms and compared effects of mulch application versus no mulch on soils from 0-5 cm and 5-15 cm with low and high organic matter. We predicted that mulch would increase soil carbon and nitrogen content and mulch application would have a greater effect on soils with low organic matter than soils with high organic matter. In soils with low organic carbon content and larger predicted potential to increase soil carbon, mulch application did not increase soluble soil or microbial carbon or nitrogen compared to the treatments without mulch application. However, mulch application significantly increased the δ13C of both microbial and soluble soil carbon in these soils by 1 ‰ each, indicating a shift in belowground processes, such as increased

  8. SOIL ORGANIC MATTER FRACTIONS IN PRESERVED AND DISTURBED WETLANDS OF THE CERRADO BIOME

    Directory of Open Access Journals (Sweden)

    Ricardo Fernandes de Sousa

    2015-02-01

    Full Text Available Veredas are humid tropical ecosystems, generally associated to hydromorphic soils and a shallow water table. The soils of these ecosystems are affected by the use of the areas around these veredas. The objective of this study was to determine soil organic matter (SOM fractions in veredas adjacent to preserved (native savanna and disturbed environments (agricultural areas and pastures in the Cerrado biome. Soil samples were collected from the 0-10 and 10-20 cm layers along reference lines drawn along the relief following the upper, middle and lower positions of one of the slopes, in the direction of the draining line of the vereda. The soil analysis determined: total soil OC, total nitrogen and C:N ratio; C and N contents and C:N ratio in particulate and mineral-associated fractions (of SOM; fulvic acids, humic acids and humin fractions and ratio between humic and fulvic acids. The agricultural use around the veredas induced changes in the SOM fractions, more pronounced in the lower part of the slope. In the soil surface of this part, the OC levels in the humic substances and the particulate fraction of SOM, as well as total soil OC were reduced in the vereda next to crop fields.

  9. A framework to assess biogeochemical response to ecosystem disturbance using nutrient partitioning ratios

    Science.gov (United States)

    Kranabetter, J. Marty; McLauchlan, Kendra K.; Enders, Sara K.; Fraterrigo, Jennifer M.; Higuera, Philip E.; Morris, Jesse L.; Rastetter, Edward B.; Barnes, Rebecca; Buma, Brian; Gavin, Daniel G.; Gerhart, Laci M.; Gillson, Lindsey; Hietz, Peter; Mack, Michelle C.; McNeil, Brenden; Perakis, Steven

    2016-01-01

    Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.

  10. Effects of the increased radium content in soil on the soil fauna

    International Nuclear Information System (INIS)

    Krivolutskij, D.A.; Druk, A.Ya.; Semenova, L.M.; Semyashkina, T.M.; Mikhal'tsova, Z.A.

    1978-01-01

    The effect of elevated radioactive background due to the presence of natural radionuclide of radium-226 on soil animals has been studied. The areas being studied (1-2 hectares) had the elevated radioactivity ranging from 50 to 4000 μR/hour and were located on an over-flood-lands terrace with meadow vegetation in the mid-taiga subzone. Histological examination of tegmental epithelium and middle intestine (tissues in direct contact with radium-contaminated soil) was performed on Dendrobaena octaedra (Sav.) and Dendrodrillus rubidus (Sav.) collected from areas with 4000μR/hour radioactivity. A comparison of the results with data obtained earlier for surface animals inhabiting the same areas has corroborated that settled animals inhabiting contaminated areas for a long time suffer from retardation of development and disturbances in the functioning of body epithelium and of the intestine. The effect of radiation on soil animals can be observed in areas with far lower radioactivity (100-200μR/hour), probably due to their closer contact with radium-contaminated soil. The most convenient object for monitoring of the effects of elevated background radioactivity is the earthworm, which is irradiated not only from outside but also from the smallowed soil

  11. Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development

    Science.gov (United States)

    Bern, Carleton R.; Clark, Melanie L.; Schmidt, Travis S.; Holloway, JoAnn M.; Mcdougal, Robert

    2015-01-01

    Salinization is a global threat to the quality of streams and rivers, but it can have many causes. Oil and gas development were investigated as one of several potential causes of changes in the salinity of Muddy Creek, which drains 2470 km2 of mostly public land in Wyoming, U.S.A. Stream discharge and salinity vary with seasonal snowmelt and define a primary salinity-discharge relationship. Salinity, measured by specific conductance, increased substantially in 2009 and was 53-71% higher at low discharge and 33-34% higher at high discharge for the years 2009-2012 compared to 2005-2008. Short-term processes (e.g., flushing of efflorescent salts) cause within-year deviations from the primary relation but do not obscure the overall increase in salinity. Dissolved elements associated with increased salinity include calcium, magnesium, and sulfate, a composition that points to native soil salts derived from marine shales as a likely source. Potential causes of the salinity increase were evaluated for consistency by using measured patterns in stream chemistry, slope of the salinity-discharge relationship, and inter-annual timing of the salinity increase. Potential causes that were inconsistent with one or more of those criteria included effects from precipitation, evapotranspiration, reservoirs, grazing, irrigation return flow, groundwater discharge, discharge of energy co-produced waters, and stream habitat restoration. In contrast, surface disturbance of naturally salt-rich soil by oil and gas development activities, such as pipeline, road, and well pad construction, is a reasonable candidate for explaining the salinity increase. As development continues to expand in semiarid lands worldwide, the potential for soil disturbance to increase stream salinity should be considered, particularly where soils host substantial quantities of native salts.

  12. Soil surface protection by Biocrusts: effects of functional groups on textural properties

    Science.gov (United States)

    Concostrina-Zubiri, Laura; Huber-Sannwald, Elisabeth; Martínez, Isabel; Flores Flores, José Luis; Escudero, Adrián

    2015-04-01

    In drylands, where vegetation cover is commonly scarce, soil surface is prone to wind and water soil erosion, with the subsequent loss of topsoil structure and chemical properties. These processes are even more pronounced in ecosystems subjected to extra erosive forces, such as grasslands and rangelands that support livestock production. However, some of the physiological and functional traits of biocrusts (i.e., complex association of cyanobacteria, lichens, mosses, fungi and soil particles) make them ideal to resist in disturbed environments and at the same time to protect soil surface from mechanical perturbations. In particular, the filaments and exudates of soil cyanobacteria and the rhizines of lichen can bind together soil particles, forming soil aggregates at the soil surface and thus enhancing soil stability. Also, they act as "biological covers" that preserve the most vulnerable soil layer from wind and runoff erosion and raindrop impact, maintaining soil structure and composition. In this work, we evaluated soil textural properties and organic matter content under different functional groups of biocrusts (i.e., cyanobacteria crust, 3 lichen species, 1 moss species) and in bare soil. In order to assess the impact of livestock trampling on soil properties and on Biocrust function, we sampled three sites conforming a disturbance gradient (low, medium and high impact sites) and a long-term livestock exclusion as control site. We found that the presence of biocrusts had little effects on soil textural properties and organic matter content in the control site, while noticeable differences were found between bare soil and soil under biocrusts (e.g., up to 16-37% higher clay content, compared to bare soil and up to 10% higher organic matter content). In addition, we found that depending on morphological traits and grazing regime, the effects of biocrusts changed along the gradient. For example, soil under the lichen Diploschistes diacapsis, with thick thallus

  13. Effects of disturbance associated with seismic exploration for oil and gas reserves in coastal marshes

    Science.gov (United States)

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-01-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  14. Effects of Disturbance Associated With Seismic Exploration for Oil and Gas Reserves in Coastal Marshes

    Science.gov (United States)

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-07-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  15. Metal contamination disturbs biochemical and microbial properties of calcareous agricultural soils of the Mediterranean area.

    Science.gov (United States)

    de Santiago-Martín, Ana; Cheviron, Natalie; Quintana, Jose R; González, Concepción; Lafuente, Antonio L; Mougin, Christian

    2013-04-01

    Mediterranean climate characteristics and carbonate are key factors governing soil heavy-metal accumulation, and low organic matter (OM) content could limit the ability of microbial populations to cope with resulting stress. We studied the effects of metal contamination on a combination of biological parameters in soils having these characteristics. With this aim, soils were spiked with a mixture of cadmium, copper, lead, and zinc, at the two limit values proposed by current European legislation, and incubated for ≤12 months. Then we measured biochemical (phosphatase, urease, β-galactosidase, arylsulfatase, and dehydrogenase activities) and microbial (fungal and bacterial DNA concentration by quantitative polymerase chain reaction) parameters. All of the enzyme activities were strongly affected by metal contamination and showed the following inhibition sequence: phosphatase (30-64 %) soils was attributed to the different proportion of fine mineral fraction, OM, crystalline iron oxides, and divalent cations in soil solution. The decrease of fungal DNA concentration in metal-spiked soils was negligible, whereas the decrease of bacterial DNA was ~1-54 % at the lowest level and 2-69 % at the highest level of contamination. The lowest bacterial DNA decrease occurred in soils with the highest OM, clay, and carbonate contents. Finally, regarding the strong inhibition of the biological parameters measured and the alteration of the fungal/bacterial DNA ratio, we provide strong evidence that disturbance on the system, even within the limiting values of contamination proposed by the current European Directive, could alter key soil processes. These limiting values should be established according to soil characteristics and/or revised when contamination is produced by a mixture of heavy metals.

  16. Interactive effects of moss-dominated crusts and Artemisia ordosica on wind erosion and soil moisture in Mu Us sandland, China.

    Science.gov (United States)

    Yang, Yongsheng; Bu, Chongfeng; Mu, Xingmin; Shao, Hongbo; Zhang, Kankan

    2014-01-01

    To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion.

  17. Disturbance-diversity relationships for soil fauna are explained by faunal community biomass in a salt marsh

    NARCIS (Netherlands)

    Thakur, M.P.; Berg, M.P.; Eisenhauer, N.; van Langevelde, Frank

    2014-01-01

    Disturbance-diversity relationships have long been studied in ecology with a unimodal relationship as the key prediction. Although this relationship has been widely contested, it is rarely tested for soil invertebrate fauna, an important component of terrestrial biodiversity. We tested

  18. Evaluation of the rusle and disturbed wepp erosion models for predicting soil loss in the first year after wildfire in NW Spain.

    Science.gov (United States)

    Fernández, Cristina; Vega, José A

    2018-05-04

    Severe fire greatly increases soil erosion rates and overland-flow in forest land. Soil erosion prediction models are essential for estimating fire impacts and planning post-fire emergency responses. We evaluated the performance of a) the Revised Universal Soil Loss Equation (RUSLE), modified by inclusion of an alternative equation for the soil erodibility factor, and b) the Disturbed WEPP model, by comparing the soil loss predicted by the models and the soil loss measured in the first year after wildfire in 44 experimental field plots in NW Spain. The Disturbed WEPP has not previously been validated with field data for use in NW Spain; validation studies are also very scarce in other areas. We found that both models underestimated the erosion rates. The accuracy of the RUSLE model was low, even after inclusion of a modified soil erodibility factor accounting for high contents of soil organic matter. We conclude that neither model is suitable for predicting soil erosion in the first year after fire in NW Spain and suggest that soil burn severity should be given greater weighting in post-fire soil erosion modelling. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Influence of soil structure on contaminant leaching from injected slurry

    DEFF Research Database (Denmark)

    Amin, M. G. Mostofa; Pedersen, Christina Østerballe; Forslund, Anita

    2016-01-01

    at a rate of 50 t ha(-1) and followed with four irrigation events: 3.5-h period at 10 mm h(-1) after 1, 2, 3, and 4 weeks. The disturbed columns delayed the leaching of a conservative tracer and microorganisms in the first irrigation event compared to the intact columns due to the effect of disturbed...... macropore flow paths. The slurry constituents that ended up in or near the macropore flow paths of the intact soil were presumably washed out relatively quickly in the first event. For the last three events the intact soil leached fewer microorganisms than the disturbed soil due to the bypassing effect...... of water through the macropore flow path in the intact soil. Estrogen leached from the intact soil in the first event only, but for the disturbed soil it was detected in the leachates of last two events also. Leaching from the later events was attributed to higher colloid transport from the disturbed soils...

  20. Disturbance, Functional Diversity and Ecosystem Processes: Does Species Identity Matter?

    OpenAIRE

    Emrick III, Verl Roy

    2013-01-01

    The role of disturbance is widely recognized as a fundamental driver of ecological organization from individual species to entire landscapes. Anthropogenic disturbances from military training provide a unique opportunity to examine effects of disturbance on vegetation dynamics, physicochemical soil properties, and ecosystem processes. Additionally, plant functional diversity has been suggested as the key to ecosystem processes such as productivity and nutrient dynamics. I investigated how dis...

  1. Impact of small scale gold mining on soils of the wetland forests in ...

    African Journals Online (AJOL)

    Effects of soil disturbance on both physical and chemical characteristics of the soils were also very vivid. The soils disturbed from gold mining possessed an altered soil structure, improper development of soil horizons and removal of organic matter on the surface. Burried A horizons were found in all plots at the disturbed ...

  2. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  3. Earthworms – good indicators for forest disturbance

    OpenAIRE

    YAHYA KOOCH; KATAYOUN HAGHVERDI

    2014-01-01

    In temperate forests, formation of canopy gaps by windthrow is a characteristic natural disturbance event. Little work has been done on the effects of canopy gaps on soil properties and fauna, especially earthworms as ecosystem engineers. We conducted a study to examine the reaction of earthworms (density/biomass) and different soil properties (i.e., soil moisture, pH, organic matter, total N, and available Ca) to different canopy gap areas in 25-ha areas of Liresar district beech forest loca...

  4. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    Information about the quantitative effect of conservation tillage combined with a cover crop on soil structure is still limited. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-term field trial. The tillage treatments (main...... plots) included direct drilling (D), harrowing to a depth of 8 to 10 cm (H), and moldboard plowing (MP). The cover crop treatments were subplot with cover crop (+CC) and without cover crop (−CC). Minimally disturbed soil cores were taken from the 4- to 8-, 12- to 16-, and 18- to 27-cm depth intervals...... in the spring of 2012 before cultivation. Soil water retention and air permeability were measured for matric potentials ranging from −1 to −30 kPa. Gas diffusivity was measured at −10 kPa. Computed tomography (CT) scanning was also used to characterize soil pore characteristics. At the 4- to 8- and 18- to 27-cm...

  5. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    Science.gov (United States)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community

  6. Influence of prevailing disturbances on soil biology and biochemistry of montane habitats at Nanda Devi Biosphere Reserve, India during wet and dry seasons

    DEFF Research Database (Denmark)

    Singh, S.K.; Singh, Anoop; Rai, J.P.N.

    2011-01-01

    The impact of prevailing disturbances in montane habitats of Nanda Devi Biosphere Reserve (NDBR) was studied on soil microbial population, biomass, soil respiration and enzyme activities during wet and dry seasons. The physico-chemical characteristics of soils exhibited conspicuous variation in t...

  7. Conservation agriculture effects on soil pore characteristics

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    ploughing to a depth of 20 cm (MP), harrowing to a depth of 8-10 cm (H) and direct drilling (D). Minimally disturbed core samples were taken at 4-8, 12-16 and 18-27 cm depths 11 years after experimental start. Water retention characteristics were measured for a range of matric potential ranging from -10......Conservation tillage in combination with crop rotation, residue management and cover crops are key components of conservation agriculture. A positive long-term effect of applying all components of conservation agriculture on soil structural quality is expected. However, there is a lack...... of quantitative knowledge to support this statement. This study examines the long-term effects of crop rotations, residue management and tillage on soil pore characteristics of two sandy loam soils in Denmark. Results are reported from a split plot field experiment rotation as main plot factor and tillage...

  8. Changes in assembly processes in soil bacterial communities following a wildfire disturbance.

    Science.gov (United States)

    Ferrenberg, Scott; O'Neill, Sean P; Knelman, Joseph E; Todd, Bryan; Duggan, Sam; Bradley, Daniel; Robinson, Taylor; Schmidt, Steven K; Townsend, Alan R; Williams, Mark W; Cleveland, Cory C; Melbourne, Brett A; Jiang, Lin; Nemergut, Diana R

    2013-06-01

    Although recent work has shown that both deterministic and stochastic processes are important in structuring microbial communities, the factors that affect the relative contributions of niche and neutral processes are poorly understood. The macrobiological literature indicates that ecological disturbances can influence assembly processes. Thus, we sampled bacterial communities at 4 and 16 weeks following a wildfire and used null deviation analysis to examine the role that time since disturbance has in community assembly. Fire dramatically altered bacterial community structure and diversity as well as soil chemistry for both time-points. Community structure shifted between 4 and 16 weeks for both burned and unburned communities. Community assembly in burned sites 4 weeks after fire was significantly more stochastic than in unburned sites. After 16 weeks, however, burned communities were significantly less stochastic than unburned communities. Thus, we propose a three-phase model featuring shifts in the relative importance of niche and neutral processes as a function of time since disturbance. Because neutral processes are characterized by a decoupling between environmental parameters and community structure, we hypothesize that a better understanding of community assembly may be important in determining where and when detailed studies of community composition are valuable for predicting ecosystem function.

  9. Effects of pumice mining on soil quality

    Science.gov (United States)

    Cruz-Ruíz, A.; Cruz-Ruíz, E.; Vaca, R.; Del Aguila, P.; Lugo, J.

    2015-04-01

    México is the worl's fourth most important maize producer; hence, there is a need to maintain soil quality for a sustainable production in the upcoming years. Pumice mining, a superficial operation, modifies large areas in Central Mexico. The main aim was to assess the present state of agricultural soils differing in elapsed-time since pumice mining (0-15 years), in a representative area of the Calimaya region in the State of Mexico. The study sites in 0, 1, 4, 10 and 15 year-old reclaimed soils were compared with adjacent undisturbed site. Our results indicate that soil organic carbon, total nitrogen, microbial biomass carbon and microbial quotients were greatly impacted by disturbance. A general trend of recovery towards the undisturbed condition with reclamation age was found after disturbance. Recovery of soil total nitrogen was faster than soil organic carbon. Principal components analysis was applied. The first three components together explain 71.72 % of the total variability. First factor reveals strong associations between total nitrogen, microbial biomass carbon and pH. The second factor reveals high loading of urease and catalase. The obtained results revealed that the most appropriate indicators to diagnose the quality of the soils were: total nitrogen, microbial biomass carbon and soil organic carbon.

  10. Disturbance of Soil Organic Matter and Nitrogen Dynamics: Implications for Soil and Water Quality

    Science.gov (United States)

    2004-06-30

    Elliott, E.T., 1992. Particulate soil organic- matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56, 777–783. Dale, V.H...C.A., Elliott, E.T., 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal...1645-1650. Van Straalen, N.M. 1997. How to measure no effect. 2. Threshold effects in ecotoxicology . Environmetrics 8: 249-253. Verburg, P.S.J

  11. A review of fire effects on vegetation and soils in the Great Basin region: response and ecological site characteristics

    Science.gov (United States)

    Miller, Richard F.; Chambers, Jeanne C.; Pyke, David A.; Pierson, Fred B.; Williams, C. Jason

    2013-01-01

    This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.

  12. Influence of soil structure on contaminant leaching from injected slurry.

    Science.gov (United States)

    Amin, M G Mostofa; Pedersen, Christina Østerballe; Forslund, Anita; Veith, Tamie L; Laegdsmand, Mette

    2016-12-15

    Animal manure application to agricultural land provides beneficial organic matter and nutrients but can spread harmful contaminants to the environment. Contamination of fresh produce, surface water and shallow groundwater with the manure-borne pollutants can be a critical concern. Leaching and persistence of nitrogen, microorganisms (bacteriophage, E. coli, and Enterococcus) and a group of steroid hormone (estrogens) were investigated after injection of swine slurry into either intact (structured) or disturbed (homogeneous repacked) soil. The slurry was injected into hexaplicate soil columns at a rate of 50 t ha -1 and followed with four irrigation events: 3.5-h period at 10 mm h -1 after 1, 2, 3, and 4 weeks. The disturbed columns delayed the leaching of a conservative tracer and microorganisms in the first irrigation event compared to the intact columns due to the effect of disturbed macropore flow paths. The slurry constituents that ended up in or near the macropore flow paths of the intact soil were presumably washed out relatively quickly in the first event. For the last three events the intact soil leached fewer microorganisms than the disturbed soil due to the bypassing effect of water through the macropore flow path in the intact soil. Estrogen leached from the intact soil in the first event only, but for the disturbed soil it was detected in the leachates of last two events also. Leaching from the later events was attributed to higher colloid transport from the disturbed soils. In contrast, NO 3 -N leaching from the intact soil was higher for all events except the first event, probably due to a lower nitrification rate in the disturbed soil. A week after the last irrigation event, the redistribution of all slurry constituents except NO 3 -N in most of the sections of the soil column was higher for the disturbed soil. Total recovery of E. coli was significantly higher from the disturbed soil and total leaching of mineral nitrogen was significantly

  13. Geochemical disturbance of soil cover in the nonferrous mining centers of the Selenga River basin.

    Science.gov (United States)

    Timofeev, Ivan V; Kosheleva, Natalia E

    2017-08-01

    The anthropogenic geochemical transformation of soil cover in large nonferrous mining centers of the Selenga River basin was assessed. The results of the geochemical survey of 2010-2012 revealed the spatial distribution patterns and abundances of 18 hazardous heavy metals and metalloids in the soils of Erdenet (Mongolia) and Zakamensk (Buryat republic, Russian Federation). In both cities, mining activities disturbed soil cover which accumulates Mo, Cu, As, Sb, W in Erdenet and Bi, W, Cd, Be, Pb, Mo, Sb in Zakamensk. Maximum accumulation of elements in Erdenet is restricted to the industrial zone. In Zakamensk, it has spread on ½ of the territory with the degree of multielemental pollution exceeding the extremely dangerous level by 16 times. The effect of mining centers on the state of the river system is local and does not spread to the Selenga River. Downstream from Erdenet, an artificial pool intercepts heavy metal and metalloid flows of the Erdenetii-Gol River. By contrast, downstream from the tailing dumps of the Dzhida tungsten-molybdenum plant the concentrations of ore elements W and Mo and their accessories Bi and Cd in the Modonkul River exceed background values by 146, 20, 57, and 21 times, respectively, decreasing by an order of magnitude 30 km downstream.

  14. Influence of disturbance on temperate forest productivity

    Science.gov (United States)

    Peters, Emily B.; Wythers, Kirk R.; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Climate, tree species traits, and soil fertility are key controls on forest productivity. However, in most forest ecosystems, natural and human disturbances, such as wind throw, fire, and harvest, can also exert important and lasting direct and indirect influence over productivity. We used an ecosystem model, PnET-CN, to examine how disturbance type, intensity, and frequency influence net primary production (NPP) across a range of forest types from Minnesota and Wisconsin, USA. We assessed the importance of past disturbances on NPP, net N mineralization, foliar N, and leaf area index at 107 forest stands of differing types (aspen, jack pine, northern hardwood, black spruce) and disturbance history (fire, harvest) by comparing model simulations with observations. The model reasonably predicted differences among forest types in productivity, foliar N, leaf area index, and net N mineralization. Model simulations that included past disturbances minimally improved predictions compared to simulations without disturbance, suggesting the legacy of past disturbances played a minor role in influencing current forest productivity rates. Modeled NPP was more sensitive to the intensity of soil removal during a disturbance than the fraction of stand mortality or wood removal. Increasing crown fire frequency resulted in lower NPP, particularly for conifer forest types with longer leaf life spans and longer recovery times. These findings suggest that, over long time periods, moderate frequency disturbances are a relatively less important control on productivity than climate, soil, and species traits.

  15. Nitrogen Cycling Considerations for Low-Disturbance, High-Carbon Soil Management in Climate-Adaptive Agriculture

    Science.gov (United States)

    Bruns, M. A.; Dell, C. J.; Karsten, H.; Bhowmik, A.; Regan, J. M.

    2016-12-01

    Agriculturists are responding to climate change concerns by reducing tillage and increasing organic carbon inputs to soils. Although these management practices are intended to enhance soil carbon sequestration and improve water retention, resulting soil conditions (moister, lower redox, higher carbon) are likely to alter nitrogen cycling and net greenhouse gas (GHG) emissions. Soils are particularly susceptible to denitrification losses of N2O when soils are recently fertilized and wet. It is paradoxical that higher N2O emissions may occur when farmers apply practices intended to make soils more resilient to climate change. As an example, the application of animal manures to increase soil organic matter and replace fossil fuel-based fertilizers could either increase or decrease GHGs. The challenges involved with incorporating manures in reduced-tillage soils often result in N2O emission spikes immediately following manure application. On the other hand, manures enrich soils with bacteria capable of dissimilatory nitrate reduction to ammonium (DNRA), a process that could counter N2O production by denitrification. Since bacterial DNRA activity is enhanced by labile forms of carbon, the forms of carbon in soils may play a role in determining the predominant N cycling processes and the extent and duration of DNRA activity. A key question is how management can address the tradeoff of higher N2O emissions from systems employing climate-adaptive practices. Management factors such as timing and quality of carbon inputs therefore may be critical considerations in minimizing GHG emissions from low-disturbance, high-carbon cropping systems.

  16. Phenology-based, remote sensing of post-burn disturbance windows in rangelands

    Science.gov (United States)

    Sankeya, Joel B.; Wallace, Cynthia S.A.; Ravi, Sujith

    2013-01-01

    Wildland fire activity has increased in many parts of the world in recent decades. Ecological disturbance by fire can accelerate ecosystem degradation processes such as erosion due to combustion of vegetation that otherwise provides protective cover to the soil surface. This study employed a novel ecological indicator based on remote sensing of vegetation greenness dynamics (phenology) to estimate variability in the window of time between fire and the reemergence of green vegetation. The indicator was applied as a proxy for short-term, post-fire disturbance windows in rangelands; where a disturbance window is defined as the time required for an ecological or geomorphic process that is altered to return to pre-disturbance levels. We examined variability in the indicator determined for time series of MODIS and AVHRR NDVI remote sensing data for a database of ∼100 historical wildland fires, with associated post-fire reseeding treatments, that burned 1990–2003 in cold desert shrub steppe of the Great Basin and Columbia Plateau of the western USA. The indicator-based estimates of disturbance window length were examined relative to the day of the year that fires burned and seeding treatments to consider effects of contemporary variability in fire regime and management activities in this environment. A key finding was that contemporary changes of increased length of the annual fire season could have indirect effects on ecosystem degradation, as early season fires appeared to result in longer time that soils remained relatively bare of the protective cover of vegetation after fires. Also important was that reemergence of vegetation did not occur more quickly after fire in sites treated with post-fire seeding, which is a strategy commonly employed to accelerate post-fire vegetation recovery and stabilize soil. Future work with the indicator could examine other ecological factors that are dynamic in space and time following disturbance – such as nutrient cycling

  17. Selection of forest species for the rehabilitation of disturbed soils in oil fields in the Ecuadorian Amazon

    NARCIS (Netherlands)

    Villacís, Jaime; Casanoves, Fernando; Hang, Susana; Keesstra, Saskia; Armas, Cristina

    2016-01-01

    Soils in the Amazon Basin disturbed by petroleum extraction activities need to be restored to allow for the rehabilitation of these areas and the restoration of the ecosystemservices that these areas can provide. This study explores the performance of saplings of 20 species transplanted to four

  18. Acid sulphate soil disturbance and metals in groundwater: Implications for human exposure through home grown produce

    International Nuclear Information System (INIS)

    Hinwood, Andrea Lee; Horwitz, Pierre; Appleyard, Steve; Barton, Caroline; Wajrak, Magda

    2006-01-01

    A significant emerging environmental problem is the disturbance and oxidation of soils with high levels of iron sulphide minerals resulting in acidification and causing the mobilization of metals into groundwater. This process is occurring in many parts of the world. In Western Australia, impacted groundwater is extracted by residents for domestic use. We sought to establish domestic use patterns of bore water and the concentration of metals. Sixty-seven domestic bore water samples clearly indicated oxidation of sulphidic materials with heavy metal concentrations ranging for aluminium (< DL-37.0 mg/L), arsenic (< DL-6.6 mg/L), iron (< DL-1200 mg/L), cadmium (< DL-0.021 mg/L), lead (< DL-0.040 mg/L), selenium (< DL-0.006 mg/L). A high proportion of residents used bore water on home grown produce. The study suggests that there is potential for human exposure to heavy metals via the consumption of home grown produce. This warrants further investigation in light of increasing acid sulphate soil disturbance in many locations. - Acidified bore water may introduce metals into produce for home consumption

  19. Does management intensity in inter rows effect soil physical properties in Austrian and Romanian vineyards?

    Science.gov (United States)

    Bauer, Thomas; Strauss, Peter; Stiper, Katrin; Klipa, Vladimir; Popescu, Daniela; Winter, Silvia; Zaller, Johann G.

    2016-04-01

    Successful viticulture is mainly influenced by soil and climate. The availability of water during the growing season highly influences wine quality and quantity. To protect soil from being eroded most of the winegrowers keep the inter row zones of the vineyards green. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, these greening strategies concerning the intensity of inter row management differ from farm to farm and are mainly based on personal experience of the winegrowers. However to what extent different inter row management practices affect soil physical properties are not clearly understood yet. To measure possible effects of inter row management in vineyards on soil physical parameters we selected paired vineyards with different inter row management in Austria and Romania. In total more than 7000 soil analysis were conducted for saturated and unsaturated hydraulic conductivity, soil water retention, water stable aggregates, total organic carbon, cation exchange capacity, potassium, phosphorous, soil texture, bulk density and water infiltration. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with one soil disturbance every second inter row per year and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not improve for the upper soil layer (3-8cm). This is in contrast to general perceptions of improved soil physical properties due to low intensity of inter row management, i.e. permanent vegetated inter rows. This may be attributed to long term and high frequency mechanical stress by agricultural machinery in inter rows.

  20. The Effect of Equilibration Time and Tubing Material on Soil Gas Measurements

    Science.gov (United States)

    The collection of soil vapor samples representative of in-situ conditions presents challenges associated with the unavoidable disturbance of the subsurface and potential losses to the atmosphere. This article evaluates the effects of two variables that influence the concentration...

  1. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore characte......Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore...... characteristics of two Danish sandy loams. Rotation R2 is a rotation of winter crops (mainly cereals) with residues retained, rotation R3 a mix of winter and spring crops (mainly cereals) with residues removed, and rotation R4 the same mix of winter and spring crops, but with residues retained. Each rotation...... included the tillage treatments: moldboard plowing to 20-cm depth (MP), harrowing to 8- to 10-cm depth (H) and direct drilling (D). Soil cores were taken from the topsoil (4–8, 12–16, 18–27 cm) in mid-autumn 2013 and early spring 2014. Water retention, air permeability, and gas diffusivity was determined...

  2. Qualitative estimates of soil disturbance in the vicinity of CANDUS stations, utilizing measurements of 137Cs and 210Pb in soil cores

    International Nuclear Information System (INIS)

    Milton, G.M.; Kramer, S.J.; Watson, W.L.; Kotzer, T.G.

    2001-01-01

    Anthropogenically derived 14 C has been used to trace recent carbon input in a study of carbon accumulation and turnover in Canadian soils. In order to do so, documentation of the undisturbed nature of the soil horizons sampled was of prime concern. Although all the sites chosen for coring were currently uncultivated, detailed information on long-term land usage was not available. To overcome this problem, 137 Cs profiles were measured in all the cores used in the study. 210 Pb measurements were also made in cases where total 137 Cs deposition was lower than predicted. For some sample sites, the data obtained showed correlated losses of both radionuclides, indicating that land disturbance and/or erosion had indeed occurred in these areas over the past 50 years, hence invalidating the use of those cores for carbon cycling studies. In a few cases a marked lack of correlation between these two radionuclides has made it necessary to hypothesize that chemical, rather than physical, processes have been partially responsible for the observed anomalies. Since results of this nature raise doubts about the reliability of the 137 Cs method for identification of land disturbance, further investigation is warranted

  3. Intensive ground vegetation growth mitigates the carbon loss after forest disturbance.

    Science.gov (United States)

    Zehetgruber, Bernhard; Kobler, Johannes; Dirnböck, Thomas; Jandl, Robert; Seidl, Rupert; Schindlbacher, Andreas

    2017-01-01

    Slow or failed tree regeneration after forest disturbance is increasingly observed in the central European Alps, potentially amplifying the carbon (C) loss from disturbance. We aimed at quantifying C dynamics of a poorly regenerating disturbance site with a special focus on the role of non-woody ground vegetation. Soil CO 2 efflux, fine root biomass, ground vegetation biomass, tree increment and litter input were assessed in (i) an undisturbed section of a ~ 110 years old Norway spruce stand, (ii) in a disturbed section which was clear-cut six years ago (no tree regeneration), and (iii) in a disturbed section which was clear-cut three years ago (no tree regeneration). Total soil CO 2 efflux was similar across all stand sections (8.5 ± 0.2 to 8.9 ± 0.3 t C ha -1  yr. -1 ). The undisturbed forest served as atmospheric C sink (2.1 t C ha -1  yr. -1 ), whereas both clearings were C sources to the atmosphere. The source strength three years after disturbance (-5.5 t C ha -1  yr. -1 ) was almost twice as high as six years after disturbance (-2.9 t C ha -1  yr. -1 ), with declining heterotrophic soil respiration and the high productivity of dense graminoid ground vegetation mitigating C loss. C loss after disturbance decreases with time and ground vegetation growth. Dense non-woody ground vegetation cover can hamper tree regeneration but simultaneously decrease the ecosystem C loss. The role of ground vegetation should be more explicitly taken into account in forest C budgets assessing disturbance effects.

  4. Effect of soil compaction and biomass removal on soil CO2 efflux in a Missouri forest

    Science.gov (United States)

    Felix, Jr. Ponder

    2005-01-01

    Forest disturbances associated with harvesting activities can affect soil properties and soil respiration. A soda-lime technique was used to measure soil carbon dioxide (CO2) efflux rates in clearcut plots of a Missouri oak-hickory (Quercus spp. L.-Carya spp. Nutt.) forest 4 years after being treated with two levels of forest...

  5. Thermoluminescent Signals Caused by Disturbing Effects

    International Nuclear Information System (INIS)

    German, U.; Weinstein, M.; Ben-Shachar, B.

    1999-01-01

    One of the major sources of uncertainty in the measurement of low radiation doses by means of thermoluminescence dosemeters is the presence of disturbing thermoluminescence signals, especially luminescence caused by visible light, and by materials attached to the heated areas. Glow curves of thermoluminescence dosemeters contain useful information that can improve the accuracy and the reliability of the thermoluminescent measurements. The influence of the various disturbing effects can be recognised in the shape of the glow curves and can sometimes be separated from the exposure. Some examples are presented of signals arising from the two disturbing effects mentioned above, the signal contributed by Teflon used in the TLD-100 cards of Bicron/Harshaw and some abnormal glow curves due to dirt attached to the cards. Subtraction of the contributions due to these effects is suggested to obtain the net exposure signal. (author)

  6. Plant community responses to soil disturbance and herbicide treatments over 10 years on the Texas LTSP study

    Science.gov (United States)

    D. Andrew Scott; Richard H. Stagg

    2013-01-01

    Determining how anthropogenic disturbances affect site productivity through bioassays requires a complete understanding of both overstory and understory vegetation. This study was installed in 1997 to determine how soil compaction and intensive harvesting affected the inherent site productivity of pine stands on the western boundary of loblolly pine’s (Pinus...

  7. Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action

    Science.gov (United States)

    David R. Coyle; Uma J. Nagendra; Melanie K. Taylor; J. Holly Campbell; Chelsea E. Cunard; Aaron H. Joslin; Abha Mundepi; Carly A. Phillips; Mac A. Callaham

    2017-01-01

    Environmental disturbances seem to be increasing in frequency and impact, yet we have little understanding of the belowground impacts of these events. Soil fauna, while widely acknowledged to be important drivers of biogeochemical function, soil structure and sustainability, and trophic interactions, are understudied compared to other belowground organisms such as...

  8. Measuring the Effects of Disturbance & Climate on the CO2 & Energy Exchange of Ponderosa Pine Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Beverly E. Law; Larry Mahrt

    2007-01-05

    The goal is to quantify and understand the influence of climate and disturbance on ecosystem processes and thus net carbon uptake by forests. The objective is to combine tower and ground-based observations to quantify the effects of disturbance on processes controlling carbon storage and CO{sub 2} and energy exchange in varying climatic conditions. Specific objectives are: (1) Investigate the effects of logging and fire on carbon storage and carbon dioxide and energy exchange in chronosequences of ponderosa pine, using consistent methodology; (2) Determine key environmental factors controlling carbon storage and carbon dioxide and energy exchange in these forests through a combination of measurements and process modeling; and (3) Assess spatial variation of the concentrations and transport in complex terrain. The eddy covariance method is used for measurements of CO2, water vapor, and energy exchanges in a chronosequence of ponderosa pine forests (burned in 2002 wildfire, 10 year-old stand, 90 year-old mature stand). The mature stand has been an AmeriFlux site since 2000 (following previous flux sites in young and old stands initiated in 1996). In addition to the eddy covariance measurements, a large suite of biological processes and ecosystem properties are determined for the purpose of developing independent forest carbon budgets and NEP estimates; these include photosynthesis, stand respiration, soil CO{sub 2} fluxes, annual litterfall, foliar chemistry, and bole increment, and soil organic matter among other parameters. The measurements are being integrated and evaluated with two ecosystem models (BIOME-BGC and SPA). Such analyses are needed to assess regional terrestrial ecosystem carbon budgets. The results will contribute scientific understanding of carbon processes, and will provide comprehensive data sets for forest managers and those preparing national carbon inventories to use in assessments of carbon sequestration in relation to interannual climate

  9. [Effects of selective cutting on soil phosphorus forms and availability in Korean pine broad-leaved forest in Xiaoxing'an Mountains of China.

    Science.gov (United States)

    Zhang, Xin; Gu, Hui Yan; Chen, Xiang Wei

    2018-02-01

    In order to clarify the effects of selective cutting on soil phosphorus availability in Korean pine broad-leaved forest, surface soil (0-10 cm) samples from original Korean pine broad-leaved forest and natural forests with mild, medium and intensive cutting disturbances were collected. The Sui modified Hedley phosphorus fractionation method was used to continuously extract soil samples and analyzed the differences and changes of soil phosphorus fractions from different experimental stands. The results showed that the soil total phosphorus content of Korean pine broad-leaved forest varied from 1.09 to 1.66 g·kg -1 , with the original stand and intensive cutting disturbance stand being the maximum and minimum one, respectively. The differences of soil total phosphorus content among cutting disturbance levels were significant. The Olsen phosphorus and phosphorus activation coefficients changed with an amplitude of 7.26-17.79 mg·kg -1 and 0.67%-1.07%, respectively. Both of them significantly decreased with the increase of selective cutting disturbance level. The concentrations of all P fractions except HCl-P o , i.e., H 2 O-P i , NaHCO 3 -P, NaOH-P, HCl-P i , Residual-P, decreased with increasing cutting disturbance levels compared with original forest. The correlation coefficient between H 2 O-P i and soil Olsen phosphorus was the highest (0.98), though it only accounted for 1.5%-2.2% of the total phosphorus. NaOH-P content contributed to more than 48.0% of the total phosphorus, acknowledged as the potential source of soil phosphorus. In conclusion, selective cutting disturbance could constrain phosphorus storage and soil phosphorus availabi-lity of the Korean pine broad-leaved forests by significantly reducing the content of soil inorganic phosphorus and NaOH-P o , and such trends were positively dependent on the intensity of selective cutting.

  10. Effects of reduced soil functionality in European vineyards

    OpenAIRE

    Costantini, E.A.C.; Priori, S.; Akca, S.; Castaldini, M.; D'Avino, L.; Fulchin, E.; Gagnarli, E.; Giffard, B.; Kìraz, M.E.; Lagomarsino, A.; Landi, S.; Martensson, A.; Pellegrini, S.; Perria, R.; Puccioni, S.

    2017-01-01

    Improper or excessive land preparation methods in vineyards before planting can have a considerable impact on soil functionality. They include excessive levelling and deep ploughing leading to disturbances of the natural contour of slopes and destruction, truncation and burial of soil horizons. Manipulations may significantly modify chemical, physical, biological and hydrological balance of soils. Problems that may arise from these interventions relate to the reduction of organic ...

  11. An assessment of microbial communities associated with surface mining-disturbed overburden.

    Science.gov (United States)

    Poncelet, Dominique M; Cavender, Nicole; Cutright, Teresa J; Senko, John M

    2014-03-01

    To assess the microbiological changes that occur during the maturation of overburden that has been disturbed by surface mining of coal, a surface mining-disturbed overburden unit in southeastern Ohio, USA was characterized. Overburden from the same unit that had been disturbed for 37 and 16 years were compared to undisturbed soil from the same region. Overburden and soil samples were collected as shallow subsurface cores from each subregion of the mined area (i.e., land 16 years and 37 years post-mining, and unmined land). Chemical and mineralogical characteristics of overburden samples were determined, as were microbial respiration rates. The composition of microbial communities associated with overburden and soil were determined using culture-independent, nucleic acid-based approaches. Chemical and mineralogical evaluation of overburden suggested that weathering of disturbed overburden gave rise to a setting with lower pH and more oxidized chemical constituents. Overburden-associated microbial biomass and respiration rates increased with time after overburden disturbance. Evaluation of 16S rRNA gene libraries that were produced by "next-generation" sequencing technology revealed that recently disturbed overburden contained an abundance of phylotypes attributable to sulfur-oxidizing Limnobacter spp., but with increasing time post-disturbance, overburden-associated microbial communities developed a structure similar to that of undisturbed soil, but retained characteristics of more recently disturbed overburden. Our results indicate that over time, the biogeochemical weathering of disturbed overburden leads to the development of geochemical conditions and microbial communities that approximate those of undisturbed soil, but that this transition is incomplete after 37 years of overburden maturation.

  12. Concepts and Challenges in Disturbance Hydrology

    Science.gov (United States)

    Ebel, B. A.; Mirus, B. B.

    2016-12-01

    Landscape disturbances are increasing, often promoted and enhanced by climate shifts and human activities. Insect infestations, wildfires, earthquakes, urban development, forest harvest, mineral and petroleum resource extraction, and hurricanes are common landscape disturbances that can have profound hydrologic consequences. These cause relatively abrupt changes in the landscape, which alter local processes on plots and hillslopes in addition to coarser-scale processes across watersheds through cross-scale interactions. Shifts in soil properties and cover of vegetation and leaf litter change the water storage or buffering capacity as well as the hydrologic functional connectivity across multiple scales. These changes increase the risk of catastrophic flooding, erosion, and mass movements that degrade water resources, ecosystem services, and protection from hydrologically driven natural hazards. Although it is imperative that we understand the hydrologic effects of these disturbances, several major barriers exist. Four challenges are: (i) overlapping disturbances in space and time with unknown recovery trajectories, (ii) a paucity of long-term recovery records (>5 years duration), (iii) inefficacy of traditional modeling and parameterization approaches, and (iv) lack of pre-disturbance characterization. Examples of these challenges will be presented along with proposed opportunities for improved mechanistic understanding of processes and thresholds in disturbance hydrology.

  13. Disturbance and topography shape nitrogen availability and δ15 N over long-term forest succession

    Science.gov (United States)

    Perakis, Steven; Tepley, Alan J.; Compton, Jana

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane landscape influenced by human logging and wildfire. In contrast to expectations, we found that disturbance caused declines in surface mineral soil δ15N values, both in logged forests measured 40–50 years after disturbance, and in unlogged forests disturbed by severe wildfire within the last 200 years. Both symbiotic N fixation and N transfers from disturbed vegetation and detritus could lower soil δ15N values after disturbance. A more important role for symbiotic N fixation is suggested by lower soil δ15N values in slow-successional sites with slow canopy closure, which favors early-successional N fixers. Soil δ15N values increased only marginally throughout 800 years of succession, reflecting soil N uptake by vegetation and strong overall N retention. Although post-disturbance N inputs lowered surface soil δ15N values, steady-state mass balance calculations suggest that wildfire combustion of vegetation and detritus can dominate long-term N loss and increase whole-ecosystem δ15N. On steeper topography, declining soil δ15N values highlight erosion and accelerated soil turnover as an additional abiotic control on N balances. We conclude for N-limited montane forests that soil δ15N and N availability are less influenced by nitrate leaching and denitrification loss than by interactions between disturbance, N fixation, and erosion.

  14. Response of Tridens flavus (L.) A. S. Hitchc. to soil nutrients and disturbance in an early successional old field

    Science.gov (United States)

    Honu, Y.A.K.; Gibson, D.J.; Middleton, B.A.

    2006-01-01

    Soil nutrients and disturbance are two of the main abiotic factors that influence plant dominance (canopy cover), density, and fecundity in early successional old field plant communities. The manner in which the dominant species in old field successional systems respond to the interaction of nutrients and disturbance is poorly known. We examined the dominance, density of flowering tillers, and reproductive output of Tridens flavus, a perennial, warm-season bunchgrass that is important in old field succession, to varying soil nutrient and disturbance regimes. We tested the hypothesis that the interaction between nutrients and disturbance would influence the performance (cover, density, fecundity) of T. flavus. To test this hypothesis, we subjected 25 m2 experimental plots to various combinations of fertilizer and mowing treatments for eight years after initially plowing the field. The performance of T. flavus was measured by estimating percent cover for 8 years (1996-2003) and both density of flowering tillers and reproductive output (panicle length and number of branches per panicle) for three years (2001-2003). The pattern of canopy cover of T. flavus over the first eight years of succession varied over time depending on mowing regime. Dominance was significantly higher in plots that were fertilized only in years one and five than in annually fertilized and unfertilized control plots. The length of panicles and density of flowering tillers were both significantly greater in annually mowed plots than in unmowed plots. In the absence of mowing in particular, T. flavus became overtopped by woody species and declined in this old field community. Therefore, disturbances such as mowing and fertilization may be important in maintaining grasses such as Tridens flavus in old fields.

  15. Effect of acid deposition on soil animals and microorganisms: influence on structures and processes

    International Nuclear Information System (INIS)

    Schaefer, M.

    1989-01-01

    Principal effects of acid stress on the soil subsystem are increase or decrease in faunal and microfloral populations, changes in species assemblages and overall reductions in several soil microbiological processes. Little is known about the effects on nitrogen transformation (ammonification, nitrification, denitrification). Some possible but hypothetical scenarios for the effect of acidification stress on the forest ecosystem level are: (1) Inhibition of decomposition leads to an accumulation of litter. Immission and other disturbances may lead to humus disintegration and nitrate leaching; (2) Inhibition of mineralization reduces the availability of plant nutrients; (3) Decrease of the microfauna may cause disturbances of matter microcycling in the root zone; (4) Increase of the mesofauna may enhance the gracing pressure on mycorrhizal mycelia for even fine roots; (5) Decrease of the macrofauna (especially earthworms) lead to less bioturbation which impairs the buffer capacity of the litter and topsoil. A general outcome of liming experiments is stimulation of decomposition and mineralization: (1) Increased in nutrient arailability could lead to increased productivityin nutrient limited stands; (2) More irregular effects of animals on microbial activity may result in low stability of the soil-litter system and high liability to perturbations. (orig./vhe)

  16. Changes in soil moisture drive soil methane uptake along a fire regeneration chronosequence in a eucalypt forest landscape.

    Science.gov (United States)

    Fest, Benedikt; Wardlaw, Tim; Livesley, Stephen J; Duff, Thomas J; Arndt, Stefan K

    2015-11-01

    Disturbance associated with severe wildfires (WF) and WF simulating harvest operations can potentially alter soil methane (CH4 ) oxidation in well-aerated forest soils due to the effect on soil properties linked to diffusivity, methanotrophic activity or changes in methanotrophic bacterial community structure. However, changes in soil CH4 flux related to such disturbances are still rarely studied even though WF frequency is predicted to increase as a consequence of global climate change. We measured in-situ soil-atmosphere CH4 exchange along a wet sclerophyll eucalypt forest regeneration chronosequence in Tasmania, Australia, where the time since the last severe fire or harvesting disturbance ranged from 9 to >200 years. On all sampling occasions, mean CH4 uptake increased from most recently disturbed sites (9 year) to sites at stand 'maturity' (44 and 76 years). In stands >76 years since disturbance, we observed a decrease in soil CH4 uptake. A similar age dependency of potential CH4 oxidation for three soil layers (0.0-0.05, 0.05-0.10, 0.10-0.15 m) could be observed on incubated soils under controlled laboratory conditions. The differences in soil CH4 uptake between forest stands of different age were predominantly driven by differences in soil moisture status, which affected the diffusion of atmospheric CH4 into the soil. The observed soil moisture pattern was likely driven by changes in interception or evapotranspiration with forest age, which have been well described for similar eucalypt forest systems in south-eastern Australia. Our results imply that there is a large amount of variability in CH4 uptake at a landscape scale that can be attributed to stand age and soil moisture differences. An increase in severe WF frequency in response to climate change could potentially increase overall forest soil CH4 sinks. © 2015 John Wiley & Sons Ltd.

  17. Disturbance Alters the Relative Importance of Topographic and Biogeochemical Controls on Microbial Activity in Temperate Montane Forests

    Directory of Open Access Journals (Sweden)

    Rebecca A. Lybrand

    2018-02-01

    Full Text Available Fire and pathogen-induced tree mortality are the two dominant forms of disturbance in Western U.S. montane forests. We investigated the consequences of both disturbance types on the controls of microbial activity in soils from 56 plots across a topographic gradient one year after the 2012 High Park wildfire in Colorado. Topsoil biogeochemistry, soil CO2 efflux, potential exoenzyme activities, and microbial biomass were quantified in plots that experienced fire disturbance, beetle disturbance, or both fire and beetle disturbance, and in plots where there was no recent evidence of disturbance. Soil CO2 efflux, N-, and P-degrading exoenzyme activities in undisturbed plots were positively correlated with soil moisture, estimated from a topographic wetness index; coefficient of determinations ranged from 0.5 to 0.65. Conversely, the same estimates of microbial activities from fire-disturbed and beetle-disturbed soils showed little correspondence to topographically inferred wetness, but demonstrated mostly negative relationships with soil pH (fire only and mostly positive relationships with DOC/TDN (dissolved organic carbon/total dissolved nitrogen ratios for both disturbance types. The coefficient of determination for regressions of microbial activity with soil pH and DOC/TDN reached 0.8 and 0.63 in fire- and beetle-disturbed forests, respectively. Drivers of soil microbial activity change as a function of disturbance type, suggesting simple mathematical models are insufficient in capturing the impact of disturbance in forests.

  18. Effect of fire disturbances on soil respiration of Larix gmelinii Rupr ...

    African Journals Online (AJOL)

    The Da Xing'an Mountain is a key distribution area for Chinese boreal forests and is a fire-prone area. Frequent forest fires have influenced on the regional carbon cycle enormously, especially for the influence of soil respiration. Thus, understanding post-fire soil respiration is important in the study of the global carbon ...

  19. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns

    Science.gov (United States)

    Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.

    2007-12-01

    In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due

  20. Effect of soil texture on phytoremediation of arsenic-contaminated soils

    Science.gov (United States)

    Pallud, C. E.; Matzen, S. L.; Olson, A.

    2015-12-01

    Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were

  1. Carbon isotopic composition of forest soil respiration in the decade following bark beetle and stem girdling disturbances in the Rocky Mountains.

    Science.gov (United States)

    Maurer, Gregory E; Chan, Allison M; Trahan, Nicole A; Moore, David J P; Bowling, David R

    2016-07-01

    Bark beetle outbreaks are widespread in western North American forests, reducing primary productivity and transpiration, leading to forest mortality across large areas and altering ecosystem carbon cycling. Here the carbon isotope composition (δ(13) C) of soil respiration (δJ ) was monitored in the decade after disturbance for forests affected naturally by mountain pine beetle infestation and artificially by stem girdling. The seasonal mean δJ changed along both chronosequences. We found (a) enrichment of δJ relative to controls (soils in the first 2 years after disturbance; (b) depletion (1‰ or no change) during years 3-7; and (c) a second period of enrichment (1-2‰) in years 8-10. Results were consistent with isotopic patterns associated with the gradual death and decomposition of rhizosphere organisms, fine roots, conifer needles and woody roots and debris over the course of a decade after mortality. Finally, δJ was progressively more (13) C-depleted deeper in the soil than near the surface, while the bulk soil followed the well-established pattern of (13) C-enrichment at depth. Overall, differences in δJ between mortality classes (soil depths (<3‰) were smaller than variability within a class or depth over a season (up to 6‰). © 2016 The Authors. Plant, Cell and Environment published by John Wiley & Sons Ltd.

  2. Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Ayres, Edward; Nkem, Johnson N; Wall, Diana H; Adams, Byron J; Barrett, J E; Broos, Emma J; Parsons, Andrew N; Powers, Laura E; Simmons, Breana L; Virginia, Ross A

    2008-12-01

    Antarctic ecosystems are often considered nearly pristine because levels of anthropogenic disturbance are extremely low there. Nevertheless, over recent decades there has been a rapid increase in the number of people, researchers and tourists, visiting Antarctica. We evaluated, over 10 years, the direct impact of foot traffic on the abundance of soil animals and soil properties in Taylor Valley within the McMurdo Dry Valleys region of Antarctica. We compared soils from minimally disturbed areas with soils from nearby paths that received intermediate and high levels of human foot traffic (i.e., up to approximately 80 passes per year). The nematodes Scottnema lindsayae and Eudorylaimus sp. were the most commonly found animal species, whereas rotifers and tardigrades were found only occasionally. On the highly trampled footpaths, abundance of S. lindsayae and Eudorylaimus sp. was up to 52 and 76% lower, respectively, than in untrampled areas. Moreover, reduction in S. lindsayae abundance was more pronounced after 10 years than 2 years and in the surface soil than in the deeper soil, presumably because of the longer period of disturbance and the greater level of physical disturbance experienced by the surface soil. The ratio of living to dead Eudorylaimus sp. also declined with increased trampling intensity, which is indicative of increased mortality or reduced fecundity. At one site there was evidence that high levels of trampling reduced soil CO(2) fluxes, which is related to total biological activity in the soil. Our results show that even low levels of human traffic can significantly affect soil biota in this ecosystem and may alter ecosystem processes, such as carbon cycling. Consequently, management and conservation plans for Antarctic soils should consider the high sensitivity of soil fauna to physical disturbance as human presence in this ecosystem increases.

  3. Effect of soil sieving on respiration induced by low-molecular-weight substrates

    Science.gov (United States)

    Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel

    2014-03-01

    The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.

  4. Soil Microbial Community Changes in Wooded Mountain Pastures due to Simulated Effects of Cattle Grazing

    NARCIS (Netherlands)

    Kohler, F.; Hamelin, J.; Gillet, F.; Gobat, J.M.; Buttler, A.

    2005-01-01

    The effect of cattle activity on pastures can be subdivided into three categories of disturbances: herbage removal, dunging and trampling. The objective of this study was to assess separately or in combination the effect of these factors on the potential activities of soil microbial communities and

  5. Cyanobacterial populations in biological soil crusts of the northwest Negev Desert, Israel - effects of local conditions and disturbance.

    Science.gov (United States)

    Hagemann, Martin; Henneberg, Manja; Felde, Vincent J M N L; Berkowicz, Simon M; Raanan, Hagai; Pade, Nadin; Felix-Henningsen, Peter; Kaplan, Aaron

    2016-11-02

    Biological soil crusts (BSCs) fulfill numerous ecological functions in arid and semiarid areas. Cyanobacteria are important BSC organisms, which are responsible for carbon fixation, N 2 -fixation, and binding of soil via extracellular polysaccharides. The cyanobacterial populations were characterized in different sampling plots established in three experimental stations along a rainfall gradient within NW Negev Desert, Israel. Cyanobacterial crust thickness and osmolyte accumulation therein decreased in plots with lower moisture. The cyanobacterial population structure also changed in different plots. We observed an increase of subsection III cyanobacteria such as Microcoleus spp. and Leptolyngbya sp. and a decreasing proportion of strains belonging to subsections I and IV in drier areas on the rainfall gradient. This population shift was also observed in the sampling plots, which were situated at various relief positions within the sand dune experimental sites. We also characterized the cyanobacterial populations within mechanically disturbed plots. After four years, they reached between 80 and 50% of the control populations in the northern-most and southern stations, respectively. Our results suggest that the cyanobacterial population is sensitive not only to macroscale factors but may also be subject to local climate variations and that four years were insufficient for complete recovery of the cyanobacterial population. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Sleep Disturbance During Smoking Cessation: Withdrawal or Side Effect of Treatment?

    Science.gov (United States)

    Ashare, Rebecca L; Lerman, Caryn; Tyndale, Rachel F; Hawk, Larry W; George, Tony P; Cinciripini, Paul; Schnoll, Robert A

    2017-06-01

    The nicotine-metabolite ratio (NMR) predicts treatment response and is related to treatment side effect severity. Sleep disturbance may be one important side effect, but understanding sleep disturbance effects on smoking cessation is complicated by the fact that nicotine withdrawal also produces sleep disturbance. To evaluate the effects of withdrawal and treatment side effects on sleep disturbance. This is a secondary analysis of data from a clinical trial (Lerman et al., 2015) of 1,136 smokers randomised to placebo ( n = 363), transdermal nicotine (TN; n = 381), or varenicline ( n = 392) and stratified based on NMR (559 slow metabolisers; 577 normal metabolisers). Sleep disturbance was assessed at baseline and at 1-week following the target quit date (TQD). We also examined whether sleep disturbance predicted 7-day point-prevalence abstinence at end-of-treatment (EOT). The varenicline and TN groups exhibited greater increases in sleep disturbance (vs. placebo; treatment × time interaction; p = 0.005), particularly among those who quit smoking at 1-week post-TQD. There was a main effect of NMR ( p = 0.04), but no interactions with treatment. TN and varenicline attenuated withdrawal symptoms unrelated to sleep (vs. placebo). Greater baseline sleep disturbance predicted relapse at EOT ( p = 0.004). Existing treatments may not mitigate withdrawal-related sleep disturbance and adjunctive treatments that target sleep disturbance may improve abstinence rates.

  7. The effects of gap size and disturbance type on invasion of wet pine savanna by cogongrass, Imperata cylindrica (Poaceae)

    Science.gov (United States)

    King, S.E.; Grace, J.B.

    2000-01-01

    Cogongrass is a nonindigenous species perceived to threaten native communities of the southeastern United States through modification of species composition and alteration of community processes. To examine how gap size and disturbance type influence the invasion of wet pine savannas by cogongrass, we performed three field experiments to evaluate the response of cogongrass seeds and transplanted seedlings to four different gap sizes, four types of site disturbance, and recent burning of savanna vegetation. Cogongrass germinated, survived, and grew in all gap sizes, from 0 to 100 cm in diameter. Similarly, disturbance type had no effect on germination or seedling and transplant survival. Tilling, however, significantly enhanced transplanted seedling growth, resulting in a tenfold increase in biomass over the other disturbance types. Seedling survival to 1 and 2 mo was greater in burned savanna than unburned savanna, although transplant survival and growth were not affected by burning. Results of this study suggest that cogongrass can germinate, survive, and grow in wet pine savanna communities regardless of gap size or type of disturbance, including burning. Burning of savanna vegetation may enhance establishment by improving early seedling survival, and soil disturbance can facilitate invasion of cogongrass by enhancing plant growth.

  8. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands.

    Science.gov (United States)

    Carrera, Analía Lorena; Bertiller, Mónica Beatriz

    2013-01-15

    The objective of this study was to analyze the combined effects of leaf litter quality and soil properties on litter decomposition and soil nitrogen (N) mineralization at conserved (C) and disturbed by sheep grazing (D) vegetation states in arid rangelands of the Patagonian Monte. It was hypothesized that spatial differences in soil inorganic-N levels have larger impact on decomposition processes of non-recalcitrant than recalcitrant leaf litter (low and high concentration of secondary compounds, respectively). Leaf litter and upper soil were extracted from modal size plant patches (patch microsite) and the associated inter-patch area (inter-patch microsite) in C and D. Leaf litter was pooled per vegetation state and soil was pooled combining vegetation state and microsite. Concentrations of N and secondary compounds in leaf litter and total and inorganic-N in soil were assessed at each pooled sample. Leaf litter decay and soil N mineralization at microsites of C and D were estimated in 160 microcosms incubated at field capacity (16 month). C soils had higher total N than D soils (0.58 and 0.41 mg/g, respectively). Patch soil of C and inter-patch soil of D exhibited the highest values of inorganic-N (8.8 and 8.4 μg/g, respectively). Leaf litter of C was less recalcitrant and decomposed faster than that of D. Non-recalcitrant leaf litter decay and induced soil N mineralization had larger variation among microsites (coefficients of variation = 25 and 41%, respectively) than recalcitrant leaf litter (coefficients of variation = 12 and 32%, respectively). Changes in the canopy structure induced by grazing disturbance increased leaf litter recalcitrance, and reduced litter decay and soil N mineralization, independently of soil N levels. This highlights the importance of the combined effects of soil and leaf litter properties on N cycling probably with consequences for vegetation reestablishment and dynamics, rangeland resistance and resilience with implications

  9. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.

  10. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented

  11. Microbial Indicators of Soil Quality under Different Land Use Systems in Subtropical Soils

    Science.gov (United States)

    Maharjan, M.

    2016-12-01

    Land-use change from native forest to intensive agricultural systems can negatively impact numerous soil parameters. Understanding the effects of forest ecosystem transformations on markers of long-term soil health is particularly important in rapidly developing regions such as Nepal, where unprecedented levels of agriculturally-driven deforestation have occurred in recent decades. However, the effects of widespread land use changes on soil quality in this region have yet to be properly characterized. Microbial indicators (soil microbial biomass, metabolic quotient and enzymes activities) are particularly suited to assessing the consequences of such ecosystem disturbances, as microbial communities are especially sensitive to environmental change. Thus, the aim of this study was to assess the effect of land use system; i.e. forest, organic and conventional farming, on soil quality in Chitwan, Nepal using markers of microbial community size and activity. Total organic C and N contents were higher in organic farming compared with conventional farming and forest, suggesting higher nutrient retention and soil preservation with organic farming practices compared to conventional. These differences in soil composition were reflected in the health of the soil microbial communities: Organic farm soil exhibited higher microbial biomass C, elevated β-glucosidase and chitinase activities, and a lower metabolic quotient relative to other soils, indicating a larger, more active, and less stressed microbial community, respectively. These results collectively demonstrate that application of organic fertilizers and organic residues positively influence nutrient availability, with subsequent improvements in soil quality and productivity. Furthermore, the sensitivity of microbial indicators to different management practices demonstrated in this study supports their use as effective markers of ecosystem disturbance in subtropical soils.

  12. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest.

    Science.gov (United States)

    Shen, Ju-pei; Chen, C R; Lewis, Tom

    2016-01-20

    Effects of fire on biogeochemical cycling in terrestrial ecosystem are widely acknowledged, while few studies have focused on the bacterial community under the disturbance of long-term frequent prescribed fire. In this study, three treatments (burning every two years (B2), burning every four years (B4) and no burning (B0)) were applied for 38 years in an Australian wet sclerophyll forest. Results showed that bacterial alpha diversity (i.e. bacterial OTU) in the top soil (0-10 cm) was significantly higher in the B2 treatment compared with the B0 and B4 treatments. Non-metric multidimensional analysis (NMDS) of bacterial community showed clear separation of the soil bacterial community structure among different fire frequency regimes and between the depths. Different frequency fire did not have a substantial effect on bacterial composition at phylum level or bacterial 16S rRNA gene abundance. Soil pH and C:N ratio were the major drivers for bacterial community structure in the most frequent fire treatment (B2), while other factors (EC, DOC, DON, MBC, NH4(+), TC and TN) were significant in the less frequent burning and no burning treatments (B4 and B0). This study suggested that burning had a dramatic impact on bacterial diversity but not abundance with more frequent fire.

  13. Effects of Fuel Oil on the Geotechnical Properties of Clay Soil

    Directory of Open Access Journals (Sweden)

    Mahdi Obaid Karkush

    2017-08-01

    Full Text Available The present study highlights the effects of medium fuel oil (MFO on the chemical, physical and mechanical properties of clay soil samples (disturbed and undisturbed obtained from the site of the electrical power plant in the campus of the University of Baghdad at Al-Jadriah district in Baghdad/Iraq. The soil sample was classified according to the unified soil classification system (USCS as CL and described as lean clay of low plasticity. The medium fuel oil is an industrial wastewater disposed as a byproduct from the fuel used in the electricity power plant. The soil samples are artificially contaminated with two percentages of medium fuel oil, 10 and 20 % related to the dry weight of soil. The soil samples were mixed with the contaminant (MFO by hand and then left for 4 days for homogeneity. A series of laboratory tests are conducted on both natural and artificially contaminated soil samples to measure the effects of medium fuel oil on the chemical, physical and mechanical properties of soil samples. The results of tests showed that the medium fuel oil has significant impacts on some properties of soil and slight effects on the others. Increasing the percentage of contaminant causes a slight decrease in the liquid limit and particle size distribution; on the other hand, it causes a considerable increase in the consolidation parameters and decrease in shear strength parameters. Also, there is a slight change in the chemical composition of soil samples.

  14. Effect of land-use practice on soil moisture variability for soils covered with dense forest vegetation of Puerto Rico

    Science.gov (United States)

    Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.

    1998-01-01

    Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.

  15. Headcut erosive regimes influenced by groundwater on disturbed agricultural soils.

    Science.gov (United States)

    Rockwell, D L

    2011-02-01

    A series of simulated rainfall experiments, testing several soils and slope gradients in a 10 m x 0.8m laboratory flume, displayed close correlations between initial development of a water table at a 10 cm depth and highly erosive headcut formation. On some soils and gradients, highly erosive headcuts formed consistently and predictably within minutes or seconds of initial water table rise. However, headcuts alone were not good indicators of increased erosion. In most experiments some headcuts formed early, often when surface hydraulic parameter values reached established rill initiation thresholds, but resulted in little or no erosion increase. Later, at initial water table rise, other headcuts formed coincident with major erosion increase, often with surface hydraulic values then less than rill initiation thresholds. On the four soils tested, highly erosive headcuts never formed without groundwater development, except on steep 9 ° slopes. Common visual indicators such as headcut morphology and headcut advance rates were not effective means of determining either erosion or the existence of groundwater. Only local monitoring of subsurface moisture conditions with micro-standpipes and TDR aided in determining headcut processes and erosive regimes. Groundwater-influenced headcut formation was likely caused by increased soil pore-water pressures and decreased soil shear strengths in surface rainflow, not by sapping or seepage from the soil matrix. Highly erosive headcuts can thus form under common agricultural conditions where reductions in permeability, such as plow pans, exist near the surface--without the need for saturated soils. Headcut erosive regimes were also significantly influenced by soil type and slope gradient, with the greatest effects of groundwater on moderate slopes and fairly permeable soils. Copyright © 2010. Published by Elsevier Ltd.

  16. Soil Nutrient Responses to Disturbance in a Northern Temperate Forest: The Influence of an Ice Storm Manipulation Experiment on Belowground Biogeochemical Cycling

    Science.gov (United States)

    Wiley, E.; King, C.; Richardson, A. D.; Landhäusser, S.

    2016-12-01

    Temperate forest ecosystems are increasingly impacted by human-induced changes in climate, which have the ability to alter the prevalence, severity, and extent of extreme weather events. Ice storms, an example of such extreme events, tend to be rarer and often occur as localized events, making them difficult to predict. As such, their impacts on ecosystem structure and functioning are poorly understood. We utilized a field manipulation experiment that effectively simulated natural ice storms of varying intensities to mechanistically understand the short-term nitrogen (N) responses to such extreme weather events. Net N mineralization and nitrification were quantified for both the organic and mineral soil horizons via 30-day in situ incubations of intact soil cores, while gross N transformations were measured in short-term laboratory incubations using the 15N pool dilution technique. Net C mineralization and N and C microbial biomass were also measured on disturbed soil cores via the chloroform fumigation incubation method. All microbial transformation measurements were carried out in the fall of the pre-treatment year (2015), and the spring and fall of the post-treatment years (2016 and 2017). We found that the availability of inorganic N to the microbial community did not significantly change immediately following the simulated ice storms. Over longer time-scales, however, we expect that N loss (mineralization, nitrification, denitrification) and conservation (immobilization) processes will be controlled more by the flow and availability of labile C from newly decaying fine and coarse woody debris that was dropped immediately following the ice storm. We hypothesize that the forested ecosystem is now in a state of N oligotrophy, and thus less likely to show any N response to disturbance in the short-term. This suggests that recovery of the forest over the long-term may be slower than that observed following a natural ice storm event that took place in 1998 in the

  17. Effects of soil quality and depth on seed germination and seedling survival at the Nevada test site

    International Nuclear Information System (INIS)

    Blomquist, K.W.; Lyon, G.E.

    1993-01-01

    The Nuclear Waste Policy Act, as amended in 1987, directs the US Department of Energy (DOE) to study Yucca Mountain, in southern Nevada, as a potential site for long-term storage of high-level nuclear waste. DOE policy mandates the restoration of all lands disturbed by site characterization activities and DOE has developed an environmental program that is to be implemented during site characterization activities at Yucca.Mountain. DOE is currently conducting reclamation feasibility trials as part of this environmental program. No topsoil was saved on disturbances during early site investigation and minimal soil remains at existing disturbances on Yucca Mountain. A study was developed to test the effects of soil quality and depth on seedling emergence and survival. A series of plots was established and two treatments were tested. The first treatment compared native topsoil to subsoil imported from a borrow pit. The second treatment compared four different depth ranges of both soil types. All plots received identical seeding treatments. Seedling density was measured after emergence. Overall seedling densities were low, averaging 10.3 ± 8.8 (SD) plants/m 2 . Statistical analysis revealed a significant interaction between the two treatment factors. The subsoil had increasing densities from the deep soil depths to the shallow depths while the topsoil had increasing densities from the shallow soil depths to the deep depths. The cause of this interaction may have resulted from the bedrock being close to the soil surface of the shallow plots

  18. Frequent fire promotes diversity and cover of biological soil crusts in a derived temperate grassland.

    Science.gov (United States)

    O'Bryan, Katharine E; Prober, Suzanne Mary; Lunt, Ian D; Eldridge, David J

    2009-04-01

    The intermediate disturbance hypothesis (IDH) predicts that species diversity is maximized at moderate disturbance levels. This model is often applied to grassy ecosystems, where disturbance can be important for maintaining vascular plant composition and diversity. However, effects of disturbance type and frequency on cover and diversity of non-vascular plants comprising biological soil crusts are poorly known, despite their potentially important role in ecosystem function. We established replicated disturbance regimes of different type (fire vs. mowing) and frequency (2, 4, 8 yearly and unburnt) in a high-quality, representative Themeda australis-Poa sieberiana derived grassland in south-eastern Australia. Effects on soil crust bryophytes and lichens (hereafter cryptogams) were measured after 12 years. Consistent with expectations under IDH, cryptogam richness and abundance declined under no disturbance, likely due to competitive exclusion by vascular plants as well as high soil turnover by soil invertebrates beneath thick grass. Disturbance type was also significant, with burning enhancing richness and abundance more than mowing. Contrary to expectations, however, cryptogam richness increased most dramatically under our most frequent and recent (2 year) burning regime, even when changes in abundance were accounted for by rarefaction analysis. Thus, from the perspective of cryptogams, 2-year burning was not an adequately severe disturbance regime to reduce diversity, highlighting the difficulty associated with expression of disturbance gradients in the application of IDH. Indeed, significant correlations with grassland structure suggest that cryptogam abundance and diversity in this relatively mesic (600 mm annual rainfall) grassland is maximised by frequent fires that reduce vegetation and litter cover, providing light, open areas and stable soil surfaces for colonisation. This contrasts with detrimental effects of 2-year burning on native perennial grasses

  19. Climate mediates the effects of disturbance on ant assemblage structure

    Science.gov (United States)

    Gibb, Heloise; Sanders, Nathan J.; Dunn, Robert R.; Watson, Simon; Photakis, Manoli; Abril, Silvia; Andersen, Alan N.; Angulo, Elena; Armbrecht, Inge; Arnan, Xavier; Baccaro, Fabricio B.; Bishop, Tom R.; Boulay, Raphael; Castracani, Cristina; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A.; Enríquez, Martha L.; Fayle, Tom M.; Feener, Donald H.; Fitzpatrick, Matthew C.; Gómez, Crisanto; Grasso, Donato A.; Groc, Sarah; Heterick, Brian; Hoffmann, Benjamin D.; Lach, Lori; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Majer, Jonathan; Menke, Sean B.; Mezger, Dirk; Mori, Alessandra; Munyai, Thinandavha C.; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M.; de Souza, Jorge L. P.; Tista, Melanie; Vasconcelos, Heraldo L.; Vonshak, Merav; Parr, Catherine L.

    2015-01-01

    Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk. PMID:25994675

  20. Application of the WEPS and SWEEP models to non-agricultural disturbed lands

    Directory of Open Access Journals (Sweden)

    J. Tatarko

    2016-12-01

    Full Text Available Wind erosion not only affects agricultural productivity but also soil, air, and water quality. Dust and specifically particulate matter ≤10 μm (PM-10 has adverse effects on respiratory health and also reduces visibility along roadways, resulting in auto accidents. The Wind Erosion Prediction System (WEPS was developed by the USDA-Agricultural Research Service to simulate wind erosion and provide for conservation planning on cultivated agricultural lands. A companion product, known as the Single-Event Wind Erosion Evaluation Program (SWEEP, has also been developed which consists of the stand-alone WEPS erosion submodel combined with a graphical interface to simulate soil loss from single (i.e., daily wind storm events. In addition to agricultural lands, wind driven dust emissions also occur from other anthropogenic sources such as construction sites, mined and reclaimed areas, landfills, and other disturbed lands. Although developed for agricultural fields, WEPS and SWEEP are useful tools for simulating erosion by wind for non-agricultural lands where typical agricultural practices are not employed. On disturbed lands, WEPS can be applied for simulating long-term (i.e., multi-year erosion control strategies. SWEEP on the other hand was developed specifically for disturbed lands and can simulate potential soil loss for site- and date-specific planned surface conditions and control practices. This paper presents novel applications of WEPS and SWEEP for developing erosion control strategies on non-agricultural disturbed lands. Erosion control planning with WEPS and SWEEP using water and other dust suppressants, wind barriers, straw mulch, re-vegetation, and other management practices is demonstrated herein through the use of comparative simulation scenarios. The scenarios confirm the efficacy of the WEPS and SWEEP models as valuable tools for supporting the design of erosion control plans for disturbed lands that are not only cost-effective but

  1. Application of the WEPS and SWEEP models to non-agricultural disturbed lands.

    Science.gov (United States)

    Tatarko, J; van Donk, S J; Ascough, J C; Walker, D G

    2016-12-01

    Wind erosion not only affects agricultural productivity but also soil, air, and water quality. Dust and specifically particulate matter ≤10 μm (PM-10) has adverse effects on respiratory health and also reduces visibility along roadways, resulting in auto accidents. The Wind Erosion Prediction System (WEPS) was developed by the USDA-Agricultural Research Service to simulate wind erosion and provide for conservation planning on cultivated agricultural lands. A companion product, known as the Single-Event Wind Erosion Evaluation Program (SWEEP), has also been developed which consists of the stand-alone WEPS erosion submodel combined with a graphical interface to simulate soil loss from single (i.e., daily) wind storm events. In addition to agricultural lands, wind driven dust emissions also occur from other anthropogenic sources such as construction sites, mined and reclaimed areas, landfills, and other disturbed lands. Although developed for agricultural fields, WEPS and SWEEP are useful tools for simulating erosion by wind for non-agricultural lands where typical agricultural practices are not employed. On disturbed lands, WEPS can be applied for simulating long-term (i.e., multi-year) erosion control strategies. SWEEP on the other hand was developed specifically for disturbed lands and can simulate potential soil loss for site- and date-specific planned surface conditions and control practices. This paper presents novel applications of WEPS and SWEEP for developing erosion control strategies on non-agricultural disturbed lands. Erosion control planning with WEPS and SWEEP using water and other dust suppressants, wind barriers, straw mulch, re-vegetation, and other management practices is demonstrated herein through the use of comparative simulation scenarios. The scenarios confirm the efficacy of the WEPS and SWEEP models as valuable tools for supporting the design of erosion control plans for disturbed lands that are not only cost-effective but also incorporate

  2. Effects of mining-associated lead and zinc soil contamination on native floristic quality.

    Science.gov (United States)

    Struckhoff, Matthew A; Stroh, Esther D; Grabner, Keith W

    2013-04-15

    We assessed the quality of plant communities across a range of lead (Pb) and zinc (Zn) soil concentrations at a variety of sites associated with Pb mining in southeast Missouri, USA. In a novel application, two standard floristic quality measures, Mean Coefficient of Conservatism (Mean C) and Floristic Quality Index (FQI), were examined in relation to concentrations of Pb and Zn, soil nutrients, and other soil characteristics. Nonmetric Multidimensional Scaling and Regression Tree Analyses identified soil Pb and Zn concentrations as primary explanatory variables for plant community composition and indicated negative relationships between soil metals concentrations and both Mean C and FQI. Univariate regression also demonstrated significant negative relationships between metals concentrations and floristic quality. The negative effects of metals in native soils with otherwise relatively undisturbed conditions indicate that elevated soil metals concentrations adversely affect native floristic quality where no other human disturbance is evident. Published by Elsevier Ltd.

  3. Effects of prescribed fires on soil properties: A review.

    Science.gov (United States)

    Alcañiz, M; Outeiro, L; Francos, M; Úbeda, X

    2018-02-01

    Soils constitute one of the most valuable resources on earth, especially because soil is renewable on human time scales. During the 20th century, a period marked by a widespread rural exodus and land abandonment, fire suppression policies were adopted facilitating the accumulation of fuel in forested areas, exacerbating the effects of wildfires, leading to severe degradation of soils. Prescribed fires emerged as an option for protecting forests and their soils from wildfires through the reduction of fuels levels. However such fires can serve other objectives, including stimulating the regeneration of a particular plant species, maintaining biological diversity or as a tool for recovering grasslands in encroached lands. This paper reviews studies examining the short- and long- term impacts of prescribed fires on the physical, chemical and biological soil properties; in so doing, it provides a summary of the benefits and drawbacks of this technique, to help determine if prescribed fires can be useful for managing the landscape. From the study conducted, we can affirm that prescribed fires affects soil properties but differ greatly depending on soil initial characteristics, vegetation or type of fire. Also, it is possible to see that soil's physical and biological properties are more strongly affected by prescribed fires than are its chemical properties. Finally, we conclude that prescribed fires clearly constitute a disturbance on the environment (positive, neutral or negative depending on the soil property studied), but most of the studies reviewed report a good recovery and their effects could be less pronounced than those of wildfires because of the limited soil heating and lower fire intensity and severity. Copyright © 2017. Published by Elsevier B.V.

  4. Mercury pollution in the lake sediments and catchment soils of anthropogenically-disturbed sites across England.

    Science.gov (United States)

    Yang, Handong; Turner, Simon; Rose, Neil L

    2016-12-01

    Sediment cores and soil samples were taken from nine lakes and their catchments across England with varying degrees of direct human disturbance. Mercury (Hg) analysis demonstrated a range of impacts, many from local sources, resulting from differing historical and contemporary site usage and management. Lakes located in industrially important areas showed clear evidence for early Hg pollution with concentrations in sediments reaching 400-1600 ng g -1 prior to the mid-19th century. Control of inputs resulting from local management practices and a greater than 90% reduction in UK Hg emissions since 1970 were reflected by reduced Hg pollution in some lakes. However, having been a sink for Hg deposition for centuries, polluted catchment soils are now the major Hg source for most lakes and consequently recovery from reduced Hg deposition is being delayed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The effect of natural disturbances on the risk from hydrogeomorphic hazards under climate change

    Science.gov (United States)

    Scheidl, Christian; Thaler, Thomas; Seidl, Rupert; Rammer, Werner; Kohl, Bernhard; Markart, Gerhard

    2017-04-01

    Recent storm events in Austria show once more how floods, sediment transport processes and debris flows constitute a major threat in alpine regions with a high density of population and an increasing spatial development. As protection forests have a major control function on runoff and erosion, they directly affect the risk from such hydrogeomorphic processes. However, research on future climate conditions, with an expected increase of the global average surface temperature of 3-5°C by 2100, compared to the first decade of the 20th century, raises a number of open questions for a sustainable and improved hazard management in mountain forests. For Europe, for instance, a climate-induced increase in forest disturbances like wildfire, wind, and insect's outbreaks is highly likely for the coming decades. Especially in protection forests, future scenarios of such climate induced natural disturbances and their impact on the protective effect remain an unresolved issue. Combining methods from forestry, hydrology and geotechnical engineering our project uses an integral approach to simulate possible effects of natural disturbances on hydrogeomorphic hazards in the perspective of future protection forest developments. With the individual-based forest landscape and disturbance model (iLand) we conduct an ensemble of forest landscape simulations, assessing the impact of future changes in natural disturbance regimes in four selected torrential catchments. These catchments are situated in two different forest growth areas. Drainage rate simulations are based on the conceptual hydrological model (ZEMOKOST), whereas simulations of the effect of forest disturbances on hillslope erosion processes are conducted by the Distributed Hydrology Soil Vegetation Model (DHSVM). Beside process based simulations, we also emphasis to identify the risk perception and adaptive capacity to mitigate a probable loss of protection functions in forests. For this reason, a postal survey among

  6. Brackish water for irrigation: IV. effects on yield of maize (zea mays l.) and saturated hydraulic conductivity of soil

    International Nuclear Information System (INIS)

    Abid, M.; Anwar-ur-Hassan; Ghafoor, A.

    2003-01-01

    The experiment was conducted to investigate the effect of brackish water irrigation on fresh biomass yield of maize variety Agati-72 and saturated hydraulic conductivity (HC) of silty clay loam soil. Total 20 treatment combinations having different EC/sub iw/ (0.65, 2.0, 4.0, 6.0 and 7.35 dS m/sup -1/), SAR/sub iw/ (3.95, 9.65, 18.0, 26.35 and 32.04 (mmol L/sup -1)/sup 1/2/) and RSC (0.65, 2.0, 4.0, 6.0 and 7.35 mmol/sub c/ L/sup -1/) were applied to 30 cm x 68 cm undisturbed and disturbed soil columns. Results indicated that biomass yield of maize decreased with an increase in EC/sub iw/ from 0.65 to 7.35 dS m/sup -1/ at coded 0 levels of SAR/sub iw/ and RSC in undisturbed soil. The maize tolerated EC/sub iw/ up to 2.0 dS m/sup-1/ at coded 0 levels of SAR/sub iw/ and RSC in disturbed soil. The SAR/sub iw/ up to 18.0 did not affect the yield of crop at coded 0 levels of EC/sub iw/ for the undisturbed and disturbed soils, respectively. The increase in HC was 48% in undisturbed and 54% in disturbed soils with EC/sub iw/ 7.35 dS m/sup -1/ over EC/sub iw/ 0.65 dS m/sup -1/ coded 0 levels of EC/sub iw/ and RSC. The HC decreased with SAR/sub iw/ and RSC at coded 0 levels of EC/sub iw/ and RSC; EC/sub iw/ and SAR/sub iw/ in both the soil columns. (author)

  7. Impacts of an invasive plant are fundamentally altered by a co-occurring forest disturbance.

    Science.gov (United States)

    Sokol, Noah W; Kuebbing, Sara E; Bradford, Mark A

    2017-08-01

    Invasive species frequently co-occur with other disturbances, which can impact the same ecosystem functions as the invader. Yet invasion studies rarely control for the presence of these other disturbances, although their overlapping effects may influence the direction and magnitude of impacts attributed to the invader alone. Here, we ask whether controlling for the presence of a co-occurring disturbance, as well as the time since disturbance, yields different values of an invader's ecosystem effects than when these factors remain unaddressed. We used a chronosequence of six forest stands at a single site: five logged stands that each contained paired invaded-uninvaded plots of the forest understory invasive grass Microstegium vimineum, as well as one unlogged and uninvaded control stand. By controlling for the presence of both logging and invasion, we untangled the effects of each through time. We found that the co-occurring disturbance of logging can dramatically alter the measured effects of M. vimineum by amplifying, dampening, negating, or entirely reversing the direction of the invader's impacts. During its period of peak impact, logging amplified the invader's positive effect on the size of the soil microbial biomass pool by 24%, reduced the invader's positive effect on soil water holding capacity by 5%, negated the invader's positive effect on the particulate organic matter carbon pool (from a 9% increase to no significant effect), and reversed the direction of the invader's impact on net nitrogen mineralization rate from a 51% increase to a 52% decrease. Furthermore, the influence of logging on the invader's impacts was not static, but dynamic through time. The results from our site therefore demonstrate that failure to account for the impacts of a co-occurring disturbance, as well as the time since disturbance, can result in flawed inference about the nature of an invader's effects. Future research should determine how widespread such flawed inference

  8. Soil Diversity as Affected by Land Use in China: Consequences for Soil Protection

    Directory of Open Access Journals (Sweden)

    Wei Shangguan

    2014-01-01

    Full Text Available Rapid land-use change in recent decades in China and its impact on terrestrial biodiversity have been widely studied, particularly at local and regional scales. However, the effect of land-use change on the diversity of soils that support the terrestrial biological system has rarely been studied. Here, we report the first effort to assess the impact of land-use change on soil diversity for the entire nation of China. Soil diversity and land-use effects were analyzed spatially in grids and provinces. The land-use effects on different soils were uneven. Anthropogenic soils occupied approximately 12% of the total soil area, which had already replaced the original natural soils. About 7.5% of the natural soil classes in China were in danger of substantial loss, due to the disturbance of agriculture and construction. More than 80% of the endangered soils were unprotected due to the overlook of soil diversity. The protection of soil diversity should be integrated into future conservation activities.

  9. Soil Diversity as Affected by Land Use in China: Consequences for Soil Protection

    Science.gov (United States)

    Shangguan, Wei; Gong, Peng; Liang, Lu; Dai, YongJiu; Zhang, Keli

    2014-01-01

    Rapid land-use change in recent decades in China and its impact on terrestrial biodiversity have been widely studied, particularly at local and regional scales. However, the effect of land-use change on the diversity of soils that support the terrestrial biological system has rarely been studied. Here, we report the first effort to assess the impact of land-use change on soil diversity for the entire nation of China. Soil diversity and land-use effects were analyzed spatially in grids and provinces. The land-use effects on different soils were uneven. Anthropogenic soils occupied approximately 12% of the total soil area, which had already replaced the original natural soils. About 7.5% of the natural soil classes in China were in danger of substantial loss, due to the disturbance of agriculture and construction. More than 80% of the endangered soils were unprotected due to the overlook of soil diversity. The protection of soil diversity should be integrated into future conservation activities. PMID:25250394

  10. Too big or too narrow? Disturbance characteristics determine the functional resilience in virtual microbial ecosystems

    Science.gov (United States)

    König, Sara; Firle, Anouk-Letizia; Koehnke, Merlin; Banitz, Thomas; Frank, Karin

    2017-04-01

    In general ecology, there is an ongoing debate about the influence of fragmentation on extinction thresholds. Whether this influence is positive or negative depends on the considered type of fragmentation: whereas habitat fragmentation often has a negative influence on population extinction thresholds, spatially fragmented disturbances are observed to have mostly positive effects on the extinction probability. Besides preventing population extinction, in soil systems ecology we are interested in analyzing how ecosystem functions are maintained despite disturbance events. Here, we analyzed the influence of disturbance size and fragmentation on the functional resilience of a microbial soil ecosystem. As soil is a highly heterogeneous environment exposed to disturbances of different spatial configurations, the identification of critical disturbance characteristics for maintaining its functions is crucial. We used the numerical simulation model eColony considering bacterial growth, degradation and dispersal for analyzing the dynamic response of biodegradation examplary for an important microbial ecosystem service to disturbance events of different spatial configurations. We systematically varied the size and the degree of fragmentation of the affected area (disturbance pattern). We found that the influence of the disturbance size on functional recovery and biodegradation performance highly depends on the spatial fragmentation of the disturbance. Generally, biodegradation performance decreases with increasing clumpedness and increasing size of the affected area. After spatially correlated disturbance events, biodegradation performance decreases linear with increasing disturbance size. After spatially fragmented disturbance events, on the other hand, an increase in disturbance size has no influence on the biodegradation performance until a critical disturbance size is reached. Is the affected area bigger than this critical size, the functional performance decreases

  11. Modern warfare as a significant form of zoogeomorphic disturbance upon the landscape

    Science.gov (United States)

    Hupy, Joseph P.; Koehler, Thomas

    2012-07-01

    The damage exerted by warfare on the physical landscape is one, of many, anthropogenic impacts upon the environment. Bombturbation is a term that describes the impacts of explosive munitions upon the landscape. Bombturbation, like many other forms of zoogeomorphology, is a disruptive force, capable of moving large amounts of sediments, and denuding landscapes to the point where changes in micro and mesotopography have long-term implications. The long term implication of bombturbative actions depends on the type and duration of explosive device that rendered the disturbance, and the geographic context of the landscape disturbed; i.e. cultural and physical factors. Recovery from bombturbative activity, in the context of this research, is measured by vegetative regrowth and soil development in cratered disturbances. A comparison and contrast between the two battlefields of Verdun, France and Khe Sanh, Vietnam show that bombturbative actions have significantly altered the topography at each location, thus influencing surface runoff and processes of soil development. Principals of the Runge pedogenic model, or the energy of water moving through the soil profile, best explain how the varying climate and parent material at each location influence post disturbance soil development rates. Whereas the data collected at Verdun suggest that explosive munitions have put that landscape on diverging path of development, thus rendering it much different post-disturbance landscape, Khe Sanh displays much different recovery patterns. Preliminary research at Khe Sanh indicates that reforestation and soil development following disturbance are not so much influenced by bombturbative patterns as land use activities in the area of study.

  12. Modelling effects of forest disturbance history on carbon balance: a deep learning approach using Landsat-time series.

    Science.gov (United States)

    Besnard, S.; Carvalhais, N.; Clevers, J.; Dutrieux, L.; Gans, F.; Herold, M.; Reichstein, M.; Jung, M.

    2017-12-01

    Forests play a crucial role in the global carbon (C) cycle, covering about 30% of the planet's terrestrial surface, accounting for 50% of plant productivity, and storing 45% of all terrestrial C. As such, forest disturbances affect the balance of terrestrial C dioxide (CO 2 ) exchange, with the potential of releasing large amounts of C into the atmosphere. Understanding and quantifying the effect of forest disturbance on terrestrial C metabolism is critical for improving forest C balance estimates and predictions. Here we combine remote sensing, climate, and eddy-covariance (EC) data to study forest land surface-atmosphere C fluxes at more than 180 sites globally. We aim to enhance understanding of C balance in forest ecosystems by capturing the ecological carry-over effect of disturbance historyon C fluxes. Our objectives are to (1) characterize forest disturbance history through the full temporal depth of the Landsat time series (LTS); and (2) to investigate lag and carry-over effects of forest dynamics and climate on ecosystem C fluxes using a data-driven recurrent neural network(RNN). The resulting data-driven model integrates carry-over effects of the system, using LTS, ecosystem productivity, and several abiotic factors. In this study, we show that our RNN algorithm is able to effectively calculate realistic seasonal, interannual, and across-site C flux variabilities based on EC, LTS, and climate data. In addition, our results demonstrate that a deep learning approach with embedded dynamic memory effects offorest dynamics is able to better capture lag and carry-over effects due to soil-vegetation feedback compared to a classic approach considering only the current condition of the ecosystem. Our study paves the way to produce accurate, high resolution carbon fluxes maps, providing morecomprehensive monitoring, mapping, and reporting of the carbon consequences of forest change globally.

  13. Restoration of heterogeneous disturbance regimes for the preservation of endangered species

    Science.gov (United States)

    Steven D. Warren; Reiner Buttner

    2014-01-01

    Disturbance is a natural component of ecosystems. All species, including threatened and endangered species, evolved in the presence of, and are adapted to natural disturbance regimes that vary in the kind, frequency, severity, and duration of disturbance. We investigated the relationship between the level of visible soil disturbance and the density of four endangered...

  14. Human land-use and soil change

    Science.gov (United States)

    Wills, Skye A.; Williams, Candiss O.; Duniway, Michael C.; Veenstra, Jessica; Seybold, Cathy; Pressley, DeAnn

    2017-01-01

    Soil change refers to the alteration of soil and soil properties over time in one location, as opposed to soil variability across space. Although soils change with pedogensis, this chapter focuses on human caused soil change. Soil change can occur with human use and management over long or short time periods and small or large scales. While change can be negative or positive; often soil change is observed when short-term or narrow goals overshadow the other soil’s ecosystem services. Many soils have been changed in their chemical, physical or biological properties through agricultural activities, including cultivation, tillage, weeding, terracing, subsoiling, deep plowing, manure and fertilizer addition, liming, draining, and irrigation. Assessing soil change depends upon the ecosystem services and soil functions being evaluated. The interaction of soil properties with the type and intensity of management and disturbance determines the changes that will be observed. Tillage of cropland disrupts aggregates and decreases soil organic carbon content which can lead to decreased infiltration, increased erosion, and reduced biological function. Improved agricultural management systems can increase soil functions including crop productivity and sustainability. Forest management is most intensive during harvesting and seedling establishment. Most active management in forests causes disturbance of the soil surface which may include loss of forest floor organic materials, increases in bulk density, and increased risk of erosion. In grazing lands, pasture management often includes periods of biological, chemical and physical disturbance in addition to the grazing management imposed on rangelands. Grazing animals have both direct and indirect impacts on soil change. Hoof action can lead to the disturbance of biological crusts and other surface features impairing the soil’s physical, biological and hydrological function. There are clear feedbacks between vegetative systems

  15. Photosynthesis and fluctuating asymmetry as indicators of plant response to soil disturbance in the Fall-Line Sandhills of Georgia: a case study using Rhus copallinum and Ipomoea pandurata

    Science.gov (United States)

    Freeman, D. Carl; Brown, Michelle L.; Duda, Jeffrey J.; Graham, John H.; Emlen, John M.; Krzysik, Anthony J.; Balbach, Harold E.; Kovacic, David A.; Zak, John C.

    2004-01-01

    We examined net photosynthesis, transpiration, stomatal conductance, and leaf fluctuating asymmetry on two species (Rhus copallinum and Ipomoea pandurata) as indicators of stress at nine sites across a gradient of soil disturbance at Fort Benning, Georgia. There were three sites for each of three disturbance levels. Physical habitat disturbance was caused by activities associated with infantry training, including mechanized elements (tanks and personnel carriers) and foot soldiers. In addition, we examined the influence of prescribed burns and microhabitat effects (within meter‐square quadrats centered about the plant) on these measures of plant stress. Net photosynthesis declined with increasing disturbance in the absence of burning for both species. However, when sites were burned the previous year, net photosynthesis increased with increasing disturbance. Developmental instability in Rhus, as measured by fluctuating asymmetry, also declined with increasing disturbance in the absence of burning but increased with disturbance if sites were burned the previous year. Developmental instability was much less sensitive to burning in Ipomoea and in general was lowest at intermediate disturbance sites. Microenvironmental and microhabitat effects were weakly correlated with measures of plant stress when all sites were combined. However, higher correlations were obtained within site categories, especially when the recent history of prescribed burning was used as a category. Finally, using all of the combined data in a discriminant function analysis allowed us to correctly predict the disturbance level of more than 80% of the plants. Plant stress is responsive to both large‐scale perturbations, such as burning, and microhabitat parameters. Because of this, it is important to include macro‐ and microhabitat parameters when assessing stress. Similarly, we found a combination of developmental and physiological indicators of stress was superior to using them

  16. Surface disturbances: their role in accelerating desertification

    Science.gov (United States)

    Belnap, Jayne

    1995-01-01

    Maintaining soil stability and normal water and nutrient cycles in desert systems is critical to avoiding desertification. These particular ecosystem processes are threatened by trampling of livestock and people, and by off-road vehicle use. Soil compaction and disruption of cryptobiotic soil surfaces (composed of cyanobacteria, lichens, and mosses) can result in decreased water availability to vascular plants through decreased water infiltration and increased albedo with possible decreased precipitation. Surface disturbance may also cause accelerated soil loss through wind and water erosion and decreased diversity and abundance of soil biota. In addition, nutrient cycles can be altered through lowered nitrogen and carbon inputs and slowed decomposition of soil organic matter, resulting in lower nutrient levels in associated vascular plants. Some cold desert systems may be especially susceptible to these disruptions due to the paucity of surface-rooting vascular plants for soil stabilization, fewer nitrogen-fixing higher plants, and lower soil temperatures, which slow nutrient cycles. Desert soils may recover slowly from surface disturbances, resulting in increased vulnerability to desertification. Recovery from compaction and decreased soil stability is estimated to take several hundred years. Re-establishment rates for soil bacterial and fungal populations are not known. The nitrogen fixation capability of soil requires at least 50 years to recover. Recovery of crusts can be hampered by large amounts of moving sediment, and re-establishment can be extremely difficult in some areas. Given the sensitivity of these resources and slow recovery times, desertification threatens million of hectares of semiarid lands in the United States.

  17. Timing is everything: priority effects alter community invasibility after disturbance.

    Science.gov (United States)

    Symons, Celia C; Arnott, Shelley E

    2014-02-01

    Theory suggests that communities should be more open to the establishment of regional species following disturbance because disturbance may make more resources available to dispersers. However, after an initial period of high invasibility, growth of the resident community may lead to the monopolization of local resources and decreased probability of successful colonist establishment. During press disturbances (i.e., directional environmental change), it remains unclear what effect regional dispersal will have on local community structure if the establishment of later arriving species is affected by early arriving species (i.e., if priority effects are important). To determine the relationship between time-since-disturbance and invasibility, we conducted a fully factorial field mesocosm experiment that exposed tundra zooplankton communities to two emerging stressors - nutrient and salt addition, and manipulated the arrival timing of regional dispersers. Our results demonstrate that invasibility decreases with increasing time-since-disturbance as abundance (nutrient treatments) or species richness (salt treatments) increases in the resident community. Results suggest that the relative timing of dispersal and environmental change will modify the importance of priority effects in determining species composition after a press disturbance.

  18. A placebo-controlled study to investigate the effect of Dog Appeasing Pheromone and other environmental and management factors on the reports of disturbance and house soiling during the night in recently adopted puppies (Canis familiaris

    OpenAIRE

    Taylor, Katy; Mills, Daniel S.

    2007-01-01

    Disturbance and house soiling during the night are common problems faced by the new puppy dog owner. They may result as consequence of a mismatch between the developmental status of the puppy and its new environment and/or separation distress in a typically social animal. The aim of this study was to examine the effect of Dog Appeasing Pheromone (DAP, Ceva Santé Animale) as well as a range of other management and environmental factors that might affect this process. It has been suggested tha...

  19. Swine manure injection with low-disturbance applicator and cover crops reduce phosphorus losses.

    Science.gov (United States)

    Kovar, J L; Moorman, T B; Singer, J W; Cambardella, C A; Tomer, M D

    2011-01-01

    Injection of liquid swine manure disturbs surface soil so that runoff from treated lands can transport sediment and nutrients to surface waters. We determined the effect of two manure application methods on P fate in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] production system, with and without a winter rye (Secale cereale L.)-oat (Avena sativa L.) cover crop. Treatments included: (i) no manure; (ii) knife injection; and (iii) low-disturbance injection, each with and without the cover crop. Simulated rainfall runoff was analyzed for dissolved reactive P (DRP) and total P (TP). Rainfall was applied 8 d after manure application (early November) and again in May after emergence of the corn crop. Manure application increased soil bioavailable P in the 20- to 30-cm layer following knife injection and in the 5- to 20-cm layer following low-disturbance injection. The low-disturbance system caused less damage to the cover crop, so that P uptake was more than threefold greater. Losses of DRP were greater in both fall and spring following low-disturbance injection; however, application method had no effect on TP loads in runoff in either season. The cover crop reduced fall TP losses from plots with manure applied by either method. In spring, DRP losses were significantly higher from plots with the recently killed cover crop, but TP losses were not affected. Low-disturbance injection of swine manure into a standing cover crop can minimize plant damage and P losses in surface runoff while providing optimum P availability to a subsequent agronomic crop.

  20. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  1. Singular and combined effects of blowdown, salvage logging, and wildfire on forest floor and soil mercury pools

    Science.gov (United States)

    Carl P.J. Mitchell; Randall K. Kolka; Shawn. Fraver

    2012-01-01

    A number of factors influence the amount of mercury (Hg) in forest floors and soils, including deposition, volatile emission, leaching, and disturbances such as fire. Currently the impact on soil Hg pools from other widespread forest disturbances such as blowdown and management practices like salvage logging are unknown. Moreover, ecological and biogeochemical...

  2. Molecular characterization of soil bacterial community in a perhumid, low mountain forest.

    Science.gov (United States)

    Lin, Yu-Te; Whitman, William B; Coleman, David C; Chih-Yu, Chiu

    2011-01-01

    Forest disturbance often results in changes in soil properties and microbial communities. In the present study, we characterized a soil bacterial community subjected to disturbance using 16S rRNA gene clone libraries. The community was from a disturbed broad-leaved, low mountain forest ecosystem at Huoshaoliao (HSL) located in northern Taiwan. This locality receives more than 4,000 mm annual precipitation, one of the highest precipitations in Taiwan. Based on the Shannon diversity index, Chao1 estimator, richness and rarefaction curve analysis, the bacterial community in HSL forest soils was more diverse than those previously investigated in natural and disturbed forest soils with colder or less humid weather conditions. Analysis of molecular variance also revealed that the bacterial community in disturbed soils significantly differed from natural forest soils. Most of the abundant operational taxonomic units (OTUs) in the disturbed soil community at HSL were less abundant or absent in other soils. The disturbances influenced the composition of bacterial communities in natural and disturbed forests and increased the diversity of the disturbed forest soil community. Furthermore, the warmer and humid weather conditions could also increase community diversity in HSL soils.

  3. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area...

  4. Species frequency dynamics in an old-field succession: Effects of disturbance, fertilization and scale

    Science.gov (United States)

    Gibson, D.J.; Middleton, B.A.; Foster, K.; Honu, Y.A.K.; Hoyer, E.W.; Mathis, M.

    2005-01-01

    Question: Can patterns of species frequency in an old-field be explained within the context of a metapopulation model? Are the patterns observed related to time, spatial scale, disturbance, and nutrient availability? Location: Upland and lowland old-fields in Illinois, USA. Method: Species richness was recorded annually for seven years following plowing of an upland and lowland old-field subject to crossed fertilizer and disturbance treatments (mowing and rototilling). Species occupancy distributions were assessed with respect to the numbers of core and satellite species. Results: In both fields, species richness became higher in disturbed plots than in undisturbed plots over time, and decreased in fertilized plots irrespective of time. A bimodal pattern of species richness consistent with the Core-satellite species (CSS) hypothesis occurred in the initial seed bank and through the course of early succession. The identity of native and exotic core species (those present in > 90% of blocks) changed with time. Some core species from the seed bank became core species in the vegetation, albeit after several years. At the scale of individual plots, a bimodal fit consistent with the CSS hypothesis applied only in year 1 and rarely thereafter. Conclusions: The CSS hypothesis provides a metapopulation perspective for understanding patterns of species richness but requires the assessment of spatial and temporal scaling effects. Regional processes (e.g. propagule availability) at the largest scale have the greatest impact influencing community structure during early secondary succession. Local processes (e.g., disturbance and soil nutrients) are more important at smaller scales and place constraints on species establishment and community structure of both native and exotic species. Under the highest intensity of disturbance, exotic species may be able to use resources unavailable to, or unused by, native species. ?? IAVS; Opulus Press.

  5. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Science.gov (United States)

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  6. Aparecimento de plantas espontâneas com e sem perturbação do solo em condições mediterrânicas Appearance of spontaneous plants from disturbed and undisturbed soil under mediterranean conditions

    Directory of Open Access Journals (Sweden)

    José Manuel Godinho Calado

    2008-12-01

    Full Text Available A diminuição da perturbação do solo é de extrema importância para a manutenção e preservação dos sistemas agrícolas. Por isso, o estudo realizado neste trabalho tinha como objectivo verificar o aparecimento das plantas espontâneas a partir do solo com e sem perturbação. A população de plantas emergidas inicialmente, no Outono, foi controlada com perturbação do solo através da simulação da mobilização realizada pelo escarificador e sem perturbação do solo em que se aplicou um herbicida total e não residual. A experimentação foi efectuada em solos Mediterrâneos durante quatro anos, com um delineamento experimental em blocos casualizados e oito repetições. De acordo com os resultados, verifica-se que a perturbação do solo efectuada para controlar a flora espontânea no Outono influencia significativamente o aparecimento das plantas em condições mediterrânicas e permite obter maior densidade populacional, que aumenta com o acréscimo da precipitação acumulada. Daqui conclui-se que em sistemas com diminuição da perturbação do solo, como por exemplo, de sementeira directa, é possível decrescer a infestação nas culturas de Outono-Inverno.The reduction of soil disturbance is extremely important for the conservation of soil and thus for the sustainability of agricultural systems. Soil disturbance interferes with a number of soil parameters including its fauna and flora. This paper deals with the comparison of the appearance of spontaneous plants from disturbed and undisturbed soil. A study was conducted to compare the appearance of spontaneous flora in autumn after the simulation of soil tillage by a tine cultivator with the control of the already emerged plants through the application of a total herbicide and without any soil disturbance. The trials were realized on typical Mediterranean soils (Luvisol over a period of four years in a completely randomized block design and with eight replications. The

  7. INFILTRATION THROUGH DISTURBED URBAN SOILS AND COMPOST-AMENDED SOIL EFFECTS OF RUNOFF QUALITY AND QUANTITY

    Science.gov (United States)

    This project examined a common, but poorly understood, problem associated with land development, namely the modifications made to soil structure and the associated reduced rainfall infiltration and increased runoff. The project was divided into two separate major tasks: 1) to tes...

  8. Long-term Stabilization of Disturbed Slopes Resulting from Construction Operations

    Science.gov (United States)

    2018-01-01

    Highway construction disturbs soil, which must be stabilized to prevent migration of soil particles into water bodies. Stabilization is enforced by law, regulation, and a permit system. Stabilization is most efficiently attained by reestablishment of...

  9. Biological soil crusts across disturbance–recovery scenarios: effect of grazing regime on community dynamics.

    Science.gov (United States)

    Concostrina-Zubiri, L; Huber-Sannwald, E; Martínez, I; Flores Flores, J L; Reyes-Agüero, J A; Escude, A; Belnap, J

    Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.

  10. Net soil respiration and greenhouse gas balance along a sequence of forest disturbance to smallholder rubber and oil palm plantations in Sumatra

    Science.gov (United States)

    Khusyu Aini, Fitri; Hergoualc'h, Kristell; Smith, Jo; Verchot, Louis; Martius, Christopher

    2017-04-01

    The rapid increase in demand for land to establish oil palm and rubber plantations has led to the conversion of forests, with potential impacts on greenhouse gas emissions and on climate change. This study evaluates the net greenhouse gas balance following forest change to other land uses, i.e. one year rubber plantation, twenty-year rubber plantation and eight year oil palm plantation on Sumatran mineral soils. None of the plantations had ever been fertilized previously. During this study they were fertilized to provide nitrogen at the recommended rate used by farmers (33.3 kg N ha-1 y-1). The ecosystem stores carbon in litterfall, standing litter biomass (undergrowth vegetation, leaves, twigs, litter on the soil surface), soil organic matter, root biomass, and standing tree biomass. It releases carbon to the atmosphere through soil respiration fluxes, negative values indicating that carbon is stored by the land use change and positive values indicating emissions to the atmosphere. Net soil respiration was assessed using a mass balance approach: standing litter and tree biomass were measured once; the rate of carbon accumulation from standing litter and tree biomass was calculated by dividing the stock by the age of plantation or the time since logging started in the disturbed forest. The carbon accumulation in standing litter, tree biomass in the forest and soil organic matter for all land-uses was estimated from available in the literature. Root biomass for each land-use system was calculated using the root:shoot ratio. The net soil respiration of carbon dioxide from the forest, disturbed forest, one year rubber plantation, twenty-year rubber plantation and oil palm plantation were calculated to be -6 (± 5), 12 (± 6), 11 (± 15), 10 (± 5), 39 (± 7) Mg ha-1 y-1, respectively. Soil nitrous oxide, methane and litterfall were measured for 14 months and respiration fluxes were measured for 5 months across land uses and different seasons. The measured emissions of

  11. Successful lichen translocation on disturbed gypsum areas: A test with adhesives to promote the recovery of biological soil crusts

    Science.gov (United States)

    Ballesteros, M.; Ayerbe, J.; Casares, M.; Cañadas, E. M.; Lorite, J.

    2017-04-01

    The loss of biological soil crusts represents a challenge for the restoration of disturbed environments, specifically in particular substrates hosting unique lichen communities. However, the recovery of lichen species affected by mining is rarely addressed in restoration projects. Here, we evaluate the translocation of Diploschistes diacapsis, a representative species of gypsum lichen communities affected by quarrying. We tested how a selection of adhesives could improve thallus attachment to the substrate and affect lichen vitality (as CO2 exchange and fluorescence) in rainfall-simulation and field experiments. Treatments included: white glue, water, hydroseeding stabiliser, gum arabic, synthetic resin, and a control with no adhesive. Attachment differed only in the field, where white glue and water performed best. Adhesives altered CO2 exchange and fluorescence yield. Notably, wet spoils allowed thalli to bind to the substrate after drying, revealing as the most suitable option for translocation. The satisfactory results applying water on gypsum spoils are encouraging to test this methodology with other lichen species. Implementing these measures in restoration projects would be relatively easy and cost-effective. It would help not only to recover lichen species in the disturbed areas but also to take advantage of an extremely valuable biological material that otherwise would be lost.

  12. Soil biology research across latitude, elevation and disturbance gradients: A review of forest studies from Puerto Rico during the past 25 years

    Science.gov (United States)

    Grizelle González; D. Lodge

    2017-01-01

    Progress in understanding changes in soil biology in response to latitude, elevation and disturbance gradients has generally lagged behind studies of above-ground plants and animals owing to methodological constraints and high diversity and complexity of interactions in below-ground food webs. New methods have opened research opportunities in below-ground systems,...

  13. Soils apart from equilibrium – consequences for soil carbon balance modelling

    Directory of Open Access Journals (Sweden)

    T. Wutzler

    2007-01-01

    Full Text Available Many projections of the soil carbon sink or source are based on kinetically defined carbon pool models. Para-meters of these models are often determined in a way that the steady state of the model matches observed carbon stocks. The underlying simplifying assumption is that observed carbon stocks are near equilibrium. This assumption is challenged by observations of very old soils that do still accumulate carbon. In this modelling study we explored the consequences of the case where soils are apart from equilibrium. Calculation of equilibrium states of soils that are currently accumulating small amounts of carbon were performed using the Yasso model. It was found that already very small current accumulation rates cause big changes in theoretical equilibrium stocks, which can virtually approach infinity. We conclude that soils that have been disturbed several centuries ago are not in equilibrium but in a transient state because of the slowly ongoing accumulation of the slowest pool. A first consequence is that model calibrations to current carbon stocks that assume equilibrium state, overestimate the decay rate of the slowest pool. A second consequence is that spin-up runs (simulations until equilibrium overestimate stocks of recently disturbed sites. In order to account for these consequences, we propose a transient correction. This correction prescribes a lower decay rate of the slowest pool and accounts for disturbances in the past by decreasing the spin-up-run predicted stocks to match an independent estimate of current soil carbon stocks. Application of this transient correction at a Central European beech forest site with a typical disturbance history resulted in an additional carbon fixation of 5.7±1.5 tC/ha within 100 years. Carbon storage capacity of disturbed forest soils is potentially much higher than currently assumed. Simulations that do not adequately account for the transient state of soil carbon stocks neglect a considerable

  14. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances.

    Science.gov (United States)

    Ghedini, Giulia; Russell, Bayden D; Connell, Sean D

    2015-02-01

    Disturbance often results in small changes in community structure, but the probability of transitioning to contrasting states increases when multiple disturbances combine. Nevertheless, we have limited insights into the mechanisms that stabilise communities, particularly how perturbations can be absorbed without restructuring (i.e. resistance). Here, we expand the concept of compensatory dynamics to include countervailing mechanisms that absorb disturbances through trophic interactions. By definition, 'compensation' occurs if a specific disturbance stimulates a proportional countervailing response that eliminates its otherwise unchecked effect. We show that the compounding effects of disturbances from local to global scales (i.e. local canopy-loss, eutrophication, ocean acidification) increasingly promote the expansion of weedy species, but that this response is countered by a proportional increase in grazing. Finally, we explore the relatively unrecognised role of compensatory effects, which are likely to maintain the resistance of communities to disturbance more deeply than current thinking allows. © 2015 John Wiley & Sons Ltd/CNRS.

  15. A discrete element model for soil-sweep interaction in three different soils

    DEFF Research Database (Denmark)

    Chen, Y; Munkholm, Lars Juhl; Nyord, Tavs

    2013-01-01

    . To serve the model development, the sweep was tested in three different soils (coarse sand, loamy sand, and sandy loam). In the tests, soil cutting forces (draught and vertical forces) and soil disturbance characteristics (soil cross-section disturbance and surface deformation) resulting from the sweep...... were measured. The measured draught and vertical forces were used in calibrations of the most sensitive model parameter, particle stiffness. The calibrated particle stiffness was 0.75 × 103 N m−1 for the coarse sand, 2.75 × 103 N m−1 for the loamy sand, and 6 × 103 N m−1 for the sandy loam...

  16. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests.

    Science.gov (United States)

    Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming

    2015-09-23

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m(-2)·yr(-1)), P addition (15 g P m(-2)·yr(-1)), and N and P addition (15 + 15 g N and P m(-2)·yr(-1), respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests.

  17. Degradation of dibutyl phthalate in two contrasting agricultural soils and its long-term effects on soil microbial community.

    Science.gov (United States)

    Cheng, Jinjin; Liu, Yanai; Wan, Qun; Yuan, Li; Yu, Xiangyang

    2018-06-04

    Due to its widespread application and large-scale production, dibutyl phthalate (DBP) has become one of the most frequently identified phthalic acid esters (PAEs) in soils. The fate of DBP and its effects on microbial communities in soils with contrasting properties have seldom been studied. In this study, the degradation of DBP and its long-term effects on the soil microbial community were investigated in aquic cambisols and udic ferrosols. The half-lives of DBP in aquic cambisols and udic ferrosols were found to be 0.286-1.41 days and 0.870-20.4 days, respectively, indicating that DBP was degraded faster in aquic cambisols. In addition, the degradation of DBP in aquic cambisols was less vulnerable to adverse incubation conditions, including high DBP concentration, low temperature and low moisture. These results can be ascribed to the higher microbial abundance and activity in aquic cambisols than in udic ferrosols. During DBP degradation, the toxic metabolite monobutyl phthalate (MBP) was present only transiently and did not accumulate in the two soils. After 60 days of incubation, the degradation-resistant DBP residue concentrations were as high as 1.10 and 1.34 mg/kg, and the relative abundance of 8.51%-12.9% of bacterial genera and 5.59%-6.02% of fungal genera was significantly disturbed by DBP in both test soils. The results from this study highlight the need to comprehensively evaluate the environmental risks of degradation-resistant DBP residues and the impact of DBP contamination on soil microbial functions. Copyright © 2018. Published by Elsevier B.V.

  18. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    Science.gov (United States)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-12-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global scale, we apply a Markov Chain Monte Carlo based model-data-fusion approach into the CArbon DAta-MOdel fraMework (CARDAMOM). We assimilate MODIS LAI and burned area, plant-trait data, and use the Harmonized World Soil Database (HWSD) and maps of above ground biomass as prior knowledge for initial conditions. We optimize model parameters based on (a) globally spanning observations and (b) ecological and dynamic constraints that force single parameter values and parameter inter-dependencies to be representative of real world processes. We determine the spatial and temporal dynamics of major terrestrial C fluxes and model parameter values on a global scale (GPP = 123 +/- 8 Pg C yr-1 & NEE = -1.8 +/- 2.7 Pg C yr-1). We further show that the incorporation of disturbance fluxes, and accounting for their instantaneous or delayed effect, is of critical importance in constraining global C cycle dynamics, particularly in the tropics. In a higher resolution case study centred on the Amazon Basin we show how fires not only trigger large instantaneous emissions of burned matter, but also how they are responsible for a sustained reduction of up to 50% in plant uptake following the depletion of biomass stocks. The combination of these two fire-induced effects leads to a 1 g C m-2 d-1reduction in the strength of the net terrestrial carbon sink. Through our simulations at regional and global scale, we advocate the need to assimilate disturbance metrics in global terrestrial carbon cycle models to bridge the gap between globally spanning terrestrial carbon cycle data and the full dynamics of the ecosystem C cycle. Disturbances are especially important because their quick occurrence may have

  19. Effect of supplemental Ascorbic acid and disturbance stress on the ...

    African Journals Online (AJOL)

    Effect of supplemental Ascorbic acid and disturbance stress on the performance of broiler chickens. ... Nigerian Journal of Animal Production ... Results showed that there were no significant interactions between dietary ascorbic acid supplementation and disturbance stress levels on any of the performance data considered.

  20. Effect of soil stabilized by cement on dynamic response of machine foundations

    Directory of Open Access Journals (Sweden)

    Al-Wakel Saad

    2018-01-01

    Full Text Available Machine foundations require significant attention from designers. The main goal of the design of machine foundation is to limit the amplitude displacement and not disturb the people who work near the machine. In some cases, if the design of machine foundations does not satisfy the acceptable value of the dynamic response (such as maximum amplitude of displacement, the stabilization of soil under the machine foundation may be used to decrease the amplitude of displacement. This paper outlines effect of stabilized soil under the foundation by cement on the displacement response of machine foundations. Three-dimensional analyses by using finite element method are carried out to investigate the effect of depth of stabilized layer with different percentage of cement content on the dynamic response of the machine foundation. In addition, the effect of area stabilized by cement material on the dynamic response of machine foundation is investigated. The results shown that, the dynamic response of machine foundations generally decreases with increasing the depth of soil layer stabilized with cement. A significant decrease in the displacement of machine foundations is occurred for the stabilized soil layer with a depth of two times of the width of foundation, and the optimum percentage of cement for stabilizing is 6%.

  1. The effect of inclined soil layers on surface vibration from underground railways using a semi-analytical approach

    International Nuclear Information System (INIS)

    Jones, S; Hunt, H

    2009-01-01

    Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect (± 10dB) on the surface vibration response.

  2. Disturbance is required for CO2-dependent promotion of woody plant growth in grasslands

    DEFF Research Database (Denmark)

    Loveys, Beth R.; Egerton, John J. G.; Bruhn, Dan

    2010-01-01

    The relative effects of disturbance (here defined as bare soil), competition for edaphic resources, thermal interference and elevated [CO2] on growth of tree seedlings in grasslands were studied under field conditions. Snow gum (Eucalyptus pauciflora Sieb. ex Spreng.) seedlings were grown in open...

  3. Towards a methodology for removing and reconstructing soil protists with intact soil microbial communities

    Science.gov (United States)

    Hu, Junwei; Tsegaye Gebremikael, Mesfin; Salehi Hosseini, Pezhman; De Neve, Stefaan

    2017-04-01

    Soil ecological theories on the role of soil fauna groups in soil functions are often tested in highly artificial conditions, i.e. on completely sterilized soils or pure quartz sand re-inoculated with a small selection of these fauna groups. Due to the variable sensitivity of different soil biota groups to gamma irradiation, the precise doses that can be administered, and the relatively small disturbance of soil physical and chemical properties (relative to e.g. autoclaving, freezing-thawing and chemical agents), gamma irradiation has been employed to selectively eliminate soil organisms. In recent research we managed to realistically estimate on the contribution of the entire nematode communities to C and N mineralization in soil, by selective removal of nematodes at 5 kGy gamma irradiation doses followed by reinoculation. However, we did not assess the population dynamics of protozoa in response to this irradiation, i.e. we could not assess the potential contribution of protists to the mineralization process. Selective removal of protists from soils with minimal disturbance of the soil microflora has never been attempted and constitutes a highly challenging but potentially groundbreaking technique in soil ecology. Accordingly, the objective of this research is to modify the successful methodology of selective elimination of nematodes, to selectively eliminate soil fauna including nematodes and protists with minimal effects on the soil microbial community and reconstruct soil protists and microbial communities in completely sterilized soil. To this end, we here compared two different approaches: 1) remove nematodes and protists while keeping the microbial community intact (through optimizing gamma irradiation doses); 2) reconstruct protists and microbial communities in sterilized soil (through adding multicellular fauna free pulverized soil). The experiment consists of 7 treatments with soil collected from 0 to 15 cm layer of an organically managed agricultural

  4. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... compost had greater effect in improving tomato productivity. A decade-long application of composts on loamy sand improved basic chemical and physical properties which were reflected in increased fruit yield in tomato. Since no negative effect of compost was observed, we suggest that sandy soils may serve...... and greenhouse tomato productivity. Disturbed and intact soil samples were taken from a decade-long compost field experiment on loamy sand with three compost types at application rate of 30 m3 ha-1 yr-1 (7.5 ton ha-1 yr-1). The soils were characterized for chemical and physical properties. Tomato was planted...

  5. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone

    Science.gov (United States)

    Jacob M. Griffin; Monica G. Turner; Martin Simard

    2011-01-01

    Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in...

  6. Effect of land use change on methane oxidation in temperate forest and grassland soils

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D.S.; Valentine, D.W.; Mosier, A.R.; Parton, W.J.; Schimel, D.S. (Colorado State University, Fort Collins, CO (USA). Natural Resources Ecology Lab.)

    Evidence is accumulating that land use changes and other human activity during the past 100 to 200 years have contributed to decreased CH[sub 4] oxidation in the soil. Increased N additions to temperate forest soils in the northeastern United States decreased CH[sub 4] uptake by 30 to 60%, and increased N fertilization and conversion to cropland in temperate grasslands decreased CH[sub 4] uptake by 30 to 75%. Using these data, a series of calculations were made to estimate the impact of land use and management changes which have altered soil, the CH[sub 4] sink in temperate forest and grassland ecosystems. As the atmospheric mixing ratio of CH[sub 4] has increased during the past 150 y, the temperate CH[sub 4] sink has risen from approximately 8 Tg y[sup -1] to 27 Tg y[sup -1], assuming no loss of land cover to cropland conversion. The net effect of intensive land cover changes and extensive chronic disturbance (i.e., increased atmospheric N deposition) to these ecosystems have resulted in about 30% reduction in the CH[sub 4] budget even more as atmospheric CH[sub 4] concentrations increase and as a result of further disturbance to other biomes. Without accounting for this approximately 20 Tg y[sup -1] temperate soil sink, the atmospheric CH[sub 4] concentration would be increasing about 1.5 times the current rate. 39 refs., 2 figs., 1 tab.

  7. Chemical, physical and biological characteristics of urban soils. Chapter 7

    Science.gov (United States)

    Richard V. Pouyat; Katalin Szlavecz; Ian D. Yesilonis; Peter M. Groffman; Kirsten. Schwarz

    2010-01-01

    Urban soils provide an array of ecosystem services to inhabitants of cities and towns. Urbanization affects soils and their capacity to provide ecosystem services directly through disturbance and management (e.g., irrigation) and indirectly through changes in the environment (e.g., heat island effect and pollution). Both direct and indirect effects contribute to form a...

  8. Disturbing forest disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Volney, W.J.A.; Hirsch, K.G. [Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB (Canada)

    2005-10-01

    This paper described the role that disturbances play in maintaining the ecological integrity of Canadian boreal forests. Potential adaptation options to address the challenges that these disturbances present were also examined. Many forest ecosystems need fire for regeneration, while other forests rely on a cool, wet disintegration process driven by insects and commensal fungi feeding on trees to effect renewal. While there are characteristic natural, temporal and spatial patterns to these disturbances, recent work has demonstrated that the disturbances are being perturbed by climatic change that has been compounded by anthropogenic disturbances in forests. Fire influences species composition and age structure, regulates forest insects and diseases, affects nutrient cycling and energy fluxes, and maintains the productivity of different habitats. Longer fire seasons as a result of climatic change will lead to higher intensity fires that may more easily evade initial attacks and become problematic. Fire regimes elevated beyond the range of natural variation will have a dramatic effect on the regional distribution and functioning of forest ecosystems and pose a threat to the safety and prosperity of people. While it was acknowledged that if insect outbreaks were to be controlled on the entire forest estate, the productivity represented by dead wood would be lost, it was suggested that insects such as the forest tent caterpillar and the spruce bud worm may also pose a greater threat as the climate gets warmer and drier. Together with fungal associates, saproxylic arthropods are active in nutrient cycling and ultimately determine the fertility of forest sites. It was suggested that the production of an age class structure and forest mosaic would render the forest landscape less vulnerable to the more negative aspects of climate change on vegetation response. It was concluded that novel management design paradigms are needed to successfully reduce the risk from threats

  9. Soil cover of gas-bearing areas

    Science.gov (United States)

    Mozharova, N. V.

    2010-08-01

    Natural soils with disturbed functioning parameters compared to the background soils with conservative technogenic-pedogenic features were distinguished on vast areas above the artificial underground gas storages in the zones of spreading and predominant impact of hydrocarbon gases. The disturbance of the functioning parameters is related to the increase in the methane concentration, the bacterial oxidation intensity and destruction, and the complex microbiological and physicochemical synthesis of iron oxides. The technogenic-pedogenic features include neoformations of bacteriomorphic microdispersed iron oxides. The impurity components consist of elements typical for biogenic structures. New soil layers, horizons, specific anthropogenically modified soils, and soil-like structures were formed on small areas in the industrial zones of underground gas storages due to the mechanical disturbance, the deposition of drilling sludge, and the chemical contamination. Among the soils, postlithogenic formations were identified—chemotechnosols (soddy-podzolic soils and chernozems), as well as synlithogenic ones: strato-chemotechnosols and stratochemoembryozems. The soil-like bodies included postlithogenic soil-like structures (chemotechnozems) and synlithogenic ones (strato-chemotechnozems). A substantive approach was used for the soil diagnostics. The morphological and magnetic profiles and the physical, chemical, and physicochemical properties of the soils were analyzed. The micromorphological composition of the soil magnetic fraction was used as a magnetic label.

  10. Riparian soil development linked to forest succession above and below dams along the Elwha River, Washington, USA

    Science.gov (United States)

    Perry, Laura G; Shafroth, Patrick B.; Perakis, Steven

    2017-01-01

    Riparian forest soils can be highly dynamic, due to frequent fluvial disturbance, erosion, and sediment deposition, but effects of dams on riparian soils are poorly understood. We examined soils along toposequences within three river segments located upstream, between, and downstream of two dams on the Elwha River to evaluate relationships between riparian soil development and forest age, succession, and channel proximity, explore dam effects on riparian soils, and provide a baseline for the largest dam removal in history. We found that older, later-successional forests and geomorphic surfaces contained soils with finer texture and greater depth to cobble, supporting greater forest floor mass, mineral soil nutrient levels, and cation exchange. Forest stand age was a better predictor than channel proximity for many soil characteristics, though elevation and distance from the channel were often also important, highlighting how complex interactions between fluvial disturbance, sediment deposition, and biotic retention regulate soil development in this ecosystem. Soils between the dams, and to a lesser extent below the lower dam, had finer textures and higher mineral soil carbon, nitrogen, and cation exchange than above the dams. These results suggested that decreased fluvial disturbance below the dams, due to reduced sediment supply and channel stabilization, accelerated soil development. In addition, reduced sediment supply below the dams may have decreased soil phosphorus. Soil δ15N suggested that salmon exclusion by the dams had no discernable effect on nitrogen inputs to upstream soils. Recent dam removal may alter riparian soils further, with ongoing implications for riparian ecosystems.

  11. Predicting saturated hydraulic conductivity using soil morphological properties

    Directory of Open Access Journals (Sweden)

    Gülay Karahan

    2016-01-01

    Full Text Available Many studies have been conducted to predict soil saturated hydraulic conductivity (Ks by parametric soil properties such as bulk density and particle-size distribution. Although soil morphological properties have a strong effect on Ks, studies predicting Ks by soil morphological properties such as type, size, and strength of soil structure; type, orientation and quantity of soil pores and roots and consistency are rare. This study aimed at evaluating soil morphological properties to predict Ks. Undisturbed soil samples (15 cm length and 8.0 cm id. were collected from topsoil (0-15 cm and subsoil (15-30 cm (120 samples with a tractor operated soil sampler at sixty randomly selected sampling sites on a paddy field and an adjecent grassland in Central Anatolia (Cankırı, Turkey. Synchronized disturbed soil samples were taken from the same sampling sites and sampling depths for basic soil analyses. Saturated hydraulic conductivity was measured on the soil columns using a constant-head permeameter. Following the Ks measurements, the upper part of soil columns were covered to prevent evaporation and colums were left to drain in the laboratory. When the water flow through the column was stopped, a subsample were taken for bulk density and then soil columns were disturbed for describing the soil morphological properties. In addition, soil texture, bulk density, pH, field capacity, wilting point, cation exchange capacity, specific surface area, aggregate stability, organic matter, and calcium carbonate were measured on the synchronized disturbed soil samples. The data were divided into training (80 data values and validation (40 data values sets. Measured values of Ks ranged from 0.0036 to 2.14 cmh-1 with a mean of 0.86 cmh-1. The Ks was predicted from the soil morphological and parametric properties by stepwise multiple linear regression analysis. Soil structure class, stickiness, pore-size, root-size, and pore-quantity contributed to the Ks prediction

  12. Forward and backward evolution of the Calhoun CZO: the effect of natural and anthropogenic disturbances

    Science.gov (United States)

    Bonetti, S.; Porporato, A. M.

    2017-12-01

    The time evolution of a landscape topography through erosional and depositional mechanisms is modified by both human and natural disturbances. This is particularly evident in the Calhoun Critical Zone Observatory, where decades of land-use resulted in a distinct topography with gullies, interfluves, hillslopes and significantly eroded areas. Understanding the role of different geomorphological processes that led to these conditions is crucial to reconstruct sediment and soil carbon fluxes, predict critical conditions of landscape degradation, and implement strategies of land recovery. To model these dynamics, an analytical theory of the drainage area (which represents a surrogate for water surface runoff responsible for fluvial incision) is used to evolve ridge and valley lines. Furthermore, the coupled dynamics of surface water runoff and landscape evolution is analyzed theoretically and numerically to detect thresholds leading to either stable landscape configurations or critical conditions of land erosion. Observed erosional cycles due to vegetation disturbances are explored and used to predict future evolutions under various levels of anthropogenic disturbance.

  13. Soil microbial metabolic quotient (qCO2) of twelve ecosystems of Mt. Kilimanjaro

    Science.gov (United States)

    Pabst, Holger; Gerschlauer, Friederike; Kiese, Ralf; Kuzyakov, Yakov

    2014-05-01

    Soil organic carbon, microbial biomass carbon (MBC) and the metabolic quotient qCO2 - as sensitive and important parameters for soil fertility and C turnover - are strongly affected by land-use changes all over the world. These effects are particularly distinct upon conversion of natural to agricultural ecosystems due to very fast carbon (C) and nutrient cycles and high vulnerability, especially in the tropics. In this study, we used an elevational gradient on Mt. Kilimanjaro to investigate the effects of land-use change and elevation on Corg, MBC and qCO2. Down to a soil depth of 18 cm we compared 4 natural (Helichrysum, Erica forest, Podocarpus forest, Ocotea forest), 5 seminatural (disturbed Podocarpus forest, disturbed Ocotea forest, lower montane forest, grassland, savannah), 1 sustainably used (homegarden) and 2 intensively used ecosystems (coffee plantation, maize field) on an elevation gradient from 950 to 3880 m a.s.l.. Using an incubation device, soil CO2-efflux of 18 cm deep soil cores was measured under field moist conditions and mean annual temperature. MBC to Corg ratios varied between 0.7 and 2.3%. qCO2 increased with magnitude of the disturbance, albeit this effect decreased with elevation. Following the annual precipitation of the ecosystems, both, Corg and MBC showed a hum-shaped distribution with elevation, whereas their maxima were between 2500 and 3000 m a.s.l.. Additionaly, Corg and MBC contents were significantly reduced in intensively used agricultural systems. We conclude that the soil microbial biomass and its activity in Mt. Kilimanjaro ecosystems are strongly altered by land-use. This effect is more distinct in lower than in higher elevated ecosystems and strongly dependent on the magnitude of disturbance.

  14. Forest harvesting effects on soil temperature, moisture, and respiration in a bottomland hardwood forest

    International Nuclear Information System (INIS)

    Londo, A.J.; Messina, M.G.; Schoenholtz, S.H.

    1999-01-01

    The effect of forest disturbance on C cycling has become an issue, given concerns about escalating atmospheric C content. The authors examined the effects of harvest intensity on in situ and laboratory mineral soil respiration in an East Texas bottomland hardwood forest between 6 and 22 mo after harvesting. Treatments included a clearcut, a partial cut wherein approximately 58% of the basal area was removed, and an unharvested control. The soda-lime absorption technique was used for in situ respiration (CO 2 efflux) and the wet alkali method (NaOH) was used for laboratory mineral soil respiration. Soil temperature and moisture content were also measured. Harvesting significantly increased in situ respiration during most sampling periods. This effect was attributed to an increase in live root and microflora activity associated with postharvesting revegetation. In situ respiration increased exponentially (Q 10 relationship) as treatment soil temperatures increased, but followed a parabolic-type pattern through the range of soil moisture measured (mean range 10.4--31.5%). Mean rates of laboratory mineral soil respiration measured during the study were unaffected by cutting treatment for most sampling sessions. Overall, the mean rate of CO 2 efflux in the clearcuts was significantly higher than that in the partial cuts, which in turn was significantly higher than that in the controls. Mass balance estimates indicate that these treatment differences will have little or no long-term effect on C sequestration of these managed forests

  15. Coarse woody debris and soil respiration 6 years post-tornado in a Piedmont forest blowdown

    Science.gov (United States)

    Oldfield, C.; Peterson, C. J.

    2017-12-01

    Severe wind disturbances can rapidly change carbon pools and fluxes in forests, causing a site to switch from a carbon sink to a source in a matter of minutes. Moreover, salvage logging after a disturbance can result in disturbed and compacted soil, altered woody debris carbon pools, and seedling mortality, all of which may further alter carbon dynamics beyond that caused by the disturbance itself. We measured down dead wood and soil respiration in the summer of 2017 at Boggs Creek Recreation Area in the Piedmont of northeast Georgia, the site of a severe tornado in 2011. Down dead wood and soil respiration were compared in control (intact forest), salvaged, and unsalvaged areas. Megagrams per hectare of down dead wood was significantly higher in the unsalvaged condition than the control or salvage logging condition (ANOVAs, pdead wood was not significantly different in the control when compared to the salvage logging condition (p=0.99). Soil respiration was significantly higher in the salvage logged condition than the control (pdead wood in a forest, and salvage logging may lead to greater soil respiration years after the initial disturbance, both of which will influence the time elapsed before a disturbed forest switches from carbon source to carbon sink. Further research is needed to determine the duration of these effects, along with the carbon consequences for other forest carbon pools.

  16. Passive Gamma-Ray Emission for Soil-Disturbance Detection

    Science.gov (United States)

    2016-08-01

    technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. ERDC/CRREL TR-16-10 August 2016...area should be relatively constant if landform and provenance are known and con- trolled . As the soil dries out, the gamma-ray spectra should change...attenuation-pathway con- trolled (Figure 3). The attenuation is a function of the mass attenuation coefficients of the soil constituents (i.e., soil, water

  17. Survival of Legionella in earthquake-induced soil disturbance (liquefaction) in residential areas, Christchurch, New Zealand: implications for disease.

    Science.gov (United States)

    Graham, Frances F; Harte, David Jg

    2017-05-12

    To investigate a possible link between liquefaction dust exposure and the noticeable increase in legionellosis cases in response to major earthquakes in 2010 and 2011 that resulted in widespread soil disturbance (liquefaction) in parts of Christchurch, New Zealand. We culture tested liquefaction-affected soil for Legionella spp. in the six months following the first earthquake in 2010. Thirty silt samples were collected randomly from locations within Christchurch's metropolitan area that were affected by liquefaction. The samples were tested to determine the presence of Legionella using qualitative and quantitative methods. Liquefaction-affected soil samples from three sites were further subjected to particle size distribution analysis and determination of major oxides. A controlled field study was established using six silt samples and one control (commercial compost), seeded with a wild-type strain of Legionella bozemanae serogroup (sg) 1 and persistence monitored over a 60-day period by culturing for the presence of Legionella. Dry matter determinations were undertaken so that total Legionella could be calculated on a dry weight basis. Legionella bacteria were undetectable after day one in the silt samples. However, L. bozemanae sg1 was detected in the control sample for the entire study period. This study showed that the liquefaction-affected soil could not contribute directly to the observed increase in legionellosis cases after the earthquakes due to its inability to support growth and survival of the Legionella bacteria.

  18. Sediment Dynamics Within Buffer Zone and Sinkhole Splay Areas Under Extreme Soil Disturbance Conditions.

    Science.gov (United States)

    Schoonover, Jon E; Crim, Jackie F; Williard, Karl W J; Groninger, John W; Zaczek, James J; Pattumma, Klairoong

    2015-09-01

    Sedimentation dynamics were assessed in sinkholes within training areas at Ft. Knox Military Installation, a karst landscape subjected to decades of tracked vehicle use and extreme soil disturbance. Sinkholes sampled were sediment-laden and behaved as intermittent ponds. Dendrogeomorphic analyses were conducted using willow trees (Salix spp.) located around the edge of 18 sinkholes to estimate historical sedimentation rates, and buried bottles were installed in 20 sinkholes at the center, outer edge, and at the midpoint between the center and edge to estimate annual sedimentation rates. Sedimentation data were coupled with vegetation characteristics of sinkhole buffers to determine relationships among these variables. The dendrogeomorphic method estimated an average accumulation rate of 1.27 cm year(-1) translating to a sediment loss rate of 46.1 metric ton year(-1) from the training areas. However, sediment export to sinkholes was estimated to be much greater (118.6 metric ton year(-1)) via the bottle method. These data suggest that the latter method provided a more accurate estimate since accumulation was greater in the center of sinkholes compared to the periphery where dendrogeomorphic data were collected. Vegetation data were not tightly correlated with sedimentation rates, suggesting that further research is needed to identify a viable proxy for direct measures of sediment accumulation in this extreme deposition environment. Mitigation activities for the sinkholes at Ft. Knox's tank training area, and other heavily disturbed karst environments where extreme sedimentation exists, should consider focusing on flow path and splay area management.

  19. Transience after disturbance: Obligate species recovery dynamics depend on disturbance duration.

    Science.gov (United States)

    Singer, Alexander; Johst, Karin

    2017-06-01

    After a disturbance event, population recovery becomes an important species response that drives ecosystem dynamics. Yet, it is unclear how interspecific interactions impact species recovery from a disturbance and which role the disturbance duration (pulse or press) plays. Here, we analytically derive conditions that govern the transient recovery dynamics from disturbance of a host and its obligately dependent partner in a two-species metapopulation model. We find that, after disturbance, species recovery dynamics depend on the species' role (i.e. host or obligately dependent species) as well as the duration of disturbance. Host recovery starts immediately after the disturbance. In contrast, for obligate species, recovery depends on disturbance duration. After press disturbance, which allows dynamics to equilibrate during disturbance, obligate species immediately start to recover. Yet, after pulse disturbance, obligate species continue declining although their hosts have already begun to increase. Effectively, obligate species recovery is delayed until a necessary host threshold occupancy is reached. Obligates' delayed recovery arises solely from interspecific interactions independent of dispersal limitations, which contests previous explanations. Delayed recovery exerts a two-fold negative effect, because populations continue declining to even smaller population sizes and the phase of increased risk from demographic stochastic extinction in small populations is prolonged. We argue that delayed recovery and its determinants -species interactions and disturbance duration - have to be considered in biodiversity management. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effects of organic matter removal, soil compaction, and vegetation control on 5-year seedling performance: a regional comparison of long-term soil productivity sites

    Science.gov (United States)

    Robert L. Fleming; Robert F. Powers; Neil W. Foster; J. Marty Kranabetter; D. Andrew Scott; Felix Jr. Ponder; Shannon Berch; William K. Chapman; Richard D. Kabzems; Kim H. Ludovici; David M. Morris; Deborah S. Page-Dumroese; Paul T. Sanborn; Felipe G. Sanchez; Douglas M. Stone; Allan E. Tiarks

    2006-01-01

    We examined fifth-year seedling response to soil disturbance and vegetation control at 42 experimental locations representing 25 replicated studies within the North American Long-Term Soil Productivity (LTSP) program. These studies share a common experimental design while encompassing a wide range of climate, site conditions, and forest types. Whole-tree harvest had...

  1. Incorporating effects of natural disturbances in managed ecosystems

    Science.gov (United States)

    John T. Rotenberry; Robert J. Cooper; Joseph M. Wunderle; Kimberley G. Smith

    1993-01-01

    We briefly review the effects of climate (particularly drought and hurricanes), insect outbreaks, and fire on populations of migrant birds. An important feature of all of these natural disturbances is that they occur over a variety of spatial and temporal scales, thus precluding any simple generalization of their effects or of methods for mitigating those effects. We...

  2. Does introduced fauna influence soil erosion? A field and modelling assessment.

    Science.gov (United States)

    Hancock, G R; Lowry, J B C; Dever, C; Braggins, M

    2015-06-15

    Pigs (Sus scrofa) are recognised as having significant ecological impacts in many areas of the world including northern Australia. The full consequences of the introduction of pigs are difficult to quantify as the impacts may only be detected over the long-term and there is a lack of quantitative information on the impacts of feral pigs globally. In this study the effect of feral pigs is quantified in an undisturbed catchment in the monsoonal tropics of northern Australia. Over a three-year period, field data showed that the areal extent of pig disturbance ranged from 0.3-3.3% of the survey area. The mass of material exhumed through these activities ranged from 4.3 t ha(-1) yr(-1) to 36.0 t ha(-1) yr(-1). The findings demonstrate that large introduced species such as feral pigs are disturbing large areas as well as exhuming considerable volumes of soil. A numerical landscape evolution and soil erosion model was used to assess the effect of this disturbance on catchment scale erosion rates. The modelling demonstrated that simulated pig disturbance in previously undisturbed areas produced lower erosion rates compared to those areas which had not been impacted by pigs. This is attributed to the pig disturbance increasing surface roughness and trapping sediment. This suggests that in this specific environment, disturbance by pigs does not enhance erosion. However, this conclusion is prefaced by two important caveats. First, the long term impact of soil disturbance is still very uncertain. Secondly, modelling results show a clear differentiation between those from an undisturbed environment and those from a post-mining landscape, in which pig disturbance may enhance erosion. Copyright © 2015. Published by Elsevier B.V.

  3. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions.

    Science.gov (United States)

    Ficken, Cari D; Wright, Justin P

    2017-01-01

    Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.

  4. Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests.

    Science.gov (United States)

    Karpati, Amy S; Handel, Steven N; Dighton, John; Horton, Thomas R

    2011-08-01

    The presence and quality of the belowground mycorrhizal fungal community could greatly influence plant community structure and host species response. This study tests whether mycorrhizal fungal communities in areas highly impacted by anthropogenic disturbance and urbanization are less species rich or exhibit lower host root colonization rates when compared to those of less disturbed systems. Using a soil bioassay, we sampled the ectomycorrhizal fungal (EMF) communities associating with Quercus rubra (northern red oak) seedlings in soil collected from seven sites: two mature forest reference sites and five urban sites of varying levels of disturbance. Morphological and polymerase chain reaction-restriction fragment length polymorphism analyses of fungi colonizing root tips revealed that colonization rates and fungal species richness were significantly lower on root systems of seedlings grown in disturbed site soils. Analysis of similarity showed that EMF community composition was not significantly different among several urban site soils but did differ significantly between mature forest sites and all but one urban site. We identified a suite of fungal species that occurred across several urban sites. Lack of a diverse community of belowground mutualists could be a constraint on urban plant community development, especially of late-successional woodlands. Analysis of urban EMF communities can add to our understanding of urban plant community structure and should be addressed during ecological assessment before pragmatic decisions to restore habitats are framed.

  5. Prediction of pile set-up for Ohio soils.

    Science.gov (United States)

    2011-02-01

    ODOT typically uses small diameter driven pipe piles for bridge foundations. When a pile is driven into the subsurface, it disturbs and displaces the soil. As the soil surrounding the pile recovers from the installation disturbance, a time dependant ...

  6. SoilEffects – start characterization of the experimental soil

    OpenAIRE

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun; Riley, Hugh

    2013-01-01

    This report describes the establishment, experimental plan and initial soil characteristics of the field experiment linked to the project “Effects of anaerobically digested manure on soil fertility - establishment of a long-term study under Norwegian conditions” (SoilEffects, 2010-14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on...

  7. The role of forest disturbance in global forest mortality and terrestrial carbon fluxes

    Science.gov (United States)

    Pugh, Thomas; Arneth, Almut; Smith, Benjamin; Poulter, Benjamin

    2017-04-01

    Large-scale forest disturbance dynamics such as insect outbreaks, wind-throw and fires, along with anthropogenic disturbances such as logging, have been shown to turn forests from carbon sinks into intermittent sources, often quite dramatically so. There is also increasing evidence that disturbance regimes in many regions are changing as a result of climatic change and human land-management practices. But how these landscape-scale events fit into the wider picture of global tree mortality is not well understood. Do such events dominate global carbon turnover, or are their effects highly regional? How sensitive is global terrestrial carbon exchange to realistic changes in the occurrence rate of such disturbances? Here, we combine recent advances in global satellite observations of stand-replacing forest disturbances and in compilations of forest inventory data, with a global terrestrial ecosystem model which incorporates an explicit representation of the role of disturbance in forest dynamics. We find that stand-replacing disturbances account for a fraction of wood carbon turnover that varies spatially from less than 5% in the tropical rainforest to ca. 50% in the mid latitudes, and as much as 90% in some heavily-managed regions. We contrast the size of the land-atmosphere carbon flux due to this disturbance with other components of the terrestrial carbon budget. In terms of sensitivity, we find a quasi log-linear relationship of disturbance rate to total carbon storage. Relatively small changes in disturbance rates at all latitudes have marked effects on vegetation carbon storage, with potentially very substantial implications for the global terrestrial carbon sink. Our results suggest a surprisingly small effect of disturbance type on large-scale forest vegetation dynamics and carbon storage, with limited evidence of widespread increases in nitrogen limitation as a result of increasing future disturbance. However, the influence of disturbance type on soil carbon

  8. Modeling the reduction in soil loss due to soil armouring caused by rainfall erosion

    Science.gov (United States)

    Surface soil properties can change as a result of soil disturbances, erosion, or deposition. One process that can significantly change surface soil properties is soil armouring, which is the selective removal of finer particles by rill or interrill erosion, leaving an armoured layer of coarser parti...

  9. Simulation of landscape disturbances and the effect of climatic change

    International Nuclear Information System (INIS)

    Baker, W.L.

    1993-01-01

    The purpose of this research is to understand how changes in climate may affect the structure of landscapes that are subject to periodic disturbances. A general model useful for examining the linkage between climatic change and landscape change has been developed. The model makes use of synoptic climatic data, a geographical information system (GRASS), field data on the location of disturbance patches, simulation code written in the SIMSCRIPT language, and a set of landscape structure analysis programs written specifically for this research project. A simplified version of the model, lacking the climatic driver, has been used to analyze how changes in disturbance regimes (in this case settlement and fire suppression) affect landscape change. Landscape change lagged in its response to changes in the disturbance regime, but the lags differed depending upon the character of the change and the particular measure considered. The model will now be modified for use in a specific setting to analyze the effects of changes in climate on the structure of flood-disturbed patches along the Animas River, Colorado

  10. Acoustic-Seismic Coupling of Broadband Signals - Analysis of Potential Disturbances during CTBT On-Site Inspection Measurements

    Science.gov (United States)

    Liebsch, Mattes; Altmann, Jürgen

    2015-04-01

    For the verification of the Comprehensive Nuclear Test Ban Treaty (CTBT) the precise localisation of possible underground nuclear explosion sites is important. During an on-site inspection (OSI) sensitive seismic measurements of aftershocks can be performed, which, however, can be disturbed by other signals. To improve the quality and effectiveness of these measurements it is essential to understand those disturbances so that they can be reduced or prevented. In our work we focus on disturbing signals caused by airborne sources: When the sound of aircraft (as often used by the inspectors themselves) hits the ground, it propagates through pores in the soil. Its energy is transferred to the ground and soil vibrations are created which can mask weak aftershock signals. The understanding of the coupling of acoustic waves to the ground is still incomplete. However, it is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. We present our recent advances in this field. We performed several measurements to record sound pressure and soil velocity produced by various sources, e.g. broadband excitation by jet aircraft passing overhead and signals artificially produced by a speaker. For our experimental set-up microphones were placed close to the ground and geophones were buried in different depths in the soil. Several sensors were shielded from the directly incident acoustic signals by a box coated with acoustic damping material. While sound pressure under the box was strongly reduced, the soil velocity measured under the box was just slightly smaller than outside of it. Thus these soil vibrations were mostly created outside the box and travelled through the soil to the sensors. This information is used to estimate characteristic propagation lengths of the acoustically induced signals in the soil. In the seismic data we observed interference patterns which are likely caused by the

  11. Effectiveness of carnosine on disturbed electrolytes homeostasis ...

    African Journals Online (AJOL)

    We aimed to assess the effect of well known antioxidant carnosine on disturbed plasma and intraerythrocytes electrolytes and Na+-K+-ATPase activity by cisplatin. 24 male albino Wistar rats were selected and divided into 4 groups: Group I = untreated control; Group II = cisplatin control (received cisplatin at a dose of 3 mg/ ...

  12. Changes in soil hydraulic properties caused by construction of a simulated waste trench at the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Shakofsky, S.

    1995-03-01

    In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semiarid southeast region of Idaho. The soil samples were collected, using a hydraulically-driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is, by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry

  13. Ecosystem Nitrogen Retention Following Severe Bark Beetle and Salvage Logging Disturbance in Lodgepole Pine Forests: a 15N Enrichment Study

    Science.gov (United States)

    Avera, B.; Rhoades, C.; Paul, E. A.; Cotrufo, M. F.

    2017-12-01

    In recent decades, bark beetle outbreaks have caused high levels of tree mortality in lodgepole pine (Pinus contorta) dominated forests across western North America. Previous work has found increased soil mineral nitrogen (N) with tree mortality in beetle infested stands, but surprisingly little change in stream N export. These findings suggest an important role of residual live vegetation and altered soil microbial response for retaining surplus N and mitigating N losses from disturbed lodgepole forests. Post outbreak salvage of merchantable timber reduces fuel levels and promotes tree regeneration; however, the implications of the combined bark beetle and harvesting disturbances on ecosystem N retention and productivity are uncertain. To advance understanding of post-disturbance N retention we compare unlogged beetle-infested forests and salvage logged stands with post-harvest woody residue retention or removal. We applied 15N-labeled (2 atom%) and natural abundance ammonium sulfate to eight year old lodgepole pine seedlings in three replicate plots of the three forest management treatments. This approach allows us to quantify the relative contributions of N retention in soil, microbial biomass, and plant tissue. Our study targets gaps in understanding of the processes that regulate N utilization and transfer between soil and vegetation that result in effective N retention in lodgepole pine ecosystems. These findings will also help guide forest harvest and woody residue management practices in order to maintain soil productivity.

  14. Effects of climate change on ecological disturbance in the Northern Rockies Region [Chapter 8

    Science.gov (United States)

    Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.

    2018-01-01

    This chapter describes the ecology of important disturbance regimes in the Forest Service, U.S. Department of Agriculture (USFS) Northern Region and the Greater Yellowstone Area, hereafter called the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. The term disturbance regime describes the general temporal and spatial characteristics of a disturbance agent - insect, disease, fire, weather, even human activity - and the effects of that agent on the landscape (table 8.1). More specifically, a disturbance regime is the cumulative effect of multiple disturbance events over space and time (Keane 2013). Disturbances disrupt an ecosystem, community, or population structure and change elements of the biological environment, physical environment, or both (White and Pickett 1985). The resulting shifting mosaic of diverse ecological patterns and structures in turn affects future patterns of disturbance, in a reciprocal, linked relationship that shapes the fundamental character of landscapes and ecosystems. Disturbance creates and maintains biological diversity in the form of shifting, heterogeneous mosaics of diverse communities and habitats across a landscape (McKinney and Drake 1998), and biodiversity is generally highest when disturbance is neither too rare nor too frequent on the landscape (Grime 1973).

  15. Biological soil crusts in deserts: A short review of their role in soil fertility, stabilization, and water relations

    Science.gov (United States)

    Belnap, Jayne

    2003-01-01

    Cyanobacteria and cyanolichens dominate most desert soil surfaces as the major component of biological soil crusts (BSC). BSCs contribute to soil fertility in many ways. BSC can increase weathering of parent materials by up to 100 times. Soil surface biota are often sticky, and help retain dust falling on the soil surface; this dust provides many plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. BSCs also provide roughened soil surfaces that slow water runoff and aid in retaining seeds and organic matter. They provide inputs of newly-fixed carbon and nitrogen to soils. They are essential in stabilizing soil surfaces by linking soil particles together with filamentous sheaths, enabling soils to resist both water and wind erosion. These same sheaths are important in keeping soil nutrients from becoming bound into plant-unavailable forms. Experimental disturbances applied in US deserts show soil surface impacts decrease N and C inputs from soil biota by up to 100%. The ability to hold aeolian deposits in place is compromised, and underlying soils are exposed to erosion. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produces up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, reduction in the cover of cyanophytes in desert soils can both reduce fertility inputs and accelerate fertility losses.

  16. Cost-effectiveness of using small vertebrates as indicators of disturbance.

    Science.gov (United States)

    Peck, Mika Robert; Maddock, Simon T; Morales, Jorge Noe; Oñate, Hugolino; Mafla-Endara, Paola; Peñafiel, Vanessa Aguirre; Torres-Carvajal, Omar; Pozo-Rivera, Wilmer E; Cueva-Arroyo, Xavier A; Tolhurst, Bryony A

    2014-10-01

    In species-rich tropical forests, effective biodiversity management demands measures of progress, yet budgetary limitations typically constrain capacity of decision makers to assess response of biological communities to habitat change. One approach is to identify ecological-disturbance indicator species (EDIS) whose monitoring is also monetarily cost-effective. These species can be identified by determining individual species' responses to disturbance across a gradient; however, such responses may be confounded by factors other than disturbance. For example, in mountain environments the effects of anthropogenic habitat alteration are commonly confounded by elevation. EDIS have been identified with the indicator value (IndVal) metric, but there are weaknesses in the application of this approach in complex montane systems. We surveyed birds, small mammals, bats, and leaf-litter lizards in differentially disturbed cloud forest of the Ecuadorian Andes. We then incorporated elevation in generalized linear (mixed) models (GL(M)M) to screen for EDIS in the data set. Finally, we used rarefaction of species accumulation data to compare relative monetary costs of identifying and monitoring EDIS at equal sampling effort, based on species richness. Our GL(M)M generated greater numbers of EDIS but fewer characteristic species relative to IndVal. In absolute terms birds were the most cost-effective of the 4 taxa surveyed. We found one low-cost bird EDIS. In terms of the number of indicators generated as a proportion of species richness, EDIS of small mammals were the most cost-effective. Our approach has the potential to be a useful tool for facilitating more sustainable management of Andean forest systems. © 2014 Society for Conservation Biology.

  17. Rehabilitation of disturbed land

    Energy Technology Data Exchange (ETDEWEB)

    Bell, L.C. [Australian Centre for Minesite Rehabilitation Research, Kenmore, Qld. (Australia)

    1996-12-31

    This chapter discusses the objectives of rehabilitation of lands in Australian disturbed by mining. It gives advice on rehabilitation planning and outlines the factors influencing post-mining land use and rehabilitation strategies, including climate, topography, hydrology, properties of soils, overburden and mineral processing wastes, flora and fauna and social considerations. Finally, the key elements of a rehabilitation plan are discussed, namely: landscape reconstruction; selective handling of overburden; and establishment and maintenance of a vegetative cover. 12 figs., 1 tab.

  18. Soil respiration in a long-term tillage treatment experiment

    Science.gov (United States)

    Gelybó, Györgyi; Birkás, Márta; Dencsö, Márton; Horel, Ágota; Kása, Ilona; Tóth, Eszter

    2016-04-01

    Regular soil CO2 efflux measurements have been carried out at Józsefmajor longterm tillage experimental site in 2014 and 2015 with static chamber technique in no-till and ploughing plots in seven spatial replicates. The trial was established in 2002 on a loamy chernozem soil at the experimental site of the Szent István University nearby the city Hatvan, northern Hungary. At the site sunflower (Helianthus A.) and wheat (Triticum A.) was grown in 2014 and 2015, respectively. Ancillary measurements carried out at the site included weather parameters, soil water content, soil temperature. The aim of the investigation was to detect the effect of soil disturbance and soil tillage treatments on soil CO2 emission in agricultural ecosystems. Soil respiration measurements were carried out every week during the vegetation period and campaign measurements were performed scheduled to tillage application. In this latter case, measurements were carried out 1, 2, 3, 4, 6, 12, 18, 24, 48, 72, 96, 120 hours and 7 days after tillage operation. Results showed that during the vegetation season in the majority of measurement occasions emission was higher in the no-till plots. These differences; however were not found to be statistically significant. Due to the short term effect of tillage treatment, emissions increased following tillage treatment in the ploughed plots. Soil water content was also examined as main driver of soil CO2 fluxes. Soil water content sharply decreases in the surface layer (5-10 cm depth) after tillage treatment indicating a fast drying due to soil disturbance. This effect slowly attenuated and eventually extincted in approx. two weeks. CO2 emission measurements were associated with high uncertainties as a result of the measurement technique. Our further aim is to reduce this uncertainty using independent measurement techniques on the field.

  19. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions.

    Directory of Open Access Journals (Sweden)

    Cari D Ficken

    Full Text Available Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression. Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.

  20. Mid-term and scaling effects of forest residue mulching on post-fire runoff and soil erosion.

    Science.gov (United States)

    Prats, Sergio Alegre; Wagenbrenner, Joseph W; Martins, Martinho António Santos; Malvar, Maruxa Cortizo; Keizer, Jan Jacob

    2016-12-15

    Mulching is an effective post-fire soil erosion mitigation treatment. Experiments with forest residue mulch have demonstrated that it increased ground cover to 70% and reduced runoff and soil loss at small spatial scales and for short post-fire periods. However, no studies have systematically assessed the joint effects of scale, time since burning, and mulching on runoff, soil loss, and organic matter loss. The objective of this study was to evaluate the effects of scale and forest residue mulch using 0.25m 2 micro-plots and 100m 2 slope-scale plots in a burnt eucalypt plantation in central Portugal. We assessed the underlying processes involved in the post-fire hydrologic and erosive responses, particularly the effects of soil moisture and soil water repellency. Runoff amount in the micro-plots was more than ten-fold the runoff in the larger slope-scale plots in the first year and decreased to eight-fold in the third post-fire year. Soil losses in the micro-plots were initially about twice the values in the slope-scale plots and this ratio increased over time. The mulch greatly reduced the cumulative soil loss measured in the untreated slope-scale plots (616gm -2 ) by 91% during the five post-fire years. The implications are that applying forest residue mulch immediately after a wildfire can reduce soil losses at spatial scales of interest to land managers throughout the expected post-fire window of disturbance, and that mulching resulted in a substantial relative gain in soil organic matter. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Experimental evidence for effects of human disturbance on foraging and parental care in oystercatchers

    NARCIS (Netherlands)

    Verhulst, S; Oosterbeek, K; Ens, B.J.

    2001-01-01

    We carried out two experiments to quantify effects of human disturbance on foraging and parental care in European oystercatchers (Haematopus ostralegus). In experiment 1, pairs incubating a clutch were disturbed on their feeding territory on the mudflat. Disturbance significantly reduced the

  2. Soil management effect on soil quality indicators in vineyards of the Appellation of Origin "Montilla-Moriles" in southern Spain

    Science.gov (United States)

    Guzmán, Gema; Cabezas, José Manuel; Bauer, Thomas; Strauss, Peter; Winter, Silvia; Zaller, Johann; Gómez, José Alfonso

    2017-04-01

    The effect soil management on several indicators frequently used in the assessment of soil quality it is not always reflected unambiguously when measured at the field although it is normally assumed that this relation is straightforward. Within the European project VineDivers (www.vinedivers.eu), sixteen commercial vineyards belonging to the Appellation of Origin "Montilla-Moriles" (Córdoba) and covering a wide range of textural classes were selected. These farms were classified 'a priori' under two soil management categories: temporal cover crop and bare soil during the whole year. In each of the vineyards one representative inter-row was selected in order to characterise different physical, chemical and biological parameters to evaluate some aspects related to soil quality. Results indicate that the studied indicators respond clearly to soil textural class and vegetation cover biomass. However, there was no clear difference in above-ground biomass of the two management categories (Guzmán et al., 2016). These results suggest that the interpretation and extrapolation of the indicators evaluated should incorporate complementary information to characterise small variations of soil management intensity among vineyards that are apparently managed under the same management category. The communication presents this analysis based on the number and type of soil disturbance events of all vineyards. The high variability found among vineyards under the same management highlights the relevance of measuring these soil parameters used as quality indicators, instead of extrapolating from other vineyards or agricultural systems, and interpreting them according to baseline levels. References: Guzmán G., Cabezas J.M., Gómez J.A. 2016. Evaluación preliminar del efecto del manejo del suelo en indicadores que determinan su calidad en viñedos de la Denominación de Origen Montilla Moriles. II Jornadas de Viticultura SECH. Madrid.

  3. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    Science.gov (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  4. The potential roles of biological soil crusts in dryland hydrologic cycles

    Science.gov (United States)

    Belnap, J.

    2006-01-01

    Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in and regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike

  5. An adaptive management process for forest soil conservation.

    Science.gov (United States)

    Michael P. Curran; Douglas G. Maynard; Ronald L. Heninger; Thomas A. Terry; Steven W. Howes; Douglas M. Stone; Thomas Niemann; Richard E. Miller; Robert F. Powers

    2005-01-01

    Soil disturbance guidelines should be based on comparable disturbance categories adapted to specific local soil conditions, validated by monitoring and research. Guidelines, standards, and practices should be continually improved based on an adaptive management process, which is presented in this paper. Core components of this process include: reliable monitoring...

  6. Spatial and temporal variation of CO2 efflux along a disturbance gradient in a miombo woodland in Western Zambia

    Directory of Open Access Journals (Sweden)

    M. M. Mukelabai

    2011-01-01

    Full Text Available Carbon dioxide efflux from the soil surface was measured over a period of several weeks within a heterogeneous Brachystegia spp. dominated miombo woodland in Western Zambia. The objectives were to examine spatial and temporal variation of soil respiration along a disturbance gradient from a protected forest reserve to a cut, burned, and grazed area outside, and to relate the flux to various abiotic and biotic drivers. The highest daily mean fluxes (around 12 μmol CO2 m−2 s−1 were measured in the protected forest in the wet season and lowest daily mean fluxes (around 1 μmol CO2 m−2 s−1 in the most disturbed area during the dry season. Diurnal variation of soil respiration was closely correlated with soil temperature. The combination of soil water content and soil temperature was found to be the main driving factor at seasonal time scale. There was a 75% decrease in soil CO2 efflux during the dry season and a 20% difference in peak soil respiratory flux measured in 2008 and 2009. Spatial variation of CO2 efflux was positively related to total soil carbon content in the undisturbed area but not at the disturbed site. Coefficients of variation of efflux rates between plots decreased towards the core zone of the protected forest reserve. Normalized soil respiration values did not vary significantly along the disturbance gradient. Spatial variation of respiration did not show a clear distinction between the disturbed and undisturbed sites and could not be explained by variables such as leaf area index. In contrast, within plot variability of soil respiration was explained by soil organic carbon content. Three different approaches to calculate total ecosystem respiration (Reco from eddy covariance measurements were compared to two bottom-up estimates of Reco obtained from chambers measurements of soil- and leaf respiration which differed in the consideration of spatial heterogeneity. The consideration of spatial variability resulted only in

  7. Ecohydrology of adjacent sagebrush and lodgepole pine ecosystems: the consequences of climate change and disturbance

    Science.gov (United States)

    Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.

    2014-01-01

    Sagebrush steppe and lodgepole pine forests are two of the most widespread vegetation types in the western United States and they play crucial roles in the hydrologic cycle of these water-limited regions. We used a process-based ecosystem water model to characterize the potential impact of climate change and disturbance (wildfire and beetle mortality) on water cycling in adjacent sagebrush and lodgepole pine ecosystems. Despite similar climatic and topographic conditions between these ecosystems at the sites examined, lodgepole pine, and sagebrush exhibited consistent differences in water balance, notably more evaporation and drier summer soils in the sagebrush and greater transpiration and less water yield in lodgepole pine. Canopy disturbances (either fire or beetle) have dramatic impacts on water balance and availability: reducing transpiration while increasing evaporation and water yield. Results suggest that climate change may reduce snowpack, increase evaporation and transpiration, and lengthen the duration of dry soil conditions in the summer, but may have uncertain effects on drainage. Changes in the distribution of sagebrush and lodgepole pine ecosystems as a consequence of climate change and/or altered disturbance regimes will likely alter ecosystem water balance.

  8. Do Quercus ilex woodlands undergo abrupt non-linear functional changes in response to human disturbance along a climatic gradient?

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio; José Molina, Maria; Moreno de las Heras, Mariano; Espigares, Tíscar; Nicolau, Jose Manuel; Monleon, Vicente

    2017-04-01

    Theoretical models predict that drylands are particularly prone to suffer critical transitions with abrupt non-linear changes in their structure and functions as a result of the existing complex interactions between climatic fluctuations and human disturbances. However, so far, few studies provide empirical data to validate these models. We aim at determining how holm oak (Quercus ilex) woodlands undergo changes in their functions in response to human disturbance along an aridity gradient (from semi-arid to sub-humid conditions), in eastern Spain. For that purpose, we used (a) remote-sensing estimations of precipitation-use-efficiency (PUE) from enhanced vegetation index (EVI) observations performed in 231x231 m plots of the Moderate Resolution Imaging Spectroradiometer (MODIS); (b) biological and chemical soil parameter determinations (extracellular soil enzyme activity, soil respiration, nutrient cycling processes) from soil sampled in the same plots; (c) vegetation parameter determinations (ratio of functional groups) from vegetation surveys performed in the same plots. We analyzed and compared the shape of the functional change (in terms of PUE and soil and vegetation parameters) in response to human disturbance intensity for our holm oak sites along the aridity gradient. Overall, our results evidenced important differences in the shape of the functional change in response to human disturbance between climatic conditions. Semi-arid areas experienced a more accelerated non-linear decrease with an increasing disturbance intensity than sub-humid ones. The proportion of functional groups (herbaceous vs. woody cover) played a relevant role in the shape of the functional response of the holm oak sites to human disturbance.

  9. Effects of soil abiotic factors on the plant morphology in an intertidal salt marsh, Yellow River Delta, China

    Science.gov (United States)

    Li, Shanze; Cui, Baoshan; Bai, Junhong; Xie, Tian; Yan, Jiaguo; Wang, Qing; Zhang, Shuyan

    2018-02-01

    Plant morphology plays important role in studying biogeography in many ecosystems. Suadea salsa, as a native plant community of northern China and an important habitat for diversity of waterbirds and macrobenthos, has often been overlooked. Nowadays, S. salsa community is facing great loss due to coastal reclamation activities and natural disturbances. To maintain and restore S. salsa community, it's important to address the plant morphology across marsh zones, as well as its relationships with local soil abiotic conditions. In our studied intertidal salt marsh, we found that less flood disturbance frequency, softer soil conditions, rich soil organic matter, total carbon and total nitrogen, lower water depth and water content, less species competition will benefit S. salsa plant in the morphology of high coverage, above-ground biomass, shoot height and leaf length. Lower soil porewater salinity will benefit the below-ground biomass of S. salsa. Thus, we recommend managers help alleviate soil abiotic stresses in the intertidal salt marshes, making the soil conditions more suitable for S. salsa growth and succession.

  10. Modelling landscape-scale erosion potential related to vehicle disturbances along the U.S.-Mexico border

    Science.gov (United States)

    Villarreal, Miguel; Webb, Robert H.; Norman, Laura M.; Psillas, Jennifer L.; Rosenberg, Abigail S.; Carmichael, Shinji; Petrakis, Roy E.; Sparks, Philip E.

    2014-01-01

    Decades of intensive off-road vehicle use for border security, immigration, smuggling, recreation, and military training along the USA–Mexico border have prompted concerns about long-term human impacts on sensitive desert ecosystems. To help managers identify areas susceptible to soil erosion from anthropogenic activities, we developed a series of erosion potential models based on factors from the Universal Soil Loss Equation (USLE). To better express the vulnerability of soils to human disturbances, we refined two factors whose categorical and spatial representations limit the application of the USLE for non-agricultural landscapes: the C-factor (vegetation cover) and the P-factor (support practice/management). A soil compaction index (P-factor) was calculated as the difference in saturated hydrologic conductivity (Ks) between disturbed and undisturbed soils, which was then scaled up to maps of vehicle disturbances digitized from aerial photography. The C-factor was improved using a satellite-based vegetation index, which was better correlated with estimated ground cover (r2 = 0·77) than data derived from land cover (r2 = 0·06). We identified 9,780 km of unauthorized off-road tracks in the 2,800-km2 study area. Maps of these disturbances, when integrated with soil compaction data using the USLE, provided landscape-scale information on areas vulnerable to erosion from both natural processes and human activities and are detailed enough for adaptive management and restoration planning. The models revealed erosion potential hotspots adjacent to the border and within areas managed as critical habitat for the threatened flat-tailed horned lizard and endangered Sonoran pronghorn.

  11. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The effects of floodplain soil heterogeneity on meander planform shape

    Science.gov (United States)

    Motta, D.; Abad, J. D.; Langendoen, E. J.; GarcíA, M. H.

    2012-09-01

    Past analytical studies of meander planform development have mostly focused on the complexity of the governing equations, i.e., hydrodynamics, and less so on the stream bank resistance to erosion, whose spatial heterogeneity is difficult to describe deterministically. This motivated the use of a Monte Carlo approach to examine the effects of floodplain soils and their distribution on planform development, with the goal of including bank erosion properties in the analysis. Simulated bank erosion rates are controlled by the resistance to hydraulic erosion of the bank soils using an excess shear stress approach. The spatial distribution of critical shear stress across the floodplain is delineated on a rectangular, equidistant grid with varying degrees of variability. The corresponding erodibility coefficient is computed using a field-derived empirical relation. For a randomly disturbed distribution, in which the mean resistance to erosion exponentially increases away from the valley centerline, two relevant parameters are identified: the standard deviation of the critical shear stress distribution, which controls skewness and variability of the channel centerline, and the cross-valley increase in soil resistance, which constrains lateral migration and also affects bend skewness. For a purely random distribution, migrated centerlines exhibit larger variability for increasing spatial scales of floodplain soil heterogeneity. For equal stochastic variability of the corresponding governing parameters, relating meander migration to hydraulic erosion of the bank soils produces more variability and shape complexity than the "classic" bank migration approach of Ikeda et al. (1981), which relates migration rate to excess velocity at the outer bank. Finally, the proposed stochastic approach provides a foundation for estimating a suitable spatial density of measurements to characterize the physical properties of floodplain soils and vegetation.

  13. Tree Stress and Mortality from Emerald Ash Borer Does Not Systematically Alter Short-Term Soil Carbon Flux in a Mixed Northeastern U.S. Forest

    Directory of Open Access Journals (Sweden)

    Jaclyn Hatala Matthes

    2018-01-01

    Full Text Available Invasive insect pests are a common disturbance in temperate forests, but their effects on belowground processes in these ecosystems are poorly understood. This study examined how aboveground disturbance might impact short-term soil carbon flux in a forest impacted by emerald ash borer (Agrilus planipennis Fairmaire in central New Hampshire, USA. We anticipated changes to soil moisture and temperature resulting from tree mortality caused by emerald ash borer, with subsequent effects on rates of soil respiration and methane oxidation. We measured carbon dioxide emissions and methane uptake beneath trees before, during, and after infestation by emerald ash borer. In our study, emerald ash borer damage to nearby trees did not alter soil microclimate nor soil carbon fluxes. While surprising, the lack of change in soil microclimate conditions may have been a result of the sandy, well-drained soil in our study area and the diffuse spatial distribution of canopy ash trees and subsequent canopy light gaps after tree mortality. Overall, our results indicate that short-term changes in soil carbon flux following insect disturbances may be minimal, particularly in forests with well-drained soils and a mixed-species canopy.

  14. Clarification of Institutional Controls at the Rocky Flats Site Central Operable Unit and Implementation of the Soil Disturbance Review Plan - 13053

    Energy Technology Data Exchange (ETDEWEB)

    DiSalvo, Rick [Stoller LMS Team, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States); Surovchak, Scott [U.S. Department of Energy, Office of Legacy Management, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States); Spreng, Carl [Colorado Department of Public Health and Environment, 4300 Cherry Creek Dr. S, Denver, CO 80246-1530 (United States); Moritz, Vera [U.S. Environmental Protection Agency, Region 8, 1595 Wynkoop St., Denver, CO 80202-1129 (United States)

    2013-07-01

    Cleanup and closure of DOE's Rocky Flats Site in Colorado, which was placed on the CERCLA National Priority List in 1989, was accomplished under CERCLA, RCRA, and the Colorado Hazardous Waste Act (CHWA). The physical cleanup work was completed in late 2005 and all buildings and other structures that composed the Rocky Flats industrial complex were removed from the surface, but remnants remain in the subsurface. Other remaining features include two landfills closed in place with covers, four groundwater treatment systems, and surface water and groundwater monitoring systems. Under the 2006 Corrective Action Decision/Record of Decision for Rocky Flats Plant (US DOE) Peripheral Operable Unit and the Central Operable Unit (CAD/ROD), the response actions selected for the Central Operable Unit (OU) are institutional controls (ICs), physical controls, and continued monitoring and maintenance. The objectives of these ICs were to prevent unacceptable exposure to remaining subsurface contamination and to prevent contaminants from mobilizing to surface water and to prevent interfering with the proper functioning of the engineered components of the remedy. An amendment in 2011 of the 2006 CAD/ROD clarified the ICs to prevent misinterpretation that would prohibit work to manage and maintain the Central OU property. The 2011 amendment incorporated a protocol for a Soil Disturbance Review Plan for work subject to ICs that requires approval from the State and public notification by DOE prior to conducting approved soil-disturbing work. (authors)

  15. Wild pigs (Sus scrofa) mediate large-scale edge effects in a lowland tropical rainforest in Peninsular Malaysia.

    Science.gov (United States)

    Fujinuma, Junichi; Harrison, Rhett D

    2012-01-01

    Edge-effects greatly extend the area of tropical forests degraded through human activities. At Pasoh, Peninsular Malaysia, it has been suggested that soil disturbance by highly abundant wild pigs (Sus scrofa), which feed in adjacent Oil Palm plantations, may have mediated the invasion of Clidemia hirta (Melastomataceae) into the diverse tropical lowland rain forest. To investigate this hypothesis, we established three 1 km transects from the forest/Oil Palm plantation boundary into the forest interior. We recorded the distribution of soil disturbance by wild pigs, C. hirta abundance, and environmental variables. These data were analyzed using a hierarchical Bayesian model that incorporated spatial auto-correlation in the environmental variables. As predicted, soil disturbance by wild pigs declined with distance from forest edge and C. hirta abundance was correlated with the level of soil disturbance. Importantly there was no effect of distance on C. hirta abundance, after controlling for the effect of soil disturbance. Clidemia hirta abundance was also correlated with the presence of canopy openings, but there was no significant association between the occurrence of canopy openings and distance from the edge. Increased levels of soil disturbance and C. hirta abundance were still detectable approximately 1 km from the edge, demonstrating the potential for exceptionally large-scale animal mediated edge effects.

  16. Effects of forest regeneration practices on the flux of soil CO2 after clear-cutting in subtropical China.

    Science.gov (United States)

    Wang, Yixiang; Zhu, Xudan; Bai, Shangbin; Zhu, Tingting; Qiu, Wanting; You, Yujie; Wu, Minjuan; Berninger, Frank; Sun, Zhibin; Zhang, Hui; Zhang, Xiaohong

    2018-04-15

    Reforestation after clear-cutting is used to facilitate rapid establishment of new stands. However, reforestation may cause additional soil disturbance by affecting soil temperature and moisture, thus potentially influencing soil respiration. Our aim was to compare the effects of different reforestation methods on soil CO 2 flux after clear-cutting in a Chinese fir plantation in subtropical China: uncut (UC), clear-cut followed by coppicing regeneration without soil preparation (CC), clear-cut followed by coppicing regeneration and reforestation with soil preparation, tending in pits and replanting (CCR P ), and clear-cut followed by coppicing regeneration and reforestation with overall soil preparation, tending and replanting (CCR O ). Clear-cutting significantly increased the mean soil temperature and decreased the mean soil moisture. Compared to UC, CO 2 fluxes were 19.19, 37.49 and 55.93 mg m -2 h -1 higher in CC, CCR P and CCR O , respectively (P soil temperature, litter mass and the mixing of organic matter with mineral soil. The results suggest that, when compared to coppicing regeneration, reforestation practices result in additional CO 2 released, and that regarding the CO 2 emissions, soil preparation and tending in pits is a better choice than overall soil preparation and tending. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Experimental evidence of human recreational disturbance effects on bird-territory establishment.

    Science.gov (United States)

    Bötsch, Yves; Tablado, Zulima; Jenni, Lukas

    2017-07-12

    The worldwide increase in human outdoor activities raises concerns for wildlife. Human disturbances, even at low levels, are likely to impact species during sensitive periods of the annual cycle. However, experimental studies during the putative sensitive period of territory establishment of birds which not only investigate low disturbance levels, but which also exclude the effect of habitat modification (e.g. walking trails) are lacking. Here, we experimentally disturbed birds in forest plots by walking through twice a day during territory establishment. Later we compared the breeding bird community of experimentally disturbed plots with that of undisturbed control plots. We discovered that the number of territories (-15.0%) and species richness (-15.2%) in disturbed plots were substantially reduced compared with control plots. Species most affected included those sensitive to human presence (assessed by flight-initiation distances), open-cup nesters and above-ground foragers. Long-distance migrants, however, were unaffected due to their arrival after experimental disturbance took place. These findings highlight how territory establishment is a sensitive period for birds, when even low levels of human recreation may be perceived as threatening, and alter settlement decisions. This can have important implications for the conservation of species, which might go unnoticed when focusing only on already established birds. © 2017 The Author(s).

  18. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession

    Science.gov (United States)

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by human logging ...

  19. Physical disturbance to ecological niches created by soil structure alters community composition of methanotrophs.

    Science.gov (United States)

    Kumaresan, Deepak; Stralis-Pavese, Nancy; Abell, Guy C J; Bodrossy, Levente; Murrell, J Colin

    2011-10-01

    Aggregates of different sizes and stability in soil create a composite of ecological niches differing in terms of physico-chemical and structural characteristics. The aim of this study was to identify, using DNA-SIP and mRNA-based microarray analysis, whether shifts in activity and community composition of methanotrophs occur when ecological niches created by soil structure are physically perturbed. Landfill cover soil was subject to three treatments termed: 'control' (minimal structural disruption), 'sieved' (sieved soil using 2 mm mesh) and 'ground' (grinding using mortar and pestle). 'Sieved' and 'ground' soil treatments exhibited higher methane oxidation potentials compared with the 'control' soil treatment. Analysis of the active community composition revealed an effect of physical disruption on active methanotrophs. Type I methanotrophs were the most active methanotrophs in 'sieved' and 'ground' soil treatments, whereas both Type I and Type II methanotrophs were active in the 'control' soil treatment. The result emphasize that changes to a particular ecological niche may not result in an immediate change to the active bacterial composition and change in composition will depend on the ability of the bacterial communities to respond to the perturbation. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. EFFECTS OF LAND-USE CHANGE ON THE PROPERTIES OF TOP SOIL OF DECIDUOUS SAL FOREST IN BANGLADESH

    Directory of Open Access Journals (Sweden)

    M. A. Kashem

    2016-08-01

    Full Text Available This study examined the effects of land use change on the physico-chemical properties of top soil in the deciduous Sal forest of Bangladesh. Relatively less disturbed Sal (Shorea robusta Roxb. Ex Gaertn. forest stands and the nearby stands those were converted into Acacia (Acacia auriculiformis Benth. plantation and pineapple (Ananus comosus (L. Merr. cultivation were selected to examine the effects of land use change on soil properties. For each land use type, soil samples were collected from 4 locations, 50m distant from each other, as replicates. Soil samples were collected at 0-5, 5-10, and 10-15 cm depths. Soil moisture content, conductivity, pH organic C, total N and total P were determined as soil properties. Leaf litter of Sal, Acacia and pineapple was incubation for 90 and 180 days in independent identical soil in order to examine the effects of plant species through leaf litter on the soil chemical nutrient (N and P status. Data showed that soil moisture content, conductivity and pH were significantly affected by land use but not by depth. However, soil organic C was affected by both land-use type (P< 0.02 and soil depth (P< 0.003, although no significant interactions appeared between these two factors. Soil total N and P did not differ between land use types but by depth and, N and P contents decreased with the increase of depth. Rates of nutrients (N and P released from Sal, Acacia and pineapple did not differ significantly among them during incubation. Results of the present study reveal that properties of the top soil of the Madhupur Sal forest are different in their responses to the varying land uses. The findings of this study are thus relevant for the sustainable management of the deciduous Sal forest ecosystems.

  1. Biochar alters the resistance and resilience to drought in a tropical soil

    International Nuclear Information System (INIS)

    Liang, Chenfei; Zhu, Xiaolin; Fu, Shenglei; Paz-Ferreiro, Jorge; Méndez, Ana; Gascó, Gabriel

    2014-01-01

    Soil microbes play a key role in nutrient cycling and carbon sequestration. Global change can alter soil microbial population composition and behavior. Biochar addition has been explored in the last years as a way to mitigate global warming. However, responses of microbial communities to biochar addition in particular in relation to abiotic disturbances are seldom documented. An example of these disturbances, which is predicted to be exacerbated with global warming, is regional drought. It has been known that fungal-based food webs are more resistant to drought than their bacterial counterparts. Our study found that biochar addition can increase the resistance of both the bacterial and fungal networks to drought. Contrary to expected, this result was not related to a change in the dominance of fungal or bacteria. In general, soil amended with biochar was characterized by a faster recovery of soil microbial properties to its basal values. Biochar addition to the soil also suppressed the Birch effect, a result that has not been previously reported. (papers)

  2. Repeated experimental fires and window of disturbance in relation to runoff in a Mediterranean shrubland

    Directory of Open Access Journals (Sweden)

    E. Gimeno-García

    2013-05-01

    Full Text Available This study is focused on exploring the effect of repeated experimental fires on post-fire runoff generation through a sixteen years monitoring runoff yield from erosion plots (eight years after the first fire and other eight years after the second one in a Mediterranean shrubland area (La Concordia Experimental Station, considering the fire severity and the post-fire erosive rainfall events. The conceptual framework of the window of disturbance is used to analyze how long the runoff yield in burned plots shows clear differences respect to the unburned ones, as well as, the recovery-rate model for multiple fire events. Results show that the effect of repeated fires on runoff yield is related to a combination of fire severity, climatic conditions (mainly rainfall intensity, I30, soil hydrological properties (infiltration capacity, steady state infiltration and soil water retention capacity, and rate of vegetation recovery. Eight years after the first fire, even though soil hydrological properties are recovered as well as vegetation cover did, rainfall events with I30 ≥20 mm h-1 still promoted differences between burned and control plots. The second post-fire disturbance period was associated with the low vegetation recovery, and also with rainfall events with I30 ≥20 mm h-1 even seven years after the repeated fires.

  3. Effects of environmental factors and soil properties on topographic variations of soil respiration

    Directory of Open Access Journals (Sweden)

    K. Tamai

    2010-03-01

    Full Text Available Soil respiration rates were measured along different parts of a slope in (a an evergreen forest with common brown forest soil and (b a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by the fact that different soil properties matured within different environments. It can be argued that the low soil respiration rates in the low parts of the slope in the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties. These effects were likely due to the immaturity of the forest soil.

  4. Prediction of pile set-up for Ohio soils : executive summary report.

    Science.gov (United States)

    2011-02-01

    ODOT typically uses small diameter driven pipe piles for bridge foundations. When a pile is driven into the subsurface, it disturbs and displaces the soil. As the soil surrounding the pile recovers from the installation disturbance, a time dependant ...

  5. Thermal Characteristics and Bacterial Diversity of Forest Soil in the Haean Basin of Korea

    OpenAIRE

    Kim, Heejung; Lee, Jin-Yong; Lee, Kang-Kun

    2014-01-01

    To predict biotic responses to disturbances in forest environments, it is important to examine both the thermophysical properties of forest soils and the diversity of microorganisms that these soils contain. To predict the effects of climate change on forests, in particular, it is essential to understand the interactions between the soil surface, the air, and the biological diversity in the soil. In this study, the temperature and thermal properties of forest soil at three depths at a site in...

  6. Warming alters energetic structure and function but not resilience of soil food webs

    Science.gov (United States)

    Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico

    2017-12-01

    Climate warming is predicted to alter the structure, stability, and functioning of food webs1-5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, the effects of warming on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments that test the interactive effects of warming with forest canopy disturbance and drought on energy flux in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7 °C, +3.4 °C) to closed-canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy flux to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates the reduction in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses in ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests.

  7. Disturbance effect of music on processing of verbal and spatial memories.

    Science.gov (United States)

    Iwanaga, Makoto; Ito, Takako

    2002-06-01

    The purpose of the present study was to examine the disturbance effect of music on performances of memory tasks. Subjects performed a verbal memory task and a spatial memory task in 4 sound conditions, including the presence of vocal music, instrumental music, a natural sound (murmurings of a stream), and no music. 47 undergraduate volunteers were randomly assigned to perform tasks under each condition. Perceived disturbance was highest under the vocal music condition regardless of the type of task. A disturbance in performance by music was observed only with the verbal memory task under the vocal and the instrumental music conditions. These findings were discussed from the perspectives of the working memory hypothesis and the changing state model.

  8. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat

    Science.gov (United States)

    Li, Xingyue; Lewis, Edwin E.; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-08-01

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing “replant problem” in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community.

  9. Interactive effects of three pervasive marine stressors in a post-disturbance coral reef

    Science.gov (United States)

    Gil, Michael A.; Goldenberg, Silvan U.; Ly Thai Bach, Anne; Mills, Suzanne C.; Claudet, Joachim

    2016-12-01

    Ecosystems are commonly affected by natural, episodic disturbances that can abruptly and drastically alter communities. Although it has been shown that resilient ecosystems can eventually recover to pre-disturbed states, the extent to which communities in early stages of recovery could be affected by multiple anthropogenic stressors is poorly understood. Pervasive and rising anthropogenic stressors in coastal marine systems that could interactively affect the recovery of these systems following natural disturbances include high sedimentation, nutrient enrichment, and overfishing. Using a 6-month field experiment, we examined the effects of all combinations of these three stressors on key functional groups in the benthic community growing on simulated, post-disturbance reef patches within a system recovering from large-scale natural disturbances (corallivorous seastar outbreak and cyclone). Our study revealed that sedimentation, nutrient enrichment, and overfishing (simulated using exclusion cages) interactively affected coral survival and algal growth, with taxon-specific effects at multiple scales. First, our treatments affected corals and algae differently, with sedimentation being more detrimental to macroalgal growth but less detrimental to coral ( Porites rus) survival in caged plots, driving significant interactions between sedimentation and caging for both taxa. We also observed distinct responses between coral species and between algal functional groups, with the most extensive responses from algal turf biomass, for which sedimentation suppressed the synergistic (positive) combined effect of nutrient enrichment and caging. Our findings suggest that different combinations of ubiquitous anthropogenic stressors, related to either sea- or land-based activities, interactively influence community recovery from disturbance and may alter species compositions in the resulting community. Our findings further suggest that anthropogenic stressors could promote further

  10. Comparative Effects of Different Disturbances in Coral Reef Habitats in Moorea, French Polynesia

    Directory of Open Access Journals (Sweden)

    Mélanie L. Trapon

    2011-01-01

    Full Text Available Degradation and loss of critical coastal habitats has significant ramifications for marine fisheries, such that knowledge of changes in habitat quality and quantity are fundamental to effective ecosystem management. This study explores changes in the structure of coral reef habitats, specifically changes in coral cover and composition, in Moorea, French Polynesia, to assess the independent and combined effects of different disturbances since 1979. During this period, reefs on the north coast have been subject to coral bleaching, severe tropical storms, as well as outbreaks of Acanthaster. Coral cover varied significantly among years, showing marked declines during some, but not all, disturbances. The greatest rates of coral loss coincided with outbreaks of A. planci. Moreover, successive disturbances have had differential effects among coral genera, leading to strong directional shifts in coral composition. Acropora is declining in abundance and coral assemblages are becoming increasingly dominated by Pocillopora and Porites. Observed changes in the cover and composition of corals are likely to have further significant impacts on the reef fish assemblages. Given that significant disturbances have been mostly associated with outbreaks of A. planci, rather than climate change, effective ecosystem management may reduce and/or delay impending effects of climate change.

  11. Check dam sediments: an important indicator of the effects of environmental changes on soil erosion in the Loess Plateau in China.

    Science.gov (United States)

    Wang, Yafeng; Chen, Liding; Fu, Bojie; Lü, Yihe

    2014-07-01

    Check dam sediments document the process of soil erosion for a watershed. The main objectives of this research are as follows: first, to determine whether the sediments trapped in check dams can provide useful information about local erosion and the environment, and second, to obtain the extent to which they can be stratigraphically interpreted and correlated to the land use history of an area controlled by check dams. Particle size and the concentration of (137)Cs in sediments are the indicators used to study the effects of environmental changes on soil erosion in the Loess Plateau, China. A total of 216 soil samples were collected from four sediment profile cores at the Yangjuangou watershed check dam constructed in 1955 and fully silted with sediments by 1965. The results indicated that (137)Cs dating and sediment particle size can characterize the sediment deposition process. Silt makes up more than 50 % of the sediment; both the clay and silt sediment fractions decrease gradually in the upstream direction. The sediment profiles are characterized by three depositional layers. These layers suggest changes in the land use. The top layer showed tillage disturbance, with moderate sediments and new soil mixed from 0 to 20 cm. A transition stage from wetlands (characterized by vegetation such as bulrush) to cropland is inferred from sediments at depths of 20-85 cm. Below 85 cm, sedimentary layering is obvious and there is no tillage disturbance. At the downstream site, A0, the average rate of sediment deposition from 1958 to 1963 was approximately 6,125.4 t year(-1) km(-2). Because of their high time resolution, check dam sediments indicate the effects of environmental changes on soil erosion, and they can provide a multiyear record of the soil erosion evolution at the local scale in the middle reaches of the Yellow River.

  12. The impact of clearcutting in boreal forests of Russia on soils: A review

    Science.gov (United States)

    Dymov, A. A.

    2017-07-01

    Data on the impact of tree logging in boreal forests of Russia on soils are systematized. Patterns of soil disturbances and transformation of microclimatic parameters within clearcutting areas are discussed. Changes in the conditions of pedogenesis in secondary forests are analyzed. It is suggested that the changes in forest soils upon reforestation of clearcutting areas might be considered as specific post-logging soil successions. Data characterizing changes in the thickness of litter horizons and in the intensity of elementary pedogenic processes, acidity, and the content of exchangeable bases in soils of clearcutting areas in the course of their natural reforestation are considered. The examples of human-disturbed (turbated) soil horizons and newly formed anthropogenic soils on clearcutting areas are described. It is suggested that the soils on mechanically disturbed parts of clearcutting areas can be separated as a specific group of detritus turbozems.

  13. Effects of different agricultural management on a stagnic Luvisol in Lower Saxony, Germany - Factors for sustainable soil protection

    Science.gov (United States)

    Lorenz, Marco; Brunotte, Joachim; Ortmeier, Berthold

    2017-04-01

    Regarding increasing pressures by global societal and climate change, for example, the assessment of the impact of land use and land management practices on land productivity, land degradation and the related decrease in sustainable food production and the provision of ecosystem services gains increasing interest. Regarding international research on land use and soil threats, main problems in agricultural land use on global scale are erosion by water and wind, soil organic matter loss, salinization, depletion of nutrients, chemical and physical deterioration, including e.g. soil compaction. When coming to soil sciences, basically soil functions are affected negatively by intensive food production and field traffic. Management based negative changes in soil functions and a suboptimal soil structure have multiple negative effects on physical, biological and chemical soil functions, like a poor water balance, air and water permeability, disturbed soil fauna, impeded root penetration etc. and in consequence on the achievable yields. The presentation deals with the multiple effects of different agricultural machinery and technologies and different agricultural soil tillage (e.g. no-till, conservation tillage, ploughing), on various soil properties of a stagnic Luvisol in Lower Saxony, Germany. These are e.g. bulk density, air capacity, saturated water permeability, changes in pore size distribution and water retention curve as well as crop yields. Furthermore results of a long term study of bulk density and total pore size on more then 20 farms in Lower Saxony since the year 1952 will be presented. Finally, key factors and first recommendations for sustainable agricultural soil protection will be derived from the results.

  14. Plant hydraulic controls over ecosystem responses to climate-enhanced disturbances

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Reed, D. E.; Pendall, E.; McDowell, N. G.

    2012-12-01

    Climate-enhanced disturbances such as drought and insect infestation range in severity, contributing minor to severe stress to forests including forest mortality. While neither form of disturbance has been unambiguously implicated as a mechanism of mortality, both induce changes in water, carbon, and nutrient cycling that are key to understanding forest ecosystem response to, and recovery from, disturbance. Each disturbance type has different biophysical, ecohydrological, and biogeochemical signatures that potentially complicate interpretation and development of theory. Plant hydraulic function is arguably a unifying control over these responses to disturbance because it regulates stomatal conductance, leaf biochemistry, carbon (C) uptake and utilization, and nutrient cycling. We demonstrated this idea by focusing on water and C, including non-structural (NSC), resources, and nitrogen (N) uptake across a spectrum of forest ecosystems (e.g., northern temperate mixed forests, lodgepole pine forests in the Rocky Mountains, and pinon pine - juniper woodlands in New Mexico) using the Terrestrial Regional Ecosystem Exchange Simulator (TREES). TREES is grounded in the biophysics of water movement through soil and plants, respectively via hydraulic conductivity of the soil and cavitation of xylem. It combines this dynamic plant hydraulic conductance with canopy biochemical controls over photosynthesis, and the dynamics of structural and non-structural carbon through a carbon budget that responds to plant hydraulic status. As such, the model can be used to develop testable hypotheses on a multitude of disturbance and recovery responses including xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, respiration, and allocation to defense compounds. For each of the ecosystems we constrained and evaluated the model with allometry, sap flux and/or eddy covariance data, leaf gas exchange measurements, and vulnerability to cavitation data

  15. Strength and Compressibility Characteristics of Reconstituted Organic Soil at Khulna Region of Bangladesh

    OpenAIRE

    Tahia Rabbee; Islam M. Rafizul

    2012-01-01

    This study depicts the experimental investigations into the effect of organic content on the shear strength and compressibility parameters of reconstituted soil. To these attempts, disturbed soil samples were collected from two selected locations of Khulna region. The reconstituted soil having organic content of 5-35 % were prepared in the laboratory to mix at various proportions of inorganic and organic soil at the water content equal to 1.25 times of liquid limits of collected samples .The ...

  16. Type of disturbance and ecological history determine structural stability.

    NARCIS (Netherlands)

    van der Wurff, A.W.G.; Kools, S.A.E.; Boivin, M.E.; van den Brink, P.J.; van den Megen, H.H.M.; Riksen, J.A.G.; Doroszuk, A.; Kammenga, J.E.

    2007-01-01

    This study aims to reveal whether complexity, namely, community and trophic structure, of chronically stressed soil systems is at increased risk or remains stable when confronted with a subsequent disturbance. Therefore, we focused on a grassland with a history of four centuries of patchy

  17. Type of disturbance and ecological history determine structural stability

    NARCIS (Netherlands)

    Wurff, van der A.W.G.; Kools, S.A.E.; Boivin, M.E.Y.; Brink, van den P.J.; Megen, van H.H.B.; Riksen, J.A.G.; Doroszuk, A.; Kammenga, J.E.

    2007-01-01

    This study aims to reveal whether complexity, namely, community and trophic structure, of chronically stressed soil systems is at increased risk or remains stable when confronted with a subsequent disturbance. Therefore, we focused on a grassland with a history of four centuries of patchy

  18. Effects of environmental factors and soil properties on topographic variations of soil respiration

    OpenAIRE

    Tamai, K.

    2010-01-01

    Soil respiration rates were measured along different parts of a slope in (a) an evergreen forest with common brown forest soil and (b) a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soi...

  19. Copper Pollution Increases the Resistance of Soil Archaeal Community to Changes in Water Regime.

    Science.gov (United States)

    Li, Jing; Liu, Yu-Rong; Cui, Li-Juan; Hu, Hang-Wei; Wang, Jun-Tao; He, Ji-Zheng

    2017-11-01

    Increasing efforts have been devoted to exploring the impact of environmental stresses on soil bacterial communities, but the work on the archaeal community is seldom. Here, we constructed microcosm experiments to investigate the responses of archaeal communities to the subsequent dry-rewetting (DW) disturbance in two contrasting soils (fluvo-aquic and red soil) after 6 years of copper pollution. Ten DW cycles were exerted on the two soils with different copper levels, followed by a 6-week recovery period. In both soils, archaeal diversity (Shannon index) in the high copper-level treatments increased over the incubation period, and archaeal community structure changed remarkably as revealed by the non-metric multidimensional scaling ordinations. In both soils, copper pollution altered the response of dominant operational taxonomic units (OTUs) to the DW disturbance. Throughout the incubation and recovery period, the resistance of archaeal abundance to the DW disturbance was higher in the copper-polluted soils than soils without pollution. Taken together, copper pollution altered the response of soil archaeal diversity and community composition to the DW disturbance and increased the resistance of the archaeal abundance. These findings have important implications for understanding soil microbial responses to ongoing environmental change.

  20. The effects of ant nests on soil fertility and plant performance: a meta-analysis.

    Science.gov (United States)

    Farji-Brener, Alejandro G; Werenkraut, Victoria

    2017-07-01

    Ants are recognized as one of the major sources of soil disturbance world-wide. However, this view is largely based on isolated studies and qualitative reviews. Here, for the first time, we quantitatively determined whether ant nests affect soil fertility and plant performance, and identified the possible sources of variation of these effects. Using Bayesian mixed-models meta-analysis, we tested the hypotheses that ant effects on soil fertility and plant performance depend on the substrate sampled, ant feeding type, latitude, habitat and the plant response variable measured. Ant nests showed higher nutrient and cation content than adjacent non-nest soil samples, but similar pH. Nutrient content was higher in ant refuse materials than in nest soils. The fertilizer effect of ant nests was also higher in dry habitats than in grasslands or savannas. Cation content was higher in nests of plant-feeding ants than in nests of omnivorous species, and lower in nests from agro-ecosystems than in nests from any other habitat. Plants showed higher green/root biomass and fitness on ant nests soils than in adjacent, non-nest sites; but plant density and diversity were unaffected by the presence of ant nests. Root growth was particularly higher in refuse materials than in ant nest soils, in leaf-cutting ant nests and in deserts habitats. Our results confirm the major role of ant nests in influencing soil fertility and vegetation patterns and provide information about the factors that mediate these effects. First, ant nests improve soil fertility mainly through the accumulation of refuse materials. Thus, different refuse dump locations (external or in underground nest chambers) could benefit different vegetation life-forms. Second, ant nests could increase plant diversity at larger spatial scales only if the identity of favoured plants changes along environmental gradients (i.e. enhancing β-diversity). Third, ant species that feed on plants play a relevant role fertilizing soils

  1. Macroinvertebrates in North American tallgrass prairie soils: effects of fire, mowing, and fertilization on density and biomass

    Science.gov (United States)

    M.A. Callaham; J.M. Blair; T.C. Todd; D.J. Kitchen; M.R. Whiles

    2003-01-01

    The responses of tallgrass prairie plant communities and ecosystem processes to fire and grazing are well characterized. However, responses of invertebrate consumer groups. and particularly soil-dwelling organisms, to these disturbances are not well known. At Konza Prairie Biological Station. we sampled soil macroinvertebrates in 1994 and 1999 as part of a long-term...

  2. Pine Harvest Impact on Soil Structure of a Dystric Cambisol (Humic

    Directory of Open Access Journals (Sweden)

    Adriano da Costa

    2016-01-01

    Full Text Available ABSTRACT Traffic of heavy machinery at harvest and log extraction causes structural degradation of the soil, but studies on the effects of forest harvesting on soils with high organic matter content and exchangeable Al are scarce. The objective of this study was to evaluate the effect of mechanized forest harvesting operations on a Dystric Cambisol (Humic with high organic matter (more 50 g kg1 content and exchangeable Al (more 6,0 cmolc kg-1, reforested with Pinus taeda L. The evaluated harvesting system were the whole-tree, in which the feller-buncher cuts and lays the trees down in bundles; the skidder drags the tree bundles up near a road; and the harvester delimbs and cuts the trees into short logs, stacking them on the roadside to be loaded onto trucks. The areas were evaluated for soil conditions at pre-harvest, prior to harvest, and at post-harvest, consisting of areas of low disturbance, high disturbance, forest residues and log yards. The effects of compaction after forest harvesting are observed by the decrease in total porosity (especially biopores and macropores, soil saturated hydraulic conductivity, and stability of aggregates. After forest harvesting, soil compaction was observed in all evaluated situations, but with different depths depending on operation type and the intensity of traffic carried in each area.

  3. Biogeography and organic matter removal shape long-term effects of timber harvesting on forest soil microbial communities.

    Science.gov (United States)

    Wilhelm, Roland C; Cardenas, Erick; Maas, Kendra R; Leung, Hilary; McNeil, Larisa; Berch, Shannon; Chapman, William; Hope, Graeme; Kranabetter, J M; Dubé, Stephane; Busse, Matt; Fleming, Robert; Hazlett, Paul; Webster, Kara L; Morris, David; Scott, D Andrew; Mohn, William W

    2017-11-01

    The growing demand for renewable, carbon-neutral materials and energy is leading to intensified forest land-use. The long-term ecological challenges associated with maintaining soil fertility in managed forests are not yet known, in part due to the complexity of soil microbial communities and the heterogeneity of forest soils. This study determined the long-term effects of timber harvesting, accompanied by varied organic matter (OM) removal, on bacterial and fungal soil populations in 11- to 17-year-old reforested coniferous plantations at 18 sites across North America. Analysis of highly replicated 16 S rRNA gene and ITS region pyrotag libraries and shotgun metagenomes demonstrated consistent changes in microbial communities in harvested plots that included the expansion of desiccation- and heat-tolerant organisms and decline in diversity of ectomycorrhizal fungi. However, the majority of taxa, including the most abundant and cosmopolitan groups, were unaffected by harvesting. Shifts in microbial populations that corresponded to increased temperature and soil dryness were moderated by OM retention, which also selected for sub-populations of fungal decomposers. Biogeographical differences in the distribution of taxa as well as local edaphic and environmental conditions produced substantial variation in the effects of harvesting. This extensive molecular-based investigation of forest soil advances our understanding of forest disturbance and lays the foundation for monitoring long-term impacts of timber harvesting.

  4. Disturbance and topography shape nitrogen availability and ä15N over long-term forest succession

    Science.gov (United States)

    Steven S. Perakis; Alan J. Tepley; Jana E. Compton

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil ä15N values. We examined soil and foliar patterns in N and ä15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane...

  5. Soil biodiversity for agricultural sustainability

    NARCIS (Netherlands)

    Brussaard, L.; Ruiter, de P.C.; Brown, G.G.

    2007-01-01

    We critically highlight some evidence for the importance of soil biodiversity to sustaining (agro-)ecosystem functioning and explore directions for future research. We first deal with resistance and resilience against abiotic disturbance and stress. There is evidence that soil biodiversity does

  6. Simulating the impacts of disturbances on forest carbon cycling in North America: Processes, data, models, and challenges

    Science.gov (United States)

    Liu, Shuguang; Bond-Lamberty, Ben; Hicke, Jeffrey A.; Vargas, Rodrigo; Zhao, Shuqing; Chen, Jing; Edburg, Steven L.; Hu, Yueming; Liu, Jinxun; McGuire, A. David; Xiao, Jingfeng; Keane, Robert; Yuan, Wenping; Tang, Jianwu; Luo, Yiqi; Potter, Christopher; Oeding, Jennifer

    2011-01-01

    Forest disturbances greatly alter the carbon cycle at various spatial and temporal scales. It is critical to understand disturbance regimes and their impacts to better quantify regional and global carbon dynamics. This review of the status and major challenges in representing the impacts of disturbances in modeling the carbon dynamics across North America revealed some major advances and challenges. First, significant advances have been made in representation, scaling, and characterization of disturbances that should be included in regional modeling efforts. Second, there is a need to develop effective and comprehensive process‐based procedures and algorithms to quantify the immediate and long‐term impacts of disturbances on ecosystem succession, soils, microclimate, and cycles of carbon, water, and nutrients. Third, our capability to simulate the occurrences and severity of disturbances is very limited. Fourth, scaling issues have rarely been addressed in continental scale model applications. It is not fully understood which finer scale processes and properties need to be scaled to coarser spatial and temporal scales. Fifth, there are inadequate databases on disturbances at the continental scale to support the quantification of their effects on the carbon balance in North America. Finally, procedures are needed to quantify the uncertainty of model inputs, model parameters, and model structures, and thus to estimate their impacts on overall model uncertainty. Working together, the scientific community interested in disturbance and its impacts can identify the most uncertain issues surrounding the role of disturbance in the North American carbon budget and develop working hypotheses to reduce the uncertainty

  7. Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area

    Science.gov (United States)

    Wang, Jinman; Wang, Hongdan; Cao, Yingui; Bai, Zhongke; Qin, Qian

    2016-01-01

    Vegetation plays an important role in improving and restoring fragile ecological environments. In the Antaibao opencast coal mine, located in a loess area, the eco-environment has been substantially disturbed by mining activities, and the relationship between the vegetation and environmental factors is not very clear. Therefore, it is crucial to understand the effects of soil and topographic factors on vegetation restoration to improve the fragile ecosystems of damaged land. An investigation of the soil, topography and vegetation in 50 reclamation sample plots in Shanxi Pingshuo Antaibao opencast coal mine dumps was performed. Statistical analyses in this study included one-way ANOVA and significance testing using SPSS 20.0, and multivariate techniques of detrended correspondence analysis (DCA) and redundancy analysis (RDA) using CANOCO 4.5. The RDA revealed the environmental factors that affected vegetation restoration. Various vegetation and soil variables were significantly correlated. The available K and rock content were good explanatory variables, and they were positively correlated with tree volume. The effects of the soil factors on vegetation restoration were higher than those of the topographic factors. PMID:26916152

  8. Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area

    Science.gov (United States)

    Wang, Jinman; Wang, Hongdan; Cao, Yingui; Bai, Zhongke; Qin, Qian

    2016-02-01

    Vegetation plays an important role in improving and restoring fragile ecological environments. In the Antaibao opencast coal mine, located in a loess area, the eco-environment has been substantially disturbed by mining activities, and the relationship between the vegetation and environmental factors is not very clear. Therefore, it is crucial to understand the effects of soil and topographic factors on vegetation restoration to improve the fragile ecosystems of damaged land. An investigation of the soil, topography and vegetation in 50 reclamation sample plots in Shanxi Pingshuo Antaibao opencast coal mine dumps was performed. Statistical analyses in this study included one-way ANOVA and significance testing using SPSS 20.0, and multivariate techniques of detrended correspondence analysis (DCA) and redundancy analysis (RDA) using CANOCO 4.5. The RDA revealed the environmental factors that affected vegetation restoration. Various vegetation and soil variables were significantly correlated. The available K and rock content were good explanatory variables, and they were positively correlated with tree volume. The effects of the soil factors on vegetation restoration were higher than those of the topographic factors.

  9. High Enthalpy Effects on Two Boundary Layer Disturbances in Supersonic and Hypersonic Flow

    Science.gov (United States)

    Wagnild, Ross Martin

    The fluid flow phenomenon of boundary layer transition is a complicated and difficult process to model and predict. The importance of the state of the boundary layer with regard to vehicle design cannot be understated. The high enthalpy environment in which high speed vehicles operate in further complicates the transition process by adding several more degrees of freedom. In this environment, the internal properties of the gas can stabilize or destabilize the boundary layer as well as modify the disturbances that cause transition. In the current work, the interaction of two types of disturbances with the high enthalpy flow environment are analyzed. The first is known as a second mode disturbance, which is acoustic in nature. The second type is known as a transient growth disturbance and is associated with flows behind roughness elements. Theoretical analyses, linear stability analyses, and computation fluid dynamics (CFD) are used to determine the ways in which these disturbances interact with the high enthalpy environment as well as the consequences of these interactions. First, acoustic wave are directly studied in order to gain a basic understanding of the response of second mode disturbances in the high enthalpy boundary layer. Next, this understanding is used in interpreting the results of several computations attempting to simulate the flow through a high enthalpy flow facility as well as experiments attempting to take advantage of the acoustic interaction with the high enthalpy environment. Because of the difficulty in modeling these experiments, direct simulations of acoustic waves in a hypersonic flow of a gas with molecular vibration are performed. Lastly, compressible transient growth disturbances are simulated using a linear optimal disturbance solver as well as a CFD solver. The effect of an internal molecular process on this type of disturbance is tested through the use of a vibrational mode. It is the goal of the current work to reinforce the

  10. The Effects of the Hominis Placenta Herbal acupuncture on Sleep pattern disturbance

    Directory of Open Access Journals (Sweden)

    Youn Hyoun-min

    2005-02-01

    Full Text Available Objective : This study has been designed and performed to identify the effects of Hominis Placenta herbal acupuncture which is usually used in reducing sleep pattern disturbances. Methods : The study subjects studied included 48 patients who were admitted in hospital located in Pusan, and they were classified into 2 groups : 25 patients in the experimental group who injected Hominis Placenta herbal acupuncture and 23 patients in the control group who were treated by acupuncture. The both group injected on GB20, GB12 and HT7 for 5 days without medicine. The sleep pattern disturbance score was measured by using 15 questions according to Korean Sleep Scale A(Oh, Jin Joo. Song, Mi Soon. Kim, Shin Mi. 1998. Results & conclusions : The sleep pattern disturbance score of the experimental group who injected Hominis Placenta herbal acupuncture was significantly lower than that of the control group. (t= 7.00 p= .00 These results provided that Hominis Placenta herbal acupuncture of GB20, GB12 and HT7 was effective for relieving sleep pattern disturbances, it is need more sample's number and more treatmentt's duration.

  11. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    Science.gov (United States)

    Bradford, J.B.; Fraver, S.; Milo, A.M.; D'Amato, A.W.; Palik, B.; Shinneman, D.J.

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing blowdown and wildfire, both individually and in combination with and without post-disturbance salvage operations, in a sub-boreal jack pine ecosystem. Individually, blowdown or fire caused similar decreases in live carbon and total ecosystem carbon. However, whereas blowdown increased carbon in down woody material and forest floor, fire increased carbon in standing snags, a difference that may have consequences for long-term carbon cycling patterns. Fire after the blowdown caused substantial additional reduction in ecosystem carbon stocks, suggesting that potential increases in multiple disturbance events may represent a challenge for sustaining ecosystem carbon stocks. Salvage logging, as examined here, decreased carbon stored in snags and down woody material but had no significant effect on total ecosystem carbon stocks.

  12. Anthropogenic halo disturbances alter landscape and plant richness: a ripple effect.

    Science.gov (United States)

    Liu, Bingliang; Su, Jinbao; Chen, Jianwei; Cui, Guofa; Ma, Jianzhang

    2013-01-01

    Although anthropogenic landscape fragmentation is often considered as the primary threat to biodiversity, other factors such as immediate human disturbances may also simultaneously threaten species persistence in various ways. In this paper, we introduce a conceptual framework applied to recreation landscapes (RLs), with an aim to provide insight into the composite influences of landscape alteration accompanying immediate human disturbances on plant richness dynamics. These impacts largely occur at patch-edges. They can not only alter patch-edge structure and environment, but also permeate into surrounding natural matrices/patches affecting species persistence-here we term these "Halo disturbance effects" (HDEs). We categorized species into groups based on seed or pollen dispersal mode (animal- vs. wind-dispersed) as they can be associated with species richness dynamics. We evaluated the richness of the two groups and total species in our experimental landscapes by considering the distance from patch-edge, the size of RLs and the intensity of human use over a six-year period. Our results show that animal-dispersed species decreased considerably, whereas wind-dispersed species increased while their richness presented diverse dynamics at different distances from patch-edges. Our findings clearly demonstrate that anthropogenic HDEs produce ripple effects on plant, providing an experimental interpretation for the diverse responses of species to anthropogenic disturbances. This study highlights the importance of incorporating these composite threats into conservation and management strategies.

  13. Anthropogenic halo disturbances alter landscape and plant richness: a ripple effect.

    Directory of Open Access Journals (Sweden)

    Bingliang Liu

    Full Text Available Although anthropogenic landscape fragmentation is often considered as the primary threat to biodiversity, other factors such as immediate human disturbances may also simultaneously threaten species persistence in various ways. In this paper, we introduce a conceptual framework applied to recreation landscapes (RLs, with an aim to provide insight into the composite influences of landscape alteration accompanying immediate human disturbances on plant richness dynamics. These impacts largely occur at patch-edges. They can not only alter patch-edge structure and environment, but also permeate into surrounding natural matrices/patches affecting species persistence-here we term these "Halo disturbance effects" (HDEs. We categorized species into groups based on seed or pollen dispersal mode (animal- vs. wind-dispersed as they can be associated with species richness dynamics. We evaluated the richness of the two groups and total species in our experimental landscapes by considering the distance from patch-edge, the size of RLs and the intensity of human use over a six-year period. Our results show that animal-dispersed species decreased considerably, whereas wind-dispersed species increased while their richness presented diverse dynamics at different distances from patch-edges. Our findings clearly demonstrate that anthropogenic HDEs produce ripple effects on plant, providing an experimental interpretation for the diverse responses of species to anthropogenic disturbances. This study highlights the importance of incorporating these composite threats into conservation and management strategies.

  14. Winter ecology of a subalpine grassland: Effects of snow removal on soil respiration, microbial structure and function.

    Science.gov (United States)

    Gavazov, Konstantin; Ingrisch, Johannes; Hasibeder, Roland; Mills, Robert T E; Buttler, Alexandre; Gleixner, Gerd; Pumpanen, Jukka; Bahn, Michael

    2017-07-15

    Seasonal snow cover provides essential insulation for mountain ecosystems, but expected changes in precipitation patterns and snow cover duration due to global warming can influence the activity of soil microbial communities. In turn, these changes have the potential to create new dynamics of soil organic matter cycling. To assess the effects of experimental snow removal and advanced spring conditions on soil carbon (C) and nitrogen (N) dynamics, and on the biomass and structure of soil microbial communities, we performed an in situ study in a subalpine grassland in the Austrian Alps, in conjunction with soil incubations under controlled conditions. We found substantial winter C-mineralisation and high accumulation of inorganic and organic N in the topsoil, peaking at snowmelt. Soil microbial biomass doubled under the snow, paralleled by a fivefold increase in its C:N ratio, but no apparent change in its bacteria-dominated community structure. Snow removal led to a series of mild freeze-thaw cycles, which had minor effects on in situ soil CO 2 production and N mineralisation. Incubated soil under advanced spring conditions, however, revealed an impaired microbial metabolism shortly after snow removal, characterised by a limited capacity for C-mineralisation of both fresh plant-derived substrates and existing soil organic matter (SOM), leading to reduced priming effects. This effect was transient and the observed recovery in microbial respiration and SOM priming towards the end of the winter season indicated microbial resilience to short-lived freeze-thaw disturbance under field conditions. Bacteria showed a higher potential for uptake of plant-derived C substrates during this recovery phase. The observed temporary loss in microbial C-mineralisation capacity and the promotion of bacteria over fungi can likely impede winter SOM cycling in mountain grasslands under recurrent winter climate change events, with plausible implications for soil nutrient availability and

  15. Impacts of large-scale climatic disturbances on the terrestrial carbon cycle

    Directory of Open Access Journals (Sweden)

    Lucht Wolfgang

    2006-07-01

    Full Text Available Abstract Background The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO2 growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical model of the terrestrial biosphere to differentiate the effects of temperature and precipitation on net primary production (NPP and heterotrophic respiration (Rh during the two largest anomalies in atmospheric CO2 increase during the last 25 years. One of these, the smallest atmospheric year-to-year increase (largest land carbon uptake in that period, was caused by global cooling in 1992/93 after the Pinatubo volcanic eruption. The other, the largest atmospheric increase on record (largest land carbon release, was caused by the strong El Niño event of 1997/98. Results We find that the LPJ model correctly simulates the magnitude of terrestrial modulation of atmospheric carbon anomalies for these two extreme disturbances. The response of soil respiration to changes in temperature and precipitation explains most of the modelled anomalous CO2 flux. Conclusion Observed and modelled NEE anomalies are in good agreement, therefore we suggest that the temporal variability of heterotrophic respiration produced by our model is reasonably realistic. We therefore conclude that during the last 25 years the two largest disturbances of the global carbon cycle were strongly controlled by soil processes rather then the response of vegetation to these large-scale climatic events.

  16. Sleep Disturbances in Mood Disorders.

    Science.gov (United States)

    Rumble, Meredith E; White, Kaitlin Hanley; Benca, Ruth M

    2015-12-01

    The article provides an overview of common and differentiating self-reported and objective sleep disturbances seen in mood-disordered populations. The importance of considering sleep disturbances in the context of mood disorders is emphasized, because a large body of evidence supports the notion that sleep disturbances are a risk factor for onset, exacerbation, and relapse of mood disorders. In addition, potential mechanisms for sleep disturbance in depression, other primary sleep disorders that often occur with mood disorders, effects of antidepressant and mood-stabilizing drugs on sleep, and the adjunctive effect of treating sleep in patients with mood disorders are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Effects of climate change on ecological disturbances [Chapter 8

    Science.gov (United States)

    Danielle M. Malesky; Barbara J. Bentz; Gary R. Brown; Andrea R. Brunelle; John M. Buffington; Linda M. Chappell; R. Justin DeRose; John C. Guyon; Carl L. Jorgensen; Rachel A. Loehman; Laura L. Lowrey; Ann M. Lynch; Marek Matyjasik; Joel D. McMillin; Javier E. Mercado; Jesse L. Morris; Jose F. Negron; Wayne G. Padgett; Robert A. Progar; Carol B. Randall

    2018-01-01

    This chapter describes disturbance regimes in the Intermountain Adaptation Partnership (IAP) region, and potential shifts in these regimes as a consequence of observed and projected climate change. The term "disturbance regime" describes the general temporal and spatial characteristics of a disturbance agent (e.g., insects, disease, fire, weather, human...

  18. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    Science.gov (United States)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  19. Seedling emergence response of rare arable plants to soil tillage varies by species.

    Science.gov (United States)

    Torra, Joel; Recasens, Jordi; Royo-Esnal, Aritz

    2018-01-01

    Very little information is available on emergence of rare arable plants (RAP) in relation to soil disturbance and seed burial conditions in Europe. This information is essential to design conservation and soil management strategies to prevent the decline of these species in agroecosystems. The objective of this research was to investigate the effect of soil cultivation with burial time on the emergence and seed persistence of RAP. Seeds of 30 RAP species were collected from Spanish arable fields and subjected to two tillage treatments: (a) no soil disturbance, and (b) autumnal soil disturbance down to 10 cm depth every year. The treatments simulated no-till and tilled (disking), respectively. In plots under no-till, RAP seeds were sown at 1-cm depth. In the tilled plots, seeds were sown homogeneously mixed in the top 1-10 cm of soil. The trial was established every two consecutive seasons, and each trial was maintained for two years. Annual cumulative plant emergence was calculated each year; whereas the first trial was monitored for a third year to estimate seed longevity using a persistence index. The response in emergence of the 30 RAP to annual tillage varied among species. With burial time (number of years), higher emergence was observed for seeds sown in tilled soil. This was true across all species, and with strong season effects. The persistence index was correlated with seed weight, species with bigger seeds had low persistence indices while no pattern was observed for small seeded species. Most RAP species, particularly those with high persistence, showed induction of secondary dormancy processes, highlighting the importance of tillage to promote RAP emergence, and hence, seed bank replenishment. Therefore, as time passes the absence of soil tillage may represent a driver of RAP seed bank decline for those species with secondary dormancy processes. In conclusion, it is important to design soil management strategies, such as regular tillage to promote

  20. ANTHROPOGENIC EFFECTS ON SOIL MICROMYCETES

    Directory of Open Access Journals (Sweden)

    Dragutin A. Đukić

    2007-09-01

    Full Text Available This paper is a synthesis of long-term investigations based on the effect of different (mineral and organic fertilisers, heavy metals, contaminated irrigation water, nitrification inhibitor and detergents on the dynamics of soil fungi number. The investigations were performed at the Microbiology Department and trial fields of the Faculty of Agronomy in Cacak on smonitza and alluvium soils in field and greenhouse conditions. Maize, wheat, barley and red clover were used as test plants in these studies. The quantitative composition of the fungi in the soils investigated was determined by the Czapek selective agar dilution method. The study results show that the number of soil fungi was dependent on the type and rate of agrochemicals used, on the growing season and the soil zone the samples were taken from for the analysis. Lower nitrogen fertiliser rates (80 and 120 kg?ha-1 and organic fertilisers stimulated the development of soil fungi, unlike the rate of 150 kg?ha- 1. Heavy metals, mercury and cadmium in particular, as well as high rates of the N-serve nitrification inhibitor inhibited the development of this group of soil microorganisms. Generally, the adverse effect of contaminated irrigation water on the soil fungi was recorded in both soil types, and particularly in the smonitza under red clover. Low detergent (Meril concentrations did not have any significant effect on this group of microorganisms. In this respect, it can be concluded that the soil fungi number dynamics can be used in monitoring soils polluted by different toxinogenic substances.

  1. Anthropogenic effects on soil micromycetes

    Directory of Open Access Journals (Sweden)

    Đukić Dragutin A.

    2007-01-01

    Full Text Available This paper is a synthesis of long-term investigations based on the effect of different authropogenic pollutants (mineral and organic fertilizers, heavy metals, contaminated irrigation water, nitrification inhibitor and detergents on the dynamics of soil fungi number. The investigations were performed at the Microbiology Department and trial fields of the Faculty of Agronomy in Čačak on smonitza and alluvium soils in field and under greenhouse conditions. Maize, wheat, barley and red clover were used as test plants in these studies. The quantitative composition of the fungi in the soils investigated was determined by the Čapek selective agar dilution method. The study results show that the number of soil fungi was dependent on the type and rate of agrochemicals used, on the growing season, and the soil zone the samples were taken from for the analysis. Lower nitrogen fertiliser rates (80 and 120 kg x ha-1 and organic fertilizers stimulated the development of soil fungi, unlike the rate of 150 kg x ha-1. Heavy metals, mercury and cadmium in particular, as well as high rates of the N-serve nitrification inhibitor, inhibited the development of this group of soil microorganisms. Generally, the adverse effect of contaminated irrigation water on the soil fungi was recorded in both soil types, and particularly in the smonitza under red clover. Low detergent (Meril concentrations did not have any significant effect on this group of microorganisms. In this respect, it can be concluded that the soil fungi number dynamics can be used in monitoring soils polluted by different toxinogenic substances.

  2. Physico-empirical approach for mapping soil hydraulic behaviour

    Directory of Open Access Journals (Sweden)

    G. D'Urso

    1997-01-01

    Full Text Available Abstract: Pedo-transfer functions are largely used in soil hydraulic characterisation of large areas. The use of physico-empirical approaches for the derivation of soil hydraulic parameters from disturbed samples data can be greatly enhanced if a characterisation performed on undisturbed cores of the same type of soil is available. In this study, an experimental procedure for deriving maps of soil hydraulic behaviour is discussed with reference to its application in an irrigation district (30 km2 in southern Italy. The main steps of the proposed procedure are: i the precise identification of soil hydraulic functions from undisturbed sampling of main horizons in representative profiles for each soil map unit; ii the determination of pore-size distribution curves from larger disturbed sampling data sets within the same soil map unit. iii the calibration of physical-empirical methods for retrieving soil hydraulic parameters from particle-size data and undisturbed soil sample analysis; iv the definition of functional hydraulic properties from water balance output; and v the delimitation of soil hydraulic map units based on functional properties.

  3. Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana

    Science.gov (United States)

    Thomas, Andrew D.

    2012-01-01

    Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands. PMID:23045706

  4. USE OF NEMATODE DESTROYING FUNGI AS INDICATORS OF LAND DISTURBANCE IN TAITA TAVETA, KENYA

    Directory of Open Access Journals (Sweden)

    Peter Wachira

    2009-10-01

    Full Text Available This study was undertaken to determine whether nematode destroying fungi can be used as indicators of soil disturbances. Soil samples were collected from an indigenous forest, maize/bean, napier grass, shrub and vegetable fields, which represented the main land use types in Taita Taveta district of Kenya. The fungal isolates obtained were grouped into seven genera. The species identified were, Acrostalagums obovatus, Arthrobotrys dactyloides, Arthrobotrys oligospora, Arthrobotrys superba, Dactyllela lobata, Haptoglosa heterospora, Harposporium anguillulae, Harposporium.sp, Monacrosporium cionopagum and Nematoctonous georgenious. Occurrence of nematode destroying fungi was significantly (P = 3.81 x 10 -7 different among the land use systems in the study area. Out of the isolates that were positively identified, 33.7 %, 27.9 %, 20.9 %, 11.6 % and 5.8 % were from fields under vegetable, maize/bean, napier grass, shrub and forest, respectively. Soil disturbance accounted for the highest occurrence of nematode destroying fungi (60.77 % of the two main factors in the principal component analysis. While moisture, the second factor accounted for 23.35%. Fungal isolates from vegetable gardens were most diverse but the least even while the forest land use was most even but least diverse. The total richness of nematode destroying fungi was nine, in vegetable and maize/bean fields while was seven, six, and three in napier, shrub and forest habitats respectively in their decreasing order of disturbance. This study has established that nematode destroying fungi increases with increased land disturbance.

  5. Effect of the soil's redox conditions on the mobility of Se

    International Nuclear Information System (INIS)

    Darcheville, O.; Fevrier, L.; Martin-Garin, A.

    2005-01-01

    Full text of publication follows: 79 Se is a long-life fission product found in the nuclear wastes. Understanding its behaviour in soils is of major concern because of its bioavailability with almost all living organisms (plants and animals). This study is part of a wider multi-disciplinary program that aims at studying 'the effect of the geochemical transformations and the microbial activities on the fate of Se in soils' [1]. The first part of this program is focused on the interactions between Se and the organic compartment of soils, including both biotic (microorganisms, plants,...) and abiotic (humic, fulvic substances,...) components. Special attention is paid to their consequence on the mobility of Se. The second part of the study, presented here, aims specifically at understanding the effect of the soil's redox status on the mobility of Se and at identifying the nature of the processes involved (microbiological vs chemical). Different types of experiments are performed under laboratory controlled conditions. They consist in mixing a 2 mm-sieved sandy soil from the Rhone borders (France) with radio-labelled selenite ( 75 SeIV). In batch experiments, the soil is incubated in a closed vessel under various atmospheres (O 2 or N 2 ) and amended with specific nutrients in order to create contrasted redox conditions and to stimulate specific microbial communities. These conditions are also used in column experiments to determine their impact on Se mobility. They are completed by varying the degree of water saturation in the column and the structure of the soil. The percolation front of Se is followed in-situ with a mobile gamma detector without disturbing the system. In both experimental designs, mass recoveries of 75 Se are precisely determined in the soil-solution systems thanks to the quantification of Se concentrations in the aqueous, solid and gaseous phases. In addition, the non reversibly sorbed Se fraction is assessed by performing sequential extractions

  6. The secret life of microbes: soil bacteria and fungi undaunted by the harvesting of fire-killed trees

    Science.gov (United States)

    Paul Meznarich; Jane Smith; Tara Jennings

    2013-01-01

    Soil health is fundamental to ecosystem health. Disturbances such as fire and timber harvesting can affect the abundance, activity, and composition of soil microbial communities and thus affect soil productivity. In response to forest managers, scientists with the Pacific Northwest Research Station compared health and productivity indicators between soils disturbed by...

  7. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    Science.gov (United States)

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  8. Effects of imidacloprid on soil microbial communities in different saline soils.

    Science.gov (United States)

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  9. Effect of Erosion on Productivity in Subtropical Red Soil Hilly Region: A Multi-Scale Spatio-Temporal Study by Simulated Rainfall

    Science.gov (United States)

    Li, Zhongwu; Huang, Jinquan; Zeng, Guangming; Nie, Xiaodong; Ma, Wenming; Yu, Wei; Guo, Wang; Zhang, Jiachao

    2013-01-01

    The effects of water erosion (including long-term historical erosion and single erosion event) on soil properties and productivity in different farming systems were investigated. A typical sloping cropland with homogeneous soil properties was designed in 2009 and then protected from other external disturbances except natural water erosion. In 2012, this cropland was divided in three equally sized blocks. Three treatments were performed on these blocks with different simulated rainfall intensities and farming methods: (1) high rainfall intensity (1.5 - 1.7 mm min−1), no-tillage operation; (2) low rainfall intensity (0.5 - 0.7 mm min−1), no-tillage operation; and (3) low rainfall intensity, tillage operation. All of the blocks were divided in five equally sized subplots along the slope to characterize the three-year effects of historical erosion quantitatively. Redundancy analysis showed that the effects of long-term historical erosion significantly caused most of the variations in soil productivity in no-tillage and low rainfall erosion intensity systems. The intensities of the simulated rainfall did not exhibit significant effects on soil productivity in no-tillage systems. By contrast, different farming operations induced a statistical difference in soil productivity at the same single erosion intensity. Soil organic carbon (SOC) was the major limiting variable that influenced soil productivity. Most explanations of long-term historical erosion for the variation in soil productivity arose from its sharing with SOC. SOC, total nitrogen, and total phosphorus were found as the regressors of soil productivity because of tillage operation. In general, this study provided strong evidence that single erosion event could also impose significant constraints on soil productivity by integrating with tillage operation, although single erosion is not the dominant effect relative to the long-term historical erosion. Our study demonstrated that an effective management of

  10. Effects of Bio-char on Soil Microbes in Herbicide Residual Soils

    Directory of Open Access Journals (Sweden)

    WANG Gen-lin

    2015-10-01

    Full Text Available Effects of biological carbon (bio-char on soil microbial community were studied by pot experiments simulating long residual herbicide residues in soil environment, which clarifed the improvement of biochar and its structural properties on soil microenvironment. The results showed that fungi and actinomycetes had the same effect tendency within 0~0.72 mg·kg-1 in clomazone residue which increased the role of stimulation with crop growth process prolonged, especially in high residue treatment, but strong inhibitory effect on bacteria community was occured early which returned to normal until sugar beet growth to fiftieth day. Soil fungi community decreased with bio-char adding, but had no significant difference with the control. When clomazone residue in soil was below 0.24 mg·kg-1, soil actinomycetes community was higher than control without bio-char, bacteria increased first and then reduced after adding carbon as below 0.12 mg·kg-1. Biochar was ‘deep hole’ structure containing C, O, S and other elements. The results showed that a certain concentration clomazone residue in soil would stimulate soil fungi and actinomycetes to grow. After adding the biochar, the inhibition effect of high herbicides residual on bacterial would be alleviated.

  11. Disturbance observer-based L1 robust tracking control for hypersonic vehicles with T-S disturbance modeling

    Directory of Open Access Journals (Sweden)

    Yang Yi

    2016-11-01

    Full Text Available This article concerns a disturbance observer-based L1 robust anti-disturbance tracking algorithm for the longitudinal models of hypersonic flight vehicles with different kinds of unknown disturbances. On one hand, by applying T-S fuzzy models to represent those modeled disturbances, a disturbance observer relying on T-S disturbance models can be constructed to track the dynamics of exogenous disturbances. On the other hand, L1 index is introduced to analyze the attenuation performance of disturbance for those unmodeled disturbances. By utilizing the existing convex optimization algorithm, a disturbance observer-based proportional-integral-controlled input is proposed such that the stability of hypersonic flight vehicles can be ensured and the tracking error for velocity and altitude in hypersonic flight vehicle models can converge to equilibrium point. Furthermore, the satisfactory disturbance rejection and attenuation with L1 index can be obtained simultaneously. Simulation results on hypersonic flight vehicle models can reflect the feasibility and effectiveness of the proposed control algorithm.

  12. The effects of memantine on behavioral disturbances in patients with Alzheimer's disease: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Kishi T

    2017-07-01

    Full Text Available Taro Kishi,* Shinji Matsunaga,* Nakao Iwata Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan *These authors contributed equally to this work Background: Memantine is effective in the treatment of behavioral disturbances in patients with Alzheimer’s disease. It has not yet been fully determined which behavioral disturbances respond best to memantine.Methods: We conducted a meta-analysis of memantine vs control (placebo or usual care for the treatment of individual behavioral disturbances (delusion, hallucination, agitation/aggression, dysphoria, anxiety/phobia, euphoria, apathy, disinhibition, irritability/lability, aberrant motor activity/activity disturbances, nighttime disturbance/diurnal rhythm disturbances, and eating disturbances. Randomized controlled studies of memantine in patients with Alzheimer’s disease were included in this study. To evaluate these outcomes, standardized mean difference (SMD, with 95% confidence intervals (95% CIs, based upon a random-effects model was evaluated in the meta-analysis.Results: A total of 11 studies (n=4,261; memantine vs placebo: N=4, n=1,500; memantine + cholinesterase inhibitors [M + ChEIs] vs ChEIs: N=7, n=2,761 were included in the meta-analysis. Compared to control, memantine showed significant improvement in agitation/aggression (SMD =-0.11; 95% CIs =-0.20, -0.03; P=0.01; I2=47%, delusion (SMD =-0.12; 95% CIs =-0.18, -0.06; P=0.0002; I2=0%, disinhibition (SMD =-0.08; 95% CIs =-0.15, -0.00; P=0.04; I2=0%, and nighttime disturbance/diurnal rhythm disturbances (SMD =-0.10; 95% CIs =-0.18, -0.02; P=0.02; I2=36%. Memantine was also marginally superior to control in hallucination (SMD =-0.06; 95% CIs =-0.12, 0.01; P=0.07; I2=0% and irritability/lability (SMD =-0.09; 95% CIs =-0.19, 0.01; P=0.07; I2=42%. Memantine is similar to control in dysphoria, anxiety/phobia, euphoria, apathy, and eating disturbance.Conclusion: The meta-analysis suggest

  13. Effects of Atrazine on Soil Microorganisms

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2006-01-01

    Full Text Available Effects of the herbicide atrazine on soil microorganisms was investigated. Trials were set up in laboratory, on a clay loam soil. Atrazine was applied at 8.0, 40.0 and 80.0 mg/kg soil rates. The abundance of total microorganisms, fungi, actinomycetes, cellulolytic microorganisms and amino-heterotrophs was recorded. Soil samples were collected 1, 7, 14, 21, 30 and 60 days after atrazine treatment for microbiological analyses.The results showed that the intensity of atrazine effect on soil microorganisms depended on treatment rate, exposure time and group of microorganisms. Atrazine had an inhibiting effect on cellulolytic microorganisms and amino-heterotrophs. Initially, it inhibited fungiand actinomycetes but its effect turned into a stimulating one once a population recovered. Atrazine had a stimulating effect on total abundance of microorganisms.

  14. Methodological approach for evaluating the response of soil hydrological behavior to irrigation with treated municipal wastewater

    Science.gov (United States)

    Coppola, A.; Santini, A.; Botti, P.; Vacca, S.; Comegna, V.; Severino, G.

    2004-06-01

    This paper aims mainly to provide experimental evidence of the consequences of urban wastewater reuse in irrigation practices on the hydrological behavior of soils. The effects on both the hydraulic and dispersive properties of representative soils in southern Sardinia are illustrated. Ten undisturbed soil monoliths, 120 cm in height and 40 cm in diameter, were collected from plots previously selected through a soil survey. Soil hydraulic and solute transport properties were determined before and after application of wastewater using transient water infiltration and steady state-solute transport column experiments. Detailed spatial-temporal information on the propagation of water and solute through the soil profiles were obtained by monitoring soil water contents, θ, pressure heads, h, and solute concentrations, C, measured by a network of time domain reflectometry probes, tensiometers and solution samplers horizontally inserted in each column at different depths. A disturbed layer at the soil surface, which expands in depth with time, was observed, characterized by reduced soil porosity, translation of pore size distribution towards narrower pores and consequent decrease in water retention, hydraulic conductivity and hydrodynamic dispersion. It is shown that these changes occurring in the disturbed soil layer, although local by nature, affect the hydrological behavior of the whole soil profile. Due to the disturbed layer formation, the soil beneath never saturates. Such behavior has important consequences on the solute transport in soils, as unsaturated conditions mean higher residence times of solutes, even of those normally characterized by considerable mobility (e.g. boron), which may accumulate along the profile. The results mainly provide experimental evidence that knowledge of the chemical and microbiological composition of the water is not sufficient to evaluate its suitability for irrigation. Other factors, mainly soil physical and hydrological

  15. Scoping key soil issues for the Suncor Voyageur Oil Sands Project EIA

    Energy Technology Data Exchange (ETDEWEB)

    Doram, D.; Gulley, J. [Golder Associates, Calgary, AB (Canada); Fordham, C. [Suncor Energy, Calgary, AB (Canada)

    2002-07-01

    An issue scoping process to focus the soil impact assessment undertaken in conjunction with Suncor Energy's Voyageur Project near Fort McMurray, Alberta, is described. Potential impacts to soils considered include disturbances from mining and in-situ developments, re-constructing soils to meet equivalent capability and predicting how soils will respond to acid deposition. The assessment also provides an opportunity to evaluate unique soil mitigation strategies at both the local and regional levels. New regulatory and soil reclamation challenges include developing soil salvage criteria for restoring the biodiversity which existed prior to the disturbance necessitated by the mining and in-situ operations and creating a suitable habitat for the caribou in the Firebag lease.

  16. Comparison of silvicultural and natural disturbance effects on terrestrial salamanders in northern hardwood forests

    Science.gov (United States)

    Daniel J. Hocking; Kimberly J. Babbitt; Mariko. Yamasaki

    2013-01-01

    In forested ecosystems timber harvesting has the potential to emulate natural disturbances, thereby maintaining the natural communities adapted to particular disturbances. We compared the effects of even-aged (clearcut and patch cut) and uneven-aged (group cut, single-tree selection) timber management techniques with natural ice-storm damage and unmanipulated reference...

  17. Mapping of Soil-Ecological Conditions of a Medium-Size Industrial City (Birobidzhan City, Jewish Autonomous Oblast, FarEast of Russia as an Example)

    Science.gov (United States)

    Kalmanova, V. B.; Matiushkina, L. A.

    2018-01-01

    The authors analyze soil relations with other elements of the city ecosystem (the position in the landscape, soil-forming rocks and lithology, vegetation and its state) to develop the legend and map of soils in the City of Birobidzhan (scale 1:25 000). The focus of study is the morphological structure of urban soils with different degree of disturbance of these relations under the impact of technical effects, economic and recreational activities of the city population. The soil cover structure is composed of four large ecological groups of soils: natural untransformed, natural with a disturbed surface, anthropogenic soils and technogenic surface formations. Using cartometry of the mapped soil contours the authors created the scheme of soil-ecological city zoning, which in a general way depicts the state of soil ecological functions in the city as well as identified zones of soils with preserved, partially and fully distured ecological functions and zones of local geochemical anomalies at the initial formation stage (environmental risk zones).

  18. SoilEffects - start characterization of the experimental soil

    DEFF Research Database (Denmark)

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun

    -14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on Tingvoll research farm in 2011. A biogas plant was built at this farm in 2010, to digest the manure...... in spring, no legumes are grown, and aboveground plant material is removed at harvest. This practice is intended to stress the maintenance of soil organic matter in the arable system, to possibly reveal clearer effects of the experimental treatments. Within each cropping system, five experimental treatments...... by ignition loss was 11.3 % in the grass and 6.6 % in the arable system. Analyzed by total-C measurements, the corresponding SOM values were 11.03 % and 5.97 %. In Norwegian soil, SOM values between 3 and 6 % are regarded as high humus contents (“moldrik”), whereas values between 6 and 12 % are regarded...

  19. Relative effects of disturbance on red imported fire ants and native ant species in a longleaf pine ecosystem

    DEFF Research Database (Denmark)

    Stuble, Katharine L.; Kirkman, L. Katherine; Carroll, C. Ronald

    2011-01-01

    and cases in which non-native species become established in intact (lacking extensive anthropogenic soil disturbance) communities and subsequently diminish the abundance and richness of native species is challenging on the basis of observation alone. The red imported fire ant (Solenopsis invicta......), an invasive species that occurs throughout much of the southeastern United States, is such an example. Rather than competitively displacing native species, fire ants may become established only in disturbed areas in which native species richness and abundance are already reduced. We used insecticide to reduce......, the abundance of native ants increased to levels comparable to those in control plots after 1 year. Our findings suggest that factors other than large reductions in ant abundance and species density (number of species per unit area) may affect the establishment of fire ants and that the response of native ants...

  20. Predicting the cumulative effect of multiple disturbances on seagrass connectivity.

    Science.gov (United States)

    Grech, Alana; Hanert, Emmanuel; McKenzie, Len; Rasheed, Michael; Thomas, Christopher; Tol, Samantha; Wang, Mingzhu; Waycott, Michelle; Wolter, Jolan; Coles, Rob

    2018-03-15

    The rate of exchange, or connectivity, among populations effects their ability to recover after disturbance events. However, there is limited information on the extent to which populations are connected or how multiple disturbances affect connectivity, especially in coastal and marine ecosystems. We used network analysis and the outputs of a biophysical model to measure potential functional connectivity and predict the impact of multiple disturbances on seagrasses in the central Great Barrier Reef World Heritage Area (GBRWHA), Australia. The seagrass networks were densely connected, indicating that seagrasses are resilient to the random loss of meadows. Our analysis identified discrete meadows that are important sources of seagrass propagules and that serve as stepping stones connecting various different parts of the network. Several of these meadows were close to urban areas or ports and likely to be at risk from coastal development. Deep water meadows were highly connected to coastal meadows and may function as a refuge, but only for non-foundation species. We evaluated changes to the structure and functioning of the seagrass networks when one or more discrete meadows were removed due to multiple disturbance events. The scale of disturbance required to disconnect the seagrass networks into two or more components was on average >245 km, about half the length of the metapopulation. The densely connected seagrass meadows of the central GBRWHA are not limited by the supply of propagules; therefore, management should focus on improving environmental conditions that support natural seagrass recruitment and recovery processes. Our study provides a new framework for assessing the impact of global change on the connectivity and persistence of coastal and marine ecosystems. Without this knowledge, management actions, including coastal restoration, may prove unnecessary and be unsuccessful. © 2018 John Wiley & Sons Ltd.

  1. Controlled soil warming powered by alternative energy for remote field sites.

    Science.gov (United States)

    Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  2. Controlled soil warming powered by alternative energy for remote field sites.

    Directory of Open Access Journals (Sweden)

    Jill F Johnstone

    Full Text Available Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2 plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  3. Soil arthropod fauna from natural ecosites and reclaimed oil sands soils in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Battigelli, J.P.; Leskiw, L.A. [Paragon Soil and Environmental Consulting Inc., Edmonton, AB (Canada)

    2006-07-01

    An understanding of soil invertebrates may facilitate current reclamation activities in the oil sands region of Alberta. This paper presented the results of a study investigating the density, diversity, and structure of soil arthropod assemblages in natural habitats and reclaimed sites. The purpose of the study was to establish a baseline inventory of soil arthropod assemblages in order to enable long-term monitoring of soil arthropod recolonization in disturbed sites. Nine natural ecosites were sampled for the study, including peat mix over secondary material over tailing sand; direct placement over tailing sand; peat mix over secondary over overburden; direct placement over overburden; peat mix over tailing sand; and peat mix over overburden. Samples were collected from previously established long-term soil and vegetation treatment plots in both natural ecosites and reclaimed soil sites located near Fort McMurray, Alberta. Results showed that densities of mesofauna were significantly higher in samples collected from natural ecosites. Acari and Collembola represented approximately 97 to 98 per cent of the fauna collected. It was also noted that the overall structure of the soil mesofauna community differed between natural soils and reclaimed soils. A significant reduction in the abundance of oribatid mites was observed in soils that had been reclaimed for over 34 years. Changes in the soil mesofauna community structure suggested that reclaimed soils continue to represent disturbed ecosites, as was indicated by higher proportions of prostigmatid mites and some collembolan families. Differences in community structure may influence soil ecosystem functions, including decomposition rates; nutrient recycling; soil structure; and fungal and bacterial biomass. It was concluded that further research is needed to examine oribatid mites and collembolan species diversity and community structure in reclaimed soils. 18 refs., 6 figs.

  4. Variability of Effective Micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens

    NARCIS (Netherlands)

    Shin, Keumchul; Diepen, van G.; Blok, W.; Bruggen, van A.H.C.

    2017-01-01

    The microbial inoculant ‘Effective Microorganisms’ (EM) has been used to promote soil fertility and plant growth in agriculture. We tested effects of commercial EM products on suppression of soil-borne diseases, microbial activity and bacterial composition in organically managed sandy soils. EM was

  5. Disturbance promotes non-indigenous bacterial invasion in soil microcosms

    DEFF Research Database (Denmark)

    Liu, Manqiang; Strandmark, Lisa Bjørnlund; Rønn, Regin

    2012-01-01

    Invasion-biology is largely based on non-experimental observation of larger organisms. Here, we apply an experimental approach to the subject. By using microbial-based microcosm-experiments, invasion-biology can be placed on firmer experimental, and hence, less anecdotal ground. A better...... understanding of the mechanisms that govern invasion-success of bacteria in soil communities will provide knowledge on the factors that hinder successful establishment of bacteria artificially inoculated into soil, e.g. for remediation purposes. Further, it will yield valuable information on general principles...... of invasion biology in other domains of life....

  6. A dam in the drylands: Effects of soil geomorphic actions on a mediterranean alluvial scrubland and the endangered Santa Ana woolly star (Eriastrum densifolium spp. sanctorum)

    Science.gov (United States)

    Hernandez, R. R.; Sandquist, D. R.

    2017-12-01

    When dams preclude natural flow, maintenance of river ecosystems adapted to infrequent, catastrophic floods poses unique challenges. Further, riparian mediterranean ecosystems with high inter-annual and seasonal precipitation variability, coupled with complicated patterns of biotic and abiotic heterogeneity, intensify challenges for management under disrupted flow regimes. In this study, we evaluated the impact of six unique soil geomorphic actions on the rare Riversidian alluvial fan sage scrub plant community, which includes the endangered Santa Ana River woolly star (Eriastrum densifolium spp. sanctorum [Eds]) after 5, 7.5, and 13 years of response. We implemented a complete randomized block design, with each block incorporating six geomorphic treatments: cleared, diked, cut, filled (10 cm soil), filled (20 cm soil), and filled (30 cm soil), mimicking one of more physical disturbance process occurring after a natural flood event. We performed native and exotic plant community surveys on full plots in summer 2006, representing 7.5 years of response from the original 1999 disturbance, and on (re-disturbed half) plots in fall 2012, representing (5 years) 13 years of response. We found that recruitment of Eds into late-successional (i.e., control) plots is highly limited (0.0, 4.1, and 2.5% cover) after 5, 7.5, and 13 years, respectively, with implications for the persistence of this species, whereas the cut treatment showed significantly higher cover of Eds (25.3, 53.4, 14.3%, respectively). Our results also suggest that exotic annual grasses may inhibit Eds and other Riversidian alluvial fan sage scrub plant community members under a disrupted flow regime but that soil geomorphic treatment of late-successional habitat can be effective in facilitating Eds and Riversidian alluvial fan sage scrub establishment.

  7. The dynamics of radionuclide behaviour in soil solution with special reference to the application of countermeasures

    International Nuclear Information System (INIS)

    Nisbet, A.F.; Lembrechts, J.F.

    1990-01-01

    Any investigations into the effect of countermeasures on radionuclide transfer to plants should include a comprehensive chemical analysis of soil solution. This is because of the disturbances that soil-based countermeasures cause on soil:solution equilibria and radionuclide distribution between solid and liquid phases. As it is difficult to determine directly the effects of countermeasures under field conditions, it is recommended that laboratory-based studies be done first. These should include batch equilibrium experiments for soil:solution interactions, and hydroponic studies for solution:plant relationships. Speciation of radionuclides should form a fundamental part of both studies. (author)

  8. Soil contamination in south Backa region of Serbia with dangerous and harmful substances

    Directory of Open Access Journals (Sweden)

    Maksimović Livija

    2012-01-01

    Full Text Available Soil samples in disturbed state were taken in order to control fertility and monitor contents of harmful and hazardous substances in Vojvodina soils and possibilities of soil degradation in general. Moderately contaminated soils were selected for examination. Microbial activity in contaminated soil and the impact of harmful and hazardous substances (pesticides on soil microorganisms were observed and most resistant microorganisms were isolated. Vegetation experiments were organized to study the effect of chelating agents EDTA and EDDS on copper adoption and translocation in rapeseed and sunflower. Importance of some ions in the complexation of copper chelators and their undesirable effects on copper uptake were established. Field trials were organized to study the effect of hydrogel on water uptakes by plants, increase in rate and the increase in rate of removal of hazardous and harmful substances from soil solution. At all phases of the project, we monitored the effectiveness of soil bioremediation soils by means of the application of chelating agents, stimulative preparations such as hydrogel and certain microorganisms. It effectiveness was measured in terms of plant growth rate and intensity in removal of hazardous and harmful substances from contaminated soil.

  9. Effects of climate change and anthropogenic modification on a disturbance-dependent species in a large riverine system

    Science.gov (United States)

    Zeigler, Sara; Catlin, Daniel H.; Bomberger Brown, M.; Fraser, J.D.; Dinan, Lauren R.; Hunt, Kelsi L.; Jorgensen, Joel G.; Karpanty, Sarah M.

    2017-01-01

    Humans have altered nearly every natural disturbance regime on the planet through climate and land-use change, and in many instances, these processes may have interacting effects. For example, projected shifts in temperature and precipitation will likely influence disturbance regimes already affected by anthropogenic fire suppression or river impoundments. Understanding how disturbance-dependent species respond to complex and interacting environmental changes is important for conservation efforts. Using field-based demographic and movement rates, we conducted a metapopulation viability analysis for piping plovers (Charadrius melodus), a threatened disturbance-dependent species, along the Missouri and Platte rivers in the Great Plains of North America. Our aim was to better understand current and projected future metapopulation dynamics given that natural disturbances (flooding or high-flow events) have been greatly reduced by river impoundments and that climate change could further alter the disturbance regime. Although metapopulation abundance has been substantially reduced under the current suppressed disturbance regime (high-flow return interval ~ 20 yr), it could grow if the frequency of high-flow events increases as predicted under likely climate change scenarios. We found that a four-year return interval would maximize metapopulation abundance, and all subpopulations in the metapopulation would act as sources at a return interval of 15 yr or less. Regardless of disturbance frequency, the presence of even a small, stable source subpopulation buffered the metapopulation and sustained a low metapopulation extinction risk. Therefore, climate change could have positive effects in ecosystems where disturbances have been anthropogenically suppressed when climatic shifts move disturbance regimes toward more historical patterns. Furthermore, stable source populations, even if unintentionally maintained through anthropogenic activities, may be critical for the

  10. Legacy effects of no-analogue disturbances alter plant community diversity and composition in semi-arid sagebrush steppe

    Science.gov (United States)

    Ripplinger, Julie; Franklin, Janet; Edwards, Thomas C.

    2015-01-01

    Questions(i) What role does the type of managed disturbance play in structuring sagebrush steppe plant communities? (ii) How does the composition of post-disturbance plant communities change with time since disturbance? (iii) Does plant community diversity change over time following managed disturbance?LocationField study within the sagebrush steppe ecosystem. Rich County, Utah, USA.MethodsWe developed a chronosequence spanning up to 50 yrs post-treatment to study sagebrush steppe vegetation dynamics. Direct ordination was used to examine plant community composition by managed disturbance type and time since disturbance, and factorial analysis of covariance was used to examine diversity dynamics following disturbance. Indicator species values were calculated in order to identify characteristic species for each disturbance type.ResultsPlant communities experienced a shift toward distinct community composition for each of the three managed disturbance types, and gave no indication of returning to untreated community composition or diversity. Small post-disturbance increases in the number of non-native grass species were observed in the treatments relative to reference, with native forb species making the largest contribution to altered composition. On fire- and chemically-treated sites the proportional native forb species richness increased over time since disturbance, while the proportional contribution of non-native forbs to total species richness decreased. For all three treatment types, native grasses contributed less on average to total richness than on reference sites, while non-native grasses made up a higher proportion of total richness.ConclusionsCommon shrubland management techniques have legacy effects on the composition and diversity of sagebrush steppe plant communities, and no-analogue disturbances, such as chemical or mechanical treatments, have more pronounced legacy effects than treatments similar to natural disturbance regimes (fire). This study

  11. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    Science.gov (United States)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  12. Assessment of ecological and human health risks of heavy metal contamination in agriculture soils disturbed by pipeline construction.

    Science.gov (United States)

    Shi, Peng; Xiao, Jun; Wang, Yafeng; Chen, Liding

    2014-02-28

    The construction of large-scale infrastructures such as nature gas/oil pipelines involves extensive disturbance to regional ecosystems. Few studies have documented the soil degradation and heavy metal contamination caused by pipeline construction. In this study, chromium (Cr), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) levels were evaluated using Index of Geo-accumulation (Igeo) and Potential Ecological Risk Index (RI) values, and human health risk assessments were used to elucidate the level and spatial variation of heavy metal pollution risks. The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW), which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m. RI showed a declining tendency in different zones as follows: trench > working zone > piling area > 20 m > 50 m. Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk. Cluster analysis showed that Cu, Ni, Pb and Cd had similar sources, drawing attention to the anthropogenic activity. The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management.

  13. Assessment of Ecological and Human Health Risks of Heavy Metal Contamination in Agriculture Soils Disturbed by Pipeline Construction

    Directory of Open Access Journals (Sweden)

    Peng Shi

    2014-02-01

    Full Text Available The construction of large-scale infrastructures such as nature gas/oil pipelines involves extensive disturbance to regional ecosystems. Few studies have documented the soil degradation and heavy metal contamination caused by pipeline construction. In this study, chromium (Cr, cadmium (Cd, copper (Cu, nickel (Ni, lead (Pb and zinc (Zn levels were evaluated using Index of Geo-accumulation (Igeo and Potential Ecological Risk Index (RI values, and human health risk assessments were used to elucidate the level and spatial variation of heavy metal pollution risks. The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW, which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m. RI showed a declining tendency in different zones as follows: trench > working zone > piling area > 20 m > 50 m. Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk. Cluster analysis showed that Cu, Ni, Pb and Cd had similar sources, drawing attention to the anthropogenic activity. The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management.

  14. Linking soils and streams: Response of soil solution chemistry to simulated hurricane disturbance mirrors stream chemistry following a severe hurricane

    Science.gov (United States)

    William H. McDowell; Daniel Liptzin

    2014-01-01

    Understanding the drivers of forest ecosystem response to major disturbance events is an important topic in forest ecology and ecosystem management. Because of the multiple elements included in most major disturbances such as hurricanes, fires, or landslides, it is often difficult to ascribe a specific driver to the observed response. This is particularly true for the...

  15. Effects of plutonium on soil microorganisms

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.

    1982-01-01

    As a first phase in an investigation of the role of the soil microflora in Pu complex formation and solubilization in soil, the effects of Pu concentration, form, and specific activity on microbial types, colony-forming units, and CO 2 evolution rate were determined in soils amended with C and N sources to optimize microbial activity. The effects of Pu differed with organism type and incubation time. After 30 days of incubation, aerobic sporeforming and anaerobic bacteria were significantly affected by soil Pu levels as low as 1 μg/g when Pu was added as the hydrolyzable 239 Pu(NO 3 ) 4 (solubility, 2 evolution rate and total accumulated CO 2 were affected by Pu only at the 180 μg/g level. Because of the possible role of resistant organisms in complex formation, the mechanisms of effects of Pu on the soil fungi were further evaluated. The effect of Pu on soil fungal colony-forming units was a function of Pu-solubility in soil and Pu specific activity. When Pu was added in a soluble, complexed from [ 238 Pu 2 (diethylenetriaminepentaacetate) 3 ], effects occurred at Pu levels of 1 μg/g and persisted for at least 95 days. Toxicity was due primarily to radiation effects rather than to chemical effects, suggesting that, at least in the case of the fungi, formation of Pu complexes would result primarily from ligands associated with normal (in contrast to chemically-induced) biochemical pathways

  16. Negative effects of excessive soil phosphorus on floristic quality in Ohio wetlands.

    Science.gov (United States)

    Stapanian, Martin A; Schumacher, William; Gara, Brian; Monteith, Steven E

    2016-05-01

    Excessive soil nutrients, often from agricultural runoff, have been shown to negatively impact some aspects of wetland plant communities. We measured plant-available phosphorus (Mehlich-3: MeP) in soil samples, and assessed the vascular plant community and habitat degradation at 27 emergent and 13 forested wetlands in Ohio, USA. We tested two hypotheses: (1) that an index of vegetation biological integrity based on floristic quality was lower in wetlands with higher concentrations of MeP in the soil, and (2) that higher concentrations of MeP occurred in wetlands with more habitat degradation (i.e., lower quality), as estimated by a rapid assessment method. Hypothesis (1) was supported for emergent, but not for forested wetlands. Hypothesis (2) was marginally supported (P=0.09) for emergent, but not supported for forested wetlands. The results indicate that the effect of concentration of phosphorus in wetland soils and the quality of plant species assemblages in wetlands is more complex than shown in site-specific studies and may depend in part on degree of disturbance in the surrounding watershed and dominant wetland vegetation type. Woody plants in forested wetlands are typically longer lived than herbaceous species in the understory and emergent wetlands, and may persist despite high inputs of phosphorus. Further, the forested wetlands were typically surrounded by a wide band of forest vegetation, which may provide a barrier against sedimentation and the associated phosphorus inputs to the wetland interior. Our results indicate that inferences about soil nutrient conditions made from rapid assessment methods for assessing wetland habitat condition may not be reliable. Copyright © 2016. Published by Elsevier B.V.

  17. Effects of climate change on ecological disturbance in the northern Rockies

    Science.gov (United States)

    Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.; Halofsky, Jessica E.; Peterson, David L.

    2018-01-01

    Disturbances alter ecosystem, community, or population structure and change elements of the biological and/or physical environment. Climate changes can alter the timing, magnitude, frequency, and duration of disturbance events, as well as the interactions of disturbances on a landscape, and climate change may already be affecting disturbance events and regimes. Interactions among disturbance regimes, such as the cooccurrence in space and time of bark beetle outbreaks and wildfires, can result in highly visible, rapidly occurring, and persistent changes in landscape composition and structure. Understanding how altered disturbance patterns and multiple disturbance interactions might result in novel and emergent landscape behaviors is critical for addressing climate change impacts and for designing land management strategies that are appropriate for future climates This chapter describes the ecology of important disturbance regimes in the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. We summarize five disturbance types present in the Northern Rockies that are sensitive to a changing climate--wildfires, bark beetles, white pine blister rust (Cronartium ribicola), other forest diseases, and nonnative plant invasions—and provide information that can help managers anticipate how, when, where, and why climate changes may alter the characteristics of disturbance regimes.

  18. Crossdating of disturbances by tree uprooting: Can treethrow microtopography persist for 6000 years?

    Czech Academy of Sciences Publication Activity Database

    Šamonil, P.; Schaetzl, R. J.; Valtera, M.; Goliáš, V.; Baldrian, Petr; Vašíčková, I.; Adam, D.; Janík, D.; Hort, J.

    2013-01-01

    Roč. 307, NOV 2013 (2013), s. 123-135 ISSN 0378-1127 Institutional support: RVO:61388971 Keywords : Soil disturbance dating * Tree-uprooting microtopography * Radiocarbon Subject RIV: EE - Microbiology, Virology Impact factor: 2.667, year: 2013

  19. Long-term effects of conventional and reduced tillage systems on soil condition and yield of maize

    Science.gov (United States)

    Rátonyi, Tamás; Széles, Adrienn; Harsányi, Endre

    2015-04-01

    As a consequence of operations which neglect soil condition and consist of frequent soil disturbance, conventional tillage (primary tillage with autumn ploughing) results in the degradation and compaction of soil structure, as well as the reduction of organic matter. These unfavourable processes pose an increasing economic and environmental protection problem today. The unfavourable physical condition of soils on which conventional tillage was performed indicate the need for preserving methods and tools. The examinations were performed in the multifactorial long-term tillage experiment established at the Látókép experiment site of DE MÉK. The experiment site is located in the Hajdúság loess ridge (Hungary) and its soil is loess-based calcareous chernozem with deep humus layer. The physical soil type is mid-heavy adobe. The long-term experiment has a split-split plot design. The main plots are different tillage methods (autumn ploughing, spring shallow tillage) without replication. In this paper, the effect of conventional and reduced (shallow) tillage methods on soil conditions and maize yield was examined. A manual penetrometer was used to determine the physical condition and compactedness of the soil. The soil moisture content was determined with deep probe measurement (based on capacitive method). In addition to soil analyses, the yield per hectare of different plots was also observed. In reduced tillage, one compacted layer is shown in the soil resistance profile determined with a penetrometer, while there are two compacted layers in autumn ploughing. The highest resistance was measured in the case of primary tillage performed at the same depth for several years in the compacted (pan disk) layer developed under the developed layer in both treatments. The unfavourable impact of spring shallow primary tillage on physical soil conditions is shown by the fact that the compaction of the pan disk exceed the critical limit value of 3 MPa. Over the years, further

  20. DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state

    Science.gov (United States)

    O’Donnell, Jonathan A.; Aiken, George R.; Butler, Kenna D.; Guillemette, Francois; Podgorski, David C.; Spencer, Robert G. M.

    2016-01-01

    The boreal region stores large amounts of organic carbon (C) in organic-soil horizons, which are vulnerable to destabilization via warming and disturbance. Decomposition of soil organic matter (SOM) contributes to the production and turnover of dissolved organic matter (DOM). While temperature is a primary control on rates of SOM and DOM cycling, little is known about temperature effects on DOM composition in soil leachate. Here we conducted a 30 day incubation to examine the effects of temperature (20 versus 5°C) and SOM decomposition state (moss versus fibric versus amorphous horizons) on DOM composition in organic soils of interior Alaska. We characterized DOM using bulk dissolved organic C (DOC) concentration, chemical fractionation, optical properties, and ultrahigh-resolution mass spectrometry. We observed an increase in DOC concentration and DOM aromaticity in the 20°C treatment compared to the 5°C treatment. Leachate from fibric horizons had higher DOC concentration than shallow moss or deep amorphous horizons. We also observed chemical shifts in DOM leachate over time, including increases in hydrophobic organic acids, polyphenols, and condensed aromatics and decreases in low-molecular weight hydrophilic compounds and aliphatics. We compared ultrahigh-resolution mass spectrometry and optical data and observed strong correlations between polyphenols, condensed aromatics, SUVA254, and humic-like fluorescence intensities. These findings suggest that biolabile DOM was preferentially mineralized, and the magnitude of this transformation was determined by kinetics (i.e., temperature) and substrate quality (i.e., soil horizon). With future warming, our findings indicate that organic soils may release higher concentrations of aromatic DOM to aquatic ecosystems.

  1. Tillage Effects on Soil Properties & Respiration

    Science.gov (United States)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  2. Soil texture and climatc conditions for biocrust growth limitation: a meta analysis

    Science.gov (United States)

    Fischer, Thomas; Subbotina, Mariia

    2015-04-01

    Along with afforestation, attempts have been made to combat desertification by managing soil crusts, and is has been reported that recovery rates of biocrusts are dependent on many factors, including the type, severity, and extent of disturbance; structure of the vascular plant community; conditions of adjoining substrates; availability of inoculation material; and climate during and after disturbance (Belnap & Eldridge 2001). Because biological soil crusts are known to be more stable on and to prefer fine substrates (Belnap 2001), the question arises as to how successful crust management practices can be applied to coarser soil. In previous studies we observed similar crust biomasses on finer soils under arid and on coarser soils under temperate conditions. We hypothesized that the higher water holding capacity of finer substrates would favor crust development, and that the amount of silt and clay in the substrate that is required for enhanced crust development would vary with changes in climatic conditions. In a global meta study, climatic and soil texture threshold values promoting BSC growth were derived. While examining literature sources, it became evident that the amount of studies to be incorporated into this meta analysis was reversely related to the amount of common environmental parameters they share. We selected annual mean precipitaion, mean temperature and the amount of silt and clay as driving variables for crust growth. Response variable was the "relative crust biomass", which was computed per literature source as the ratio between each individual crust biomass value of the given study to the study maximum value reported. We distinguished lichen, green algal, cyanobacterial and moss crusts. To quantify threshold conditions at which crust biomass responded to differences in texture and climate, we (I) determined correlations between bioclimatic variables, (II) calculated linear models to determine the effect of typical climatic variables with soil

  3. Effectiveness of North Carolina phosphate rock and fertilizer tablets in reclaiming disturbed land in Copper Basin, Tennessee, USA

    International Nuclear Information System (INIS)

    Sikora, F.J.; Soileau, J.M.; Maddox, J.J.; Kelsoe, J.J.

    2002-01-01

    Open smelting of copper ore about 100 years ago resulted in approximately 9,300 ha of disturbed land with severely eroded acidic soils at Copper Basin, Tennessee, USA. A field study was initiated in 1992 to compare revegetation from surface application of North Carolina phosphate rock (PR) and triple superphosphate (TSP) at 20, 59, and 295 kg P ha -1 , and determine benefits of fertilizer tablets. Measurements included survival and growth of transplanted pine seedlings, ground cover from an aerially seeded grass/legume mixture, and soil acidity. Tree survival was greater than 87% with no difference among treatments. When fertilizer tablets were not used, tree height and diameter increased with increasing soil P rates with growth maximized at 59 kg P ha -1 . After 96 and 240 d, there was no difference between PR and TSP with respect to growth of loblolly pine. After 960 days, PR caused greater tree growth compared to TSP. Weeping love grass provided the most ground cover, and its growth was stimulated with fertilizer tablets and P application. Fescue, lespedeza, and black locust trees responded more to PR than to TSP. Soil pH increased, and 0.01-M SrCl 2 extractable Al decreased, with increasing rate of PR. The molar ratios of Ca:Al in 0.01-M SrCl 2 soil extracts were also greater with PR compared to TSP. Decreased soil acidity, increased growth of loblolly pines, and increased diversity of ground cover vegetation from PR application makes PR a suitable material for reclaiming extremely acidic soils. Fertilizer tablets had an effect of improving loblolly pine growth when no P was surface applied. However, with surface P application of 59 kg ha -1 as PR, fertilizer tablets did not add any additional benefit to loblolly pine growth. Some improvement in tree growth was observed using fertilizer tablets with P applied as TSP at 59 kg ha -1 . Fertilizer tablets did greatly improve ground coverage of weeping love grass. Use of fertilizer tablets in reclamation efforts in

  4. Understory vegetation in fast-growing tree plantations on savanna soils in Congo

    OpenAIRE

    Loumeto, J.J.; Huttel, Charles

    1997-01-01

    The hypothesis that tree plantations may catalyze the regeneration of natural forest biodiversity was tested through studies of floristic diversity and structure in fast-growing tree plantations in the Congo. Study sites included experimental and industrial plantations on poor sandy coastal soils near Pointe-Noire, and experimental plantations on clay soils near Loudima. The effects of plantations species, plantation age (in 6- to 20-year-old eucalypt stands), disturbance due to herbicide use...

  5. Effects of reduced soil functionality in European vineyards

    Science.gov (United States)

    Costantini, Edoardo; Priori, Simone; Akca, Ehran; Castaldini, Maurizio; D'Avino, Lorenzo; Fulchin, Emma; Gagnarli, Elena; Giffard, Brice; Erdem Kiraz, Mehmet; Lagomarsino, Alessandra; Landi, Silvia; Pellegrini, Sergio; Perria, Rita; Puccioni, Sergio; Schroers, Hans-Josef; Tardaguila, Javier; Pelengić, Radojko; Simoni, Sauro; Storchi, Paolo; Tangolar, Semih

    2017-04-01

    Improper or excessive land preparation methods in vineyards before planting can have a considerable impact on soil functionality. They include excessive levelling and deep ploughing leading to disturbances of the natural contour of slopes and destruction, truncation and burial of soil horizons. Manipulations may significantly modify chemical, physical, biological and hydrological balance of soils. Problems that may arise from these interventions relate to the reduction of organic substances, enrichment of calcium carbonate and soluble salts, impacting development and health of grapevines. Reduced water retention capacity can lead to increased water stress during dry season, decreased water permeability and circulation of oxygen in the soil, increased runoff volume, surface erosion and landslide risk, reduced biodiversity and limitation of biochemical processes (organic matter mineralization, bioavailability of nutrients, etc.). Soil degradations can lead to the loss of soil functionality even after the planting as a result of accelerated erosion, compaction by agricultural vehicles, excessive loss of organic matter and nutrients, and the accumulation of heavy metals such as copper. In both conventional and organic vineyards, it is quite common to have areas with reduced soil functionality that have negative impact on vine health and grape production and quality. In the framework of the Core organic RESOLVE project, a study was conducted in organic vineyards showing areas with reduced and good soil functionality. Degraded soils resulted in significantly lower amounts of grapes. The chlorophyll index (SPAD) of the grapevine during veraison was significantly lower in areas of degraded soils compared with the situation in areas of the same vineyard with non-degraded soils. In general, causes of soil malfunctioning were related to a lower fertility, including reduced organic carbon, total nitrogen and cation exchange capacity, higher concentrations of carbonates, and

  6. Detecting Anthropogenic Disturbance on Weathering and Erosion Processes

    Science.gov (United States)

    Vanacker, V.; Schoonejans, J.; Bellin, N.; Ameijeiras-Mariño, Y.; Opfergelt, S.; Christl, M.

    2014-12-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedback mechanisms between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. In this paper, we analyze dynamic soil properties for a rapidly changing anthropogenic landscape in the Spanish Betic Cordillera; and focus on the coupling between physical erosion, soil production and soil chemical weathering. Modern erosion rates were quantified through analysis of sediment deposition volumes behind check dams, and represent catchment-average erosion rates over the last 10 to 50 years. Soil production rates are derived from in-situ produced 10Be nuclide concentrations, and represent long-term flux rates. In each catchment, soil chemical weathering intensities were calculated for two soil-regolith profiles. Although Southeast Spain is commonly reported as the European region that is most affected by land degradation, modern erosion rates are low (140 t ha-1 yr-1). About 50 % of the catchments are losing soils at a rate of less than 60 t km-2 yr-1. Our data show that modern erosion rates are roughly of the same magnitude as the long-term or cosmogenically-derived erosion rates in the Betic Cordillera. Soils developed on weathered metamorphic rocks have no well-developed profile characteristics, and are generally thin and stony. Nevertheless, soil chemical weathering intensities are high; and question the occurrence of past soil truncation.

  7. Using organic amendments to restore soil physical and chemical properties of a mine site in northeastern Oregon, USA

    Science.gov (United States)

    D. S. Page-Dumroese; M. R. Ott; D. G. Strawn; J. M. Tirocke

    2018-01-01

    New cost-effective strategies are needed to reclaim soils disturbed from mining activity on National Forests. In addition, disposal of waste wood from local timber harvest operations or biosolids from waste water treatment plants can be expensive. Therefore, using organic byproducts for soil reclamation activities on National Forests may provide an opportunity to...

  8. Harvest traffic monitoring and soil physical response in a pine plantation

    Science.gov (United States)

    Emily A. Carter; Timothy P. McDonald; John L. Torbert

    2000-01-01

    Mechanized forest harvest operations induce changes in soil physical properties, which have the potential to impact soil sustainability and forest productivity. The assessment of soil compaction and its spatial variability has been determined previously through the identification and tabulation of visual soil disturbance classes and soil physical changes associated...

  9. Lysimeter experiments to determine the ability of soil to reduce concentrations of BOD, available P and inorganic N in dirty water.

    Science.gov (United States)

    Brookman, S K E; Chadwick; Retter, A R

    2005-11-01

    Lysimeter experiments were conducted to determine the ability of different soils to reduce levels of biochemical oxygen demand (BOD) and concentrations of molybdate reactive phosphorus (MRP) and ammonium-N (NH4(+)-N) in dirty water and the impact of applications on nitrate leaching. An additional experiment investigated the effect of dirty water components on leaching quality. This information is required to assess the potential risk of dirty water applications on polluting groundwater and to assess the use of such soils in the development of treatment systems for dirty water. Intact and disturbed soil lysimeters, 0.5 and 1m deep were constructed from four soils; a coarse free-draining sandy loam, a sandy loam over soft sandstone, a calcareous silty clay over chalk and a sandy loam over granite. For the coarse free-draining sandy loam, lysimeters were also constructed from disturbed soil with and without the addition of lime, to assess if this could increase phosphorus immobilisation. Levels of BOD and concentrations of MRP, NH4(+)-N and nitrate (NO3(-)-N) of leachates were measured following dirty water applications at 2 and 8 mm day(-1) under laboratory conditions. Under the daily 2mm application, all soils were effective at treating dirty water, reducing concentrations of BOD, MRP and NH4(+)- N by > or = 98% but NO3(-)-N concentrations increased up to 80 mg l(-1) from the 0.5 m deep lysimeters of the sandy loam over granite. Soils were less effective at reducing levels of BOD, MRP and NH4(+)- N at the 8 mm daily rate of application, with maximum NO3(-)-N concentrations of leachates of 200 mg l(-1) from disturbed soils.

  10. Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest

    Directory of Open Access Journals (Sweden)

    S. Seitz

    2017-12-01

    Full Text Available This study investigated the development of biological soil crusts (biocrusts in an early successional subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning experiment in southeast China (biodiversity and ecosystem functioning (BEF China, the effect of these biocrusts on sediment delivery and runoff was assessed within micro-scale runoff plots under natural rainfall, and biocrust cover was surveyed over a 5-year period. Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only 3 years. Biocrust cover was still increasing after 6 years of tree growth. Within later-stage crusts, 25 bryophyte species were determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts. Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that bryophyte-dominated biocrusts strongly decreased soil erosion, being more effective than abiotic soil surface cover. Hence, their significant role in mitigating sediment delivery and runoff generation in mesic forest environments and their ability to quickly colonise soil surfaces after disturbance are of particular interest for soil erosion control in early-stage forest plantations.

  11. Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest

    Science.gov (United States)

    Seitz, Steffen; Nebel, Martin; Goebes, Philipp; Käppeler, Kathrin; Schmidt, Karsten; Shi, Xuezheng; Song, Zhengshan; Webber, Carla L.; Weber, Bettina; Scholten, Thomas

    2017-12-01

    This study investigated the development of biological soil crusts (biocrusts) in an early successional subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning experiment in southeast China (biodiversity and ecosystem functioning (BEF) China), the effect of these biocrusts on sediment delivery and runoff was assessed within micro-scale runoff plots under natural rainfall, and biocrust cover was surveyed over a 5-year period. Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only 3 years. Biocrust cover was still increasing after 6 years of tree growth. Within later-stage crusts, 25 bryophyte species were determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts. Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that bryophyte-dominated biocrusts strongly decreased soil erosion, being more effective than abiotic soil surface cover. Hence, their significant role in mitigating sediment delivery and runoff generation in mesic forest environments and their ability to quickly colonise soil surfaces after disturbance are of particular interest for soil erosion control in early-stage forest plantations.

  12. Transforming Pinus pinaster forest to recreation site: preliminary effects on LAI, some forest floor, and soil properties.

    Science.gov (United States)

    Öztürk, Melih; Bolat, İlyas

    2014-04-01

    This study investigates the effects of forest transformation into recreation site. A fragment of a Pinus pinaster plantation forest was transferred to a recreation site in the city of Bartın located close to the Black Sea coast of northwestern Turkey. During the transformation, some of the trees were selectively removed from the forest to generate more open spaces for the recreationists. As a result, Leaf Area Index (LAI) decreased by 0.20 (about 11%). Additionally, roads and pathways were introduced into the site together with some recreational equipment sealing parts of the soil surface. Consequently, forest environment was altered with a semi-natural landscape within the recreation site. The purpose of this study is to assess the effects of forest transformation into recreation site particularly in terms of the LAI parameter, forest floor, and soil properties. Preliminary monitoring results indicate that forest floor biomass is reduced by 26% in the recreation site compared to the control site. Soil temperature is increased by 15% in the recreation site where selective removal of trees expanded the gaps allowing more light transmission. On the other hand, the soil bulk density which is an indicator of soil compaction is unexpectedly slightly lower in the recreation site. Organic carbon (C(org)) and total nitrogen (N(total)) together with the other physical and chemical parameter values indicate that forest floor and soil have not been exposed to much disturbance. However, subsequent removal of trees that would threaten the vegetation, forest floor, and soil should not be allowed. The activities of the recreationists are to be concentrated on the paved spaces rather than soil surfaces. Furthermore, long-term monitoring and management is necessary for both the observation and conservation of the site.

  13. Effects of heavy metals on soil microbial community

    Science.gov (United States)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  14. Effect of long-term farming strategies on soil microbiota and soil health

    Science.gov (United States)

    Sommermann, Loreen; Babin, Doreen; Sandmann, Martin; Smalla, Kornelia; Schellenberg, Ingo; Grosch, Rita; Geistlinger, Joerg

    2017-04-01

    Increasing food and energy demands have resulted in considerable intensification of farming practices, which brought about severe consequences for agricultural soils, e.g. loss of fertility, erosion and enrichment of soil-borne plant diseases. In order to maintain soil quality and health for the future, the development of more extensive and sustainable farming strategies is urgently needed. The soil microbiome is regarded as a key player in soil ecosystem functions, particularly the natural ability of soils to suppress plant pathogens (suppressiveness). Recent studies showed that soil microbial communities are influenced by agricultural management. To further analyze the effects of farming strategies on soil suppressiveness and plant performance, agricultural soils from three long-term field trials in Thyrow, Bernburg (both in Germany) and Therwil (Switzerland) were sampled and subjected to molecular profiling of soil bacteria and fungi using marker genes and high-throughput amplicon sequencing. Significant effects on bacterial as well as fungal community composition, including plant pathogenic and beneficial taxa, were observed among variants of tillage and crop rotation. The least effect on both communities had fertilization, with no significance between variants. Subsequently, the same soils were subjected to growth chamber pot experiments with lettuce as a model (Lactuca sativa). After a growth period of six weeks significant differences in lettuce shoot and soil microbial biomass were observed among soil samples of the different long-term trials. Furthermore, the lettuce rhizosphere exhibited diverse bacterial community compositions as observed by DGGE (denaturing gradient gel electrophoresis). Using group-specific PCR-DGGE fingerprints, bacterial responders to fertilization, soil management and crop rotation were identified among different taxonomic groups. Currently, bacterial and fungal amplicon sequencing of rhizosphere and bulk soil from these pot

  15. EFFECTS OF SOIL TREATMENT BY COAL MINING CARBONIFEROUS WASTE SLUDGE IN MAIZE GROWING

    Directory of Open Access Journals (Sweden)

    Robin Mujačić

    2011-11-01

    Full Text Available The multifuncional role and importance of organic matter in soil is widely known. It is also known that the organic matter in soil is subjected to microbiological-biochemical processes of transformation, which includes synthesis of humus as well as it’s decomposition -mineralization. Mineralization means transformation-decomposition of organic matter by microbiological processes to mineral products; plant nutrients and water + CO2 as starting and ending component of photosyntesis. Nutrients are partly plant available with fertilizing effect, partly lost from the soil - leaching in ground water, causing it’s eutrophication, but CO2 in atmosphere participates in greenhouse effect. Practically, mineralization means decreasing of organic matter content in soil and soil degradation [1,4]. In natural ecosystems (phytocenoses natural forests and meadows, it is almost a balanced between inflow and consumption of organic matter, while the cultural and anthropogenic soils agrobiocenosis in general, this relationship is disturbed that there is a disproportion between the inflow and loss [1,4]. Therefore, various materials that contains organic material (waste, various flotation, sludge, etc. are often used with more or less success. One of such materials, as well as the potential fertilizer, is carboniferous lake sludge like waste of coal mining sedimented at the bottom of the lake in huge quantities, which is the subject of our reasearch. The research were conducted to determine its fertilizing efects and value for repairing of physical and chemical properties of soil. The research refered to: -- Laboratory analysis of physical and chemical characteristics of the carboniferous sludge samples, -- Analysis of soil of the experimental field -- Research on heavy metals concentration in soil of the experimental farm and in carboniferous sludge, and Research of fertilizing effects of sludge, comparative mineral fertilizer and farmyard manure treatment by

  16. Effects of different types of moderate severity disturbance on forest structural complexity and ecosystem functioning: A story of ice and fire

    Science.gov (United States)

    Fahey, R. T.; Atkins, J.; Gough, C. M.; Hardiman, B. S.; Haber, L.; Stuart-Haentjens, E.; David, O.; Campbell, J. L.; Rustad, L.; Duffy, M.

    2017-12-01

    Disturbances that alter the structure and function of forest ecosystems occur along a continuum of severity. In contrast to the extremes of the disturbance gradient (i.e., stand-replacing disturbance and small gap formation), moderate severity disturbances are poorly understood, even though they make up the majority of the gradient and their spatial extent (and likely overall importance to regional disturbance regimes) often exceeds that of more severe disturbances. Moderate severity disturbances originate from a variety of causes, such as fires, ice storms, or pest and pathogen outbreaks, and each of these could reshape structure and function in different ways. Observational data from a limited number of sites shows that moderate disturbance can increase ecosystem complexity, but the generality of this effect has not been tested across a broad range of disturbance types and severities. Here, we utilize data from a set of five case studies of experimental or natural moderate disturbance to assess the effects of different types and severities of disturbance on forest canopy structural complexity (CSC) and the relationship of canopy structure with ecosystem functioning. Using pre- and post-disturbance measures of CSC derived from aerial and terrestrial LiDAR, UAV imagery, and Landsat data we quantified changes in CSC following an experimental ice storm, a low-severity surface fire, Beech Bark Disease and Hemlock Wooly Adelgid outbreaks, and experimental accelerated succession. Our initial findings indicate that different disturbance types have highly variable effects on CSC, and also that progressive increases in disturbance severity alter CSC differently among disturbance types. Differential effects of variable disturbance types on CSC has implications for the carbon cycle, as forest structure is strongly linked with both growth-limiting resource (e.g., nutrients and light) acquisition and net primary productivity. Understanding how different types and severities of

  17. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests

    Directory of Open Access Journals (Sweden)

    Queenborough Simon A

    2012-03-01

    Full Text Available Abstract Background Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. Results We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Conclusions Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially

  18. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests.

    Science.gov (United States)

    Queenborough, Simon A; Metz, Margaret R; Wiegand, Thorsten; Valencia, Renato

    2012-03-19

    Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the

  19. Investigation of disturbed earth detection in the very long wavelength infrared (VLWIR)

    Science.gov (United States)

    Ewing, K. J.; Sanghera, J. S.

    2014-05-01

    Undisturbed soil generally consists of larger silica particles where the smaller particles have been removed from the surface by weathering, i.e., rain. Large silica particles exhibit a significant reflectance in the 7 - 12 μm spectral region called the Reststrahlen band. It has been demonstrated that the Reststrahlen band intensity is proportional to the particle size distribution of silica in the soil; as the proportion of small to large silica particles increases the Reststrahlen band also decreases in intensity. When soil is disturbed, for example when an object is buried, the distribution of silica particles is changed such that the "new" surface consists of a greater proportion of small to large silica particles. The increased number of small silica particles decreases the intensity of the Reststrahlen band therefore enabling detection of buried objects by imaging in the 7 - 12 μm spectral range. There is a second reflectance band in the 17 - 25 μm spectral region which has not been used for detection of buried objects. We investigate the behavior of this second Reststrahlen band for disturbed earth and evaluate its use for enhanced detection of buried objects when combined with the first Reststrahlen band.

  20. Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-03-02

    This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soil at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for

  1. Effect of soil moisture content on the radiosensitivity of soil bacteria and fungi

    International Nuclear Information System (INIS)

    Massoud, M.A.; El-Nennah, M.E.; El-Kholi, A.F.; Abd-Elmonem, M.A.

    1982-01-01

    The purpose of this investigation was to study the effect of soil moisture on the radiosensitivity of soil bacteria and fungi. The percentages of survival of soil bacteria and fungi, after exposure to different doses of gamma radiation, were lower in the moistened soil samples than in the dry one, inspite of the observed encouragement of wetting the soil samples, before gamma radiation exposure, on the proliferation of soil micro-organisms. This effect was explained by the indirect action from the breakdown products of radiolysis of water rather than by the direct damage to the cell structure

  2. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    Science.gov (United States)

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  3. Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils

    NARCIS (Netherlands)

    Bruns, M.A.; Stephen, J.R.; Kowalchuk, G.A.; Prosser, J.I.; Paul, E.A.

    1999-01-01

    Autotrophic ammonia oxidizer (AAO) populations in soils from native, tilled, and successional treatments at the Kellogg Biological Station Long-Term Ecological Research site in southwestern Michigan were compared to assess effects of disturbance on these bacteria. N fertilization effects on AAO

  4. Effects of artificial defoliation of pines on the structure and physiology of the soil fungal community of a mixed pine-spruce forest

    Science.gov (United States)

    Cullings, Ken; Raleigh, Christopher; New, Michael H.; Henson, Joan

    2005-01-01

    Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P soil fungus increased. The decrease in the amount of Cenococcum organisms may have occurred because of the formation of extensive hyphal networks by species of this genus, which require more of the carbon fixed by their host, or because this fungus is dependent upon quantitative differences in spruce root exudates. The defoliation of pines did not affect the overall composition of the soil fungal community or fungal-species richness (number of species per core). Biolog filamentous-fungus plate assays indicated a significant increase (P soil fungi and the rate at which these substrates were used, which could indicate an increase in fungal-species richness. Thus, either small changes in the soil fungal community give rise to significant increases in physiological capabilities or PCR bias limits the reliability of the DGGE results. These data indicate that combined genetic and physiological assessments of the soil fungal community are needed to accurately assess the effect of disturbance on indigenous microbial systems.

  5. The spatial relationship between human activities and C, N, P, S in soil based on landscape geochemical interpretation.

    Science.gov (United States)

    Yu, Huan; He, Zheng-Wei; Kong, Bo; Weng, Zhong-Yin; Shi, Ze-Ming

    2016-04-01

    The development and formation of chemical elements in soil are affected not only by parent material, climate, biology, and topology factors, but also by human activities. As the main elements supporting life on earth system, the C, N, P, S cycles in soil have been altered by human activity through land-use change, agricultural intensification, and use of fossil fuels. The present study attempts to analyze whether and how a connection can be made between macroscopical control and microcosmic analysis, to estimate the impacts of human activities on C, N, P, S elements in soil, and to determine a way to describe the spatial relationship between C, N, P, S in soil and human activities, by means of landscape geochemical theories and methods. In addition, the disturbances of human activities on C, N, P, S are explored through the analysis of the spatial relationship between human disturbed landscapes and element anomalies, thereby determining the diversified rules of the effects. The study results show that the rules of different landscapes influencing C, N, P, S elements are diversified, and that the C element is closely related to city landscapes; furthermore, the elements N, P, and S are shown to be closely related to river landscapes; the relationships between mine landscapes and the elements C, N, P, S are apparent; the relationships between the elements C, N, P, S and road landscapes are quite close, which shows that road landscapes have significant effects on these elements. Therefore, the conclusion is drawn that the response mechanism analysis of human disturbance and soil chemical element aggregation is feasible, based on the landscape geochemical theories and methods. The spatial information techniques, such as remote sensing and geographic information systems, are effective for research on soil element migration.

  6. Changes in Fire-Derived Soil Black Carbon Storage in a Sub-humid Woodland

    Science.gov (United States)

    White, J. D.; Yao, J.; Murray, D. B.; Hockaday, W. C.

    2014-12-01

    Fire-derived black carbon (BC) in soil, including charcoal, represents a potentially important fraction of terrestrial carbon cycling due to its presumed long persistence in soil. Interpretation of site BC retention is important for assessing feedbacks to ecosystem processes including nutrient and water cycling. However, interaction between vegetation disturbance, BC formation, and off site transport may exist that complicate interpretation of BC addition to soils from wildfire or prescribed burns directly. To investigate the relationship between disturbance and site retention on soil BC, we determined BC concentrations for a woodland in central Texas, USA, from study plots in hilly terrain with a fire scar dendrochronology spanning 100 years. BC values were determined from 13C nuclear magnetic resonance (NMR) spectroscopy. Estimated values showed mean BC concentration of 2.73 ± 3.06 g BC kg-1 (0.91 ± 0.51 kg BC m-2) for sites with fire occurrence within the last 40 years compared with BC values of1.21 ± 1.70 g BC kg-1 soil (0.18 ± 0.14 kg BC m-2) for sites with fire 40 - 100 years ago. Sites with no tree ring evidence of fire during the last 100 years had the lowest mean soil BC concentration of 0.05 ± 0.11 g BC kg-1 (0.02 ± 0.03 kg BC m-2). Molecular proxies of stability (lignin/N) and decomposition (Alkyl C/O-Alky C) showed no differences across the sites, indicating that low potential for BC mineralization. Modeled soil erosion and time since fire from fire scar data showed that soil BC concentrations were inversely correlated. A modified the ecosystem process model, Biome-BGC, was also used simulate the effects of fire disturbance with different severities and seasonality on C cycling related to the BC production, effect on soil water availability, and off-site transport. Results showed that BC impacts on ecosystem processes, including net ecosystem exchange and leaf area development, were predominantly related to fire frequency. Site BC loss rates were

  7. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    Science.gov (United States)

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil

  8. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Wang Quanying; Wu Danya

    2009-01-01

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm -1 of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  9. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  10. Biochar has no effect on soil respiration across Chinese agricultural soils.

    Science.gov (United States)

    Liu, Xiaoyu; Zheng, Jufeng; Zhang, Dengxiao; Cheng, Kun; Zhou, Huimin; Zhang, Afeng; Li, Lianqing; Joseph, Stephen; Smith, Pete; Crowley, David; Kuzyakov, Yakov; Pan, Genxing

    2016-06-01

    Biochar addition to soil has been widely accepted as an option to enhance soil carbon sequestration by introducing recalcitrant organic matter. However, it remains unclear whether biochar will negate the net carbon accumulation by increasing carbon loss through CO2 efflux from soil (soil respiration). The objectives of this study were to address: 1) whether biochar addition increases soil respiration; and whether biochar application rate and biochar type (feedstock and pyrolyzing system) affect soil respiration. Two series of field experiments were carried out at 8 sites representing the main crop production areas in China. In experiment 1, a single type of wheat straw biochar was amended at rates of 0, 20 and 40 tha(-1) in four rice paddies and three dry croplands. In experiment 2, four types of biochar (varying in feedstock and pyrolyzing system) were amended at rates of 0 and 20 tha(-1) in a rice paddy under rice-wheat rotation. Results showed that biochar addition had no effect on CO2 efflux from soils consistently across sites, although it increased topsoil organic carbon stock by 38% on average. Meanwhile, CO2 efflux from soils amended with 40 t of biochar did not significantly higher than soils amended with 20 t of biochar. While the biochars used in Experiment 2 had different carbon pools and physico-chemical properties, they had no effect on soil CO2 efflux. The soil CO2 efflux following biochar addition could be hardly explained by the changes in soil physic-chemical properties and in soil microbial biomass. Thus, we argue that biochar will not negate the net carbon accumulation by increasing carbon loss through CO2 efflux in agricultural soils. Copyright © 2016. Published by Elsevier B.V.

  11. Effect of pesticides on soil microbial community.

    Science.gov (United States)

    Lo, Chi-Chu

    2010-07-01

    According to guidelines for the approval of pesticides, information about effects of pesticides on soil microorganisms and soil fertility are required, but the relationships of different structures of pesticides on the growth of various groups of soil microorganisms are not easily predicted. Some pesticides stimulate the growth of microorganisms, but other pesticides have depressive effects or no effects on microorganisms. For examples, carbofuran stimulated the population of Azospirillum and other anaerobic nitrogen fixers in flooded and non-flooded soil, but butachlor reduced the population of Azospirillum and aerobic nitrogen fixers in non-flooded soil. Diuron and chlorotoluron showed no difference between treated and nontreated soil, and linuron showed a strong difference. Phosphorus(P)-contains herbicides glyphosate and insecticide methamidophos stimulated soil microbial growth, but other P-containing insecticide fenamiphos was detrimental to nitrification bacteria. Therefore, the following review presents some data of research carried out during the last 20 years. The effects of twenty-one pesticides on the soil microorganisms associated with nutrient and cycling processes are presented in section 1, and the applications of denaturing gradient gel electrophoresis (DGGE) for studying microbial diversity are discussed in section 2.

  12. [Effect of biochar addition on soil evaporation.

    Science.gov (United States)

    Xu, Jian; Niu, Wen Quan; Zhang, Ming Zhi; Li, Yuan; Lyu, Wang; Li, Kang-Yong; Zou, Xiao-Yang; Liang, Bo-Hui

    2016-11-18

    In order to determine the rational amount of biochar application and its effect on soil hydrological processes in arid area, soil column experiments were conducted in the laboratory using three biochar additions (5%, 10% and 15%) and four different biochar types (devaporation. The results showed that the addition of biochar could change the phreatic water recharge, soil water-holding capacity, capillary water upward movement and soil evaporation obviously. But the effects were different depending on the type of biochar raw material and the size of particle. The phreatic water recharge increased with the increasing amount of biochar addition. The addition of biochar could obviously enlarge the soil water-holding capacity and promote the capillary water upward movement rate. This effect was greater when using the material of bamboo charcoal compared with using wood charcoal, while biochar with small particle size had greater impact than that with big particle size. The biochar could effectively restrain the soil evaporation at a low addition amount (5%). But it definitely promoted the soil evaporation if the addition amount was very high. In arid area, biochar addition in appropriate amount could improve soil water retention capacity.

  13. Determining Arsenic Distribution in Urban Soils: A Comparison with Nonurban Soils

    Directory of Open Access Journals (Sweden)

    Tait Chirenje

    2002-01-01

    Full Text Available There are many challenges in the determination of arsenic background concentrations in soils. However, these challenges are magnified when those determinations are carried out on urban soils. Irrespective of this, it is important to correctly identify and understand the extent of pollution in order to provide efficient preventative, remedial actions and cost-effective management of contaminated areas. This review paper discusses the factors that make the determination of arsenic background concentrations in urban areas different from similar determinations in nonurban areas. It also proposes solutions, where applicable, that are based on experience in determining arsenic background concentrations in both urban and nonurban areas in Florida, and from other studies in the literature. Urban soils are considerably different from nonurban areas because they have significant human disturbance, making them more difficult to study. They are characterized by high spatial and temporal variability, compaction, and modified chemical and physical characteristics. These differences have to be addressed during site selection, sample collection, and statistical analyses when determining arsenic distribution.

  14. Comparative Study of Crude Oil Contamination Effect on Industrial and Forest Soil Microbial Community

    Directory of Open Access Journals (Sweden)

    Nasrin Ansari

    2017-02-01

    Full Text Available Introduction: Petroleum hydrocarbons are widespread pollutant that enters to soil by some pathwayssuch as: Transportation of crude oil, conservation of oil compounds, crude oil spill and treatment process on refineries. Oil pollution has some ecological effect on soil that disturbed composition and diversity of microbial community. Also this pollution has some effects on microbial activity and enzymes of soil. Forests ecosystems may be polluted with petroleum hydrocarbons via different ways such as transportation and spill of crude oil from resource of petroleum storage. Industrial soil defined as the soils that located in industrial area such as petrochemical plant, mine, chemical factories and etc. These soils always contaminated to many pollutant such as: oil, diesel and heavy metals. These pollutants have some effects on the texture of the soil and microbial community. The aim of this research is to understand the effect of oil pollution on two different soils. Material and Methods: In order to evaluate the effect of crude oil on soil microbial community, two different soil samples were collected from industrial and forest soils. Six microcosms were designed in this experiment. Indeed each soil sample examined inthree microcosms asunpolluted microcosm, polluted microcosm, and polluted microcosm with nutrient supply of Nitrogen and PhosphorusSome factors were assayed in each microcosm during 120 days of experiment. The included study factors were: total heterotrophic bacteria, total crude oil degrading bacteria, dehydrogenase enzyme and crude oil biodegradation. For enumeration of heterotrophic bacteria nutrient agar medium was used. In this method serial dilutions were done from each soil and spread on nutrient agar medium then different colonies were counted. For enumeration of degrading bacteria Bushnel-Hass (BH medium were used. The composition of this medium was (g/lit: 1 gr KH2PO4, 1gr K2HPO4, 0.2 gr MgSO4.7H2O, 0.02 gr CaCl2, 1 gr NH4

  15. Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Amezketa, E.; Aragues, R.; Gazol, R. [Gobierno Navarra, Pamplona (Spain). Agricultural Resources Evaluation Center

    2005-06-01

    We evaluated the efficiency of four amendments (sulfuric acid, mined-gypsum, and the by-products coal-gypsum and lacto-gypsum) in crusting prevention of two calcareous nonsodic and sodic soils and in sodic soil reclamation. Treatments for crust prevention consisted of surface-applied amendments at equivalent rates of 5 Mg pure-gypsum ha{sup -1}. Treatments for sodic soil reclamation consisted of surface-applied acid and soil-incorporated gypsums at rates of 1 pure-gypsum requirement. The efficiency of these amendments was evaluated by comparing the final infiltration rates (FIR) of the amended vs. the nonamended soils measured in disturbed-soil columns pounded with low-salinity irrigation water. Electrical conductivity (EC) and Na in the leachates of the sodic soil were measured. In the crusting prevention experiment, FIRs (mm h{sup -1) of the nonsodic soil were 21 (nonamended), 33 to 35 (gypsum materials), and 53 (sulfuric acid), whereas those for the sodic soil were 0 (nonamended), 9 (lacto-gypsum), 15 to 17 (coal- and mined-gypsum), and 21 (sulfuric acid). In the sodic-soil reclamation experiment, FIRs were 0 (nonamended), 8 to 9 (gypsum-materials), and 17 (sulfuric acid) mm h{sup -1}. All amendments were effective in crusting prevention and soil reclamation, but sulfuric acid was the most efficient due to the fastest EC and Na reductions in the leachates. The three gypsum-materials were equally effective in the reclamation process and in the nonsodic soil crusting-prevention, whereas lacto-gypsum was less efficient in the sodic-soil crusting-prevention.

  16. Land regeneration: soil development through forestation on former opencast coal-lands in upland Wales

    Energy Technology Data Exchange (ETDEWEB)

    Haigh, M.J. [Oxford Brookes University, Oxford (United Kingdom)

    2001-07-01

    The degradation of lands that have been 'reclaimed' after surface coal mining is an international concern. Research near the UNESCO World Heritage site for industrial land at Blaenavon, Wales, seeks more effective ways of creating self-sustaining soils on coal-lands, where the auto-compaction of minespoils causes land degradation. Remedies are sought through the use of close-planted trees as bio-accumulators. Preliminary findings suggest that: 1. forestation quickly mitigates soil compaction, 2. soil fertilisation with NPK improves the survival rate of Alnus glutinosa but may not enhance average growth, 3. soil remineralisation with basic igneous rock flour may be more effective than conventional NPK application alone for enhancing both survival rates and growth and that 4. soil disturbance causes long term depletion of the soil microbial ecosystem. 16 refs., 1 fig., 4 tabs.

  17. Clinical value of colonic irrigation in patients with continence disturbances.

    Science.gov (United States)

    Briel, J W; Schouten, W R; Vlot, E A; Smits, S; van Kessel, I

    1997-07-01

    Continence disturbances, especially fecal soiling, are difficult to treat. Irrigation of the distal part of the large bowel might be considered as a nonsurgical alternative for patients with impaired continence. This study is aimed at evaluating the clinical value of colonic irrigation. Thirty-two patients (16 females; median age, 47 (range, 23-72) years) were offered colonic irrigation on an ambulatory basis. Sixteen patients suffered from fecal soiling (Group I), whereas the other 16 patients were treated for fecal incontinence (Group II). Patients were instructed by enterostomal therapists how to use a conventional colostomy irrigation set to obtain sufficient irrigation of the distal part of their large bowel. Patients with continence disturbances during the daytime were instructed to introduce 500 to 1,000 ml of warm (38 degrees C) water within 5 to 10 minutes after they passed their first stool. In addition, they were advised to wait until the urge to defecate was felt. Patients with soiling during overnight sleep were advised to irrigate during the evening. To determine clinical outcome, a detailed questionnaire was used. Median duration of follow-up was 18 months. Ten patients discontinued irrigation within the first month of treatment. Symptoms resolved completely in two patients. They believed that there was no need to continue treatment any longer. Irrigation had no effect in two patients. Despite the fact that symptoms resolved, six patients discontinued treatment because they experienced pain (n = 2) or they considered the irrigation to be too time-consuming (n = 4). Twenty-two patients are still performing irrigations. Most patients irrigated the colon in the morning after the first stool was passed. Time needed for washout varied between 10 and 90 minutes. Frequency of irrigations varied from two times per day to two times per week. In Group I, irrigation was found to be beneficial in 92 percent of patients, whereas 60 percent of patients in Group II

  18. Analysis of the existing correlations of effective friction angle for eastern piedmont soils of Bogota from in situ tests

    Directory of Open Access Journals (Sweden)

    July E. Carmona-Álvarez

    2015-07-01

    Full Text Available To estimate the effective friction angle of soil from in situ test is a complicated job, due to high rates of strain existing in this kind of tests, which tend to be too invasive and disturb the vicinities of test depth, even the sample that eventually is taken at the site. Likewise, the most of the correlations found in the current bibliography to obtain the effective friction angle using field tests, have been developed for soils from different regions. For that reason when are implemented on tropical soils present high scatter, to compare the field parameter values with real results obtained at the lab. This research aims to use in situ tests define through of analysis of different correlations, which fits adequately to the specific conditions of the piedmont soils of Bogota. For the present study will be utilized data from SPT (widely used in Colombia and SPT-T (never before conducted in the country, carried out considering the appropriated norms to each test, taking in account to SPT-T, doesn’t exist local standard governing such tests. The correlations for field procedures of the tests implemented were for effective confining and energy transference of the SPT hammer, since the state-of-the-art mentions it as the most affect the reliability of the final results. The final results show the tendency of the methodologies used to obtain the correlation, in relation with the real value of effective friction angle from of lab tests.

  19. Soil Respiration Declines Following Beetle - Induced Forest Mortality in a Lodgepole Pine Forest

    Science.gov (United States)

    Borkhuu, B.; Peckham, S. D.; Norton, U.; Ewers, B. E.; Pendall, E.

    2014-12-01

    Lodgepole pine (Pinus contorta var. latifolia) forests in northern Colorado and southeast Wyoming have been undergoing a major mortality event owing to mountain pine beetle (Dendroctonus ponderosae) infestation since 2007. We studied biotic and abiotic drivers of growing season soil respiration in four mature stands experiencing different levels of mortality between 2008 and 2012 in the Medicine Bow Mountains, southeastern Wyoming, USA. For five years, beetle infestation significantly altered forest structure. Stand mortality was 30% and more than 80% in stands with the lowest and highest mortality, respectively. Understory vegetation cover increased by 50% for five years following beetle infestation. Needlefall was increased by more than 50% during first two years of beetle infestation compared to the pre-disturbance period. We did not observe an immediate increase in soil respiration following beetle infestation as suggested by some researchers. Soil respiration rates in midsummer ranged from 1.4 ± 0.1 μmol m-2 s-1 in stands with highest mortality to 3.1 ± 0.2 μmol m-2s-1 in uninfested stand. Live tree basal area was the dominant factor controlling soil respiration, explaining more than 60% of the interannual and spatial variations in response to the disturbance. In addition, soil respiration was significantly correlated with fine root biomass, which explained 55% of variations, providing strong evidence that autotrophic respiration dominated the forest soil respiration flux. Furthermore, the seasonality of soil respiration was controlled mainly by mean monthly precipitation and mid-day photosynthetically active radiation. Each factor predicted from 30% to 50% of seasonal soil respiration variability with the highest correlation coefficients in stand with the lowest mortality. Our results clearly indicate that the reduction of photosynthesis in trees over the infestation period significantly reduced soil respiration. The remaining activity in dead stands may

  20. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration

    DEFF Research Database (Denmark)

    Lellei-Kovács, Eszter; Kovács-Láng, Edit; Botta-Dukát, Zoltán

    2011-01-01

    efflux is soil temperature, while soil moisture has less, although significant effect on soil respiration. Clear thresholds for moisture effects on temperature sensitivity were identified at 0.6, 4.0 and 7.0vol% by almost each model, which relate well to other known limits for biological activity......Ecosystem carbon exchange is poorly understood in low-productivity, semiarid habitats. Here we studied the controls of soil temperature and moisture on soil respiration in climate change field experiment in a sandy forest-steppe. Soil CO2 efflux was measured monthly from April to November in 2003......–2008 on plots receiving either rain exclusion or nocturnal warming, or serving as ambient control. Based on this dataset, we developed and compared empirical models of temperature and moisture effects on soil respiration. Results suggest that in this semiarid ecosystem the main controlling factor for soil CO2...

  1. Resistance and Resilience of Soil Microbial Communities Exposed to Petroleum-Derived Compounds

    DEFF Research Database (Denmark)

    Modrzynski, Jakub Jan

    Functioning of soil microbial communities is generally considered resilient to disturbance, including chemical stress. Activities of soil microbial communities are often sustained in polluted environments due to exceptional plasticity of microbial communities and functional redundancy. Pollution......-induced community tolerance (PICT) often develops following chemical stress. Nonetheless, environmental pollution may severely disturb functioning of soil microbial communities, thereby threatening provision of important ecosystem services provided by microorganisms. Pollution with petroleum and petroleum......-derived compounds (PDCs) is a significant environmental problem on a global scale. Research addressing interactions between microorganisms and PDC pollution is dominated by studies of biodegradation, with less emphasis on microbial ecotoxicology. Soil microbial communities are generally considered highly resilient...

  2. Soil and Foliar Arthropod Abundance and Diversity in Five Cropping Systems in the Coastal Plains of North Carolina.

    Science.gov (United States)

    Adams, Paul R; Orr, David B; Arellano, Consuelo; Cardoza, Yasmin J

    2017-08-01

    Soil and foliar arthropod populations in agricultural settings respond to environmental disturbance and degradation, impacting functional biodiversity in agroecosystems. The objective of this study was to evaluate system level management effects on soil and foliar arthropod abundance and diversity in corn and soybean. Our field experiment was a completely randomized block design with three replicates for five farming systems which included: Conventional clean till, conventional long rotation, conventional no-till, organic clean till, and organic reduced till. Soil arthropod sampling was accomplished by pitfall trapping. Foliar arthropod sampling was accomplished by scouting corn and sweep netting soybean. Overall soil arthropod abundance was significantly impacted by cropping in corn and for foliar arthropods in soybeans. Conventional long rotation and organic clean till systems were highest in overall soil arthropod abundance for corn while organic reduced till systems exceeded all other systems for overall foliar arthropod abundance in soybeans. Foliar arthropod abundance over sampling weeks was significantly impacted by cropping system and is suspected to be the result of in-field weed and cover crop cultivation practices. This suggests that the sum of management practices within production systems impact soil and foliar arthropod abundance and diversity and that the effects of these systems are dynamic over the cropping season. Changes in diversity may be explained by weed management practices as sources of disturbance and reduced arthropod refuges via weed reduction. Furthermore, our results suggest agricultural systems lower in management intensity, whether due to organic practices or reduced levels of disturbance, foster greater arthropod diversity. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Disturbance hydrology: Preparing for an increasingly disturbed future

    Science.gov (United States)

    Mirus, Benjamin B.; Ebel, Brian A.; Mohr, Christian H.; Zegre, Nicolas

    2017-01-01

    This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre- and post-disturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.

  4. Improved understanding of hydrology and erosion processes and enhanced application of the Rangeland Hydrology and Erosion Model (RHEM) for disturbed rangelands

    Science.gov (United States)

    Large-scale disturbances such as fire and woodland encroachment continue to plague the sustainability of semi-arid regions around the world. Land managers are challenged with predicting and mitigating such disturbances to stabilize soil and ecological degradation of vast landscapes. Scientists fro...

  5. Fire effects on soils: the human dimension.

    Science.gov (United States)

    Santín, Cristina; Doerr, Stefan H

    2016-06-05

    Soils are among the most valuable non-renewable resources on the Earth. They support natural vegetation and human agro-ecosystems, represent the largest terrestrial organic carbon stock, and act as stores and filters for water. Mankind has impacted on soils from its early days in many different ways, with burning being the first human perturbation at landscape scales. Fire has long been used as a tool to fertilize soils and control plant growth, but it can also substantially change vegetation, enhance soil erosion and even cause desertification of previously productive areas. Indeed fire is now regarded by some as the seventh soil-forming factor. Here we explore the effects of fire on soils as influenced by human interference. Human-induced fires have shaped our landscape for thousands of years and they are currently the most common fires in many parts of the world. We first give an overview of fire effect on soils and then focus specifically on (i) how traditional land-use practices involving fire, such as slash-and-burn or vegetation clearing, have affected and still are affecting soils; (ii) the effects of more modern uses of fire, such as fuel reduction or ecological burns, on soils; and (iii) the ongoing and potential future effects on soils of the complex interactions between human-induced land cover changes, climate warming and fire dynamics.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  6. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  7. Soil moisture effects during bioventing in fuel-contaminated arid soils

    International Nuclear Information System (INIS)

    Zwick, T.C.; Leeson, A.; Hinchee, R.E.; Hoeppel, R.E.; Bowling, L.

    1995-01-01

    This study evaluated the effects of soil moisture addition on microbial activity during bioventing of dry, sandy soils at the Marine Corps Air Ground Combat Center (MCAGCC), Twentynine Palms, California. Soils at the site have been contaminated to a depth of approximately 80 ft (24 m) with gasoline, JP-5 jet fuel, and diesel fuel. Based on the low soil moisture measured at the site (2 to 3% by weight), it was determined that soil moisture may be limiting biodegradation. To evaluate the effect that moisture addition had on microbial activity under field conditions, a subsurface drip irrigation system was installed above the fuel hydrocarbon plume. Irrigation water was obtained from two monitoring wells on the site, where groundwater was approximately 192 ft (59 m) below ground surface. Advancement of the wetting front was monitored. In situ respiration rates increased significantly after moisture addition. The results of this study provide evidence for the potential applicability of moisture addition in conjunction with bioventing for site remediation in arid environments. Further work is planned to investigate optimization of moisture addition

  8. Effects of different soil management practices on soil properties and microbial diversity

    Science.gov (United States)

    Gajda, Anna M.; Czyż, Ewa A.; Dexter, Anthony R.; Furtak, Karolina M.; Grządziel, Jarosław; Stanek-Tarkowska, Jadwiga

    2018-01-01

    The effects of different tillage systems on the properties and microbial diversity of an agricultural soil was investigated. In doing so, soil physical, chemical and biological properties were analysed in 2013-2015, on a long-term field experiment on a loamy sand at the IUNG-PIB Experimental Station in Grabów, Poland. Winter wheat was grown under two tillage treatments: conventional tillage using a mouldboard plough and traditional soil tillage equipment, and reduced tillage based on soil crushing-loosening equipment and a rigid-tine cultivator. Chopped wheat straw was used as a mulch on both treatments. Reduced tillage resulted in increased water content throughout the whole soil profile, in comparison with conventional tillage. Under reduced tillage, the content of readily dispersible clay was also reduced, and, therefore, soil stability was increased in the toplayers, compared with conventional tillage. In addition, the beneficial effects of reduced tillage were reflected in higher soil microbial activity as measured with dehydrogenases and hydrolysis of fluorescein diacetate, compared with conventional tillage. Moreover, the polimerase chain reaction - denaturing gradient gel electrophoresis analysis showed that soil under reduced till-age had greater diversity of microbial communities, compared with conventionally-tilled soil. Finally, reduced tillage increased organic matter content, stability in water and microbial diversity in the top layer of the soil.

  9. Rimsulfuron in Soil: Effects on Microbiological Properties under Varying Soil Conditions

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2011-01-01

    Full Text Available The effects of rimsulfuron a sulfonylurea herbicide on the growth and activity of soil microorganisms under laboratory conditions was investigated in two soils. The application rates were: 0.2, 2.0 and 20.0 mg a.i kg-1 soil. The lowest concentration tested was the label rate (0.2 mg a.i kg-1, and the other two were ten and hundred timeshigher. No adverse effects on microbiological processes were observed for the label rate. Decrease in microbial biomass carbon, dehydrogenase activity, fungi and bacteria in comparison with untreated control, were found at higher rates. The magnitude of these effects were generally slight and transitory.

  10. Effect of a participatory organizational-level occupational health intervention on job satisfaction, exhaustion and sleep disturbances

    DEFF Research Database (Denmark)

    Framke, Elisabeth; Sørensen, Ole Henning; Pedersen, Jacob

    2016-01-01

    Background: We examined whether the implementation of a participatory organizational-level intervention aiming to improve the working environment with a focus on the core task at work, increased job satisfaction and reduced exhaustion and sleep disturbances among pre-school employees. Methods...... statement to account for the clustering effect of workplaces. Results: Within-group analyses showed that exhaustion decreased statistically significantly in both the intervention and the control group. There were no statistically significantly changes in job satisfaction and sleep disturbances. Between...... aiming to improve the working environment with a focus on the core task at work has an effect on pre-school employees’ job satisfaction, exhaustion and sleep disturbances. Trial registration: ISRCTN16271504, November 15, 2016....

  11. CHANGES IN SOIL MACROFAUNA IN AGROECOSYSTEMS DERIVED FROM LOW DECIDUOUS TROPICAL FOREST ON LEPTOSOLS FROM KARSTIC ZONES

    Directory of Open Access Journals (Sweden)

    Francisco Bautista

    2009-02-01

    Full Text Available In Yucatan Mexico the method of slash and burn is used for the establishment of pastures. Pastures are developed for 15 to 20 years, no more because weed control is too expensive. The impact of these practices on soil macrofauna had not been evaluated. Because of its wide distribution, diverse habits and high sensitivity to disturbance, soil macrofauna is considered a valuable indicator of soil health, allowing monitoring of soil sustainability. We studied soil macrofauna communities in low deciduous tropical forest and four livestock agroecosystems with increasing management-derived disturbance including a silvopastoral system, Taiwan grass (Cynodon nlemfuensis and Star grass (Pennisetum purpureum pastures in order to describe community structure across systems, and evaluate disturbance sensitivity of taxonomical groups to detect taxa with potential use as biological indicators of soil health or degradation. Pitfall traps were used at each of the systems to sample soil macrofauna. We estimate their taxonomical abundance, biomass, richness (order, morphospecies, diversity, dominance and response to disturbance on agroecosystems and the forest. We found 133 macrofauna morphospecies of 15 taxa. Groups with more individuals were: Hymenoptera (64.97%, Coleoptera (22.68%, and Orthoptera (3.91%.  Agroecosystem of two-year old Taiwan-grass pasture (TP2 had the highest macrofauna abundances, biomass and richness, low diversity, and a non-homogeneous distribution of individuals among species; in contrast, silvopastoral system (SP, had low abundance and biomass, the lowest specific richness, high diversity and a homogeneous distribution of individuals among species. The discriminant analysis revealed that the agroecosystems and the forest serve to predict the macrofauna communities, since they have particular or typical soil macrofauna. The cases (sampled points with a correct assignation by agroecosystems were: Forest (70%, Sivopastoral system (70

  12. Consequences of artic ground squirrels on soil carbon loss from Siberian tundra

    Science.gov (United States)

    Golden, N. A.; Natali, S.; Zimov, N.

    2014-12-01

    A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years. Much of this C has been frozen in permafrost and unavailable for microbial decomposition. As the climate warms and permafrost thaws, the fate of this large C pool will be driven not only by climatic conditions, but also by ecosystem changes brought about by arctic animal populations. In this project we studied arctic ground squirrels (Spermophilus parryii), which are widely-distributed throughout the Arctic. These social mammals create subterranean burrows that mix soil layers, increase aeration, alter soil moisture and temperature, and redistribute soil nutrients, all of which may impact microbial decomposition. We examined the effects of arctic ground squirrel activity on soil C mineralization in dry heath tundra underlain by continuous permafrost in the Kolyma River watershed in northeast Siberia, Russia. Vegetation cover was greatly reduced on the ground squirrel burrows (80% of ground un-vegetated), compared to undisturbed sites (35% of ground un-vegetated). Soils from ground squirrel burrows were also significantly dryer and warmer. To examine effects of ground squirrel activity on microbial respiration, we conducted an 8-day incubation of soil fromburrows and from adjacent undisturbed tundra. In addition, we assessed the impact of nutrient addition by including treatments with low and high levels of nitrogen addition. Microbial respiration (per gram soil) was three-fold higher in incubated soils from the undisturbed sites compared to soils collected from the burrows. The lower rates of respiration from the disturbed soils may have been a result of lower carbon quality or low soil moisture. High nitrogen addition significantly increased respiration in the undisturbed soils, but not in the disturbed burrow soils, which suggests that microbial respiration in the burrow soils was not primarily limited by nitrogen. These results demonstrate the importance of wildlife

  13. Remote Sensing-based Models of Soil Vulnerability to Compaction and Erosion from Off-highway Vehicles

    Science.gov (United States)

    Villarreal, M. L.; Webb, R. H.; Norman, L.; Psillas, J.; Rosenberg, A.; Carmichael, S.; Petrakis, R.; Sparks, P.

    2014-12-01

    Intensive off-road vehicle use for immigration, smuggling, and security of the United States-Mexico border has prompted concerns about long-term human impacts on sensitive desert ecosystems. To help managers identify areas susceptible to soil erosion from vehicle disturbances, we developed a series of erosion potential models based on factors from the Revised Universal Soil Loss Equation (RUSLE), with particular focus on the management factor (P-factor) and vegetation cover (C-factor). To better express the vulnerability of soils to human disturbances, a soil compaction index (applied as the P-factor) was calculated as the difference in saturated hydrologic conductivity (Ks) between disturbed and undisturbed soils, which was then scaled up to remote sensing-based maps of vehicle tracks and digital soils maps. The C-factor was improved using a satellite-based vegetation index, which was better correlated with estimated ground cover (r2 = 0.77) than data derived from regional land cover maps (r2 = 0.06). RUSLE factors were normalized to give equal weight to all contributing factors, which provided more management-specific information on vulnerable areas where vehicle compaction of sensitive soils intersects with steep slopes and low vegetation cover. Resulting spatial data on vulnerability and erosion potential provide land managers with information to identify critically disturbed areas and potential restoration sites where off-road driving should be restricted to reduce further degradation.

  14. CONSIDERATIONS ON URBAN SOILS

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2005-10-01

    Full Text Available Urban soil is an material that has been manipulated, disturbed or transported by man’s activities in the urban environment and is used as a medium for plant growth and for constructions. The physical, chemical, and biological properties are generally less favorable as a rooting medium than soil found on the natural landscape. The main characteristics of urban soils are: great vertical and spatial variability; modified soil structure leading to compaction; presence of a surface crust; modified soil reaction, usually elevated; restricted aeration and water drainage; modified abundance of chemical elements, interrupted nutrient cycling and soil organism activity; presence of anthropic materials contaminants and pollutants; modified soil temperature regime. The urbic horizon is designated as U (always capital letter and for indication of processes are used different small letters. It is necessary elaboration a new classification of urban soils for our country.

  15. Effects of organic matter removal, soil compaction and vegetation control on 10th year biomass and foliar nutrition: LTSP continent-wide comparisons

    Science.gov (United States)

    Felix Ponder Jr.; Robert L. Fleming; Shannon Berch; Matt D. Busse; John D. Elioff; Paul W. Hazlett; Richard D. Kabzems; J. Marty Kranabetter; David M. Morris; Deborah Page-Dumroese; Brian J. Palik; Robert F. Powers; Felipe G. Sanchez; D. Andrew Scott; Richard H. Stagg; Douglas M. Stone; David H. Young; Jianwei Zhang; Kim H. Ludovici; Daniel W. McKenney; Debbie S Mossa; Paul T. Sanborn; Richard A. Voldseth

    2012-01-01

    We examined 10th year above-ground planted tree and total stand biomass, and planted tree foliar N and P concentrations across gradients in soil disturbance at 45 North American Long-Term Soil Productivity (LTSP) installations. While ranging across several climate regions, these installations all share a common experimental design with similar measurement protocols....

  16. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils

    Science.gov (United States)

    Sedaghat, A.; Bayat, H.; Safari Sinegani, A. A.

    2016-03-01

    The saturated hydraulic conductivity ( K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .

  17. The effects of land use types and soil depth on soil properties of ...

    African Journals Online (AJOL)

    The effects of land use types and soil depth on soil properties of Agedit watershed, Northwest Ethiopia. ... immediate intervention to protect the remnant forests and to replenish the degraded soil properties for sustainable agricultural productivity. Keywords: cultivation, deforestation, grazing, land management, soil fertility ...

  18. Mapping Soil Water-Holding Capacity Index to Evaluate the Effectiveness of Phytoremediation Protocols and ExposureRisk to Contaminated Soils in a National Interest Priority Site of the Campania Region (Southern Italy).

    Science.gov (United States)

    Romano, N.

    2015-12-01

    Soil moisture is an important state variable that influences water flow and solute transport in the soil-vegetation-atmosphere system, and plays a key role in securing agricultural ecosystem services for nutrition and food security. Especially when environmental studies should be carried out at relatively large spatial scales, there is a need to synthesize the complex interactions between soil, plant behavior, and local atmospheric conditions. Although it relies on the somewhat loosely defined concepts of "field capacity" and "wilting point", the soil water-holding capacity seems a suitable indicator to meet the above-mentioned requirement, yet easily understandable by the public and stakeholders. This parameter is employed in this work to evaluate the effectiveness of phytoremediation protocols funded by the EU-Life project EcoRemed and being implemented to remediate and restore contaminated agricultural soils of the National Interest Priority Site Litorale Domizio-Agro Aversano. The study area is located in the Campania Region (Southern Italy) and has an extent of about 200,000 hectares. A high-level spotted soil contamination is mostly due to the legal or outlaw industrial and municipal wastes, with hazardous consequences also on groundwater quality. With the availability of soil and land systems maps for this study area, disturbed and undisturbed soil samples were collected at two different soil depths to determine basic soil physico-chemical properties for the subsequent application of pedotransfer functions (PTFs). Soil water retention and hydraulic conductivity functions were determined for a number of soil cores, in the laboratory with the evaporation experiments, and used to calibrate the PTFs. Efficient mapping of the soil hydraulic properties benefitted greatly from the use of the PTFs and the physically-based scaling procedure developed by Nasta et al. (2013, WRR, 49:4219-4229).

  19. Climate change and disturbance interactions: Workshop on climate change and disturbance interactions in western North America, Tucson, Ariz., 12-15 February 2007

    Science.gov (United States)

    McKenzie, Don; Allen, Craig D.

    2007-01-01

    Warming temperatures across western North America, coupled with increased drought, are expected to exacerbate disturbance regimes, particularly wildfires, insect outbreaks, and invasions of exotic species. Many ecologists and resource managers expect ecosystems to change more rapidly from disturbance effects than from the effects of a changing climate by itself. A particular challenge is to understand the interactions among disturbance regimes; for example, how will massive outbreaks of bark beetles, which kill drought-stressed trees by feeding on cambial tissues, increase the potential for large severe wildfires in a warming climate?Researchers in climatology, ecosystem science, fire and insect ecology, and landscape modeling from across western North America convened in Tucson, Ariz., for a 2 and a half day intensive workshop to identify new research directions in climate change and disturbance ecology. Four work groups focused on different aspects of the response of disturbance regimes to climate change: (1) extreme events and climatic variability (2) the effects of changing disturbance regimes on ecosystems, (3) disturbance interactions and cumulative effects, and (4) developing new landscape disturbance models. The workshop was structured with the analytic hierarchy process, a decision support method for achieving consensus from diverse groups of experts without sacrificing individual contributions.

  20. Biological soil crusts: a fundamental organizing agent in global drylands

    Science.gov (United States)

    Belnap, J.; Zhang, Y.

    2013-12-01

    Ecosystem function is profoundly affected by plant community composition, which is ultimately determined by factors that govern seed retention. Dryland ecosystems constitute ~35% of terrestrial surfaces, with most soils in these regions covered by biological soil crusts (biocrusts), a community whose autotrophs are dominated by cyanobacteria, lichens, and mosses. Studies at 550 sites revealed that plant community composition was controlled by the interaction among biocrust type, disturbance regime, and external morphology of seeds. In bare soils (due to disturbance), all seed types were present in the seedbank and plant community. As biocrusts became better developed (i.e., the cover of lichens and mosses increased), they more strongly filtered out seeds with appendages. Thus, soils under late successional biocrusts contained seedbanks dominated by smooth seeds and vascular plants growing in late successional biocrusts were dominated by those with smooth seeds. Therefore, the tension between the removal of biocrusts by soil surface disturbance and their recovery creates a shifting mosaic of plant patch types in both space and time. Because changes in vascular plant communities reverberate throughout both below ground and above ground food webs and thus affect multiple trophic levels, we propose that biocrusts are a fundamental organizing agent in drylands worldwide. Future increased demand for resources will intensify land use both temporally and spatially, resulting in an increased rate of biocrust loss across larger areas. As a result, we can expect shifts in the composition and distribution of plant communities, accompanied by concomitant changes in many aspects of dryland ecosystems. Conceptual model of shifting dryland plant mosaics through space and time. Within the large circles, soil surface type changes with time in the same space, going from bare uncrusted soil (B) to cyanobacterial biocrust (C) to lichen/moss (L/M) biocrust. Disturbance (D) drives the

  1. Hydric soils and the relationship to plant diversity within reclaimed stream channels in semi-arid environments

    International Nuclear Information System (INIS)

    Schladweiler, B.K.; Rexroat, S.; Benson, S.

    1999-01-01

    Wetlands are especially important in semi-arid environments, such as the Powder River Basin of northeastern Wyoming, where water is a limiting factor for living organisms. Within this coal mining region of northeastern Wyoming, jurisdictional wetlands are mapped according to the US Army Corps of Engineers 1987 delineation procedure. Within the coal mining region of northeastern Wyoming, little or no full-scale mitigation or reconstruction attempts of jurisdictional wetland areas have been made until recently. Based on the importance of wetlands in a semi-arid environment and lack of information on existing or reconstructed areas, the specific objectives of the 1998 fieldwork were: (1) To define the pre-disturbance ecological state of hydric soils within jurisdictional sections of stream channels on two coal permit areas in northeastern Wyoming, and (2) To determine the effect that hydric soil parameters have on plant community distribution and composition within the two coal permit areas. Undisturbed sections of stream channels and disturbed sections of reconstructed or modified stream channels at the Rawhide Mine and Buckskin Mine, located north of Gillette, Wyoming, were selected for the study. Soils field and laboratory information and field vegetation cover were collected during 1998 within native stream channels and disturbed stream channels that had been reclaimed at each mine. Soils laboratory information is currently preliminary and included pH, electrical conductivity and sodium adsorption ratio. Results and statistical comparisons between soils and vegetation data will be presented

  2. Soil erosion model predictions using parent material/soil texture-based parameters compared to using site-specific parameters

    Science.gov (United States)

    R. B. Foltz; W. J. Elliot; N. S. Wagenbrenner

    2011-01-01

    Forested areas disturbed by access roads produce large amounts of sediment. One method to predict erosion and, hence, manage forest roads is the use of physically based soil erosion models. A perceived advantage of a physically based model is that it can be parameterized at one location and applied at another location with similar soil texture or geological parent...

  3. Nutrient Runoff Losses from Liquid Dairy Manure Applied with Low-Disturbance Methods.

    Science.gov (United States)

    Jokela, William; Sherman, Jessica; Cavadini, Jason

    2016-09-01

    Manure applied to cropland is a source of phosphorus (P) and nitrogen (N) in surface runoff and can contribute to impairment of surface waters. Tillage immediately after application incorporates manure into the soil, which may reduce nutrient loss in runoff as well as N loss via NH volatilization. However, tillage also incorporates crop residue, which reduces surface cover and may increase erosion potential. We applied liquid dairy manure in a silage corn ( L.)-cereal rye ( L.) cover crop system in late October using methods designed to incorporate manure with minimal soil and residue disturbance. These include strip-till injection and tine aerator-band manure application, which were compared with standard broadcast application, either incorporated with a disk or left on the surface. Runoff was generated with a portable rainfall simulator (42 mm h for 30 min) three separate times: (i) 2 to 5 d after the October manure application, (ii) in early spring, and (iii) after tillage and planting. In the postmanure application runoff, the highest losses of total P and dissolved reactive P were from surface-applied manure. Dissolved P loss was reduced 98% by strip-till injection; this result was not statistically different from the no-manure control. Reductions from the aerator band method and disk incorporation were 53 and 80%, respectively. Total P losses followed a similar pattern, with 87% reduction from injected manure. Runoff losses of N had generally similar patterns to those of P. Losses of P and N were, in most cases, lower in the spring rain simulations with fewer significant treatment effects. Overall, results show that low-disturbance manure application methods can significantly reduce nutrient runoff losses compared with surface application while maintaining residue cover better than incorporation by tillage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Science.gov (United States)

    Jessica R. Miesel; William C. Hockaday; Randy Kolka; Philip A. Townsend

    2015-01-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition...

  5. Effects of fire ash on soil water retention

    NARCIS (Netherlands)

    Stoof, C.R.; Wesseling, J.G.; Ritsema, C.J.

    2010-01-01

    Despite the pronounced effect of fire on soil hydrological systems, information on the direct effect of fire on soil water retention characteristics is limited and contradictory. To increase understanding in this area, the effect of fire on soil water retention was evaluated using laboratory burning

  6. Sleep-wake disturbances after traumatic brain injury.

    Science.gov (United States)

    Ouellet, Marie-Christine; Beaulieu-Bonneau, Simon; Morin, Charles M

    2015-07-01

    Sleep-wake disturbances are extremely common after a traumatic brain injury (TBI). The most common disturbances are insomnia (difficulties falling or staying asleep), increased sleep need, and excessive daytime sleepiness that can be due to the TBI or other sleep disorders associated with TBI, such as sleep-related breathing disorder or post-traumatic hypersomnia. Sleep-wake disturbances can have a major effect on functional outcomes and on the recovery process after TBI. These negative effects can exacerbate other common sequelae of TBI-such as fatigue, pain, cognitive impairments, and psychological disorders (eg, depression and anxiety). Sleep-wake disturbances associated with TBI warrant treatment. Although evidence specific to patients with TBI is still scarce, cognitive-behavioural therapy and medication could prove helpful to alleviate sleep-wake disturbances in patients with a TBI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The Joint Effect of Sleep Duration and Disturbed Sleep on Cause-Specific Mortality

    DEFF Research Database (Denmark)

    Rod, Naja Hulvej; Kumari, Meena; Lange, Theis

    2014-01-01

    Both sleep duration and sleep quality are related to future health, but their combined effects on mortality are unsettled. We aimed to examine the individual and joint effects of sleep duration and sleep disturbances on cause-specific mortality in a large prospective cohort study....

  8. Selection harvests in Amazonian rainforests: long-term impacts on soil properties

    Science.gov (United States)

    K.L. McNabb; M.S. Miller; B.G. Lockaby; B.J. Stokes; R.G. Clawson; John A. Stanturf; J.N.M. Silva

    1997-01-01

    Surface soil properties were compared among disturbance classes associated with a single-tree selection harvest study installed in 1979 in the Brazilian Amazon. Response variables included pH, total N, total organic C, extractable P, exchangeable K, Ca, Mg, and bulk density. In general, concentrations of all elements displayed residual effects 16 years after harvests...

  9. Effect of soil solarization on soil-borne pathogens

    International Nuclear Information System (INIS)

    Sobh, Hana

    1995-01-01

    Author.Soil solarization was conducted at three locations on the Lebanese coast. Maximum soil temperatures recorded were 53 and 48 celsius degrees at Jiyeh, 48.9, 46 and 43 celsius degrees at Naameh and 48, 45 and 43.5 celsius degrees at Khaldeh at 5, 15 and 25cm soil depths respectively. Mean soil temperatures recorded at 3pm were at Jiyeh 51.6, 47 and 46 celsius degrees compared to Naameh 47, 45 and 41 celsius degrees and Khaldeh 44, 42 and 41 celsius degrees at 5, 15 and 25 cm respectively. The mean temperature in solarized soils were 7.3 to 15 celsius degrees higher than those of the nonsolarized soils indicating a sustained increase of soil temperature in the solarized soils. The effect of soil solarization on artificially introduced fungal pathogens in the soil at Khaldeh, resulted in complete destruction of sclerotia of Sclerotinia spp. at three depths studied. However, with respect to the two other pathogens tested, solarization resulted in reduction of the viability of microsclerotia of Verticillium spp. by 99-79% and of Fusarium oxysporum f. sp. melonis inoculum by 88-54% at 5 and 15 cm respectively, but only by 45% and 14% reduction at 25 cm. This level of control is significant when it is compared to the percentage of control where the level of reduction of inoculum viability did not exceed 10% at any soil depth. As there were contradicting reports in the literature on nematodes, two field trials in greenhouses were conducted to study the possibility of integrating 2 methods for management on nematodes. Soil solarization alone or in combination with biological control of nematodes using Arthrobotrys spp. and Dactyl ella brocophaga to control the root-knot nematodes on two crops, tomato at Naameh and cucumber at Jiyeh were compared to Methyl Bromide treatment. It was evident that, even on a very susceptible crop like cucumber, the integration of biological control and soil solarization gave a good level of control similar to methyl bromide. Neither root

  10. Disturbance Hydrology: Preparing for an Increasingly Disturbed Future

    Science.gov (United States)

    Mirus, Benjamin B.; Ebel, Brian A.; Mohr, Christian H.; Zegre, Nicolas

    2017-12-01

    This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre and postdisturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.

  11. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2018-01-01

    Currently, the temperate forest biome cools the earth’s climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased

  12. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes.

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-11-01

    Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased

  13. Nested separatrices in simple shear flows: the effect of localized disturbances on stagnation lines

    OpenAIRE

    Wilson, M.C.T.; Gaskell, P.H.; Savage, M.D.

    2005-01-01

    The effects of localized two-dimensional disturbances on the structure of shear flows featuring a stagnation line are investigated. A simple superposition of a planar Couette flow and Moffatt's [J. Fluid Mech. 18, 1--18 (1964)] streamfunction for the decay of a disturbance between infinite stationary parallel plates shows that in general the stagnation line is replaced by a chain of alternating elliptic and hyperbolic stagnation points with a separation equal to 2.78 times the half-gap betwee...

  14. Invasive soil organisms and their effects on belowground processes

    Science.gov (United States)

    Erik Lilleskov; Jr. Mac A. Callaham; Richard Pouyat; Jane E. Smith; Michael Castellano; Grizelle Gonzalez; D. Jean Lodge; Rachel Arango; Frederick. Green

    2010-01-01

    Invasive species have a wide range of effects on soils and their inhabitants. By altering soils, through their direct effects on native soil organisms (including plants), and by their interaction with the aboveground environment, invasive soil organisms can have dramatic effects on the environment, the economy and human health. The most widely recognized effects...

  15. Analysis of soil whole- and inner-microaggregate bacterial communities

    Energy Technology Data Exchange (ETDEWEB)

    Mummey, D L; Stahl, P D [University of Wyoming, Laramie, WY (United States). Dept. of Renewable Resources

    2004-07-01

    Although soil structure largely determines energy flows and the distribution and composition of soil microhabitats, little is known about how microbial community composition is influenced by soil structural characteristics and organic matter compartmentalization dynamics. A UV irradiation-based procedure was developed to specifically isolate inner-microaggregate microbial communities, thus providing the means to analyze these communities in relation to their environment. Whole- and inner-microaggregate fractions of undisturbed soil and soils reclaimed after disturbance by surface coal mining were analyzed using 16S rDNA terminal restriction fragment polymorphism (T-RFLP) and sequence analyses to determine salient bacterial community structural characteristics. We hypothesized that inner-microaggregate environments select for definable microbial communities and that, due to their sequestered environment, inner-microaggregate communities would not be significantly impacted by disturbance. However, T-RFLP analysis indicated distinct differences between bacterial populations of inner-microaggregates of undisturbed and reclaimed soils. While both undisturbed and reclaimed inner-microaggregate bacterial communities were dominated by Actinobacteria, undisturbed soils contained only Actinobacteridae, while in inner-microaggregates of reclaimed soils Rubrobacteridae predominate. Spatial stratification of division-level lineages within microaggregates was also seen. The fractionation methods employed in this study therefore represent a valuable tool for defining relationships between biodiversity and soil structure.

  16. Omaha Soil Mixing Study: Redistribution of Lead in Remediated Residential Soils Due to Excavation or Homeowner Disturbance.

    Science.gov (United States)

    Urban soils within the Omaha Lead Superfund Site have been contaminated with lead (Pb) from atmospheric deposition of particulate materials from lead smelting and recycling activities. In May of 2009 the Final Record of Decision stated that any residential soil exceeding the pre...

  17. Influence of industrial heavy metal pollution on soil free-living nematode population

    International Nuclear Information System (INIS)

    Pen-Mouratov, Stanislav; Shukurov, Nosir; Steinberger, Yosef

    2008-01-01

    The effect of distance from a heavy metal pollution source on the soil nematode community (trophic structure, sex structure, and taxa composition) was investigated along a 15-km transect originating at the Almalyk Industrial Complex, Uzbekistan (pollution source). The soil nematode community was exposed to heavy metal influence both directly and through soil properties changes. Pollution effect on the density and biomass of soil free-living nematodes was found to be highest at pollution source, with fungivores and plant parasites dominating at the upper and deeper soil layers next to the pollution source. These groups decreased along the transect, yielding domination to bacteria- and fungi-feeders. The sex ratio of nematode communities was found to be dependent on heavy metal pollution levels, with the juveniles being the most sensitive nematode group. The Maturity and modified Maturity Indices, reflecting the degree of disturbance of the soil ecosystem, were found to be the most sensitive indices. - Trophic structure and sex ratio of soil nematode population are sensitive tools for monitoring industrial pollution

  18. Influence of industrial heavy metal pollution on soil free-living nematode population

    Energy Technology Data Exchange (ETDEWEB)

    Pen-Mouratov, Stanislav [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 (Israel); Shukurov, Nosir [Institute of Geology and Geophysics, Academy of Sciences, Tashkent 700041 (Uzbekistan); Steinberger, Yosef [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 (Israel)], E-mail: steinby@mail.biu.ac.il

    2008-03-15

    The effect of distance from a heavy metal pollution source on the soil nematode community (trophic structure, sex structure, and taxa composition) was investigated along a 15-km transect originating at the Almalyk Industrial Complex, Uzbekistan (pollution source). The soil nematode community was exposed to heavy metal influence both directly and through soil properties changes. Pollution effect on the density and biomass of soil free-living nematodes was found to be highest at pollution source, with fungivores and plant parasites dominating at the upper and deeper soil layers next to the pollution source. These groups decreased along the transect, yielding domination to bacteria- and fungi-feeders. The sex ratio of nematode communities was found to be dependent on heavy metal pollution levels, with the juveniles being the most sensitive nematode group. The Maturity and modified Maturity Indices, reflecting the degree of disturbance of the soil ecosystem, were found to be the most sensitive indices. - Trophic structure and sex ratio of soil nematode population are sensitive tools for monitoring industrial pollution.

  19. Response of soil microbial and invertebrate communities to tracked vehicle disturbance in tallgrass prairie

    Science.gov (United States)

    P.S. Althoff; T.C. Todd; S.J. Thien; M.A. Callaham

    2009-01-01

    Soil biota drive fundamental ecosystem processes such as decomposition, nutrient cycling, and maintenance of soil structure. They are especially active in grassland ecosystems such as the tallgrass by heterotrophic soil organisms. Because both soil microbes and soil fauna display perturbation responses that integrate the physical, chemical, and biological changes to...

  20. Effects of Disturbance on Carbon Sequestration in the New Jersey Pine Barrens

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, Karina [Rutgers Univ., Newark, NJ (United States). Biology Dept.; Bohrer, Gil [The Ohio State Univ., Columbus, OH (United States)

    2016-10-23

    While carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling, it may be affected by disturbance and climate change. In this research, we contributed to the body of research on leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, in an effort to foster more mechanistic understanding, which in turn can improve modeling efforts. Here, we summarize some of the major findings in this research of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. Following we have incorporated some of our findings into a new version of the Finite-element Tree-Crown Hydrodynamics (model version 2) model, which improved timing and hysteresis of transpiration modeling for trees. Furthermore, incorporation of hydrodynamics into modeling transpiration improved latent heat flux estimates. In our study on the physiology of the trees, we showed that during drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance. Incorporating this responses improves model outcome.

  1. Intertidal soft-sediment community does not respond to disturbance as postulated by the intermediate disturbance hypothesis

    Science.gov (United States)

    Gerwing, Travis G.; Allen Gerwing, Alyssa M.; Macdonald, Tara; Cox, Kieran; Juanes, Francis; Dudas, Sarah E.

    2017-11-01

    The Intermediate Disturbance Hypothesis (IDH) predicts that disturbances of an intermediate frequency or intensity will maximize community biodiversity/richness. Once almost universally accepted, controversy now surrounds this hypothesis, and there have even been calls for its abandonment. Therefore, we experimentally evaluated if an infaunal community along the north coast of British Columbia, Canada, would respond to disturbances as predicted by the IDH. The characteristics of this soft-sediment intertidal mudflat (productivity, species pool, population growth rate) maximized our chances of finding evidence to support the IDH. More specifically, we tested if intermediate severities and frequencies of disturbance maximized infaunal community richness by mechanically disturbing sediment, and varying the intensity (0%, 25%, 50%, 75%, and 100% of the surface area of a plot disturbed) and frequency of sediment disturbance (never, once, twice, and every week during a four week period). No effect of frequency or intensity of sediment disturbance on community richness was observed. Further, none of our experimental treatments were statistically different than the controls. This is likely due to the subtle difference between successional stages in this soft-sediment habitat (difference of less than one taxa between treatments). Therefore, in habitats whose productivity, regional species pool, and population growth rates would otherwise suggest a response to disturbances as predicted by the IDH, minor differences between successional stages may result in richness patterns that deviate from those predicted by the IDH.

  2. Disturbance decouples biogeochemical cycles across forests of the southeastern US

    Science.gov (United States)

    Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford

    2016-01-01

    Biogeochemical cycles are inherently linked through the stoichiometric demands of the organisms that cycle the elements. Landscape disturbance can alter element availability and thus the rates of biogeochemical cycling. Nitrification is a fundamental biogeochemical process positively related to plant productivity and nitrogen loss from soils to aquatic systems, and the...

  3. [Influence of the earthworm Lumbricus terrestris on soil solution complexation capacity].

    Science.gov (United States)

    el Gharmali, A; Rada, A; el Meray, M; Nejmeddine, A

    2001-04-01

    Four soil samples highly contaminated with metals of urban and mine origin (SE1, SE2, SM1, SM2) and having different physico-chemical proprieties were selected to study copper complexation capacity (LT) of soil solution. The effect of Lumbricus terrestris on copper complexation capacity of soil solution was investigated on SE1 and SE2. The complexation capacity was estimated by amperometric titration of soil solution by copper. Free hydrated cation and labile complexes of copper were determined by DPASV. The results show that the copper complexation capacity variation depends on the physico-chemical characteristics of soils, particularly pH. Thus, the values of copper complexation capacity are 0; 0.6 x 10(-7); 1.8 x 10(-7) and 5.5 x 10(-7) mol l-1 respectively for SM2; SM1; SE1 and SE2 which are pH 5; 5.4; 6.5 and 7.4. Based on these results, the bioavailability levels of heavy metals show the following pool ranking: SM2 > SM1 > SE1 > SE2. The copper complexation capacity of soil solution increases with the soil disturbance by Lumbricus terrestris. This is more obvious when the time of disturbance by lumbrics is longer. Indeed, average values determined for 1 month and 3 months are 3.8 x 10(-7) and 7.8 x 10(-7) mol l-1 for SE1; 7.7 x 10(-7) and 15.2 x 10(-7) mol l-1 for SE2 respectively. It seems that the action of earthworm on soil can contribute to the decrease of bioavailability of heavy metals, particularly copper.

  4. SF Box--a tool for evaluating the effects on soil functions in remediation projects.

    Science.gov (United States)

    Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Norberg, Tommy

    2014-10-01

    Although remediation is usually aimed at reducing the risks posed by contaminants to human health and the environment, it is also desirable that the remediated soil within future green spaces is capable of providing relevant ecological functions, e.g., basis for primary production. Yet while addressing a contamination problem by reducing contaminant concentration and/or amounts in the soil, the remedial action itself can lead to soil structure disturbances, decline in organic matter and nutrient deficiencies, and in turn affect a soil's capacity to carry out its ecological soil functions. This article presents the Soil Function Box (SF Box) tool that is aimed to facilitate integration of information from suggested soil quality indicators (SQIs) into a management process in remediation using a scoring method. The scored SQIs are integrated into a soil quality index corresponding to 1 of 5 classes. SF Box is applied to 2 cases from Sweden (Kvillebäcken and Hexion), explicitly taking into consideration uncertainties in the results by means of Monte Carlo simulations. At both sites the generated soil quality indices corresponded to a medium soil performance (soil class 3) with a high certainty. The main soil constraints at both Kvillebäcken and Hexion were associated with biological activity in the soil, as soil organisms were unable to supply plant-available N. At the Kvillebäcken site the top layer had a content of coarse fragment (ø > 2 mm) higher than 35%, indicating plant rooting limitations. At the Hexion site, the soil had limited amount of organic matter, thus poor aggregate stability and nutrient cycling potential. In contrast, the soil at Kvillebäcken was rich in organic matter. The soils at both sites were capable of storing a sufficient amount of water for soil organisms between precipitation events. © 2014 SETAC.

  5. Effects of plant cover on soil N mineralization during the growing season in a sandy soil

    Science.gov (United States)

    Yao, Y.; Shao, M.; Wei, X.; Fu, X.

    2017-12-01

    Soil nitrogen (N) mineralization and its availability plays a vital role in regulating ecosystem productivity and C cycling, particularly in semiarid and desertified ecosystems. To determine the effect of plant cover on N turnover in a sandy soil ecosystem, we measured soil N mineralization and inorganic N pools in soil solution during growing season in a sandy soil covered with various plant species (Artemisia desertorum, Salix psammophila, and Caragana korshinskii). A bare sandy soil without any plant was selected as control. Inorganic N pools and N mineralization rates decreased overtime during the growing season, and were not affected by soil depth in bare land soils, but were significantly higher at the 0-10 cm layer than those at the 10-20 cm soil layer under any plant species. Soil inorganic N pool was dominated by ammonium, and N mineralization was dominated by nitrification regardless of soil depth and plant cover. Soils under C. korshinskii have significant higher inorganic N pools and N mineralization rate than soils under bare land and A. desertorum and S. psammophila, and the effects of plant cover were greater at the 0-10 cm soil layer than at the 10-20 cm layer. The effects of C. korshinskii on soil inorganic N pools and mineralization rate varied with the stage of growing season, with greater effects on N pools in the middle growing season, and greater effects on mineralization rate at the last half of the growing season. The results from this study indicate that introduction of C. korshinskii has the potential to increase soil N turnover and availability in sandy soils, and thus to decrease N limitation. Caragana korshinskii is therefore recommend for the remediation of the desertified land.

  6. A case study of high Arctic anthropogenic disturbance to polar desert permafrost and ecosystems

    Science.gov (United States)

    Becker, M. S.; Pollard, W. H.

    2013-12-01

    using quadrat sampling for species richness and abundance. Soil measures consisted of temperature at depth, moisture content, and bioavailable nutrients, all augmented with hourly microclimate data. NMDS ordination was performed as an exploratory analysis of clustering between disturbed/undisturbed microsite differences. Further statistical analysis showed that disturbed polygon tops have an active layer 30% deeper than other microsites (p < .001) despite having no greater vegetation cover than undisturbed polygon tops. Conversely, disturbed troughs show no difference in active layer, but their soils have double the water content of other microsites (p < .001), likely accounting for a significantly greater, but less-diverse, biomass that may be buffering the active layer from further development. Our results suggest that a disturbance to the thermal regime of high Arctic ice-wedge polygon systems results in long-lasting and significant effects on the polar desert landscape. Understanding how the polar desert responds to disturbance after 60 years of ';recovery' will provide useful information for applying conceptual thermal models of landscape disturbance in the high Arctic, as well as information to governments and industries hoping to plan and minimize their impacts.

  7. Carbon redistribution by erosion processes in an intensively disturbed catchment

    Science.gov (United States)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and

  8. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 29; Issue 1-2. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H Component. Rajni Devi Smita Dubey Shailendra Saini Babita Devi Ajay Dhar S. K. Vijay A. K. Gwal. Volume 29 Issue 1-2 March-June 2008 pp 281-286 ...

  9. Effect of slash on forwarder soil compaction

    Science.gov (United States)

    Timothy P. McDonald; Fernando Seixas

    1997-01-01

    A study of the effect of slash on forwarder soil compaction was carried out. The level of soil compaction at two soil moisture contents, three slash densities (0, 10, and 20 kg/m2), and two levels of traffic (one and five passes) were measured. Results indicated that, on dry, loamy sand soils, the presence of slash did not decrease soil compaction after one forwarder...

  10. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects on soil, leaf and fruit element concentrations of organic (compost, straw mulch and hand weeding) and integrated (inorganic fertilisers and herbicide usage; IP) soil surface management practices in the tree rows, in combination with weed covers, cover crops and straw mulch in the work rows, were investigated in a ...

  11. Do agricultural terraces and forest fires recurrence in Mediterranean afforested micro-catchments alter soil quality and soil nutrient content?

    Science.gov (United States)

    E Lucas-Borja, Manuel; Calsamiglia, Aleix; Fortesa, Josep; García-Comendador, Julián; Gago, Jorge; Estrany, Joan

    2017-04-01

    Bioclimatic characteristics and intense human pressure promote Mediterranean ecosystems to be fire-prone. Afforestation processes resulting from the progressive land abandonment during the last decades led to greater biomass availability increasing the risk of large forest fires. Likewise, the abandonment and lack of maintenance in the terraced lands constitute a risk of land degradation in terms of soil quantity and quality. Despite the effects of fire and the abandonment of terraced lands on soil loss and physico-chemical properties are identified, it is not clearly understood how wildfires and abandonment of terraces affect soil quality and nutrients content. Microbiological soil parameters and soil enzymes activities are biomarkers of the soil microbial communitýs functional ability, which potentially enables them as indicators of change, disturbance or stress within the soil community. The objective of this study was to investigate the effects of terracing (abandoned and non-abandoned) on the soil enzyme activities, microbiological soil parameters and soil nutrients dynamics in three Mediterranean afforested micro-catchments (i.e., fire recurrence in the last 20 years; i.e., unburned areas, burned once and burned twice. The combination of the presence of terraces and the recurrence of forest fire, thirty-six plots of 25 m2 were sampled along the these three micro-catchments collecting four replicas at the corners of each plot. The results elucidated how non-terraced and unburned plots presented the highest values of soil respiration rate and extracellular soil enzymes. Differences between experimental plots with different forest fire recurrence or comparing terraced and unburned plots with burned plots were weaker in relation to biochemical and microbiological parameters. Soil nutrient content showed an opposite trend with higher values in terraced plots, although differences were weaker. We conclude that terraced landscapes present poorer soil quality

  12. A soil mechanics approach to study soil compaction and traffic effect on the preconsolidation pressure of tropical soils

    International Nuclear Information System (INIS)

    Dias Junior, Moacir de Souza

    2004-01-01

    Several researchers have already demonstrated the causes and the effects of soil compaction. These studies showed that the soil compaction is a limiting factor in the agricultural production. The attributes of the soil conventionally monitored has not been capable to quantify the load support capacity of the soil, not allowing to foresee the levels of pressures that can be applied to the soils at different moisture conditions without additional soil compaction (structure degradation) happens. The researches done in the soil compressive behaviour of some tropical soils indicate that the pre-compression stress may be used as an alternative measure of the load support capacity and as a quantitative indicator of the structure sustainability of the tropical soils

  13. Structure and organic matter under different soil management conditions in the center of Argentina

    International Nuclear Information System (INIS)

    Bricchi, E.

    2004-01-01

    In Central Argentina, Cordoba Province, as in different parts of the world, the equilibrium state of soil under natural condition has been modified by both the replacement of natural vegetation and by tillage. With time, these two disturbing factors have led to a new soil state whose main characteristic is an important decrease of chemical, physical and biological soil functions. The degree of these changes is directly related to soil resistance according to soil genesis. The soil organic matter and the structure of the superficial profile of soil are suitable indicators mainly for physical functions. Recently, it became necessary to look for a combination of technologies leading to an energy input throughout conservation tillage systems, soil covering and agro-chemicals which tend to improve soil quality in order to obtain a sustainable production. The removal of natural vegetation and tillage systems have caused the following effects on the first centimetres of soils: A 77 to 80% loss of organic matter during a period of about 80 years. Changes in the water stable aggregates distribution. A 77% loss of large aggregates and a 55% gain of fine aggregates. Our results would indicate that the disturbance level was higher to the natural resistance of soil. The organic carbon content in the first centimetres of soil is increased when all crop stubble remains on the field and conservationist tillage is applied. Conservation tillages are more efficient in the lower position of relief, meaning the beginning of a change of organic matter tendency that would possibly tend to new equilibrium state. On the other hand, the percentage of water stable aggregates would also be increased as consequence of a higher organic carbon content

  14. Cost effective tools for soil organic carbon monitoring

    Science.gov (United States)

    Shepherd, Keith; Aynekulu, Ermias

    2013-04-01

    There is increasing demand for data on soil properties at fine spatial resolution to support management and planning decisions. Measurement of soil organic carbon has attracted much interest because (i) soil organic carbon is widely cited as a useful indicator of soil condition and (ii) of the importance of soil carbon in the global carbon cycle and climate mitigation strategies. However in considering soil measurement designs there has been insufficient attention given to careful analysis of the specific decisions that the measurements are meant to support and on what measurements have high information value for decision-making. As a result, much measurement effort may be wasted or focused on the wrong variables. A cost-effective measurement is one that reduces risk in decisions and does not cost more than the societal returns to additional evidence. A key uncertainty in measuring soil carbon as a soil condition indicator is what constitutes a good or bad level of carbon on a given soil. A measure of soil organic carbon concentration may have limited value for informing management decisions without the additional information required to interpret it, and so expending further efforts on improving measurements to increase precision may then have no value to improving the decision. Measuring soil carbon stock changes for carbon trading purposes requires high levels of measurement precision but there is still large uncertainty on whether the costs of measurement exceed the benefits. Since the largest cost component in soil monitoring is often travel to the field and physically sampling soils, it is generally cost-effective to meet multiple objectives by analysing a number of properties on a soil sample. Diffuse reflectance infrared spectroscopy is playing a key role in allowing multiple soil properties to be determined rapidly and at low cost. The method provides estimation of multiple soil properties (e.g. soil carbon, texture and mineralogy) in one measurement

  15. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays

    Science.gov (United States)

    Johnston, John D.; Thornton, Earl A.

    1997-01-01

    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  16. Effect of Adding Sugarcane Bagasse and Filter Cake and Wetting and Drying Cycles on Pre-Compaction Stress of Soil

    Directory of Open Access Journals (Sweden)

    Z Nemati

    2018-03-01

    replications. A composite disturbed sample of topsoil (0–200 mm deep of a silty clay loam soil was collected from Isfahan province (32 31.530 N; 51 49.40E in center of Iran. The mean annual precipitation and temperature of the region are about 160 mm and 16 C, respectively. Sugarcane residues (bagasse and filter cake were obtained from the sugarcane fields in Ahvaz, Khuzestan province (Iran. The samples were air-dried and passed through a 2-mm sieve. Soil treated by bagasse and filter cake in different rates was poured and knocked lightly into cylinders with diameter and height of 25 and 8 cm, respectively. Large air-dry disturbed soil samples were prepared and some of them were exposed to five wetting and drying cycles. Finally, the soil surface was covered by a plastic sheet and was left overnight in the laboratory (for 24 hours to enable the moisture to equilibrate. The loading tests were performed the next day. The pre-compaction stress was determined by plate sinkage test (PST. The loading test for PST was performed using CBR apparatus. The compression for PST was continuous at the same constant displacement rate of the CBR (i.e. 1 mm min-1. Determination of the σpc was done using Casagrande’s graphical estimation procedure (Casagrande, 1936 in a program written in MatLab software. Results and Discussion The results showed that σpc was significantly decreased by adding residues to the soil at both water contents, and with/without wetting and drying process. For untreated treatments (control, the σpc decreased with increasing water content. Although σpc decreased with adding the residues to the soil, however, the effect of residue types and percentages and soil water content on σpc was not significant for the soil samples treated with residues. Conclusions In order to prevent re-compaction of the soil and improve its structure, it is suggested that traffic control system with permanent routes for the movement of machinery to be used in sugar cane plantations and

  17. Effects of three hypnotics on the sleep-wakefulness cycle in sleep-disturbed rats.

    Science.gov (United States)

    Shinomiya, Kazuaki; Shigemoto, Yuki; Omichi, Junji; Utsu, Yoshiaki; Mio, Mitsunobu; Kamei, Chiaki

    2004-04-01

    New sleep disturbance model in rats is useful for estimating the characteristics of some hypnotics. The present study was undertaken to investigate the utility of a sleep disturbance model by placing rats on a grid suspended over water using three kinds of hypnotics, that is, short-acting benzodiazepine (triazolam), intermediate-acting benzodiazepine (flunitrazepam) and long-acting barbiturate (phenobarbital). Electrodes for measurement of EEG and EMG were implanted into the frontal cortex and the dorsal neck muscle of rats. EEG and EMG were recorded with an electroencephalogram. SleepSign ver.2.0 was used for EEG and EMG analysis. Total times of wakefulness, non-REM and REM sleep were measured from 0900 to 1500 hours. In rats placed on the grid suspended over water up to 1 cm under the grid surface, not only triazolam but also flunitrazepam and phenobarbital caused a shortening of sleep latency. Both flunitrazepam and phenobarbital were effective in increasing of total non-REM sleep time in rats placed on sawdust or the grid, and the effects of both drugs in rats placed on the grid were larger than those in rats placed on sawdust. Measurement of the hourly non-REM sleep time was useful for investigating the peak time and duration of effect of the three hypnotics. Phenobarbital showed a decrease in total REM sleep time in rats placed on the grid, although both triazolam and flunitrazepam were without effect. The present insomnia model can be used as a sleep disturbance model for testing not only the sleep-inducing effects but also the sleep-maintaining effects including non-REM sleep and REM sleep of hypnotics.

  18. Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands

    Science.gov (United States)

    Stagg, Camille L.; Schoolmaster, Donald; Krauss, Ken W.; Cormier, Nicole; Conner, William H.

    2017-01-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: 1) a direct pathway representing the effects of flooding on soil moisture, 2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and 3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to sea-level rise, and increased decomposition following a drought or a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal

  19. Soil structure changes evaluated with computed tomography

    International Nuclear Information System (INIS)

    Pires, Luiz Fernando

    2010-01-01

    The objective of this work was to evaluate in millimetric scale changes in soil bulk density and porosity, using the gamma-ray computed tomography in soil samples with disturbed structure due to wetting and drying (W-D) cycles. Soil samples with 98.1 cm 3 were sieved using a 2 mm mesh and homogeneously packed in PVC cylinders. Soil samples were submitted to 1, 2, and 3 W-D cycles. Control samples were not submitted to W-D cycles. After repetitions of W-D cycles, soil sample porosity decreased and soil layers became denser. Computed tomography allowed a continuous analysis of soil bulk density and also soil porosity along millimetric (0.08 cm) layers, what cannot be provided by traditional methods used in soil physics. (author)

  20. Effects of tropical montane forest disturbance on epiphytic macrolichens

    International Nuclear Information System (INIS)

    Benítez, Ángel; Prieto, María; González, Yadira; Aragón, Gregorio

    2012-01-01

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for “shade-adapted lichens”, while the richness of “heliophytic lichens” increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. -- Highlights: ► Tropical montane forest disturbance drastically reduced macrolichen diversity. ► Species loss was most severe for the “shade-adapted lichens” because high radiation is harmful to them. ► In secondary forests lichen diversity of native forests was not regenerated. ► The protection of remnants of primary tropical forest might help to preserve a diverse community of epiphytic macrolichens.

  1. Similar effects of bottom trawling and natural disturbance on composition and function of benthic communities across habitats

    DEFF Research Database (Denmark)

    van Denderen, Pieter Daniël; Bolam, S.G.; Hiddink, J.G.

    2015-01-01

    communities in similar ways. Both sources of disturbance caused declines in long-living, hard-bodied (exoskeleton) and suspension-feeding organisms. Given these similar impacts, there was no detectable trawling effect on communities exposed to high natural disturbance. Conversely, in 3 out of 5 areas with low...

  2. Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau

    Directory of Open Access Journals (Sweden)

    Beibei Zhou

    2017-10-01

    Full Text Available The poor water retention capacity of sandy soils commonly aggregate soil erosion and ecological environment on the Chinese Loess Plateau. Due to its strong capacity for absorption and large specific surface area, the use of nanocarbon made of coconut shell as a soil amendment that could improve water retention was investigated. Soil column experiments were conducted in which a layer of nanocarbon mixed well with the soil was formed at a depth of 20 cm below the soil surface. Four different nanocarbon contents by weight (0%, 0.1%, 0.5%, and 1% and five thicknesses of the nanocarbon- soil mixture layer ranging from 1 to 5 cm were considered. Cumulative infiltration and soil water content distributions were determined when water was added to soil columns. Soil Water Characteristic Curves (SWCC were obtained using the centrifuge method. The principal results showed that the infiltration rate and cumulative infiltration increased with the increases of nanocarbon contents, to the thicknesses of the nano carbon-soil mixture layer. Soil water contents that below the soil-nano carbon layer decreased sharply. Both the Brooks-Corey and van Genuchten models could describe well the SWCC of the disturbed sandy soil with various nano carbon contents. Both the saturated water content (θs, residual water content (θr and empirical parameter (α increased with increasing nano carbon content, while the pore-size distribution parameter (n decreased. The available soil water contents were efficiently increased with the increase in nanocarbon contents.

  3. Errors in determination of soil water content using time-domain reflectometry caused by soil compaction around wave guides

    Energy Technology Data Exchange (ETDEWEB)

    Ghezzehei, T.A.

    2008-05-29

    Application of time domain reflectometry (TDR) in soil hydrology often involves the conversion of TDR-measured dielectric permittivity to water content using universal calibration equations (empirical or physically based). Deviations of soil-specific calibrations from the universal calibrations have been noted and are usually attributed to peculiar composition of soil constituents, such as high content of clay and/or organic matter. Although it is recognized that soil disturbance by TDR waveguides may have impact on measurement errors, to our knowledge, there has not been any quantification of this effect. In this paper, we introduce a method that estimates this error by combining two models: one that describes soil compaction around cylindrical objects and another that translates change in bulk density to evolution of soil water retention characteristics. Our analysis indicates that the compaction pattern depends on the mechanical properties of the soil at the time of installation. The relative error in water content measurement depends on the compaction pattern as well as the water content and water retention properties of the soil. Illustrative calculations based on measured soil mechanical and hydrologic properties from the literature indicate that the measurement errors of using a standard three-prong TDR waveguide could be up to 10%. We also show that the error scales linearly with the ratio of rod radius to the interradius spacing.

  4. The Long-Term Effect of Slowly Dissolved Crushed Basic Rocks Amelioration on Metals Bioavailability in Soil

    Czech Academy of Sciences Publication Activity Database

    Jakl, M.; Jaklová Dytrtová, Jana; Kuneš, I.; Baláš, M.; Száková, J.; Balík, J.

    2014-01-01

    Roč. 225, č. 5 (2014), 1937/1-1937/9 ISSN 0049-6979 R&D Projects: GA ČR GP13-21409P Grant - others:GA MZe(CZ) QH92087 Institutional support: RVO:61388963 Keywords : liming * forest soil * disturbed stand * hazardous metals * diffusive gradient in thin films Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.554, year: 2014

  5. The role of spatial heterogeneity of the environment in soil fauna recovery after fires

    Science.gov (United States)

    Gongalsky, K. B.; Zaitsev, A. S.

    2016-12-01

    Forest fires are almost always heterogeneous, leaving less-disturbed sites that are potentially suitable as habitats for soil-dwelling creatures. The recovery of large soil animal communities after fires is therefore dependent on the spatial structure of the burned habitats. The role of locally less disturbed sites in the survival of soil macrofauna communities along with traditionally considered immigration from the surrounding undisturbed habitats is shown by the example of burnt areas located in three geographically distant regions of European Russia. Such unburned soil cover sites (perfugia) occupy 5-10% of the total burned habitats. Initially, perfugia are characterized by much higher (200-300% of the average across a burned area) diversity and abundance of soil fauna. A geostatistical method made it possible to estimate the perfugia size for soil macrofauna at 3-8 m.

  6. Temporal and spatial patterns of anthropogenic disturbance at McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Kennicutt, Mahlon C II; Klein, Andrew; Montagna, Paul; Palmer, Terence; Sweet, Stephen; Wade, Terry; Sericano, Jose; Denoux, Guy

    2010-01-01

    Human visitations to Antarctica have increased in recent decades, raising concerns about preserving the continent's environmental quality. To understand the spatial and temporal patterns of anthropogenic disturbances at the largest scientific station in Antarctica, McMurdo Station, a long-term monitoring program has been implemented. Results from the first nine years (1999-2007) of monitoring are reported. Most physical disturbance of land surfaces occurred prior to 1970 during initial establishment of the station. Hydrocarbons from fuel and anthropogenic metals occur in patches of tens to hundreds of square meters in areas of fuel usage and storage. Most soil contaminant concentrations are not expected to elicit biological responses. Past disposal practices have contaminated marine sediments with polychlorinated biphenyls (PCBs), petroleum hydrocarbons, and metals in close proximity to the station that often exceed concentrations expected to elicit biological responses. Chemical contamination and organic enrichment reduced marine benthic ecological integrity within a few hundred meters offshore of the station. Contaminants were detected in marine benthic organisms confirming bioavailability and uptake. PCBs in sediments are similar to suspected source materials, indicating minimal microbial degradation decades after release. Anthropogenic disturbance of the marine environment is likely to persist for decades. A number of monitoring design elements, indicators and methodologies used in temperate climates were effective and provide guidance for monitoring programs elsewhere in Antarctica.

  7. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  8. Longitudinal Effects of ADHD in Children with Learning Disabilities or Emotional Disturbances

    Science.gov (United States)

    Wei, Xin; Yu, Jennifer W.; Shaver, Debra

    2014-01-01

    Despite the high prevalence of comorbidity between attention deficit/hyperactivity disorder (ADHD) and learning disabilities (LD) or emotional disturbances (ED), few studies have examined the long-term effects of these comorbid relationships on student outcomes. We estimated the longitudinal academic, social, and behavioral outcomes in children…

  9. Edaphic macrofauna as biological indicator of the conservation/disturbance status of soil. Results obtained in Cuba

    International Nuclear Information System (INIS)

    Cabrera, Grisel

    2012-01-01

    In order to predict the degradation status of a soil, a group of variables comprising its physical, chemical and/or biological properties is used. Macrofauna, which includes soil invertebrates higher than 2 mm of diameter, is a biological component that can be used for such purpose. Its taxonomic richness as well as its density, biomass and functional composition change depending on the effect of diverse land uses and managements. This review reaffirms that the macrofauna characteristics and the results obtained, mainly in Cuba, about its variation in ecosystems with different anthropization levels, support the potential use of this fauna as biological indicator of the soil's conservation status. Future studies should consider a lower taxonomic level in the identification of macrofauna, and relate its taxonomic and functional composition to the climate and pedological factors. (author)

  10. Competition overwhelms the positive plant-soil feedback generated by an invasive plant.

    Science.gov (United States)

    Crawford, Kerri M; Knight, Tiffany M

    2017-01-01

    Invasive plant species can modify soils in a way that benefits their fitness more than the fitness of native species. However, it is unclear how competition among plant species alters the strength and direction of plant-soil feedbacks. We tested how community context altered plant-soil feedback between the non-native invasive forb Lespedeza cuneata and nine co-occurring native prairie species. In a series of greenhouse experiments, we grew plants individually and in communities with soils that differed in soil origin (invaded or uninvaded by L. cuneata) and in soils that were live vs. sterilized. In the absence of competition, L. cuneata produced over 60% more biomass in invaded than uninvaded soils, while native species performance was unaffected. The absence of a soil origin effect in sterile soil suggests that the positive plant-soil feedback was caused by differences in the soil biota. However, in the presence of competition, the positive effect of soil origin on L. cuneata growth disappeared. These results suggest that L. cuneata may benefit from positive plant-soil feedback when establishing populations in disturbed landscapes with few interspecific competitors, but does not support the hypothesis that plant-soil feedbacks influence competitive outcomes between L. cuneata and native plant species. These results highlight the importance of considering whether competition influences the outcome of interactions between plants and soils.

  11. Effect of soil contamination with azadirachtin on dehydrogenase and catalase activity of soil

    Directory of Open Access Journals (Sweden)

    Rıdvan Kızılkaya

    2012-07-01

    Full Text Available nsecticides are used in modern agriculture in large quantities to control pests and increase crop yield. Their use, however, has resulted in the disruption of ecosystems because of the effects on non-target soil microorganisms, some environmental problems, and decreasing soil fertility. These negative effects of synthetic pesticides on the environment have led to the search for alternative means of pest control. One such alternative is use of natural plant products such as azadirachtin that have pesticidal activity. The aim of this experiment was to study the effect of soil contamination by azadirachtin (C35H44O16 on dehydrogenase (DHA and catalase activity (CA of soil under field conditions in Perm, Russia. The tests were conducted on loamy soil (pHH2O 6.7, ECH2O 0.213 dSm-1, organic carbon 0.99%, to which the following quantities of azadirachtin were added: 0, 15, 30 and 60 mL da-1 of soil. Experimental design was randomized plot design with three replications. The DHA and CA analyses were performed 7, 14 and 21 days after the field experiment was established. The results of field experiment showed that azadirachtin had a positive influence on the DHA and CA at different soil sampling times. The increased doses of azadirachtin applied resulted in the higher level of DHA and CA in soil. The soil DHA and CA showed the highest activity on the 21th day after 60 mL azadirachtin da-1 application doses.

  12. Effect of snow cover on soil frost penetration

    Science.gov (United States)

    Rožnovský, Jaroslav; Brzezina, Jáchym

    2017-12-01

    Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.

  13. Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils

    NARCIS (Netherlands)

    Jalali, M.; Merikhpour, H.; Kaledhonkar, M.J.; Zee, van der S.E.A.T.M.

    2008-01-01

    Soil column studies were conducted with two soils to assess the effects of irrigation with wastewater on soil and groundwater quality. Upon the application of wastewater, exchange occurred between solution sodium (Na+) and exchangeable cations (Ca2+, Mg2+, K+), whereby these cations were released

  14. The changes in the ecology and physiology of soil invertebrates under influences of radioactive contamination

    International Nuclear Information System (INIS)

    Maksimova, S.

    2006-01-01

    The soil biota is important in building and maintaining soil structure and fertility. Invertebrates are ideal as potential bio indicators of the environmental impact of radioactive contamination: they are widely distributed, often abundant and generally thought of as having low dispersive capacity. They can use as test organisms to detect the side-effects of radioactive contamination. The long-term analysis of ecological and physiological after-effects and biodiversity changes had been studied in the zone of radioactive contamination. Material was collected in the Gomel Region (Belarus), 30 km away from the CNPP in 1986-2004 applying usual pedobiological techniques (soil samples and Barber's pitfall traps) at reference points subjected to radioactive contamination. Soil samples were collected at 0 to 25 cm depth. Samples were taken in locations, which had received considerable radionuclide contaminations. These sites differed in contamination by the composition of fall-out, the forms of radionuclide content in soils, their intake into trophic chains and accumulation in animal and plant organisms. The impacts have been investigated at the: 1) organism and population levels , in terms of individual life histories (birth rate, growth, mortality) or species selection; 2) at the community level: to species diversity and to effects on trophic structure. The invertebrates were determined to species or genera, including juvenile stages. Radioactive contamination caused a distinct decrease in species number; the dominance structure of the community changed. The saprophagous are especially sensitive to environmental disturbances. An initial sharp reduction of animal biodiversity and simplification of the community structure of soil fauna were observed, followed by a long-term process of returning to the initial parameters. Changes in hemolymph, necroses of epithelium and cell structure in connective tissue were registered. The most drastic after-effects were manifested in

  15. Effect of cryogel on soil properties

    Science.gov (United States)

    Altunina, L. K.; Fufaeva, M. S.; Filatov, D. A.; Svarovskaya, L. I.; Rozhdestvenskii, E. A.; Gan-Erdene, T.

    2014-05-01

    Samples from the A1 and A1A2 horizons of sandy loamy gray forest soil containing 3.1% organic matter have been mixed with a 5% solution of polyvinyl alcohol (PVA) at a ratio of 7 : 1 under laboratory conditions. The samples were frozen at -20°C in a refrigerator; after a freezing-thawing cycle, the evaporation of water from their surface, their thermal conductivity coefficient, their elasticity modulus, and other properties were studied. It has been experimentally found that the thermal conductivity coefficient of cryostructured soil is lower than that of common soil by 25%. It has been shown that the cryostructured soil retains water for a longer time and that the water evaporation rate from its surface is significantly lower compared to the control soil. Cryogel has no negative effect on the catalase activity of soil; it changes the physical properties of soils and positively affects the population of indigenous soil microflora and the growth of the sown plants.

  16. Evaluation of compost blankets for erosion control from disturbed lands.

    Science.gov (United States)

    Bhattarai, Rabin; Kalita, Prasanta K; Yatsu, Shotaro; Howard, Heidi R; Svendsen, Niels G

    2011-03-01

    Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans. Copyright © 2010 Elsevier

  17. The Disturbing Effect of the Stray Magnetic Fields on Magnetoimpedance Sensors

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2016-10-01

    Full Text Available The disturbing effect of the stray magnetic fields of Fe-based amorphous ribbons on the giant magnetoimpedance (GMI sensor has been investigated systematically in this paper. Two simple methods were used for examining the disturbing effect of the stray magnetic fields of ribbons on the GMI sensor. In order to study the influence of the stray magnetic fields on the GMI effect, the square-shaped amorphous ribbons were tested in front, at the back, on the left and on the top of a meander-line GMI sensor made up of soft ferromagnetic films, respectively. Experimental results show that the presence of ribbons in front or at the back of GMI sensor shifts the GMI curve to a lower external magnetic field. On the contrary, the presence of ribbons on the left or on the top of the GMI sensor shifts the GMI curve to a higher external magnetic field, which is related to the coupling effect of the external magnetic field and the stray magnetic fields. The influence of the area and angle of ribbons on GMI was also studied in this work. The GMI sensor exhibits high linearity for detection of the stray magnetic fields, which has made it feasible to construct a sensitive magnetometer for detecting the typical stray magnetic fields of general soft ferromagnetic materials.

  18. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    International Nuclear Information System (INIS)

    Oyelami, Ayodeji O.; Okere, Uchechukwu V.; Orwin, Kate H.; De Deyn, Gerlinde B.; Jones, Kevin C.; Semple, Kirk T.

    2013-01-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of 14 C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of 14 C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of 14 C-phenanthrene degradation; lag phase, maximum rates and total extents of 14 C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities. - Highlights: ► Two grassland soils of contrasting fertility showing differences in total nitrogen content (%N) were used in this study. ► The effects of individual plant species and plant diversity on mineralisation of 14 C-phenanthrene in soil were investigated. ► Soil fertility was the major influence on mineralisation of 14 C-phenanthrene, and abundance of microbial community. ► The presence of a specific plant plays a role in the extent of mineralisation of phenanthrene in soil. - Soil management was the main driver for the mineralisation of 14 C-phenanthrene in soil.

  19. Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff

    Science.gov (United States)

    Leonard F. DeBano; Raymond M. Rice; Conrad C. Eugene

    1979-01-01

    This state-of-the-art report summarizes what is known about the effects of heat on soil during chaparral fires. It reviews the literature on the effects of such fires on soil properties, availabilty and loss of plant nutrients, soil wettability, erosion, and surface runoff. And it reports new data collected during recent prescribed burns and a wildfire in southern...

  20. Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in Xishuangbanna, SW China.

    Science.gov (United States)

    Li, Hongmei; Ma, Youxin; Liu, Wenjie; Liu, Wenjun

    2012-11-01

    Over the past thirty years, Xishuangbanna in Southwestern China has seen dramatic changes in land use where large areas of tropical forest and fallow land have been converted to rubber and tea plantations. In this study we evaluated the effects of land use and slope on soil properties in seven common disturbed and undisturbed land-types. Results indicated that all soils were acidic, with pH values significantly higher in the 3- and 28-year-old rubber plantations. The tropical forests had the lowest bulk densities, especially significantly lower from the top 10 cm of soil, and highest soil organic matter concentrations. Soil moisture content at topsoil was highest in the mature rubber plantation. Soils in the tropical forests and abandoned cultivated land had inorganic N (IN) concentrations approximately equal in NH(4) (+)-N and NO(3) (-)-N. However, soil IN pools were dominated by NH(4) (+)-N in the rubber and tea plantations. This trend suggests that conversion of tropical forest to rubber and tea plantations increases NH(4) (+)-N concentration and decreases NO(3) (-)-N concentration, with the most pronounced effect in plantations that are more frequently fertilized. Soil moisture content, IN, NH(4) (+)-N and NO(3) (-)-N concentrations within all sites were higher in the rainy season than in the dry season. Significant differences in the soil moisture content, and IN, NH(4) (+)-N and NO(3) (-)-N concentration was detected for both land uses and sampling season effects, as well as interactions. Higher concentrations of NH(4) (+)-N were measured at the upper slopes of all sites, but NO(3) (-)-N concentrations were highest at the lower slope in the rubber plantations and lowest at the lower slopes at all other. Thus, the conversion of tropical forests to rubber and tea plantations can have a profound effect on soil NH(4) (+)-N and NO(3) (-)-N concentrations. Options for improved soil management in plantations are discussed.

  1. Fire vs. Metal: A Laboratory Study Demonstrating Microbial Responses to Soil Disturbances

    Science.gov (United States)

    Stromberger, Mary E.

    2005-01-01

    Incubation studies are traditionally used in soil microbiology laboratory classes to demonstrate microbial respiration and N mineralization-immobilization processes. Sometimes these exercises are done to calculate a N balance in N fertilizer-amended soils. However, examining microbial responses to environmental perturbations would appeal to soil…

  2. Effects of tropical montane forest disturbance on epiphytic macrolichens

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Angel [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Prieto, Maria, E-mail: maria.prieto@urjc.es [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain); Gonzalez, Yadira [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Aragon, Gregorio [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain)

    2012-12-15

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for 'shade-adapted lichens', while the richness of 'heliophytic lichens' increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. -- Highlights: Black-Right-Pointing-Pointer Tropical montane forest disturbance drastically reduced macrolichen diversity. Black-Right-Pointing-Pointer Species loss was most severe for the 'shade-adapted lichens' because high radiation is harmful to them. Black-Right-Pointing-Pointer In secondary forests lichen diversity of native forests was not regenerated. Black-Right-Pointing-Pointer The protection of remnants of primary tropical forest might help to preserve a diverse community of epiphytic macrolichens.

  3. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    Science.gov (United States)

    Muñoz-Carpena, Rafael; Lauvernet, Claire; Carluer, Nadia

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO) based on a combination of approaches by Salvucci and Entekhabi (1995) and Chu (1997) with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation). The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure) exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes. SWINGO is

  4. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  5. Modification of soil nutrients and micro-climate by tree crowns in a ...

    African Journals Online (AJOL)

    The findings on soil nutrient status are consistent with results from disturbed systems, and challenge the dogma, at least for soil nutrient status, that conservative stocking rates are beneficial. Keywords: botany; crown interception; Matopos Research Station; micro-climate; nutrients; semi-arid; shade-adapted; shading; soil ...

  6. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.J.; Clemente, Rafael; Roig, Asuncion; Bernal, M.P

    2003-04-01

    The effects of organic amendments on metal bioavailability were not always related to their degree of humification. - Two heavy metal contaminated calcareous soils from the Mediterranean region of Spain were studied. One soil, from the province of Murcia, was characterised by very high total levels of Pb (1572 mg kg{sup -1}) and Zn (2602 mg kg{sup -1}), whilst the second, from Valencia, had elevated concentrations of Cu (72 mg kg{sup -1}) and Pb (190 mg kg{sup -1}). The effects of two contrasting organic amendments (fresh manure and mature compost) and the chelate ethylenediaminetetraacetic acid (EDTA) on soil fractionation of Cu, Fe, Mn, Pb and Zn, their uptake by plants and plant growth were determined. For Murcia soil, Brassica juncea (L.) Czern. was grown first, followed by radish (Raphanus sativus L.). For Valencia soil, Beta maritima L. was followed by radish. Bioavailability of metals was expressed in terms of concentrations extractable with 0.1 M CaCl{sub 2} or diethylenetriaminepentaacetic acid (DTPA). In the Murcia soil, heavy metal bioavailability was decreased more greatly by manure than by the highly-humified compost. EDTA (2 mmol kg{sup -1} soil) had only a limited effect on metal uptake by plants. The metal-solubilising effect of EDTA was shorter-lived in the less contaminated, more highly calcareous Valencia soil. When correlation coefficients were calculated for plant tissue and bioavailable metals, the clearest relationships were for Beta maritima and radish.

  7. Effects of artificial defoliation of pines on the structure and physiology of the soil fungal community of a mixed pine-spruce forest

    Science.gov (United States)

    Cullings, Ken; Raleigh, Christopher; New, Michael H.; Henson, Joan

    2005-01-01

    Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P the frequency of members of the ectomycorrhizal fungus genus Cenococcum decreased significantly, while the frequency of organisms of an unidentified soil fungus increased. The decrease in the amount of Cenococcum organisms may have occurred because of the formation of extensive hyphal networks by species of this genus, which require more of the carbon fixed by their host, or because this fungus is dependent upon quantitative differences in spruce root exudates. The defoliation of pines did not affect the overall composition of the soil fungal community or fungal-species richness (number of species per core). Biolog filamentous-fungus plate assays indicated a significant increase (P the number of carbon substrates utilized by the soil fungi and the rate at which these substrates were used, which could indicate an increase in fungal-species richness. Thus, either small changes in the soil fungal community give rise to significant increases in physiological capabilities or PCR bias limits the reliability of the DGGE results. These data indicate that combined genetic and physiological assessments of the soil fungal community are needed to accurately assess the effect of disturbance on indigenous microbial systems.

  8. Recovery of Soil Microbial Community Structure in a Wildfire Impacted Forest Soil

    Science.gov (United States)

    Tate, Robert, III; Mikita, Robyn

    2010-05-01

    Wildfires are common disturbances that will increase in frequency and intensity as a result of conditions associated with the changing climate. In turn, forest fires exacerbate climate conditions by increasing carbon and atmospheric aerosols, and changing the surface albedo. Fires have significant economic, environmental, and ecological repercussions; however, we have a limited understanding on the effect of severe wildfires on the composition, diversity, and function of belowground microorganisms. The objective of this research was to examine the shift of the forest soil microbial community as a result of a severe wildfire in the New Jersey Pinelands. Over the span of two years following the fire, soil samples from the organic and mineral layers of the severely burned sites were collected six times. Samples were also collected twice from an unburned control site. It was hypothesized that soil microbial communities from severely burned samples collected shortly after the fire would be significantly different from (1) the unburned samples that serve as controls and (2) the severely burned samples collected more than a year after the fire. Microbial community composition was analyzed by principal component analysis and multivariate analysis of variance of molecular fingerprint data from denaturing gradient gel electrophoresis of bacterial and archaeal-specific amplicons. Bacterial community composition was significantly different among all the organic and mineral layer samples collected 2, 5, 13, and 17 months following the fire. This indicated a shift in the bacterial communities with time following the fire. Common phylotypes from the burned organic layer samples collected 2 months after the fire related closely to members of the phyla Cyanobacteria and Acidobacteria, whereas those from later samples (5, 13, and 17 months following the fire) were closely related to members of the genus Mycobacteria. Canonical correlation analysis was used to determine connections

  9. Distribution and behavior of {sup 137}Cs in undisturbed soil

    Energy Technology Data Exchange (ETDEWEB)

    Satta, Naoya [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1996-04-01

    The depth distribution of {sup 137}Cs in soils which has not been artificially disturbed for 100 years was compared to fallout history. The model of {sup 137}Cs distribution rate was established to estimate fallout history from soil samples. (J.P.N.)

  10. Sleep disturbance caused by meaningful sounds and the effect of background noise

    Science.gov (United States)

    Namba, Seiichiro; Kuwano, Sonoko; Okamoto, Takehisa

    2004-10-01

    To study noise-induced sleep disturbance, a new procedure called "noise interrupted method"has been developed. The experiment is conducted in the bedroom of the house of each subject. The sounds are reproduced with a mini-disk player which has an automatic reverse function. If the sound is disturbing and subjects cannot sleep, they are allowed to switch off the sound 1 h after they start to try to sleep. This switch off (noise interrupted behavior) is an important index of sleep disturbance. Next morning they fill in a questionnaire in which quality of sleep, disturbance of sounds, the time when they switched off the sound, etc. are asked. The results showed a good relationship between L and the percentages of the subjects who could not sleep in an hour and between L and the disturbance reported in the questionnaire. This suggests that this method is a useful tool to measure the sleep disturbance caused by noise under well-controlled conditions.

  11. Sensitivity of mountain ecosystems to human-accelerated soil erosion. Contrasting geomorphic response between tropical and semi-arid ecosystems.

    Science.gov (United States)

    Vanacker, Veerle; Bellin, Nicolas; Schoonejans, Jerome; Molina, Armando; Kubik, Peter W.

    2014-05-01

    Human-induced land cover changes are causing important adverse effects on the ecological services rendered by mountain ecosystems, and the number of case-studies of the impact of humans on soil erosion and sediment yield has mounted rapidly. A modelling framework that is specifically adapted to mountain environments is currently lacking. Most studies make use of general river basin models that were originally parameterized and calibrated for temperate, low relief landscapes. Transposing these modelling concepts directly to steep environments with shallow and stony soils often leads to unrealistic model predictions, as model input parameters are rarely calibrated for the range of environmental conditions found in mountain regions. Here, we present a conceptual model that evaluates erosion regulation as a function of human disturbances in vegetation cover. The basic idea behind this model is that soil erosion mechanisms are independent of human impact, but that the frequency-magnitude distributions of erosion rates change as a response to human disturbances. Pre-disturbance (or natural) erosion rates are derived from in-situ produced 10Be concentrations in river sediment, while post-disturbance (or modern) erosion rates are derived from sedimentation rates in small catchments. In its simplicity, the model uses vegetation cover change as a proxy of human disturbance in a given vegetation system. The model is then calibrated with field measurements from two mountainous sites with strongly different vegetation dynamics, climatic and geological settings: the Tropical Andes, and the Spanish Betic Cordillera. Natural erosion processes are important in mountainous sites, and natural erosion benchmarks are primordial to assess human-induced changes in erosion rates. While the Spanish Betic Cordillera is commonly characterized as a degraded landscape, there is no significant change in erosion due to human disturbance for uncultivated sites. The opposite is true for the

  12. Implications of interacting microscale habitat heterogeneity and disturbance events on Folsomia candida (Collembola) population dynamics

    DEFF Research Database (Denmark)

    Meli, Mattia; Palmqvist, Annemette; Forbes, Valery E

    2014-01-01

    human activities that may cause habitat destruction, we focused on agricultural practices. Soil organisms living in a cultivated field are subjected to habitat loss and fragmentation as well as disturbance events generated by the application of agrochemicals and related activities. In addition...

  13. Daily dynamics of bacterial numbers, CO2 emissions from soil and relationships between their wavelike fluctuations and succession of the microbial community

    Science.gov (United States)

    Semenov, A. M.; Bubnov, I. A.; Semenov, V. M.; Semenova, E. V.; Zelenev, V. V.; Semenova, N. A.

    2013-08-01

    The daily dynamics of the number of copiotrophic and oligotrophic bacteria (in colony-forming units) and CO2 emissions from cultivated soils after short- and long-term disturbances were studied for 25-27 days in a microfield experiment. The relationship of the wavelike fluctuations of the bacterial number and CO2 emission with the succession of the soil microbial community was determined by the polymerase chain reaction method—denaturing gradient gel electrophoresis (PCR-DGGE). Short-term disturbances involved the application of organic or mineral fertilizers, pesticides, and plant residues to the soils of different plots. The long-term effect was a result of using biological and intensive farming systems for three years. The short-term disturbances resulted in increased peaks of the bacterial number, the significance of which was confirmed by harmonics analysis. The daily dynamics of the structure of the soil microbial community, which was studied for 27 days by the DGGE method, also had an oscillatory pattern. Statistical processing of the data (principal components analysis, harmonics and cross-correlation analyses) has revealed significant fluctuations in the structure of microbial communities coinciding with those of the bacterial populations. The structure of the microbial community changed within each peak of the dynamics of the bacterial number (but not from peak to peak), pointing to the cyclical character of the short-term succession. The long-term effects resulted in a less intense response of the microbiota—a lower rate of CO2 emission from the soil cultivated according to the organic farming system.

  14. Effects of soil depth and plant-soil interaction on microbial community in temperate grasslands of northern China.

    Science.gov (United States)

    Yao, Xiaodong; Zhang, Naili; Zeng, Hui; Wang, Wei

    2018-07-15

    Although the patterns and drivers of soil microbial community composition are well studied, little is known about the effects of plant-soil interactions and soil depth on soil microbial distribution at a regional scale. We examined 195 soil samples from 13 sites along a climatic transect in the temperate grasslands of northern China to measure the composition of and factors influencing soil microbial communities within a 1-m soil profile. Soil microbial community composition was measured using phospholipid fatty acids (PLFA) analysis. Fungi predominated in topsoil (0-10 cm) and bacteria and actinomycetes in deep soils (40-100 cm), independent of steppe types. This variation was explained by contemporary environmental factors (including above- and below-ground plant biomass, soil physicochemical and climatic factors) >58% in the 0-40 cm of soil depth, but soils. Interestingly, when we considered the interactive effects between plant traits (above ground biomass and root biomass) and soil factors (pH, clay content, and soil total carbon, nitrogen, phosphorous), we observed a significant interaction effect occurring at depths of 10-20 cm soil layer, due to different internal and external factors of the plant-soil system along the soil profile. These results improve understanding of the drivers of soil microbial community composition at regional scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    Energy Technology Data Exchange (ETDEWEB)

    Oyelami, Ayodeji O; Okere, Uchechukwu V; Orwin, Kate H; De Deyn, Gerlinde B; Jones, Kevin C [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2013-02-15

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of {sup 14}C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of {sup 14}C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of {sup 14}C-phenanthrene degradation; lag phase, maximum rates and total extents of {sup 14}C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities. - Highlights: Black-Right-Pointing-Pointer Two grassland soils of contrasting fertility showing differences in total nitrogen content (%N) were used in this study. Black-Right-Pointing-Pointer The effects of individual plant species and plant diversity on mineralisation of {sup 14}C-phenanthrene in soil were investigated. Black-Right-Pointing-Pointer Soil fertility was the major influence on mineralisation of {sup 14}C-phenanthrene, and abundance of microbial community. Black-Right-Pointing-Pointer The presence of a specific plant plays a role in the extent of mineralisation of phenanthrene in soil. - Soil management was the main driver for the mineralisation of {sup 14}C-phenanthrene in soil.

  16. Plutonium interactions with soil microbial metabolites: effect on plutonium sorption by soil

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.; Rogers, J.E.

    1987-01-01

    To develop an understanding of the mechanisms of plutonium (Pu) complexation and solubilization by soil microorganisms, a broad range of bacteria and fungi were isolated in pure cultures from soil on the basis of metal tolerance and carbon requirements. The organisms were then used in investigations to examine Pu cellular transport, Pu complexation by extracellular metabolites, and the effects of complexation on Pu valence state, chemical form, and solubility in soil. Of the 239 bacteria and 250 fungi isolated from soil, 19 bacteria and 60 fungi were selected for detailed study. Of these organisms, 15 bacteria and 18 fungi grew to form extracellular Pu complexes that increased the concentration of Pu in soil column eluates relative to controls. Elution through soil effectively removed positively charged Pu complexes. Increased Pu mobility in soil resulted from the formation of neutral and negatively charged Pu complexes, which differed with organism type. In the presence of known microbial metabolites and synthetic ligands (DTPA, EDTA, EDDHA), Pu(VI) was reduced to Pu(IV) before complexation, suggesting that Pu(IV) would be the dominant valence state associated with organic complexes in soils. Studies on selected organisms indicated that both active Pu transport and Pu sorption on the cell occurred, and these phenomena, as well as complexation by extracellular metabolites of Pu, were a function of the form of Pu supplied, the organism type and growth characteristics, and the ability of the organism to alter extracellular pH. 18 references, 6 figures, 7 tables

  17. Study of landscape change under forest harvesting and climate warming-induced fire disturbance

    Science.gov (United States)

    S. He Hong; David J. Mladenoff; Eric J. Gustafson

    2002-01-01

    We examined tree species responses under forest harvesting and an increased fire disturbance scenario due to climate warming in northern Wisconsin where northern hardwood and boreal forests are currently predominant. Individual species response at the ecosystem scale was simulated with a gap model, which integrates soil, climate and species data, stratified by...

  18. Effect of post-fire salvage logging treatments on micobiological properties of two different soils in the Povince of Alicante.

    Science.gov (United States)

    Arcenegui, Victoria

    2017-04-01

    It is well known that the natural wildfire regime in Mediterranean forests is greatly disturbed by human activities. Fire can induce temporal or permanent changes in the soil (see Certini, 2005) and can retard or compromise the recovery of the ecosystem afterwards. Changes in soil properties and the impact on soil functions depend mainly on the severity of the fires (Neary et al., 1999) and type of soil and weather during and after burning (Robichaud & Hungerford, 2000). Post-fire management can have an additional impact on the ecosystem; in some cases, even more severe than the fire. Post-fire salvage logging treatments are very frequently but its ecological impact is uncertain. Mainly because there are so many variables at play. A research has been done in "Sierra de Mariola Natural Park" in Alcoi (M) and ''Cabo de San Antonio'' in Javea (J), both in the Province of Alicante (E Spain). A big forest fire (>500 has) occurred in July 2012 and in September 2014 respectively. After fire, salvage logging (SL) treatment were done. In the first area (M), with a soil classified as Typic Xerorthent, extraction of the burned wood using heavy machinery was applied. In contrast, in the second area (J), a Rhodoxeralf soil, not heavy machinery was used. Plots for monitoring this effect were installed in both areas and in a similar nearby area where no treatment was done, and then used as control (C) for comparison. Soil samplings were done immediately after treatment and 4 years and two years in M site and J site respectively. We examined the effect of salvage logging on basal soil respiration (BSR), and microbial biomass carbon (Cmic). Our results showed that in site M four years after the treatment, the plots without treatment showed a much better improvement for the properties monitored. And not differences were found in site J after two years of monitoring. The impact of salvage logging was different depending on the soil type and the way to do the treatment.

  19. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    Science.gov (United States)

    John B. Bradford; Shawn Fraver; Amy M. Milo; Anthony W. D' Amato; Brian J. Palik

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing...

  20. Lime stabilization of expansive soil from Sergipe - Brazil

    Directory of Open Access Journals (Sweden)

    Leite Rafaella

    2016-01-01

    Full Text Available Expansive soils are characterized by volumetric changes caused by variations in moisture. They can cause several damages to civil constructions, especially to lightweight structures, including cracks and fissures. Chemical stabilization through addition of lime is one of the most effective techniques used to treat this type of soil. Due to cationic exchanges, lime can significantly reduce swell potential. This research studied a disturbed sample of expansive soil collected in Nossa Senhora do Socorro – Sergipe, Brazil, through the following laboratory tests: sieve and hydrometer tests, Atterberg Limits, compaction, free swell and swell pressure. All direct and indirect methods mentioned in this paper indicated that the natural soil presented high to very high degree of expansion, which reached approximately 20% of free swell and nearly 200 kPa of swell pressure. In order to evaluate the effect of lime, the same tests were conducted in soil-lime mixtures, using lime contents of 3%, 6% and 9%. The results confirmed the efficiency of lime stabilization. It was noted that, as lime content increased, there was reduction of clay fraction and increment of silt fraction; plasticity index decreased to nearly its half; compaction curve was displaced; and free swell and swell pressure reduced significantly.

  1. Active disturbance rejection controller for chemical reactor

    International Nuclear Information System (INIS)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-01-01

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method

  2. Active disturbance rejection controller for chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro [Technical University of Cluj-Napoca, 400114 Cluj-Napoca (Romania)

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  3. Effect of the animals on the soil

    International Nuclear Information System (INIS)

    Bonilla Correa, Carmen Rosa

    2000-01-01

    Soil is defined here in terms of opposite arbitrary frontiers more than its functions. The animals of the soil are defined in relation to their effect on the soil. The animals that live in the soil and intimately related to they are part of the soil. The animals that live on the soil make him contributions. Many animals are anphi-habitants, that is to say, they live in the soil and a one atmosphere outside of the soil. Animal exopedonics (outside of the soil) and endopedonics (inside the soil) they are considered with regard to twelve activities: blended, accumulation, formation of pores, obstruction of pores, formation and peds destruction, regulation of the erosion of the soil, regulation of the movement of air and the soil, regulation of the liter of plants, regulation of the animal liter, regulation of the cycle of nutritious, regulation of the biota and production of element special. The animals participate in numerous processes of formation of the soil and they affect the use of the same one

  4. Imported fire ants near the edge of their range: disturbance and moisture determine prevalence and impact of an invasive social insect.

    Science.gov (United States)

    LeBrun, Edward G; Plowes, Robert M; Gilbert, Lawrence E

    2012-07-01

    1. Habitat disturbance and species invasions interact in natural systems, making it difficult to isolate the primary cause of ecosystem degradation. A general understanding requires case studies of how disturbance and invasion interact across a variety of ecosystem - invasive species combinations. 2. Dramatic losses in ant diversity followed the invasion of central Texas by red imported fire ants (Solenopsis invicta). However, recent manipulative studies in Florida revealed no effect on ant diversity following the removal of S. invicta from a disturbed pasture habitat, but moderate loss of diversity associated with their introduction into undisturbed habitat and no invasion occurred without disturbance. Thus, the importance of S. invicta in driving diversity loss and its ability to invade undisturbed systems is unresolved. 3. We examine the distribution and abundance of a large monogyne S. invicta population and its association with the co-occurring ant assemblage at a site in south Texas close to the aridity tolerance limit of S. invicta. 4. We document that moisture modulates S. invicta densities. Further, soil disturbing habitat manipulations greatly increase S. invicta population densities. However, S. invicta penetrates all habitats regardless of soil disturbance history. In contrast, controlled burns depress S. invicta densities. 5. In habitats where S. invicta is prevalent, it completely replaces native fire ants. However, S. invicta impacts native ants as a whole less strongly. Intriguingly, native ants responded distinctly to S. invicta in different environments. In wet, undisturbed environments, high S. invicta abundance disrupts the spatial structure of the ant assemblage by increasing clumping and is associated with reduced species density, while in dry-disturbed habitats, sites with high S. invicta abundance possess high numbers of native species. Analyses of co-occurrence indicate that reduced species density in wet

  5. Human induced impacts on soil organic carbon in southwest Iceland

    Science.gov (United States)

    Gísladóttir, Guðrún; Erlendsson, Egill; Lal, Rattan

    2013-04-01

    transported by erosional processes remains a debatable issue. The study presents the effect of soil erosion on vegetation, soil accumulation (SA), SA rate (SAR), soil quality, soil mass, and the soil organic carbon (SOC) pool in Brown Andosols and Histosols in a 24 km2 area in southwest Iceland. Undisturbed prehistoric soils were distinguished from disturbed historic soils using tephrochronology. Soil erosion has been severe during historic time (last 1135 yr), resulting in the increase of the soil mass deposited in soils covered by vegetation by a factor of 7.3-9.2 and net loss of soil in unvegetated areas. The SAR correlated positively with SOC sequestration. SOC is easily transported and, given the extensive accumulation of soil, the net effect of burial and subsequent reduction in decomposition is to increase SOC storage. Nevertheless, the increased accumulation and soil depletion has decreased soil quality, including the SOC, and reduced soil resistance to erosion with the depleted SOC contributing to enrichment of atmospheric CO2. The initial terrestrial disturbance was triggered by anthropogenic land use during the Medieval Warm Period, followed by volcanic activity approximately three centuries later. The combination of harsh climate during the Little Ice Age and drastic anthropogenic perturbations has led to land degradation at a catastrophic scale.

  6. Empirical test of the influence of global warming and forest disturbance on ant fauna at the Gwangneung Forest Long Term Ecological Research site, South Korea

    Directory of Open Access Journals (Sweden)

    Tae-Sung Kwon

    2014-09-01

    Full Text Available This study examined the effects of forest disturbance and climate change on the ant fauna at the Long Term Ecological Research site in Gwangneung Forest, Korea in 2003 and 2012. After forest disturbance, the occurrence and abundance of ants belonging to the functional groups of forest ground forager and soil and litter dweller are predicted to decrease, while the occurrence and abundance of ants belonging to the open land forager and forest vegetation forager functional groups are predicted to increase. In terms of the effects of climate change, if the optimum temperature of the ants is lower than the annual average temperature in the survey area, the occurrence and abundance of the ants are predicted to decrease and vice versa. Ant surveys were carried out using pitfall traps. Changes in the dominant species, occurrence, and abundance mostly corresponded to the predictions for forest disturbance, but did not match the prediction for an increase in temperature.

  7. Experimental Evidence that Hemlock Mortality Enhances Carbon Stabilization in Southern Appalachian Forest Soils

    Science.gov (United States)

    Fraterrigo, J.; Ream, K.; Knoepp, J.

    2017-12-01

    Forest insects and pathogens (FIPs) can cause uncertain changes in forest carbon balance, potentially influencing global atmospheric carbon dioxide (CO2) concentrations. We quantified the effects of hemlock (Tsuga canadensis L. Carr.) mortality on soil carbon fluxes and pools for a decade following either girdling or natural infestation by hemlock woolly adelgid (HWA; Adelges tsugae) to improve mechanistic understanding of soil carbon cycling response to FIPs. Although soil respiration (Rsoil) was similar among reference plots and plots with hemlock mortality, both girdled and HWA-infested plots had greater activities of β-glucosidase, a cellulose-hydrolyzing extracellular enzyme, and decreased O-horizon mass and fine root biomass from 2005 to 2013. During this period, total mineral soil carbon accumulated at a higher rate in disturbed plots than in reference plots in both the surface (0-10 cm) and subsurface (10-30 cm); increases were predominantly in the mineral-associated fraction of the soil organic matter. In contrast, particulate organic matter carbon accrued slowly in surface soils and declined in the subsurface of girdled plots. δ13C values of this fraction demonstrate that particulate organic matter carbon in the surface soil has become more microbially processed over time, suggesting enhanced decomposition of organic matter in this pool. Together, these findings indicate that hemlock mortality and subsequent forest regrowth has led to enhanced soil carbon stabilization in southern Appalachian forests through the translocation of carbon from detritus and particulate soil organic matter pools to the mineral-associated organic matter pool. These findings have implications for ecosystem management and modeling, demonstrating that forests may tolerate moderate disturbance without diminishing soil carbon storage when there is a compensatory growth response by non-host trees.

  8. The Short Term Effects of Fire Severity on Composition and Diversity of Soil Seed Bank in Zagros Forest Ecosystem, Servan County

    Directory of Open Access Journals (Sweden)

    M. Heydari

    2014-12-01

    Full Text Available In most ecosystems, disturbance is an important agent of variation in community structure and composition. Determining the diversity and composition of soil seed bank is essential for designing conservation and restoration programs because it can markedly contribute to future plant communities. Despite the important role of soil seed banks in the composition of different plant communities, and thus in their conservation, the floristic studies in Zagros forests have only focused on aboveground vegetation. In this study, the characteristics of soil seed banks were examined in three conditions after one year of fire high severity burned, low severity burned and control (not burned in Shirvanchardavol city in northeast of Ilam Province. The result of DCA showed that different fire severities and their effects on site conditions have been reflected clearly in the composition of the soil seed bank. The results also indicated that soil seed bank composition between control and high severity burned spots was specifically different. The shanon diversity, Margalef richness and evenness indices differed significantly between three treatments and the highest diversity was observed at low severity. In this regard the proportion of annual forbs tended to decrease with increasing severity of fire. In soil seed bank, Therophytes were the dominant life form of low severity burned and control spots and Hemichryptophytes were dominant in high severity burned spots.

  9. The Effect of Soil Warming on Decomposition of Biochar, Wood, and Bulk Soil Organic Carbon in Contrasting Temperate and Tropical Soils

    Science.gov (United States)

    Torn, Margaret; Tas, Neslihan; Reichl, Ken; Castanha, Cristina; Fischer, Marc; Abiven, Samuel; Schmidt, Michael; Brodie, Eoin; Jansson, Janet

    2013-04-01

    Biochar and wood are known to decay at different rates in soil, but the longterm effect of char versus unaltered wood inputs on soil carbon dynamics may vary by soil ecosystem and by their sensitivity to warming. We conducted an incubation experiment to explore three questions: (1) How do decomposition rates of char and wood vary with soil type and depth? (2) How vulnerable to warming are these slowly decomposing inputs? And (3) Do char or wood additions increase loss of native soil organic carbon (priming)? Soils from a Mediterranean grassland (Hopland Experimental Research Station, California) and a moist tropical forest (Tabunoco Forest, Puerto Rico) were collected from two soil depths and incubated at ambient temperature (14°C, 20°C for Hopland and Tabonuco respectively) and ambient +6°C. We added 13C-labeled wood and char (made from the wood at 450oC) to the soils and quantified CO2 and 13CO2 fluxes with continuous online carbon isotope measurements using a Cavity Ringdown Spectrometer (Picarro, Inc) for one year. As expected, in all treatments the wood decomposed much (about 50 times) more quickly than did the char amendment. With few exceptions, amendments placed in the surface soil decomposed more quickly than those in deeper soil, and in forest soil faster than that placed in grassland soil, at the same temperature. The two substrates were not very temperature sensitive. Both had Q10 less than 2 and char decomposition in particular was relatively insensitive to warming. Finally, the addition of wood caused a significant increase of roughly 30% in decomposition losses of the native soil organic carbon in the grassland and slightly less in forest. Char had only a slight positive priming effect but had a significant effect on microbial community. These results show that conversion of wood inputs to char through wildfire or intentional management will alter not only the persistence of the carbon in soil but also its temperature response and effect on

  10. The Effect of Community-Based Soil and Water Conservation Practices on Abundance and Diversity of Soil Macroinvertebrates in the Northern Highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    Mengistu Welemariam

    2018-04-01

    Full Text Available Soil and water conservation (SWC practices in the northern highlands of Ethiopia have important implications for land restoration and biodiversity recovery. The present study determined soil macroinvertebrate (SMI abundance and diversity in response to spatial conditions i.e., generated by different conservation practices, soil depth, and temporal seasonality with the wet and dry season. The SWC practices considered were exclosure + terrace, exclosure alone, terraces, and non-conserved grazing lands. Each SWC measure was selected in three sites that were considered as replications due to low heterogeneity in terms of human and livestock disturbances and biophysical factors. Soil macroinvertebrates were collected using a monolith according to tropical soil biology and fertility (TSBF method. The highest density (55% of SMI was found in exclosures followed by terraces 26%. Non-conserved communal grazing lands account for only 19% of the total. Shannon diversity index was significantly (P < 0.05 higher (1.21 in the exclosures supported with terraces and the lowest (0.9 was observed in the non-conserved communal grazing lands. Diversity was also significantly (P < 0.05 higher (1.26 in wet than dry season (0.70. The highest (41% Sorensen similarity index among SMI was found between exclosures with terraces and exclosures alone during the wet season. The lowest (20% Sorensen similarity index was found between terraces alone and exclosures with terraces in dry season. Soil macroinvertebrate abundance was higher in upper (0–10 cm than lower (10–20 and 20–30 cm soil depth. Soil macroinvertebrate abundance was positively and strongly correlated with soil moisture (R2 = 0.85 and soil organic carbon stock (R2 = 0.95. However, it was negatively (R2 = −0.71 correlated with bulk density. Generally, the abundance and diversity of SMI increased as exclosures and communal grazing lands are supported with terraces.

  11. Assessing soil erosion risk in the Tillabery landscape, Niger ...

    African Journals Online (AJOL)

    The results show that soil erosion output scenarios predict greater soil erosion in the study area from 2070 onwards. They suggest that human disturbance and topographic factors are the main impact factors in the affected areas. Key words: Tillabéry landscape (Niger), sheet and rill erosion modelling, data mining.

  12. Peat soils stabilization using Effective Microorganisms (EM)

    Science.gov (United States)

    Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.

    2018-04-01

    Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.

  13. Global Change Effects on Plant-Soil Interactions

    DEFF Research Database (Denmark)

    Dam, Marie

    of this dissertation has been to determine how soil food web structure and function is affected when the quantity and quality of plant input is altered under global change. By studying the abundance and composition of soil organisms, particularly those in the rhizosphere, closely associated with living plants, we...... (Paper III). Furthermore, by way of meta-analysis, the role of organisms in global change effects on ecosystem function is modelled (Paper IV). Among CO2, warming and summer drought, CO2 is the factor most consistently impacting soil organisms. CO2 increases abundance of microorganisms and nematodes...... suggest that not only the global change effects on established ecosystems, but also the global change effects on plant community composition as well as land use management may determine the composition and function of soil food webs in the future....

  14. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 1: nonuniform infiltration and soil water redistribution

    Directory of Open Access Journals (Sweden)

    R. Muñoz-Carpena

    2018-01-01

    Full Text Available Vegetation buffers like vegetative filter strips (VFSs are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO based on a combination of approaches by Salvucci and Entekhabi (1995 and Chu (1997 with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation. The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes

  15. Insights into tetrabromobisphenol A adsorption onto soils: Effects of soil components and environmental factors.

    Science.gov (United States)

    Tong, Fei; Gu, Xueyuan; Gu, Cheng; Ji, Rong; Tan, Yinyue; Xie, Jinyu

    2015-12-01

    Concerns regarding tetrabromobisphenol A (TBBPA), the most widely utilized brominated flame retardant in the world, are growing because of the wide application and endocrine-disrupting potential of this compound. To properly assess its environmental impacts, it is important to understand the mobility and fate of TBBPA in soil environments. In this study, the effects of soil components, dissolved organic carbon (DOC) and heavy metal cations on TBBPA adsorption onto two Chinese soils (red soil and black soil) were investigated using batch sorption experiments. The desorption behavior of TBBPA when the two soils are irrigated with eutrophicated river water was also investigated. The results showed that pH greatly affects the adsorptive behavior of TBBPA in soils. Iron oxide minerals and phyllosilicate minerals are both active surfaces for TBBPA sorption, in addition to soil organic matter (SOM). DOC (50 mg OC L(-1)) exhibited a limited effect on TBBPA sorption only under neutral conditions. TBBPA sorption was only minimally affected by the heavy metals (Cu2+, Pb2+ and Cd2+) in the studied pH range. Eutrophicated river water significantly enhanced the desorption of TBBPA from red soil due to the change in soil solution pH. These findings indicate that mobility of TBBPA in soils is mainly associated with soil pH, organic matter and clay fractions: it will be retained by soils or sediments with high organic matter and clay fractions under acidic conditions but becomes mobile under alkaline conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Dung beetle community and functions along a habitat-disturbance gradient in the Amazon: a rapid assessment of ecological functions associated to biodiversity.

    Directory of Open Access Journals (Sweden)

    Rodrigo F Braga

    Full Text Available Although there is increasing interest in the effects of habitat disturbance on community attributes and the potential consequences for ecosystem functioning, objective approaches linking biodiversity loss to functional loss are uncommon. The objectives of this study were to implement simultaneous assessment of community attributes (richness, abundance and biomass, each calculated for total-beetle assemblages as well as small- and large-beetle assemblages and three ecological functions of dung beetles (dung removal, soil perturbation and secondary seed dispersal, to compare the effects of habitat disturbance on both sets of response variables, and their relations. We studied dung beetle community attributes and functions in five land-use systems representing a disturbance gradient in the Brazilian Amazon: primary forest, secondary forest, agroforestry, agriculture and pasture. All response variables were affected negatively by the intensification of habitat disturbance regimes, but community attributes and ecological functions did not follow the same pattern of decline. A hierarchical partitioning analysis showed that, although all community attributes had a significant effect on the three ecological functions (except the abundance of small beetles on all three ecological functions and the biomass of small beetles on secondary dispersal of large seed mimics, species richness and abundance of large beetles were the community attributes with the highest explanatory value. Our results show the importance of measuring ecological function empirically instead of deducing it from community metrics.

  17. Past Human Disturbance Effects upon Biodiversity are Greatest in the Canopy; A Case Study on Rainforest Butterflies.

    Science.gov (United States)

    Whitworth, Andrew; Villacampa, Jaime; Brown, Alice; Huarcaya, Ruthmery Pillco; Downie, Roger; MacLeod, Ross

    2016-01-01

    A key part of tropical forest spatial complexity is the vertical stratification of biodiversity, with widely differing communities found in higher rainforest strata compared to terrestrial levels. Despite this, our understanding of how human disturbance may differentially affect biodiversity across vertical strata of tropical forests has been slow to develop. For the first time, how the patterns of current biodiversity vary between three vertical strata within a single forest, subject to three different types of historic anthropogenic disturbance, was directly assessed. In total, 229 species of butterfly were detected, with a total of 5219 individual records. Butterfly species richness, species diversity, abundance and community evenness differed markedly between vertical strata. We show for the first time, for any group of rainforest biodiversity, that different vertical strata within the same rainforest, responded differently in areas with different historic human disturbance. Differences were most notable within the canopy. Regenerating forest following complete clearance had 47% lower canopy species richness than regenerating forest that was once selectively logged, while the reduction in the mid-storey was 33% and at ground level, 30%. These results also show for the first time that even long term regeneration (over the course of 30 years) may be insufficient to erase differences in biodiversity linked to different types of human disturbance. We argue, along with other studies, that ignoring the potential for more pronounced effects of disturbance on canopy fauna, could lead to the underestimation of the effects of habitat disturbance on biodiversity, and thus the overestimation of the conservation value of regenerating forests more generally.

  18. Past Human Disturbance Effects upon Biodiversity are Greatest in the Canopy; A Case Study on Rainforest Butterflies.

    Directory of Open Access Journals (Sweden)

    Andrew Whitworth

    Full Text Available A key part of tropical forest spatial complexity is the vertical stratification of biodiversity, with widely differing communities found in higher rainforest strata compared to terrestrial levels. Despite this, our understanding of how human disturbance may differentially affect biodiversity across vertical strata of tropical forests has been slow to develop. For the first time, how the patterns of current biodiversity vary between three vertical strata within a single forest, subject to three different types of historic anthropogenic disturbance, was directly assessed. In total, 229 species of butterfly were detected, with a total of 5219 individual records. Butterfly species richness, species diversity, abundance and community evenness differed markedly between vertical strata. We show for the first time, for any group of rainforest biodiversity, that different vertical strata within the same rainforest, responded differently in areas with different historic human disturbance. Differences were most notable within the canopy. Regenerating forest following complete clearance had 47% lower canopy species richness than regenerating forest that was once selectively logged, while the reduction in the mid-storey was 33% and at ground level, 30%. These results also show for the first time that even long term regeneration (over the course of 30 years may be insufficient to erase differences in biodiversity linked to different types of human disturbance. We argue, along with other studies, that ignoring the potential for more pronounced effects of disturbance on canopy fauna, could lead to the underestimation of the effects of habitat disturbance on biodiversity, and thus the overestimation of the conservation value of regenerating forests more generally.

  19. Possible health-protecting effects of feeling useful to others on symptoms of depression and sleep disturbance in the workplace.

    Science.gov (United States)

    Takaki, Jiro; Tsutsumi, Akizumi; Irimajiri, Hirohiko; Hayama, Asako; Hibino, Yuri; Kanbara, Sakiko; Sakano, Noriko; Ogino, Keiki

    2010-01-01

    The aim of this study was to examine the health-protecting effects of feeling useful to others on symptoms of depression and sleep disturbance in the workplace, as well as its buffering effects on associations between stressful work environments and symptoms of depression and sleep disturbance. The subjects of this cross-sectional survey were 773 Japanese workers (response rate: 64.8%) of five organizations. Feelings of being useful to others were assessed with one simple question used in a previous study. Psychosocial work environment, sleep disturbance, and depressive symptoms were assessed using the Japanese versions of the Effort-Reward Imbalance Questionnaire, the Pittsburgh Sleep Quality Index, and the 28-item General Health Questionnaire, respectively. We tested for linear and interactive effects with hierarchical regression analyses. Feeling useful to others was significantly (ppossible health-protecting effects.

  20. Assessing Cross-disciplinary Efficiency of Soil Amendments for Agro-biologically, Economically, and Ecologically Integrated Soil Health Management

    Science.gov (United States)

    2010-01-01

    Preventive and/or manipulative practices will be needed to maintain soil's biological, physiochemical, nutritional, and structural health in natural, managed, and disturbed ecosystems as a foundation for food security and global ecosystem sustainability. While there is a substantial body of interdisciplinary science on understanding function and structure of soil ecosystems, key gaps must be bridged in assessing integrated agro-biological, ecological, economical, and environmental efficiency of soil manipulation practices in time and space across ecosystems. This presentation discusses the application of a fertilizer use efficiency (FUE) model for assessing agronomic, economic, ecological, environmental, and nematode (pest) management efficiency of soil amendments. FUE is defined as increase in host productivity and/or decrease in plant-parasitic nematode population density in response to a given fertilizer treatment. Using the effects of nutrient amendment on Heterodera glycines population density and normalized difference vegetative index (indicator of physiological activities) of a soybean cultivar ‘CX 252’, how the FUE model recognizes variable responses and separates nutrient deficiency and toxicity from nematode parasitism as well as suitability of treatments designed to achieve desired biological and physiochemical soil health conditions is demonstrated. As part of bridging gaps between agricultural and ecological approaches to integrated understanding and management of soil health, modifications of the FUE model for analyzing the relationships amongst nematode community structure, soil parameters (eg. pH, nutrients, %OM), and plant response to soil amendment is discussed. PMID:22736840