WorldWideScience

Sample records for soil conserving soil

  1. Soil physical properties on Venezuelan steeplands: Applications to soil conservation planning

    International Nuclear Information System (INIS)

    Delgado, F.

    2004-01-01

    This paper presents a framework to support decision making for soil conservation on Venezuelan steeplands. The general approach is based on the evaluation of two important land qualities: soil productivity and soil erosion risk, both closely related to soil physical properties. Soil productivity can be estimated from soil characteristics such as soil air-water relationships, soil impedances and soil fertility. On the other hand, soil erosion risk depends basically on soil hydrologic properties, rainfall aggressiveness and terrain slope. Two indexes are obtained from soil and land characteristics: soil productivity index (PI) and erosion risk index (ERI), each one evaluates the respective land quality. Subsequently, a matrix with these two qualities shows different land classes as well as soil conservation priorities, conservation requirements and proposed land uses. The paper shows also some applications of the soil productivity index as an approach to evaluate soil loss tolerance for soil conservation programs on tropical steeplands. (author)

  2. Soil conservation measures: exercises

    OpenAIRE

    Figueiredo, Tomás de; Fonseca, Felícia

    2009-01-01

    Exercises proposed under the topic of Soil Conservation Measures addresses to the design of structural measure, namely waterways in the context of a soil conservation plan. However, to get a better insight on the actual meaning of soil loss as a resource loss, a prior exercise is proposed to students. It concerns calculations of soil loss due to sheet (interrill) erosion and to gully erosion, and allows the perception through realistic number of the impact of these mechanism...

  3. Creative Soil Conservation

    Science.gov (United States)

    Smith, Martha

    2010-01-01

    Take plant lessons outdoors with this engaging and inquiry-based activity in which third-grade students learn how to apply soil conservation methods to growing plants. They also collect data and draw conclusions about the effectiveness of their method of soil conservation. An added benefit to this activity is that the third-grade students played…

  4. Integrating soil conservation practices and glyphosate-resistant crops: impacts on soil.

    Science.gov (United States)

    Locke, Martin A; Zablotowicz, Robert M; Reddy, Krishna N

    2008-04-01

    Conservation practices often associated with glyphosate-resistant crops, e.g. limited tillage and crop cover, improve soil conditions, but only limited research has evaluated their effects on soil in combination with glyphosate-resistant crops. It is assumed that conservation practices have similar benefits to soil whether or not glyphosate-resistant crops are used. This paper reviews the impact on soil of conservation practices and glyphosate-resistant crops, and presents data from a Mississippi field trial comparing glyphosate-resistant and non-glyphosate-resistant maize (Zea mays L.) and cotton (Gossypium hirsutum L.) under limited tillage management. Results from the reduced-tillage study indicate differences in soil biological and chemical properties owing to glyphosate-resistant crops. Under continuous glyphosate-resistant maize, soils maintained greater soil organic carbon and nitrogen as compared with continuous non-glyphosate-resistant maize, but no differences were measured in continuous cotton or in cotton rotated with maize. Soil microbial community structure based on total fatty acid methyl ester analysis indicated a significant effect of glyphosate-resistant crop following 5 years of continuous glyphosate-resistant crop as compared with the non-glyphosate-resistant crop system. Results from this study, as well as the literature review, indicate differences attributable to the interaction of conservation practices and glyphosate-resistant crop, but many are transient and benign for the soil ecosystem. Glyphosate use may result in minor effects on soil biological/chemical properties. However, enhanced organic carbon and plant residues in surface soils under conservation practices may buffer potential effects of glyphosate. Long-term field research established under various cropping systems and ecological regions is needed for critical assessment of glyphosate-resistant crop and conservation practice interactions. Copyright (c) 2008 by John Wiley & Sons

  5. Soil conservation: Market failure and program performance

    OpenAIRE

    Paul Gary Wyckoff

    1983-01-01

    An examination of the economic rationale behind soil conservation programs, an assessment of the magnitude of the soil erosion problem, and an evaluation of the effectiveness of U.S. soil conservation policies.

  6. Impact of Soil Conservation Measures on Erosion Control and Soil Quality

    International Nuclear Information System (INIS)

    2011-10-01

    This publication summarises the lessons learnt from a FAO/IAEA coordinated research project on the impact of soil conservation measures on erosion control and soil quality over a five-year period across a wide geographic area and range of environments. It demonstrates the new trends in the use of fallout radionuclide-based techniques as powerful tools to assess the effectiveness of soil conservation measures. As a comprehensive reference material it will support IAEA Member States in the use of these techniques to identify practices that can enhance sustainable agriculture and minimize land degradation.

  7. Soil Tillage Conservation and its Effect on Soil Properties Bioremediation and Sustained Production of Crops

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Muresan, Liliana; Andriuca, Valentina; Cojocaru, Olesea

    2017-04-01

    Soil Tillage Conservation (STC) is considered major components of agricultural technology for soil conservation strategies and part of Sustainable Agriculture (SA). Human action upon soil by tillage determines important morphological, physical-chemical and biological changes, with different intensities and evaluative directions. Nowadays, internationally is unanimous accepted the fact that global climatic changes are the results of human intervention in the bio-geo-chemical water and material cycle, and the sequestration of carbon in soil is considered an important intervention to limit these changes. STC involves reducing the number of tillage's (minimum tillage) to direct sowing (no-tillage) and plant debris remains at the soil surface in the ratio of at least 30%. Plant debris left on the soil surface or superficial incorporated contributes to increased biological activity and is an important source of carbon sequestration. STC restore soil structure and improve overall soil drainage, allowing more rapid infiltration of water into soil. The result is a soil bioremediation, more productive, better protected against wind and water erosion and requires less fuel for preparing the germinative bed. Carbon sequestration in soil is net advantageous, improving the productivity and sustainability. We present the influence of conventional plough tillage system on soil, water and organic matter conservation in comparison with an alternative minimum tillage (paraplow, chisel plow and rotary harrow) and no-tillage system. The application of STC increased the organic matter content 0.8 to 22.1% and water stabile aggregate content from 1.3 to 13.6%, in the 0-30 cm depth, as compared to the conventional system. For the organic matter content and the wet aggregate stability, the statistical analysis of the data showed, increasing positive significance of STC. While the soil fertility and the wet aggregate stability were initially low, the effect of conservation practices on the

  8. Soil variability and effectiveness of soil and water conservation in the Sahel.

    NARCIS (Netherlands)

    Hien, F.G.; Rietkerk, M.; Stroosnijder, L.

    1997-01-01

    Sahelian sylvopastoral lands often degrade into bare and crusted areas where regeneration of soil and vegetation is impossible in the short term unless soil and water conservation measures are implemented. Five combinations of tillage with and without mulch on three crust type/soil type combinations

  9. Effects of soil and water conservation practices on selected soil ...

    African Journals Online (AJOL)

    Although different types of soil and water conservation practices (SWCPs) were introduced, the sustainable use of these practices is far below expectations, and soil erosion continues to be a severe problem in Ethiopia. Therefore, this study was conducted at Debre Yakobe Micro-Watershed (DYMW), Northwest Ethiopia ...

  10. A review of soil conservation in the Sudan (1940-1979)

    International Nuclear Information System (INIS)

    Awadalla, M.S.; Badawi, A.E.

    1980-01-01

    Soil Conservation in the Sudan started in the late thirties, and in 1942 a Soil Conservation Committee was set up to report on Soil Conservation Situation. Later a Soil Conservation Section was set which developed into a department taking the responsibility of drinking water points distribution and soil and water management in rural areas. In 1974 a desert encroachment project was proposed to cover most affected areas with the help of F.A.O. Soil Conservation is an important problem in Sudan and much work is needed to tackle this problem. The application of radioisotope and radio-tracer techniques are also needed for tackling this problem. (author)

  11. Agriculture’s Soil Conservation Programs Miss Full Potential in the Fight against Soil Erosion.

    Science.gov (United States)

    1983-11-28

    Soil Loss Equation ( USLE ) and Wind Erosion Equation can be used with a reasonable degree of accuracy. It is the intention of ASCS to expand VC/SL to...HD-R37 495 AGRICULTURE’S SOIL CONSERVATION PROGRAMS MISS FULL i/i POTENTIAL IN THE FIGHT.(U) GENERAL ACCOUNTING OFFICE WASHINGTON DC RESOURCES...GENERAL Report To The Congress OF THE UNITED STATES Agriculture’s Soil Conservation Programs Miss Full Potential In The Fight Against Soil Erosion

  12. Tenancy and Soil Conservation in Market Equilibrium

    OpenAIRE

    Lichtenberg, Erik

    2001-01-01

    A theoretical analysis of equilibrium contracts between risk neutral landlords and tenants when tenants' soil exploitation is non-contractible indicates that landlords will overinvest in conservation structures. An empirical model using farm-level data provides evidence that investment in contractible soil conservation measures is greater on rental land.

  13. Evolving concepts and opportunities in soil conservation

    Directory of Open Access Journals (Sweden)

    Julian Dumanski

    2015-03-01

    The paper discusses some of the new driving forces, new international programs, and new potential partners in soil conservation. Increasingly, international efforts to mitigate land degradation are shifting from studies of the biophysical processes to improving the global, national and local enabling policy environment, as well as mainstreaming of soil conservation into national and regional policies and programs. Also, increased emphasis is placed on economic instruments and international markets, such as carbon trading, and incorporation of non-market values in ecosystem investment, such as payment for ecosystem services, certification schemes, etc. The paper discusses some of the opportunities for soil conservation that accrue from these new driving forces.

  14. Soil conservation through sediment trapping: a review

    NARCIS (Netherlands)

    Getahun, M.M.; Keesstra, S.D.; Stroosnijder, L.; Baartman, J.E.M.; Maroulis, J.

    2015-01-01

    Preventing the off-site effects of soil erosion is an essential part of good catchment management. Most efforts are in the form of on-site soil and water conservation measures. However, sediment trapping can be an alternative (additional) measure to prevent the negative off-site effects of soil

  15. Soil conservation in Central America and Panama: current problems.

    Science.gov (United States)

    Popenoe, H

    1976-06-01

    Soil conservation measures in Central America go back to the Maya civilization, in which terracing was employed. After the Spanish conquest, plowing, livestock raising, and the succession of social and political changes all contributed to accelerate erosion. Through the past few decades, awareness of the need for soil conservation has again increased; El Salvador and Costa Rica began efforts in that direction in 1943. For sometime, the use of machinery and chemical fertilizers has masked the loss of topsoil, but under recent increases in population pressures, soil conservation measures are gaining in importance. Important agents of erosion in the tropics are heavy seasonal rains at high elevations, alternating with long dry seasons; wind erosion; and landslides after saturation of the soil during prolonged rains. Modern machinery often hastens soil removal, as do also overgrazing, deforestation and vertical crop rows. Under the present energy crisis, human labor is becoming again a significant element in crop production, and soil conservation becomes thereby more feasible and more important.

  16. Effects of Conventional and Conservation Tillage on Soil Hydraulic Properties of a Silty-loamy Soil

    DEFF Research Database (Denmark)

    Wahl, Niels Arne; Bens, O.; Buczko, U.

    2004-01-01

    Infiltration into soils is strongly correlated with macroporosity. Under agricultural land use, the properties of the macropore network are governed by the applied management and tillage system. On an experimental site with a silt loam soil partly under conventional and conservation tillage, the ......, conservation tillage could possibly offer a means to reduce surface runoff and flood generation in agricultural landscapes dominated by silty-loamy soils. d 2...

  17. Slow reaction of soil structure to conservation agriculture practices in Veneto silty soils (North-Easter Italy)

    Science.gov (United States)

    Piccoli, Ilaria; Camarotto, Carlo; Lazzaro, Barbara; Furlan, Lorenzo; Morari, Francesco

    2017-04-01

    Soil structure plays a pivotal role in soil functioning and can inform of the degradation of the soil ecosystem. Intensive and repeated tillage operations have been known to negatively affect the soil structure characteristics while conservation agriculture (CA) practices were demonstrated to improve soil structure and related ecosystem services. The aim of this study is to evaluate the effect of conservation agriculture practices on total porosity, pore size distribution, pore architecture and morphology on silty soils of Veneto low-lying plain (North-Eastern Italy). Experimental design was established in 2010 on 4 farms in North-Eastern Italy to compare conventional intensive tillage system "IT" versus conservation agriculture "CA" (no-tillage, cover-crop and residue retention). 96 samples were collected in 2015 at four depths down to 50 cm depth, and investigated for porosity from micro to macro by coupling mercury intrusion porosimetry (MIP) (0.0074-100 µm) and x-ray computed microtomography (µCT) (>26 µm). Pore morphology and architecture were studied from 3D images analysis and MIP pore size curve. Ultramicroporosity class (0.1-5 μm) positively responded to CA after 5-yr of practices adoption while no significant effects were observed in the x-ray µCT domain (> 26 µm). Silty soils of Veneto plain showed a slow reaction to conservation agriculture because of the low soil organic carbon content and poor aggregate stability. Nevertheless the positive influence of CA on ultramicroporosity, which is strictly linked to soil organic carbon (SOC) stabilization, indicated that a virtuous cycle was initiated between SOC and porosity, hopefully leading to well-developed macropore systems and, in turn, enhanced soil functions and ecosystem services.

  18. Evaluation of conservation-oriented management on grayish brown soil

    Directory of Open Access Journals (Sweden)

    Consuelo E. Hernández Rodríguez

    2015-03-01

    Full Text Available Conservation and improvement actions were taken to ensure the soil preservation in agricultural areas affected by erosion on a grayish brown soil of Sarduy farm in Cumanayagua, Cuba. The technology that was used included strip-till, crop rotation, live and/or dead barriers, channel terraces, contour farming and the addition of organic matter and biofertilizers. The implementation of the soil conservation-oriented management had an influence on the yield increase of 10.6% - 20.2%, on the decrease of the erosive processes with a retention of soils to 13.33 t.ha -1, on maintaining the soil pH and on the increment of the assimilable P2O5 contents and soil organic matter.

  19. SOIL AND WATER CONSERVATION MANAGEMENT THROUGH ...

    African Journals Online (AJOL)

    Osondu

    socio-cultural, economic system constraints for the implementation and maintenance of conservation .... Purpose of natural resource conservation is therefore ... the soil and water resources through traditional and ..... “Integrated Natural.

  20. Conservation tillage impacts on soil, crop and the environment

    Directory of Open Access Journals (Sweden)

    Mutiu Abolanle Busari

    2015-06-01

    Full Text Available There is an urgent need to match food production with increasing world population through identification of sustainable land management strategies. However, the struggle to achieve food security should be carried out keeping in mind the soil where the crops are grown and the environment in which the living things survive. Conservation agriculture (CA, practising agriculture in such a way so as to cause minimum damage to the environment, is being advocated at a large scale world-wide. Conservation tillage, the most important aspect of CA, is thought to take care of the soil health, plant growth and the environment. This paper aims to review the work done on conservation tillage in different agro-ecological regions so as to understand its impact from the perspectives of the soil, the crop and the environment. Research reports have identified several benefits of conservation tillage over conventional tillage (CT with respect to soil physical, chemical and biological properties as well as crop yields. Not less than 25% of the greenhouse gas effluxes to the atmosphere are attributed to agriculture. Processes of climate change mitigation and adaptation found zero tillage (ZT to be the most environmental friendly among different tillage techniques. Therefore, conservation tillage involving ZT and minimum tillage which has potential to break the surface compact zone in soil with reduced soil disturbance offers to lead to a better soil environment and crop yield with minimal impact on the environment. Keywords: Atmosphere, Greenhouse gases, Conservation tillage, Sustainable crop yield

  1. [Effects of land use changes on soil water conservation in Hainan Island, China].

    Science.gov (United States)

    Wen, Zhi; Zhao, He; Liu, Lei; OuYang, Zhi Yun; Zheng, Hua; Mi, Hong Xu; Li, Yan Min

    2017-12-01

    In tropical areas, a large number of natural forests have been transformed into other plantations, which affected the water conservation function of terrestrial ecosystems. In order to clari-fy the effects of land use changes on soil water conservation function, we selected four typical land use types in the central mountainous region of Hainan Island, i.e., natural forests with stand age greater than 100 years (VF), secondary forests with stand age of 10 years (SF), areca plantations with stand age of 12 years (AF) and rubber plantations with stand age of 35 years (RF). The effects of land use change on soil water holding capacity and water conservation (presented by soil water index, SWI) were assessed. The results showed that, compared with VF, the soil water holding capacity index of other land types decreased in the top soil layer (0-10 cm). AF had the lowest soil water holding capacity in all soil layers. Soil water content and maximum water holding capacity were significantly related to canopy density, soil organic matter and soil bulk density, which indicated that canopy density, soil organic matter and compactness were important factors influencing soil water holding capacity. Compared to VF, soil water conservation of SF, AF and RF were reduced by 27.7%, 54.3% and 11.5%, respectively. The change of soil water conservation was inconsistent in different soil layers. Vegetation canopy density, soil organic matter and soil bulk density explained 83.3% of the variance of soil water conservation. It was suggested that land use conversion had significantly altered soil water holding capacity and water conservation function. RF could keep the soil water better than AF in the research area. Increasing soil organic matter and reducing soil compaction would be helpful to improve soil water holding capacity and water conservation function in land management.

  2. Sustainability of three modified soil conservation methods in agriculture area

    Science.gov (United States)

    Setiawan, M. A.; Sara, F. H.; Christanto, N.; Sartohadi, J.; Samodra, G.; Widicahyono, A.; Ardiana, N.; Widiyati, C. N.; Astuti, E. M.; Martha, G. K.; Malik, R. F.; Sambodo, A. P.; Rokhmaningtyas, R. P.; Swastanto, G. A.; Gomez, C.

    2018-04-01

    Recent innovations in soil conservation methods do not present any breakthrough. Providing more attractive soil conservation methods from the farmer’s perspective is however still of critical importance. Contributing to this soil research gap we attempt to evaluate the sustainable use of three modified conservation methods, namely JALAPA (Jala Sabut Kelapa - geotextile made of coconut fibres), wood sediment trap, and polybag system compared to traditional tillage without conservation method. This research provides both qualitative and quantitative analysis on the performance of each conservation measures. Therefore, in addition to the total sediment yield value and investment cost – as quantitative analysis, we also evaluate qualitatively the indicator of soil loss, installation, maintenance, and the durability of conservation medium. Those criteria define the sustainability use of each conservation method. The results show that JALAPA is the most effective method for controlling soil loss, but it also requires the most expensive cost for installation. However, our finding confirms that geotextile is sensitive to sun heating by which the coconut fibre can become dry and shrink. Wood sediment trap is the cheapest and easiest to install; however it is easily damaged by termite. Polybag method results in the highest productivity, but requires more time during the first installation. In terms of the farmer’s perspective, soil conservation using polybag system was the most accepted technique due to its high benefits; even if it is less effective at reducing soil loss compared to JALAPA.

  3. SOIL CONSERVATION TECHNIQUES IN OIL PALM CULTIVATION FOR SUSTAINABLE AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Halus Satriawan

    2017-08-01

    Full Text Available Currently, many have been concerned with the oil palm cultivation since it may also put land resources in danger and bring about environmental damage. Poor practices in managing agricultural land very often occur due to the inadequate knowledge of soil conservation. Application of soil and water conservation is to maintain the productivity of the land and to prevent further damage by considering land capability classes. This research was aimed at obtaining soil and water conservation techniques which are the most appropriate and optimal for oil palm cultivation areas based on land capability classes which can support sustainable oil palm cultivation. Several soil conservation techniques had been treated to each different class III, IV, and VI of the studied area. These treatment had been performed by a standard plot erosion. The results showed for the land capability class III, Cover plants + Manure was able to control runoff, erosion and reduce leaching of N (LSD P≤0,05, in which soil conservation produced the lowest erosion (3,73t/ha, and N leaching (0,25%. On land capability class IV, Sediment Trap + cover plants+ manure was able to control runoff, erosion and reduce organic C and P leaching (LSD P≤0,05, in which soil conservation produced the lowest runoff (127,77 m3/ha, erosion (12,38t/ha, organic C leaching (1,14 %, and P leaching (1,28 ppm. On land capability class VI, there isn’t significant effect of soil conservation, but Bench Terrace + cover plants +manure has the lowest runoff, erosion and soil nutrient leaching.

  4. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    Science.gov (United States)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  5. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis.

    Science.gov (United States)

    Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun

    2017-01-01

    Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.

  6. Conservation agriculture effects on soil pore characteristics

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    ploughing to a depth of 20 cm (MP), harrowing to a depth of 8-10 cm (H) and direct drilling (D). Minimally disturbed core samples were taken at 4-8, 12-16 and 18-27 cm depths 11 years after experimental start. Water retention characteristics were measured for a range of matric potential ranging from -10......Conservation tillage in combination with crop rotation, residue management and cover crops are key components of conservation agriculture. A positive long-term effect of applying all components of conservation agriculture on soil structural quality is expected. However, there is a lack...... of quantitative knowledge to support this statement. This study examines the long-term effects of crop rotations, residue management and tillage on soil pore characteristics of two sandy loam soils in Denmark. Results are reported from a split plot field experiment rotation as main plot factor and tillage...

  7. Local farmers' approach to soil conservation: Lessons from Nigeria ...

    African Journals Online (AJOL)

    This paper explores the indigenous knowledge systems (IKS) approaches to soil conservation in Nigeria. It specifically identifies various indigenous/local and modern methods employed in the process of utilizing an integrated approach to soil conservation by all stakeholders (local farmers, governmental and ...

  8. Soil and Water Conservation for a Better America. A Framework Plan.

    Science.gov (United States)

    Soil Conservation Service (USDA), Washington, DC.

    Through this framework plan, the Soil Conservation Service (SCS) takes a look ahead to its soil and water conservation mission, a look at its direction and thrust in helping create a desirable America in the decades ahead. The plan attempts to define the nature of soil and water conservation efforts, to put them in perspective, and to present a…

  9. Economics of soil conservation practices among food crop farmers ...

    African Journals Online (AJOL)

    ... improvement and maintenance of short/medium term productivity of soils. The study recommends that farmers should be encouraged to invest more in structural and agronomic soil conservation practices along side soil productivity maintenance measure. International Journal of Agriculture and Rural Development Vol.

  10. Estimating soil erosion risk and evaluating erosion control measures for soil conservation planning at Koga watershed in the highlands of Ethiopia

    Science.gov (United States)

    Molla, Tegegne; Sisheber, Biniam

    2017-01-01

    Soil erosion is one of the major factors affecting sustainability of agricultural production in Ethiopia. The objective of this paper is to estimate soil erosion using the universal soil loss equation (RUSLE) model and to evaluate soil conservation practices in a data-scarce watershed region. For this purpose, soil data, rainfall, erosion control practices, satellite images and topographic maps were collected to determine the RUSLE factors. In addition, measurements of randomly selected soil and water conservation structures were done at three sub-watersheds (Asanat, Debreyakob and Rim). This study was conducted in Koga watershed at upper part of the Blue Nile basin which is affected by high soil erosion rates. The area is characterized by undulating topography caused by intensive agricultural practices with poor soil conservation practices. The soil loss rates were determined and conservation strategies have been evaluated under different slope classes and land uses. The results showed that the watershed is affected by high soil erosion rates (on average 42 t ha-1 yr-1), greater than the maximum tolerable soil loss (18 t ha-1 yr-1). The highest soil loss (456 t ha-1 yr-1) estimated from the upper watershed occurred on cultivated lands of steep slopes. As a result, soil erosion is mainly aggravated by land-use conflicts and topographic factors and the rugged topographic land forms of the area. The study also demonstrated that the contribution of existing soil conservation structures to erosion control is very small due to incorrect design and poor management. About 35 % out of the existing structures can reduce soil loss significantly since they were constructed correctly. Most of the existing structures were demolished due to the sediment overload, vulnerability to livestock damage and intense rainfall. Therefore, appropriate and standardized soil and water conservation measures for different erosion-prone land uses and land forms need to be implemented in Koga

  11. Soil conservation according the international community

    International Nuclear Information System (INIS)

    Nocera, Rachele

    2015-01-01

    The land is a finite resource. Desertification, climate change, pollution, human settlements and human activities, threaten the integrity of the soil and its ability to 'nourishing the planet'. In a growing awareness, the international community is by multiplying the action to promote overall defence and soil conservation measures, starting with the fight against desertification, with the aim of arriving at a Land Degradation Neutrality to 2050. [it

  12. Effect of restoring soil hydrological poperties on water conservation

    NARCIS (Netherlands)

    Moore, D.; Kostka, S.J.; Boerth, T.J.; Franklin, M.A.; Ritsema, C.J.; Dekker, L.W.; Oostindie, K.; Stoof, C.R.; Park, D.M.

    2008-01-01

    Water repellency in soil is more wide spread than previously thought ¿ and has a significant impact on irrigation efficiency and water conservation. Soil water repellency has been identified in many soil types under a wide array of climatic conditions world wide. Consequences include increased

  13. Social perception of soil conservation benefits in Kondoa eroded area of Tanzania

    Directory of Open Access Journals (Sweden)

    Rajendra P. Shrestha

    2015-09-01

    Full Text Available A soil conservation project was implemented in Tanzania for over 30 years. This study applied a socio-economic approach to examine and analyse the benefits of soil conservation in the Kondoa eroded area of Tanzania by conducting a household survey of 240 households. The study findings show that 89% and 70% of respondents consider soil conservation activities have increased vegetation and soil fertility, respectively. Decreased soil erosion was perceived by 68% of respondents, increased firewood by 98%, increased fodder by 50%, high crop yields by 56%, and food sufficiency by 68%. These are the outcomes of conservation tillage, integrated farming and use of organic fertilizers, controlled stall feeding, agroforestry, construction of cut off drains, contour bunds and contour ridges cultivation, which are the main land use practices in the area. Access to extension services, household sizes, long term land ownership, crop incomes and awareness of soil conservation project were found to determine the level of participation in soil conservation. Major challenges are the lack of sustainability of those activities because of a recent policy decision to withdraw conservation investment. Despite the challenge, this study concluded that past government efforts on soil conservation activities initiated since the early 1970s through decentralization, institutional collaboration, socioeconomic support to farmers and continuous local community participation in restoring the degraded ecosystem of Kondoa have contributed to ensure environmental and socio-economic sustainability in the area.

  14. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Definition of soil and water conservation... (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures treated as a... of soil or water conservation in respect of land used in farming, or for the prevention of erosion of...

  15. Scenario Analysis of Soil and Water Conservation in Xiejia Watershed Based on Improved CSLE Model

    Science.gov (United States)

    Liu, Jieying; Yu, Ming; Wu, Yong; Huang, Yao; Nie, Yawen

    2018-01-01

    According to the existing research results and related data, use the scenario analysis method, to evaluate the effects of different soil and water conservation measures on soil erosion in a small watershed. Based on the analysis of soil erosion scenarios and model simulation budgets in the study area, it is found that all scenarios simulated soil erosion rates are lower than the present situation of soil erosion in 2013. Soil and water conservation measures are more effective in reducing soil erosion than soil and water conservation biological measures and soil and water conservation tillage measures.

  16. Poverty and soil conservation efforts among smallholder farmers in the central highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    C Yirga

    2014-07-01

    Full Text Available This study explores the influence of incidence of poverty and plot-level perception of soil degradation, on soil conservation behaviour of small subsistence farmers in the central highlands of Ethiopia. The study results confirm that poverty in assets significantly reduces the probability of soil-conservation efforts as measured by use of stone/soil bund structures in the highlands of Ethiopia. Perception of soil degradation, public assistance with sharing initial costs of constructing soil-conservation structures, improved security of land tenure and farmers’ education and access to information on soil degradation are essential for farmers making long-term investment in conserving soil resources. On the other hand, improved access to short-term credit for the purchase of inorganic fertilizers acts as a disincentive for long-term conservation practices, an important trade-off with serious policy implications that should be carefully evaluated.

  17. Comparison between the United States Soil Conservation Service ...

    African Journals Online (AJOL)

    The United States Soil Conservation Service (SCS) curve number method is used to estimate rainfall runoff from three sub-watersheds in South-Eastern Botswana. This approach uses the NASA Endeavour Shuttle Radar Topography Mission (SRTM) DEMs, digital soil data from the Botswana Ministry of Agriculture, rainfall ...

  18. Soil carbon and soil respiration in conservation agriculture with vegetables in Siem Reap, Cambodia

    Science.gov (United States)

    A balance between food production and environmental protection is required to sustainably feed a growing population. The resource saving concept of conservation agriculture aims to achieve this balance through implementing simultaneously three conservation practices; no-till, continuous soil cover, ...

  19. Financial efficiency of major soil and water conservation measures in West Usambara highlands, Tanzania

    NARCIS (Netherlands)

    Tenge, A.J.M.; Graaff, de J.; Hella, J.P.

    2005-01-01

    Soil and Water Conservation (SWC) measures are needed to control soil erosion and sustain agricultural production on steep slopes of West Usambara mountains. However, the adoption by farmers of the recommended soil and water conservation measures is low and soil erosion continues to be a problem. It

  20. Effectiveness assessment of soil conservation measures in reducing soil erosion in Baiquan County of Northeastern China by using (137)Cs techniques.

    Science.gov (United States)

    Zhang, Qing-Wen; Li, Yong

    2014-05-01

    Accelerated soil erosion is considered as a major land degradation process resulting in increased sediment production and sediment-associated nutrient inputs to the rivers. Over the last decade, several soil conservation programs for erosion control have been conducted throughout Northeastern China. Reliable information on soil erosion rates is an essential prerequisite to assess the effectiveness of soil conservation measures. A study was carried out in Baiquan County of Northeastern China to assess the effectiveness of soil conservation measures in reducing soil erosion using the (137)Cs tracer technique and related techniques. This study reports the use of (137)Cs measurements to quantify medium-term soil erosion rates in traditional slope farmland, contour cropping farmland and terrace farmland in the Dingjiagou catchment and the Xingsheng catchment of Baiquan County. The (137)Cs reference inventory of 2532 ± 670 Bq m(-2) was determined. Based on the principle of the (137)Cs tracer technique, soil erosion rates were estimated. The results showed that severe erosion on traditional slope farmland is the dominant soil erosion process in the area. The terrace measure reduced soil erosion rates by 16% for the entire slope. Typical net soil erosion rates are estimated to be 28.97 Mg per hectare per year for traditional slope farmland and 25.04 Mg per hectare per year for terrace farmland in the Dingjiagou catchment. In contrast to traditional slope farmland with a soil erosion rate of 34.65 Mg per hectare per year, contour cultivation reduced the soil erosion rate by 53% resulting in a soil erosion rate of 22.58 Mg per hectare per year in the Xingsheng catchment. These results indicated that soil losses can be controlled by changing tillage practices from the traditional slope farmland cultivation to the terrace or contour cultivation.

  1. Impact of Soil Depth and Topography on the Effectiveness of Conservation Practices on Discharge and Soil Loss in the Ethiopian Highlands

    Directory of Open Access Journals (Sweden)

    Adugnaw T. Akale

    2017-11-01

    Full Text Available Restoration of degraded landscapes through the implementation of soil and water conservation practices is considered a viable option to increase agricultural production by enhancing ecosystems. However, in the humid Ethiopian highlands, little information is available on the impact of conservation practices despite wide scale implementation. The objective of this research was to document the effect of conservation practices on discharge and sediment concentration and load in watersheds that have different soil depths and topography. Precipitation, discharge, and sediment concentration were measured from 2010 to 2012 in two watersheds in close proximity and located in the Lake Tana basin, Ethiopia: Tikur-Wuha and Guale watersheds. The Tikur-Wuha watershed has deep soils and a gentle slope stream channel. The Guale watershed has shallow soils and a steep slope stream channel. In early 2011, the local community installed upland conservation measures consisting of stone and soil bunds, waterways, cutoff drains, infiltration furrows, gully rehabilitation, and enclosures. The results show that conservation practices marginally decreased direct runoff in both watersheds and increased base flow in the Tikur-Wuha watershed. Average sediment concentration decreased by 81% in Tikur-Wuha and 45% in Guale. The practices intended to increase infiltration were most effective in the Tikur-Wuha watershed because the deep soil could store the infiltrated water and release it over a longer period of time after the rainy season than the steeper Guale watershed with shallow soils.

  2. The contribution of the European Society for Soil Conservation (ESSC) to scientific knowledge, education and sustainability

    Science.gov (United States)

    Dazzi, Carmelo; Fullen, Michael A.; Costantini, Edoardo A. C.; Theocharopoulos, Sid; Rickson, Jane; Kasparinskis, Raimonds; Lo Papa, Giuseppe; Peres, Guenola; Sholten, Thomas; Kertész, Adam; Vasenev, Ivan; Dumitru, Mihail; Cornelis, Wim; Rubio, José L.

    2017-04-01

    Soil is an integral component of the global environmental system that supports the quality and diversity of terrestrial life on Earth. Therefore, it is vital to consider the processes and impacts of soil degradation on society, especially on the provision of environmental goods and services, including food security and climate change mitigation and adaptation. Scientific societies devoted to Soil Science play significant roles in promoting soil security by advancing scientific knowledge, education and environmental sustainability. The European Society for Soil Conservation (ESSC) was founded in Ghent (Belgium) on 4 November 1988 by a group of 23 researchers from several European countries. It is an interdisciplinary, non-political association with over 500 members in 56 countries. The ESSC produces and distributes a hardcopy Newsletter twice a year and maintains both a website and Facebook page: http://www.soilconservation.eu/ https://www.facebook.com/European-Society-for-Soil-Conservation-ESSC-100528363448094/ The ESSC aims to: • Support research on soil degradation, soil protection and soil and water conservation. • Provide a network for the exchange of knowledge about soil degradation processes and soil conservation research and practises. • Produce publications on major issues relating to soil degradation and soil and water conservation. • Advise regulators and policy-makers on soil issues, especially soil degradation, protection and conservation. The ESSC held its First International Congress in Silsoe (UK) in 1992. Further International Congresses were held in Munich (1996), Valencia (2000), Budapest (2004), Palermo (2007), Thessaloniki (2011) and Moscow (2015). The Eighth International Congress will be held in Lleida (Spain) in June 2017: http://www.consowalleida2017.com/ Interspersed between these international congresses, the ESSC organizes annual international conferences on specific topics. These include Imola, Italy (Biogeochemical Processes at

  3. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soil

    NARCIS (Netherlands)

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil)

  4. Land under pressure: soil conservation concerns and opportunities for Ethiopia

    NARCIS (Netherlands)

    Sonneveld, B.G.J.S.; Keyzer, M.A.

    2003-01-01

    This paper evaluates the future impact of soil degradation on national food security and land occupation in Ethiopia. It applies a spatial optimization model that maximizes national agricultural revenues under alternative scenarios of soil conservation, land accessibility and technology. The

  5. Analyzing ecological restoration strategies for water and soil conservation

    Science.gov (United States)

    Mota da Silva, Jonathan; Silva, Marx Leandro Naves; Guimarães, João Luis Bittencourt; Sousa Júnior, Wilson Cabral; Figueiredo, Ricardo de Oliveira; da Rocha, Humberto Ribeiro

    2018-01-01

    The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil), where one of first Brazilian Payment for Ecosystem Services (PES) projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion), so it will be advisable to consider the two types of restoration. PMID:29425214

  6. Analyzing ecological restoration strategies for water and soil conservation.

    Science.gov (United States)

    Saad, Sandra Isay; Mota da Silva, Jonathan; Silva, Marx Leandro Naves; Guimarães, João Luis Bittencourt; Sousa Júnior, Wilson Cabral; Figueiredo, Ricardo de Oliveira; Rocha, Humberto Ribeiro da

    2018-01-01

    The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil), where one of first Brazilian Payment for Ecosystem Services (PES) projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion), so it will be advisable to consider the two types of restoration.

  7. Analyzing ecological restoration strategies for water and soil conservation.

    Directory of Open Access Journals (Sweden)

    Sandra Isay Saad

    Full Text Available The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil, where one of first Brazilian Payment for Ecosystem Services (PES projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion, so it will be advisable to consider the two types of restoration.

  8. The Effect of Community-Based Soil and Water Conservation Practices on Abundance and Diversity of Soil Macroinvertebrates in the Northern Highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    Mengistu Welemariam

    2018-04-01

    Full Text Available Soil and water conservation (SWC practices in the northern highlands of Ethiopia have important implications for land restoration and biodiversity recovery. The present study determined soil macroinvertebrate (SMI abundance and diversity in response to spatial conditions i.e., generated by different conservation practices, soil depth, and temporal seasonality with the wet and dry season. The SWC practices considered were exclosure + terrace, exclosure alone, terraces, and non-conserved grazing lands. Each SWC measure was selected in three sites that were considered as replications due to low heterogeneity in terms of human and livestock disturbances and biophysical factors. Soil macroinvertebrates were collected using a monolith according to tropical soil biology and fertility (TSBF method. The highest density (55% of SMI was found in exclosures followed by terraces 26%. Non-conserved communal grazing lands account for only 19% of the total. Shannon diversity index was significantly (P < 0.05 higher (1.21 in the exclosures supported with terraces and the lowest (0.9 was observed in the non-conserved communal grazing lands. Diversity was also significantly (P < 0.05 higher (1.26 in wet than dry season (0.70. The highest (41% Sorensen similarity index among SMI was found between exclosures with terraces and exclosures alone during the wet season. The lowest (20% Sorensen similarity index was found between terraces alone and exclosures with terraces in dry season. Soil macroinvertebrate abundance was higher in upper (0–10 cm than lower (10–20 and 20–30 cm soil depth. Soil macroinvertebrate abundance was positively and strongly correlated with soil moisture (R2 = 0.85 and soil organic carbon stock (R2 = 0.95. However, it was negatively (R2 = −0.71 correlated with bulk density. Generally, the abundance and diversity of SMI increased as exclosures and communal grazing lands are supported with terraces.

  9. Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin

    Science.gov (United States)

    Peng, H.; Jia, Y.; Qiu, Y.

    2011-12-01

    The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin

  10. Assessment of the effectiveness of soil and water conservation measures in reducing runoff and soil loss: establishment of a European database

    International Nuclear Information System (INIS)

    Maetens, W.; Vanmaercke, M.; Poesen, J.

    2009-01-01

    Soil erosion by water is recognised as a major soil degradation process that requires a global approach. Large regions all over the world are in need of integrated conservation strategies that sustainable prevent and remediate soil erosion. therefore, quantitative and globally interpretable data are needed in support of models and decision making. the effects of various soil and water conservation techniques (SWCT) on runoff and soil loss in Europe have been extensively studied over the last 60 years. Runoff plots are the most widely used measurement technique to study the effects of SWCT on runoff and soil loss by water erosion. Hence, many data are available. However, the insights gained hereby remain mostly local and often qualitative whereas the full potential of the available data is not exploited yet. This is mainly due to the fragmentation of knowledge and extrapolation difficulties inherently linked with this type of data. (Author) 8 refs.

  11. Soil Conservation Unit for the Advanced Crop Production and Marketing Course. Student Reference. AGDEX 570.

    Science.gov (United States)

    Stewart, Bob R.; And Others

    This student reference booklet is designed to accompany lessons outlined in the companion instructor's guide on soil conservation. The soil conservation unit builds on competencies gained in Agricultural Science I and II. Informative material is provided for these eight lessons: benefits of conservation, land utilization, how soils are eroded,…

  12. Effects of 24 Years of Conservation Tillage Systems on Soil Organic Carbon and Soil Productivity

    Directory of Open Access Journals (Sweden)

    Kenneth R. Olson

    2013-01-01

    Full Text Available The 24-year study was conducted in southern Illinois (USA on land similar to that being removed from Conservation Reserve Program (CRP to evaluate the effects of conservation tillage systems on: (1 amount and rates of soil organic carbon (SOC storage and retention, (2 the long-term corn and soybean yields, and (3 maintenance and restoration of soil productivity of previously eroded soils. The no-till (NT plots did store and retain 7.8 Mg C ha−1 more and chisel plow (CP −1.6 Mg C ha−1 less SOC in the soil than moldboard plow (MP during the 24 years. However, no SOC sequestration occurred in the sloping and eroding NT, CP, and MP plots since the SOC level of the plot area was greater at the start of the experiment than at the end. The NT plots actually lost a total of −1.2 Mg C ha−1, the CP lost −9.9 Mg C ha−1, and the MP lost −8.2 Mg C ha−1 during the 24-year study. The long-term productivity of NT compared favorably with that of MP and CP systems.

  13. Assessing farmers’ intention to adopt soil conservation practices across Europe

    NARCIS (Netherlands)

    Bijttebier, J.; Ruysschaert, G.; Marchand, F.; Hijbeek, R.; Pronk, A.A.; Schlatter, N.; Guzmàn, G.; Syp, A.; Werner, M.; Bechini, L.; Guiffant, N.; Wauters, E.

    2014-01-01

    During the past decennia, soil conservation practices (SCPs) have been developed in order to maintain or restore soil health which is essential to the resilience of the farm. However, the adoption rate in practice is rather low. Amongst other reasons, these practices might lack onfarm compatibility,

  14. Improving Simulated Soil Moisture Fields Through Assimilation of AMSR-E Soil Moisture Retrievals with an Ensemble Kalman Filter and a Mass Conservation Constraint

    Science.gov (United States)

    Li, Bailing; Toll, David; Zhan, Xiwu; Cosgrove, Brian

    2011-01-01

    Model simulated soil moisture fields are often biased due to errors in input parameters and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to reduce model bias (at locations near the surface) through data assimilation techniques. While assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced by the model governing equation because water is removed from or added to the soil by the assimilation algorithm. In addition, studies have shown that assimilation of surface observations can adversely impact soil moisture estimates in the lower soil layers due to imperfect model physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve the mean of simulated soil moisture fields by the Noah land surface model. Assimilation results using the conventional and the mass conservation updating scheme in the Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the bias in the shallow root zone, the mass conservation scheme provided better estimates in the deeper profile. The mass conservation scheme also yielded physically consistent estimates of fluxes and maintained the water budget. Impacts of model physics on the assimilation results are discussed.

  15. Rethinking soil and water conservation in a changing society : a case study in eastern Burkina Faso

    OpenAIRE

    Mazzucato, V.; Niemeijer, D.

    2000-01-01

    Soil and water conservation is at the top of development agendas in Africa. Virtually every project related to agriculture or the environment has a soil and water conservation component to it and environmental protection plans are being drawn up by African governments in which soil and water conservation figures dominantly. This focus on soil and water conservation is due to its being perceived as a way to address both productivity and environmental sustainability questions. Land deg...

  16. Soil and Water Conservation Districts of New Mexico

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The New Mexico Soil and Water Conservation District (SWCD) shapefile includes forty-seven boudaries which cover each SWCD throughout the State.

  17. Sediment yield and alternatives soil conservation practices of teak catchments

    Directory of Open Access Journals (Sweden)

    Tyas Mutiara Basuki

    2017-10-01

    Full Text Available Quantifying sediment is essential to determine its sources and reduce its negative impacts. A study was conducted to quantify suspended sediments of catchments covering by teak plantation and to provide alternatives soil conservation practices. Five catchments with old teak coverages of 82; 82; 74; 70; and 53 % were chosen. At the outlet of each catchment was installed tide gauge to monitor stream water level (SWL. Water samples for sediment analyses were taken for every increament of SWL. Sediment yield was calculated based on rating curves of sediment discharge. The results showed that the sources of sediment in the streams were dryland agricultural and streambank erosion. The mean annual sediment yield during the study were 9.3; 10; 15; 53.3; and 22.5 t/ha for catchments covered by old teak plantation of 82, 82, 74, 70, and 53 %, respectively. To reduce sediment yield some soil conservation practices must be applied. Conservation of soil organic matter is important in order to stabilize soil aggregate and prevent clay dispersion which causes erosion and sedimentation. Green firebreaks or making channels are needed to prevent fire during dry season and organic matter loss. Stabilization of streambank is neccesary, either using vegetative method or civil technics.

  18. Comparison between the United States Soil Conservation Service ...

    African Journals Online (AJOL)

    2005-10-26

    Oct 26, 2005 ... The United States Soil Conservation Service (SCS) curve number method is used to estimate rainfall .... Precipitation is an important element in many engineering ... National Aeronautics and Space Administration (NASA).

  19. Pro-environmental analysis of farmers' concerns and behaviors towards soil conservation in central district of Sari County, Iran

    Directory of Open Access Journals (Sweden)

    Masoud Bijani

    2017-03-01

    Full Text Available This study aimed to pro-environmentally analyze farmers' concerns and behaviors towards soil conservation. This research was a descriptive, causal, and correlational and conducted through a survey technique. The study population consisted of all farmers at the central district of Sari county, Iran (N=9621. Based on the Cochran's formula, 120 farmers were selected using stratified random sampling. The instrument employed in this study was a questionnaire with its validity being confirmed by a number of academic experts and agriculture specialists and its reliability being proved using Cronbach's alpha coefficients in a pilot study (outside the scope of the current study. (0.66≤α≤0.90. The results of the analysis regarding the effects of independent variables on the variables "soil conservation behavior" and "soil conservation concern" indicated that, among the variables affecting these two variables, the variable "attitude towards soil conservation "was the most powerful predictor of "soil conservation concerns" and the variable "social pressures on soil conservation" predicted farmers' "soil conservation behaviors" better. Furthermore, the independent variables used in this research could predict 42% of the variance in terms of soil conservation concern and 21% of the variance in terms of soil conservation behavior. These findings can be practical and appropriate for executive officials since, instead of making efforts to direct change the behavior, they can first focus on conceptual changes and persuasive changes like changing attitudes towards soil conservation.

  20. Soil conservation practices among Arable Crop Farmers In Enugu ...

    African Journals Online (AJOL)

    Soil conservation practices among Arable Crop Farmers In Enugu – North Agricultural Zone, Nigeria: Implications for Climate Change. ... The paper recommends concerted efforts to promote among farmers the conservation practices that aid mitigation and adaptation to climate change and at the same time enhance ...

  1. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    Science.gov (United States)

    Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.

    2009-04-01

    fuel for preparing the germination bed. Presently it is necessary a change concerning the concept of conservation practices and a new approach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditional understanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus to another level concerning conservation by focusing on of soil quality. Carbon management is necessary for a complex of matters including soil, water management, field productivity, biological fuel and climatic change. Profound research is necessary in order to establish the carbon sequestration practices and their implementation impact.

  2. Soil loss estimation using geographic information system in enfraz watershed for soil conservation planning in highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    Gizachew Tiruneh

    2015-12-01

    Full Text Available Accelerated soil erosion is a worldwide problem because of its economic and environmental impacts. Enfraz watershed is one of the most erosion-prone watersheds in the highlands of Ethiopia, which received little attention. This study was, therefore, carried out to spatially predict the soil loss rate of the watershed with a Geographic Information System (GIS and Remote Sensing (RS. Revised Universal Soil Loss Equation (RUSLE adapted to Ethiopian conditions was used to estimate potential soil losses by utilizing information on rainfall erosivity (R using interpolation of rainfall data, soil erodibility (K using soil map, vegetation cover (C using satellite images, topography (LS using Digital Elevation Model (DEM and conservation practices (P using satellite images. Based on the analysis, about 92.31% (5914.34 ha of the watershed was categorized none to slight class which under soil loss tolerance (SLT values ranging from 5 to 11 tons ha-1 year-1. The remaining 7.68% (492.21 ha of land was classified under moderate to high class about several times the maximum tolerable soil loss. The total and an average amount of soil loss estimated by RUSLE from the watershed was 30,836.41 ton year-1 and 4.81 tons ha-1year-1, respectively.

  3. Participatory GIS for Soil Conservation in Phewa Watershed of Nepal

    Science.gov (United States)

    Bhandari, K. P.

    2012-07-01

    Participatory Geographic Information Systems (PGIS) can integrate participatory methodologies with geo-spatial technologies for the representation of characteristic of particular place. Over the last decade, researchers use this method to integrate the local knowledge of community within a GIS and Society conceptual framework. Participatory GIS are tailored to answer specific geographic questions at the local level and their modes of implementation vary considerably across space, ranging from field-based, qualitative approaches to more complex web-based applications. These broad ranges of techniques, PGIS are becoming an effective methodology for incorporating community local knowledge into complex spatial decision-making processes. The objective of this study is to reduce the soil erosion by formulating the general rule for the soil conservation by participation of the stakeholders. The poster was prepared by satellite image, topographic map and Arc GIS software including the local knowledge. The data were collected from the focus group discussion and the individual questionnaire for incorporate the local knowledge and use it to find the risk map on the basis of economic, social and manageable physical factors for the sensitivity analysis. The soil erosion risk map is prepared by the physical factors Rainfall-runoff erosivity, Soil erodibility, Slope length, Slope steepness, Cover-management, Conservation practice using RUSLE model. After the comparison and discussion among stakeholders, researcher and export group, and the soil erosion risk map showed that socioeconomic, social and manageable physical factors management can reduce the soil erosion. The study showed that the preparation of the poster GIS map and implement this in the watershed area could reduce the soil erosion in the study area compared to the existing national policy.

  4. Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies

    International Nuclear Information System (INIS)

    2014-06-01

    Soil degradation currently affects 1.9 billion hectares of agricultural land worldwide, and the area of degraded land is increasing rapidly at a rate of 5 to 7 million hectares each year. Most of this degradation is caused by inappropriate and poor land management practices in agriculture and livestock production. Among all degradation processes, including soil acidification, salinization and nutrient mining, soil erosion is by far the most common type of land degradation, accounting for 84% of affected areas, with more than three quarters of the affected surface land area located in developing countries. Current concerns about the impacts of soil erosion on crop productivity and the environment, as well as the deployment of effective soil conservation measures, have generated an urgent need to obtain reliable quantitative data on the extent and actual rates of soil erosion to underpin sustainable soil conservation strategies. The quest for new approaches for assessing soil erosion to complement conventional methods has led to the development of methodologies based on the use of fallout radionuclides (FRNs) as soil erosion tracers. With increasing attention being paid to land degradation worldwide, this publication explains and demonstrates FRN based methods to trace soil movement and to assess soil erosion at different spatial and temporal scales, and to evaluate the effectiveness of soil conservation strategies to ensure sustainable land management in agricultural systems. This publication summarizes the experiences and knowledge gained since the end of the 1990s in the use of FRNs by the IAEA and by scientists from both developed and developing countries involved in IAEA research networks. This publication provides guidance in the application of FRNs to stakeholders involved in sustainable agricultural development

  5. Socio-Economic Factors Assessment Affecting the Adoption of Soil Conservation Technologies on Rwenzori Mountain

    Directory of Open Access Journals (Sweden)

    Nabalegwa Wambede Muhamud

    2015-06-01

    Full Text Available This study analysed the role of socio-economic factors in influencing farmers’ adoption to soil conservation technologies in Bugoye Sub-county, Rwenzori Mountain. A cross sectional household survey design was used in this study, using systematic sampling to obtain 150 household samples. Qualitative analysis and chi-square tests were used to analyze these data. Results indicated that only 54% of the sampled households have adopted soil conservation, and revealed that eight of the nine factors significantly influenced farmers’ adoption, which are slope, farm size, farm distance from home, education level, family income, training, membership to NGOs, and credit accessibility. Only family size was insignificant. Other constraints are labour demands, cost of conservation work, land fragmentation, crop pests, and the limited agricultural extension services. It is recommended to perform training for farmers on designing soil conservation structures. Policies for empowering farmers with extra income are crucial to increase the adoption of soil conservation efforts.

  6. Soil Conservation Service Curve Number method: How to mend a wrong soil moisture accounting procedure?

    Science.gov (United States)

    Michel, Claude; Andréassian, Vazken; Perrin, Charles

    2005-02-01

    This paper unveils major inconsistencies in the age-old and yet efficient Soil Conservation Service Curve Number (SCS-CN) procedure. Our findings are based on an analysis of the continuous soil moisture accounting procedure implied by the SCS-CN equation. It is shown that several flaws plague the original SCS-CN procedure, the most important one being a confusion between intrinsic parameter and initial condition. A change of parameterization and a more complete assessment of the initial condition lead to a renewed SCS-CN procedure, while keeping the acknowledged efficiency of the original method.

  7. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth

    Directory of Open Access Journals (Sweden)

    Ziting Wang

    2017-07-01

    Full Text Available Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years conservation (chisel plow, zero and conventional (plow tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1 differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2 tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in

  8. The economics of soil conservation in developing countries: the case of crop residue mulching

    NARCIS (Netherlands)

    Erenstein, O.C.A.

    1999-01-01

    The study contributes to the search for a methodology to assess soil conservation, particularly in developing countries. The study first assesses the economics of soil conservation in general - with special emphasis on the relationships between technology, economic analysis and policy implications.

  9. Mediterranean Agricultural Soil Conservation under global Change: The MASCC project.

    Science.gov (United States)

    Raclot, Damien; Ciampalini, Rossano

    2017-04-01

    The MASCC project (2016-2019, http://mascc-project.org) aims to address mitigation and adaptation strategies to global change by assessing current and future development of Mediterranean agricultural soil vulnerability to erosion in relation to projected land use, agricultural practices and climate change. It targets to i) assess the similarities/dissimilarities in dominant factors affecting the current Mediterranean agricultural soil vulnerability by exploring a wide range of Mediterranean contexts; ii) improve the ability to evaluate the impact of extreme events on both the current and projected agricultural soil vulnerability and the sediment delivery at catchment outlet; iii) evaluate the vulnerability and resilience of agricultural production to a combination of potential changes in a wide range of Mediterranean contexts, iv) and provide guidelines on sustainable agricultural conservation strategies adapted to each specific agro-ecosystem and taking into consideration both on- and off-site erosion effects and socio-economics issues. To achieve these objectives, the MASCC project consortium gather researchers from six Mediterranean countries (France, Morocco, Tunisia, Italy, Spain and Portugal) which monitor mid- to long-term environmental catchments and benefit from mutual knowledge created from previous projects and network. The major assets for MASCC are: i) the availability of an unrivalled database on catchment soil erosion and innovative agricultural practices comprising a wide range of Mediterranean contexts, ii) the capacity to better evaluate the impact of extreme events on soil erosion, iii) the expert knowledge of the LANDSOIL model, a catchment-scale integrated approach of the soil-landscape system that enables to simulate both the sediment fluxes at the catchment outlet and the intra-catchment soil evolving properties and iv) the multi-disciplinarity of the involved researchers with an international reputation in the fields of soil science

  10. Rethinking soil and water conservation in a changing society : a case study in eastern Burkina Faso

    NARCIS (Netherlands)

    Mazzucato, V.; Niemeijer, D.

    2000-01-01

    Soil and water conservation is at the top of development agendas in Africa. Virtually every project related to agriculture or the environment has a soil and water conservation component to it and environmental protection plans are being drawn up by African governments in which soil and

  11. Effects of poly-γ-glutamic acid biopreparation (PGAB) on nitrogen conservation in the coastal saline soil

    Science.gov (United States)

    Chen, Lihua; Xu, Xianghong; Zhang, Huan; Han, Rui; Cheng, Yao; Tan, Xueyi; Chen, Xuanyu

    2017-04-01

    Water leaching is the major method to decrease soil salinity of the coastal saline soil. Conservation of soil nutrition in the soil ameliorating process is helpful to maintain soil fertility and prevent environment pollution. In the experiment, glutamic acid and poly-γ-glutamic acid (PGA) producing bacteria were isolated for manufacturing the PGA biopreparation (PGAB), and the effect of PGAB on the soil nitrogen (N) conservation was assayed. The glutamic acid and PGA producing bacteria were identified as Brevibacterium flavum and Bacillus amyloliquefaciens. After soil leached with water for 90 days, compared to control treatment, salt concentration of 0-30cm soil with PGAB treatment was lowered by 39.93%, however the total N loss was decreased by 65.37%. Compared to control, the microbial biomass N increased by 1.19 times at 0-30 cm soil with PGAB treatment. The populations of soil total bacteria, fungi, actinomyces, nitrogen fixing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria and biomass of soil algae were significantly increased in PGAB treatment, while anaerobic bacteria decreased (P 0.25 mm and 0.02 mm < diameter <0.25 mm were increased by 2.93 times and 26.79% respectively in PGAB treatment. The soil erosion-resistance coefficient of PGAB treatment increased by 50%. All these suggested that the PGAB conserved the soil nitrogen effectively in the process of soil water leaching and improved the coastal saline soil quality.

  12. Infiltration and Soil Loss Changes during the Growing Season under Ploughing and Conservation Tillage

    Directory of Open Access Journals (Sweden)

    Gergely Jakab

    2017-09-01

    Full Text Available Decreased water retention and increased runoff and soil loss are of special importance concerning soil degradation of hilly crop fields. In this study, plots under ploughing (conventional tillage (PT and conservation tillage (CT; 15 years were compared. Rainfall simulation on 6 m2 plots was applied to determine infiltration and soil loss during the growing season. Results were compared with those measured from 1200 m2 plots exposed to natural rainfalls in 2016. Infiltration was always higher under CT than PT, whereas the highest infiltration was measured under the cover crop condition. Infiltration under seedbed and stubble resulted in uncertainties, which suggests that natural pore formation can be more effective at improving soil drainage potential than can temporary improvements created by soil tillage operations. Soil erodibility was higher under PT for each soil status; however, the seedbed condition triggered the highest values. For CT, soil loss volume was only a function of runoff volume at both scales. Contrarily, on PT plots, some extreme precipitation events triggered extremely high soil loss owing to linear erosion, which meant no direct connection existed between the scales. Improved soil conditions due to conservation practice are more important for decreasing soil loss than the better surface conditions.

  13. Extension of the soil conservation service rainfall-runoff methodology for ungaged watersheds

    Science.gov (United States)

    1981-07-01

    The estimation of direct runoff for ungaged watersheds is a common problem in : engineering hydrology. The method of the Soil Conservation Services (SCS) is widely used due to its ease of application. Runoff estimates are based upon the soil types an...

  14. Factors influencing adoption of soil and water conservation measures in southern Mali

    NARCIS (Netherlands)

    Bodnar, F.; Graaff, de J.

    2003-01-01

    A soil and water conservation (SWC) extension programme, promoting erosion control measures and soil fertility measures, has been going on in southern Mali since 1986. Five factors that influence farmer adoption of SWC measures were analysed: land pressure, cotton-growing area, possession of

  15. Soil and Water Conservation Activities for Scouts.

    Science.gov (United States)

    Soil Conservation Service (USDA), Washington, DC.

    The purpose of the learning activities outlined in this booklet is to help Scouts understand some conservation principles which hopefully will lead to the development of an attitude of concern for the environment and a commitment to help with the task of using and managing soil, water, and other natural resources for long range needs as well as…

  16. Financial viability of soil and water conservation technologies in northwestern Ethiopian highlands

    NARCIS (Netherlands)

    Teshome, Akalu; Rolker, D.; Graaff, de J.

    2013-01-01

    Soil erosion by water is a major threat to food security, environmental sustainability and prospects for rural development in Ethiopia. Successive governments have promoted various soil and water conservation (SWC) measures in order to reduce the effects of land degradation, but adoption rates vary

  17. Land degradation and adoption of soil conservation technologies ...

    African Journals Online (AJOL)

    The study investigates the causes of land degradation, and adoption of soil conservation practices using a two-stage decision making process. The data for the study were collected with the aid of structured questionnaire and analyzed with descriptive analysis, difference regression equation and simultaneous probit model.

  18. Sustainable agriculture and soil conservation

    DEFF Research Database (Denmark)

    Olsen, Preben; Dubgaard, Alex

    , sandy soils in the West, (that had not been covered by ice) from more fertile soils being mostly sandy loams and finer textured soils covering the Eastern part of the study area. Several geological features such as pitting due to dead ice formation, smaller, terminal moraines in association with melt......, separate the moraine plateau. From the plateau several, minor erosion valleys, formed at the end of the glaciation some 10,000 years ago, feed into the two valleys. Very accurate soil type information is available for the area as intensive measurements within the area has formed the basis for a new...... methodology for soil classification in Denmark. The soil survey included a detailed mapping at field level, using the electromagnetic sensor, EM38. A high-resolution digital elevation model, obtained by use of laser scanning, is available for the study area. The original scanning has a horizontal resolution...

  19. Using Soil Conservation Strategies in the Development of Learning Activities for the Students of Roi - Et College of Agriculture and Technology

    Directory of Open Access Journals (Sweden)

    Jariya Kanchanwong

    2017-06-01

    Full Text Available The purposes of this research were 1 to study nutrient content in soil samples taken from Roi - Et College of Agriculture and Technology Campus, 2 to study the social factors, economic factors and technological factors the effect on soil conservation of Roi - Et College of Agriculture and Technology students, 3 the development of soil conservation activities Learning package efficiency of 80/80, 4 to Study and to compare the knowledge, attitudes and skills regarding soil conservation of students of Roi - Et College of Agriculture and Technology. The student activities package of learning soil conservation was enrolled by 40 people in its club. These people were selected by purposive sampling. The instruments were used in this research as follows; 1 scientific analysis, 2 social questionnaire on economic and technological factors affecting soil conservation, 3 test of knowledge about soil conservation, 4 test of attitudes about soil conservation, 5 test of skill about soil conservation. The experimental research was designed to use students as key informants. The statistics analysis was used in the research as follows: frequency, percentage, average, standard deviation, test results, assumptions which included a dependent t-test statistical at the significance level of 0.05. The results of the study were as follows: 1 The study found that the amount of soil nutrient content (N: P: K around cultivated plants in an area of converted agriculture land have the significance: Soil checks collected in plots from soil containing morning glory, chrysanthemums, marigolds, corn and cassava, and had neutral pH. 2 The results of the analysis determing the factors that affected the conservation of soil found economic factors were at a high level Social factors and technology factors were moderate thus leading the approach that has come to create of learning activities package in soil conservation. 3 The results showed that the efficiency of the manual was 83

  20. Knowledge, conservation and sustainable use of soil: agricultural chemistry aspects

    Directory of Open Access Journals (Sweden)

    Paola Adamo

    Full Text Available Soil is an environmental resource and plays ecological, social and economic functions which are fundamental for the life. To guarantee its availability to future generations, soil resource needs sustainable management. The CEC Thematic Strategy for Soil Protection identifies a series of soil degradation processes or threats, which must be identified and combated. These include erosion, decline in organic matter, local and diffuse contamination, sealing, compaction, decline in biodiversity, salinisation, floods and landslides. With respect to management of contamination with potentially toxic elements, an approach based on the identification and quantification of the various forms or, at least, the main pools, in which contaminants occur in soil, is envisaged. The residence time of an element in soil depends, indeed, by the mobility of its predominant forms. Speciation studies provide information on the mobility and biological availability of contaminants, and seek to assess not simply the contamination level, but rather the risk/toxicity of a polluted soil and to predict its reduction after application of remediation techniques. Soil degradation is often associated with a decrease in the organic matter content, mainly caused by soil use change and global warming. Improving the accumulation of organic matter in soil or contrasting its reduction has positive effects on soil and water quality, crop yields, biodiversity and climate leading to a reduction of green-house gas emissions from soil to the atmosphere. In order to obtain a real accumulation of organic matter in soil, it is not sufficient to temporarily increase its total content, but it is necessary to favour the main processes which govern organic matter stabilization. This requires an approach at both molecular and multidisciplinary level. The reforestation of agricultural and highly degraded soils or conservative agronomic practices, such as the use of humified compounds characterized by

  1. Knowledge, conservation and sustainable use of soil: agricultural chemistry aspects

    Directory of Open Access Journals (Sweden)

    Paola Adamo

    2011-02-01

    Full Text Available Soil is an environmental resource and plays ecological, social and economic functions which are fundamental for the life. To guarantee its availability to future generations, soil resource needs sustainable management. The CEC Thematic Strategy for Soil Protection identifies a series of soil degradation processes or threats, which must be identified and combated. These include erosion, decline in organic matter, local and diffuse contamination, sealing, compaction, decline in biodiversity, salinisation, floods and landslides. With respect to management of contamination with potentially toxic elements, an approach based on the identification and quantification of the various forms or, at least, the main pools, in which contaminants occur in soil, is envisaged. The residence time of an element in soil depends, indeed, by the mobility of its predominant forms. Speciation studies provide information on the mobility and biological availability of contaminants, and seek to assess not simply the contamination level, but rather the risk/toxicity of a polluted soil and to predict its reduction after application of remediation techniques. Soil degradation is often associated with a decrease in the organic matter content, mainly caused by soil use change and global warming. Improving the accumulation of organic matter in soil or contrasting its reduction has positive effects on soil and water quality, crop yields, biodiversity and climate leading to a reduction of green-house gas emissions from soil to the atmosphere. In order to obtain a real accumulation of organic matter in soil, it is not sufficient to temporarily increase its total content, but it is necessary to favour the main processes which govern organic matter stabilization. This requires an approach at both molecular and multidisciplinary level. The reforestation of agricultural and highly degraded soils or conservative agronomic practices, such as the use of humified compounds characterized by

  2. The effects of forward speed and depth of conservation tillage on soil bulk density

    Directory of Open Access Journals (Sweden)

    A Mahmoudi

    2015-09-01

    Full Text Available Introduction: In recent years, production techniques and equipment have been developed for conservation of tillage systems that have been adopted by many farmers. With proper management, overall yield averages for conventional and reduced tillage systems are nearly identical. Sometimes, field operations can be combined by connecting two or more implements. Combined operations reduce both fuel consumption, and time and labor requirements by eliminating at least one individual trip over the field. Light tillage, spraying, or fertilizing operations can be combined with either primary or secondary tillage or planting operations. Tillage helps seed growth and germination through providing appropriate conditions for soil to absorb sufficient temperature and humidity. Moreover, it helps easier development of root through reducing soil penetration resistance. Tillage is a time-consuming and expensive procedure. With the application of agricultural operations, we can save substantial amounts of fuel, time and energy consumption. Conservation tillage loosens the soil without turning, but by remaining the plant left overs, stems and roots. Bulk density reflects the soil’s ability to function for structural support, water and solute movement, and soil aeration. Bulk densities above thresholds indicate impaired function. Bulk density is also used to convert between weight and volume of soil. It is used to express soil physical, chemical and biological measurements on a volumetric basis for soil quality assessment and comparisons between management systems. This increases the validity of comparisons by removing the error associated with differences in soil density at the time of sampling. The aim of conservation tillage is to fix the soil structure. This investigation was carried out considering the advantages of conservation tillage and less scientific research works on imported conservation tillage devices and those which are made inside the country

  3. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Soil and water conservation expenditures; in general. 1.175-1 Section 1.175-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Itemized Deductions for Individuals and Corporations (continued) § 1.175-1 Soil and water conservatio...

  4. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    Science.gov (United States)

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (pbiofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  5. Effects of terracing on soil and water conservation in China: A meta-analysis

    Science.gov (United States)

    Chen, Die; Wei, Wei

    2017-04-01

    Terracing has long been considered a powerful strategy for soil and water conservation. However, the efficiency is limited by many factors, such as climate, soil properties, topography, land use, population and socioeconomic status. The aim of this critical review was to discuss the effects of terracing on soil and water conservation in China, using a systematic approach to select peer-reviewed articles published in English and Chinese. 46 individual studies were analyzed, involving six terracing structures (level terraces, slope-separated terraces, slope terraces, reverse-slope terraces, fanya juu terraces and half-moon terraces), a wide geographical range (Northeastern China, Southeastern hilly areas, Southwestern mountain areas and Northwestern-central China), and six land use types (forest, crop trees, cropland, shrub land, grassland and bare land) as well as a series of slope gradients ranging from 3° to 35°. Statistical meta-analysis with runoff for 593 observations and sediment for 636 observations confirmed that terracing had a significant effect on water erosion control. In terms of different terrace structures, runoff and sediment reduction were uppermost on slope-separated terraces. Land use in terraces also played a crucial role in the efficiency of conservation, and tree crops and forest were detected as the most powerful land covers in soil and water conservation due to large aboveground biomass and strong root systems below the ground, which directly reduces the pressure of terraces on rainwater redistribution. In addition, a significant positive correlation between slope gradients (3° 15° and 16° 35°) and terracing efficiency on soil and water conservation was observed. This study revealed the effectiveness and variation of terracing on water erosion control on the national scale, which can serve as a scientific basis to land managers and decision-makers.

  6. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    Science.gov (United States)

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.

  7. VALUING SOIL CONSERVATION PRACTICES USING CONTINGENT VALUATION TECHNIQUE: EVIDENCE FROM THE CENTRAL RIFT VALLEY OF ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Musa H. AHMED

    2015-11-01

    Full Text Available Land degradation mainly in the form of soil and nutrient depletion is the prominent problem that the Ethiopian agriculture is facing. Due to this, farmers should be aware of this problem and the necessity of implementing conservation measures. Hence, this study assesses farm households’ willingness to participate in soil conservation practice through a Contingent Valuation method in one of the most degraded parts of the country. Double Bounded Dichotomous choice with an Open-ended follow up format was used to elicit the households’ willingness to pay using data collected from randomly selected 140 sample households. Results show that the mean willingness to participate in soil conservation practices was about 25 person days per annum and the total aggregate value of soil conservation was computed to be at 975622.73 person days (24390568.3 Birr. Moreover, the Tobit regression model results indicate that the education level of the household head, initial-bid, income, labour shortage and number of days on holiday and social ceremony were important factors influencing the willingness to participate in soil conservation practices. Hence, to improve the participation level, policy should target on supporting adult education, introducing ways to increase farm income and creating awareness on the loss associated with too many days of social ceremonies.

  8. Knowledge, conservation and sustainable use of soil: physic and morphological aspects

    Directory of Open Access Journals (Sweden)

    Marcello Pagliai

    2009-10-01

    , because the presence of this ploughpan strongly reduced drainage. Alternative tillage practices, like ripper subsoiling, are able to avoiding the formation of this compact layer. The soil conservation can be realised through a correct soil management and, therefore, it is essential to know this resource and to have pedological data bases of appropriate detail.

  9. Abatement costs of soil conservation in China's Loess Plateau: balancing income with conservation in an agricultural system.

    Science.gov (United States)

    Hou, Lingling; Hoag, Dana L K; Keske, Catherine M H

    2015-02-01

    This study proposes the use of marginal abatement cost curves to calculate environmental damages of agricultural systems in China's Loess Plateau. Total system costs and revenues, management characteristics and pollution attributes are imputed into a directional output distance function, which is then used to determine shadow prices and abatement cost curves for soil and nitrogen loss. Marginal abatement costs curves are an effective way to compare economic and conservation tradeoffs when field-specific data are scarce. The results show that sustainable agricultural practices can balance soil conservation and agricultural production; land need not be retired, as is current policy. Published by Elsevier Ltd.

  10. Social and economic factors for adoption of soil and water conservation in West Usambara highlands, Tanzania

    NARCIS (Netherlands)

    Tenge, A.J.M.; Graaff, de J.; Hella, J.P.

    2004-01-01

    Accelerated soil erosion is one of the major constraints to agricultural production in many parts of the Tanzanian highlands. Although several soil and water conservation technologies have been developed and promoted, the adoption of many recommended measures is minimal and soil erosion continues to

  11. Practical improvements in soil redox potential (Eh) measurement for characterisation of soil properties. Application for comparison of conventional and conservation agriculture cropping systems

    Energy Technology Data Exchange (ETDEWEB)

    Husson, Olivier, E-mail: Olivier.husson@cirad.fr [CIRAD/PERSYST/UPR 115 AIDA and AfricaRice Centre, 01 BP 2031 Cotonou (Benin); Husson, Benoit, E-mail: bhusson@ideeaquaculture.com [IDEEAQUACULTURE, Parc Euromédecine 2, 39 Rue Jean Giroux, 34080 Montpellier (France); Brunet, Alexandre, E-mail: brunet.alexandre@outlook.com [CIRAD/US 49 Analyse, Avenue Agropolis, TA B-49/01, 34398 Montpellier Cedex (France); Babre, Daniel, E-mail: Daniel.babre@cirad.fr [CIRAD/US 49 Analyse, Avenue Agropolis, TA B-49/01, 34398 Montpellier Cedex (France); Alary, Karine, E-mail: Karine.alary@cirad.fr [CIRAD/US 49 Analyse, Avenue Agropolis, TA B-49/01, 34398 Montpellier Cedex (France); Sarthou, Jean-Pierre, E-mail: sarthou@ensat.fr [ENSAT/INRA/INP UMR AGIR. BP 52627, Chemin de Borde Rouge, 31326 Castanet-Tolosan Cedex (France); Charpentier, Hubert, E-mail: Charpentier.hub@wanadoo.fr [La Boisfarderie, Brives 36100 (France); Durand, Michel, E-mail: earldeslacs@orange.fr [Le Cazals, Castanet 81 150 (France); Benada, Jaroslav, E-mail: benada@vukrom.cz [Agrotest fyto, Kromeriz Institute, Havlíckova 2787, 76701 Kromeriz (Czech Republic); Henry, Marc, E-mail: henry@unistra.fr [UMR CNRS/UdS 7140, Université de Strasbourg, Institut Le Bel, 4, rue Blaise Pascal, CS 90032, Strasbourg 67081 (France)

    2016-02-04

    The soil redox potential (Eh) can provide essential information to characterise soil conditions. In practice, however, numerous problems may arise regarding: (i) Eh determination in soils, especially aerobic soils, e.g. variations in the instrumentation and methodology for Eh measurement, high spatial and temporal Eh variability in soils, irreversibility of the redox reaction at the surface electrode, chemical disequilibrium; and (ii) measurement interpretation. This study aimed at developing a standardised method for redox potential measurement in soils, in order to use Eh as a soil quality indicator. This paper presents practical improvements in soil Eh measurement, especially regarding the control of electromagnetic perturbations, electrode choice and preparation, soil sample preparation (drying procedure) and soil:water extraction rate. The repeatability and reproducibility of the measurement method developed are highlighted. The use of Eh corrected at pH7, pe+pH or rH{sub 2}, which are equivalent notions, is proposed to facilitate interpretation of the results. The application of this Eh measurement method allows characterisation of soil conditions with sufficient repeatability, reproducibility and accuracy to demonstrate that conservation agriculture systems positively alter the protonic and electronic balance of soil as compared to conventional systems. - Highlights: • Electromagnetic fields can dramatically perturb soil Eh measurement. • Our method overcomes the main difficulties in soil Eh measurement. • Accurate and reproducible measurement of mean soil Eh are achieved. • Eh{sub pH7}, pe+pH and rH{sub 2} are equivalent notions characterising electron activity. • Agricultural practices alter soil protonic and electronic characteristics.

  12. Soil management and conservation in the Prince of Songkla University, Surat Thani Campus, Surat Thani Province

    Directory of Open Access Journals (Sweden)

    Choengthong, S.

    2007-01-01

    Full Text Available The purposes of this study were to analyze soil properties and to find out a suitable soil conservation method for soil management in Surat Thani campus,Prince of Songkla University.Land in the area was dividedinto plots depending on different land use. Soil samples were collected from each plot and were analyzed for soil properties. The results from soil analysis revealed that soils in Surat Thani campus had pH between 4.53- 7.62. The quantitative levels of soil total N, available P and exchangeable K were low. Also the quantitative levels of Ca, Mg and S were low. Moreover, the quantitative levels of organic matter were low between 4.6-9.9gkg-1. There was no salty effect as the electrical conductivities (EC were low between 6.8 - 26.4 μS/cm. Furthermore, the cation exchange capacities (CEC were low, between 1.65 - 2.78 cmolckg-1 . In conclusion, soil inSurat Thani campus, Prince of Songkla University, had soil nutrients lower than those needed for plant growth and development. Therefore, there is a need for application of fertilizer to obtain good plant growth.Soil conservation experiment was done by studying soil loss from a control plot (no cover crop compared with the ones growing Peuraria phaseoloides , Wedelia trilobata and Vetiveria zizanioides. The results revealed that Peuraria phaseoloides was suitable to grow as cover crop for controlling soil erosion.Peurariacould reduce soil loss up to 87% compared to those with bare soil. Wedelia trilobata(Creeping daisy and Vetiveria zizanioides could reduce soil loss about 55% and 30 % respectively. In order to reduce soilleaching that can be as high as 38 kg from an area of only 8 m2, soil protection method by growing Peuraria phaseoloides, or Weddelia trilobata on sloping and bare land are highly recommended.

  13. Implications of market access on soil and water conservation ...

    African Journals Online (AJOL)

    Market access is one of the motivating mechanisms for farmers to invest in soil and water conservation (SWC). Areas of relatively high agricultural potential but remote from major markets face numerous challenges in marketing their outputs. The objective of this study was to explore the market access determinants of farmer ...

  14. Soil threats and soil protection: the role of biotechnology

    International Nuclear Information System (INIS)

    Rubio, J. L.

    2009-01-01

    The concept of soil conservation/soil protection in its wider sense has undergone important changes through history. Perceptions of soil as a crucial base of life in ancient cultures progressively evolved to a more pragmatic vision, with close connection to food production for survival. For centuries, agrarian production and the provision of food for humankind remained the main and crucial vision of the interaction of societies with soil. However, there are also some other new and important concepts related to soil which have progressively developed. (Author)

  15. Soil and water conservation on Central American hillsides: if more technologies is the answer, what is the question?

    Directory of Open Access Journals (Sweden)

    Jon Hellin

    2016-05-01

    Full Text Available Climate change is likely to lead to increased water scarcity in the coming decades and to changes in patterns of precipitation. The result will be more short-term crop failures and long-term production declines. Improved soil management is key to climate change adaptation and mitigation efforts. There is growing interest in the promotion of climate smart agricultural practices. Many of these are the same practices that were promoted in the 1980s and 1990s under the guise of soil and water conservation. Farmer non-adoption of soil conservation technologies was rife and suggests that different approaches are needed today. Much can be learnt from these past endeavors to ensure that current efforts are better designed and implemented. We use the example of Central America to highlight some of these lessons and suggest alternative ways forward. Technology per se is not the limiting factor; many suitable technologies and practices are extant. What is required is a more nuanced approach to soil conservation efforts. There is a need to focus less on capturing soil once it has been eroded, via the use of cross-slope soil conservation practices, and more on improving soil quality of the soil that remains through improved soil cover. It is also critical to understand farming systems as a whole i.e. the full range of interlinked activities and the multiplicity of goals that farm households pursue. Furthermore, it is important to engage farmers as active players in conservation efforts rather than passive adopters of technologies, and to adopt a board value chain approach and engage a plethora of value chain actors (researchers, extension agents, equipment manufacturers, input suppliers, farmers, traders, and processors in an agricultural innovation system.

  16. Valuing soil conservation benefits of agroforestry: contour hedgerows in the Eastern Visayas, Philippines

    Science.gov (United States)

    Subhrendu Patanayak; D. Evan Mercer

    1998-01-01

    Trecs can he considered as investments made by economic agents to prevent depreciation of natural assets such as stocks of top soil and water. In agroforestq systems farmers use trees in this manner by deliberately combining them with agricultural crops on the same unit of land. Although advocates of agroforestry have asserted that soil conservation is one of its...

  17. SUSTAINABILITY EFFECTS OF Crotalaria juncea L. AND Crotalaria spectabilis ROTH ON SOIL FERTILITY AND SOIL CONSERVATION

    Science.gov (United States)

    László, Márton, ,, Dr.

    2010-05-01

    Sustainable agriculture is defined as the successful management of resources for agriculture to satisfy changing human needs while maintaining or enhancing the quality of the environment and conserving natural resources. A sustained increase of agricultural production becomes a great possibility for international community. In this process a green manure crops application for example crotalaria get a new chance for improvement process on soil fertility and soil conservation. Field experiment was carried out on a calcareous chernozem soil (Experiment station Nagyhörcsök of RISSAC-HAS) in partly of experiment series (3 years) at Hungary in 1998. The soil with about 20% clay, 3% humus, 5% CaCO3 in its ploughed layer. To ensure a sufficient macro and micronutrient supply in the whole experiment, 100 kg N, 100 kg P2O5 and 100 kg K2O were given hectare. The Crotalaria juncea L. and Crotalaria spectabilis ROTH were applied with 2 replications. Each plot has an area of 45 m2 with 230-230 individual plants. In vegetation grown period were measured green and dry matter yield. The soil and plant samples were analysed for the macro and microelements contents. The main results achieved in 1998 are summarized as follows: 1. The green matter yield at before flowering reached 63.8 t ha-1 in case of Crotalaria juncea L. 2. Total dry matter yield at harvest (without roots) fluctuated between 9.6 and 17.0 t ha-1, depending on the crotalaria species. 3. The average of element concentration (including stems, leaves of Crotalaria juncea L. and Crotalaria spectabilis ROTH) before flowering reached to 3.2 % N, 2.3 % Ca, 1.3 % K, 0.39 % Mg, 0.22 % P and 0.24 % S. The content of Al and Fe total 14 - 25, while that of Sr, Mn, Na, B and Ba 2 - 6 ppm in dry matter. The Zn, Cu, Mo, Cr, Se, Ni, As, Pb, Cd and Co concentration did not reach here the value of 1 ppm. 4. The average of biological activated element uptake (including stems, leaves of Crotalaria juncea L. and Crotalaria spectabilis

  18. Crop rotations and poultry litter impact dynamic soil chemical properties and soil biota long-term

    Science.gov (United States)

    Dynamic soil physiochemical interactions with conservation agricultural practices and soil biota are largely unknown. Therefore, this study aims to quantify long-term (12-yr) impacts of cover crops, poultry litter, crop rotations, and conservation tillage and their interactions on soil physiochemica...

  19. [New paradigm for soil and water conservation: a method based on watershed process modeling and scenario analysis].

    Science.gov (United States)

    Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo

    2012-07-01

    With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.

  20. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore characte......Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore...... characteristics of two Danish sandy loams. Rotation R2 is a rotation of winter crops (mainly cereals) with residues retained, rotation R3 a mix of winter and spring crops (mainly cereals) with residues removed, and rotation R4 the same mix of winter and spring crops, but with residues retained. Each rotation...... included the tillage treatments: moldboard plowing to 20-cm depth (MP), harrowing to 8- to 10-cm depth (H) and direct drilling (D). Soil cores were taken from the topsoil (4–8, 12–16, 18–27 cm) in mid-autumn 2013 and early spring 2014. Water retention, air permeability, and gas diffusivity was determined...

  1. Effects of Conservation Agriculture and Fertilization on Soil Microbial Diversity and Activity

    Directory of Open Access Journals (Sweden)

    Johan Habig

    2015-07-01

    Full Text Available Soil microbial communities perform critical functions in ecosystem processes. These functions can be used to assess the impact of agricultural practices on sustainable crop production. In this five-year study, the effect of various agricultural practices on soil microbial diversity and activity was investigated in a summer rainfall area under South African dryland conditions. Microbial diversity and activity were measured in the 0–15 cm layer of a field trial consisting of two fertilizer levels, three cropping systems, and two tillage systems. Using the Shannon–Weaver and Evenness diversity indices, soil microbial species richness and abundance were measured. Microbial enzymatic activities: β-glucosidase, phosphatase and urease, were used to evaluate ecosystem functioning. Cluster analysis revealed a shift in soil microbial community diversity and activity over time. Microbial diversity and activity were higher under no-till than conventional tillage. Fertilizer levels seemed to play a minor role in determining microbial diversity and activity, whereas the cropping systems played a more important role in determining the activity of soil microbial communities. Conservation agriculture yielded the highest soil microbial diversity and activity in diversified cropping systems under no-till.

  2. [Diversity of soil fauna in corn fields in Huang-Huai-Hai Plain of China under effects of conservation tillage].

    Science.gov (United States)

    Zhu, Qiang-Gen; Zhu, An-Ning; Zhang, Jia-Bao; Zhang, Huan-Chao; Huang, Ping; Zhang, Cong-Zhi

    2009-10-01

    An investigation was made on the abundance and diversity of soil fauna in the corn fields under conventional and conservation tillage in Huang-Huai-Hai Plain of China. The abundance and diversity of soil fauna were higher at corn maturing (September) than at its jointing stage (July), and higher at jointing stage under conservation tillage than under conventional tillage. Soil fauna mainly distributed in surface soil layer (0-10 cm), but still had a larger number in 10-20 cm layer under conservation tillage. The individuals of acari, diptera, diplura, and microdrile oligochaetes, especially those of acari, were higher under conservation tillage than under conventional tillage. At maturing stage, an obvious effect of straw-returning under conservation tillage was observed, i. e., the more the straw returned, the higher the abundance of soil fauna, among which, the individuals of collembola, acari, coleopteran, and psocoptera, especially those of collembolan, increased significantly. The abundance of collembola at both jointing and maturing stages was significantly positively correlated with the quantity of straw returned, suggesting that collembola played an important role in straw decomposition and nutrient cycling.

  3. New findings and setting the research agenda for soil and water conservation for sustainable land management

    Science.gov (United States)

    Keesstra, Saskia; Argaman, Eli; Gomez, Jose Alfonso; Quinton, John

    2014-05-01

    The session on soil and water conservation for sustainable land management provides insights into the current research producing viable measures for sustainable land management and enhancing the lands role as provider of ecosystem services. The insights into degradation processes are essential for designing and implementing feasible measures to mitigate against degradation of the land resource and adapt to the changing environment. Land degradation occurs due to multiple pressures on the land, such as population growth, land-use and land-cover changes, climate change and over exploitation of resources, often resulting in soil erosion due to water and wind, which occurs in many parts of the world. Understanding the processes of soil erosion by wind and water and the social and economic constraints faced by farmers forms an essential component of integrated land development projects. Soil and water conservation measures are only viable and sustainable if local environmental and socio-economic conditions are taken into account and proper enabling conditions and policies can be achieved. Land degradation increasingly occurs because land use, and farming systems are subject to rapid environmental and socio-economic changes without implementation of appropriate soil and water conservation technologies. Land use and its management are thus inextricably bound up with development; farmers must adapt in order to sustain the quality of their, and their families, lives. In broader perspective, soil and water conservation is needed as regulating ecosystem service and as a tool to enhance food security and biodiversity. Since land degradation occurs in many parts of the world and threatens food production and environmental stability it affects those countries with poorer soils and resilience in the agriculture sector first. Often these are the least developed countries. Therefore the work from researchers from developing countries together with knowledge from other disciplines

  4. Soil, water and nutrient conservation in mountain farming systems: case-study from the Sikkim Himalaya.

    Science.gov (United States)

    Sharma, E; Rai, S C; Sharma, R

    2001-02-01

    The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.

  5. Soils - SOILS_STATSGO_IN: Soil Associations in Indiana (U.S. Dept. of Agriculture, 1:250,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Natural Resources Conservation Service, STATSGO metadata reports- "This data set is a digital general soil association map developed by the National Cooperative Soil...

  6. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Soil Resources Degradation and Conservation Techniques Adopted ...

    African Journals Online (AJOL)

    Soil degradation is increasingly regarded as a major constraint to food production in the tropics. This problem is primarily caused by soil erosion, which particularly damages the soil surfaces. It is therefore the objectives of this paper to study the types of erosion in Gusau area as well as its effects on selected soil properties ...

  8. Participatory appraisal for farm-level soil and water conservation planning in West Usambara highlands, Tanzania

    NARCIS (Netherlands)

    Tenge, A.J.M.

    2005-01-01

    Soil and water conservation (SWC) measures are needed to control soil erosion and sustain agricultural production on the steep slopes of Usambara Mountains. The need for SWC has resulted in the development and promotion of several SWC measures by both governmental and non-governmental programmes.

  9. The assessment of soil conservation technologies for sustainable agricultural production. Report of the FAO/IAEA consultants meeting. Working material

    International Nuclear Information System (INIS)

    2001-01-01

    A Consultants' Meeting on 'The assessment of soil conservation technologies for sustainable agricultural production' was held in Vienna at the IAEA Headquarters from May 28-30, 2001. The consultants' presentations reviewed recent advances in the use of fallout radionuclides to measure soil erosion as well as approaches and technologies applied for soil conservation worldwide. Also, activities and experiences of FAO and UNEP in the field of land degradation, soil conservation and related issues were presented. Based on the information provided by the Scientific Secretary, a full project proposal was prepared during the second part of the Consultants' Meeting. The consultants also provided recommendations on the formulation and implementation of a future CRP on the subject

  10. Extrapolating effects of conservation tillage on yield, soil moisture and dry spell mitigation using simulation modelling

    Science.gov (United States)

    Mkoga, Z. J.; Tumbo, S. D.; Kihupi, N.; Semoka, J.

    There is big effort to disseminate conservation tillage practices in Tanzania. Despite wide spread field demonstrations there has been some field experiments meant to assess and verify suitability of the tillage options in local areas. Much of the experiments are short lived and thus long term effects of the tillage options are unknown. Experiments to study long term effects of the tillage options are lacking because they are expensive and cannot be easily managed. Crop simulation models have the ability to use long term weather data and the local soil parameters to assess long term effects of the tillage practices. The Agricultural Production Systems Simulator (APSIM) crop simulation model; was used to simulate long term production series of soil moisture and grain yield based on the soil and weather conditions in Mkoji sub-catchment of the great Ruaha river basin in Tanzania. A 24 year simulated maize yield series based on conventional tillage with ox-plough, without surface crop residues (CT) treatment was compared with similar yield series based on conservation tillage (ox-ripping, with surface crop residues (RR)). Results showed that predicted yield averages were significantly higher in conservation tillage than in conventional tillage ( P APSIM simulation model, showed that average soil moisture in the conservation tillage was significantly higher ( P < 0.05) (about 0.29 mm/mm) than in conventional tillage (0.22 mm/mm) treatment during the seasons which received rainfall between 468 and 770 mm. Similarly the conservation tillage treatment recorded significantly higher yields (4.4 t/ha) ( P < 0.01) than the conventional tillage (3.6 t/ha) treatment in the same range of seasonal rainfall. On the other hand there was no significant difference in soil moisture for the seasons which received rainfall above 770 mm. In these seasons grain yield in conservation tillage treatment was significantly lower (3.1 kg/ha) than in the conventional tillage treatment (4.8 kg

  11. How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean?

    Science.gov (United States)

    Maetens, W.; Poesen, J.; Vanmaercke, M.

    2012-10-01

    The effects of soil and water conservation techniques (SWCTs) on annual runoff (Ra), runoff coefficients (RCa) and annual soil loss (SLa) at the plot scale have been extensively tested on field runoff plots in Europe and the Mediterranean. Nevertheless, a comprehensive overview of these effects and the factors controlling the effectiveness of SWCTs is lacking. Especially the effectiveness of SWCT in reducing Ra is poorly understood. Therefore, an extensive literature review is presented that compiles the results of 101 earlier studies. In each of these studies, Ra and SLa was measured on field runoff plots where various SWCTs were tested. In total, 353 runoff plots (corresponding to 2093 plot-years of data) for 103 plot-measuring stations throughout Europe and the Mediterranean were considered. SWCTs include (1) crop and vegetation management (i.e. cover crops, mulching, grass buffer strips, strip cropping and exclosure), (2) soil management (i.e. no-tillage, reduced tillage, contour tillage, deep tillage, drainage and soil amendment) and (3) mechanical methods (i.e. terraces, contour bunds and geotextiles). Comparison of the frequency distributions of SLa rates on cropland without and with the application of SWCTs shows that the exceedance probability of tolerable SLa rates is ca. 20% lower when SWCT are applied. However, no notable effect of SWCTs on the frequency distribution of RCa is observed. For 224 runoff plots (corresponding to 1567 plot-year data), SWCT effectiveness in reducing Ra and/or SLa could be directly calculated by comparing measured Ra and/or SLa with values measured on a reference plot with conventional management. Crop and vegetation management techniques (i.e. buffer strips, mulching and cover crops) and mechanical techniques (i.e. geotextiles, contour bunds and terraces) are generally more effective than soil management techniques (i.e. no-tillage, reduced tillage and contour tillage). Despite being generally less effective, no

  12. From soil in art towards Soil Art

    Science.gov (United States)

    Feller, C.; Landa, E. R.; Toland, A.; Wessolek, G.

    2015-02-01

    The range of art forms and genres dealing with soil is wide and diverse, spanning many centuries and artistic traditions, from prehistoric painting and ceramics to early Renaissance works in Western literature, poetry, paintings, and sculpture, to recent developments in cinema, architecture and contemporary art. Case studies focused on painting, installation, and cinema are presented with the view of encouraging further exploration of art about, in, with, or featuring soil or soil conservation issues, created by artists, and occasionally scientists, educators or collaborative efforts thereof.

  13. The effects of biological soil conservation practices and community perception toward these practices in the Lemo District of Southern Ethiopia

    Directory of Open Access Journals (Sweden)

    Tamrat Sinore

    2018-06-01

    Full Text Available Land degradation is the critical ecological and agricultural challenges in Ethiopia. To combat this, the government and local farmers’ have undertaken soil and water conservation measures (physical, biological and integrated across the country since 1970's. This study investigate effect of elephant grass (P. purpureum and sesbania sesban (S. sesban used as biological land rehabilitation practices on soil properties and farmers’ perception on the practices. Composite soil samples (0–30 cm were randomly collected from lands treated with sesbania, elephant grass, and adjacent degraded grazing land, and a structured questionnaire was used to assess farmers’ perceptions. Statistical results showed that elephant grass and sesbania were significantly (P < .05 improves degraded land soil bulk density, pH, CEC, OC, TN, Av.P, K, Na, Ca, Mg and clay characteristics. Moreover, there was a significant (P < .05 difference between farmers’ perception of the effectiveness of physical, biological and integration of the two practices to control soil erosion. 48% of the farmers perceived that using both biological methods and the integration of biological with physical structures was more successful for controlling erosion and improving soil fertility. Logistic regression analysis revealed strong association (R2 = 0.84 between farmers’ perception on elephant grass and sesbanias' roles in soil conservation and groups of explanatory variables. Among the variables age, education and extension service significantly (P < .05 influenced farmers’ perception on the practices. Generally, elephant grass and sesbania are effective biological practices for rehabilitating lands and improving soil properties through minimizing erosion. Keywords: Soil erosion, Soil and water conservation, Biological soil conservation, Sesbania, Elephant grass

  14. Farmers' knowledge and perceptions of soil erosion and conservation measures in the Central Highlands, Kenya

    NARCIS (Netherlands)

    Okoba, B.O.; Graaff, de J.

    2005-01-01

    A lack of appreciation of Kenyan farmers' knowledge and their perceptions of soil erosion and soil conservation measures was the reason for low adoption of recommended technologies. This research was carried out to identify the criteria that farmers used to distinguish farm-types and to use these

  15. Adaptation Strategies of Soil and Water Conservation in Taiwan for Extreme Climate

    Science.gov (United States)

    Huang, Wen-Cheng; Lin, Cheng-Yu; Hsieh, Ting-Ju

    2016-04-01

    Due to global climate change, the impact caused by extreme climate has become more and more compelling. In Taiwan, the total rainfall stays in the same level, but it brings along changes to rain types. The rainfall with high recurrence interval happens frequently, leading to soil loss of slope-land, and it may further result in flooding and sediment hazards. Although Taiwan is a small island, the population density is ranked at the second highest around the world. Moreover, third-fourth of Taiwan is slope-land, so the soil and water conservation is rather important. This study is based on the international trend analysis approach to review the related researches worldwide and 264 research projects in Taiwan. It indicates that under the pressure of extreme climate and social economic changes, it has higher possibility of slope-land to face the impacts from extreme rainfall events, and meanwhile, the carrying capacity of slope-land is decreasing. The experts' brainstorming meetings were held three times, and it concluded the current problems of soil and water conservation and the goal in 2025 for sustainable resources. Also, the 20-year weather data set was adopted to screen out 3 key watersheds with the potential of flooding (Puzih River Watershed), droughts (Xindian River Watershed), and sediment hazards (Chishan River Watershed) according to the moisture index, and further, to propose countermeasures in order to realize the goal in 2025, which is "regarding to climate and socioeconomic changes, it is based on multiple use to manage watershed resources for avoiding disasters and sustaining soil and water conservation." Keyword: Extreme climate, International trend analysis, Brainstorming, Key watershed

  16. Measuring, understanding and implementing (or at least trying) soil and water conservation in agricultural areas in Mediterranean conditions

    Science.gov (United States)

    Gómez, Jose Alfonso; Burguet, María; Castillo, Carlos; de Luna, Elena; Guzmán, Gema; Lora, Ángel; Lorite, Ignacio; Mora, José; Pérez, Rafael; Soriano, María A.; Taguas, Encarnación V.

    2015-04-01

    Understanding soil erosion processes is the first step for designing and implementing effective soil conservation strategies. In agricultural areas, spatially in arid and semiarid conditions, water conservation is interlinked with soil conservation, and usually need to be addressed simultaneously to achieve success in their use by farmers. This is so for different reasons, but usually because some reduction in runoff is required to prevent soil erosion or to the need to design soil conservation systems that do maintain a favourable water balance for the crop to prevent yield reductions. The team presenting this communication works around both issues in Southern Spain, interconnecting several lines of research with the final objective of contribute to reverse some severe issues relating soil conservation in agricultural areas, mostly on tree crops (olives and vineyards). One of these lines is long-term experiments measuring, runoff and sediment losses at plot and small catchment scale. In these experiments we test the effect of different soil management alternatives on soil and water conservation. We also measured the evolution of soil properties and, in some cases, the evolution of soil moisture as well as nutrient and carbon losses with runoff and sediment. We also tests in these experiments new cover crops, from species better adapted to the rainfall regime of the region to mixes with several species to increase biodiversity. We complement these studies with surveys of soil properties in commercial farms. I some of these farms we follow the introduction by farmers of the cover crop strategies previously developed in our experimental fields. These data are invaluable to elaborate, calibrate and validate different runoff generation, water balance, and water erosion models and hillslope and small catchment scale. This allows us to elaborate regional analysis of the effect of different strategies to soil and water conservation in olive growing areas, and to refine

  17. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    Science.gov (United States)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  18. Soil nitrogen dynamics and leaching under conservation tillage in the Atlantic Coastal Plain, Georgia, USA

    Science.gov (United States)

    Conservation tillage (CsT) involves management that reduces soil erosion by maintaining crop residue cover on farm fields. Typically, both infiltration and soil organic matter increase over time with CsT practices. We compared the impact of a commonly used CsT practice, strip tillage (ST), to conven...

  19. Watershed sediment losses to lakes accelerating despite agricultural soil conservation efforts.

    Science.gov (United States)

    Heathcote, Adam J; Filstrup, Christopher T; Downing, John A

    2013-01-01

    Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha(-1). Sediment deposition from erosion increased >6-fold, from 149 g m(-2) yr(-1) in 1850 to 986 g m(-2) yr(-1) by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm(-1) at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation.

  20. Identification of soil erosion risk areas for conservation planning in different states of India.

    Science.gov (United States)

    Sharda, V N; Mandal, Debashis; Ojasvi, P R

    2013-03-01

    Assessment of soil erosion risks, especially in the developing countries, is a challenging task mainly due to non-availability or insufficiency of relevant data. In this paper, the soil erosion risks have been estimated by integrating the spatial data on potential erosion rates and soil loss tolerance limits for conservation planning at state level in India. The erosion risk classes have been prioritized based upon the difference between the prevailing erosion rates and the permissible erosion limits. The analysis revealed that about 50% of total geographical area (TGA) of India, falling in five priority erosion risk classes, requires different intensity of conservation measures though about 91% area suffers from potential erosion rates varying from 40 t ha(-1) yr(-1). Statewise analysis indicated that Andhra Pradesh, Maharashtra and Rajasthan share about 75% of total area under priority Class 1 (6.4 M ha) though they account for only 19.4% of the total area (36.2 M ha) under very severe potential erosion rate category (> 40 t ha(-1)yr(-1)). It was observed that about 75% of total geographical area (TGA) in the states of Bihar, Gujarat, Haryana, Kerala and Punjab does not require any specific soil conservation measure as the potential erosion rates are well within the tolerance limits. The developed methodology can be successfully employed for prioritization of erosion risk areas at watershed, region or country level.

  1. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    Science.gov (United States)

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  2. Assessing Soil Conservation Efficiency of Traditional Agricultural Practices by FRN Techniques: Example in the Highlands of Madagascar

    International Nuclear Information System (INIS)

    Rabesiranana, Naivo; Rasolonirina, Martin; Fanantenansoa Solonjara, Asivelo; Nomenjanahary Ravoson, Heritiana; Mabit, Lionel

    2016-01-01

    Soil degradation induced by human activity is a major concern in Madagascar. More than 30% of the island’s total soil area, covering 184 338 km 2 , is degraded. Moreover, soil erosion and sedimentation cause not only on-site degradation of agricultural fertile soils in Madagascar, but also off-site problems such as downstream sediment deposition in floodplains, water streams and reservoirs. Therefore, there is a clear need to acquire reliable data on the pattern and magnitude of soil redistribution under various agricultural practices to promote effective conservation strategies.

  3. Restoring Soil Quality to Mitigate Soil Degradation

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2015-05-01

    Full Text Available Feeding the world population, 7.3 billion in 2015 and projected to increase to 9.5 billion by 2050, necessitates an increase in agricultural production of ~70% between 2005 and 2050. Soil degradation, characterized by decline in quality and decrease in ecosystem goods and services, is a major constraint to achieving the required increase in agricultural production. Soil is a non-renewable resource on human time scales with its vulnerability to degradation depending on complex interactions between processes, factors and causes occurring at a range of spatial and temporal scales. Among the major soil degradation processes are accelerated erosion, depletion of the soil organic carbon (SOC pool and loss in biodiversity, loss of soil fertility and elemental imbalance, acidification and salinization. Soil degradation trends can be reversed by conversion to a restorative land use and adoption of recommended management practices. The strategy is to minimize soil erosion, create positive SOC and N budgets, enhance activity and species diversity of soil biota (micro, meso, and macro, and improve structural stability and pore geometry. Improving soil quality (i.e., increasing SOC pool, improving soil structure, enhancing soil fertility can reduce risks of soil degradation (physical, chemical, biological and ecological while improving the environment. Increasing the SOC pool to above the critical level (10 to 15 g/kg is essential to set-in-motion the restorative trends. Site-specific techniques of restoring soil quality include conservation agriculture, integrated nutrient management, continuous vegetative cover such as residue mulch and cover cropping, and controlled grazing at appropriate stocking rates. The strategy is to produce “more from less” by reducing losses and increasing soil, water, and nutrient use efficiency.

  4. 7 CFR 611.11 - Soil survey information.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Soil survey information. 611.11 Section 611.11 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Soil Survey Operations § 611.11 Soil survey information. (a) Availability. NRCS...

  5. Contribution of the Land and Water Development Division of FAO to soil and water conservation in developing countries

    International Nuclear Information System (INIS)

    Massoud, F.I.

    1980-01-01

    The Land and Water Development Division of FAO has played an active role in promoting soil conservation measures. It has provided advice and expert assistance to many countries and is involved in more than fifty field programmes related to soil conservation. It conducts seminars, workshops, and training courses and provides fellowships for individuals. Technical and education material has been published. Maps have been developed showing the present degradation and risk of degradation in Africa and methodology used in assessment of soil degradation is outlined. (author)

  6. Effects of soil and water conservation on crop productivity: Evidences from Anjenie watershed, Ethiopia

    Science.gov (United States)

    Adgo, Enyew; Teshome, Akalu

    2014-05-01

    Widespread soil and water conservation activities have been implemented in many parts of eastern Africa to control soil erosion by water and improve land productivity for the last few decades. Following the 1974 severe drought, soil and water conservation became more important to Ethiopia and the approach shifted to watershed based land management initiatives since the 1980s. To capture long-term impacts of these initiatives, a study was conducted in Anjenie Watershed of Ethiopia, assessing fanya juu terraces and grass strips constructed in a pilot project in 1984, and which are still functional nearly 30 years later. Data were collected from government records, field observations and questionnaire surveys administered to 60 farmers. Half of the respondents had terraced farms in the watershed former project area (with terrace technology) and the rest were outside the terraced area. The crops assessed were teff, barley and maize. Cost-benefit analyses were used to determine the economic benefits with and without terraces, including gross and net profit values, returns on labour, water productivity and impacts on poverty. The results indicated that soil and water conservation had improved crop productivity. The average yield on terraced fields was 0.95 t ha-1 for teff (control 0.49), 1.86 t ha-1 for barley (control 0.61), and 1.73 t ha-1 for maize (control 0.77). The net benefit was significantly higher on terraced fields, recording US 20.9 (US -112 control) for teff, US 185 (US -41 control) for barley and US -34.5 (US - 101 control) ha-1 yr-1 for maize. The returns on family labour were 2.33 for barley, 1.01 for teff, and 0.739 US per person-day for maize grown on terraced plots, compared to US 0.44, 0.27 and 0.16 per person-day for plots without terraces, respectively. Using a discount rate of 10%, the average net present value (NPV) of barley production with terrace was found to be about US 1542 over a period of 50 years. In addition, the average financial

  7. Can conservation agriculture improve phosphorus (P) availability in weathered soils? Effects of tillage and residue management on soil P status after 9 years in a Kenyan Oxisol

    NARCIS (Netherlands)

    Margenot, Andrew; Paul, B.K.; Pulleman, M.M.; Parikh, Sanjai; Fonte, Steven J.

    2017-01-01

    The widespread promotion of conservation agriculture (CA) in regions with weathered soils prone to phosphorus (P) deficiency merits explicit consideration of its effect on P availability. A long-term CA field trial located on an acid, weathered soil in western Kenya was evaluated for effects of

  8. Study on the Strategies for the Soil and Water Resource Con-servation of Slopeland in Taiwan in Response to the Extreme Climate

    Science.gov (United States)

    Huang, Wen-Cheng

    2014-05-01

    Global climate change results in extreme weather, especially ex-treme precipitation in Taiwan. Though the total amount of precipi-tation remains unchanged, the frequency of rainfall return period increases which affects slopeland and causes sediment disaster. In Taiwan, slopeland occupies about 73% of national territory. Under harsh environmental stress, soil and water conservation of slope-land becomes more important. In response to the trends of global-ization impacts of climate change, long term strategic planning be-comes more necessary. This study reviewed international practices and decision making process about soil and water conservation of slopeland; and conducted the compilation and analysis of water and soil conservation related research projects in Taiwan within the past five years. It is necessary for Taiwan to design timely adaptive strategies about conducting the all-inclusive conservation of na-tional territory, management and business operation of watershed based on the existing regulation with the effects of extreme weather induced by climate change and the changes of social-economic en-vironments. In order to realize the policy vision of "Under the premise of multiple uses, operating the sustainable business and management of the water and soil resources in the watershed through territorial planning in response to the climate and so-cial-economic environment change". This study concluded the future tasks for soil and water con-servation: 1.Design and timely amend strategies for soil and wand water conservation in response to extreme weather. 2. Strengthen the planning and operating of the land management and integrated conservation of the water and soil resources of key watershed. 3. Manage and operate the prevention of debris flow disaster and large-scale landslide. 4. Formulate polices, related regulations and assessment indicators of soil and water conservation. 5. Maintain the biodiversity of the slopeland and reduce the ecological footprint

  9. Evaluation of soil conservation technologies from the perspective of selected physical soil properties and infiltration capacity of the soil

    Directory of Open Access Journals (Sweden)

    Miroslav Dumbrovský

    2011-01-01

    Full Text Available This paper evaluates different technologies of soil cultivation (conventional and minimization in terms of physical properties and water regime of soils, where infiltration of surface water is a major component of subsurface water. Soil physical properties (the current humidity, reduced bulk density, porosity, water retention capacity of soil, pore distribution and soil aeration is determined from soil samples taken from the organic horizon according to standard methodology. To observe the infiltration characteristics of surface layers of topsoil, the drench method (double ring infiltrometers was used. For the evaluation of field measurements of infiltration, empirical and physically derived equations by Kostiakov and Philip and the three-parameter Philip-type equation were used. The Philip three-parameter equation provides physical based parameters near the theoretical values, a good estimation of saturated hydraulic conductivity Ks and sorptivity C1. The parameter S of Philip’s equation describes the real value of the sorptivity of the soil. Experimental research work on the experimental plots H. Meziříčko proceeded in the years 2005–2008.

  10. Can conservation trump impacts of climate change on soil erosion? An assessment from winter wheat cropland in the Southern Great Plains of the United States

    Directory of Open Access Journals (Sweden)

    Jurgen D. Garbrecht

    2015-12-01

    Full Text Available With the need to increase crop production to meet the needs of a growing population, protecting the productivity of our soil resource is essential. However, conservationists are concerned that conservation practices that were effective in the past may no longer be effective in the future under projected climate change. In winter wheat cropland in the Southern Great Plains of the U.S., increased precipitation intensity and increased aridity associated with warmer temperatures may pose increased risks of soil erosion from vulnerable soils and landscapes. This investigation was undertaken to determine which conservation practices would be necessary and sufficient to hold annual soil erosion by water under a high greenhouse gas emission scenario at or below the present soil erosion levels. Advances in and benefits of agricultural soil and water conservation over the last century in the United States are briefly reviewed, and challenges and climate uncertainties confronting resource conservation in this century are addressed. The Water Erosion Prediction Project (WEPP computer model was used to estimate future soil erosion by water from winter wheat cropland in Central Oklahoma and for 10 projected climates and 7 alternative conservation practices. A comparison with soil erosion values under current climate conditions and conventional tillage operations showed that, on average, a switch from conventional to conservation tillage would be sufficient to offset the average increase in soil erosion by water under most projected climates. More effective conservation practices, such as conservation tillage with a summer cover crop would be required to control soil erosion associated with the most severe climate projections. It was concluded that a broad range of conservation tools are available to agriculture to offset projected future increases in soil erosion by water even under assumed worst case climate change scenarios in Central Oklahoma. The problem

  11. A pragmatic approach to modelling soil and water conservation measures with a cathment scale erosion model.

    NARCIS (Netherlands)

    Hessel, R.; Tenge, A.J.M.

    2008-01-01

    To reduce soil erosion, soil and water conservation (SWC) methods are often used. However, no method exists to model beforehand how implementing such measures will affect erosion at catchment scale. A method was developed to simulate the effects of SWC measures with catchment scale erosion models.

  12. Biophysical-and socioeconomic aspects of land degradation in the Guadalentin (SE-Spain): towards understanding and effective soil conservation

    International Nuclear Information System (INIS)

    Vente, J. de; Sole-Benet, A.; Boix-Fayos, C.; Nainggolan, D.; Romero-Diaz, A.

    2009-01-01

    Desertification and land degradation have been widely studied in the Guadalentin basin (SE Spain) through various national and international research projects. Most important identified degradation types are due to soil erosion, soil surface crusting, aridity, soil organic matter decline and salinisation. On the one hand, political and socioeconomic drivers have caused important land use and management changes, which have formed an important driver for further land degradation. On the other hand, soil conservation practice were initiated by the government and by individual land users, although there is very limited knowledge on their effectiveness. the objective of this work is to provide and overview of previous studies that addressed land degradation in the Guadalentin and to present an integrated synthesis of the main biophysical and socioeconomic factors identifies in these studies as being responsible for land degradation, with a focus on feasible soil conservation strategies. (Author) 18 refs.

  13. Biophysical-and socioeconomic aspects of land degradation in the Guadalentin (SE-Spain): towards understanding and effective soil conservation

    Energy Technology Data Exchange (ETDEWEB)

    Vente, J. de; Sole-Benet, A.; Boix-Fayos, C.; Nainggolan, D.; Romero-Diaz, A.

    2009-07-01

    Desertification and land degradation have been widely studied in the Guadalentin basin (SE Spain) through various national and international research projects. Most important identified degradation types are due to soil erosion, soil surface crusting, aridity, soil organic matter decline and salinisation. On the one hand, political and socioeconomic drivers have caused important land use and management changes, which have formed an important driver for further land degradation. On the other hand, soil conservation practice were initiated by the government and by individual land users, although there is very limited knowledge on their effectiveness. the objective of this work is to provide and overview of previous studies that addressed land degradation in the Guadalentin and to present an integrated synthesis of the main biophysical and socioeconomic factors identifies in these studies as being responsible for land degradation, with a focus on feasible soil conservation strategies. (Author) 18 refs.

  14. Predicting improved optical water quality in rivers resulting from soil conservation actions on land.

    Science.gov (United States)

    Dymond, J R; Davies-Colley, R J; Hughes, A O; Matthaei, C D

    2017-12-15

    Deforestation in New Zealand has led to increased soil erosion and sediment loads in rivers. Increased suspended fine sediment in water reduces visual clarity for humans and aquatic animals and reduces penetration of photosynthetically available radiation to aquatic plants. To mitigate fine-sediment impacts in rivers, catchment-wide approaches to reducing soil erosion are required. Targeting soil conservation for reducing sediment loads in rivers is possible through existing models; however, relationships between sediment loads and sediment-related attributes of water that affect both ecology and human uses of water are poorly understood. We present methods for relating sediment loads to sediment concentration, visual clarity, and euphotic depth. The methods require upwards of twenty concurrent samples of sediment concentration, visual clarity, and euphotic depth at a river site where discharge is measured continuously. The sediment-related attributes are related to sediment concentration through regressions. When sediment loads are reduced by soil conservation action, percentiles of sediment concentration are necessarily reduced, and the corresponding percentiles of visual clarity and euphotic depth are increased. The approach is demonstrated on the Wairua River in the Northland region of New Zealand. For this river we show that visual clarity would increase relatively by approximately 1.4 times the relative reduction of sediment load. Median visual clarity would increase from 0.75m to 1.25m (making the river more often suitable for swimming) after a sediment load reduction of 50% associated with widespread soil conservation on pastoral land. Likewise euphotic depth would increase relatively by approximately 0.7 times the relative reduction of sediment load, and the median euphotic depth would increase from 1.5m to 2.0m with a 50% sediment load reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Evaluating indirect and direct effects of eco-restoration policy on soil conservation service in Yangtze River Basin.

    Science.gov (United States)

    Kong, Lingqiao; Zheng, Hua; Rao, Enming; Xiao, Yi; Ouyang, Zhiyun; Li, Cong

    2018-08-01

    The conservation impacts of policies that promote large-scale ecological restoration of ecosystem services and socio-economic development are well documented around the world. However, the effect of socio-economic development resulting from such policies on ecosystem services is rarely analysed, although it is important to do so if these policies are to be sustainable. We analysed the socio-economic impacts of soil conservation services from 2000 to 2015 in the Yangtze River Basin under the Grain to Green Programme (GTGP). Also we assessed the driving forces behind the programme: conservation policies, urbanization, agricultural development, and population growth. Our results show that during 2000-2015, cultivated area decreased by 7.5%, urban area increased by 67.5%, forest area increased by 2.1%, and soil erosion was reduced by 19.5%. The programme not only contributed significantly to an improvement in soil conservation services but also enhanced them significantly through faster urbanization. Furthermore, vegetation cover and crop yields increased synergistically, mainly due to high-efficiency agriculture that reduced the negative effect of the GTGP on agricultural production. Overall determining the indirect and direct effects of the GTGP on soil conservation and agricultural production are important for furthering our understanding of the long-term effects of ecological restoration policies, and the present study offers practical insights for ecological restoration of other watersheds. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe

    Directory of Open Access Journals (Sweden)

    Bhim Bahadur Ghaley

    2018-03-01

    Full Text Available Conventional farming (CONV is the norm in European farming, causing adverse effects on some of the five major soil functions, viz. primary productivity, carbon sequestration and regulation, nutrient cycling and provision, water regulation and purification, and habitat for functional and intrinsic biodiversity. Conservation agriculture (CA is an alternative to enhance soil functions. However, there is no analysis of CA benefits on the five soil functions as most studies addressed individual soil functions. The objective was to compare effects of CA and CONV practices on the five soil functions in four major environmental zones (Atlantic North, Pannonian, Continental and Mediterranean North in Europe by applying expert scoring based on synthesis of existing literature. In each environmental zone, a team of experts scored the five soil functions due to CA and CONV treatments and median scores indicated the overall effects on five soil functions. Across the environmental zones, CONV had overall negative effects on soil functions with a median score of 0.50 whereas CA had overall positive effects with median score ranging from 0.80 to 0.83. The study proposes the need for field-based investigations, policies and subsidy support to benefit from CA adoption to enhance the five soil functions.

  17. Influence of amendments on soil structure and soil loss under ...

    African Journals Online (AJOL)

    Macromolecule polymers are significant types of chemical amendments because of their special structure, useful functions and low cost. Macromolecule polymers as soil amendment provide new territory for studying China's agricultural practices and for soil and water conservation, because polymers have the ability to ...

  18. Importance of Soil Quality in Environment Protection

    OpenAIRE

    Márta Birkás; Tibor Kalmár; László Bottlik; Tamás Takács

    2007-01-01

    Soil quality can be characterised by the harmony between it’s physical and biological state and the fertility. From the practical crop production viewpoint, some important contrasting factors of soil quality are: (1) soil looseness – compaction; (2) aggregation – clod and dust formation; friable structure – smeared or cracked structure; (3) organic material: conservation – decrease; (4) soil moisture: conservation – loss; water transmission – water-logging; (5) at least soil condition as a re...

  19. [Estimation on value of water and soil conservation of agricultural ecosystems in Xi' an metropolitan, Northwest China].

    Science.gov (United States)

    Yang, Wen-yan; Zhou, Zhong-xue

    2014-12-01

    With the urban eco-environment increasingly deteriorating, the ecosystem services provided by modern urban agriculture are exceedingly significant to maintain and build more suitable environment in a city. Taking Xi' an metropolitan as the study area, based on remote sensing data, DEM data and the economic and social statistics data, the water and soil conservation service of the agricultural ecosystems was valued employing the remote sensing and geographic information system method, covering the reduction values on land waste, soil fertility loss and sediment loss from 2000 to 2011, and analyzed its changes in time and space. The results showed that during the study period, the total value of water and soil conservation service provided by agricultural systems in Xi' an metropolitan was increased by 46,086 and 33.008 billion yuan respectively from period of 2000 to 2005 and from 2005 to 2011. The cultivated land (including grains, vegetables and other farming land), forest (including orchard) and grassland provided higher value on the water and soil conservation service than waters and other land use. Ecosystem service value of water and soil conserva- tion provided by agriculture was gradually decreasing from the southern to the northern in Xi' an metropolitan. There were significantly positive relationship between the ecosystem service value and the vegetation coverage. Forest, orchard and grassland distributed intensively in the southern which had higher vegetation coverage than in northern where covered by more cultivated land, sparse forest and scattered orchard. There were significantly negative correlation between the urbanization level and the value of water and soil conservation. The higher level of urbanization, the lower value there was from built-up area to suburban and to countryside within Xi' an metropolitan.

  20. Influence of soil and water conservation techniques on yield of small ...

    African Journals Online (AJOL)

    The study determined the application of soil and water conservation techniques in relation to yield of small-holder swamp rice farmers in Imo State, Nigeria in 2009. Specifically, the socio-economic characteristics of the farmer were described, their influence on the application of the techniques examined and relationship of ...

  1. Watershed prioritization in the upper Han River basin for soil and water conservation in the South-to-North Water Transfer Project (middle route) of China.

    Science.gov (United States)

    Wu, Haibing

    2018-01-01

    Watershed prioritization with the objective of identifying critical areas to undertake soil and water conservation measures was conducted in the upper Han River basin, the water source area of approximately 95,000 km 2 for the middle route of China's South-to-North Water Transfer Project. Based on the estimated soil erosion intensity in uplands and clustering analysis of measured nutrient concentrations in rivers, the basin was grouped into very-high-, high-, moderate-, and low-priority regions for water and soil conservation, respectively. The results indicated that soil erosion was primarily controlled by topography, and nutrients in rivers were associated with land use and land cover in uplands. Also, there was large spatial disparity between soil erosion intensity in the uplands and nutrient concentrations in the rivers across the basin. Analysis was then performed to prioritize the basin by the integration of the soil erosion intensity and water quality on a GIS platform in order to identify critical areas for water and soil conservation in the basin. The identified high-priority regions which occupy 5.74% of the drainage areas need immediate attention for soil and water conservation treatments, of which 5.28% is critical for soil erosion prevention and 0.46% for water conservation. Understandings of the basin environment and pollutant loading with spatial explicit are critical to the soil and water resource conservation for the interbasin water transfer project.

  2. The land use patterns for soil organic carbon conservation at Endanga watershed Southeast Sulawesi Indonesia

    Science.gov (United States)

    Leomo, S.; Ginting, S.; Sabaruddin, L.; Tufaila, M.; Muhidin

    2018-02-01

    The Endanga basin is one part of the Konaweeha watershed located in South Konawe, Southeast Sulawesi Province, covering an area of 1,353.67 hectares. The land use patterns in Endanga Watershed contained forests, shrubs, oil palm plantations, pepper fields, and cultivated fields of field rice, corn monoculture and intercropping of peanuts and corn. This watershed needs serious attention because most of its territory is on slope of 15-40%, with erosion hazard levels (EHL) varying from mild erosion to severe erosion. The loss of organic carbon (C-organic) soil is measured from the soil carried along with the surface stream and into the reservoir on various land uses. The result measurement of C-organic soil loss on forest land use is 14.02 kg ha-1, shrubs land 22.71 kg ha-1, oil palm 151.32 kg ha-1, pepper garden 93.69 kg ha-1, field rice 313.80 kg.ha-1, monoculture of maize 142.44 kg ha-1, intercropped maize and corn 51.10 kg ha-1 and open land 1,909.16 kg ha-1. The forest land and shrubs is best in conserving soil C-organic, but economically unfavorable for the community, so land use pattern for intercropping and pepper plantation can be used for soil C-organic conservation

  3. Soil and Water Conservation Prioritization Using Geospatial Technology – a Case Study of Part of Subarnarekha Basin, Jharkhand, India

    Directory of Open Access Journals (Sweden)

    Firoz Ahmad

    2017-08-01

    Full Text Available Changing patterns of land use and land cover have exploited the natural resources. Soil, water and forests are degraded, both quantitatively and qualitatively. Deforestation in recent years has led to changes in the environment and more of soil erosion and loss of potable water. In order to conserve and sustainably use soil and water, a watershed management approach is necessary. It helps in restoring water by increasing the infiltration and reducing the erosion of soil. Such measures should be propagated in rainfall deficit areas. The present study has attempted to study the upper watershed part of Subarnarekha basin in Jharkhand state of India. Remote sensing satellite data (Landsat 8 OLI/TIRS 2013 was used for delineation of the land use/land cover and vegetation index maps. Several thematic layers like slope, drainage and rainfall were integrated to achieve a priority area map using spatial multicriteria decision making. It delineated high medium and low priority areas within the watershed for soil and water conservation. The high priority area was 16.63% of the total study area. Further, the causes were analysed and conservation measures proposed.

  4. Management and conservation of tropical acid soils for sustainable crop production. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    2000-06-01

    Forests of the tropics are invaluable ecosystems of global, regional and local importance, particularly in terms of protection and conservation of biodiversity and water resources. The indiscriminate conversion of tropical forests into agricultural land as a result of intense human activities - logging and modem shifting cultivation - continues to cause soil erosion and degradation. However, the acid savannahs of the world, such as the cerrado of Brazil, the Llanos in Venezuela and Colombia, the savannahs of Africa, and the largely anthropic savannahs of tropical Asia, encompass vast areas of potentially arable land. The acid soils of the savannahs are mostly considered marginal because of low inherent fertility and susceptibility to rapid degradation. These constraints for agricultural development are exacerbated by the poverty of new settlers who try to cultivate such areas after deforestation. Low- or minimum-input systems are not sustainable on these tropical acid soils but, with sufficient investment and adequate technologies, they can be highly productive. Thus, there is a need to develop management practices for sustainable agricultural production systems on such savannah acid soils. The Soil and Water Management and Crop Nutrition Sub-programme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture strongly supports an integrated approach to soil, water and nutrient management within cropping systems. In this context, nuclear and related techniques can be used to better understand the processes and factors influencing the productivity of agricultural production systems, and improve them through the use of better soil, water and nutrient management practices. A panel of experts actively engaged in field projects on acid soils of savannah agro-ecosystems in the humid and sub-humid tropics convened in March 1999 in Vienna to review and discuss recent research progress, along the following main lines of investigation: (i) utilization of

  5. Soil Diversity as Affected by Land Use in China: Consequences for Soil Protection

    Directory of Open Access Journals (Sweden)

    Wei Shangguan

    2014-01-01

    Full Text Available Rapid land-use change in recent decades in China and its impact on terrestrial biodiversity have been widely studied, particularly at local and regional scales. However, the effect of land-use change on the diversity of soils that support the terrestrial biological system has rarely been studied. Here, we report the first effort to assess the impact of land-use change on soil diversity for the entire nation of China. Soil diversity and land-use effects were analyzed spatially in grids and provinces. The land-use effects on different soils were uneven. Anthropogenic soils occupied approximately 12% of the total soil area, which had already replaced the original natural soils. About 7.5% of the natural soil classes in China were in danger of substantial loss, due to the disturbance of agriculture and construction. More than 80% of the endangered soils were unprotected due to the overlook of soil diversity. The protection of soil diversity should be integrated into future conservation activities.

  6. Soil Diversity as Affected by Land Use in China: Consequences for Soil Protection

    Science.gov (United States)

    Shangguan, Wei; Gong, Peng; Liang, Lu; Dai, YongJiu; Zhang, Keli

    2014-01-01

    Rapid land-use change in recent decades in China and its impact on terrestrial biodiversity have been widely studied, particularly at local and regional scales. However, the effect of land-use change on the diversity of soils that support the terrestrial biological system has rarely been studied. Here, we report the first effort to assess the impact of land-use change on soil diversity for the entire nation of China. Soil diversity and land-use effects were analyzed spatially in grids and provinces. The land-use effects on different soils were uneven. Anthropogenic soils occupied approximately 12% of the total soil area, which had already replaced the original natural soils. About 7.5% of the natural soil classes in China were in danger of substantial loss, due to the disturbance of agriculture and construction. More than 80% of the endangered soils were unprotected due to the overlook of soil diversity. The protection of soil diversity should be integrated into future conservation activities. PMID:25250394

  7. Development of a soil conservation standard and guidelines for OHV recreation management in California

    Science.gov (United States)

    Bedrossian, T.L.; Reynolds, S.D.

    2007-01-01

    In 2004, the California State Parks (CSP) agency contracted with the California Geological Survey (CGS) to update the 1991 Soil Conservation Guide-lines/Standards for Off-Highway Vehicle (OHV) Recreation Management. Per state legislation, the 1991 standards were updated to establish a generic and measurable standard at least sufficient to allow restoration of OHV areas and trails. Given the rapid increase in OHV use in California, the updated Soil Conservation Standard and Guidelines for OHV Recreation Management also allowed for sustainability of trail systems and recreation opportunities. A key part of the update was interaction with stakeholders, agencies, and other interest groups through public workshops and a Consulting Agency Review Committee composed of representatives from the U.S. Natural Resources Conservation Service, U.S. Forest Service, U.S. Bureau of Land Management, U.S. Geological Survey, California Department of Conservation, and CSP. CGS also assessed proposed revisions in three representative OHV areas to ensure that the updated Standard and Guidelines provided sufficient flexibility to allow their application to all sites state-wide, ecosystems with multiple geology and soils types, and a variety of vehicle uses. While geology was not the only basis for the guideline revisions, it was a major factor. CGS staff also had the breadth of knowledge and experience in engineering geology, hydrogeology, road and trail construction, erosion control, and OHV riding necessary to coordinate and develop the multidisciplinary and multi-stakeholder effort.

  8. Capacitive Sensors and Breakthrough Curves in Automated Irrigation for Water and Soil Conservation

    Science.gov (United States)

    Fahmy Hussein, Mohamed

    2016-04-01

    Shortness of water resources is the dominant criterion that dampens agricultural expansion in Egypt. Ten times population increase was recorded versus twice increase in the cultivated area during the last 100 years. Significant increase in freshwater supply is not expected in the near future. Consequently, a great deal of water-conservation is required to ameliorate water-use efficiency and to protect soils against sodicity under the prevailing arid-zone conditions. Modern irrigation (pivot, drip and sprinkling) was introduced during the last three decades in newly cultivated lands. However, this was done without automated watering. Moreover, dynamic chemical profile data is lacking in the cultivated lands. These current water conditions are behind this work. Two experimental procedures were used for a conjunctive goal of water and soil conservation. The first procedure used the resonance of analog-oscillators (relative permittivity sensors) based on capacitive Frequency Domain Reflectometry, FDR. Commercially available FDR sensors were calibrated for three soil textures, and solenoids were used to automatically turn on and off irrigation pipes in three experimental plots (via low power AC latching-valves on relay solid-state boards connected to sensors; the valve got closed when soil became sufficiently moist near saturation and opened before reaching wilting point as the relay contacts were defined by variable-resistor on board after sensor calibration). This article reports the results of sensor mV readings versus soil-moisture in the linear parts of calibration diagrams, for known moisture contents from wilting point to saturation, fitted as "power-law of dielectric mixing". The results showed close to optimum watering at soil-surface in the nursery beds when the sensors were sampled every 10 minutes to update the relays. This work is planned to extend to different sensors and drippers for soils with field crops / fruit trees to account for aspects of concern

  9. Conservation agriculture among small scale farmers in semi-arid region of Kenya does improve soil biological quality and soil organic carbon

    Science.gov (United States)

    Waweru, Geofrey; Okoba, Barrack; Cornelis, Wim

    2016-04-01

    The low food production in Sub-Saharan Africa (SSA) has been attributed to declining soil quality. This is due to soil degradation and fertility depletion resulting from unsustainable conventional farming practices such as continuous tillage, crop residue burning and mono cropping. To overcome these challenges, conservation agriculture (CA) is actively promoted. However, little has been done in evaluating the effect of each of the three principles of CA namely: minimum soil disturbance, maximum surface cover and diversified/crop rotation on soil quality in SSA. A study was conducted for three years from 2012 to 2015 in Laikipia East sub county in Kenya to evaluate the effect of tillage, surface cover and intercropping on a wide variety of physical, chemical and biological soil quality indicators, crop parameters and the field-water balance. This abstract reports on soil microbial biomass carbon (SMBC) and soil organic carbon (SOC). The experimental set up was a split plot design with tillage as main treatment (conventional till (CT), no-till (NT) and no-till with herbicide (NTH)), and intercropping and surface cover as sub treatment (intercropping maize with: beans, MB; beans and leucaena, MBL; beans and maize residues at 1.5 Mg ha-1 MBMu, and dolichos, MD). NT had significantly higher SMBC by 66 and 31% compared with CT and NTH respectively. SOC was significantly higher in NTH than CT and NT by 15 and 4%, respectively. Intercropping and mulching had significant effect on SMBC and SOC. MBMu resulted in higher SMBC by 31, 38 and 43%, and SOC by 9, 20 and 22% as compared with MBL, MD and MB, respectively. SMBC and SOC were significantly affected by the interaction between tillage, intercropping and soil cover with NTMBMu and NTHMBMu having the highest SMBC and SOC, respectively. We conclude that indeed tillage, intercropping and mulching substantially affect SMBC and SOC. On the individual components of CA, tillage and surface cover had the highest effect on SMBC and

  10. Soil and water conservation strategies and impact on sustainable livelihood in Cape Verde - Case study of Ribeira Seca watershed

    Science.gov (United States)

    Baptista, I.; Ferreira, A. D.; Tavares, J.; Querido, A. L. E.; Reis, A. E. A.; Geissen, V.; Ritsema, C.; Varela, A.

    2012-04-01

    Cape Verde, located off the coast of Senegal in western Africa, is a volcanic archipelago where a combination of human, climatic, geomorphologic and pedologic factors has led to extensive degradation of the soils. Like other Sahelian countries, Cape Verde has suffered the effects of desertification through the years, threatening the livelihood of the islands population and its fragile environment. In fact, the steep slopes in the ore agricultural islands, together with semi-arid and arid environments, characterized by an irregular and poorly distributed rainy season, with high intensity rainfall events, make dryland production a challenge. To survive in these fragile conditions, the stabilization of the farming systems and the maintenance of sustainable yields have become absolute priorities, making the islands an erosion control laboratory. Soil and water conservation strategies have been a centerpiece of the government's agricultural policies for the last half century. Aiming to maintain the soil in place and the water inside the soil, the successive governments of Cape Verde have implemented a number of soil and water conservation techniques, the most common ones being terraces, half moons, live barriers, contour rock walls, contour furrows and microcatchments, check dams and reforestation with drought resistant species. The soil and water conservation techniques implemented have contributed to the improvement of the economical and environmental conditions of the treated landscape, making crop production possible, consequently, improving the livelihood of the people living on the islands. In this paper, we survey the existing soil and water conservation techniques, analyze their impact on the livelihood condition of the population through a thorough literature review and field monitoring using a semi-quantitative methodology and evaluate their effectiveness and impact on crop yield in the Ribeira Seca watershed. A brief discussion is given on the cost and

  11. Effects of Long-term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion

    Science.gov (United States)

    Tan, Chunjian; Cao, Xue; Yuan, Shuai; Wang, Weiyu; Feng, Yongzhong; Qiao, Bo

    2015-12-01

    Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.

  12. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    Science.gov (United States)

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  13. Eight years of Conservation Agriculture-based cropping systems research in Eastern Africa to conserve soil and water and mitigate effects of climate change

    Science.gov (United States)

    Araya, Tesfay; Nyssen, Jan; Govaerts, Bram; Lanckriet, Sil; Baudron, Frédéric; Deckers, Jozef; Cornelis, Wim

    2014-05-01

    In Ethiopia, repeated plowing, complete removal of crop residues at harvest, aftermath grazing of crop fields and occurrence of repeated droughts have reduced the biomass return to the soil and aggravated cropland degradation. Conservation Agriculture (CA)-based resource conserving cropping systems may reduce runoff and soil erosion, and improve soil quality, thereby increasing crop productivity. Thus, a long-term tillage experiment has been carried out (2005 to 2012) on a Vertisol to quantify - among others - changes in runoff and soil loss for two local tillage practices, modified to integrate CA principles in semi-arid northern Ethiopia. The experimental layout was a randomized complete block design with three replications on permanent plots of 5 m by 19 m. The tillage treatments were (i) derdero+ (DER+) with a furrow and permanent raised bed planting system, ploughed only once at planting by refreshing the furrow from 2005 to 2012 and 30% standing crop residue retention, (ii) terwah+ (TER+) with furrows made at 1.5 m interval, plowed once at planting, 30% standing crop residue retention and fresh broad beds, and (iii) conventional tillage (CT) with a minimum of three plain tillage operations and complete removal of crop residues. All the plowing and reshaping of the furrows was done using the local ard plough mahresha and wheat, teff, barley and grass pea were grown. Glyphosate was sprayed starting from the third year onwards (2007) at 2 l ha-1 before planting to control pre-emergent weeds in CA plots. Runoff and soil loss were measured daily. Soil water content was monitored every 6 days. Significantly different (pconstitute a field rainwater and soil conservation improvement strategy that enhances crop and economic productivity and reduces siltation of reservoirs, especially under changing climate. The reduction in draught power requirement would enable a reduction in oxen density and crop residue demand for livestock feed, which would encourage smallholder

  14. Earthworm activity and soil structural changes under conservation agriculture in central Mexico

    NARCIS (Netherlands)

    Castellanos Navarrete, A.; Rodriguez-Aragonés, C.; Goede, de R.G.M.; Kooistra, M.J.; Sayre, K.D.; Brussaard, L.; Pulleman, M.M.

    2012-01-01

    Crop residue mulching combined with zero tillage and crop rotation, known as conservation agriculture (CA), is being promoted as an alternative system to revert soil degradation in maize-based farming in the central highlands of Mexico. The goal of this paper was to determine the effects of CA vs.

  15. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  16. Soil Security Assessment of Tasmania

    Science.gov (United States)

    Field, Damien; Kidd, Darren; McBratney, Alex

    2017-04-01

    The concept of soil security aligns well with the aspirational and marketing policies of the Tasmanian Government, where increased agricultural expansion through new irrigation schemes and multiple-use State managed production forests co-exists beside pristine World Heritage conservation land, a major drawcard of the economically important tourism industry . Regarding the Sustainable Development Gaols (SDG's) this could be seen as a exemplar of the emerging tool for quantification of spatial soil security to effectively protect our soil resource in terms of food (SDG 2.4, 3.9) and water security (SDG 6.4, 6.6), biodiversity maintenance and safeguarding fragile ecosystems (SDG 15.3, 15.9). The recent development and application of Digital Soil Mapping and Assessment capacities in Tasmania to stimulate agricultural production and better target appropriate soil resources has formed the foundational systems that can enable the first efforts in quantifying and mapping Tasmanian Soil Security, in particular the five Soil Security dimensions (Capability, Condition, Capital, Codification and Connectivity). However, to provide a measure of overall soil security, it was necessary to separately assess the State's three major soil uses; Agriculture, Conservation and Forestry. These products will provide an indication of where different activities are sustainable or at risk, where more soil data is needed, and provide a tool to better plan for a State requiring optimal food and fibre production, without depleting its natural soil resources and impacting on the fragile ecosystems supporting environmental benefits and the tourism industry.

  17. Geomorphic and Hydrological challenges in Africa: implications for soil and water conservation

    Science.gov (United States)

    Vanmaercke, Matthias; Poesen, Jean

    2017-04-01

    Expected scenarios of climate change and population growth confront Africa with various important challenges related to food, water and energy security. Many of these challenges are closely linked to the impacts of soil erosion and other geomorphic processes, such as reduced crop yields, sedimentation of reservoirs and reduced freshwater quality. Despite the urgency and extent of many of these challenges, the causes and dynamics of these processes and their impacts remain severely understudied. This becomes apparent when the availability of e.g. soil erosion and catchment sediment export measurements for Africa is compared to that of other continents. Nonetheless, a substantial amount of geomorphic research has been conducted in Africa. Many of this work dates back from several decades ago, and were often only reported in 'gray literature' (e.g. internal reports). Here we present an overview of our current state of knowledge on soil erosion and its implications in Africa. We discuss which geomorphic process rate measurements are currently available and what can be learned from these with respect to the challenged raised above. We especially focus on our current understanding about the effectiveness of soil and water conservation techniques at various spatial and temporal scales. Based on specific case-studies (e.g. in Ethiopia and Uganda) and a meta-analysis of previous work, we highlight some research gaps, research needs and research opportunities when aiming to use Africa's soil and water resources sustainably and efficiently.

  18. Soil Productive Lifespans: Rethinking Soil Sustainability for the 21st Century

    Science.gov (United States)

    Evans, Daniel

    2017-04-01

    The ability for humans to sustainably manage the natural resources on which they depend has been one of the existential challenges facing mankind since the dawn of civilisation. Given the demands from this century's unprecedented global population and the unremitting course of climatic change, that challenge has soared in intensity. Sustainability, in this context, refers to agricultural practices which meet the needs of the present without compromising the ability of future generations to meet their own needs. Ensuring sustainability is arguably of greatest importance when resources, such as soil, are non-renewable. However, there is as yet no tool to evaluate how sustainable conservation strategies are in the long-term. Up to now, many pedologists have assessed sustainability in binary terms, questioning whether management is sustainable or not. In truth, one can never determine whether a practice is ultimately sustainable because of the indefinite nature implied by "future generations". We suggest that a more useful assessment of sustainability for the 21st century should avoid binary questions and instead ask: how sustainable are soils? Indeed, how many future generations can soils provide for? Although the use of modelling is by no means a novelty for the discipline, there are very few holistic models that encompass the fluxes and dynamic relationships between both mass and quality concomitantly. We therefore propose a new conceptual framework - the Soil Productive Lifespan (SPL) - that employs empirically derived residence times of both soil mass and quality, together with pathways of environmental change, to forecast the length of time a soil profile can provide the critical functions. Although mass and quality are considered synergistically, the SPL model allows one to assess whether mass or quality alone presents the greatest limiting factor in the productive lifespans of soils. As a result, more targeted conservation strategies can be designed. Ultimately

  19. Conservation agriculture improves yield and reduces weeding activity in sandy soils of Cambodia

    Science.gov (United States)

    Intensive tillage in many less-developed countries, including Cambodia have caused significant decline in agriculture’s natural resources and sustainability. With limited available data, long-term conventional tillage system (CT) and conservation agriculture system (CA) can affect changes in soil pr...

  20. Tailoring conservation agriculture technologies to West Africa semi-arid zones: Building on traditional local practices for soil restoration

    NARCIS (Netherlands)

    Lahmar, R.; Bationo, B.A.; Lamso, N.D.; Guéro, Y.; Tittonell, P.A.

    2012-01-01

    Low inherent fertility of tropical soils and degradation, nutrient deficiency and water stress are the key factors that hamper rainfed agriculture in semi-arid West Africa. Conservation Agriculture (CA) is currently promoted in the region as a technology to reduce soil degradation, mitigate the

  1. Runoff, Erosion and Nutrient Sedimentation due Vegetative Soil Conservation Applied on Oil Palm Plantation

    OpenAIRE

    Zahrul Fuady; Halus Satriawan; Nanda Mayani

    2014-01-01

    Land cover crops play an important role in influencing erosion. Cover crops provide protection against the destruction of soil aggregates by rain and runoff. This research aims to study the effectiveness of vegetation as soil conservation in controlling erosion and runoff. This study was a field experiment on erosion plots measuring 10 m x 5 m were arranged in Split Plot design with replications as blocks, consists of a combination of two factors: the age of the oil palm and slope as the firs...

  2. Kajian Model Estimasi Volume Limpasan Permukaan, Debit Puncak Aliran, dan Erosi Tanah dengan Model Soil Conservation Service (SCS, Rasional Dan Modified Universal Soil Loss Equation (MUSLE (Studi Kasus di DAS Keduang, Wonogiri

    Directory of Open Access Journals (Sweden)

    Ugro Hari Murtiono

    2008-12-01

    Full Text Available Hydrologic modelling has been developing and it is usefull for basic data in managing water resources. The aim of the reseach is to estimate volume runoff, maximum discharge, and soil erosion with SCS, Rational, and MUSLE models on Keduang Watershed. Explain the data analysis, and flow to get the data. SCS parameters model use are: runoff, rainfall, deferent between rainfall runoff. The deferent rainfall between runoff relationship kurva Runoff Coefisient (Curve Nunmber/CN. This Coefisient connected with Soil Hydrology Group (antecedent moisture content/AMC, landuse, and cultivation method. Rational parameters model use are: runoff coefisient, soil type, slope, land cover, rainfall intensity, and watershed areas. MUSLE parameters model use are: rainfall erosifity (RM, soil erodibility (K, slope length (L, slope (S, land cover (C, and soil conservation practice (P. The result shows that the conservation service models be applied Keduang Watershed, Wonogiri is over estimed abaut 29.54 %, Rational model is over estimed abaut 49.96 %, and MUSLE model is over estimed abaut 48.47 %.

  3. Soil Erosion. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  4. An experimental method to verify soil conservation by check dams on the Loess Plateau, China.

    Science.gov (United States)

    Xu, X Z; Zhang, H W; Wang, G Q; Chen, S C; Dang, W Q

    2009-12-01

    A successful experiment with a physical model requires necessary conditions of similarity. This study presents an experimental method with a semi-scale physical model. The model is used to monitor and verify soil conservation by check dams in a small watershed on the Loess Plateau of China. During experiments, the model-prototype ratio of geomorphic variables was kept constant under each rainfall event. Consequently, experimental data are available for verification of soil erosion processes in the field and for predicting soil loss in a model watershed with check dams. Thus, it can predict the amount of soil loss in a catchment. This study also mentions four criteria: similarities of watershed geometry, grain size and bare land, Froude number (Fr) for rainfall event, and soil erosion in downscaled models. The efficacy of the proposed method was confirmed using these criteria in two different downscaled model experiments. The B-Model, a large scale model, simulates watershed prototype. The two small scale models, D(a) and D(b), have different erosion rates, but are the same size. These two models simulate hydraulic processes in the B-Model. Experiment results show that while soil loss in the small scale models was converted by multiplying the soil loss scale number, it was very close to that of the B-Model. Obviously, with a semi-scale physical model, experiments are available to verify and predict soil loss in a small watershed area with check dam system on the Loess Plateau, China.

  5. SOIL AND WATER CONSERVATION POLICY APPROACHES IN NORTH AMERICA, EUROPE, AND AUSTRALIA. (R825761)

    Science.gov (United States)

    AbstractSoil and water conservation policies and programs in developed countries in North America, Europe, and Australia are examined in the context of their effectiveness for addressing environmental degradation associated with technology-intensive agricultural syste...

  6. New perspectives on the soil erosion-soil quality relationship

    International Nuclear Information System (INIS)

    Pennock, D.J.

    1998-01-01

    The redistribution of soil has a profound impact on its quality (defined as its ability to function within its ecosystem and within adjacent ecosystems) and ultimately on its productivity for crop growth. The application of 137 Cs-redistribution techniques to the study of erosion has yielded major new insights into the soil erosion-soil quality relationship. In highly mechanized agricultural systems, tillage erosion can be the dominant cause of soil redistribution; in other agroecosystems, wind and water erosion dominate. Each causal factor results in characteristic landscape-scale patterns of redistribution. In landscapes dominated by tillage redistribution, highest losses occur in shoulder positions (those with convex downslope curvatures); in water-erosion-dominated landscapes, highest losses occur where slope gradient and length are at a maximum. Major impacts occur through the loss of organically-enriched surface material and through the incorporation of possibly yield-limiting subsoils into the rooting zone of the soil column. The potential impact of surface soil losses and concomitant subsoil incorporation on productivity may be assessed by examining the pedological nature of the affected soils and their position in the landscape. The development of sound conservation policies requires that the soil erosion-quality relationship be rigorously examined in the full range of pedogenic environments, and future applications of the 137 Cs technique hold considerable promise for providing this comprehensive global database. (author)

  7. Modeling the effect of three soil and water conservation practices in Tigray, Ethiopia

    NARCIS (Netherlands)

    Hengsdijk, H.; Meijerink, G.W.; Mosugu, M.E.

    2005-01-01

    Severe land degradation affects the livelihood of many farmers in the highlands of Tigray, northern Ethiopia. Various soil and water conservation practices have been proposed to reduce land degradation and to improve the quality of the natural resource base but quantitative information on their

  8. Determinants of adoption and continued use of stone terraces for soil and water conservation in an Ethiopian highland watershed

    NARCIS (Netherlands)

    Amsalu, A.; Graaff, de J.

    2007-01-01

    In the Ethiopian highlands, land degradation resulting from soil erosion and nutrient depletion is a serious environmental and socio-economic problem. Although soil and water conservation techniques have extensively been introduced over the past decades, sustained use of the measures was not as

  9. Development of a New Zealand SedNet model for assessment of catchment-wide soil-conservation works

    Science.gov (United States)

    Dymond, John R.; Herzig, Alexander; Basher, Les; Betts, Harley D.; Marden, Mike; Phillips, Chris J.; Ausseil, Anne-Gaelle E.; Palmer, David J.; Clark, Maree; Roygard, Jon

    2016-03-01

    Much hill country in New Zealand has been converted from indigenous forest to pastoral agriculture, resulting in increased soil erosion. Following a severe storm that hit the Manawatu-Wanaganui region in 2004 and caused 62,000 landslides, the Horizons Regional Council have implemented the Sustainable Land Use Initiative (SLUI), a programme of widespread soil conservation. We have developed a New Zealand version (SedNetNZ) of the Australian SedNet model to evaluate the impact of the SLUI programme in the 5850 km2 Manawatu catchment. SedNetNZ spatially distributes budgets of fine sediment in the landscape. It incorporates landslide, gully, earthflow erosion, surficial erosion, bank erosion, and flood-plain deposition, the important forms of soil erosion in New Zealand. Modelled suspended sediment loads compared well with measured suspended sediment loads with an R2 value of 0.85 after log transformation. A sensitivity analysis gave the uncertainty of estimated suspended sediment loads to be approximately plus or minus 50% (at the 95% confidence level). It is expected that by 2040, suspended sediment loads in targeted water management zones will decrease by about 40%. The expected decrease for the whole catchment is 34%. The expected reduction is due to maturity of tree planting on land at risk to soil erosion. The 34% reduction represents an annual rate of return of 20% on 20 million NZ of investment on soil conservation works through avoided damage to property and infrastructure and avoided clean-up costs.

  10. ROMANIAN SOIL RESOURCES - “HEALTHY SOILS FOR A HEALTHY LIFE”

    Directory of Open Access Journals (Sweden)

    Mircea MIHALACHE

    2015-10-01

    Full Text Available After nearly three years of intensive consultations, 2015 has been declared the International Year of Soils by the 68th UN General Assembly (A/RES/68/232. The International Years of Soil is to be a major platform for raising awareness of the importance of soils for food security and nutrition and essential eco-system functions. Key objectives of the International Years of Soil have been identified as follows: to create full awareness of all stakeholders about the fundamental roles of soils for human life; to achieve full recognition of the prominent contributions of soils to food security and nutrition, climate change adaptation and mitigation, essential ecosystem services, poverty alleviation and sustainable development; to promote effective policies and actions for the sustainable management and protection of soil resources; to sensitize decision-makers about the need for robust investment in sustainable soil management activities, to ensure healthy soils for different land users and population groups; to catalyze initiatives in connection with the Sustainable Development Goal process and Post-2015 agenda; to advocate rapid enhancement of capacities and systems for soil information collection and monitoring at all levels (global, regional and national (http://www.fao.org/soils-2015. Applying a proper management of the recovery and conservation of soil resources is a major goal for every nation. The development of a country depends on the production potential of own soil resources. Soil degradation is a serious problem in Europe an also in Romania. It is caused or exacerbated by human activity such as inadequate agricultural and forestry practices, industrial activities, tourism, urban and industrial expansion etc. Soil Quality Monitoring in Romania revealed a number of problems concerning land use in Romania following the manifestation of one or more limiting factors such as: moisture deficit, salinization and alkalization, soil erosion

  11. Scientific case studies in land-use driven soil erosion in the central United States: Why soil potential and risk concepts should be included in the principles of soil health

    Directory of Open Access Journals (Sweden)

    Benjamin L. Turner

    2018-03-01

    Full Text Available Despite recent improvements in overall soil health gained through conservation agriculture, which has become a global priority in agricultural systems, soil and water-related externalities (e.g., wind and water erosion continue to persist or worsen. Using an inductive, systems approach, we tested the hypothesis that such externalities persist due to expansion of cultivation onto areas unsuitable for sustained production. To test this hypothesis, a variety of data sources and analyses were used to uncover the land and water resource dynamics underlying noteworthy cases of soil erosion (either wind or water and hydrological effects (e.g., flooding, shifting hydrographs throughout the central United States. Given the evidence, we failed to reject the hypothesis that cultivation expansion is contributing to increased soil and water externalities, since significant increases in cultivation on soils with severe erosion limitations were observed everywhere the externalities were documented. We discuss the case study results in terms of land use incentives (e.g., policy, economic, and biophysical, developing concepts of soil security, and ways to utilize case studies such as those presented to better communicate the value of soil and water resource conservation. Incorporating the tenets of soil potential and soil risk into soil health evaluations and cultivation decision-making is needed to better match the soil resource with land use and help avoid more extreme soil and water-related externalities.

  12. [Analysis of soil respiration and influence factors in wheat farmland under conservation tillage in southwest hilly region].

    Science.gov (United States)

    Zhang, Sai; Zhang, Xiao-Yu; Wang, Long-Chang; Luo, Hai-Xiu; Zhou, Hang-Fei; Ma, Zhong-Lian; Zhang, Cui-Wei

    2013-07-01

    In order to investigate the effect of conservation tillage on soil respiration in dry cropping farmland in southwest purple hilly region, the LI6400-09 respiratory chamber was adopted in the experiment conducted in the experimental field in Southwest University in Beibei, Chongqing. The respiration and the hydrothermal and biotic factors of soil were measured and analyzed during the growth period of wheat in the triple intercropping system of wheat/maize/soybean. There were four treatments including T (traditional tillage), R (ridge tillage), TS (traditional tillage + straw mulching) and RS (ridge tillage + straw mulching), which were all in triplicates. The results indicated that the soil respiration rate changed in the range of 1.100-2.508 micromol x (m2 x s)(-1) during the reproductive growth stage of wheat. There were significant differences in soil respiration rate among different treatments, which could be ranked as RS > R > TS > T. The soil temperature in the 10cm layer was ranked as T > R > TS > RS. The relationship between soil respiration and soil temperature fitted well with an exponential function, in which the Q10 values were 1.25, 1.20, 1.31 and 1.26, respectively. The soil moisture in the 5cm layer was ranked as TS > RS > T > R. The best fitting model between soil moisture and soil respiration was a parabolic curve, indicating the presence of soil moisture with the strongest soil respiration. The response threshold of wheat to soil moisture was 14.80%-17.47% during the reproductive stage. The dominant groups of soil animals were Collembola and Acarina, which were correlated with soil respiration to some extent. The correlation was high in the treatments T and R, ranged from 0.669-0.921, whereas there was no remarkable correlation in the other treatments.

  13. Quick test for infiltration of arable soils

    OpenAIRE

    Liebl, Boris; Spiegel, Ann-Kathrin

    2018-01-01

    The quick test makes the consequences of soil compaction on water infiltration and the yield of agricultural crops visible. It promotes an understanding of the effects of soil compaction and the importance of soil-conserving cultivation.

  14. Soil Erosion: Advanced Crop and Soil Science. A Course of Study.

    Science.gov (United States)

    Miller, Larry E.

    The course of study represents the last of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil erosion. Upon completion of the two day lesson, the student will be able to: (1) define conservation, (2) understand how erosion takes place, and (3) list ways of controlling wind and water erosion.…

  15. Soil fauna: key to new carbon models

    NARCIS (Netherlands)

    Filser, Juliane; Faber, J.H.; Tiunov, Alexei V.; Brussaard, L.; Frouz, J.; Deyn, de G.B.; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, M.; Wall, D.H.; Querner, Pascal; Eijsackers, Herman; Jimenez, Juan Jose

    2016-01-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential

  16. Using Soil and Water Conservation Contests for Extension: Experiences from the Bolivian Mountain Valleys

    NARCIS (Netherlands)

    Kessler, A.; Graaff, de J.

    2007-01-01

    Soil and water conservation (SWC) contests among farmer groups were organized in five rural villages in the Bolivian mountain valleys. The contests were aimed at quickly achieving widespread sustainable results. This article analyzes the effectiveness of these contests as an extension tool. Mixed

  17. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis

    Science.gov (United States)

    Dotterweich, Markus

    2013-11-01

    This paper presents a global synopsis about the geomorphic evidence of soil erosion in humid and semihumid areas since the beginning of agriculture. Historical documents, starting from ancient records to data from the mid-twentieth century and numerous literature reviews form an extensive assortment of examples that show how soil erosion has been perceived previously by scholars, land surveyors, farmers, land owners, researchers, and policy makers. Examples have been selected from ancient Greek and Roman Times and from central Europe, southern Africa, North America, the Chinese Loess Plateau, Australia, New Zealand, and Easter Island. Furthermore, a comprehensive collection on the development of soil erosion research and soil conservation has been provided, with a particular focus on Germany and the USA. Geomorphic evidence shows that most of the agriculturally used slopes in the Old and New Worlds had already been affected by soil erosion in earlier, prehistoric times. Early descriptions of soil erosion are often very vague. With regard to the Roman Times, geomorphic evidence shows seemingly opposing results, ranging from massive devastation to landscapes remaining stable for centuries. Unfortunately, historical documentation is lacking. In the following centuries, historical records become more frequent and more precise and observations on extreme soil erosion events are prominent. Sometimes they can be clearly linked to geomorphic evidence in the field. The advent of professional soil conservation took place in the late eighteenth century. The first extensive essay on soil conservation known to the Western world was published in Germany in 1815. The rise of professional soil conservation occurred in the late nineteenth and early twentieth centuries. Soil remediation and flood prevention programs were initiated, but the long-term success of these actions remains controversial. In recent years, increasing interest is to recover any traditional knowledge of soil

  18. Assessment of soil erosion and conservation on agricultural sloping lands using plot data in the semi-arid hilly loess region of China

    Directory of Open Access Journals (Sweden)

    T.X. Zhu

    2014-11-01

    New hydrological insights for the region: The results revealed that runoff per unit area slightly increased with slope angle on SSP, but reached a maximum at 15° and then decreased with slope angle on LSP. Soil loss per unit area increased with slope angle on both SSP and LSP. An average of 36.4% less runoff but only 3.6% less soil loss per unit area was produced on LSP than on SSP. The S factor calculated using the slope factor equations in USLE/RUSLE was significantly greater than that estimated from the measured soil loss on the plots. Rainstorms with recurrence intervals greater than 2 years were responsible for more than two thirds of the total soil and water loss. The effectiveness in reducing surface runoff by five types of conservation practices was mixed. However, all the conservation practices yielded much less soil loss than cropland.

  19. Conservation Farming and Changing Climate: More Beneficial than Conventional Methods for Degraded Ugandan Soils

    Directory of Open Access Journals (Sweden)

    Drake N. Mubiru

    2017-06-01

    Full Text Available The extent of land affected by degradation in Uganda ranges from 20% in relatively flat and vegetation-covered areas to 90% in the eastern and southwestern highlands. Land degradation has adversely affected smallholder agro-ecosystems including direct damage and loss of critical ecosystem services such as agricultural land/soil and biodiversity. This study evaluated the extent of bare grounds in Nakasongola, one of the districts in the Cattle Corridor of Uganda and the yield responses of maize (Zea mays and common bean (Phaseolus vulgaris L. to different tillage methods in the district. Bare ground was determined by a supervised multi-band satellite image classification using the Maximum Likelihood Classifier (MLC. Field trials on maize and bean grain yield responses to tillage practices used a randomized complete block design with three replications, evaluating conventional farmer practice (CFP; permanent planting basins (PPB; and rip lines, with or without fertilizer in maize and bean rotations. Bare ground coverage in the Nakasongola District was 187 km2 (11% of the 1741 km2 of arable land due to extreme cases of soil compaction. All practices, whether conventional or the newly introduced conservation farming practices in combination with fertilizer increased bean and maize grain yields, albeit with minimal statistical significance in some cases. The newly introduced conservation farming tillage practices increased the bean grain yield relative to conventional practices by 41% in PPBs and 43% in rip lines. In maize, the newly introduced conservation farming tillage practices increased the grain yield by 78% on average, relative to conventional practices. Apparently, conservation farming tillage methods proved beneficial relative to conventional methods on degraded soils, with the short-term benefit of increasing land productivity leading to better harvests and food security.

  20. Soil conservation in Burkina Faso: is international cooperation effective?

    Science.gov (United States)

    Angeluccetti, Irene; Coviello, Velio; Grimaldi, Stefania; Vezza, Paolo; Koussubé, Alain

    2017-04-01

    Challenges related to Soil and Water Conservation (SWC) have been documented in Burkina Faso for many decades so far. The ever-growing population of this country, a landlocked desertification-prone one, is daily facing the visible impact of increasingly intense rainfall and concentrated rainy days. Agricultural soil erosion and reservoir siltation are two of the main issues affecting Burkina Faso subsistence agriculture sector, whose revenues largely contribute to people's income. From the sixties onwards locally-developed SWC techniques (e.g. permeable rock dams and gabion check dams) have been widely, though geographically variably, employed in the country. The effectiveness of these techniques in locally increasing soil moisture and reducing soil erosion is well proven, while their long term effect in decreasing the reservoir siltation is still under debate and shall be addressed with a whole-catchment approach often overlooked by international donors. This research aims to analyze the history of the use of these techniques by reviewing the results of several cooperation projects that dealt with the implementation of nearly 200 conservation works. These case studies are representative of 5 out of 12 regions of Burkina Faso and span over two decades. Local people levels of (i) awareness, (ii) technique appropriation, (iii) involvement and the degree of (iv) effectiveness and (v) maintenance of these SWC works have been taken into account. The analysis of the afore-mentioned five indicators let the authors draw a list of features that are needed for this kind of projects to be successful in the SWC domain. Moreover the differences that exist between the approach to the community-works, normally employed for SWC realizations, of different ethnical groups is highlighted. The degree of degradation of the environment also plays an important role in the involvement of the local community together with the familiarity of the population with these techniques. For

  1. Soil functional types: surveying the biophysical dimensions of soil security

    Science.gov (United States)

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    climate) for a particular soil-provided ecosystem service (e.g. climate regulation)". One SFT can thus include several soil types having the same functionality for a particular soil-provided ES. Another consequence is that SFT maps for two different ES may not superimpose over the same area, since some soils may fall in the same SFT for a service and in different SFT for another one. Soil functional types could be assessed and monitored in space and time by a combination of soil functional traits that correspond to inherent and manageable properties of soils. Their metrology would involve either classic (pedological observations) or advanced (molecular ecology, spectrometry, geophysics) tools. SFT could be studied and mapped at all scales, depending on the purpose of the soil security assessment (e.g. global climate modeling, land planning and management, biodiversity conservation). Overall, research is needed to find a pathway from soil pedological maps to SFT maps which would yield important benefits towards the assessment and monitoring of soil security. Indeed, this methodology would allow (i) reducing the spatial uncertainty on the assessment of ES; (ii) identifying and mapping multifunctional soils, which may be the most important soil resource to preserve. References [1] McBratney et al., 2014. Geoderma 213:203-213. [2] Droogers P, Bouma J, 1997. SSSAJ 61:1704-1710.

  2. ASPECTS REGARDING LEGAL PROTECTION OF SOIL RESOURCES

    OpenAIRE

    Cristian Popescu

    2012-01-01

    Along with specialty items used for the development and implementation of sustainable development, protection and conservation of the environment, legal protection component of soil resources play an essential role. Legal and institutional framework provides a much protection of soil resources. Soil is the thin layer of organic and inorganic materials that covers the Earth's rocky surface. A soil pollutant is any factor which deteriorates the quality, texture and mineral content of the soil ...

  3. Soil erosion and its control in Chile - An overview

    International Nuclear Information System (INIS)

    Ellies, A.

    2000-01-01

    Accelerate erosion in Chile is a consequence from land use that degrade soil such as compaction, loss of organic matter and soil structure. The erosion is favored by the very hilly landscape of the country that increases erosivity index and the high erodibility given by an elevated annual rate of rainfall with irregular distribution. Several experiences have demonstrated that adequate crop management and crop rotations can minimize erosion. The most effective control is achieved conserving and improving soil structure with management systems that include regular use of soil-improving crops, return of crop residues and tillage practices, thus avoiding unnecessary breakdown soil or compacted soil structure. Conservation tillage increased organic matter levels improving stabile soil structure, aeration and infiltration. (author) [es

  4. SOIL EROSION AND CONSERVATION IN ROMANIA - SOME FIGURES, FACTS AND ITS IMPACT ON ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Sevastel Mircea

    2010-01-01

    Full Text Available Being a common and finite resource, soil - as a natural and very complex ecosystem, is essential to human society. Inseveral regions of Europe, including Romania too, soil resources are degraded due to different causes, or, sometimes,irreversibly lost, mainly due to erosion, decline in organic matter or contamination. As regard to soil erosion only, inRomania, about 42% of the total agricultural lands are affected by water erosion in different forms and intensities.Soil degradation has negative impacts on other areas also, not only in-site but also off-site, areas which are alsoconsidered of common interest for the people (e.g. air and water quality, biodiversity and climate change. Costs torestore such a damages and environmental quality in general may be very high and thus preferable to be avoided.To maintain and/or improve a good quality of the soils for a long period of time, there needed to be implemented inRomania , as much as possible, some agri-environmental schemes, according to the current EU models and policies, inparticular, through the Common Agricultural Policy (CAP.The paper briefly presents and analyzes such agri-environmental schemes developed for the agricultural lands from thehilly areas in Romania that is very affected by water erosion and landslides – the Curvature zone of Sub-Carpathians.The schemes, developed within the Research Station for Soil Erosion and Conservation Aldeni-Buzau, which belongs tothe University of Agricultural Sciences in Bucharest, is based on friendly agricultural practices to be implemented onagricultural lands located on slopes. Also, the new conceptual European model, known as Driving Forces-Pressures-State-Impacts-Responces (DPSIR, adapted for the soil erosion impact assesment on environment, will be herepresented, in order to be promoted and used on a large scale in Romania as well.

  5. [Impact of rural land market on farm household's behavior of soil & water conservation and its regional difference: A case study of Xingguo, Shangrao, and Yujiang County in Jiangxi province ecologically vulnerable districts].

    Science.gov (United States)

    Zhong, Tai-Yang; Huang, Xian-jin

    2006-02-01

    The paper analyzed the farm households' decision-making progress of soil & water conservation and its two-stage conceptual model. It also discussed the impacts of rural land market on the farm households' behavior of soil & water conservation. Given that, the article established models for the relations between the land market and soil & water conservation, and the models' parameters were estimated with Heckman's two-stage approach by using the farm household questionnaires in Xingguo, Shangrao and Yujiang counties of Jiangxi province. The paper analyzed the impact o f rural land market on farm household's behavior of soil & water conservation and its regional difference with the result of model estimation. The results show that the perception of soil & water loss and the tax & fee on the farm land have significant influence upon the soil and water conservation from the view of the population; however, because of different social and economic condition, and soil & water loss, there are differences of the influence among the three sample counties. These differences go as follows in detail: In Xingguo County, the rent-in land area and its cost have remarkable effect on the farm households' soil & water conservation behavior; In Yujiang County, the rent-in land area, rent-in cost and rent-out land area remarkably influence the farm households' behavior of soil and water conservation, with the influence of the rent-in land area being greater than Xingguo County; In Shangrao County, only rent-out land area has significant influence on the behaviors of soil & water conservation; In all samples, Xingguo County and Yujiang County samples, the rent-out income has no significant influence on the farm household's decision-making behavior soil and water conservation. Finally, the paper put forward some suggestions on how to bring the soil & water loss under control and use land resource in sustainable ways.

  6. The soil and air quality connection: abstracts of the 36. Alberta soil science workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The workshop has the following general categories of papers (with abstracts only): plenary session, volunteer session I; volunteer session II; technical session I - soil reclamation, and soil fertility; technical session II - soil conservation, and soil information; and poster presentations. Twelve individual papers are abstracted/indexed as follows: (1) greenhouse gas emissions from Canadian prairie agriculture; (2) acid deposition, critical loads, soil sensitivity, and environmental responses; (3) the downwind health risks of intensive livestock production; (4) nitrous oxide emission as affected by tillage practices and fertilizer association; (5) a conceptual system for assigning sensitivities to potentially acidifying inputs to soils in the oil sands regions of Alberta; (6) a particle tracer method for soil aggregation and translocation studies; (7) DNA adduct quantification in Eisenia fetida after subchronic exposures to creosote contaminated soils; (8) the physical distribution of anthropogenic mercury in nine contaminated soils; (9) bioremediation of hydrocarbon-contaminated soils: are treatability and ecotoxicity endpoints related?; (10) land reclamation using oil sand processing tailings: a field study; (11) assessment of toxicity based criteria for disposal of drilling waste in oil and gas exploration; and (12) toxicity assessment of approved drilling mud additives in the oil and gas sector.

  7. Soil erosion-runoff relationships: insights from laboratory studies

    Science.gov (United States)

    Mamedov, Amrakh; Warrington, David; Levy, Guy

    2016-04-01

    Understanding the processes and mechanisms affecting runoff generation and subsequent soil erosion in semi-arid regions is essential for the development of improved soil and water conservation management practices. Using a drip type laboratory rain simulator, we studied runoff and soil erosion, and the relationships between them, in 60 semi-arid region soils varying in their intrinsic properties (e.g., texture, organic matter) under differing extrinsic conditions (e.g., rain properties, and conditions prevailing in the field soil). Both runoff and soil erosion were significantly affected by the intrinsic soil and rain properties, and soil conditions within agricultural fields or watersheds. The relationship between soil erosion and runoff was stronger when the rain kinetic energy was higher rather than lower, and could be expressed either as a linear or exponential function. Linear functions applied to certain limited cases associated with conditions that enhanced soil structure stability, (e.g., slow wetting, amending with soil stabilizers, minimum tillage in clay soils, and short duration exposure to rain). Exponential functions applied to most of the cases under conditions that tended to harm soil stability (e.g., fast wetting of soils, a wide range of antecedent soil water contents and rain kinetic energies, conventional tillage, following biosolid applications, irrigation with water of poor quality, consecutive rain simulations). The established relationships between runoff and soil erosion contributed to a better understanding of the mechanisms governing overland flow and soil loss, and could assist in (i) further development of soil erosion models and research techniques, and (ii) the design of more suitable management practices for soil and water conservation.

  8. Tillage Effects on Soil Properties & Respiration

    Science.gov (United States)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  9. Soil Erosion and Agricultural Sustainability

    Science.gov (United States)

    Montgomery, D. R.

    2009-04-01

    capable of feeding a growing population safeguard both soil fertility and the soil itself? Although the experiences of past societies provide ample historical basis for concern about the long-term prospects for soil conservation, data compiled from recent studies indicate that no-till farming could reduce erosion to levels close to soil production rates. Consequently, agricultural production need not necessarily come at the expense of either soil fertility or the soil itself, even if recent proposals to rely on conventionally grown corn for biofuels exemplify how short-term social and economic trade-offs can de-prioritize soil conservation. Like the issues of climate change and loss of biodiversity, the ongoing global degradation and loss of soil presents a fundamental social challenge in which the slow pace of environmental change counter-intuitively makes solutions all the more difficult to adopt.

  10. The status of soil mapping for the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Olson, G.L.; Lee, R.D.; Jeppesen, D.J.

    1995-01-01

    This report discusses the production of a revised version of the general soil map of the 2304-km 2 (890-mi 2 ) Idaho National Engineering Laboratory (INEL) site in southeastern Idaho and the production of a geographic information system (GIS) soil map and supporting database. The revised general soil map replaces an INEL soil map produced in 1978 and incorporates the most current information on INEL soils. The general soil map delineates large soil associations based on National Resources Conservation Services [formerly the Soil Conservation Service (SCS)] principles of soil mapping. The GIS map incorporates detailed information that could not be presented on the general soil map and is linked to a database that contains the soil map unit descriptions, surficial geology codes, and other pertinent information

  11. Effects of hand-hoe tilled conservation farming on soil quality and carbon stocks under on-farm conditions in Zambia

    DEFF Research Database (Denmark)

    Martinsen, V; Shitumbanuma, V; Mulder, J

    2017-01-01

    Conservation farming (CF) has been promoted in Zambia since the 1980s. Despite long-term practice of CF in Zambia, its effect on soil fertility, including the storage of soil organic matter (SOM), on smallholder farms are inconclusive. Here, we assess the effect of CF as compared to conventional....... Overall, our results show small differences in the soil quality parameters between the CF and conventional practices at smallholder farms after maximum 12 years since adoption of CF....... tillage on soil quality parameters on smallholder farms in the Eastern province (EP, 20 sites, two to six years of CF) and Central province (CP, 20 sites, four to twelve years of CF) in Zambia. Soils under CF (minimum tillage hoe basins, crop rotation and residue retention) were compared with adjacent...

  12. Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: an overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project.

    Science.gov (United States)

    Dercon, G; Mabit, L; Hancock, G; Nguyen, M L; Dornhofer, P; Bacchi, O O S; Benmansour, M; Bernard, C; Froehlich, W; Golosov, V N; Haciyakupoglu, S; Hai, P S; Klik, A; Li, Y; Lobb, D A; Onda, Y; Popa, N; Rafiq, M; Ritchie, J C; Schuller, P; Shakhashiro, A; Wallbrink, P; Walling, D E; Zapata, F; Zhang, X

    2012-05-01

    This paper summarizes key findings and identifies the main lessons learnt from a 5-year (2002-2008) coordinated research project (CRP) on "Assessing the effectiveness of soil conservation measures for sustainable watershed management and crop production using fallout radionuclides" (D1.50.08), organized and funded by the International Atomic Energy Agency through the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The project brought together nineteen participants, from Australia, Austria, Brazil, Canada, Chile, China, Japan, Morocco, Pakistan, Poland, Romania, Russian Federation, Turkey, United Kingdom, United States of America and Vietnam, involved in the use of nuclear techniques and, more particularly, fallout radionuclides (FRN) to assess the relative impacts of different soil conservation measures on soil erosion and land productivity. The overall objective of the CRP was to develop improved land use and management strategies for sustainable watershed management through effective soil erosion control practices, by the use of ¹³⁷Cs (half-life of 30.2 years), ²¹⁰Pb(ex) (half-life of 22.3 years) and ⁷Be (half-life of 53.4 days) for measuring soil erosion over several spatial and temporal scales. The environmental conditions under which the different research teams applied the tools based on the use of fallout radionuclides varied considerably--a variety of climates, soils, topographies and land uses. Nevertheless, the achievements of the CRP, as reflected in this overview paper, demonstrate that fallout radionuclide-based techniques are powerful tools to assess soil erosion/deposition at several spatial and temporal scales in a wide range of environments, and offer potential to monitor soil quality. The success of the CRP has stimulated an interest in many IAEA Member States in the use of these methodologies to identify factors and practices that can enhance sustainable agriculture and minimize land degradation. Copyright

  13. Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: an overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project

    International Nuclear Information System (INIS)

    Dercon, G.; Mabit, L.; Nguyen, M.L.

    2012-01-01

    This paper summarizes key findings and identifies the main lessons learnt from a 5-year (2002-2008) coordinated research project (CRP) on Assessing the effectiveness of soil conservation measures for sustainable watershed management and crop production using fallout radionuclides (D1.50.08), organized and funded by the International Atomic Energy Agency through the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The project brought together nineteen participants, from Australia, Austria, Brazil, Canada, Chile, China, Japan, Morocco, Pakistan, Poland, Romania, Russian Federation, Turkey, United Kingdom, United States of America and Vietnam, involved in the use of nuclear techniques and, more particularly, fallout radionuclides (FRN) to assess the relative impacts of the different soil conservation measure on soil erosion and land productivity. The overall objective of the CRP was to develop improved land use and management strategies for sustainable watershed management through effective soil erosion control practices, by the use of 137 Cs (half-life of 30.2 years), 210 Pb ex (half-life of 22.3 years) and 7 Be (half-life of 53.4 days) for measuring soil erosion over several spatial and temporal scales. The environmental conditions under which the different research teams applied the tools based on the use of fallout radionuclides varied considerably - a variety of climates, soils, topographies and land uses. Nevertheless, the achievements of the CRP, as reflected in this overview paper, demonstrate that fallout radionuclide-based techniques are powerful tools to assess soil erosion/deposition at several spatial and temporal scales in a wide range of environments, and offer potential to monitor soil quality. The success of the CRP has stimulated an interest in many IAEA Member States in the use of these methodologies to identify factors and practices that can enhance sustainable agriculture and minimize land degradation. (author)

  14. Soil quality improvement through conversion to sprinkler irrigation

    Science.gov (United States)

    Conversion from furrow to sprinkler irrigation is a recommended conservation practice for improved water use efficiency (and/or erosion control), but effects on soil quality indicators were unknown. Several soil quality indicators were therefore quantified within a northwestern U.S. Conservation Eff...

  15. Soil erosion dynamics response to landscape pattern

    NARCIS (Netherlands)

    Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T.

    2010-01-01

    Simulating soil erosion variation with a temporal land use database reveals long-term fluctuations in landscape patterns, as well as priority needs for soil erosion conservation. The application of a multi-year land use database in support of a Soil Water Assessment Tool (SWAT) led to an accurate

  16. Continuous multi-criteria methods for crop and soil conservation planning on La Colacha (Río Cuarto, Province of Córdoba, Argentina

    Directory of Open Access Journals (Sweden)

    J. M. Antón

    2012-08-01

    Full Text Available Agro-areas of Arroyos Menores (La Colacha west and south of Río Cuarto (Prov. of Córdoba, Argentina basins are very fertile but have high soil loses. Extreme rain events, inundations and other severe erosions forming gullies demand urgently actions in this area to avoid soil degradation and erosion supporting good levels of agro production. The authors first improved hydrologic data on La Colacha, evaluated the systems of soil uses and actions that could be recommended considering the relevant aspects of the study area and applied decision support systems (DSS with mathematic tools for planning of defences and uses of soils in these areas. These were conducted here using multi-criteria models, in multi-criteria decision making (MCDM; first of discrete MCDM to chose among global types of use of soils, and then of continuous MCDM to evaluate and optimize combined actions, including repartition of soil use and the necessary levels of works for soil conservation and for hydraulic management to conserve against erosion these basins. Relatively global solutions for La Colacha area have been defined and were optimised by Linear Programming in Goal Programming forms that are presented as Weighted or Lexicographic Goal Programming and as Compromise Programming. The decision methods used are described, indicating algorithms used, and examples for some representative scenarios on La Colacha area are given.

  17. Surface water ponding on clayey soils managed by conventional and conservation tillage in boreal conditions

    Directory of Open Access Journals (Sweden)

    L. ALAKUKKU

    2008-12-01

    Full Text Available Surface water ponding and crop hampering due to soil wetness was monitored in order to evaluate the effects of conservation tillage practices and perennial grass cover on soil infiltrability for five years in situ in gently sloping clayey fields. Thirteen experimental areas, each having three experimental fields, were established in southern Finland. The fields belonged to: autumn mouldboard ploughing (AP, conservation tillage (CT and perennial grass in the crop rotation (PG. In the third year, direct drilled (DD fields were established in five areas. Excluding PG, mainly spring cereals were grown in the fields. Location and surface area of ponded water (in the spring and autumn as well as hampered crop growth (during June-July were determined in each field by using GPS devices and GIS programs. Surface water ponding or crop hampering occurred when the amount of rainfall was clearly greater than the long-term average. The mean of the relative area of the ponded surface water, indicating the risk of surface runoff, and hampered crop growth was larger in the CT fields than in the AP fields. The differences between means were, however, not statistically significant. Complementary soil physical measurements are required to investigate the reasons for the repeated surface water ponding.;

  18. Effect of conservation tillage and peat application on weed infestation on a clay soil

    Directory of Open Access Journals (Sweden)

    P. VANHALA

    2008-12-01

    Full Text Available Amendment of soil with peat is an attempt to avoid crop yield variation in the transition to conservation tillage, as it improves seedbed conditions and crop growth in drought-sensitive clay soils. Weed infestations were compared in 1999-2000 between the original and peat-amended clay (Typic Cryaquept, very fine, illitic or mixed under different autumn tillage systems in an oats-barley rotation. In a field experiment, sphagnum peat (H = 4 had been spread (0.02 m 3 m -2 on the soil surface in August 1995. Tillage treatments included mouldboard ploughing (to 20 cm and stubble cultivations of different working depths (8 or 15 cm and intensity (once or twice. Weed biomass and density were assessed by an area of 1 m 2 per field plot in August 1999-2000 and June 2000. The 1999 season was dry, but soil moisture conditions were more favourable in 2000. Peat application tended to increase the number of volunteer oats and Chenopodium album in 1999, while decreasing Galium spurium biomass. Ploughing significantly increased the abundance of Chenopodium album and Lamium purpureum in barley (Hordeum vulgare in 1999. Weed infestation was much lower in 2000, and tillage effect on Chenopodium album was minor in oats (Avena sativa. Growth of Lamium purpureum and Fumaria officinalis was stimulated in ploughed soils both years. Intensity and working depth of stubble cultivation had no significant effect on weeds.;

  19. An adaptive management process for forest soil conservation.

    Science.gov (United States)

    Michael P. Curran; Douglas G. Maynard; Ronald L. Heninger; Thomas A. Terry; Steven W. Howes; Douglas M. Stone; Thomas Niemann; Richard E. Miller; Robert F. Powers

    2005-01-01

    Soil disturbance guidelines should be based on comparable disturbance categories adapted to specific local soil conditions, validated by monitoring and research. Guidelines, standards, and practices should be continually improved based on an adaptive management process, which is presented in this paper. Core components of this process include: reliable monitoring...

  20. Effectiveness of conservation agriculture practices on soil erosion processes in semi-arid areas of Zimbabwe

    Science.gov (United States)

    Chikwari, Emmanuel; Mhaka, Luke; Gwandu, Tariro; Chipangura, Tafadzwa; Misi Manyanga, Amos; Sabastian Matsenyengwa, Nyasha; Rabesiranana, Naivo; Mabit, Lionel

    2016-04-01

    - The application of fallout radionuclides (FRNs) in soil erosion and redistribution studies has gained popularity since the late 1980s. In Zimbabwe, soil erosion research was mostly based on conventional methods which included the use of erosion plots for quantitative measurements and erosion models for predicting soil losses. Only limited investigation to explore the possibility of using Caesium-137 (Cs-137) has been reported in the early 1990s for undisturbed and cultivated lands in Zimbabwe. In this study, the Cs-137 technique was applied to assess the impact of soil conservation practices on soil losses and to develop strategies and support effective policies that help farmers in Zimbabwe for sustainable land management. The study was carried out at the Makoholi research station 30 km north of the Masvingo region which is located 260 km south of Harare. The area is semi-arid and the study site comprises coarse loamy sands, gleyic lixisols. The conservation agriculture (CA) practices used within the area since 1988 include (i) direct seeding (DS) with mulch, (ii) CA basins with mulch, and (iii) 18 years direct seeding, left fallow for seven years and turned into conventional tillage since 2012 (DS/F/C). The Cs-137 reference inventory was established at 214 ± 16 Bq/m2. The mean inventories for DS, CA basins and DS/F/C were 195, 190 and 214 Bq/m2 respectively. Using the conversion Mass Balance Model 2 on the Cs-137 data obtained along transects for each of the practices, gross erosion rates were found to be 7.5, 7.3 and 2.6 t/ha/yr for direct seeding, CA basins and the DS/F/C while the net erosion rates were found to be 3.8, 4.6 and 0 t/ha/yr respectively. Sediment delivery ratios were 50%, 63% and 2% in the respective order. These preliminary results showed the effectiveness of DS over CA basins in erosion control. The efficiency of fallowing in controlling excessive soil loss was significant in the plot that started as DS for 18 years but left fallow for 7

  1. Plant-conservative agriculture of acid and degraded Raña-grassland enhances diversity of the common soil mites (Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Jorrín, J.; González-Fernández, P.

    2016-11-01

    The seminatural prairie of the Raña of Cañamero (Spain) is a degraded and unproductive agrosystem with acid and stony soils, and low coverage of xerophytic grasses. In a project about secondary reconversion of the raña-prairie to a more productive cropland, an experimental field (EF) was established to assess the effect on plot-productivity of the interaction between correction of soil pH (liming) with three cropping systems: a no-tilled and annually fertilized and improved prairies, and a conventionally-tilled forage crop. The EF model of management was designed as plant-conservative, because no herbicide was applied after seeding to preserve the post-emergence of wild herbs and the natural grass diversity of the prairie. Between 2008 and 2012, we analysed the effect of managing factors (initial conventional-tillage, fertilization, liming and cropping) and agricultural predictors (pH, C:N ratio, soil bulk density and herbaceous biomass) on the alpha(α)-diversity of one of the major group of soil animals, the oribatids. In relation to the raña-prairie, all EF-plots improved their soil bulk density (ρs) and herbaceous biomass (t/ha), and enhanced desirable α-diversity values (richness, abundance and community equity). We conclude that the plant-conservative model: i) do not affect statistically the species richness of the prairie; ii) the desirable α-diversity responses are negatively correlated with soil bulk density and positively with herbaceous biomass, and iii) the low input or minimum intervention model, of an initial and conventional till and annual fertilisation, is the threshold and optimal model of agricultural management to improving oribatids diversity of the raña-soil. (Author)

  2. Sustainable Soil Management: Its perception and the need for policy intervention

    Science.gov (United States)

    Basch, Gottlieb; Kassam, Amir; González-Sánchez, Emilio

    2017-04-01

    As stated in the strategic objectives of the Global Soil Partnership "healthy soils and sustainable soil management are the precondition for human well-being and economic welfare and therefore play the key role for sustainable development". Although the functional properties of a healthy soil are well understood, in practice it is easily overlooked what is necessary to achieve and sustain healthy agricultural soils. This contribution intends: to discuss the concept of sustainable soil management in agricultural production with regard to soil health, and to highlight its importance in the achievement of both Sustainable Development Goals and the 4 per mille objectives, as well as for the Common Agricultural Policy (CAP). In Europe, soil and the need for its conservation and stewardship gained visibility at the beginning of this century during the discussions related to the Soil Thematic Strategy. This higher level of awareness concerning the status of Europe's soils led to the introduction of soil conservation standards into the cross-compliance mechanism within the 1st Pillar of CAP. These standards were applied through the definition of Good Agricultural and Environmental Conditions (GAECs) which are compulsory for all farmers receiving direct payments, and in the last CAP reform in 2014, through the introduction of additional Greening Measures in Pilar 1. Despite these measures and the claim of some writers that they already contributed to significantly reducing soil erosion, the EC Joint Research Centre still reports water erosion in Europe amounting to almost one billion tonnes annually. Regarding soil conservation, soil carbon stocks or the provision of additional ecosystem services, measures called for in GAEC 4 (Minimum soil cover), in GAEC 5 (Minimum land management reflecting site specific conditions to limit soil erosion), and in GAEC 6 (Maintenance of soil organic matter level through appropriate practices, …), give the impression that a lot is being

  3. Soil fauna: key to new carbon models

    OpenAIRE

    Filser, Juliane; Faber, Jack H.; Tiunov, Alexei V.; Brussaard, Lijbert; Frouz, Jan; Deyn, Gerlinde; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, Michel; Wall, Diana H.; Querner, Pascal; Eijsackers, Herman; Jiménez, Juan José

    2016-01-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential services provided by soils, policy makers depend on robust, predictive models identifying key drivers of SOM dynamics. Existing SOM models and suggested guidelines for future SOM modelling are defined ...

  4. Silvicultural practices and soil protection

    International Nuclear Information System (INIS)

    Ranger, Jacques; Nys, Claude; Legout, Arnaud; Dambrine, Etienne; Augusto, Laurent; Berthelot, Alain; Bouchon, Jean; Ottorini, Jean-Marc; Cacot, Emmanuel; Gavaland, Andre; Laclau, Jean-Paul; Saint-Andre, Laurent; Nicolas, Manuel; Ponette, Quentin

    2011-01-01

    The purpose of this work is to assess the risks deriving from current forestry practices on the sustainability of soil function and ecosystems. The relationship between the production function and the soil conservation function translates as a certain conflict between these two options. Stresses on the chemical fertility of the soil were analysed from the least intensive to the most intensive treatments, i.e. from forest reserves to very short rotation, treated lignocellulosic crops. Under the extensive systems, high grade biological recycling is sustainable if logging is confined to trunks alone. Dressings can correct the slow but inevitable acidification of soils. When treatments are intensive, the natural fertility of forest soils cannot sustain production; only soils with suitable physical qualities combined with application of appropriate inputs enable sustained high levels of output to be achieved, in particular under the short rotation systems. (authors)

  5. [Zoological diagnostics of soils: imperatives, purposes, and place within soil zoology and pedology].

    Science.gov (United States)

    Mordokovich, V G

    2013-01-01

    Zoological diagnostics of soils was conceived by M.S. Ghilarov as a part of soil zoology and intended to be closely related to pedology. He considered zoo-agents as an ecological factor, one among many others, of soil formation. Contemporary soil diagnostics pursues mostly utilitarian goals and is based on conservative properties of the stable part of soil substrate. However, it is admitted that these properties are generated by specific combinations of biological, chemical, and physical phenomena that are called "elementary soil processes" (ESP) and occur nowhere but in soils. Certain ESPs are associated with distinctive combinations of biota, including invertebrates. Pedobionts act as producers of detritus and contribute to humus formation, which is necessary for any ESP starting, thus being its active party. That is why animals, being the most complex and active part of the ESP system, may be treated not only as its indicators but also as its navigators. Monitoring and studying of ESPs in soil is complicated because of inevitable disturbance of soil profile natural composition. Zoo-agents, at the same time, can be registered without habitats changing. Taking into account ecological potency of soil invertebrates that participate in an ESP, spectra of their eco-groups, life forms, and results of their activity, it is possible to diagnose a soil state at different stages of certain ESPs development, with their different combinations, and in different regions or parts of natural environmental gradients.

  6. Edaphic macrofauna as biological indicator of the conservation/disturbance status of soil. Results obtained in Cuba

    International Nuclear Information System (INIS)

    Cabrera, Grisel

    2012-01-01

    In order to predict the degradation status of a soil, a group of variables comprising its physical, chemical and/or biological properties is used. Macrofauna, which includes soil invertebrates higher than 2 mm of diameter, is a biological component that can be used for such purpose. Its taxonomic richness as well as its density, biomass and functional composition change depending on the effect of diverse land uses and managements. This review reaffirms that the macrofauna characteristics and the results obtained, mainly in Cuba, about its variation in ecosystems with different anthropization levels, support the potential use of this fauna as biological indicator of the soil's conservation status. Future studies should consider a lower taxonomic level in the identification of macrofauna, and relate its taxonomic and functional composition to the climate and pedological factors. (author)

  7. Application Of 137Cs And 7Be To Assess The Effectiveness Of Soil Conservation Technologies In The Central Highlands Of Vietnam

    International Nuclear Information System (INIS)

    Phan Son Hai; Tran Dinh Khoa; Nguyen Dao; Nguyen Thi Mui; Tran Van Hoa; Trinh Cong Tu

    2008-01-01

    The combined use of 137 Cs and 7 Be for assessment of medium- and short-term soil erosion rates for sloping lands with and without soil conservation technologies in the Central Highlands of Vietnam has been carried out. For the 2.5 ha mulberry field with the slope gradient of about 15%, where green manure hedgerows have been utilized as a soil conservation measure for 22 years, about 54.6% of the area suffered from erosion with erosion rates varying from 0.6 to 70 t ha -1 y -1 (the average: 31 t ha -1 y -1 ), and deposition occurred for 45.4% of the area with the deposition rates ranging between 0.2 and 74 t ha-1 y-1 (the average: 36 t ha -1 y -1 ). The medium-term erosion rate at this field was 1.2 ± 0.6 t ha -1 y -1 , and short-term erosion rate was 1.5 ± 0.24 t ha -1 y -1 . Soil erosion was almost controlled by the shrubby hedgerows and the net erosion rate was reduced from 28 t ha -1 y -1 to 1.2 t ha -1 y -1 . 137 Cs and 7 Be were also used for assessment of soil erosion rates for two 0.5 ha coffee plots with the slope gradient of about 25%. For the plot without soil conservation, soil erosion occurred for all sampling points with medium-term erosion rates ranging between 1.2 t ha -1 y -1 and 35 t ha -1 y -1 (the average erosion rate was 22.7 ± 1.2 t ha -1 y -1 ). The short term soil erosion rate estimated by 7 Be technique in the year 2005 was 32.7 ± 6.1 t ha -1 y -1 for this plot. For the plot with the last five year presence of Vetiver strips, about 93% of the area suffered from medium term erosion with erosion rates varying from 3 t ha -1 y -1 to 33 t ha -1 y -1 (the mean is 22.2 t ha -1 y -1 ), and medium term deposition occurred for only 7% of the area with the deposition rates ranging between 1.3 and 1.4 t ha -1 y -1 , resulting in the net erosion rate of 20.4 ± 0.6 t ha -1 y -1 . The short term soil erosion rate at this plot estimated by 7 Be technique in the year 2005 was 2.3 t ha -1 y -1 . By using Vetiver strips as a soil conservation technology

  8. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation.

    NARCIS (Netherlands)

    Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.K.; Kibunja, C.N.; Pulleman, M.M.

    2011-01-01

    Maintenance of soil organic matter through integrated soil fertility management is important for soil quality and agricultural productivity, and for the persistence of soil faunal diversity and biomass. Little is known about the interactive effects of soil fertility management and soil macrofauna

  9. Restoration of degraded arid farmland at Project Wadi Attir: Impact of conservation on biological productivity and soil organic matter

    Science.gov (United States)

    Mor-Mussery, Amir; Helman, David; Ben Eli, Michael; Leu, Stefan

    2017-04-01

    The Israeli Negev Desert, as most Mediterranean drylands, is profoundly degraded. We have been documenting degradation and successful rehabilitation approaches in recent research, aiming at maximizing environmental and economic benefits while restoring healthy dryland soils and perennial vegetation to act as carbon sinks. These methods have been implemented for rehabilitation of Project Wadi Attir's. 50 hectares of heavily degraded farmland suffering from intensive soil erosion (expressed in dense gullies net and massive overland flow). Project Wadi Attir is a groundbreaking initiative of the Bedouin community in the Negev, for establishing a model sustainable agricultural operation. The project was initiated by the US-based Sustainability Laboratory and the Hura Municipal Council. The project is designed to demonstrate implementation of holistic sustainability principles developed by The Lab. The project's ecosystem restoration component involves site development, erosion control, soil conservation and improvement, planting of native and agroforestry trees, together with conservation and protection of biodiversity hotspots and avoiding grazing have, within three years, revealed the high biodiversity and productivity potential of this arid/semi-arid landscape. A number of shrublands and loess plots were subject to strict conservation, avoiding tilling and grazing. Soil fertility, productivity and biodiversity of these conserved plots inside the farm boundaries was compared to similar unprotected plots outside the farm fences by sampling in the field and by using satellite imaging. Our findings indicate a gradual improvement of SOM content specifically in the conserved shrubland area. Water infiltration, herbaceous biomass productivity and ants' activity of the protected plots also significantly increased within 3 years compared to the unprotected control areas. Starting from similar soil organic matter content in 2013 (3.3%) in the rocky slopes, in 2016 1% higher

  10. Soil management practices for sustainable crop production

    International Nuclear Information System (INIS)

    Abalos, E.B.

    2005-01-01

    In a sustainable system, the soil is viewed as a fragile and living medium that must be protected and nurtured to ensure its long-term productivity and stability. However, due to high demand for food brought about by high population as well as the decline in agricultural lands, the soil is being exploited beyond its limit thus, leading to poor or sick soils. Sound soil management practices in the Philippines is being reviewed. The technologies, including the advantages and disadvantages are hereby presented. This includes proper cropping systems, fertilizer program, soil erosion control and correcting soil acidity. Sound soil management practices which conserve organic matter for long-term sustainability includes addition of compost, maintaining soil cover, increasing aggregates stability, soil tilt and diversity of soil microbial life. A healthy soil is a key component to sustainability as a health soil produce healthy crop plants and have optimum vigor or less susceptible to pests. (author)

  11. Does land tenure security matter for investment in soil and water conservation? Evidence from Kenya

    NARCIS (Netherlands)

    Kabubo-Mariara, J.; Linderhof, V.G.M.; Kruseman, G.

    2010-01-01

    This paper investigates the impact of tenure security and other factors on investment in soil and water conservation (SWC) in Kenya. Factor analysis, step-wise regression and reduced form model approaches are used to explain the willingness, likelihood and intensity of adoption of SWC investments.

  12. Tillage for soil and water conservation in the semi-arid Tropics

    NARCIS (Netherlands)

    Hoogmoed, W.

    1999-01-01

    Soil tillage is the manipulation of soil which is generally considered as necessary to obtain optimum growth conditions for a crop. In the same time the resulting modification of soil structure has serious implications for the behaviour of the soil to erosive forces by water and wind. In

  13. Soil ecology of a rock outcrop ecosystem: Abiotic stresses, soil respiration, and microbial community profiles in limestone cedar glades

    Science.gov (United States)

    Cartwright, Jennifer M.; Advised by Dzantor, E. Kudjo

    2015-01-01

    Limestone cedar glades are a type of rock outcrop ecosystem characterized by shallow soil and extreme hydrologic conditions—seasonally ranging from xeric to saturated—that support a number of plant species of conservation concern. Although a rich botanical literature exists on cedar glades, soil biochemical processes and the ecology of soil microbial communities in limestone cedar glades have largely been ignored. This investigation documents the abiotic stress regime of this ecosystem (shallow soil, extreme hydrologic fluctuations and seasonally high soil surface temperatures) as well as soil physical and chemical characteristics, and relates both types of information to ecological structures and functions including vegetation, soil respiration, and soil microbial community metabolic profiles and diversity. Methods used in this investigation include field observations and measurements of soil physical and chemical properties and processes, laboratory analyses, and microbiological assays of soil samples.

  14. Long-term hydrological simulation based on the Soil Conservation Service curve number

    Science.gov (United States)

    Mishra, Surendra Kumar; Singh, Vijay P.

    2004-05-01

    Presenting a critical review of daily flow simulation models based on the Soil Conservation Service curve number (SCS-CN), this paper introduces a more versatile model based on the modified SCS-CN method, which specializes into seven cases. The proposed model was applied to the Hemavati watershed (area = 600 km2) in India and was found to yield satisfactory results in both calibration and validation. The model conserved monthly and annual runoff volumes satisfactorily. A sensitivity analysis of the model parameters was performed, including the effect of variation in storm duration. Finally, to investigate the model components, all seven variants of the modified version were tested for their suitability.

  15. 1rst Congress of the Cuban Society of Soil Sciences

    International Nuclear Information System (INIS)

    1988-01-01

    Abstracts from different works presented at the 1st Congress of the Cuban Society of Soil Sciences (Havana, December 1988) are contained in this book. Works have been performed on soil genesis, classification and cartography; soil erosion, conservation and improvement; agrochemicstry; soil physics and technology, and biology of soils

  16. Defra Soil Protection Research in the Context of the Soil Natural Capital / Ecosystem Services Framework

    OpenAIRE

    Robinson, David A.; Cooper, David; Emmett, Bridget A.; Evans, Chris D.; Keith, Aidan; Lebron, Inma; Lofts, Stephen; Norton, Lisa; Reynolds, Brian; Tipping, Edward; Rawlins, Barry G.; Tye, Andrew M.; Watts, Chris W.; Whalley, W. Richard; Black, Helaina I.J.

    2011-01-01

    Summary: "A Nation that destroys its soil destroys itself." This quote from, F.D. Roosevelt, 1937, from a letter written to all state Governors in the USA following the dust bowl, encapsulates the importance of soil protection. The dust bowl brought about legislation to protect and conserve soils as a fundamental natural resource in the USA between 1930 and 1936. In current times we are facing unprecedented pressure on land resources from multiple uses here in the UK and across Euro...

  17. The influence of conservation tillage methods on soil water regimes in semi-arid southern Zimbabwe

    Science.gov (United States)

    Mupangwa, W.; Twomlow, S.; Walker, S.

    Planting basins and ripper tillage practices are major components of the recently introduced conservation agriculture package that is being extensively promoted for smallholder farming in Zimbabwe. Besides preparing land for crop planting, these two technologies also help in collecting and using rainwater more efficiently in semi-arid areas. The basin tillage is being targeted for households with limited or no access to draught animals while ripping is meant for smallholder farmers with some draught animal power. Trials were established at four farms in Gwanda and Insiza in southern Zimbabwe to determine soil water contributions and runoff water losses from plots under four different tillage treatments. The tillage treatments were hand-dug planting basins, ripping, conventional spring and double ploughing using animal-drawn implements. The initial intention was to measure soil water changes and runoff losses from cropped plots under the four tillage practices. However, due to total crop failure, only soil water and runoff were measured from bare plots between December 2006 and April 2007. Runoff losses were highest under conventional ploughing. Planting basins retained most of the rainwater that fell during each rainfall event. The amount of rainfall received at each farm significantly influenced the volume of runoff water measured. Runoff water volume increased with increase in the amount of rainfall received at each farm. Soil water content was consistently higher under basin tillage than the other three tillage treatments. Significant differences in soil water content were observed across the farms according to soil types from sand to loamy sand. The basin tillage method gives a better control of water losses from the farmers’ fields. The planting basin tillage method has a greater potential for providing soil water to crops than ripper, double and single conventional ploughing practices.

  18. Soil Formation and Distribution in Missouri. Instructional Unit. Conservation Education Series.

    Science.gov (United States)

    Castillon, David A.

    This unit is designed to help vocational agriculture teachers incorporate information on soil formation and the soils geography of Missouri into their curriculum. The unit consists of: (1) a topic outline; (2) general unit objectives; (3) discussions of processes and factors of soil formation, the soils geography of Missouri, and some soil…

  19. [Effects of planting system on soil and water conservation and crop output value in a sloping land of Southwest China].

    Science.gov (United States)

    Xiang, Da-Bing; Yong, Tai-Wen; Yang, Wen-Yu; Yu, Xiao-Bo; Guo, Kai

    2010-06-01

    A three-year experiment was conducted to study the effects of wheat/maize/soybean with total no-tillage and mulching (NTM), wheat/maize/soybean with part no-tillage and part mulching (PTM), wheat/maize/soybean with total tillage without mulching (TWM), and wheat/maize/ sweet potato with total tillage without mulching (TWMS) on the soil and water conservation, soil fertility, and crop output value in a sloping land of Southwest China. The average soil erosion amount and surface runoff of NTM were significantly lower than those of the other three planting systems, being 1189 kg x hm(-2) and 215 m3 x hm(-2), and 10.6% and 84.7% lower than those of TWMS, respectively. The soil organic matter, total N, available K and available N contents of NTM were increased by 15.7%, 18.2%, 55.2%, and 25.9%, respectively, being the highest among the test planting systems. PTM and TWM took the second place, and TWMS pattern had the least. NTM had the highest annual crop output value (18809 yuan x hm(-2)) and net income (12619 yuan x hm(-2)) in three years, being 2.2% -20.6% and 3.8% -32.9% higher than other three planting systems, respectively. In a word, the planting system wheat/maize/soybean was more beneficial to the water and soil conservation and the improvement of soil fertility and crop output value, compared with the traditional planting system wheat/maize/sweet potato.

  20. Agricultural implications of providing soil-based constraints on urban expansion: Land use forecasts to 2050.

    Science.gov (United States)

    Smidt, Samuel J; Tayyebi, Amin; Kendall, Anthony D; Pijanowski, Bryan C; Hyndman, David W

    2018-07-01

    Urbanization onto adjacent farmlands directly reduces the agricultural area available to meet the resource needs of a growing society. Soil conservation is a common objective in urban planning, but little focus has been placed on targeting soil value as a metric for conservation. This study assigns commodity and water storage values to the agricultural soils across all of the watersheds in Michigan's Lower Peninsula to evaluate how cities might respond to a soil conservation-based urbanization strategy. Land Transformation Model (LTM) simulations representing both traditional and soil conservation-based urbanization, are used to forecast urban area growth from 2010 to 2050 at five year intervals. The expansion of urban areas onto adjacent farmland is then evaluated to quantify the conservation effects of soil-based development. Results indicate that a soil-based protection strategy significantly conserves total farmland, especially more fertile soils within each soil type. In terms of revenue, ∼$88 million (in current dollars) would be conserved in 2050 using soil-based constraints, with the projected savings from 2011 to 2050 totaling more than $1.5 billion. Soil-based urbanization also increased urban density for each major metropolitan area. For example, there were 94,640 more acres directly adjacent to urban land by 2050 under traditional development compared to the soil-based urbanization strategy, indicating that urban sprawl was more tightly contained when including soil value as a metric to guide development. This study indicates that implementing a soil-based urbanization strategy would better satisfy future agricultural resource needs than traditional urban planning. Copyright © 2018. Published by Elsevier Ltd.

  1. Searching for plant root traits to improve soil cohesion and resist soil erosion

    Science.gov (United States)

    De Baets, Sarah; Smyth, Kevin; Denbigh, Tom; Weldon, Laura; Higgins, Ben; Matyjaszkiewicz, Antoni; Meersmans, Jeroen; Chenchiah, Isaac; Liverpool, Tannie; Quine, Tim; Grierson, Claire

    2017-04-01

    Soil erosion poses a serious threat to future food and environmental security. Soil erosion protection measures are therefore of great importance for soil conservation and food security. Plant roots have proven to be very effective in stabilizing the soil and protecting the soil against erosion. However, no clear insights are yet obtained into the root traits that are responsible for root-soil cohesion. This is important in order to better select the best species for soil protection. Research using Arabidopsis mutants has made great progress towards explaining how root systems are generated by growth, branching, and responses to gravity, producing mutants that affect root traits. In this study, the performance of selected Arabidopsis mutants is analyzed in three root-soil cohesion assays. Measurements of detachment, uprooting force and soil detachment are here combined with the microscopic analysis of root properties, such as the presence, length and density of root hairs in this case. We found that Arabidopsis seedlings with root hairs (wild type, wer myb23, rsl4) were more difficult to detach from gel media than hairless (cpc try) or short haired (rsl4, rhd2) roots. Hairy roots (wild type, wer myb23) on mature, non-reproductive rosettes were more difficult to uproot from compost or clay soil than hairless roots (cpc try). At high root densities, erosion rates from soils with hairless roots (cpc try) were as much as 10 times those seen from soils occupied by roots with hairs (wer myb23, wild type). We find therefore root hairs play a significant role in root-soil cohesion and in minimizing erosion. This framework and associated suite of experimental assays demonstrates its ability to measure the effect of any root phenotype on the effectiveness of plant roots in binding substrates and reducing erosion.

  2. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    Science.gov (United States)

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  3. Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: an overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project

    International Nuclear Information System (INIS)

    Dercon, G.; Mabit, L.; Hancock, G.; Nguyen, M.L.; Dornhofer, P.; Bacchi, O.O.S.; Benmansour, M.; Bernard, C.; Froehlich, W.; Golosov, V.N.; Haciyakupoglu, S.; Hai, P.S.; Klik, A.

    2012-01-01

    This paper summarizes key findings and identifies the main lessons learnt from a 5-year (2002–2008) coordinated research project (CRP) on “Assessing the effectiveness of soil conservation measures for sustainable watershed management and crop production using fallout radionuclides” (D1.50.08), organized and funded by the International Atomic Energy Agency through the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The project brought together nineteen participants, from Australia, Austria, Brazil, Canada, Chile, China, Japan, Morocco, Pakistan, Poland, Romania, Russian Federation, Turkey, United Kingdom, United States of America and Vietnam, involved in the use of nuclear techniques and, more particularly, fallout radionuclides (FRN) to assess the relative impacts of different soil conservation measures on soil erosion and land productivity. The overall objective of the CRP was to develop improved land use and management strategies for sustainable watershed management through effective soil erosion control practices, by the use of 137 Cs (half-life of 30.2 years), 210 Pb ex (half-life of 22.3 years) and 7 Be (half-life of 53.4 days) for measuring soil erosion over several spatial and temporal scales. The environmental conditions under which the different research teams applied the tools based on the use of fallout radionuclides varied considerably – a variety of climates, soils, topographies and land uses. Nevertheless, the achievements of the CRP, as reflected in this overview paper, demonstrate that fallout radionuclide-based techniques are powerful tools to assess soil erosion/deposition at several spatial and temporal scales in a wide range of environments, and offer potential to monitor soil quality. The success of the CRP has stimulated an interest in many IAEA Member States in the use of these methodologies to identify factors and practices that can enhance sustainable agriculture and minimize land degradation. - Highlights:

  4. ES1406 COST Action: Soil fauna: Key to Soil Organic Matter Dynamicsand Fertility. How far have we got?

    DEFF Research Database (Denmark)

    Jiménez, Juan; Filser, Juliane; Barot, Sébastien

    Soil organic matter (SOM) is key to soil fertility, climate change mitigation, combatting land degradation, and the conservation of above- and below-ground biodiversity and associated ecosystem services like decomposition, nutrient cycling, carbon sequestration, detoxification and maintenance...... of soil physico-chemical properties. SOM dynamics represent the balance between the input of plant material (residues, root-derived materials) and the output through decomposition (OM mineralization) by organisms, erosion and leaching. Approximately 20% of global CO2 emissions, one third of global CH4...... emissions and two thirds of N2O emissions originate from soils. In many soils, most of the macro-aggregate structure is formed by the activities of soil invertebrates and roots, with important consequences for soil organic matter dynamics, carbon sequestration and water infiltration at several spatial...

  5. How to Perform Precise Soil and Sediment Sampling? One solution: The Fine Increment Soil Collector (FISC)

    Energy Technology Data Exchange (ETDEWEB)

    Mabit, L.; Toloza, A. [Soil and Water Management and Crop Nutrition Laboratory, IAEA, Seibersdorf (Austria); Meusburger, K.; Alewell, C. [Environmental Geosciences, Department of Environmental Sciences, University of Basel, Basel (Switzerland); Iurian, A-R. [Babes-Bolyai University, Faculty of Environmental Science and Engineering, Cluj-Napoca (Romania); Owens, P. N. [Environmental Science Program and Quesnel River Research Centre, University of Northern British Columbia, Prince George, British Columbia (Canada)

    2014-07-15

    Soil and sediment related research for terrestrial agrienvironmental assessments requires accurate depth incremental sampling to perform detailed analysis of physical, geochemical and biological properties of soil and exposed sediment profiles. Existing equipment does not allow collecting soil/sediment increments at millimetre resolution. The Fine Increment Soil Collector (FISC), developed by the SWMCN Laboratory, allows much greater precision in incremental soil/sediment sampling. It facilitates the easy recovery of collected material by using a simple screw-thread extraction system (see Figure 1). The FISC has been designed specifically to enable standardized scientific investigation of shallow soil/sediment samples. In particular, applications have been developed in two IAEA Coordinated Research Projects (CRPs): CRP D1.20.11 on “Integrated Isotopic Approaches for an Area-wide Precision Conservation to Control the Impacts of Agricultural Practices on Land Degradation and Soil Erosion” and CRP D1.50.15 on “Response to Nuclear Emergencies Affecting Food and Agriculture.”.

  6. How to Perform Precise Soil and Sediment Sampling? One solution: The Fine Increment Soil Collector (FISC)

    International Nuclear Information System (INIS)

    Mabit, L.; Toloza, A.; Meusburger, K.; Alewell, C.; Iurian, A-R.; Owens, P.N.

    2014-01-01

    Soil and sediment related research for terrestrial agrienvironmental assessments requires accurate depth incremental sampling to perform detailed analysis of physical, geochemical and biological properties of soil and exposed sediment profiles. Existing equipment does not allow collecting soil/sediment increments at millimetre resolution. The Fine Increment Soil Collector (FISC), developed by the SWMCN Laboratory, allows much greater precision in incremental soil/sediment sampling. It facilitates the easy recovery of collected material by using a simple screw-thread extraction system (see Figure 1). The FISC has been designed specifically to enable standardized scientific investigation of shallow soil/sediment samples. In particular, applications have been developed in two IAEA Coordinated Research Projects (CRPs): CRP D1.20.11 on “Integrated Isotopic Approaches for an Area-wide Precision Conservation to Control the Impacts of Agricultural Practices on Land Degradation and Soil Erosion” and CRP D1.50.15 on “Response to Nuclear Emergencies Affecting Food and Agriculture.”

  7. Fallout radionuclide based techniques for assessing the effectiveness of soil conservation measures in different eroded regions of China

    International Nuclear Information System (INIS)

    Yu Hanqing; Li Yong; Liu Guoqiang; Li Junjie; Nguyen, M.L.; Funk, R.

    2012-01-01

    Using fallout radionuclide techniques (FRN), we investigated the extent of soil erosion and to quantify the beneficial effects of soil conservation measures at four sites (Xichang city in the Yangtze upriver, Yan'an in the Loess Plateau, Fengning in the wind erosion region of northern China, and Baiquan in black soil region of north-eastern China) extending from South West (SW) to North East (NE) China. At the Xichang site of SW-China, the combined use of FRN 137 Cs and 210 Pbex measurements demonstrated that the effectiveness of vegetation species in reducing soil erosion decreased in the following order: shrubs > trees with litter layer > grasses > trees without litter layer. At the Yan'an site of Loess Plateau, sediment production estimated by 137 Cs declined by 49% due to terracing and by 80% due to vegetated (with grass forest) compared to the cultivated hillslopes. Vegetated hillslope with grasses and forest increased soil organic matter (SOM) by 255%, soil available N (AN) by 198%, and soil available P (AP) by 18% while terracing increased SOM by 121%, soil AN by 103%, and soil AP by 162% compared with the entire cultivated hillslope. Both terracing and vegetating hillslopes were found to enhance soil porosity as shown by a decrease in soil bulk density (1.6% and 6.4%, respectively). At the Fengning site, data from 7 Be measurements indicated that four years of no tillage with high crop residues (50 ∼ 56 cm depth) reduced soil erosion by 44% and no tillage with low residues (25 cm depth) reduced soil erosion rates by 33% when compared with conventional tillage practices. At the Baiquan site in NE-China, soil loss as measured by 137 Cs tracer, decreased by 14% due to terracing and by 34% due to contoured tillage. Our results suggested that shrub cover and composite structure of forest and grass are the effective practices to control hillslope erosion in SW-China, while terracing forest-grass structure can greatly reduce soil erosion and improve soil quality

  8. Awareness and Adoption of Soil and Water Conservation Technologies in a Developing Country: A Case of Nabajuzi Watershed in Central Uganda

    Science.gov (United States)

    Kagoya, Sarah; Paudel, Krishna P.; Daniel, Nadhomi L.

    2018-02-01

    Soil and water conservation technologies have been widely available in most parts of Uganda. However, not only has the adoption rate been low but also many farmers seem not to be aware of these technologies. This study aims at identifying the factors that influence awareness and adoption of soil and water conservation technologies in Nabajuzi watershed in central Uganda. A bivariate probit model was used to examine farmers' awareness and adoption of soil and water conservation technologies in the watershed. We use data collected from the interview of 400 households located in the watershed to understand the factors affecting the awareness and adoption of these technologies in the study area. Findings indicate that the likelihood of being aware and adopting the technologies are explained by the age of household head, being a tenant, and number of years of access to farmland. To increase awareness and adoption of technologies in Uganda, policymakers may expedite the process of land titling as farmers may feel secure about landholding and thus adopt these technologies to increase profitability and productivity in the long run. Incentive payments to farmers residing in the vulnerable region to adopt these considered technologies may help to alleviate soil deterioration problems in the affected area.

  9. Alternatives to crop residues for soil amendment

    OpenAIRE

    Powell, J.M.; Unger, P.W.

    1997-01-01

    Metadata only record In semiarid agroecosystems, crop residues can provide important benefits of soil and water conservation, nutrient cycling, and improved subsequent crop yields. However, there are frequently multiple competing uses for residues, including animal forage, fuel, and construction material. This chapter discusses the various uses of crop residues and examines alternative soil amendments when crop residues cannot be left on the soil.

  10. Climate Strategic Soil Management

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2014-02-01

    Full Text Available The complex and strong link between soil degradation, climate change and food insecurity is a global challenge. Sustainable agricultural systems must be integral to any agenda to address climate change and variability, improve renewable fresh water supply and quality, restore degraded soils and ecosystems and advance food security. These challenges are being exacerbated by increasing population and decreasing per capita arable land area and renewable fresh water supply, the increasing frequency of extreme events, the decreasing resilience of agroecosystems, an increasing income and affluent lifestyle with growing preference towards meat-based diet and a decreasing soil quality and use efficiency of inputs. Reversing these downward spirals implies the implementation of proven technologies, such as conservation agriculture, integrated nutrient management, precision agriculture, agroforestry systems, etc. Restoration of degraded soil and desertified ecosystems and the creation of positive soil and ecosystem C budgets are important. Urban agriculture and green roofs can reduce the energy footprint of production chains for urban and non-urban areas and enhance the recycling of by-products. Researchable priorities include sustainable land use and soil/water management options, judicious soil governance and modus operandi towards payments to land managers for the provisioning of ecosystem services.

  11. Enzyme activities by indicator of quality in organic soil

    Science.gov (United States)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  12. Modelling soil erosion reduction by mahonia aquifolium on hillslopes in hungary: The impact of soil stabilization by roots

    NARCIS (Netherlands)

    Hudek, C.; Sterk, Geert; van Beek, Rens L P H; de Jong, Steven M.

    2014-01-01

    Agricultural activities on hillslopes often cause soil erosion and degradation. Permanent vegetation strips on cultivated slopes could be an effective soil conservation technique to reduce erosion. Previous studies showed that cultivated Mahonia aquifolium can be an effective plant for water erosion

  13. 77 FR 12234 - Changes in Hydric Soils Database Selection Criteria

    Science.gov (United States)

    2012-02-29

    ... Conservation Service [Docket No. NRCS-2011-0026] Changes in Hydric Soils Database Selection Criteria AGENCY... Changes to the National Soil Information System (NASIS) Database Selection Criteria for Hydric Soils of the United States. SUMMARY: The National Technical Committee for Hydric Soils (NTCHS) has updated the...

  14. Soil cover of gas-bearing areas

    Science.gov (United States)

    Mozharova, N. V.

    2010-08-01

    Natural soils with disturbed functioning parameters compared to the background soils with conservative technogenic-pedogenic features were distinguished on vast areas above the artificial underground gas storages in the zones of spreading and predominant impact of hydrocarbon gases. The disturbance of the functioning parameters is related to the increase in the methane concentration, the bacterial oxidation intensity and destruction, and the complex microbiological and physicochemical synthesis of iron oxides. The technogenic-pedogenic features include neoformations of bacteriomorphic microdispersed iron oxides. The impurity components consist of elements typical for biogenic structures. New soil layers, horizons, specific anthropogenically modified soils, and soil-like structures were formed on small areas in the industrial zones of underground gas storages due to the mechanical disturbance, the deposition of drilling sludge, and the chemical contamination. Among the soils, postlithogenic formations were identified—chemotechnosols (soddy-podzolic soils and chernozems), as well as synlithogenic ones: strato-chemotechnosols and stratochemoembryozems. The soil-like bodies included postlithogenic soil-like structures (chemotechnozems) and synlithogenic ones (strato-chemotechnozems). A substantive approach was used for the soil diagnostics. The morphological and magnetic profiles and the physical, chemical, and physicochemical properties of the soils were analyzed. The micromorphological composition of the soil magnetic fraction was used as a magnetic label.

  15. Post-adoption behaviour of farmers towards soil and water conservation technologies of watershed management in India

    Directory of Open Access Journals (Sweden)

    Gopal Lal Bagdi

    2015-09-01

    Full Text Available The Indian Institute of Soil and Water Conservation (IISWC and its Research Centres have developed many successful model watershed projects in India in the past and implemented many Soil and Water Conservation (SWC technologies for sustainable watershed management. While many evaluation studies were conducted on these projects in the past, there has been no assessment of the post-adoption status of the SWC technologies over a longer period. It was imperative to appraise the behaviour of the farmers with regard to the continuance or discontinuance of the technologies adopted, diffusion or infusion that took place and technological gaps that occurred in due course of time in the post watershed programme. Therefore, it was realized that the post-adoption behaviour of beneficiary farmers who have adopted different soil and water conservation technologies for watershed management projects should be studied in detail. The research study was initiated in 2012 as a core project at Vasad as the lead Centre along with IISWC headquarter Dehradun, and Centres Agra, Bellary, Chandigarh, Datia, Kota & Ooty, with the specific objectives of the study to measure the extent of post-adoption behaviour (continued-adoption, discontinuance, technological gap, diffusion and infusion of farmers towards the adopted SWC technologies of watershed management. In the present study various indices regarding continued adoption, dis-adoption (discontinuance, technological gap, diffusion, infusion regarding soil and water conservation technologies for watershed management were developed for measurement of post-adoption behaviour of farmers. It was revealed that a little less than three-fourth (73% of SWC technologies continued to be adopted and more than one-fourth (27% were discontinued by farmers. Out of the total continue adopted SWC technologies by farmers, a little less than one-fifth (19% of technologies continued to be adopted with a technological gap. More than one

  16. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  17. 'Cabernet Sauvignon' grape anthocyanin increased by soil conservation practices

    Science.gov (United States)

    Cover crops and no-till (mown) systems provide multiple benefits to vineyard soils such as improvements in soil organic matter and reductions in erosion and dust generation. Understanding the effects of such practices on grape attributes will contribute to the sustainability of the production system...

  18. [Effects of conservation tillage on soil CO2 and N2O emission during the following winter-wheat season].

    Science.gov (United States)

    Pan, Ying; Hu, Zheng-Hu; Wu, Yang-Zhou; Sun, Yin-Yin; Sheng, Lu; Chen, Shu-Tao; Xiao, Qi-Tao

    2014-07-01

    In order to study the effect of conservation tillage on soil CO2 and N2O emissions in the following crop-growing season, field experiments were conducted in the winter wheat-growing season. Four treatments were conventional tillage (T), no-tillage with no straw cover (NT), no-tillage with straw cover (NTS), and conventional tillage with straw incorporation (TS), respectively. The CO2 and N2O fluxes were measured using a static chamber-gas chromatograph technique. The results showed that in the following winter wheat-growing season, conservation tillage did not change the seasonal pattern of CO2 and N2O emission fluxes from soil, and had no significant effect on crop biomass. Conservation tillage significantly reduced the accumulative amount of CO2 and N2O. Compared with the T treatment, the accumulative amount of CO2 under TS, NT, and NTS treatments were reduced by 5.95% (P = 0.132), 12.94% (P = 0.007), and 13.91% (P = 0.004), respectively, and the accumulative amount of N2O were significantly reduced by 31.23% (P = 0.000), 61.29% (P = 0.000), and 33.08% (P = 0.000), respectively. Our findings suggest that conservation tillage significantly reduced CO2 and N2O emission from soil in the following winter wheat-growing season.

  19. A global predictive model of carbon in mangrove soils

    Science.gov (United States)

    Jardine, Sunny L.; Siikamäki, Juha V.

    2014-10-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to

  20. Economic benefits of combining soil and water conservation measures with nutrient management in semiarid Burkina Faso

    NARCIS (Netherlands)

    Zougmoré, R.; Mando, A.; Stroosnijder, L.; Ouédraogo, E.

    2004-01-01

    Nutrient limitation is the main cause of per capita decline in crop production in the Sahel, where water shortage also limits an efficient use of available nutrients. Combining soil and water conservation measures with locally available nutrient inputs may optimize crop production and economic

  1. Agrogenic degradation of soils in Krasnoyarsk forest-steppe

    Science.gov (United States)

    Shpedt, A. A.; Trubnikov, Yu. N.; Zharinova, N. Yu.

    2017-10-01

    Agrogenic degradation of soils in Krasnoyarsk forest-steppe was investigated. Paleocryogenic microtopography of microlows and microhighs in this area predetermined the formation of paragenetic soil series and variegated soil cover. Specific paleogeographic conditions, thin humus horizons and soil profiles, and long-term agricultural use of the land resulted in the formation of soils unstable to degradation processes and subjected to active wind and water erosion. Intensive mechanical soil disturbances during tillage and long-term incorporation of the underlying Late Pleistocene (Sartan) calcareous silty and clay loams into the upper soil horizons during tillage adversely affected the soil properties. We determined the contents of total and labile humus and easily decomposable organic matter and evaluated the degree of soil exhaustion. It was concluded that in the case of ignorance of the norms of land use and soil conservation practices, intense soil degradation would continue leading to complete destruction of the soil cover within large areas.

  2. Improved Soil Erosion and Sediment Transport in GSSHA

    Science.gov (United States)

    2010-08-01

    the USLE soil erodibility factor (0-1), soil cropping factor (0-1) and conservation factor (0-1) in the development by Julien (1995). The use of one...factor K represents a departure from Julien (1995), who used all three factors from the Universal Soil Loss Equation ( USLE ). This departure is justi...runoff using a research-quality data set. BACKGROUND: GSSHA simulates overland soil erosion and outputs erosion and deposition for any size class of

  3. A framework of connections between soil and people can help improve sustainability of the food system and soil functions.

    Science.gov (United States)

    Ball, Bruce C; Hargreaves, Paul R; Watson, Christine A

    2018-04-01

    Globally soil quality and food security continue to decrease indicating that agriculture and the food system need to adapt. Improving connection to the soil by knowledge exchange can help achieve this. We propose a framework of three types of connections that allow the targeting of appropriate messages to different groups of people. Direct connection by, for example, handling soil develops soil awareness for management that can be fostered by farmers joining groups on soil-focused farming such as organic farming or no-till. Indirect connections between soil, food and ecosystem services can inform food choices and environmental awareness in the public and can be promoted by, for example, gardening, education and art. Temporal connection revealed from past usage of soil helps to bring awareness to policy workers of the need for the long-term preservation of soil quality for environmental conservation. The understanding of indirect and temporal connections can be helped by comparing them with the operations of the networks of soil organisms and porosity that sustain soil fertility and soil functions.

  4. Conservation of soil organic carbon, biodiversity and the provision of other ecosystem services along climatic gradients in West Africa

    Directory of Open Access Journals (Sweden)

    E. Marks

    2009-08-01

    Full Text Available Terrestrial carbon resources are major drivers of development in West Africa. The distribution of these resources co-varies with ecosystem type and rainfall along a strong Northeast-Southwest climatic gradient. Soil organic carbon, a strong indicator of soil quality, has been severely depleted in some areas by human activities, which leads to issues of soil erosion and desertification, but this trend can be altered with appropriate management. There is significant potential to enhance existing soil carbon stores in West Africa, with benefits at the global and local scale, for atmospheric CO2 mitigation as well as supporting and provisioning ecosystem services. Three key factors impacting carbon stocks are addressed in this review: climate, biotic factors, and human activities. Climate risks must be considered in a framework of global change, especially in West Africa, where landscape managers have few resources available to adapt to climatic perturbations. Among biotic factors, biodiversity conservation paired with carbon conservation may provide a pathway to sustainable development, and biodiversity conservation is also a global priority with local benefits for ecosystem resilience, biomass productivity, and provisioning services such as foodstuffs. Finally, human management has largely been responsible for reduced carbon stocks, but this trend can be reversed through the implementation of appropriate carbon conservation strategies in the agricultural sector, as shown by multiple studies. Owing to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches for multiple ecosystem types. Given the diversity of environments, global policies must be adapted and strategies developed at the national or sub-national levels to improve carbon storage above and belowground. Initiatives of this sort must act locally at farmer scale, and focus on ecosystem services rather than on carbon

  5. A Soil Service Index: Peatland soils as a case study for quantifying the value, vulnerability, and status of soils

    Science.gov (United States)

    Loisel, J.; Harden, J. W.; Hugelius, G.

    2017-12-01

    What are the most important soil services valued by land stewards and planners? Which soil-data metrics can be used to quantify each soil service? What are the steps required to quantitatively index the baseline value of soil services and their vulnerability under different land-use and climate change scenarios? How do we simulate future soil service pathways (or trajectories) under changing management regimes using process-based ecosystem models? What is the potential cost (economic, social, and other) of soil degradation under these scenarios? How sensitive or resilient are soil services to prescribed management practices, and how does sensitivity vary over space and time? We are bringing together a group of scientists and conservation organizations to answer these questions by launching Soil Banker, an open and flexible tool to quantify soil services that can be used at any scale, and by any stakeholder. Our overarching goals are to develop metrics and indices to quantify peatland soil ecosystem services, monitor change of these services, and guide management. This paper describes our methodology applied to peatlands and presents two case studies (Indonesia and Patagonia) demonstrating how Peatland Soil Banker can be deployed as an accounting tool of peatland stocks, a quantitative measure of peatland health, and as a projection of peatland degradation or enhancement under different land-use cases. Why peatlands? They store about 600 billion tons of carbon that account for ⅓ of the world's soil carbon. Peatlands have dynamic GHG exchanges of CO2, CH4, and NOx with the atmosphere, which plays a role in regulating global climate; studies indicate that peatland degradation releases about 2-3 billion tons of CO2 to the atmosphere annually. These ecosystems also provide local and regional ecosystem services: they constitute important components of the N and P cycles, store about 10% of the world's freshwater and buffer large fluxes of freshwater on an annual basis

  6. Field soil-water properties measured through radiation techniques

    International Nuclear Information System (INIS)

    1984-07-01

    This report shows a major effort to make soil physics applicable to the behaviour of the field soils and presents a rich and diverse set of data which are essential for the development of effective soil-water management practices that improve and conserve the quality and quantity of agricultural lands. This piece of research has shown that the neutron moisture meter together with some complementary instruments like tensiometers, can be used not only to measure soil water contents but also be extremely handy to measure soil hydraulic characteristics and soil water flow. It is, however, recognized that hydraulic conductivity is highly sensitive to small changes in soil water content and texture, being extremely variable spatially and temporally

  7. iSOIL: Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping

    Science.gov (United States)

    Dietrich, Peter; Werban, Ulrike; Sauer, Uta

    2010-05-01

    High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the

  8. Soil and water conservation: Our history and future challenges

    Science.gov (United States)

    Remembering our past is an essential first step into the future. Building upon that philosophy, our objective is to summarize two presentations from a 2012 Soil Science Society of America (SSSA) symposium focused on soil management challenges in response to climate change in order to examine: (1) ho...

  9. Effects of soil water holding capacity on evapotranspiration and irrigation scheduling

    Science.gov (United States)

    The USDA Natural Resources Conservation Service (NRCS), through the National Cooperative Soil Survey, developed three soil geographic databases that are appropriate for acquiring soil information at the national, regional, and local scales. These relational databases include the National Soil Geogra...

  10. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  11. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    replications. In one variant the area of a plot was 300 m2. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration; the daily average is lower at no-tillage (315-1914 mmoli m-2s-1), followed by minimum tillage (318-2395 mmoli m-2s-1) and is higher in the conventional tillage (321-2480 mmol m-2s-1). An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of long-term soil fertility. By determining the humus content after 3 years, it can be observed an increasing tendency when applying the minimum tillage (the increase was up to 0.41%) and no-tillage systems tillage (the increase was up to 0.64%). Carbon sequestration in soil is net advantageous, improving the productivity and sustainability. The more the organic content in soil is higher the better soil aggregation is. The soil without organic content is compact. This reduces its capacity to infiltrate water, nutrients solubility and productivity, and that way it reduces the soil capacity for carbon sequestration. Acknowledgments This paper was performed under the frame of the Partnership in priority domains - PNII, developed with the support of MEN-UEFISCDI, project no. PN-II-PT-PCCA-2013-4-0015: Expert System for Risk Monitoring in Agriculture and Adaptation of Conservative Agricultural Technologies to Climate Change.

  12. Soil and Soil Water Relationships

    OpenAIRE

    Easton, Zachary M.; Bock, Emily

    2017-01-01

    Discusses the relationships between soil, water and plants. Discusses different types of soil, and how these soils hold water. Provides information about differences in soil drainage. Discusses the concept of water balance.

  13. Soil metagenomics and tropical soil productivity

    OpenAIRE

    Garrett, Karen A.

    2009-01-01

    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  14. Estimation of Soil Erosion Dynamics in the Koshi Basin Using GIS and Remote Sensing to Assess Priority Areas for Conservation.

    Science.gov (United States)

    Uddin, Kabir; Murthy, M S R; Wahid, Shahriar M; Matin, Mir A

    2016-01-01

    High levels of water-induced erosion in the transboundary Himalayan river basins are contributing to substantial changes in basin hydrology and inundation. Basin-wide information on erosion dynamics is needed for conservation planning, but field-based studies are limited. This study used remote sensing (RS) data and a geographic information system (GIS) to estimate the spatial distribution of soil erosion across the entire Koshi basin, to identify changes between 1990 and 2010, and to develop a conservation priority map. The revised universal soil loss equation (RUSLE) was used in an ArcGIS environment with rainfall erosivity, soil erodibility, slope length and steepness, cover-management, and support practice factors as primary parameters. The estimated annual erosion from the basin was around 40 million tonnes (40 million tonnes in 1990 and 42 million tonnes in 2010). The results were within the range of reported levels derived from isolated plot measurements and model estimates. Erosion risk was divided into eight classes from very low to extremely high and mapped to show the spatial pattern of soil erosion risk in the basin in 1990 and 2010. The erosion risk class remained unchanged between 1990 and 2010 in close to 87% of the study area, but increased over 9.0% of the area and decreased over 3.8%, indicating an overall worsening of the situation. Areas with a high and increasing risk of erosion were identified as priority areas for conservation. The study provides the first assessment of erosion dynamics at the basin level and provides a basis for identifying conservation priorities across the Koshi basin. The model has a good potential for application in similar river basins in the Himalayan region.

  15. The effectiveness of soil conservation measures at a landscape scale in the West Usambara highlands, Tanzania

    NARCIS (Netherlands)

    Wickama, Juma; Masselink, Rens; Sterk, Geert

    2015-01-01

    The adoption of soil and water conservation (SWC) technologies among small holder farmers in the East African highlands is an area which poses many challenges. When adoption occurs across a vast landscape, the locations and effectiveness of the adopted measures are often not adequately known. For

  16. Household-Level Determinants of Soil and Water Conservation Adoption Phases: Evidence from North-Western Ethiopian Highlands

    NARCIS (Netherlands)

    Teshome, Akalu; Graaff, de J.; Kassie, M.

    2016-01-01

    Soil and water conservation (SWC) practices have been promoted in the highlands of Ethiopia during the last four decades. However, the level of adoption of SWC practices varies greatly. This paper examines the drivers of different stages of adoption of SWC technologies in the north-western highlands

  17. Nexus Thinking on Soil Carbon Dynamics and Soil Health

    Science.gov (United States)

    Lal, R.

    2016-12-01

    Anthropocene is driven by global population of 7.5 billion in 2016, increasing annually by 80 million and projected to be 9.7 billion by 2050. The ecological impact (I=PAT, where P is population, A is affluence, and T is technology) of the population is similar to that of a geological force. Thus, humanity's impact is driven by demands for food, water, energy, and services derived from soil. Soil health, its capacity to function as a vital living system, is determined by quantity and quality of soil organic carbon (SOC) in the root zone ( 50cm). Maintenance of SOC at above the threshold level (1.5 to 2.0% by weight in the root zone) is critical to performing numerous ecosystem services for human wellbeing and nature conservancy. These services and functions strongly depend on nexus or inter-connectivity of biological processes within the pedosphere. The nexus is strongly governed by coupled biogeochemical cycling of water (H2O), carbon (C), nitrogen (N), phosphorus (P) and sulfur (S). Further, it is the nexus between pedological and biological processes that renews and purifies water by denaturing and filtering pollutants; circulates C among biotic and abiotic pools in close association with other elements (N, P, S); provides habitat and energy source for soil biota (macro, meso, and micro flora and fauna), facilitates exchanges of gases between soil and the atmosphere and moderates climate, and creates favorable rhizospheric processes that promote plant growth and enhance net primary productivity. Soil health, governed by SOC quality and quantity, determines the provisioning of numerous ecosystem services and the importance of nexus thinking is highlighted by the truism that "health of soil, plants, animals, human and ecosystem is one and indivisible." The sequestration of SOC depends on land use and soil management strategies which create a positive C budget. Thus, input of biomass-C into the soil must exceed the losses by erosion, mineralization and leaching

  18. Evaluating the effects of agricultural practices on soil conservation ...

    African Journals Online (AJOL)

    The main crops were maize, ginger, garden pea, cabbage and mulberry. The objective of the study was to contribute a simple method to evaluate the effect of different agricultural practices on the resistance of soil to erosion. Different agricultural practices were studied on similar relief and soil, and under similar weather ...

  19. Soil erodibility for water erosion: A perspective and Chinese experiences

    Science.gov (United States)

    Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric

    2013-04-01

    Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.

  20. Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: a phosphorus-31 nuclear magnetic resonance study.

    Science.gov (United States)

    Cade-Menun, Barbara J; Carter, Martin R; James, Dean C; Liu, Corey W

    2010-01-01

    In many regions, conservation tillage has replaced conventional tilling practices to reduce soil erosion, improve water conservation, and increase soil organic matter. However, tillage can have marked effects on soil properties, specifically nutrient redistribution or stratification in the soil profile. The objective of this research was to examine soil phosphorus (P) forms and concentrations in a long-term study comparing conservation tillage (direct drilling, "No Till") and conventional tillage (moldboard plowing to 20 cm depth, "Till") established on a fine sandy loam (Orthic Humo-Ferric Podzol) in Prince Edward Island, Canada. No significant differences in total carbon (C), total nitrogen (N), total P, or total organic P concentrations were detected between the tillage systems at any depth in the 0- to 60-cm depth range analyzed. However, analysis with phosphorus-31 nuclear magnetic resonance spectroscopy showed differences in P forms in the plow layer. In particular, the concentration of orthophosphate was significantly higher under No Till than Till at 5 to 10 cm, but the reverse was true at 10 to 20 cm. Mehlich 3-extractable P was also significantly higher in No Till at 5 to 10 cm and significantly higher in Till at 20 to 30 cm. This P stratification appears to be caused by a lack of mixing of applied fertilizer in No Till because the same trends were observed for pH and Mehlich 3-extractable Ca (significantly higher in the Till treatment at 20 to 30 cm), reflecting mixing of applied lime. The P saturation ratio was significantly higher under No Till at 0 to 5 cm and exceeded the recommended limits, suggesting that P stratification under No Till had increased the potential for P loss in runoff from these sites.

  1. Offsetting China's CO2 Emissions by Soil Carbon Sequestration

    International Nuclear Information System (INIS)

    Lal, R.

    2004-01-01

    Fossil fuel emissions of carbon (C) in China in 2000 was about 1 Pg/yr, which may surpass that of the U.S. (1.84 Pg C) by 2020. Terrestrial C pool of China comprises about 35 to 60 Pg in the forest and 120 to 186 Pg in soils. Soil degradation is a major issue affecting 145 Mha by different degradative processes, of which 126 Mha are prone to accelerated soil erosion. Similar to world soils, agricultural soils of China have also lost 30 to 50% or more of the antecedent soil organic carbon (SOC) pool. Some of the depleted SOC pool can be re-sequestered through restoration of degraded soils, and adoption of recommended management practices. The latter include conversion of upland crops to multiple cropping and rice paddies, adoption of integrated nutrient management (INM) strategies, incorporation of cover crops in the rotations cycle and adoption of conservation-effective systems including conservation tillage. A crude estimated potential of soil C sequestration in China is 119 to 226 Tg C/y of SOC and 7 to 138 Tg C/y for soil inorganic carbon (SIC) up to 50 years. The total potential of soil C sequestration is about 12 Pg, and this potential can offset about 25% of the annual fossil fuel emissions in China

  2. Confirmation of soil radiation damping from test versus analysis

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Mukhim, G.S.; Desmond, T.P.

    1987-01-01

    The work was performed to demonstrate that soil-structure interaction effects for nuclear plant structures can be accurately (and conservatively) predicted using the finite element or soil spring methods of soil-structure interaction analysis. Further, the work was done to investigate the relative importance of soil radiation versus soil material damping in the total soil damping analytical treatment. The analytical work was benchmarked with forced vibration tests of a concrete circular slab resting on the soil surface. The applied loading was in the form of a suddenly applied pulse load, or snapback. The measured responses of the slap represent the free vibration of the slab after the pulse load has been applied. This simplifies the interpretation of soil damping, by the use of the logarithmic decay formulation. To make comparisons with the test results, the damping data calculated from the analytical models is also based on the logarithmic decay formulation. An attempt is made to differentiate the observed damped behavior of the concrete slab as being caused by soil radiation versus soil material damping. It is concluded that both the traditional soil radiation and material damping analytical simplifications are validated by the observed responses. It is concluded that arbitrary 'conservative' assumptions traditionally made in nuclear plant soil-structure interaction analyses are indeed arbitrary, and not born out by physical evidence. The amount of conservatism introduced by limiting total soil damping to values like 5% to 10% can be large. For the test slab sizes investigated, total soil damping is about 25%. For full size nuclear plant foundations, total soil damping is commonly in the 35% to 70% range. The authors suggest that full soil damping values (the combined radiation and material damping) should be used in the design, backfit and margin assessment of nuclear plants. (orig./HP)

  3. Scientific support, soil information and education provided by the Austrian Soil Science Society

    Science.gov (United States)

    Huber, Sigbert; Baumgarten, Andreas; Birli, Barbara; Englisch, Michael; Tulipan, Monika; Zechmeister-Boltenstern, Sophie

    2015-04-01

    The Austrian Soil Science Society (ASSS), founded in 1954, is a non-profit organisation aiming at furthering all branches of soil science in Austria. The ASSS provides information on the current state of soil research in Austria and abroad. It organizes annual conferences for scientists from soil and related sciences to exchange their recent studies and offers a journal for scientific publications. Annually, ASSS awards the Kubiena Research Prize for excellent scientific studies provided by young scientists. In order to conserve and improve soil science in the field, excursions are organized, also in cooperation with other scientific organisations. Due to well-established contacts with soil scientists and soil science societies in many countries, the ASSS is able to provide its members with information about the most recent developments in the field of soil science. This contributes to a broadening of the current scientific knowledge on soils. The ASSS also co-operates in the organisation of excursions and meetings with neighbouring countries. Several members of the ASSS teach soil science at various Austrian universities. More detail on said conferences, excursions, publications and awards will be given in the presentation. Beside its own scientific journal, published once or twice a year, and special editions such as guidebooks for soil classification, the ASSS runs a website providing information on the Society, its activities, meetings, publications, awards and projects. Together with the Environment Agency Austria the ASSS runs a soil platform on the internet. It is accessible for the public and thus informs society about soil issues. This platform offers a calendar with national and international soil events, contacts of soil related organisations and networks, information on national projects and publications. The society has access to products, information material and information on educational courses. Last but not least information on specific soil

  4. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils

    OpenAIRE

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Metadata only record The long-term effects of tillage system and residue management on soil organic carbon stabilization are studied in two tropical soils in Zimbabwe, a red clay and a sandy soil. The four tillage systems evaluated were conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR). Soil organic carbon (SOC) content was measured for each size fraction as well as total SOC. Based on the findings, the authors conclude that residue management - mainta...

  5. Adaptation to heavy rainfall events: watershed-community planning of soil and water conservation technologies in Syria

    Science.gov (United States)

    Ziadat, Feras; Al-Wadaey, Ahmed; Masri, Zuhair; Sakai, Hirokazu

    2010-05-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) and other research, predict a significant future increase in the frequency and intensity of heavy rainfall events in many regions. This increase runoff and soil erosion, and reduce agricultural productivity, as well as increasing risks of flood damage to crops and infrastructure. Implementing adaptation measures and improved land management through erosion control and soil protection are among those that protect water and agriculture and limit their vulnerability. Soil erosion control practices are often based on long-term climatic averages. Special attention is needed to provide protection against average high-return frequency storms as well as severe storms with low-return frequency. Suitable and affordable soil conservation plans, coupled with an appropriate enabling environment, are needed. A watershed and community were selected in the mountainous area of North West Syria. The fields represent the non-tropical highland dry areas and dominated by olive orchards on steep slopes. Farmers were aware of resource degradation and productivity reduction, but lacked financial capital to implement the needed adaptation measures. A micro-credit system was established with the help of the UNDP Global Environment Facility - Small Grants Program (GEF-SGP) with small grants available for each farmer. Haphazard implementation on scattered fields proved inefficient in demonstrating obvious impact. Therefore, each watershed was classified into three erosion risk categories (high, moderate and low), derived from maps of flow accumulation, slope steepness, slope shape and land use. Using field survey of land ownership, the boundaries of 168 farms in the watersheds were mapped. Farmers' fields were classified using the erosion-risk map and considering the on-farm erosion hazard and the off-farm effect on other farmers' fields following the hillslope sequence. More than 60% of the farms were

  6. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    Science.gov (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  7. Soil microbiology and soil health assessment

    Science.gov (United States)

    Soil scientists have long recognized the importance of soil biology in ecological health. In particular, soil microbes are crucial for many soil functions including decomposition, nutrient cycling, synthesis of plant growth regulators, and degradation of synthetic chemicals. Currently, soil biologis...

  8. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China.

    Science.gov (United States)

    Shen, Yan; McLaughlin, Neil; Zhang, Xiaoping; Xu, Minggang; Liang, Aizhen

    2018-03-14

    Crop residue return is imperative to maintain soil health and productivity but some farmers resist adopting conservation tillage systems with residue return fearing reduced soil temperature following planting and crop yield. Soil temperatures were measured at 10 cm depth for one month following planting from 2004 to 2007 in a field experiment in Northeast China. Tillage treatments included mouldboard plough (MP), no till (NT), and ridge till (RT) with maize (Zea mays L.) and soybean (Glycine max Merr.) crops. Tillage had significant effects on soil temperature in 10 of 15 weekly periods. Weekly average NT soil temperature was 0-1.5 °C lower than MP, but the difference was significant (P Northeast China representative of a cool to temperate zone.

  9. Soil pollution and soil protection

    OpenAIRE

    Haan, de, F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international Training Centre (PHLO) of Wageningen Agricultural University.Of the three environmental compartments air, water and soil, it is soil that varies most in composition under natural conditions. The effects o...

  10. Predicting soil erosion risk at the Alqueva dam watershed

    OpenAIRE

    Ferreira, Vera; Panagopoulos, Thomas

    2012-01-01

    Soil erosion is serious economic and environmental concern. Assessing soil erosion risk in the Alqueva dam watershed is urgently needed to conserve soil and water resources and prevent the accelerated dam siltation, taking into account the possible land-use changes, due to tourism development, intensification of irrigated farming and biomass production, as well as climate change. A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Info...

  11. Participatory soil and water conservation planning using an erosion mapping tool in the central highlands of kenya

    NARCIS (Netherlands)

    Okoba, B.O.; Tenge, A.J.M.; Sterk, G.; Stroosnijder, L.

    2007-01-01

    Despite several approaches that aimed at mobilising East African farmers to embrace soil and water conservation (SWC) activities, farmers hardly responded since they were seldom involved in the planning of SWC activities. Two tools that employ farmers' participation were developed and applied at

  12. Adaptive management for soil ecosystem services

    Science.gov (United States)

    Birge, Hannah E.; Bevans, Rebecca A.; Allen, Craig R.; Angeler, David G.; Baer, Sara G.; Wall, Diana H.

    2016-01-01

    Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services.

  13. Fate and transport of carbamazepine in soil aquifer treatment (SAT) infiltration basin soils.

    Science.gov (United States)

    Arye, Gilboa; Dror, Ishai; Berkowitz, Brian

    2011-01-01

    The transport and fate of the pharmaceutical carbamazepine (CBZ) were investigated in the Dan Region Reclamation Project (SHAFDAN), Tel-Aviv, Israel. Soil samples were taken from seven subsections of soil profiles (150 cm) in infiltration basins of a soil aquifer treatment (SAT) system. The transport characteristics were studied from the release dynamics of soil-resident CBZ and, subsequently, from applying a pulse input of wastewater containing CBZ. In addition, a monitoring study was performed to evaluate the fate of CBZ after the SAT. Results of this study indicate adsorption, and consequently retardation, in CBZ transport through the top soil layer (0-5 cm) and to a lesser extent in the second layer (5-25 cm), but not in deeper soil layers (25-150 cm). The soluble and adsorbed fractions of CBZ obtained from the two upper soil layers comprised 45% of the total CBZ content in the entire soil profile. This behavior correlated to the higher organic matter content observed in the upper soil layers (0-25 cm). It is therefore deduced that when accounting for the full flow path of CBZ through the vadose zone to the groundwater region, the overall transport of CBZ in the SAT system is essentially conservative. The monitoring study revealed that the average concentration of CBZ decreased from 1094 ± 166 ng L⁻¹ in the recharged wastewater to 560 ± 175 ng L⁻¹ after the SAT. This reduction is explained by dilution of the recharged wastewater with resident groundwater, which may occur as it flows to active reclamation wells. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Deposition of eroded soil on terraced croplands in Minchet catchment, Ethiopian Highlands

    Directory of Open Access Journals (Sweden)

    Alemtsehay Subhatu

    2017-09-01

    Full Text Available In the Ethiopian Highlands, soil and water conservation practices are of utmost importance to conserve eroded soil and combat soil loss. This study provides detailed results on on-site sediment deposition and net soil loss in terraced croplands in a catchment in the sub-humid Ethiopian Highlands. Sediment deposition was measured on horse bean and maize fields during the crop growing seasons of 2014 and 2015. Measurements took place on observation plots on terraced cropland with varying spacing between terraces and varying slope gradients. Net soil loss, in this case the amount leaving the terraced cropland, was calculated by modelling the Universal Soil Loss Equation (USLE for the whole observation field and subtracting the measured sediment deposition. The study result showed about 8–11 t ha−1 sediment was deposited in the deposition zone of the terraced cropland, with greater sediment deposition on terraces with narrow spacing and steeper slope gradients. Sediment deposition was highest in July and August, and relatively low in September. Annual soil loss ranged from 32 to 37 t ha−1 in the terraced cropland of the study area. From the total soil loss in the crop growing season, about 54–74% sediment was deposited on the deposition zone of terraced crop fields. Implementation of soil and water conservation with narrow spacing, especially on the steep slopes of the sub-humid Ethiopian Highlands or other similar area, are thus highly recommended as they enable conservation of the eroded soil in the cropland.

  15. Soils newsletter, Vol. 31, No. 1, July 2008

    International Nuclear Information System (INIS)

    2008-07-01

    January 2008 saw us embarking on the new programme of work for the 2008-2009 biennium, with three major projects, namely (i) Soil Management and Conservation for Sustainable Agriculture and the Environment, (ii) Technologies and Practices for Sustainable Use and Management of Water in Agriculture and (iii) Integrated Soil-Plant Approaches to Increase Crop Productivity in Harsh Environments. The third project is jointly implemented with the IAEA Plant Breeding and Genetics Section. The Soils Subprogramme has been involved in the evaluation and modification of 27 concept notes (including four regional projects) for national and regional technical cooperation projects which aim to address the conservation and management of land and water for crop production and environmental protection in Member States to enhance food security, crop productivity and the conservation of soil and water resources for sustainable agricultural systems and their environments in Africa, Asia, Latin America and Europe. Currently the Team in the Soils Subprogramme collectively provides technical support to 45 technical cooperation projects (TCPs) in a range of areas described above. It is so pleasing to receive articles from our counterparts, who inform us of the success of their projects through the involvement with IAEA under coordinated research projects (CRPs) or technical cooperation projects (TCPs)

  16. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  17. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments

    Science.gov (United States)

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % ( P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an

  18. A global predictive model of carbon in mangrove soils

    International Nuclear Information System (INIS)

    Jardine, Sunny L; Siikamäki, Juha V

    2014-01-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO 2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO 2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha −1 ) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha −1 ). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological

  19. Combining Old and New Stable Isotope Techniques to Evaluate the Impact of Conservation Tillage on Soil Organic Carbon Dynamics and Stability

    International Nuclear Information System (INIS)

    De Clercq, T.; Xu, H.; Mercklx, R.; Heiling, M.; Dercon, G.; Resch, C.

    2016-01-01

    Soil organic matter (SOM) is a major carbon pool. It is a crucial factor for soil quality including several soil physical properties and a major nutrient source for crops. It also plays a significant role in the global carbon cycle. Soils can act as a carbon sink or source depending on land use and agricultural management practices. Some practices such as conservation tillage or no-tillage could increase SOM stocks, particularly in the topsoil, but in the long term it remains to be seen if and how this SOM is stabilized (De Clercq et al., 2015; Govaerts et al., 2009). In order to evaluate the sustainability and efficiency of soil carbon sequestration measures and the impact of different management and environmental factors, information on SOM stability and mean residence time (MRT) is required. However, this information on SOM stability and MRT is expensive to determine via radiocarbon dating, precluding a wide spread use of stability measurements in soil science. But alternative methods based on stable carbon and nitrogen isotopes, can provide this information at a fraction of the cost

  20. Mercury content in volcanic soils across Europe and its relationship with soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Rodriguez, Susana; Fernandez-Calvino, David; Arias-Estevez, Manuel; Novoa-Munoz, Juan Carlos [Vigo Univ., Ourense (Spain). Area de Edafoloxia e Quimica Agricola; Pontevedra-Pombal, Xabier; Taboada, Teresa; Martinez-Cortizas, Antonio; Garcia-Rodeja, Eduardo [Universidad de Santiago, Coruna (Spain). Dept. Edafoloxia e Quimica Agricola

    2012-04-15

    Volcanoes are a natural source of Hg, whose deposition can occur in neighbouring soils. This study examines the role of soil compounds in the geochemical behaviour of total Hg (Hg{sub T}) in volcanic soils. An estimation of Hg from lithological origin is also assessed to ascertain the relevance of other sources in Hg{sub T} accumulated in volcanic soils. Twenty soil profiles developed from volcanic materials and located across European volcanic regions were selected for this study. The general characterisation of soils included total C, N and S content and Al and Fe distribution determined using traditional methods. The total content of major and trace elements was determined using X-ray fluorescence spectrometry (XRF). The total Hg content of soil samples was measured with atomic absorption spectroscopy using a solid sample Hg analyser. Lithogenic Hg was calculated in the uppermost soil considering Al, Ti and Zr as conservative reference elements. Several statistical analyses (Pearson correlations, Mann-Whitney tests, stepwise multiple regressions and analysis of variance) were carried to ascertain the role of soil parameters and characteristics in the Hg accumulation in volcanic soils. The total Hg ranged from 3.0 to 640 ng g{sup -1} and it tended to diminish with soil depth except in some soils where the lithological discontinuities resulted in high values of Hg{sub T} in the Bw horizons. More than 75% of the Hg{sub T} variance could be attributed to distinct contents of organic matter, Al- and Fe-humus complexes and inorganic non-crystalline Al and Fe compounds in ''andic'', ''vitric'' and ''non-andic'' horizons. The degree of pedogenetic soil evolution notably influenced the Hg{sub T} soil content. Lithogenic Hg (1.6-320 ng g{sup -1}) was correlated with Al-humus complexes and clay content, suggesting the relevance of pedogenetic processes, whereas exogenic Hg (1.4-180 ng g{sup -1}) was correlated

  1. Assessment of soil-gas, seep, and soil contamination at the North Range Road Landfill, Fort Gordon, Georgia, 2008-2009

    Science.gov (United States)

    Landmeyer, James E.; Falls, W. Fred; Ratliff, W. Hagan; Wellborn, John B.

    2011-01-01

    Soil gas, seeps, and soil were assessed for contaminants at the North Range Road Landfill at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineating organic contaminants present in soil-gas samples beneath the area estimated to be the landfill and in water samples collected from three seeps at the base of the landfill. Inorganic contaminants were determined in three seep samples and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process.

  2. Amelioration of sandy soils in drought stricken areas through use of ...

    African Journals Online (AJOL)

    ACSS

    improving N, P, Ca and Mg content in sandy soils, and consequently support crop growth and yield. ... stress, soil moisture conservation, soil fertility management ... water many times its own weight. ... improves the productivity of degraded,.

  3. Validation of site-specific soil Ni toxicity thresholds with independent ecotoxicity and biogeochemistry data for elevated soil Ni

    International Nuclear Information System (INIS)

    Hale, Beverley; Gopalapillai, Yamini; Pellegrino, Amanda; Jennett, Tyson; Kikkert, Julie; Lau, Wilson; Schlekat, Christian; McLaughlin, Mike J.

    2017-01-01

    The Existing Substances Regulation Risk Assessments by the European Union (EU RA) generated new toxicity data for soil organisms exposed to Ni added to sixteen field-collected soils with low background concentration of metals and varying physico-chemical soil characteristics. Using only effective cation exchange capacity (eCEC) as a bioavailability correction, chronic toxicity of Ni in soils with a wide range of characteristics could be predicted within a factor of two. The objective of the present study was to determine whether this was also the case for three independent data sets of Ni toxicity thresholds. Two of the data sets were from Community Based Risk Assessments in Port Colborne ON, and Sudbury ON (Canada) for soils containing elevated concentrations of Ni, Co and Cu arising from many decades of Ni mining, smelting and refining. The third data set was the Metals in Asia study of soluble Ni added to field soils in China. These data yielded 72 leached and aged EC 10 /NOEC values for soil Ni, for arthropods, higher plants and woodlot structure and function. These were reduced to nine most sensitive single or geometric mean species/function endpoints, none of which were lower than the HC 5 predicted for a soil with an eCEC of 20 cmol/kg. Most of these leached and aged EC 10 /NOEC values were from soils co-contaminated with Cu, in some cases at its median HC 5 as predicted by the EU RA from soil characteristics. We conclude that the EU RA is protective of Ni toxicity to higher-tier ecological endpoints, including in mixture with Cu, before the assessment factor of 2 is applied. We suggest that for prospective risk assessment, the bioavailability based PNEC (HC 5 /2) be used as a conservative screen, but for retrospective and site-specific risk assessment, the bioavailability based HC 5 is sufficient. - Highlights: • Higher-tier ecotoxicity thresholds calculated for field soils with elevated Ni. • Adjusted for Ni bioavailability using soil eCEC and species

  4. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT

    Science.gov (United States)

    The Merguellil catchment (Central Tunisia) is a typical Mediterranean semi-arid basin which suffers from regular water shortage aggravated by current droughts. During the recent decades the continuous construction of small and large dams and Soil and Water Conservation Works (i.e. Contour ridges) ha...

  5. UTILIZATION OF SOIL CONSERVATION PRACTICES AMONG ...

    African Journals Online (AJOL)

    IBUKUN

    fish are good sources of protein and are frequently used to supplement root crops and ... methods and hosts of others not mentioned either adds nutrients to the soil or .... (2.21±0.74), organic manure (2.19±0.62), crop rotation (2.16±0.48) and ...

  6. Soil structural behaviour of flooded soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to: identify factors determining of the structural behaviour of flooded soils, as compared to those acting in upland soils; analyse the influence of reductive processes on aggregate stabilising agents; discuss mechanisms of structural deterioration and recovery during the flooding-drying cycle, on the basis of a case study: cattle trampling effects in the flooding Pampa of Argentina. Flooded soils, now known as Hydric soils, are characteristic of wetlands and irrigated fields cropped to rice (paddy soils). In them, water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year. Hydric soils belong to different taxa of the FAO-UNESCO Soil Map (2000). Fluvisols, Planosols and Gleysols are widespread distributed in the globe. The generation of redoximorphic features is due to different causes in each of them. Fluvisols are covered part of the year by surface water from river overflows; Planosols are soils having an impervious Bt horizon, supporting perched water during short periods; and Gleysols are soils affected by stagnant water tables during long periods

  7. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  8. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    2013-04-01

    Full Text Available Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06 and 352% ± 139% (p = 0.1 of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site with growth of 142% ± 42% (p > 0.2 and 131% ± 62% (p > 0.2 of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC, no significant effects on maize yields were observed (p > 0.2. In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination

  9. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 1

    International Nuclear Information System (INIS)

    1995-01-01

    This congress discussed soil's science with emphasis in the Brazilian morphoclimatics dominion and the sustained development. Topics related to soil's physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil's and water conservation,fertilizers, pollution and environmental quality were discussed. In the first volume of the abstracts are presented papers related to soil's physics and biology where nuclear methods of analysis were utilized

  10. Effects of land use change on soil gross nitrogen transformation rates in subtropical acid soils of Southwest China.

    Science.gov (United States)

    Xu, Yongbo; Xu, Zhihong

    2015-07-01

    Land use change affects soil gross nitrogen (N) transformations, but such information is particularly lacking under subtropical conditions. A study was carried out to investigate the potential gross N transformation rates in forest and agricultural (converted from the forest) soils in subtropical China. The simultaneously occurring gross N transformations in soil were quantified by a (15)N tracing study under aerobic conditions. The results showed that change of land use types substantially altered most gross N transformation rates. The gross ammonification and nitrification rates were significantly higher in the agricultural soils than in the forest soils, while the reverse was true for the gross N immobilization rates. The higher total carbon (C) concentrations and C / N ratio in the forest soils relative to the agricultural soils were related to the greater gross N immobilization rates in the forest soils. The lower gross ammonification combined with negligible gross nitrification rates, but much higher gross N immobilization rates in the forest soils than in the agricultural soils suggest that this may be a mechanism to effectively conserve available mineral N in the forest soils through increasing microbial biomass N, the relatively labile organic N. The greater gross nitrification rates and lower gross N immobilization rates in the agricultural soils suggest that conversion of forests to agricultural soils may exert more negative effects on the environment by N loss through NO3 (-) leaching or denitrification (when conditions for denitrification exist).

  11. Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China

    Science.gov (United States)

    Wang, Xiaoyan

    2017-04-01

    influence of rock fragment cover on purple soil slope erosion process were carried on, under different conditions with two kind of rock fragment positions (resting on soil surface and embedded into top soil layer), varied rock fragment coverage (Rc, 0% 40%), two kind of soils with textural porosity or structural porosity, and three kind of rainfall intensities (I, 1 mm/min, 1.5 mm/min and 2 mm/min). Simulated rainfall experiments in situ plots in the field, combined with simulated rainfall experiments in soil pans indoor, were used. The main conclusions of this dissertation are as following: 1. The spatial distribution characteristics of rock fragments in purple soil slope and its effects on the soil physical properties were clarified basically. 2. The mechanism of influence of rock fragments within top soil layer on soil erosion processes was understood and a threshold of rock fragment content on the infiltration was figured out. 3. The relationships between surface rock fragment cover and hillslope soil erosion in purple soil under different conditions with varied rock fragment positions, soil structures and rainfall intensities were obtained and the soil and water conservation function of surface rock fragment cover on reducing soil loss was affirmed.

  12. Caring for the land : best practice in soil and water conservation in Beressa watershed, highlands of Ethiopia

    NARCIS (Netherlands)

    Amsalu Taye, A.

    2006-01-01

    Land degradation in the form of soil erosion and nutrient loss is a major constraint to farming activities and agricultural development in the highlands of Ethiopia. Though large-scale conservation projects have been initiated and carried out by the government during the past few decades, the

  13. Challenges of conservation agriculture practices on silty soils. Effects on soil pore and gas transport characteristics in North-eastern Italy

    DEFF Research Database (Denmark)

    Piccoli, Ilaria; Schjønning, Per; Lamandé, Mathieu

    2017-01-01

    highlighted low transmission properties of the silty soils independently from agronomic management. Both air permeability and relative gas diffusivity showed poor aerated conditions being generallytreatments affected the transmission properties only in the coarsest soil...... of this study was to evaluate the effect of CA practices on gas transport characteristics in the silty soils of the Veneto Region (North-Eastern Italy). In 2010, a field experiment comparing CA practices (no-tillage, cover crop and residues retention) to conventional intensive tillage (IT) system...... was established in four farms located in the Veneto low plain. In fall 2015, 144 undisturbed 100 cm3 soil cores where collected at two different layers (3–6.5 cm and 20–23.5 cm) and analysed for air-filled porosity, air permeability, gas diffusivity and soil structure indices derived. Gas transport measurements...

  14. Soils Newsletter, Vol. 33, No. 1, July 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    The Soil and Water Management and Crop Nutrition (SWMCN) Section and the SWMCN Laboratory (formerly known as Soil Science Unit until January 2010) have made significant progress within the last 6 months implementing activities for the IAEA 2010-2011 biennium and formulating the 2012-2013 programme with other FAO Divisions through result-based activities relating to soil and water management for sustainable intensification of agricultural production systems and conservation of agricultural and natural resource bases. Improving soil and water management is a critical issue for enhancing agricultural production and at the same time minimizing greenhouse gas emissions from farmland (www.unccd.int/knowledge/docs/UNCCDPolicyBrief-Mitigation-02.pdf). With a projected increase in the global population to 9.1 billion by 2050 and the mounting pressure of climate change and variability on soil degradation and uneven water distribution, the quest to conserve soil and water resources for agricultural production is becoming increasingly urgent. Having better seeds will not lead to higher crop yields unless soil fertility constraints are addressed and soil health is improved (www.ifdc.org/; www.agra-alliance.org/section/work/soils; www.scidev.net/en/news). The importance of this interaction is increasingly evident in the number of technical cooperation projects (TCPs) jointly managed by the SWMCN and Plant Breeding and Genetics Subprogrammes (see under Technical Cooperation Projects heading). The FAO/IAEA/IFDC website (http://www-iswam. iaea.org/dapr/srv/en/home) of the Phosphate Rock Decision Support System (PRDSS) has recently been revamped. This aims to provide farmers, extension workers and policy makers with a decision-making tool to determine the appropriate type and amount of phosphate fertiliser required to provide phosphorus for plant growth for both immediate and long-term requirements (e.g. for a growing season and subsequent crops). The SWMCN Subprogramme is

  15. The Soil Atlas of Africa: raising awareness and educate to the importance of soil

    Science.gov (United States)

    Dewitte, Olivier; Jones, Arwyn; Bosco, Claudio; Spaargaren, Otto; Montanarella, Luca

    2010-05-01

    available. These datasets will be useful for making broad distinction among soil types and provide general trends at the global and regional scales. The datasets will be made accessible for free downloading from the portals of the SOIL Action (http://eusoils.jrc.ec.europa.eu/) and the ACP Observatory for Sustainable Development (http://acpobservatory.jrc.ec.europa.eu). The Atlas links the theme of soil with rural development and, at the same time, supports the goals of the EU Thematic Strategy for Soil Protection in conserving a threatened natural resource that is vital to human existence. Not only climate change, but also desertification and loss of biodiversity are strongly affecting soils globally, making the "Soil Atlas of Africa" relevant to a much larger community of stakeholders involved in the implementation of the three "Rio-Conventions" and allowing to explore possible synergies among international multilateral agreements towards global soil protection.

  16. Institutional landmarks in Brazilian research on soil erosion: a historical overview

    Directory of Open Access Journals (Sweden)

    Tiago Santos Telles

    2013-12-01

    Full Text Available The problem of soil erosion in Brazil has been a focus of agricultural scientific research since the 19th century. The aim of this study was to provide a historical overview of the institutional landmarks which gave rise to the first studies in soil erosion and established the foundations of agricultural research in Brazil. The 19th century and beginning of the 20th century saw the founding of a series of institutions in Brazil, such as Botanical Gardens, executive institutions, research institutes, experimental stations, educational institutions of agricultural sciences, as well as the creation and diversification of scientific journals. These entities, each in its own way, served to foster soil erosion research in Brazil. During the Imperial period (1808-1889, discussions focused on soil degradation and conserving the fertility of agricultural land. During the First Republic (1889-1930, with the founding of various educational institutions and consolidation of research on soil degradation conducted by the Agronomic Institute of Campinas in the State of São Paulo, studies focused on soil depletion, identification of the major factors causing soil erosion and the measures necessary to control it. During the New State period (1930-1945, many soil conservation practices were developed and disseminated to combat erosion and field trials were set up, mainly to measure soil and water losses induced by hydric erosion. During the Brazilian New Republic (1945-1964, experiments were conducted throughout Brazil, consolidating soil and water conservation as one of the main areas of Soil Science in Brazil. This was followed by scientific conferences on erosion and the institutionalization of post-graduate studies. During the Military Regime (1964-1985, many research and educational institutions were founded, experimental studies intensified, and coincidently, soil erosion reached alarming levels which led to the development of the no-tillage system.

  17. Natural activity and element content of soil and plant in Sungkai Wildlife Conservation Centre, Perak

    International Nuclear Information System (INIS)

    Rabiatutadawiah Jamaludin

    2012-01-01

    The study has been carried out to determined the natural radioactivity concentration and the elemental content of soil and plant in Sungkai Wildlife Conservation Centre, Perak. For the determination of radioactivity concentration samples were filled into the counting bottle according to the height of the standard samples. Samples were then kept for 30 days to reach the secular equilibrium. After 30 days samples were counted directly using gamma spectrometry. For the determination of the elemental content samples were digested using acidic solution until the solution became clear. Samples were then diluted to 100 ml using distilled water and 10 ml aliquots were introduce to Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Results showed that the radioactivity concentration of U-238, Th-232, Ra-226 and K-40 in soil were in the range of 40.02 ± 12.50 Bq/ kg - 184.8± 11.40 Bq/ kg, 31.76 ± 1.84 Bq/ kg - 66.12 ± 4.30 Bq/ kg, 11.0 ± 0.48 Bq/ kg - 29.71 ± 1.64 Bq/ kg and 27.53 ± 6.93 Bq/ kg - 184.01 ± 8.64 Bq/ kg respectively. In this study 20 elements were found both in soil and plant. Iron showed the highest concentration in soil (22178.92 ± 8826.77 mg/ kg) while Potassium showed the highest concentration in plants (64052.33 ± 14958.16 mg/ kg). (author)

  18. Soil-ecological risks for soil degradation estimation

    Science.gov (United States)

    Trifonova, Tatiana; Shirkin, Leonid; Kust, German; Andreeva, Olga

    2016-04-01

    Soil degradation includes the processes of soil properties and quality worsening, primarily from the point of view of their productivity and decrease of ecosystem services quality. Complete soil cover destruction and/or functioning termination of soil forms of organic life are considered as extreme stages of soil degradation, and for the fragile ecosystems they are normally considered in the network of their desertification, land degradation and droughts /DLDD/ concept. Block-model of ecotoxic effects, generating soil and ecosystem degradation, has been developed as a result of the long-term field and laboratory research of sod-podzol soils, contaminated with waste, containing heavy metals. The model highlights soil degradation mechanisms, caused by direct and indirect impact of ecotoxicants on "phytocenosis- soil" system and their combination, frequently causing synergistic effect. The sequence of occurring changes here can be formalized as a theory of change (succession of interrelated events). Several stages are distinguished here - from heavy metals leaching (releasing) in waste and their migration downward the soil profile to phytoproductivity decrease and certain phytocenosis composition changes. Phytoproductivity decrease leads to the reduction of cellulose content introduced into the soil. The described feedback mechanism acts as a factor of sod-podzolic soil self-purification and stability. It has been shown, that using phytomass productivity index, integrally reflecting the worsening of soil properties complex, it is possible to solve the problems dealing with the dose-reflecting reactions creation and determination of critical levels of load for phytocenosis and corresponding soil-ecological risks. Soil-ecological risk in "phytocenosis- soil" system means probable negative changes and the loss of some ecosystem functions during the transformation process of dead organic substance energy for the new biomass composition. Soil-ecological risks estimation is

  19. Influence of agricultural practice on trace metals in soils and vegetation in the water conservation area along the East River (Dongjiang River), South China

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunling, E-mail: clluo@gig.ac.cn [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Yang, Renxiu [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Wang, Yan; Li, Jun; Zhang, Gan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Xiangdong [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2012-08-01

    Dongjiang (East River) is the key resource of potable water for the Pearl River Delta region, South China. Although industrial activities are limited in the water conservation area along this river, agriculture is very intensive. The present study evaluated trace metals in four soils under different cultivation. The total concentrations of trace metals decreased in the order orchard soil > vegetable soil > paddy soil > natural soil, reflecting decreasing inputs of agrochemicals to soils. Relatively high concentrations of Cd were recorded in the 60-cm soil profiles. The {sup 206}Pb/{sup 207}Pb ratio in the above-ground tissues of plant was significantly lower than their corresponding soils. In combination with the low transfer factor of Pb from soil to plant shoots, atmospheric deposition is probably a major pathway for Pb to enter plant leaves. Regular monitoring on the soil quality in this area is recommended for the safety of water resource and agricultural products. - Highlights: Black-Right-Pointing-Pointer Soil Cd exceeded the upper limit of Chinese standard for agricultural soils. Black-Right-Pointing-Pointer Relatively high concentrations of Cd were recorded in the 60-cm soil profiles. Black-Right-Pointing-Pointer Agricultural soil had higher concentrations of metals and lower {sup 206}Pb/{sup 207}Pb ratios. Black-Right-Pointing-Pointer Pb in above-ground tissues of plant was more anthropogenic than soil. Black-Right-Pointing-Pointer Atmospheric deposition may be a major pathway for Pb to enter plant leaves.

  20. Soil and art: the Spanish Society of Soil Science calendar for 2016

    Science.gov (United States)

    Mataix-Solera, Jorge; Poch, Rosa M.; Díaz-Fierros, Francisco; Pérez-Moreira, Roxelio; Asins, Sabina; Porta, Jaume; Cortés, Amparo; Badía, David; Del Moral, Fernando

    2017-04-01

    The Spanish Society of Soil Science (SECS: www.secs.com.es) is preparing since 2009 a calendar dealing with a topic chosen by its members, with the main aim to disseminate the importance of the soil to the society. In this contribution, we want to show the calendar 2016, developed during 2015, (International Year of Soils) dedicated to soil and art. We chose, for the twelve months of the year, a selection of paintings where soil is present, and where we, as soil scientists, can interpret what the artist observed about the soil or its management. An introduction written by professor F. Díaz-Fierros describes the evolution of different styles in different regions of Western Europe and US, and how soil was reflected in artworks. The selected paintings date from XV century to current times, by autors of different schools of art and very varying styles. The main features shown in these paintings are soil colour, soil structure, horizonation, and even soil profiles that can be classified. Other paintings show ploughing as main land management practice, and also soil conservation practices and the effects of fire as soil degradation. Artworks included in the calendar (in order of appearance): The ploughed field. 1888. Vincent Van Gogh. Zundert, The Netherlands (1853-1869) Los Cigarrales (alrededores de Toledo). Aureliano de Beruete y Moret. ca. 1905. Casa del Museo Goya - Museo de Arte Hispánico. Castres (France) Les Très Riches Heures du Duc de Berry. Miniature. Musée Condé, Bibliothèque, Chantilly (France)(1413-1416). Paul, Jean and Herman de Limbourg The Dunes near Haarlem. 1667. Jan Wijnants. (1632-1684). National Gallery of Ireland, Dublin. Archaeology: Rooted in the Past. 2010. GC Myers, New York, USA (1959) La forêt au sol rouge. 1891. Georges Lacombe, Versalles (1868-1916) Sitges des de la Creu de Ribes. 1892. Santiago Rusiñol. Barcelona (1861-1931). Courtesy of the Colección Carmen Thyssen-Bornemisza (Madrid) De Kruisdraging. 1606. Pieter Brueghel the

  1. ETHNOMEDICINAL PLANTS USED BY SOME OF THE TRIBAL COMMUNITIES OF PANCHET SOIL CONSERVATION DIVISION, BANKURA DISTRICT, WEST BENGAL, INDIA

    Directory of Open Access Journals (Sweden)

    Debatri Banerjee

    2016-06-01

    Full Text Available The Indigenous Traditional knowledge (ITK is scientifically and culturally significant. This article focuses on the documentation of ITK of medicinal plants that are used against different diseases by the tribal people of Panchet Soil Conservation Division of Bankura district, West Bengal. A comprehensive survey was carried out between July 2014–January 2016 in 19 different locations of Panchet Soil Conservation Division. Data were obtained through semi–structured questionnaires, participant observation and plant walks with 33 respondents. A total of 12 plants belonging to 11 families were documented for 19 different disorders. Out of 12 plants 10 have been reported as new uses for the first time. It is expected that the documentation of medicinal plant knowledge will further promote bio-prospecting and pharmaceutical research.

  2. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 2

    International Nuclear Information System (INIS)

    1995-01-01

    This congress discussed soil's science with emphasis in the Brazilian morphoclimatics dominion and the sustained development. Topics related to soil's physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil's and water conservation, fertilizers, pollution and environmental quality were discussed. In the second volume of the abstracts are presented papers related to soil's fertility and plants nutrition are discussed where nuclear methods of analysis are presented

  3. Soils Newsletter. V. 15, no. 2

    International Nuclear Information System (INIS)

    1992-12-01

    This newsletter contains reports of the five Research Co-ordination Meetings held in 1992; the descriptions of the meetings on ''The use of nuclear and related techniques in the management of nitrogen-fixing trees for enhancing soil fertility and soil conservation'' and ''The use of isotope studies on increasing and stabilizing plant productivity in low phosphate and semi-arid and sub-humid soils of the tropics and sub-tropics'' contain excerpts from presented reports. Also included is a feature on some of the the Technical Co-operation Projects coming under the umbrella of the Regional African Project on Biological Nitrogen Fixation

  4. Prioritization of catchments based on soil erosion using remote sensing and GIS.

    Science.gov (United States)

    Khadse, Gajanan K; Vijay, Ritesh; Labhasetwar, Pawan K

    2015-06-01

    Water and soil are the most essential natural resources for socioeconomic development and sustenance of life. A study of soil and water dynamics at a watershed level facilitates a scientific approach towards their conservation and management. Remote sensing and Geographic Information System are tools that help to plan and manage natural resources on watershed basis. Studies were conducted for the formulation of catchment area treatment plan based on watershed prioritization with soil erosion studies using remote sensing techniques, corroborated with Geographic Information System (GIS), secondary data and ground truth information. Estimation of runoff and sediment yield is necessary in prioritization of catchment for the design of soil conservation structures and for identifying the critical erosion-prone areas of a catchment for implementation of best management plan with limited resources. The Universal Soil Loss Equation, Sediment Yield Determination and silt yield index methods are used for runoff and soil loss estimation for prioritization of the catchments. On the basis of soil erosion classes, the watersheds were grouped into very high, high, moderate and low priorities. High-priority watersheds need immediate attention for soil and water conservation, whereas low-priority watershed having good vegetative cover and low silt yield index may not need immediate attention for such treatments.

  5. New Comparative Experiments of Different Soil Types for Farmland Water Conservation in Arid Regions

    Directory of Open Access Journals (Sweden)

    Yiben Cheng

    2018-03-01

    Full Text Available Irrigated farmland is the main food source of desert areas, and moisture is the main limiting factor of desert farmland crop productivity. Study on the influence of irrigation on desert farmland soil moisture can guide the agricultural water resource utilization and agricultural production in those regions. At present, the efficiency of irrigation water usage in Northwest China is as low as approximately 40% of the irrigated water. To understand the response of farmland soil moisture in different soil types on irrigation in the Ulan Buh Desert of Inner Mongolia of China, this experimental study takes advantage of different infiltration characteristics and hydraulic conductivities of sand, clay, and loam to determine an optimized soil combination scheme with the purpose of establishing a hydraulic barrier that reduces infiltration. This study includes three comparative experiments with each consisting of a 100 cm thick of filled sand, or clay, or loam soil underneath a 50 cm plough soil, with a total thickness of 150 cm soil profile. A new type of lysimeter is installed below the above-mentioned 150 cm soil profile to continuously measure deep soil recharge (DSR, and the ECH2O-5 soil moisture sensors are installed at different depths over the 150 cm soil profile to simultaneously monitor the soil moisture above the lysimeter. The study analyzes the characteristics of soil moisture dynamics, the irrigation-related recharge on soil moisture, and the DSR characteristics before and after irrigation, during the early sowing period from 2 April to 2 May 2017. Research results show that: (1 Irrigation significantly influences the soil moisture of 0–150 cm depths. The soil moisture increase after the irrigation follows the order from high to low when it is in the order of loam, sand, and clay. (2 Irrigation-induced soil moisture recharge occurs on all three soil combinations at 0–150 cm layers, and the order of soil moisture recharge from high to low

  6. Soil water storage, yield, water productivity and transpiration efficiency of soybeans (Glyxine max L.Merr as affected by soil surface management in Ile-Ife, Nigeria

    Directory of Open Access Journals (Sweden)

    Omotayo B. Adeboye

    2017-06-01

    Full Text Available Rainfed agriculture has a high yield potential if rainfall and land resources are effectively used. In this study, conventional (NC and six in-situ water conservation practices were used to cultivate Soybean in 2011 and 2012 in Ile-Ife, Nigeria. The conservation practices are: Tied ridge (TR, Soil bund (BD, Mulch (ML, Mulch plus Soil bund (MLBD, Tied ridge plus Mulch (TRML, Tied ridge plus Soil bund (TRBD. The practices were arranged in Randomised Complete Block Design with four replicates. Seasonal rainfall was 539 and 761 mm in 2011 and 2012, respectively. Seasonal soil water storage (SWS ranged from 485 mm for NC to 517 mm for TRML in the two seasons. ML increased the SWS in the upper 30 cm of the soil by 17% while TR increased the soil water content in the lower 30–60 cm by 22% compared with NC. ML reduced soil temperature in the upper 30 cm between 2.2 and 2.9 oC compared with NC, TR and TRML. Seasonal crop evapotranspiration ranged between 432 mm for NC and 481 mm for BD in the seasons. Grain yield increased by 41.7% and 44.3% for BD and MLBD, respectively compared with NC. Water conservation practices increased water productivity for grain yield by 14.0–41.8% compared with NC. Similarly, it increased average seasonal transpiration efficiency by 15.3–32.5% compared with NC. These findings demonstrate that when there are fluctuations in rainfall, in-situ water conservation practices improve SWS, land, and water productivity and transpiration efficiency of Soybeans.

  7. Soil organic matter and soil acidity in Mangrove areas in the river Paraiba Estuary, Cabedelo, Paraiba, Brazil

    Directory of Open Access Journals (Sweden)

    Renata Wilma Vasconcelos

    2014-08-01

    Full Text Available Mangrove ecosystems are of great environmental significance, because of their fragility and role in feeding and breeding various animal species. In northeastern Brazil, the disorderly occupation of estuarine areas and the urban sprawl have led to a considerable loss of the original area occupied by mangroves. In the municipality of Cabedelo, State of Paraíba, there are about 4,900 ha of remnant mangrove areas in the estuarine complex of the Paraíba River. However, information about the attributes of mangrove soils at this location is quite scarce. The aim of this study was to quantify the soil organic matter and soil acidity in mangroves located in the estuary of the Paraíba River, State of Paraíba, Brazil, in order to increase the database of soil attributes in this region. The study area is in local influence of the Restinga de Cabedelo National Forest (Flona, an environmental conservation unit of the Chico Mendes Institute for Biodiversity Conservation. For the choice of sampling points, we considered an area that receives direct influence of the eviction of domestic and industrial effluents. The soil of the study area is an “Organossolo Háplico” in Brazilian Soil Classification (Histosol, and was sampled at four point sites: one upstream of the effluent discharge (P1, one in the watercourse receiving effluent water (P2, one downstream of the effluent discharge (P3 and another near Flona (P4, at 0-20 and 20-40 cm, in four replications in time (28/08/2012 in the morning and afternoon, and 21/01/2013 in the morning and afternoon. Potential acidity, pH and soil organic matter (SOM were determined. No significant differences were detected in the potential acidity of the four collection sites, which ranged from 0.38 to 0.45 cmolc dm-3. Soil pH was greatest at point P4 (7.0 and lowest at point P1 (5.8. The SOM was highest at point P1 (86.4 % and lowest at P2 (77.9 %. The attributes related to soil acidity were not sensitive to indicate

  8. The SCS double hydrometer test in dispersive soil identification

    CSIR Research Space (South Africa)

    Maharaj, A

    2013-09-01

    Full Text Available The standard testing procedures for the Soil Conservation Service (SCS) Double Hydrometer test, the Pinhole Test, Crumb test and chemical analyses for the identification of potentially dispersive soils have recently been studied and problems...

  9. Physical soil quality indicators for monitoring British soils

    Science.gov (United States)

    Corstanje, Ron; Mercer, Theresa G.; Rickson, Jane R.; Deeks, Lynda K.; Newell-Price, Paul; Holman, Ian; Kechavarsi, Cedric; Waine, Toby W.

    2017-09-01

    Soil condition or quality determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs) for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change, e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of their capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs was tested for robustness, spatial and temporal variability, and expected rate of change using statistical analysis and modelling. Seven SQIs were prioritised: soil packing density, soil water retention characteristics, aggregate stability, rate of soil erosion, depth of soil, soil structure (assessed by visual soil evaluation) and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programmes.

  10. Physical soil quality indicators for monitoring British soils

    Directory of Open Access Journals (Sweden)

    R. Corstanje

    2017-09-01

    Full Text Available Soil condition or quality determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change, e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of their capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs was tested for robustness, spatial and temporal variability, and expected rate of change using statistical analysis and modelling. Seven SQIs were prioritised: soil packing density, soil water retention characteristics, aggregate stability, rate of soil erosion, depth of soil, soil structure (assessed by visual soil evaluation and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programmes.

  11. Soil Loss Prediction on Mobile Platform Using Universal Soil-Loss Equation (USLE Model

    Directory of Open Access Journals (Sweden)

    Effendi Rahim Supli

    2017-01-01

    Full Text Available Indirect method for soil loss predictions are plentiful, one of which is Universal soil-loss equation (USLE model. Available technology in mobile applications prompted the authors to develop a tool for calculating soil loss for many land types by transforming the USLE model into smart mobile application. The application is designed by using simple language for calculating each and every factor and lastly summing up the results. Factors that are involved in the calculation of soil loss are namely erosivity, erodibility, slope steepness, length of slope, land cover and conservation measures. The program will also be able to give its judgment for each of the prediction of soil loss rates for each and every possible land uses ranging from very light to very heavy. The application is believed to be useful for land users, students, farmers, planners, companies and government officers. It is shown by conducting usability testing using usability model, which is designed for mobile application. The results showed from 120 respondents that the usability of the system in this study was in “very good” classification, for three characteristics (ease of use, user satisfaction, and learnability. Only attractiveness characteristic that falls into “good” classification.

  12. Afforestation alters community structure of soil fungi.

    Science.gov (United States)

    Carson, Jennifer K; Gleeson, Deirdre B; Clipson, Nicholas; Murphy, Daniel V

    2010-07-01

    Relatively little is known about the effect of afforestation on soil fungal communities. This study demonstrated that afforestation altered fungal community structure and that changes were correlated to pools of soil C. Pasture at three locations on the same soil type was afforested with Eucalyptus globulus or Pinus pinaster. The structure of fungal communities under the three land uses was measured after 13y using automated ribosomal intergenic spacer analysis (ARISA). Afforestation significantly altered the structure of fungal communities. The effect of location on the structure of fungal communities was limited to pasture soils; although these contained the same plant species, the relative composition of each species varied between locations. Differences in the structure of fungal communities between pasture, E. globulus and P. pinaster were significantly correlated with changes in the amount of total organic C and microbial biomass-C in soil. Afforestation of patches of agricultural land may contribute to conserving soil fungi in agricultural landscapes by supporting fungal communities with different composition to agricultural soils. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  14. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  15. Soil pollution and soil protection

    NARCIS (Netherlands)

    Haan, de F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international

  16. Cross-cutting activities: Soil quality and soil metagenomics

    OpenAIRE

    Motavalli, Peter P.; Garrett, Karen A.

    2008-01-01

    This presentation reports on the work of the SANREM CRSP cross-cutting activities "Assessing and Managing Soil Quality for Sustainable Agricultural Systems" and "Soil Metagenomics to Construct Indicators of Soil Degradation." The introduction gives an overview of the extensiveness of soil degradation globally and defines soil quality. The objectives of the soil quality cross cutting activity are: CCRA-4 (Soil Metagenomics)

  17. Soil erosion, fertility and water conservation factors in agricultural activities in Kenya: A look at problems and efforts being made to solve them using radioisotope techniques

    International Nuclear Information System (INIS)

    Gitonga, J.

    1980-01-01

    Inadequate nutrient supply is the major factor limiting production in the adequately rainfed region of Kenya around Lake Victoria. Phosphorus is particularly deficient and its availability difficult to determine. Soil P availability and optimum fertilizer P placement is being determined with 32 P. Serious soil erosion problems have been reduced by establishing tea on the steep slopes. The uneven rainfall distribution on the lowlands results in serious soil and water conservation problems. Residue management and terracing have provided erosion protection. Neutron probes have been used to measure water conservation. Stress tolerant crops such as an early maturing maize have proven useful. The role of International Organizations in supporting the research activities is acknowledged

  18. Soil invertebrates as bioindicators of urban soil quality

    International Nuclear Information System (INIS)

    Santorufo, Lucia; Van Gestel, Cornelis A.M.; Rocco, Annamaria; Maisto, Giulia

    2012-01-01

    This study aimed at relating the abundance and diversity of invertebrate communities of urban soils to chemical and physical soil characteristics and to identify the taxa most sensitive or tolerant to soil stressors. The invertebrate community of five urban soils in Naples, Italy, was sampled. To assess soil quality invertebrate community indices (Shannon, Simpson, Menhinick and Pielou indices), Acarina/Collembola ratios, and the soil biological quality index (QBS) were calculated. The chemical and physical characteristics of the soils strongly differed. Abundance rather than taxa richness of invertebrates were more affected by soil characteristics. The community was more abundant and diverse in the soils with high organic matter and water content and low metal (Cu, Pb, Zn) concentrations. The taxa more resistant to the urban environment included Acarina, Enchytraeids, Collembola and Nematoda. Collembolans appeared particularly sensitive to changing soil properties. Among the investigated indices, QBS seems most appropriate for soil quality assessment. - Highlights: ► The abundance and diversity of invertebrate communities was related to properties and metal contents of urban soils. ► Several (biodiversity) indices were calculated and compared to evaluate soil quality. ► Metal contamination affected invertebrate density and diversity. ► The taxa more tolerant to metal contamination were Acarina, Enchytraeids, Collembola and Nematoda. ► The soil biological quality index QBS index was most appropriate for soil quality assessment. - Soil metal contamination negatively affected soil invertebrate abundance and diversity.

  19. Forest calcium depletion and biotic retention along a soil nitrogen gradient

    Science.gov (United States)

    Perakis, Steven S.; Sinkhorn, Emily R.; Catricala, Christina; Bullen, Thomas D.; Fitzpatrick, John A.; Hynicka, Justin D.; Cromack, Kermit

    2013-01-01

    High nitrogen (N) accumulation in terrestrial ecosystems can shift patterns of nutrient limitation and deficiency beyond N toward other nutrients, most notably phosphorus (P) and base cations (calcium [Ca], magnesium [Mg], and potassium [K]). We examined how naturally high N accumulation from a legacy of symbiotic N fixation shaped P and base cation cycling across a gradient of nine temperate conifer forests in the Oregon Coast Range. We were particularly interested in whether long-term legacies of symbiotic N fixation promoted coupled N and organic P accumulation in soils, and whether biotic demands by non-fixing vegetation could conserve ecosystem base cations as N accumulated. Total soil N (0–100 cm) pools increased nearly threefold across the N gradient, leading to increased nitrate leaching, declines in soil pH from 5.8 to 4.2, 10-fold declines in soil exchangeable Ca, Mg, and K, and increased mobilization of aluminum. These results suggest that long-term N enrichment had acidified soils and depleted much of the readily weatherable base cation pool. Soil organic P increased with both soil N and C across the gradient, but soil inorganic P, biomass P, and P leaching loss did not vary with N, implying that historic symbiotic N fixation promoted soil organic P accumulation and P sufficiency for non-fixers. Even though soil pools of Ca, Mg, and K all declined as soil N increased, only Ca declined in biomass pools, suggesting the emergence of Ca deficiency at high N. Biotic conservation and tight recycling of Ca increased in response to whole-ecosystem Ca depletion, as indicated by preferential accumulation of Ca in biomass and surface soil. Our findings support a hierarchical model of coupled N–Ca cycling under long-term soil N enrichment, whereby ecosystem-level N saturation and nitrate leaching deplete readily available soil Ca, stimulating biotic Ca conservation as overall supply diminishes. We conclude that a legacy of biological N fixation can increase N

  20. Simulation of consolidation in partially saturated soil materials

    International Nuclear Information System (INIS)

    Narasimhan, T.N.

    1982-03-01

    Partially saturated soil materials undergo consolidation, heave, collapse and failure due to changes in pore fluid pressure. The precise nature of the mechanics of such deformations is only poorly understood at present. Experimental evidence has shown that the volume change behavior of unsaturated soils cannot be adequately explained through changes in effective stress, even when a saturation dependent parameter is incorporated into the definition of effective stress. Two independent stress-state variables, involving combinations of total stress, pore air pressure and pore water pressure, are required to characterize volume changes and saturation changes in the partially saturated state. In general, two coupled conservation equations, one for the water-phase and the other for the air-phase need to be solved in order to predict the deformation behavior of unsaturated soils. If directional displacements and changes in the stress-field are required, then the conservation equations are to be integrated with an additional set of multi-dimensional force balance equations. For lack of a sufficient understanding of elastic constants such as Poisson's Ratio and Lame's constants as applied to unsaturated soils, little has been achieved so far in integrating the conservation equations and the force balance equations. For the long-term modeling of consolidation with respect to uranium mill tailings, it may be acceptable and economical to solve a single conservation equation for water, assuming that the air-phase is continuous and is at atmospheric pressure everywhere in the soil. The greatest challenge to modeling consolidation in the unsaturated zone at the presnt time is to develop enough experimental data defining the variation of void ratio and saturation with reference to the two chosen stress-state variables

  1. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 4

    International Nuclear Information System (INIS)

    1995-01-01

    This congress discussed soils science with emphasis in the Brazilian morpho climatic dominion and the sustained development. Topics related to soils physics, chemical, biology, fertility, classification, nutrition, mineralogy, soils and water conservation, fertilizers, pollution and environmental quality. In the fourth volume of the abstracts were presented papers related to use of fertilizers and herbicides

  2. Effect of soil and water conservation on rehabilitation of degraded lands and crop productivity in Maego watershed, North Ethiopia

    Directory of Open Access Journals (Sweden)

    Gebremariam Yaebiyo Dimtsu

    2018-04-01

    Full Text Available Many soil and water conservation (SWC measures were undertaken to decrease land degradation in Ethiopia. However, evaluation of their performance is essential to understand their success or failure and readjusting accordingly in the future planning.  Therefore, the objective of this study was to evaluate effectiveness of SWC measures in rehabilitation of degraded watershed and increase crop productivity in Maego watershed, Ethiopia. Seventy six sample plots were randomly taken from treated and untreated sub-watersheds for woody species and soil sampling. Crops yield was measured on top side, middle zone and below side of SWC structures. There were significantly higher woody species density and diversity, total nitrogen (TN, soil organic matter (SOM and soil moisture in the treated uncultivated land than the untreated one. The highest tree and sapling species density and diversity, TN and SOM were recorded on the exclosure part of the treated sub-watershed. Landscape position affected soil fertility, but has no effect on woody species density and diversity. The highest barley and wheat yield was measured on top side of SWC structures. Therefore, physical SWC structures should be integrated with exclosure to enhance rehabilitation of degraded watersheds/landscapes. Integration of biological SWC measures that improve soil fertility are essential on the cultivated land of the watershed. Most of the existing SWC structures, especially the old ones are filled with accumulated sediment, so maintenance is needed.

  3. Soil Health Management under Hill Agroecosystem of North East India

    Directory of Open Access Journals (Sweden)

    R. Saha

    2012-01-01

    Full Text Available The deterioration of soil quality/health is the combined result of soil fertility, biological degradation (decline of organic matter, biomass C, decrease in activity and diversity of soil fauna, increase in erodibility, acidity, and salinity, and exposure of compact subsoil of poor physicochemical properties. Northeast India is characterized by high soil acidity/Al+3 toxicity, heavy soil, and carbon loss, severe water scarcity during most parts of year though it is known as high rainfall area. The extent of soil and nutrient transfer, causing environmental degradation in North eastern India, has been estimated to be about 601 million tones of soil, and 685.8, 99.8, 511.1, 22.6, 14.0, 57.1, and 43.0 thousand tones of N, P, K, Mn, Zn, Ca, and Mg, respectively. Excessive deforestation coupled with shifting cultivation practices have resulted in tremendous soil loss (200 t/ha/yr, poor soil physical health in this region. Studies on soil erodibility characteristics under various land use systems in Northeastern Hill (NEH Region depicted that shifting cultivation had the highest erosion ratio (12.46 and soil loss (30.2–170.2 t/ha/yr, followed by conventional agriculture system (10.42 and 5.10–68.20 t/ha/yr, resp.. The challenge before us is to maintain equilibrium between resources and their use to have a stable ecosystem. Agroforestry systems like agri-horti-silvi-pastoral system performed better over shifting cultivation in terms of improvement in soil organic carbon; SOC (44.8%, mean weight diameter; MWD (29.4%, dispersion ratio (52.9%, soil loss (99.3%, soil erosion ratio (45.9%, and in-situ soil moisture conservation (20.6% under the high rainfall, moderate to steep slopes, and shallow soil depth conditions. Multipurpose trees (MPTs also played an important role on soil rejuvenation. Michelia oblonga is reported to be a better choice as bioameliorant for these soils as continuous leaf litter and root exudates improved soil physical

  4. Abstracts of the 42. Annual Alberta Soil Science Workshop

    International Nuclear Information System (INIS)

    Bullinger, A.

    2005-01-01

    The presentations at this workshop addressed issues regarding soil science, ecosystem management and land reclamation. The challenges facing the petroleum industry regarding anthropogenic impacts on soil ecosystems were discussed along with issues regarding soil fertility, reclamation and conservation. Riparian and forestry issues were also addressed along with land use management practices and the challenge of developing risk based spill management programs. Discussions ranged from soil properties, nutrient losses in soils, fertilization, crop response to fertilization, groundwater flow, the science of carbon and nitrogen cycling and salt transport. The conference featured 76 presentations and poster sessions, of which 11 have been indexed separately for inclusion in this database

  5. The development of soil and water conservation policies and practices in five selected countries from 1960 to 2010

    NARCIS (Netherlands)

    Graaff, de J.; Aklilu, A.; Ouessar, M.; Asins-Velis, S.; Kessler, A.

    2013-01-01

    Since the 1930s there has been worldwide concern about the effects and impacts of land degradation. After the problems experienced in the Dust Bowl in the USA, much attention was paid to soil and water conservation in both developed and developing countries. Initially Governments stimulated the

  6. Soils newsletter, Vol. 30, No. 2, January 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The Soil and Water Management and Crop Nutrition (SWMCN) Section and the Soil Science Unit (SSU) have successfully achieved their tasks planned for 2007. The SWMCN subprogramme was also fortunate to receive support from its loyal ex-staff member, Mr. Felipe Zapata who was willing to help beyond the normal call of duty to assist the SWMCN Section in the implementation of its activities. I remain grateful for the dedicated support of both existing and ex-staff team members. In 2007, the SWMCN subprogramme continued its focus on land degradation, soil conservation measures and agricultural water management. The new Coordinated Research Project (CRP) on Managing Irrigation Water to Enhance Crop Productivity Under Water-Limiting Conditions: A Role for Isotopic Techniques was initiated in 2007 and the first Research Coordination Meeting (RCM) of this CRP was held from 26 to 30 November. Besides this RCM, November and December were also a busy time for the SWMCN subprogramme, with three Consultants Meetings (CM) held in Vienna, Austria on a range of issues that are directly relevant to Member States' concerns. These CMs created excellent opportunities and forums for the SWMCN-SSU team and international consultants to identify information gaps and key research areas that will assist in the development of land and water management technology packages to enhance soil carbon sequestration for climate change adaptation, minimize non-point (diffuse) pollution and appropriately target water conservation areas (WSA) within agricultural watersheds for biomass production and environmental quality. Two consultants, Yong Li and Peggy Macgaine who arrived during this busy period also provide valuable inputs to SWMCN-SSU activities. The SWMCN-SSU team also continued to provide a technical backstop to Technical Cooperation projects (TCPs), covering a range of issues in agriculture such as soil fertility management, land degradation, soil erosion, fertigation and drip irrigation. 2008

  7. Effects of Zero Tillage (No-Till) Conservation Agriculture on soil physical and biological properties and their contributions to sustainability

    Science.gov (United States)

    Landers, John N.; Rass, Gerard; de Freitas, Pedro L.; Basch, Gottlieb; González Sanchez, Emilio J.; Tabaglio, Vincenzo; Kassan, Amir; Derpsch, Rolf; Friedrich, Theodor; Giupponi, Luca

    2013-04-01

    Not cultivating soil, rotating crops over the years, and leaving crop residues on the surface in the practice of zero tillage/conservation agriculture (ZT/CA) reverses the historically accelerating degradation of soil organic matter (SOM) and soil structure, while increasing soil biological activity by a factor of 2 to 4. The results of this are many: (a) not cultivating reduces soil compaction, leaving old root holes to facilitate internal drainage, averts the pulverization of soil aggregates and formation of pans, reduces draft power for planting and gives shelter, winter food and nesting sites for fauna, (b) crop residues on the surface practically eliminate wind and water erosion, reduce soil moisture loss through the mulch effect, slow spring warm-up (possibly offset by a lower specific heat demand with less water retention in surface soil) and act as a reserve of organically-compounded nutrients (as they decompose to humus), (c) more SOM means higher available water and nutrient retention, higher biological activity year round (enhancing biological controls), higher levels of water-stable aggregates and a positive carbon sink in incremental SOM. The positive impacts for society are: (i) more and cheaper food, (ii) reduced flood and drought-induced famine risks, (iii) a positive carbon sink in SOM and possible reductions in NO2 emissions, (iv) cleaner water and greater aquifer recharge due to reduced runoff, (v) cleaner air through effective elimination of dust as a product of cultivation (vi) less water pollution and greater aquifer recharge from reduced rainfall runoff, (vii) farm diesel consumption halved, (viii) reduced demand for (tropical) de-forestation, by permitting crop expansion on steeper lands, (ix) increased wildlife populations (skylarks, plovers, partridge and peccaries) and (x) an improved conservation mindset in farmers. It is notable that, in spite of successful practitioners in all European countries, mainstream adoption is still to come

  8. Soil quality improvement under an ecologically based farming system in northwest Missouri

    Science.gov (United States)

    Ecologically based farming conserves and improves the soil resource and protects environmental quality by using organic or natural resources without application of synthetic chemicals. Soil quality assessment indicates the ability of management systems to optimize soil productivity and to maintain i...

  9. A general overview of the history of soil science

    Science.gov (United States)

    Brevik, Eric C.; Cerdà, Artemi

    2017-04-01

    Human knowledge of soil has come a long way since agriculture began about 9000 BCE, when finding the best soils to grow crops in was largely based on a trial and error approach. Many innovations to manage and conserve soil, such as the plow, irrigation techniques, terraces, contour tillage, and even the engineering of artificial soils, were developed between 9000 BCE and 1500 CE. Scientific methods began to be employed in the study of soils during the Renaissance and many famous scientists addressed soil issues, but soil science did not evolve into an independent scientific field of study until the 1880s. In the early days of the study of soil as a science, soil survey activities provided one of the major means of advancing the field. As the 20th century progressed, advances in soil biology, chemistry, genesis, management, and physics allowed the use of soil information to expand beyond agriculture to environmental issues, human health, land use planning, and many other areas. The development of soil history as a subfield of the discipline in the latter part of the 20th century has promise to help advance soil science through a better understanding of how we have arrived at the major theories that shape the modern study of soil science.

  10. Soil Survey Geographic (SSURGO) - Magnesic Soils

    Data.gov (United States)

    California Natural Resource Agency — Magnesic soils is a subset of the SSURGO dataset containing soil family selected based on the magnesic content and serpentinite parent material. The following soil...

  11. Isolation and identification of soil fungi isolates from forest soil for flooded soil recovery

    Science.gov (United States)

    Hazwani Aziz, Nor; Zainol, Norazwina

    2018-04-01

    Soil fungi have been evaluated for their ability in increasing and recovering nitrogen, phosphorus and potassium content in flooded soil and in promoting the growth of the host plant. Host plant was cultivated in a mixture of fertile forest soil (nutrient-rich soil) and simulated flooded soil (nutrient-poor soil) in an optimized soil condition for two weeks. The soil sample was harvested every day until two weeks of planting and was tested for nitrogen, phosphorus and potassium concentration. Soil fungi were isolated by using dilution plating technique and was identified by Biolog’s Microbial Systems. The concentration of nitrogen, phosphorus, and potassium was found to be increasing after two weeks by two to three times approximately from the initial concentration recorded. Two fungi species were identified with probability more than 90% namely Aspergillus aculeatus and Paecilomyces lilacinus. Both identified fungi were found to be beneficial in enhancing plant growth and increasing the availability of nutrient content in the soil and thus recovering the nutrient content in the flooded soil.

  12. Fall cover crops boost soil arbuscular mycorrhizal fungi which can lead to reduced inputs

    Science.gov (United States)

    Fall cover crops provide multiple benefits to producers. These benefits include pathogen and pest protection, drought protection, weed control, reduced soil erosion, nutrient acquisition and retention, increased soil organic matter, and conservation of soil water by improvement of soil structure th...

  13. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  14. Participatory soil and water conservation planning using a financial analysis tool in the west usambara highlands of tanzania

    NARCIS (Netherlands)

    Tenge, A.J.M.; Okoba, B.O.; Sterk, G.

    2007-01-01

    Despite decades of soil and water conservation (SWC) efforts in Tanzania, the adoption of the recommended SWC measures by farmers is minimal. In the past, SWC plans did not incorporate farmers' knowledge, and the economics of SWC was not given much attention at the planning stage. This research

  15. Soil forensics: How far can soil clay analysis distinguish between soil vestiges?

    Science.gov (United States)

    Corrêa, R S; Melo, V F; Abreu, G G F; Sousa, M H; Chaker, J A; Gomes, J A

    2018-03-01

    Soil traces are useful as forensic evidences because they frequently adhere to individuals and objects associated with crimes and can place or discard a suspect at/from a crime scene. Soil is a mixture of organic and inorganic components and among them soil clay contains signatures that make it reliable as forensic evidence. In this study, we hypothesized that soils can be forensically distinguished through the analysis of their clay fraction alone, and that samples of the same soil type can be consistently distinguished according to the distance they were collected from each other. To test these hypotheses 16 Oxisol samples were collected at distances of between 2m and 1.000m, and 16 Inceptisol samples were collected at distances of between 2m and 300m from each other. Clay fractions were extracted from soil samples and analyzed for hyperspectral color reflectance (HSI), X-ray diffraction crystallographic (XRD), and for contents of iron oxides, kaolinite and gibbsite. The dataset was submitted to multivariate analysis and results were from 65% to 100% effective to distinguish between samples from the two soil types. Both soil types could be consistently distinguished for forensic purposes according to the distance that samples were collected from each other: 1000m for Oxisol and 10m for Inceptisol. Clay color and XRD analysis were the most effective techniques to distinguish clay samples, and Inceptisol samples were more easily distinguished than Oxisol samples. Soil forensics seems a promising field for soil scientists as soil clay can be useful as forensic evidence by using routine analytical techniques from soil science. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  16. Diel hysteresis between soil respiration and soil temperature in a biological soil crust covered desert ecosystem.

    Science.gov (United States)

    Guan, Chao; Li, Xinrong; Zhang, Peng; Chen, Yongle

    2018-01-01

    Soil respiration induced by biological soil crusts (BSCs) is an important process in the carbon (C) cycle in arid and semi-arid ecosystems, where vascular plants are restricted by the harsh environment, particularly the limited soil moisture. However, the interaction between temperature and soil respiration remains uncertain because of the number of factors that control soil respiration, including temperature and soil moisture, especially in BSC-dominated areas. In this study, the soil respiration in moss-dominated crusts and lichen-dominated crusts was continuously measured using an automated soil respiration system over a one-year period from November 2015 to October 2016 in the Shapotou region of the Tengger Desert, northern China. The results indicated that over daily cycles, the half-hourly soil respiration rates in both types of BSC-covered areas were commonly related to the soil temperature. The observed diel hysteresis between the half-hourly soil respiration rates and soil temperature in the BSC-covered areas was limited by nonlinearity loops with semielliptical shapes, and soil temperature often peaked later than the half-hourly soil respiration rates in the BSC-covered areas. The average lag times between the half-hourly soil respiration rates and soil temperature for both types of BSC-covered areas were two hours over the diel cycles, and they were negatively and linearly related to the volumetric soil water content. Our results highlight the diel hysteresis phenomenon that occurs between soil respiration rates and soil temperatures in BSC-covered areas and the negative response of this phenomenon to soil moisture, which may influence total C budget evaluations. Therefore, the interactive effects of soil temperature and moisture on soil respiration in BSC-covered areas should be considered in global carbon cycle models of desert ecosystems.

  17. Soil physical conditions in Nigerian savannas and biomass production

    International Nuclear Information System (INIS)

    Salako, F.K.

    2004-01-01

    Nigeria is located in the tropical zone, with a vast area having savanna vegetation. This is a region that is itself diverse, necessitating a classification into derived savanna, southern Guinea savanna and northern Guinea savanna. These classifications reflect environmental characteristics such as length of growing period, which for instance is 151-180 days for the northern Guinea savanna, 181-210 days for the southern Guinea savanna and 211-270 days for the derived savanna/coastal savanna. The major soils found in the various agro-ecological zones have coarse-textured surface soil, and are low in organic matter and chemical fertility. Although, yields can be improved by addition of inorganic and organic fertilizer, this can only be sustained and assured with high soil physical qualities. Soil physical qualities can be sustained at a high level with conservation tillage and soil conservation measures. Tillage is physical manipulation of the soil. Thus, the most profound effect of tillage is in relation to soil physical properties. For socio-economic and cultural reasons, manual tillage is still widely practiced in Africa as farming is largely at subsistence level. However, there are now a number of commercial farms especially for cash crop production in many parts of Africa. Many of these are located in locations which were hitherto reserved as forest and a need for sustainable production in pertinent to maintain ecological balance. Soils with coarse texture are not often sensitive to some physical parameters while some physical parameters are more relevant in a given study than others. Sustainable crop production researches in the tropics have focused on the role of planted fallows and their spatial arrangement (e.g., as in alley cropping) for many decades. Application of soil physics in the area of food production and environmental management still lags behind other sub-disciplines of soil science, particularly soil fertility in the tropics. A great challenge is

  18. Studying soil organic carbon in Mediterranean soils. Different techniques and the effects of land management and use, climatic and topographic conditions, organic waste addition

    Science.gov (United States)

    Lozano-García, Beatriz; Parras-Alcántara, Luis

    2014-05-01

    Soil organic carbon (SOC) is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. The ability of soil to store SOC depends to a great extent on climate and some soil properties, in addition to the cultivation system in agricultural soils. Soils in Mediterranean areas are very poor in organic matter and are exposed to progressive degradation processes. Therefore, a lot of actions are conducted to improve soil quality and hence mitigate the negative environmental and agronomic limitations of these soils. Improved cultivation systems (conversion of cropland to pastoral and forest lands, conventional tillage to conservation tillage, no manure use to regular addition of manure) have been introduced in recent years, increasing the contents in SOC and therefore, enhancing the soil quality, reducing soil erosion and degradation, improving surface water quality and increasing soil productivity. Moreover, the organic waste addition to the soils is especially useful in Mediterranean regions, where the return of organic matter to soil not only does it help soils store SOC and improve soil structure and soil fertility but also it allows to reuse a wide range of agro-industrial wastes.

  19. Classification of Effective Soil Depth by Using Multinomial Logistic Regression Analysis

    Science.gov (United States)

    Chang, C. H.; Chan, H. C.; Chen, B. A.

    2016-12-01

    Classification of effective soil depth is a task of determining the slopeland utilizable limitation in Taiwan. The "Slopeland Conservation and Utilization Act" categorizes the slopeland into agriculture and husbandry land, land suitable for forestry and land for enhanced conservation according to the factors including average slope, effective soil depth, soil erosion and parental rock. However, sit investigation of the effective soil depth requires a cost-effective field work. This research aimed to classify the effective soil depth by using multinomial logistic regression with the environmental factors. The Wen-Shui Watershed located at the central Taiwan was selected as the study areas. The analysis of multinomial logistic regression is performed by the assistance of a Geographic Information Systems (GIS). The effective soil depth was categorized into four levels including deeper, deep, shallow and shallower. The environmental factors of slope, aspect, digital elevation model (DEM), curvature and normalized difference vegetation index (NDVI) were selected for classifying the soil depth. An Error Matrix was then used to assess the model accuracy. The results showed an overall accuracy of 75%. At the end, a map of effective soil depth was produced to help planners and decision makers in determining the slopeland utilizable limitation in the study areas.

  20. Development of soil taxation and soil classification as furthered by the Austrian Soil Science Society

    Science.gov (United States)

    Baumgarten, Andreas

    2013-04-01

    Soil taxation and soil classification are important drivers of soil science in Austria. However, the tasks are quite different: whereas soil taxation aims at the evaluation of the productivity potential of the soil, soil classification focusses on the natural development and - especially nowadays - on functionality of the soil. Since the foundation of the Austrian Soil Science Society (ASSS), representatives both directions of the description of the soil have been involved in the common actions of the society. In the first years it was a main target to improve and standardize field descriptions of the soil. Although both systems differ in the general layout, the experts should comply with identical approaches. According to this work, a lot of effort has been put into the standardization of the soil classification system, thus ensuring a common basis. The development, state of the art and further development of both classification and taxation systems initiated and carried out by the ASSS will be shown.

  1. Oxygen transport in waterlogged soils, Part I. Approaches to modelling soil and crop response to oxygen deficiency

    International Nuclear Information System (INIS)

    Obando Moncayo, F.H.

    2004-01-01

    This lecture outlines in a simple way the mathematics of various cases of diffusion which have been widely used in modelling soil aeration. Simplifications of the general equation of diffusion (Fick's law) giving two possible forms of the problem: planar or one-dimensional diffusion and radial diffusion are given. Furthermore, the solution of diffusion equation is obtained by the analogy to the problem of electrical flow (Ohm's law). Taking into consideration the soil respiration process, the continuity equation which accounts for the law of conservation of mass is solved. The purpose of this paper has been to review the interrelation soil structure-air movement in waterlogged clay soils, and its consequences on plant growth and crop production. Thus, the mathematics of diffusion is presented, and then its application to specific cases of soil aeration such as diffusion in the soil profile, soil aggregates and roots is given. The following assumptions are taken into consideration. Gas flow in soils is basically diffusion-dependent. Gas-phase diffusion is the major mechanism for vertical or longitudinal transport (long distance transport); this means, with depth Z in the soil profile (macro diffusion). For horizontal transport (short distance transport or micro diffusion) which is assumed to be in X direction; in this case, the geometry of aggregates and the liquid phase are the major components of resistance for diffusion. Soil aggregates and roots are considered to be spherical and cylindrical in shape respectively. Soil oxygen consumption, Sr, is taken to be independent of the oxygen concentration and considered to proceed at the same rate until oxygen supply drops to critical levels. Thus, aeration problems are assumed to begin when at any time, in the root zone, the oxygen diffusion rate, ODR, becomes less than 30x10 -8 g.cm -2 .sec -1 , or the value of redox potential Eh is less than +525 mv

  2. SOIL Geo-Wiki: A tool for improving soil information

    Science.gov (United States)

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael

    2014-05-01

    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The WorldSoilProfiles.org database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference

  3. Assessment of Soil-Gas and Soil Contamination at the Former Military Police Range, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas and soil were assessed for organic and inorganic contaminants at the former military police range at Fort Gordon, Georgia, from May to September 2010. The assessment evaluated organic contaminants in soil-gas samplers and inorganic contaminants in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers deployed and collected from May 20 to 24, 2010, identified masses above method detection level for total petroleum hydrocarbons, gasoline-related and diesel-related compounds, and chloroform. Most of these detections were in the southwestern quarter of the study area and adjacent to the road on the eastern boundary of the site. Nine of the 11 chloroform detections were in the southern half of the study area. One soil-gas sampler deployed adjacent to the road on the southern boundary of the site detected a mass of tetrachloroethene greater than, but close to, the method detection level of 0.02 microgram. For soil-gas samplers deployed and collected from September 15 to 22, 2010, none of the selected organic compounds classified as chemical agents and explosives were detected above method detection levels. Inorganic concentrations in the five soil samples collected at the site did not exceed the U.S. Environmental Protection Agency regional screening levels for industrial soil and were at or below background levels for similar rocks and strata in South Carolina.

  4. The Participatory Construction of Agro-Ecological Knowledge As A Soil Conservation Strategy In The Mountain Region of Rio de Janeiro State (Brazil

    Directory of Open Access Journals (Sweden)

    de Assis Renato Linhares

    2018-02-01

    Full Text Available Agriculture in the mountain region of Rio de Janeiro State is characterized by intensive soil use and input. Such mountainous environments are vulnerable to climate events; thus, the current article presents a report on methods applied to exchange academic and traditional knowledge. The aim is to expand farmers’ perception about the need of implementing agro-ecological practices, mainly soil management practices, which are important for agricultural sustainability in mountainous environments. The study was conducted in a Nova Friburgo family production unit, in the mountain region of Rio de Janeiro State (Brazil. It consisted of implementing three observation and soil organic-matter management units. The idea was to reduce the incidence of clubroot of crucifers disease caused by Plasmidiophora brassicae. The soil fauna was discussed with local farmers, with emphasis on the association between ecological processes and soil management. The present study improved the discussion with farmers and the need of introducing other innovative conservation practices such as no-tillage system and participatory research based on agro-ecological propositions.

  5. Combined Use Of Cs-137 And Be-7 To Assess The Effectiveness Of Soil Conservation For Vetiver Grass Strips In Coffee Crop Lands In The Central Highlands

    International Nuclear Information System (INIS)

    Phan Son Hai; Nguyen Dao; Tran Van Hoa; Tran Dinh Khoa; Nguyen Thi Mui; Trinh Cong Tu

    2007-01-01

    The combined use of 137 Cs and 7 Be for assessment of medium- and short-term soil erosion rates for sloping lands with and without soil conservation technologies in the Central Highlands of Vietnam has been carried out. Studies were performed at five 128 m 2 runoff plots and two 0.5 ha coffee plots with the slope gradient of about 25%. Experiments carried out at runoff plots showed that: (i) In the case of low erosion rates (less than 30 t ha -1 y -1 ), soil erosion rates estimated by 7 Be technique using the Profile-Distribution Model were consistent with net soil erosion rates obtained by runoff plots when particle size correction factor P is taken into account; (ii) In the case of high erosion rates (greater than 30 t ha -1 y -1 ), the conversion model overestimated soil erosion rates when P was not allowed for, and underestimated erosion rate when P factor was taken into account. Studies carried out at two 0.5 ha coffee plots showed that: (i) For the plot without soil conservation, soil erosion occurred for all sampling points with medium-term erosion rates ranging between 1.2 t ha -1 y -1 and 35 t ha -1 y -1 (the average erosion rate was 22.7 ± 1.2 t ha -1 y -1 ). The short term soil erosion rate estimated by 7 Be technique was 32.7 ± 6.1 t ha -1 y -1 for this plot; (ii) For the plot with the last seven year presence of Vetiver strips, about 93% of the area suffered from medium term erosion with erosion rates varying from 3 t ha -1 y -1 to 33 t ha -1 y -1 (the mean is 22.2 t ha -1 y -1 ), and medium term deposition occurred for only 7% of the area with the deposition rates ranging between 1.3 and 1.4 t ha -1 y -1 , resulting in the net erosion rate of 20.4 ± 0.6 t ha -1 y -1 . The short term soil erosion rate at this plot estimated by 7 Be technique was 2.3 t ha -1 y -1 . By using Vetiver strips as a soil conservation technology, soil erosion was almost controlled and the net erosion rate was reduced from 32.7 t ha -1 y -1 to 2.3 t ha -1 y -1 . (author)

  6. Soil hydraulic properties of Cuban soils

    International Nuclear Information System (INIS)

    Ruiz, M.E.; Medina, H.

    2004-01-01

    Because soil hydraulic properties are indispensable for determining soil water retention and soil water movement, their input for deterministic crop simulation models is essential. From these models is possible to access the effect of the weather changes, soil type or different irrigation schedules on crop yields. With these models, possibilities are provided to answer questions regarding virtual 'what happen if' experiments with a minimum of fieldwork. Nevertheless, determining soil hydraulic properties can be very difficult owing to unavailability of necessary equipment or the lack of personal with the proper knowledge for those tasks. These deficiencies are a real problem in developing countries, and even more so when there is not enough financial possibilities for research work. This paper briefly presents the way these properties have been accessed for Cuban soils, which methods have been used and the work now in progress. (author)

  7. Radon levels and transport parameters in Atlantic Forest soils

    International Nuclear Information System (INIS)

    Farias, E.E.G. de; Silva Neto, P.C. da; Souza, E.M. de; De Franca, E.J.; Hazin, C.A.

    2016-01-01

    In natural forest soils, the radon transport processes can be significantly intensified due to the contribution of living organism activities to soil porosity. In this paper, the first results of the radon concentrations were obtained for soil gas from the Atlantic Forest, particularly in the Refugio Ecologico Charles Darwin, Brazil. The estimation of permeability and radon exhalation rate were carried out in this conservation unit. For forested soils, radon concentrations as high as 40 kBq m -3 were found. Based on the radon concentrations and on the permeability parameter, the results indicated considerable radon hazard for human occupation in the neighborhood. (author)

  8. Effects of land use and infiltration behaviour on soil conservation strategies

    NARCIS (Netherlands)

    Stolte, J.

    2003-01-01

    Soil erosion is a global problem because of its environmental consequences, including sedimentation and pollution in many areas of the world. Detachment of soil particles is mainly caused by rainsplash and the erosive force of overland flow. The main biophysical factor influencing the

  9. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  10. Modification of soil nutrients and micro-climate by tree crowns in a ...

    African Journals Online (AJOL)

    The findings on soil nutrient status are consistent with results from disturbed systems, and challenge the dogma, at least for soil nutrient status, that conservative stocking rates are beneficial. Keywords: botany; crown interception; Matopos Research Station; micro-climate; nutrients; semi-arid; shade-adapted; shading; soil ...

  11. Voluntary cooperation in the provision of a semi-public good : Community-based soil and water conservation in semi-arid India

    NARCIS (Netherlands)

    Bouma, J.A.

    2008-01-01

    This dissertation analyses the question whether households in India’s semi-arid tropics can be expected to voluntarily maintain semi-public investments in soil and water conservation. Increasingly, public investment programs decentralise project planning, implementation and management to local

  12. Influence of Conservation Tillage on some Soil Physical Properties and Crop Yield in Vetch-Wheat Rotation in Dryland Cold Region

    Directory of Open Access Journals (Sweden)

    I Eskandari

    2017-10-01

    Full Text Available Introduction Winter wheat is an important, well-adapted grain crop under dryland condition of the northwest of Iran. Soil water is the most limiting resource for crop growth in dryland areas. Therefore, farmers need to use crop residues and minimum tillage to control the soil erosion and effectively store and to use the limited precipitation received for crop production. Crop rotation and tillage system could affect crop yield due to their effects on water conservation and soil chemical and physical properties. Galantini et al., (2000 studied the effect of crop rotation on wheat productivity in the Pampean semi-arid region of Argentina and found that a wheat–vetch (Vicia sativa L. rotation resulted in higher yield and protein content, and greater yield components than the other rotations.Payne et al. (2000 stated that where precipitation amount is marginal (400 mm, dry field pea offers a potential alternative to summer fallowing. The purpose of this study was to identify the optimal tillage system for increasing crop productivity in a vetch–wheat rotation in dryland farming of the northwest of Iran. Materials and Methods The field experiment was carried out from 2010 to 2014 at the Dryland Agricultural Research Station (latitude37° 12´N; longitude 46◦20´E; 1730 m a.s.l., 25 km east of Maragheh, East Azerbaijan Province, Iran. The long-term (10 years average precipitation, temperature and relative humidity of the station are 336.5 mm, 9.4 ◦C and 47.5%, respectively. The soil (Fine Mixed, Mesic, Vertic Calcixerepts, USDA system; Calcisols, FAO system at the study site had a clay loam texture in the 0–15 cm surface layer and a clay texture in the 15–80 cm depth. This study was conducted in vetch (Vicia pannonica- wheat (Triticum aestivum L. rotation. The experiment was arranged in a randomized complete block design with four replications. The tillage treatments consisted of (1 conventional tillage: moldboard plowing followed by one

  13. Clay-illuvial soils in the Polish and international soil classifications

    Directory of Open Access Journals (Sweden)

    Kabała Cezary

    2015-12-01

    Full Text Available Soil with a clay-illuvial subsurface horizon are the most widespread soil type in Poland and significantly differ in morphology and properties developed under variable environmental conditions. Despite the long history of investigations, the rules of classification and cartography of clay-illuvial soils have been permanently discussed and modified. The distinction of clay-illuvial soils into three soil types, introduced to the Polish soil classification in 2011, has been criticized as excessively extended, non-coherent with the other parts and rules of the classification, hard to introduce in soil cartography and poorly correlated with the international soil classifications. One type of clay-illuvial soils (“gleby płowe” was justified and recommended to reintroduce in soil classification in Poland, as well as 10 soil subtypes listed in a hierarchical order. The subtypes may be combined if the soil has diagnostic features of more than one soil subtypes. Clear rules of soil name generalization (reduction of subtype number for one soil were suggested for soil cartography on various scales. One of the most important among the distinguished soil sub-types are the “eroded” or “truncated” clay-illuvial soils.

  14. Soil structural quality assessment for soil protection regulation

    Science.gov (United States)

    Johannes, Alice; Boivin, Pascal

    2017-04-01

    Soil quality assessment is rapidly developing worldwide, though mostly focused on the monitoring of arable land and soil fertility. Soil protection regulations assess soil quality differently, focusing on priority pollutants and threshold values. The soil physical properties are weakly considered, due to lack of consensus and experimental difficulties faced with characterization. Non-disputable, easy to perform and inexpensive methods should be available for environmental regulation to be applied, which is unfortunately not the case. As a consequence, quantitative soil physical protection regulation is not applied, and inexpensive soil physical quality indicators for arable soil management are not available. Overcoming these limitations was the objective of a research project funded by the Swiss federal office for environment (FOEN). The main results and the perspectives of application are given in this presentation. A first step of the research was to characterize soils in a good structural state (reference soils) under different land use. The structural quality was assessed with field expertise and Visual Evaluation of the Soil Structure (VESS), and the physical properties were assessed with Shrinkage analysis. The relationships between the physical properties and the soil constituents were linear and highly determined. They represent the reference properties of the corresponding soils. In a second step, the properties of physically degraded soils were analysed and compared to the reference properties. This allowed defining the most discriminant parameters departing the different structure qualities and their threshold limits. Equivalent properties corresponding to these parameters but inexpensive and easy to determine were defined and tested. More than 90% of the samples were correctly classed with this method, which meets, therefore, the requirements for practical application in regulation. Moreover, result-oriented agri-environmental schemes for soil quality

  15. THEORETICAL PRINCIPLES OF EVALUATION OF EFFICIENCY OF SOIL CONSERVATION MEASURES IN AGRICULTURAL LAND-USE

    Directory of Open Access Journals (Sweden)

    Shevchenko O.

    2017-08-01

    Full Text Available In the article modern scientific and theoretical positions concerning determination of the effectiveness of soil protection measures on agricultural lands are investigated. It is analyzed that the protection of land from degradation is one of the most important problems of agriculture, as this process leads to a significant decrease in soil fertility and crop yields. That is why in today's conditions, when the protection of agricultural land became urgent and a priority task, the scientific substantiation of the economic assessment of the damage caused by the degradation of land to agriculture, as well as the development of methods for determining the economic efficiency of the most progressive soil protection measures, technologies and complexes based on their overall Comparative evaluation. It was established that ground protection measures are a system of various measures aimed at reducing the negative degradation effect on the soil cover and ensuring the preservation and reproduction of soil fertility and integrity, as well as increasing their productivity as a result of rational use. The economic essence of soil protection measures is the economic effect achieved by preventing damage caused by land degradation to agriculture, as well as for obtaining additional profit as a result of their action. The economic effectiveness of soil protection measures means their effectiveness, that is, the correlation between the results and the costs that they provided. The excess of the economic result over the cost of its achievement indicates the economic efficiency of soil protection measures, and the difference between the result and the expenditure characterizes the economic effect. Ecological efficiency is characterized by environmental parameters of the soil cover, namely: the weakening of degradation effects on soils; improvement of their qualitative properties; An increase in production without violation of environmental standards, etc. Economic

  16. Visual soil evaluation and soil compaction research

    DEFF Research Database (Denmark)

    M.L. Guimarães, Rachel; Keller, Thomas; Munkholm, Lars Juhl

    2017-01-01

    Following on from discussions that took place during the 19th International Conference of the International Soil Tillage Research Organization (ISTRO) in Montevideo, Uruguay, in 2012, the ISTRO working groups “Visual Soil Examination and Evaluation” (VSEE) and “Subsoil Compaction” decided...... to organize a joint workshop. The present special issue is an outcome from the workshop on “Soil structural quality of tropical soils: Visual evaluation methods and soil compaction prevention strategies” that was held 26–29 May 2014 in Maringá, Paraná, Brazil. There has been a long-lasting interest in Visual...... Soil Evaluation (VSE). An ISTRO working group was established more than 30 years ago with the objectives to exchange knowledge and experiences on field methods of visual-tactile soil assessment and to foster international cooperation on new or refined methods. The three previous meeting of the group...

  17. Soil water retention as affected by tillage and residue management in semiarid Spain

    NARCIS (Netherlands)

    Bescansa, P.; Imaz, M.J.; Virto, I.; Enrique, A.; Hoogmoed, W.B.

    2006-01-01

    Conservation tillage preserves soil water and this has been the main reason for its rapid dissemination in rainfed agriculture in semiarid climates. We determined the effects of conservation versus conventional tillage on available soil water capacity (AWC) and related properties at the end of 5

  18. [Microscopic soil fungi - bioindicators organisms contaminated soil].

    Science.gov (United States)

    Donerian, L G; Vodianova, M A; Tarasova, Zh E

    In the paper there are considered methodological issues for the evaluation of soil biota in terms of oil pollution. Experimental studies have shown that under the exposure of a various levels of oil pollution meeting certain gradations of the state and optimal alteration in microbocenosis in sod-podzolic soils, there is occurred a transformation of structure of the complex of micromycetes and the accumulation of toxic species, hardly typical for podzolic soils - primarily represantatives of the genus Aspergillus (A.niger and A. versicolor), Paecilomyces (P.variotii Bainer), Trichoderma (T.hamatum), the genus of phytopathogens Fusarium (F.oxysporum), dermatophytes of genus Sporothrix (S. schenckii) and dark-colored melanin containing fungi of Dematiaceae family. Besides that there are presented data on the study of microbiocenosis of the urban soil, the urban soil differed from the zone soil, but shaped in similar landscape and climatic conditions, and therefore having a tendency to a similar response from the side of microorganisms inhabiting the soil. Isolated complex of soil microscopic fungi is described by many authors as a complex, characteristic for soils of megalopolises. This allowed authors of this work to suggest that in urban soils the gain in the occurrence of pathogenic species micromycetes also increases against a background of chronic, continuously renewed inflow of petroleum hydrocarbons from various sources of pollution. Because changes in the species composition of micromycetes occurred in accordance with the increasing load of oil, so far as microscopic soil fungi can be recommended as a bioindicator organisms for oil. In the article there is also provided information about the distinctive features of modern DNA identification method of soil microscopic fungi and accepted in our country methodology of isolation of micromycetes with the use of a nutrient Czapek medium.

  19. Soil tillage

    OpenAIRE

    Dierauer, Hansueli

    2013-01-01

    The web platform offers a compilation of various formats and materials dealing with reduced tillage and its challenges regarding weeds. A selection of short movies about mechanical weeding, green manure and tailor-made machinery is listed. Leaflets and publications on reduced tillage can be downloaded. In there, different treatments and machinery are tested and compared to advice farmers on how to conserve soil while keeping weed under control. For Swiss farmers information on the leg...

  20. Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas

    Directory of Open Access Journals (Sweden)

    José Camilo Bedano

    2016-07-01

    Full Text Available Soil is the most basic resource for sustainable agricultural production; it promotes water quality, is a key component of the biogeochemical cycles and hosts a huge diversity of organisms. However, we are not paying enough attention to soil degradation produced by land use. Modern agriculture has been successful in increasing yields but has also caused extensive environmental damage, particularly soil degradation. In the Argentine Pampas, agriculturization reached a peak with the generalized use of the no-till technological package: genetically modified soybeans tolerant to glyphosate, no-till, glyphosate, and inorganic fertilizers. This phenomenon has been widely spread in the country; the no-till package has been applied in large areas and has been used by tenants in a 60%–70% of cultivated lands. Thus, those who were involved in developing management practices may not be the same as those who will face degradation issues related to those practices. Indeed, most evidence reviewed in this paper suggests that the most widely distributed practices in the Pampas region are actually producing severe soil degradation. Biological degradation is particularly important because soil biota is involved in numerous soil processes on which soil functioning relies, affecting soil fertility and productivity. For example, soil meso- and macrofauna are especially important in nutrient cycling and in soil structure formation and maintenance, and they are key components of the network that links microbial process to the scale of fields and landscapes where ecosystem services are produced. However, the knowledge of the impact of different agricultural managements on soil meso- and macrofauna in Pampas agroecosystems is far from conclusive at this stage. The reason for this lack of definite conclusions is that this area has been given less attention than in other parts of the world; the response of soil fauna to agricultural practices is complex and taxa

  1. Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic

    Directory of Open Access Journals (Sweden)

    Daniel Žížala

    2017-01-01

    Full Text Available The assessment of the soil redistribution and real long-term soil degradation due to erosion on agriculture land is still insufficient in spite of being essential for soil conservation policy. Imaging spectroscopy has been recognized as a suitable tool for soil erosion assessment in recent years. In our study, we bring an approach for assessment of soil degradation by erosion by means of determining soil erosion classes representing soils differently influenced by erosion impact. The adopted methods include extensive field sampling, laboratory analysis, predictive modelling of selected soil surface properties using aerial hyperspectral data and the digital elevation model and fuzzy classification. Different multivariate regression techniques (Partial Least Square, Support Vector Machine, Random forest and Artificial neural network were applied in the predictive modelling of soil properties. The properties with satisfying performance (R2 > 0.5 were used as input data in erosion classes determination by fuzzy C-means classification method. The study was performed at four study sites about 1 km2 large representing the most extensive soil units of the agricultural land in the Czech Republic (Chernozems and Luvisols on loess and Cambisols and Stagnosols on crystalline rocks. The influence of site-specific conditions on prediction of soil properties and classification of erosion classes was assessed. The prediction accuracy (R2 of the best performing models predicting the soil properties varies in range 0.8–0.91 for soil organic carbon content, 0.21–0.67 for sand content, 0.4–0.92 for silt content, 0.38–0.89 for clay content, 0.73–089 for Feox, 0.59–0.78 for Fed and 0.82 for CaCO3. The performance and suitability of different properties for erosion classes’ classification are highly variable at the study sites. Soil organic carbon was the most frequently used as the erosion classes’ predictor, while the textural classes showed lower

  2. SoilInfo App: global soil information on your palm

    Science.gov (United States)

    Hengl, Tomislav; Mendes de Jesus, Jorge

    2015-04-01

    ISRIC ' World Soil Information has released in 2014 and app for mobile de- vices called 'SoilInfo' (http://soilinfo-app.org) and which aims at providing free access to the global soil data. SoilInfo App (available for Android v.4.0 Ice Cream Sandwhich or higher, and Apple v.6.x and v.7.x iOS) currently serves the Soil- Grids1km data ' a stack of soil property and class maps at six standard depths at a resolution of 1 km (30 arc second) predicted using automated geostatistical mapping and global soil data models. The list of served soil data includes: soil organic carbon (), soil pH, sand, silt and clay fractions (%), bulk density (kg/m3), cation exchange capacity of the fine earth fraction (cmol+/kg), coarse fragments (%), World Reference Base soil groups, and USDA Soil Taxonomy suborders (DOI: 10.1371/journal.pone.0105992). New soil properties and classes will be continuously added to the system. SoilGrids1km are available for download under a Creative Commons non-commercial license via http://soilgrids.org. They are also accessible via a Representational State Transfer API (http://rest.soilgrids.org) service. SoilInfo App mimics common weather apps, but is also largely inspired by the crowdsourcing systems such as the OpenStreetMap, Geo-wiki and similar. Two development aspects of the SoilInfo App and SoilGrids are constantly being worked on: Data quality in terms of accuracy of spatial predictions and derived information, and Data usability in terms of ease of access and ease of use (i.e. flexibility of the cyberinfrastructure / functionalities such as the REST SoilGrids API, SoilInfo App etc). The development focus in 2015 is on improving the thematic and spatial accuracy of SoilGrids predictions, primarily by using finer resolution covariates (250 m) and machine learning algorithms (such as random forests) to improve spatial predictions.

  3. Hydrologic characterization of desert soils with varying degrees of pedogenesis: 1. field experiments evaluating plant-relevant soil water behavior

    Science.gov (United States)

    Nimmo, J.R.; Perkins, K.S.; Schmidt, K.M.; Miller, D.M.; Stock, J.D.; Singha, K.

    2009-01-01

    To assess the eff ect of pedogenesis on the soil moisture dynamics infl uencing the character and quality of ecological habitat, we conducted infi ltration and redistribution experiments on three alluvial deposits in the Mojave National Preserve: (i) recently deposited active wash sediments, (ii) a soil of early Holocene age, and (iii) a highly developed soil of late Pleistocene age. At each, we ponded water in a 1-m-diameter infi ltration ring for 2.3 h and monitored soil water content and matric pressure during and atier infi ltration, using probes and electrical resistivity imaging (ERI). Infi ltration and downward fl ow rates were greater in younger material, favoring deep-rooted species. Deep-rooted species tend to colonize the margins of washes, where they are unaff ected by sediment transport that inhibits colonization. The ERI results support important generalizations, for example that shallower than 0.5 m, infi ltrated water persists longer in highly developed soil, favoring shallow-rooted species. Soil moisture data for the two youngest soils suggested that saturation overshoot, which may have signifi cant but unexplored hydroecologic and pedogenic eff ects, occurred at the horizontally advancing weting front. Spatial heterogeneity of soil properties generally increased with pedogenic development. Evidence suggested that some early-stage developmental processes may promote uniformity; the intermediate- age soil appeared to have the least heterogeneity in terms of textural variation with depth, and also the least anisotropy. Lateral heterogeneity was pronounced in older soil, having a multitude of eff ects on the distribution and retention of soil water, and may facilitate certain water-conserving strategies of plants over what would be possible in a laterally homogeneous soil. ?? Soil Science Society of America.

  4. Shaping an Optimal Soil by Root-Soil Interaction.

    Science.gov (United States)

    Jin, Kemo; White, Philip J; Whalley, William R; Shen, Jianbo; Shi, Lei

    2017-10-01

    Crop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments. We observe that crops can be bred for specific root architectural and biochemical traits that facilitate soil exploration and resource acquisition, enabling greater crop yields. These root traits affect soil physical and chemical properties and might be utilized to improve the soil for subsequent crops. We argue that optimizing root-soil interactions is a prerequisite for future food security. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Carbon dioxide efflux from soil with poultry litter applications in conventional and conservation tillage systems in northern Alabama.

    Science.gov (United States)

    Roberson, T; Reddy, K C; Reddy, S S; Nyakatawa, E Z; Raper, R L; Reeves, D W; Lemunyon, J

    2008-01-01

    Increased CO2 release from soils resulting from agricultural practices such as tillage has generated concerns about contributions to global warming. Maintaining current levels of soil C and/or sequestering additional C in soils are important mechanisms to reduce CO2 in the atmosphere through production agriculture. We conducted a study in northern Alabama from 2003 to 2006 to measure CO2 efflux and C storage in long-term tilled and non-tilled cotton (Gossypium hirsutum L.) plots receiving poultry litter or ammonium nitrate (AN). Treatments were established in 1996 on a Decatur silt loam (clayey, kaolinitic thermic, Typic Paleudults) and consisted of conventional-tillage (CT), mulch-tillage (MT), and no-tillage (NT) systems with winter rye [Secale cereale (L.)] cover cropping and AN and poultry litter (PL) as nitrogen sources. Cotton was planted in 2003, 2004, and 2006. Corn was planted in 2005 as a rotation crop using a no-till planter in all plots, and no fertilizer was applied. Poultry litter application resulted in higher CO2 emission from soil compared with AN application regardless of tillage system. In 2003 and 2006, CT (4.39 and 3.40 micromol m(-2) s(-1), respectively) and MT (4.17 and 3.39 micromol m(-2) s(-1), respectively) with PL at 100 kg N ha(-1) (100 PLN) recorded significantly higher CO2 efflux compared with NT with 100 PLN (2.84 and 2.47 micromol m(-2) s(-1), respectively). Total soil C at 0- to 15-cm depth was not affected by tillage but significantly increased with PL application and winter rye cover cropping. In general, cotton produced with NT conservation tillage in conjunction with PL and winter rye cover cropping reduced CO2 emissions and sequestered more soil C compared with control treatments.

  6. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists ?

    OpenAIRE

    Bottinelli, N.; Jouquet, Pascal; Capowiez, Y.; Podwojewski, Pascal; Grimaldi, Michel; Peng, X.

    2015-01-01

    These last twenty years have seen the development of an abundant literature on the influence of soil macrofauna on soil structure. Amongst these organisms, earthworms, termites and ants are considered to play a key role in regulating the physical, chemical and microbiological properties of soils. Due to these influential impacts, soil ecologists consider these soil macro-invertebrates as ‘soil engineers’ and their diversity and abundance are nowadays considered as relevant bioindi...

  7. Effects of soil moisture conservation practice, irrigation and fertilization on Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Aran Phiwngam

    2016-11-01

    Full Text Available A field experiment was conducted on an Ultic Haplustalf at the Kanchanaburi Research Station, Muang district, Kanchanaburi province, western Thailand between July 2011 and June 2012. Split plots in a randomized complete block design with four replications were employed, having eight main plots (soil moisture conservation practice and irrigation, W1–W8 and 2 sub plots (fertilization, F1 and F2. Jatropha curcas (KUBP 78-9 Var., having been planted at 2 × 2 m spacing, was aged 2 yr when the experiment was commenced. The highly significantly heaviest 100-seed weight of 42 g was obtained 1 mth after water irrigation which had been applied at the rate of 16 L/plant, particularly in the treatment with crop residue mulching (W8 but there were no significant differences among the other treatments where irrigation had been applied (W5–W7. Fertilization and a combination between different fertilizers and soil moisture conservation schemes plus irrigation showed no different effect on the weight of 100 seeds throughout the year of measurement. Growing J. curcas with drip-irrigated water at the rate of 16 L/plant applied every 2 d and crop residue mulching (W8 significantly gave the highest seed yield of 1301.3 kg/ha at 15% moisture content. There were no significant differences among the seed yields from the plots applied with the same amount of irrigated water but with no mulching (W7 and half that amount of irrigated water with crop residue mulching (W6, producing yields of 1112.0 kg/ha and 1236.3 kg/ha, respectively. Three-year-old J. curcas gave inferior seed yield when grown with no irrigated water supply (W1–W4. The application of 50–150–150 kg/ha of N–P2O5–K2O significantly induced a higher amount of seed yield (933.9 kg/ha than did the addition of 93.75–93.75–93.75 kg/ha of N–P2O5–K2O (786.3 kg/ha. The interaction between soil moisture conservation plus irrigation and fertilizer was clear. Applying 50–150

  8. Estimation of soil-soil solution distribution coefficient of radiostrontium using soil properties.

    Science.gov (United States)

    Ishikawa, Nao K; Uchida, Shigeo; Tagami, Keiko

    2009-02-01

    We propose a new approach for estimation of soil-soil solution distribution coefficient (K(d)) of radiostrontium using some selected soil properties. We used 142 Japanese agricultural soil samples (35 Andosol, 25 Cambisol, 77 Fluvisol, and 5 others) for which Sr-K(d) values had been determined by a batch sorption test and listed in our database. Spearman's rank correlation test was carried out to investigate correlations between Sr-K(d) values and soil properties. Electrical conductivity and water soluble Ca had good correlations with Sr-K(d) values for all soil groups. Then, we found a high correlation between the ratio of exchangeable Ca to Ca concentration in water soluble fraction and Sr-K(d) values with correlation coefficient R=0.72. This pointed us toward a relatively easy way to estimate Sr-K(d) values.

  9. Soil tension mediates isotope fractionation during soil water evaporation

    Science.gov (United States)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  10. AX Tank farm closure settlement estimates and soil testing; TOPICAL

    International Nuclear Information System (INIS)

    BECKER, D.L.

    1999-01-01

    This study provides a conservative three-dimensional settlement study of the AX Tank Farm closure with fill materials and a surface barrier. The finite element settlement model constructed included the interaction of four tanks and the surface barrier with the site soil and bedrock. Also addressed are current soil testing techniques suitable for the site soil with recommendations applicable to the AX Tank Farm and the planned cone penetration testing

  11. Quantitative simulation tools to analyze up- and downstream interactions of soil and water conservation measures: supporting policy making in the Green Water Credits program of Kenya.

    Science.gov (United States)

    Hunink, J E; Droogers, P; Kauffman, S; Mwaniki, B M; Bouma, J

    2012-11-30

    Upstream soil and water conservation measures in catchments can have positive impact both upstream in terms of less erosion and higher crop yields, but also downstream by less sediment flow into reservoirs and increased groundwater recharge. Green Water Credits (GWC) schemes are being developed to encourage upstream farmers to invest in soil and water conservation practices which will positively effect upstream and downstream water availability. Quantitative information on water and sediment fluxes is crucial as a basis for such financial schemes. A pilot design project in the large and strategically important Upper-Tana Basin in Kenya has the objective to develop a methodological framework for this purpose. The essence of the methodology is the integration and use of a collection of public domain tools and datasets: the so-called Green water and Blue water Assessment Toolkit (GBAT). This toolkit was applied in order to study different options to implement GWC in agricultural rainfed land for the pilot study. Impact of vegetative contour strips, mulching, and tied ridges were determined for: (i) three upstream key indicators: soil loss, crop transpiration and soil evaporation, and (ii) two downstream indicators: sediment inflow in reservoirs and groundwater recharge. All effects were compared with a baseline scenario of average conditions. Thus, not only actual land management was considered but also potential benefits of changed land use practices. Results of the simulations indicate that especially applying contour strips or tied ridges significantly reduces soil losses and increases groundwater recharge in the catchment. The model was used to build spatial expressions of the proposed management practices in order to assess their effectiveness. The developed procedure allows exploring the effects of soil conservation measures in a catchment to support the implementation of GWC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Soil! Get the Scoop - The Soil Science Society of America's International Year of Soils Campaign

    Science.gov (United States)

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan; van Es, Harold

    2015-04-01

    Soils are a finite natural resource and are nonrenewable on a human time scale. Soils are the foundation for food, animal feed, fuel and natural fiber production, the supply of clean water, nutrient cycling and a range of ecosystem functions. The area of fertile soils covering the world's surface is limited and increasingly subject to degradation, poor management and loss to urbanization. Increased awareness of the life-supporting functions of soil is called for if this trend is to be reversed and so enable the levels of food production necessary to meet the demands of population levels predicted for 2050. The Soil Science Society of America is coordinating with the Global Soil Partnership and other organizations around the world to celebrate the 2015 International Year of Soils and raise awareness and promote the sustainability of our limited soil resources. We all have a valuable role in communicating vital information on soils, a life sustaining natural resource. Therefore, we will provide resources to learn about soils and help us tell the story of soils. We will promote IYS on social media by sharing our posts from Facebook and Twitter. Additionally SSSA developed 12 monthly themes that reflect the diverse value of soils to our natural environment and society. Each month has information on the theme, a lesson plan, and other outreach activities. All information is available on a dedicated website www.soil.org/IYS. The site will be updated constantly throughout the year.

  13. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and Visual MODFLOW.

    Science.gov (United States)

    Wang, Hong; Gao, Jian-en; Zhang, Shao-long; Zhang, Meng-jie; Li, Xing-hua

    2013-01-01

    Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW) with a surface runoff model-the Soil Conservation Service (SCS) were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m(2) area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed values were 1.54×10(-2) m(3)/m(2)/h and 0.12×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min), the simulated mean groundwater runoff modulus was 2.82×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed volumes were 3.46×10(-2) m(3)/m(2)/h and 4.91×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources.

  14. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and Visual MODFLOW.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW with a surface runoff model-the Soil Conservation Service (SCS were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m(2 area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10(-2 m(3/m(2/h in the bare slope scenario, while the observed values were 1.54×10(-2 m(3/m(2/h and 0.12×10(-2 m(3/m(2/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min, the simulated mean groundwater runoff modulus was 2.82×10(-2 m(3/m(2/h in the bare slope scenario, while the observed volumes were 3.46×10(-2 m(3/m(2/h and 4.91×10(-2 m(3/m(2/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources.

  15. Progress towards GlobalSoilMap.net soil database of Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mogens Humlekrog

    2012-01-01

    Denmark is an agriculture-based country where intensive mechanized cultivation has been practiced continuously for years leading to serious threats to the soils. Proper use and management of Danish soil resources, modeling and soil research activities need very detailed soil information. This study...... presents recent advancements in Digital Soil Mapping (DSM) activities in Denmark with an example of soil clay mapping using regression-based DSM techniques. Several environmental covariates were used to build regression rules and national scale soil prediction was made at 30 m resolution. Spatial...... content mapping, the plans for future soil mapping activities in support to GlobalSoilMap.net project initiatives are also included in this paper. Our study thought to enrich and update Danish soil database and Soil information system with new fine resolution soil property maps....

  16. Co-evolution of soil and water conservation policy and human-environment linkages in the Yellow River Basin since 1949

    NARCIS (Netherlands)

    Wang, F.; Mu, X.; Li, R.; Fleskens, L.; Stringer, L.C.; Ritsema, C.J.

    2015-01-01

    Policy plays a very important role in natural resource management as it lays out a government framework for guiding long-term decisions, and evolves in light of the interactions between human and environment. This paper focuses on soil and water conservation (SWC) policy in the Yellow River Basin

  17. Impact of Soil Texture on Soil Ciliate Communities

    Science.gov (United States)

    Chau, J. F.; Brown, S.; Habtom, E.; Brinson, F.; Epps, M.; Scott, R.

    2014-12-01

    Soil water content and connectivity strongly influence microbial activities in soil, controlling access to nutrients and electron acceptors, and mediating interactions between microbes within and between trophic levels. These interactions occur at or below the pore scale, and are influenced by soil texture and structure, which determine the microscale architecture of soil pores. Soil protozoa are relatively understudied, especially given the strong control they exert on bacterial communities through predation. Here, ciliate communities in soils of contrasting textures were investigated. Two ciliate-specific primer sets targeting the 18S rRNA gene were used to amplify DNA extracted from eight soil samples collected from Sumter National Forest in western South Carolina. Primer sets 121F-384F-1147R (semi-nested) and 315F-959R were used to amplify soil ciliate DNA via polymerase chain reaction (PCR), and the resulting PCR products were analyzed by gel electrophoresis to obtain quantity and band size. Approximately two hundred ciliate 18S rRNA sequences were obtained were obtained from each of two contrasting soils. Sequences were aligned against the NCBI GenBank database for identification, and the taxonomic classification of best-matched sequences was determined. The ultimate goal of the work is to quantify changes in the ciliate community under short-timescale changes in hydrologic conditions for varying soil textures, elucidating dynamic responses to desiccation stress in major soil ciliate taxa.

  18. Soil Health Assessment Approaches and the Cornell Framework

    Science.gov (United States)

    van Es, Harold

    2016-04-01

    Soil health constraints beyond nutrient limitations and excesses currently limit agroecosystem productivity and sustainability, resilience to drought and extreme rainfall, and progress in soil and water conservation. With mounting pressure to produce food, feed, fiber, and even fuel for an increasing population, the concept of soil health is gaining national and international attention. Multiple regional, national, and global efforts are now leveraging that work to reach new stakeholder audiences, so that soil health management is expanding into mainstream agriculture. Each grower is generally faced with a unique situation in the choice of management options to address soil health constraints and each system affords its own set of opportunities or limitations to soil management. A more comprehensive understanding of soil health status can better guide farmers' management decisions. Until recently, there has not been a formalized decision making process for implementing a soil health management system that alleviates field-specific constrains identified through standard measurements and then maintains improved soil health. This presentation will discuss current US-based efforts related to soil health assessment, including efforts to build national consensus on appropriate methods for simple (inexpensive) and comprehensive tests. This includes the Cornell Soil Health Management Planning and Implementation Framework. The most relevant components of the framework are 1) measurement of indicators that represent critical soil processes, 2) scoring of measured values that allows for interpretation, and 3) linkage of identified constraints with management practices. Land managers can monitor changes over time through further assessment, and adapt management practices to achieve chosen goals. We will discuss the full tests and approaches for simplification.

  19. Prioritization of Soil Conservation Measures using Erodibility Indices

    Indian Academy of Sciences (India)

    26

    In the present study spatial variation of susceptibility of erosion in East district of Sikkim ..... organic matter is 50% carbon, would in almost all cases be more accurate ..... temperate American soils; with special reference to indicated relations ...

  20. The Pedotopia Project: A Transdisciplinary Experiment in Soil Education

    Science.gov (United States)

    Toland, A.; Wessolek, G.

    2012-04-01

    In the absence of every-day interactions with the land, a hands-on, comprehensive soil education across disciplines and ages is necessary. Soil education is usually integrated into earth science and geography curricula and only rarely into social science, arts and humanities programs. Furthermore, an emphasis on measurement and modeling in conventional classroom science often neglects aesthetic, moral and other non-quantifiable values, precluding a broader cultural context in which soil education could take place. The arts play a vital role in communicating environmental issues to the greater public and represent a dynamic approach to help students discover soil complexity in new and unexpected ways. Artistic methods have recently been introduced as pedagogical tools in soil awareness-raising programs for children and youth. Painting with soil has become an interesting new approach to soil education from Kindergarten to University levels (SZLEZAK 2008). And a growing amount of literature describes artists who have undertaken different soil issues, suggesting that such artistic focus may improve wider understanding and appreciation of soil conservation issues (FELLER et al 2010, TOLAND & WESSOLEK 2010, WAGNER 2002). How can art contribute to soil science, policy and education - both with the aim of generating greater public understanding, but also by honing creative methods to confront problems such as contamination, erosion, and urban sprawl? What artistic approaches exist to protect and restore soils as well as our relationship to the land? And how can these approaches support current soil education goals? These questions were addressed in the transdisciplinary soil seminar, "Pedotopia - Re-sourcing Urban Soils" from September 2010 to September 2011 in Berlin. A cooperation between the Technical University of Berlin's Department of Soil Protection and the Berlin University of Arts' Institute for Art in Context, the project served as a teaching experiment as well

  1. Soil carbon stocks in Sarawak, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, E., E-mail: Eswaran_padmanabhan@petronas.com.my [Department of Geosciences, Faculty of Geosciences and Petroleum Engineering, Universiti Teknologi PETRONAS, Tronoh, 31750, Perak (Malaysia); Eswaran, H.; Reich, P.F. [USDA-Natural Resources Conservation Service, Washington, DC 20250 (United States)

    2013-11-01

    soil carbon pools in Histosols • Strategies for conservation and management • Future directions for research on soil carbon in tropical soils.

  2. Soil carbon stocks in Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Padmanabhan, E.; Eswaran, H.; Reich, P.F.

    2013-01-01

    for conservation and management • Future directions for research on soil carbon in tropical soils

  3. Distribution of soil organic carbon in the conterminous United States

    Science.gov (United States)

    Bliss, Norman B.; Waltman, Sharon; West, Larry T.; Neale, Anne; Mehaffey, Megan; Hartemink, Alfred E.; McSweeney, Kevin M.

    2014-01-01

    The U.S. Soil Survey Geographic (SSURGO) database provides detailed soil mapping for most of the conterminous United States (CONUS). These data have been used to formulate estimates of soil carbon stocks, and have been useful for environmental models, including plant productivity models, hydrologic models, and ecological models for studies of greenhouse gas exchange. The data were compiled by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) from 1:24,000-scale or 1:12,000-scale maps. It was found that the total soil organic carbon stock in CONUS to 1 m depth is 57 Pg C and for the total profile is 73 Pg C, as estimated from SSURGO with data gaps filled from the 1:250,000-scale Digital General Soil Map. We explore the non-linear distribution of soil carbon on the landscape and with depth in the soil, and the implications for sampling strategies that result from the observed soil carbon variability.

  4. Soil organic matter and soil biodiversity spots in urban and semi urban soils of southeast Mexico

    Science.gov (United States)

    Huerta, Esperanza

    2015-04-01

    We have observed how the constant use of compost or vermicompost has created spots of soil restoration in urban and semiurban soils of Chiapas (Huitepec and Teopisca), increasing soil organic matter amount, soil moisture and soil porosity, and enhancing then the presence of soil biodiversity; for example, in a Milpa with vermicompost (polyculture of Zea mays with Curcubita pepo, and Fasolius vulgaris) we have found a high density of an epigeic earthworm (640 ind.m2), Dichogaster bolahui, not present in the same type of soil just some meters of distance, in an Oak forest, where soil macroinvertebrates abundance decreased drastically. In another ecosystem within a Persea Americana culture, we found how above and below ground soil biodiversity is affected by the use of vermicompost, having clearly different microcosmos with and without vermicompost (30-50% more micro and macro invertebrates with vermicompost). So now in Campeche, within those soils that are classified by the mayas as tzequel, soils not use for agriculture, we have implemented home gardens and school gardens by the use of compost of vermicomposts in urban and semiurban soils. In school gardens (mainly primary schools) students have cultivated several plants with alimentary purposes; teachers have observed how the increase of soil biodiversity by the use of compost or vermicompost has enhanced the curiosity of children, even has promoted a more friendly behavior among students, they have learned how to do compost and how to apply it. Urban and semiurban soils can be modified by the use of compost and vermicompost, and soil biodiversity has extremely increased.

  5. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    Science.gov (United States)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  6. Parameterization of radiocaesium soil-plant transfer using soil characteristics

    International Nuclear Information System (INIS)

    Konoplev, A. V.; Drissner, J.; Klemt, E.; Konopleva, I. V.; Zibold, G.

    1996-01-01

    A model of radionuclide soil-plant transfer is proposed to parameterize the transfer factor by soil and soil solution characteristics. The model is tested with experimental data on the aggregated transfer factor T ag and soil parameters for 8 forest sites in Baden-Wuerttemberg. It is shown that the integral soil-plant transfer factor can be parameterized through radiocaesium exchangeability, capacity of selective sorption sites and ion composition of the soil solution or the water extract. A modified technique of (FES) measurement for soils with interlayer collapse is proposed. (author)

  7. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Spatial distribution and hazard degree of soil erosion of sloping croplands in northeast China

    Science.gov (United States)

    Zhang, T.

    2017-12-01

    Soil erosion is causing damage to the sloping croplands of northeast China and threatening the food security of the nation. However, little is known about the problem in macro scale. This study aims to investigate the area, slope gradient, soil erosion rate and year limit of erosion of the sloping croplands in whole northeast China and different geomorphologic regions, soil types, watersheds and administrative divisions of it, to estimate quantitatively the necessity and urgency of soil conservation and to offer advices. Meteorological data, topography data, geomorphology data, soil data and landuse data were collected. The China Soil Loss Equation was applied. The results indicated that: (1) Total area of the sloping croplands of northeast China is 195000 km2. They mainly distributed in Changbai mountainous region, eastern Songnen plain and Daxinganling mountainous region, with dark-brown earth, black soil and brown earth as main soil types. Total area of the sloping croplands steeper than 5 degree is 31000 km2. They mainly distributed in the mountain regions, with dark-brown earth and brown earth as main soil types. (2) The soil erosion rates of 92% of the sloping croplands have exceeded the soil loss tolerance in the national standard (0.15 mm/a). These croplands need to be conserved. The A horizon depths of 66% of the sloping croplands are less than 30 cm , while the year limit of A horizon erosion of 59% of the sloping croplands are less than 100 a. These croplands need to be conserved immediately. (3) Contour farming is suitable to 84% of the sloping croplands and deserves more attention. The sloping croplands steeper than 15 degree and those located in the aeolian sandy soil and some others soil types contributed little in grain production with high hazard degrees of erosion and should be reused for other purposes, as soon as possible. (4) The Changbai mountainous region, Daxinganling mountainous region, the dark-brown earth region and the brown earth region

  9. Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liming; Zhuang, Qianlai; He, Yujie; Liu, Yaling; Yu, Dongsheng; Zhao, Quanying; Shi, Xuezheng; Xing, Shihe; Wang, Guangxiang

    2016-08-01

    Understanding the impacts of climate change and agricultural management practices on soil organic carbon (SOC) dynamics is critical for implementing optimal farming practices and maintaining agricultural productivity. This study examines the influence of climate and agricultural management on carbon sequestration potentials in Tai-Lake Paddy soils of China using the DeNitrification-DeComposition (DNDC) model, with a high-resolution soil database (1:50,000). Model simulations considered the effects of no tillage, increasing manure application, increasing/decreasing of N-fertilizer application and crop residues, water management, and climatic shifts in temperature and precipitation. We found that the carbon sequestration potential for the 2.32 Mha paddy soils of the Tai-Lake region varied from 4.71 to 44.31 Tg C during the period 2001-2019, with an annual average SOC changes ranged from 107 to 1005 kg C ha-1 yr-1. The sequestration potential significantly increased with increasing application of N-fertilizer, manure, conservation tillage, and crop residues. To increase soil C sequestration in this region, no-tillage and increasing of crop residue return to soils and manure application are recommended. Our analysis of climate impacts on SOC sequestration suggests that the rice paddies in this region will continue to be a carbon sink under future warming conditions. In addition, because the region’s annual precipitation (>1200 mm) is high, we also recommend reducing irrigation water use for these rice paddies to conserve freshwater in the Tai-Lake region.

  10. Electrochemical soil remediation - accelerated soil weathering?

    Energy Technology Data Exchange (ETDEWEB)

    Ottosen, L.M.; Villumsen, A.; Hansen, H.K.; Jensen, P.E.; Pedersen, A.J. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Environmental Sciences and Engineering, New Univ. of Lisbon, Monte da Caparica (Portugal)

    2001-07-01

    In electrochemical soil remediation systems, where enhancement solutions and complexing agents are not used, a developing acidic front is mobilizing the heavy metals and the electric current is removing the mobilized elements from the soil. The hypotheses investigated in this paper is whether this process may be comparable to the chemical soil weathering that occurs in the environment due to the acidic rain, where the mobilized elements are removed from the soil by the penetrating water. Even through the weathering process is highly accelerated in the electrochemical cell. This paper shows results from electrodialytic remediation experiments performed with four different Danish heavy metal polluted soils. The main emphasis is laid on the relation between the developing acidic front and electromigration of Cu, Zn, Mn, Mg, Fe and Ca. (orig.)

  11. Catchment-level evaluation of farmers’ estimates of soil erosion and crop yields in the central highlands of Kenya

    NARCIS (Netherlands)

    Okoba, B.O.; Sterk, G.

    2010-01-01

    Soil and water conservation programmes in Kenya were not always successful due to experts’ negligence of the role of farmers in problem identification and conservation planning. Using farmers’ knowledge of soil surface morphology to assess soil productivity may stimulate farmers to participate in

  12. Dynamical soil-structure interactions: influence of soil behaviour nonlinearities

    International Nuclear Information System (INIS)

    Gandomzadeh, Ali

    2011-01-01

    The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in

  13. Soil biogeochemistry in the age of big data

    Science.gov (United States)

    Cécillon, Lauric; Barré, Pierre; Coissac, Eric; Plante, Alain; Rasse, Daniel

    2015-04-01

    Data is becoming one of the key resource of the XXIst century. Soil biogeochemistry is not spared by this new movement. The conservation of soils and their services recently came into the political agenda. However, clear knowledge on the links between soil characteristics and the various processes ensuring the provision of soil services is rare at the molecular or the plot scale, and does not exist at the landscape scale. This split between society's expectations on its natural capital, and scientific knowledge on the most complex material on earth has lead to an increasing number of studies on soils, using an increasing number of techniques of increasing complexity, with an increasing spatial and temporal coverage. From data scarcity with a basic data management system, soil biogeochemistry is now facing a proliferation of data, with few quality controls from data collection to publication and few skills to deal with them. Based on this observation, here we (1) address how big data could help in making sense of all these soil biogeochemical data, (2) point out several shortcomings of big data that most biogeochemists will experience in their future career. Massive storage of data is now common and recent opportunities for cloud storage enables data sharing among researchers all over the world. The need for integrative and collaborative computational databases in soil biogeochemistry is emerging through pioneering initiatives in this direction (molTERdb; earthcube), following soil microbiologists (GenBank). We expect that a series of data storage and management systems will rapidly revolutionize the way of accessing raw biogeochemical data, published or not. Data mining techniques combined with cluster or cloud computing hold significant promises for facilitating the use of complex analytical methods, and for revealing new insights previously hidden in complex data on soil mineralogy, organic matter and biodiversity. Indeed, important scientific advances have

  14. What is Soil?

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil? 2 The Skin of the Earth 3 Soil Ingredients 4 Soil Recipes 5 CLORPT for Short >> What Is Soil? Soils Make Life Plants grow in and from

  15. The history of soil erosion: Interpreting historical sources, buried soils and colluvial sediments as archives of past soil erosion and human-environment interactions in the Longue Durée

    Science.gov (United States)

    Dotterweich, Markus

    2015-04-01

    Soil erosion threatens the environment and the sustainability of agricultural practices since the earliest societies started modifying their natural environment in the Neolithic. Almost all farming-based cultures in the world, from large civilizations to peasant groups on little islands, have suffered from soil erosion by water. The amounts of soil erosion varied largely through time and space, and extreme events have left a wide variety of imprints on the landscape over millennia. Eroded hillslopes and gullies, deposited sediments in sinks like lakes, footslopes, valleys, floodplains, and river deltas are geomorphic legacies that have been linked to changes in land use and climate by many studies during the last decades. However, a standardized analysis and interpretation of these geomorphic legacies is problematic because of the variety of methodological approaches and the nonlinearity between soil erosion, climate, and land use. Cascading effects, land use structures, soil management, soil conservation strategies, and long-term system changes have produced different signals over time. Historical records are crucial and an invaluable source to provide alternative proxies about soil erosion in the past. Direct observations of individual soil erosion events may restrict the deposition of a distinct sediment package to a certain time span. They also expand the range of alternative interpretations, particularly with respect to the long-term effects of soil erosion to ecosystem services and socioeconomic processes. However, historical records also need critical analyses regarding their origin, intention, and quality. They were often created in the context of personal interests or political issues rather than being based on scientific facts; and it is often unclear if they represent certain events, narratives, or vague assumptions. This presentation will present and discuss examples of geomorphic evidences and historical records of past soil erosion for the deciphering

  16. Modeling of technical soil-erosion control measures and its impact on soil erosion off-site effects within urban areas

    Science.gov (United States)

    Dostal, Tomas; Devaty, Jan

    2013-04-01

    The paper presents results of surface runoff, soil erosion and sediment transport modeling using Erosion 3D software - physically based mathematical simulation model, event oriented, fully distributed. Various methods to simulate technical soil-erosion conservation measures were tested, using alternative digital elevation models of different precision and resolution. Ditches and baulks were simulated by three different approaches, (i) by change of the land-cover parameters to increase infiltration and decrease flow velocity, (ii) by change of the land-cover parameters to completely infiltrate the surface runoff and (iii) by adjusting the height of the digital elevation model by "burning in" the channels of the ditches. Results show advantages and disadvantages of each approach and conclude suitable methods for combinations of particular digital elevation model and purpose of the simulations. Further on a set of simulations was carried out to model situations before and after technical soil-erosion conservation measures application within a small catchment of 4 km2. These simulations were focused on quantitative and qualitative assessment of technical soil-erosion control measures impact on soil erosion off-site effects within urban areas located downstream of intensively used agricultural fields. The scenarios were built upon a raster digital elevation model with spatial resolution of 3 meters derived from LiDAR 5G vector point elevation data. Use of this high-resolution elevation model allowed simulating the technical soil-erosion control measures by direct terrain elevation adjustment. Also the structures within the settlements were emulated by direct change in the elevation of the terrain model. The buildings were lifted up to simulate complicated flow behavior of the surface runoff within urban areas, using approach of Arévalo (Arévalo, 2011) but focusing on the use of commonly available data without extensive detailed editing. Application of the technical

  17. Impact of cornstalk buffer strip on hillslope soil erosion and its hydrodynamic understanding

    Science.gov (United States)

    Soil erosion is still a serious concern on the Loess Plateau despite extensive soil conservation measures. Cornstalk buffer strip is not well utilized on the Loess Plateau, and there is little information on the hydrodynamic understanding of this soil erosion control practice. A simulated rainfall e...

  18. Soil Biochemical Changes Induced by Poultry Litter Application and Conservation Tillage under Cotton Production Systems

    Directory of Open Access Journals (Sweden)

    Seshadri Sajjala

    2012-07-01

    Full Text Available Problems arising from conventional tillage (CT systems (such as soil erosion, decrease of organic matter, environmental damage etc. have led many farmers to the adoption of no-till (NT systems that are more effective in improving soil physical, chemical and microbial properties. Results from this study clearly indicated that NT, mulch tillage (MT, and winter rye cover cropping systems increased the activity of phosphatase, β-glucosidase and arylsulfatase at a 0–10 cm soil depth but decreased the activity of these enzymes at 10–20 cm. The increase in enzyme activity was a good indicator of intensive soil microbial activity in different soil management practices. Poultry litter (PL application under NT, MT, and rye cropping system could be considered as effective management practices due to the improvement in carbon (C content and the biochemical quality at the soil surface. The activities of the studied enzymes were highly correlated with soil total nitrogen (STN soil organic carbon (SOC at the 0–10 cm soil depth, except for acid phosphatase where no correlation was observed. This study revealed that agricultural practices such as tillage, PL, and cover crop cropping system have a noticeable positive effect on soil biochemical activities under cotton production.

  19. Modelling the Impact of Soil Management on Soil Functions

    Science.gov (United States)

    Vogel, H. J.; Weller, U.; Rabot, E.; Stößel, B.; Lang, B.; Wiesmeier, M.; Urbanski, L.; Wollschläger, U.

    2017-12-01

    Due to an increasing soil loss and an increasing demand for food and energy there is an enormous pressure on soils as the central resource for agricultural production. Besides the importance of soils for biomass production there are other essential soil functions, i.e. filter and buffer for water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these functions have a direct feed back to biogeochemical cycles and climate. To render agricultural production efficient and sustainable we need to develop model tools that are capable to predict quantitatively the impact of a multitude of management measures on these soil functions. These functions are considered as emergent properties produced by soils as complex systems. The major challenge is to handle the multitude of physical, chemical and biological processes interacting in a non-linear manner. A large number of validated models for specific soil processes are available. However, it is not possible to simulate soil functions by coupling all the relevant processes at the detailed (i.e. molecular) level where they are well understood. A new systems perspective is required to evaluate the ensemble of soil functions and their sensitivity to external forcing. Another challenge is that soils are spatially heterogeneous systems by nature. Soil processes are highly dependent on the local soil properties and, hence, any model to predict soil functions needs to account for the site-specific conditions. For upscaling towards regional scales the spatial distribution of functional soil types need to be taken into account. We propose a new systemic model approach based on a thorough analysis of the interactions between physical, chemical and biological processes considering their site-specific characteristics. It is demonstrated for the example of soil compaction and the recovery of soil structure, water capacity and carbon stocks as a result of plant growth and biological

  20. UNDERSTANDING AND APPLICABILITY OF THE FOREST SOIL CONCEPT

    Directory of Open Access Journals (Sweden)

    Ana Paula Moreira Rovedder

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810563The forestry sector plays an important role in the socioeconomic and environmental Brazilian context, therefore the improvement of the knowledge about forest soil becomes essential for its sustainable use as a conservation base of natural heritage as resource for economical development. Forest soil can be characterized by pedogenesis occurred under influence of a forestry typology or under a currently natural or cultivated forest coverage. Differentiating forest soils from those occupied with other uses helps the understanding of possible alterations related to vegetal coverage and the developing of better management strategies to soil and forest use. Nevertheless, there is no consensus about this term because the soils present variations according to the forest characteristics, stimulating the discussion concerning its interpretation and applicability. This review aimed to analyze the utilization of forest soil concept, highlighting the differentiation characteristics and the relation with coverage type, natural or cultivated. Aspects related to deposition, quality and management of residues, nutrients cycling, soil compaction and site productivity are emphasized. The forest soil concept is widely used by specific literature and useful to collect specific information and to plan the sustainable use of soil and forest. The improvement of knowledge about these resources provides the creation of a common identity, supporting comparative studies and consolidating the research regarding to this theme.

  1. Socioeconomic modifications of the universal soil loss equation

    Science.gov (United States)

    Erol, A.; Koşkan, Ö.; Başaran, M. A.

    2015-08-01

    While social scientists have long focused on socioeconomic and demographic factors, physical modelers typically study soil loss using physical factors. In the current environment, it is becoming increasingly important to consider both approaches simultaneously for the conservation of soil and water, and the improvement of land use conditions. This study uses physical and socioeconomic factors to find a coefficient that evaluates the combination of these factors. It aims to determine the effect of socioeconomic factors on soil loss and, in turn, to modify the universal soil loss equation (USLE). The methodology employed in this study specifies that soil loss can be calculated and predicted by comparing the degree of soil loss in watersheds, with and without human influence, given the same overall conditions. A coefficient for socioeconomic factors, therefore, has been determined based on adjoining watersheds (WS I and II), employing simulation methods. Combinations of C and P factors were used in the USLE to find the impact of their contributions to soil loss. The results revealed that these combinations provided good estimation of soil loss amounts for the second watershed, i.e., WS II, from the adjoining watersheds studied in this work. This study shows that a coefficient of 0.008 modified the USLE to reflect the socioeconomic factors, such as settlement, influencing the amount of soil loss in the studied watersheds.

  2. Comparative Economics of Soil and Associated Nutrient loss by ...

    African Journals Online (AJOL)

    TEKWA IJASINI JOHN

    Gichuru, M. P., A. Bationo, M. A. Bakunda, H. C. Goma,. P. L., Mafongonya, D. N. Mugendi, H. M. Murwira, S. M.. Nandwa, P. Nyathi and M. J. Swift., 2003. Soil fertility. Management in Africa: A Regional Perspective. Academy Science Publishers. Nairobi, Kenya. Hudson, N. W., 1989. Soil Conservation. B. T. Batsford limited ...

  3. A process-based framework for soil ecosystem services study and management.

    Science.gov (United States)

    Su, Changhong; Liu, Huifang; Wang, Shuai

    2018-06-15

    Soil provides various indispensable ecosystem services for human society. Soil's complex structure and property makes the soil ecological processes complicated and brings about tough challenges for soil ecosystem services study. Most of the current frameworks on soil services focus exclusively on services per se, neglecting the links and underlying ecological mechanisms. This article put forward a framework on soil services by stressing the underlying soil mechanisms and processes, which includes: 1) analyzing soil natural capital stock based on soil structure and property, 2) disentangling the underlying complex links and soil processes, 3) soil services valuation based on field investigation and spatial explicit models, and 4) enacting soil management strategy based on soil services and their driving factors. By application of this framework, we assessed the soil services of sediment retention, water yield, and grain production in the Upper-reach Fenhe Watershed. Based on the ecosystem services and human driving factors, the whole watershed was clustered into five groups: 1) municipal area, 2) typical coal mining area, 3) traditional farming area, 4) unsustainable urbanizing area, and 5) ecological conservation area. Management strategies on soils were made according to the clustering based soil services and human activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Apparent soil electrical conductivity in two different soil types

    Directory of Open Access Journals (Sweden)

    Wilker Nunes Medeiros

    Full Text Available ABSTRACT Mapping the apparent soil electrical conductivity (ECa has become important for the characterization of the soil variability in precision agriculture systems. Could the ECa be used to locate the soil sampling points for mapping the chemical and physical soil attributes? The objective of this work was to examine the relations between ECa and soil attributes in two fields presenting different soil textures. In each field, 50 sampling points were chosen using a path that presented a high variability of ECa obtained from a preliminary ECa map. At each sampling point, the ECa was measured in soil depths of 0-20, 0-40 and 0-60 cm. In addition, at each point, soil samples were collected for the determination of physical and chemical attributes in the laboratory. The ECa data obtained for different soil depths was very similar. A large number of significant correlations between ECa and the soil attributes were found. In the sandy clay loam texture field there was no correlation between ECa and organic matter or between ECa and soil clay and sand content. However, a significant positive correlation was shown for the remaining phosphorus. In the sandy loam texture field the ECa had a significant positive correlation with clay content and a significant negative correlation with sand content. The results suggest that the mapping of apparent soil electrical conductivity does not replace traditional soil sampling, however, it can be used as information to delimit regions in a field that have similar soil attributes.

  5. The history and assessment of effectiveness of soil erosion control measures deployed in Russia

    Directory of Open Access Journals (Sweden)

    Valentin Golosov

    2013-09-01

    Full Text Available Research activities aimed at design and application of soil conservation measures for reduction of soil losses from cultivated fields started in Russia in the last quarter of the 19th century. A network of "zonal agrofor-estry melioration experimental stations" was organized in the different landscape zones of Russia in the first half of the 20th century. The main task of the experiments was to develop effective soil conservation measures for Russian climatic,soil and land use conditions. The most widespread and large-scale introduction of coun-termeasures to cope with soil erosion by water and wind into agricultural practice supported by serious governmental investments took place during the Soviet Union period after the Second World War. After the Soviet Union collapse in 1991 ,general deterioration of the agricultural economy sector and the absence of investments resulted in cessation of organized soil conservation measures application at the nation-wide level. However, some of the long-term erosion control measures such as forest shelter belts, artificial slope terracing, water diversion dams above formerly active gully heads survived until the present. In the case study of sediment redistribution within the small cultivated catchment presented in this paper an attempt was made to evaluate average annual erosion rates on arable slopes with and without soil conservation measures for two time intervals. It has been found that application of conservation measures on cultivated slopes within the experimental part of the case study catchment has led to a decrease of average soil loss rates by at least 2. 5 2. 8 times. The figures obtained are in good agreement with previously published results of direct monitoring of snowmelt erosion rates, reporting approximately a 3 -fold decrease of average snowmelt erosion rates in the experimental sub-catchment compared to a traditionally cultivated control sub-catchment. A substantial decrease of soil

  6. Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC)

    Science.gov (United States)

    Requejo Silva, Ana; Lozano García, Beatriz; Parras Alcántara, Luis

    2017-04-01

    Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC) Ana Requejo1, Beatriz Lozano-García1, Luis Parras Alcántara1 1 Department of Agricultural Chemistry and Soil Science, Faculty of Science, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, Spain. The carbon content of the atmosphere can be influenced by soils, since they can store carbon or emit large quantities of CO2. C sequestration into soils is one of the most important ecosystems services because of its role in climate regulation (IPPC, 2007). Thereof, agriculture and forestry are the only activities that can contribute to C sequestration through photosynthesis and its carbon incorporation into carbohydrates (Parras Alcántara et al., 2013). Dehesa is a multifunctional agro-sylvo-pastoral system and typical landscape of southern and central Spain and southern Portugal. It is an anthropogenic system dedicated to the combined production of black iberian pigs, a variety of foods, fuel, coal, and cork. Besides, it acts as well in the production of endangered species as wildlife habitat and as sustainable hunting areas. These dehesa areas are defined by a relationship between productivity and conservation of forest oaks, providing environmental benefits such as carbon capture and storage. The area focused in this study is the Cardeña-Montoro Nature Reserve, located within the Sierra Morena (Córdoba, South Spain). The most representative soils in Cardeña-Montoro Nature Reserve are Cambisols, Regosols, Leptosols and Fluvisols according to IUSS Working Group WRB (2006). They are characterized by a low fertility, poor physical conditions and marginal capacity for agricultural use, along with low organic matter content due to climate conditions (semiarid Mediterranean climate) and soil texture (sandy). Several studies have shown that land use affects the SOC concentration (Lozano-García et al., 2016; Khaledian et al., 2016). Based on this

  7. Soil Forming Factors

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil Forming Factors 2 A Top to Bottom Guide 3 Making a Soil Monolith 4 Soil Orders 5 State Soil Monoliths 6 Where in the Soil World Are You? >> A Top to

  8. Soils newsletter. Vol. 24, No. 1

    International Nuclear Information System (INIS)

    2001-06-01

    of the Joint Division supports the efforts of other UN organizations (FAO, UNEP), the CGIAR (ICARDA, ICRAF) and other advanced research institutes in combating land degradation and soil erosion. Full advantage will be taken of existing frameworks such as WOCAT (The World Overview of Conservation Approaches and Technologies), co-sponsored by FAO and UNEP, among others, through standardized approaches and methodologies. WOCAT is a worldwide network of soil and water specialists, organized as a consortium of national and international institutions operating in a de-centralized manner. A wealth of information on soil and water conservation (SWC) technologies is stored in a database with easy access through books, CE maps and the Internet. WOCAT promotes sustainable land management, thus contributing to the implementation of the United Nations Conventions, such as the Convention to Combat Desertification (CCD), the Framework Convention on Climate Change (FCCC), and the Convention for Biodiversity (CBD)

  9. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  10. Solarization soil

    International Nuclear Information System (INIS)

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  11. Pesticide-soil microflora interactions in flooded rice soils

    International Nuclear Information System (INIS)

    Sethunathan, N.; Siddaramappa, R.; Siddarame Gowda, T.K.; Rajaram, K.P.; Barik, S.; Rao, V.R.

    1976-01-01

    Isotope studies revealed that gamma and beta isomers of HCH (hexachlorocyclohexane) decomposed rapidly in nonsterile soils capable of attaining redox potentials of -40 to -100mV within 20 days after flooding. Degradation was slow, however, in soils low in organic matter and in soils with extremely low pH and positive potentials, even after several weeks of flooding. Under flooded conditions, endrin decomposed to six metabolites in most soils. There is evidence that biological hydrolysis of parathion is more widespread than hitherto believed, particularly under flooded soil conditions. Applications of benomyl (fungicide) to a simulated-oxidized zone of flooded soils favoured heterotrophic nitrification. (author)

  12. Soil mechanics and analysis of soils overlying cavitose bedrock

    International Nuclear Information System (INIS)

    Drumm, E.C.

    1987-08-01

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs

  13. Soil-moisture transport in arid site vadose zones

    International Nuclear Information System (INIS)

    Isaacson, R.E.; Brownell, L.E.; Nelson, R.W.; Roetman, E.L.

    1974-01-01

    Soil-moisture transport processes in the arid soils of the United States Atomic Energy Commission's Hanford site are being evaluated. The depth of penetration of meteoric precipitation has been determined by profiling fall-out tritium at two locations where the water table is about 90 m below ground surface. In situ temperatures and water potentials were measured with temperature transducers and thermocouple psychrometers at the same location to obtain thermodynamic data for identifying the factors influencing soil-moisture transport. Neutron probes are being used to monitor soil-moisture changes in two lysimeters, three metres in diameter by 20 metres deep. The lysimeters are also equipped to measure pressure, temperature and relative humidity as a function of depth and time. Theoretical models based on conservation of momentum expressions are being developed to analyse non-isothermal soil-moisture transport processes. Future work will be concerned with combining the theoretical and experimental work and determining the amount of rainfall required to cause migration of soil-moisture to the water table. (author)

  14. Soil invertebrate fauna enhances grassland succession and diversity.

    Science.gov (United States)

    De Deyn, Gerlinde B; Raaijmakers, Ciska E; Zoomer, H Rik; Berg, Matty P; de Ruiter, Peter C; Verhoef, Herman A; Bezemer, T Martijn; van der Putten, Wim H

    2003-04-17

    One of the most important areas in ecology is to elucidate the factors that drive succession in ecosystems and thus influence the diversity of species in natural vegetation. Significant mechanisms in this process are known to be resource limitation and the effects of aboveground vertebrate herbivores. More recently, symbiotic and pathogenic soil microbes have been shown to exert a profound effect on the composition of vegetation and changes therein. However, the influence of invertebrate soil fauna on succession has so far received little attention. Here we report that invertebrate soil fauna might enhance both secondary succession and local plant species diversity. Soil fauna from a series of secondary grassland succession stages selectively suppress early successional dominant plant species, thereby enhancing the relative abundance of subordinate species and also that of species from later succession stages. Soil fauna from the mid-succession stage had the strongest effect. Our results clearly show that soil fauna strongly affects the composition of natural vegetation and we suggest that this knowledge might improve the restoration and conservation of plant species diversity.

  15. Soil physics and the water management of spatially variable soils

    International Nuclear Information System (INIS)

    Youngs, E.G.

    1983-01-01

    The physics of macroscopic soil-water behaviour in inert porous materials has been developed by considering water flow to take place in a continuum. This requires the flow region to consist of an assembly of representative elementary volumes, repeated throughout space and small compared with the scale of observations. Soil-water behaviour in swelling soils may also be considered as a continuum phenomenon so long as the soil is saturated and swells and shrinks in the normal range. Macroscale heterogeneity superimposed on the inherent microscale heterogeneity can take many forms and may pose difficulties in the definition and measurement of soil physical properties and also in the development and use of predictive theories of soil-water behaviour. Thus, measurement techniques appropriate for uniform soils are often inappropriate, and criteria for soil-water management, obtained from theoretical considerations of behaviour in equivalent uniform soils, are not applicable without modification when there is soil heterogeneity. The spatial variability of soil-water properties is shown in results from field experiments concerned with water flow measurements; these illustrate both stochastic and deterministic heterogeneity in soil-water properties. Problems of water management of spatially variable soils when there is stochastic heterogeneity appear to present an insuperable problem in the application of theory. However, for soils showing deterministic heterogeneity, soil-water theory has been used in the solution of soil-water management problems. Thus, scaling using similar media theory has been applied to the infiltration of water into soils that vary over a catchment area. Also, the drain spacing to control the water-table height in soils in which the hydraulic conductivity varies with depth has been calculated using groundwater seepage theory. (author)

  16. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Science.gov (United States)

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  17. Soil fauna: key to new carbon models

    Science.gov (United States)

    Filser, Juliane; Faber, Jack H.; Tiunov, Alexei V.; Brussaard, Lijbert; Frouz, Jan; De Deyn, Gerlinde; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, Michel; Wall, Diana H.; Querner, Pascal; Eijsackers, Herman; José Jiménez, Juan

    2016-11-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential services provided by soils, policy makers depend on robust, predictive models identifying key drivers of SOM dynamics. Existing SOM models and suggested guidelines for future SOM modelling are defined mostly in terms of plant residue quality and input and microbial decomposition, overlooking the significant regulation provided by soil fauna. The fauna controls almost any aspect of organic matter turnover, foremost by regulating the activity and functional composition of soil microorganisms and their physical-chemical connectivity with soil organic matter. We demonstrate a very strong impact of soil animals on carbon turnover, increasing or decreasing it by several dozen percent, sometimes even turning C sinks into C sources or vice versa. This is demonstrated not only for earthworms and other larger invertebrates but also for smaller fauna such as Collembola. We suggest that inclusion of soil animal activities (plant residue consumption and bioturbation altering the formation, depth, hydraulic properties and physical heterogeneity of soils) can fundamentally affect the predictive outcome of SOM models. Understanding direct and indirect impacts of soil fauna on nutrient availability, carbon sequestration, greenhouse gas emissions and plant growth is key to the understanding of SOM dynamics in the context of global carbon cycling models. We argue that explicit consideration of soil fauna is essential to make realistic modelling predictions on SOM dynamics and to detect expected non-linear responses of SOM dynamics to global change. We present a decision framework, to be further developed through the activities of KEYSOM, a European COST Action, for when mechanistic SOM models

  18. Soils Newsletter, Vol. 36, No. 1, July 2013

    International Nuclear Information System (INIS)

    2013-07-01

    The SWMCN Subprogramme is planning to publish the proceedings of approximately 60 papers that were successfully presented at the FAO/IAEA International Symposium on “Managing Soils for Food Security and Climate Change Adaptation and Mitigation” in Vienna, 23–27 July 2012. With the valuable editorial assistance of Jim Dargie, the previous Director of the Joint FAO/IAEA Division, these papers are currently being reviewed and will be published in December 2013 or early 2014. These proceedings will provide valuable information to Member States on the advances in both nuclear and related techniques used in sustainable land management studies and innovative soil-water-nutrient management practices for climate smart agriculture. Two new coordinated research projects (CRPs) are being launched this year, one titled “Landscape Salinity and Water Management for Improving Agricultural Productivity” and the second titled “Optimizing Soil, Water and Nutrient Use Efficiency in Integrated Cropping-Livestock Production Systems”. The first research coordination meeting (RCM) for the salinity CRP will be held in Vienna from 15–19 July 2013, while the RCM for the integrated cropping-livestock CRP will be held from 22–26 July 2013. The salinity CRP will address an increasing concern in Member States, namely to reduce the impacts of climate change and variability on the widespread increase in landscape water and soil salinity on food production. The integrated cropping-livestock CRP aims to optimize land and water management practices for sustainable food production and conservation of agricultural resources and to mitigate greenhouse gas emissions from these integrated systems. Besides coordinating seven CRPs (including two new projects as mentioned above), the SWMCN Subprogramme provides technical support to 51 technical cooperation (TC) projects, including ten regional TC projects and conducts/organizes 12 training courses either in the SWMCN Laboratory in

  19. Field verification of advanced transport models of radionuclides in heterogeneous soils

    International Nuclear Information System (INIS)

    Visser, W.; Meurs, G.A.M.; Weststrate, F.A.

    1991-01-01

    This report deals with a verification study of advanced transport models of radionuclides in heterogeneous soils. The study reported here is the third phase of a research program carried out by Delft Geotechnics concerning the influence of soil heterogeneities on the migration of radionuclides in the soil and soil-water system. Phases 1 and 2 have been reported earlier in the EC Nuclear Science and technology series (EUR 12111 EN, 1989). The verification study involves the predictive modelling of a field tracer experiment carried out by the British Geological Survey (BGS) at Drigg, Cumbria (UK). Conservative (I 131 , Cl-, H 3 ) as well as non-conservative (Co-EDTA) tracers were used. The inverse modelling shows that micro dispersion may be considered as a soil constant related to grainsize. Micro dispersion shows a slow increase with distance from the source. This increase is caused by mass transfer between adjacent layers of different permeability. Macro dispersion is observed when sampling over a larger interval then permitted by the detail with which the heterogeneity is described in the model. The prediction of the migration of radionuclides through heterogeneous soils is possible. The advection dispersion equation seems to be an adequate description of the migration of conservative tracers. The models based on this equation give comparable results on a small field test scale (3.5 m). The prediction of the migration of adsorbing species is more difficult. The mathematical descriptions seem appropriate, but the heterogeneity in soils seems to create a higher order of uncertainty which can not be described as yet with calculation strategies available at this moment

  20. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape.

    Science.gov (United States)

    Zhu, T X

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of 20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km(2) in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km(2) in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km(2) on the cultivated slopeland, in comparison to 27.7 t/km(2) on the woodland plot, 213 t/km(2) on the grassland plot, 467 t/km(2) on the alfalfa plot, 236 t/km(2) on the terraceland plot, and 642 t/km(2) on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  1. SoilGrids1km--global soil information based on automated mapping.

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    Full Text Available BACKGROUND: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. METHODOLOGY/PRINCIPAL FINDINGS: We present SoilGrids1km--a global 3D soil information system at 1 km resolution--containing spatial predictions for a selection of soil properties (at six standard depths: soil organic carbon (g kg-1, soil pH, sand, silt and clay fractions (%, bulk density (kg m-3, cation-exchange capacity (cmol+/kg, coarse fragments (%, soil organic carbon stock (t ha-1, depth to bedrock (cm, World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles, and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images, lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database. Prediction accuracies assessed using 5-fold cross-validation were between 23-51%. CONCLUSIONS/SIGNIFICANCE: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1 weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2 difficulty to obtain covariates that capture soil forming factors, (3 low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is

  2. Bioavailability of radiocaesium in soil: parameterization using soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Syssoeva, A.A.; Konopleva, I.V. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation)

    2004-07-01

    It has been shown that radiocaesium availability to plants strongly influenced by soil properties. For the best evaluation of TFs it necessary to use mechanistic models that predict radionuclide uptake by plants based on consideration of sorption-desorption and fixation-remobilization of the radionuclide in the soil as well as root uptake processes controlled by the plant. The aim of the research was to characterise typical Russian soils on the basis of the radiocaesium availability. The parameter of the radiocaesium availability in soils (A) has been developed which consist on radiocaesium exchangeability; CF -concentration factor which is the ratio of the radiocaesium in plant to that in soil solution; K{sub Dex} - exchangeable solid-liquid distribution coefficient of radiocaesium. The approach was tested for a wide range of Russian soils using radiocaesium uptake data from a barley pot trial and parameters of the radiocaesium bioavailability. Soils were collected from the arable horizons in different soil climatic zones of Russia and artificially contaminated by {sup 137}Cs. The classification of soils in terms of the radiocaesium availability corresponds quite well to observed linear relationship between {sup 137}Cs TF for barley and A. K{sub Dex} is related to the soil radiocaesium interception potential (RIP), which was found to be positively and strongly related to clay and physical clay (<0,01 mm) content. The {sup 137}Cs exchangeability were found to be in close relation to the soil vermiculite content, which was estimated by the method of Cs{sup +} fixation. It's shown radiocaesium availability to plants in soils under study can be parameterized through mineralogical soil characteristics: % clay and the soil vermiculite content. (author)

  3. Soil microbes and soil respiration of Mongolian Steppe soils under grazing stress.

    Science.gov (United States)

    Bölter, Manfred; Krümmelbein, Julia; Horn, Rainer; Möller, Rolf; Scheltz, Annette

    2012-04-01

    Soils of Northern China were analysed for their microbiological and soil physical properties with respect to different grazing stress. An important factor for this is soil compaction and related aeration due to pore size shifts. Bulk density increases significantly with increasing grazing intensity and soil carbon contents show decreasing values from top to depth. Organic carbon (LOI) concentrations decrease significantly with increasing grazing intensity. The data on LOI (2-5.8%) approximate 10-30 mg C, our data on glucose show values between 0.4-1.2 mg, i.e. approx. 4% of total carbon. Numbers and biomass of bacteria show generally a decreasing trend of those data at grazed and ungrazed sites, numbers range between 0.4 and 8.7 x10(8) g(-1) d.wt., bacterial biomass between 0.4 and 3.8 microg Cg(-1). This need to be recorded in relation to soil compaction and herewith-hampered aeration and nutrient flow. The temperature-respiration data also allow getting an idea of the Q10-values for soil respiration. The data are between 2.24 (5-15 degrees C) and 1.2 (25-35 degrees C). Our data are presented with a general review of biological properties of Mongolian Steppe soils.

  4. The Influence of Soil Particle on Soil Condensation Water

    OpenAIRE

    Hou Xinwei; Chen Hao; Li Xiangquan; Cui Xiaomei; Liu Lingxia; Wang Zhenxing

    2013-01-01

    The experiment results showed that the indoor experiment formed from the volume of soil hygroscopic water increased gradually with decreasing size of soil particles. In the outdoor experiments, the results showed that the formed condensation water in medium sand was greater than it was in fine sand; the soil hot condensation water was mainly formed in the top layer of soil between 0-5 cm. We also found that covering the soil surface with stones can increase the volume of formed soil condensat...

  5. A Web-based spatial decision supporting system for land management and soil conservation

    Science.gov (United States)

    Terribile, F.; Agrillo, A.; Bonfante, A.; Buscemi, G.; Colandrea, M.; D'Antonio, A.; De Mascellis, R.; De Michele, C.; Langella, G.; Manna, P.; Marotta, L.; Mileti, F. A.; Minieri, L.; Orefice, N.; Valentini, S.; Vingiani, S.; Basile, A.

    2015-07-01

    Today it is evident that there are many contrasting demands on our landscape (e.g. food security, more sustainable agriculture, higher income in rural areas, etc.) as well as many land degradation problems. It has been proved that providing operational answers to these demands and problems is extremely difficult. Here we aim to demonstrate that a spatial decision support system based on geospatial cyberinfrastructure (GCI) can address all of the above, so producing a smart system for supporting decision making for agriculture, forestry, and urban planning with respect to the landscape. In this paper, we discuss methods and results of a special kind of GCI architecture, one that is highly focused on land management and soil conservation. The system allows us to obtain dynamic, multidisciplinary, multiscale, and multifunctional answers to agriculture, forestry, and urban planning issues through the Web. The system has been applied to and tested in an area of about 20 000 ha in the south of Italy, within the framework of a European LIFE+ project (SOILCONSWEB). The paper reports - as a case study - results from two different applications dealing with agriculture (olive growth tool) and environmental protection (soil capability to protect groundwater). Developed with the help of end users, the system is starting to be adopted by local communities. The system indirectly explores a change of paradigm for soil and landscape scientists. Indeed, the potential benefit is shown of overcoming current disciplinary fragmentation over landscape issues by offering - through a smart Web-based system - truly integrated geospatial knowledge that may be directly and freely used by any end user (www.landconsultingweb.eu). This may help bridge the last very important divide between scientists working on the landscape and end users.

  6. A web based spatial decision supporting system for land management and soil conservation

    Science.gov (United States)

    Terribile, F.; Agrillo, A.; Bonfante, A.; Buscemi, G.; Colandrea, M.; D'Antonio, A.; De Mascellis, R.; De Michele, C.; Langella, G.; Manna, P.; Marotta, L.; Mileti, F. A.; Minieri, L.; Orefice, N.; Valentini, S.; Vingiani, S.; Basile, A.

    2015-02-01

    Today it is evident that there are many contrasting demands on our landscape (e.g. food security, more sustainable agriculture, higher income in rural areas, etc.) but also many land degradation problems. It has been proved that providing operational answers to these demands and problems is extremely difficult. Here we aim to demonstrate that a Spatial Decision Support System based on geospatial cyber-infrastructure (GCI) can embody all of the above, so producing a smart system for supporting decision making for agriculture, forestry and urban planning with respect to the landscape. In this paper, we discuss methods and results of a special kind of GCI architecture, one that is highly focused on soil and land conservation (SOILCONSWEB-LIFE+ project). The system allows us to obtain dynamic, multidisciplinary, multiscale, and multifunctional answers to agriculture, forestry and urban planning issues through the web. The system has been applied to and tested in an area of about 20 000 ha in the South of Italy, within the framework of a European LIFE+ project. The paper reports - as a case study - results from two different applications dealing with agriculture (olive growth tool) and environmental protection (soil capability to protect groundwater). Developed with the help of end users, the system is starting to be adopted by local communities. The system indirectly explores a change of paradigm for soil and landscape scientists. Indeed, the potential benefit is shown of overcoming current disciplinary fragmentation over landscape issues by offering - through a smart web based system - truly integrated geospatial knowledge that may be directly and freely used by any end user (http://www.landconsultingweb.eu). This may help bridge the last much important divide between scientists working on the landscape and end users.

  7. Soils - Volusia County Soils (Polygons)

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

  8. Migration of 137Cs, 90Sr, 239,240Pu and 241Am in the chain soil-soil solution-plant. The soil-soil solution link

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Kil'chitskaya, S.L.; Ehjsmont, E.A.; Zhukovich, N.V.; Kimlenko, I.M.; Duksina, V.V.; Rubinchik, S.Ya.

    1999-01-01

    The mobility of 137 Cs, 90 Sr, 239,240 Pu and 241 Am in the link soil-soil solution is analysed for different soil types on the basis of radionuclide distribution coefficients between solid and liquid soil phases. The distribution coefficients allow to differentiate soils in correlation with radionuclide migration rate from the solid phase to the soil solution. The reasons of different radionuclide mobility are considered

  9. Soil Properties Database of Spanish Soils Volume I.-Galicia

    International Nuclear Information System (INIS)

    Trueba, C.; Millan, R.; Schmid, T.; Roquero, C.; Magister, M.

    1998-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-13 7 and Sr-90. The Department de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim. a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary)' source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma de Galicia

  10. Monitor Soil Degradation or Triage for Soil Security? An Australian Challenge

    Directory of Open Access Journals (Sweden)

    Andrea Koch

    2015-04-01

    Full Text Available The Australian National Soil Research, Development and Extension Strategy identifies soil security as a foundation for the current and future productivity and profitability of Australian agriculture. Current agricultural production is attenuated by soil degradation. Future production is highly dependent on the condition of Australian soils. Soil degradation in Australia is dominated in its areal extent by soil erosion. We reiterate the use of soil erosion as a reliable indicator of soil condition/quality and a practical measure of soil degradation. We describe three key phases of soil degradation since European settlement, and show a clear link between inappropriate agricultural practices and the resultant soil degradation. We demonstrate that modern agricultural practices have had a marked effect on reducing erosion. Current advances in agricultural soil management could lead to further stabilization and slowing of soil degradation in addition to improving productivity. However, policy complacency towards soil degradation, combined with future climate projections of increased rainfall intensity but decreased volumes, warmer temperatures and increased time in drought may once again accelerate soil degradation and susceptibility to erosion and thus limit the ability of agriculture to advance without further improving soil management practices. Monitoring soil degradation may indicate land degradation, but we contend that monitoring will not lead to soil security. We propose the adoption of a triaging approach to soil degradation using the soil security framework, to prioritise treatment plans that engage science and agriculture to develop practices that simultaneously increase productivity and improve soil condition. This will provide a public policy platform for efficient allocation of public and private resources to secure Australia’s soil resource.

  11. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    Information about the quantitative effect of conservation tillage combined with a cover crop on soil structure is still limited. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-term field trial. The tillage treatments (main...... plots) included direct drilling (D), harrowing to a depth of 8 to 10 cm (H), and moldboard plowing (MP). The cover crop treatments were subplot with cover crop (+CC) and without cover crop (−CC). Minimally disturbed soil cores were taken from the 4- to 8-, 12- to 16-, and 18- to 27-cm depth intervals...... in the spring of 2012 before cultivation. Soil water retention and air permeability were measured for matric potentials ranging from −1 to −30 kPa. Gas diffusivity was measured at −10 kPa. Computed tomography (CT) scanning was also used to characterize soil pore characteristics. At the 4- to 8- and 18- to 27-cm...

  12. Impacts of soil moisture content on visual soil evaluation

    Science.gov (United States)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Bondi, Giulia; Creamer, Rachel; Holden, Nick

    2017-04-01

    Visual Soil Examination and Evaluation (VSE) techniques offer tools for soil quality assessment. They involve the visual and tactile assessment of soil properties such as aggregate size and shape, porosity, redox morphology, soil colour and smell. An increasing body of research has demonstrated the reliability and utility of VSE techniques. However a number of limitations have been identified, including the potential impact of soil moisture variation during sampling. As part of a national survey of grassland soil quality in Ireland, an evaluation of the impact of soil moisture on two widely used VSE techniques was conducted. The techniques were Visual Evaluation of Soil Structure (VESS) (Guimarães et al., 2011) and Visual Soil Assessment (VSA) (Shepherd, 2009). Both generate summarising numeric scores that indicate soil structural quality, though employ different scoring mechanisms. The former requires the assessment of properties concurrently and the latter separately. Both methods were deployed on 20 sites across Ireland representing a range of soils. Additional samples were taken for soil volumetric water (θ) determination at 5-10 and 10-20 cm depth. No significant correlation was observed between θ 5-10 cm and either VSE technique. However, VESS scores were significantly related to θ 10-20 cm (rs = 0.40, sig = 0.02) while VSA scores were not (rs = -0.33, sig = 0.06). VESS and VSA scores can be grouped into quality classifications (good, moderate and poor). No significant mean difference was observed between θ 5-10 cm or θ 10-20 cm according to quality classification by either method. It was concluded that VESS scores may be affected by soil moisture variation while VSA appear unaffected. The different scoring mechanisms, where the separate assessment and scoring of individual properties employed by VSA, may limit soil moisture effects. However, moisture content appears not to affect overall structural quality classification by either method. References

  13. Fixation of Soil Using PEC and Separation of Fixed Soil

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Yang, Hee-Man; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Radioactive cesium (Cs-137) is the most apprehensive element due to its long half-lives, high solubility in water, and strong radiation emission in the form of gamma rays. Because the radioactivity is localized within topsoil, soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and form the polyelectrolyte complex (PEC) due to electrostatic interaction of anion and cation in an aqueous solution. polyelectrolyte complex can fix soil particles by flocculation and formation of crust between soil. The method can prevent a spread of radioactive material by floating on a soil surface. The decontamination efficiency of the surface soils reached about 90%, and dust release was effectively suppressed during the removal of surface soils. However it has a problem that the removed soil must separate soil and polymer to treat as the waste. In this study, the fixation of soil by polyelectrolyte complex to suppress the spread of contaminant and the separation method of soil and polymer was investigated. The properties of polyelectrolyte complex solution and the stability of fixed soil by polyelectrolyte complex were investigated. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  14. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  15. Soil Organic Carbon in the Soil Scapes of Southeastern Tanzania

    OpenAIRE

    Rossi, Joni

    2009-01-01

    Soil organic carbon (SOC) is well known to maintain several functions. On the one hand, being the major component of soil organic matter (SOM),it is a determinant of soil physical and chemical properties, an important proxy for soil biological activity and a measure of soil productivity. Land use management that will enhance soil carbon (C) levels is therefore important for farmers and land use planners, particularly in semiarid and sub-humid Africa where severe soil degradation and desertifi...

  16. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    Science.gov (United States)

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  17. Effects of straw mulching on soil evaporation during the soil thawing ...

    Indian Academy of Sciences (India)

    26

    Keywords: straw mulching, soil water evaporation, soil thawing period, freezing depth, soil liquid water .... moisture and the soil water evaporation process. The Songnen Plain ...... soils on soil infiltration and evaporation: Water Sci. Technol.

  18. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    Science.gov (United States)

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  19. Influence of soil structure on contaminant leaching from injected slurry

    DEFF Research Database (Denmark)

    Amin, M. G. Mostofa; Pedersen, Christina Østerballe; Forslund, Anita

    2016-01-01

    at a rate of 50 t ha(-1) and followed with four irrigation events: 3.5-h period at 10 mm h(-1) after 1, 2, 3, and 4 weeks. The disturbed columns delayed the leaching of a conservative tracer and microorganisms in the first irrigation event compared to the intact columns due to the effect of disturbed...... macropore flow paths. The slurry constituents that ended up in or near the macropore flow paths of the intact soil were presumably washed out relatively quickly in the first event. For the last three events the intact soil leached fewer microorganisms than the disturbed soil due to the bypassing effect...... of water through the macropore flow path in the intact soil. Estrogen leached from the intact soil in the first event only, but for the disturbed soil it was detected in the leachates of last two events also. Leaching from the later events was attributed to higher colloid transport from the disturbed soils...

  20. Soil inoculation method determines the strength of plant-soil interactions

    NARCIS (Netherlands)

    Voorde, van de T.F.J.; Ruijten, M.; Putten, van der W.H.; Bezemer, T.M.

    2012-01-01

    There is increasing evidence that interactions between plants and biotic components of the soil influence plant productivity and plant community composition. Many plant–soil feedback experiments start from inoculating relatively small amounts of natural soil to sterilized bulk soil. These soil

  1. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.

    Science.gov (United States)

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2017-04-01

    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Long-term effects of conservation soil management in Saria, Burkina Faso, West Africa

    OpenAIRE

    Zacharie, Z.

    2011-01-01

    The negative degradation spiral that currently leads to deteriorating soil properties in African drylands is a serious problem that limits food production and threatensthe livelihoods of the people. Nutrient depletion and water and wind erosion are the main factors in soil degradation in Africa. This thesis describes field research conducted from 2006 through 2008 to assess how changes in physical and hydrological soil properties, induced by differences in land management and macro-faunal bi...

  3. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    Science.gov (United States)

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should

  4. Soil organic matter on citrus plantation in Eastern Spain

    Science.gov (United States)

    Cerdà, Artemi; Pereira, Paulo; Novara, Agata; Prosdocimi, Massimo

    2015-04-01

    model (WATEM/SEDEM) in Northern Ethiopia. Land Degradation & Development 24, 188-204. DOI 10.1002/ldr.1121 Wu J., Li Q., Yan L. 1997. Effect of intercropping on soil erosion in young citrus plantation - a simulation study. Chinese Journal of Applied Ecology 8, 143-146. Wu, D.-M., Yu, Y.-C., Xia, L.-Z., Yin, S.-X., Yang, L.-Z. 2011. Soil fertility indices of citrus orchard land along topographic gradients in the three gorges area of China. Pedosphere 21, 782-792. Xu, Q. X., Wang, T. W., Cai, C. F., Li, Z. X., Shi, Z. H. 2012a. Effects of soil conservation on soil properties of citrus orchards in the Three-Gorges Area, China. Land Degradation & Development, 23(1), 34-42. Xu, Q., Wang, T., Li, Z., Cai, C., Shi, Z., Jiang, C. 2010. Effect of soil conservation measurements on runoff, erosion and plant production: A case study on steeplands from the Three Gorges Area, China. Journal of Food, Agriculture and Environment 8, 980-984. Xu, Q.X., Wang, T.W., Cai, C.F., Li, Z.X., Shi, Z.H. 2012b. Effects of soil conservation on soil properties of citrus orchards in the Three-Gorges Area, China. Land Degradation and Development 23, 34-42. Zhao, G., Mu, X., Wen, Z., Wang, F., Gao, P. 2013. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24, 499- 510. DOI 10.1002/ldr.2246SP

  5. Evaluating Soil Carbon Sequestration in Central Iowa

    Science.gov (United States)

    Doraiswamy, P. C.; Hunt, E. R.; McCarty, G. W.; Daughtry, C. S.; Izaurralde, C.

    2005-12-01

    The potential for reducing atmospheric carbon dioxide (CO2) concentration through landuse and management of agricultural systems is of great interest worldwide. Agricultural soils can be a source of CO2 when not properly managed but can also be a sink for sequestering CO2 through proper soil and crop management. The EPIC-CENTURY biogeochemical model was used to simulate the baseline level of soil carbon from soil survey data and project changes in soil organic carbon (SOC) under different tillage and crop management practices for corn and soybean crops. The study was conducted in central Iowa (50 km x 100 km) to simulate changes in soil carbon over the next 50 years. The simulations were conducted in two phases; initially a 25-year period (1971-1995) was simulated using conventional tillage practices since there was a transition in new management after 1995. In the second 25-year period (1996-2020), four different modeling scenarios were applied namely; conventional tillage, mulch tillage, no-tillage and no-tillage with a rye cover crop over the winter. The model simulation results showed potential gains in soil carbon in the top layers of the soil for conservation tillage. The simulations were made at a spatial resolution of 1.6 km x 1.6 km and mapped for the study area. There was a mean reduction in soil organic carbon of 0.095 T/ha per year over the 25-year period starting with 1996 for the conventional tillage practice. However, for management practices of mulch tillage, no tillage and no tillage with cover crop there was an increase in soil organic carbon of 0.12, 0.202 and 0.263 T/ha respectively over the same 25-year period. These results are in general similar to studies conducted in this region.

  6. Predicting Soluble Nickel in Soils Using Soil Properties and Total Nickel.

    Science.gov (United States)

    Zhang, Xiaoqing; Li, Jumei; Wei, Dongpu; Li, Bo; Ma, Yibing

    2015-01-01

    Soil soluble nickel (Ni) concentration is very important for determining soil Ni toxicity. In the present study, the relationships between soil properties, total and soluble Ni concentrations in soils were developed in a wide range of soils with different properties and climate characteristics. The multiple regressions showed that soil pH and total soil Ni concentrations were the most significant parameters in predicting soluble Ni concentrations with the adjusted determination coefficients (Radj2) values of 0.75 and 0.68 for soils spiked with soluble Ni salt and the spiked soils leached with artificial rainwater to mimic field conditions, respectively. However, when the soils were divided into three categories (pH 8), they obtained better predictions with Radj2 values of 0.78-0.90 and 0.79-0.94 for leached and unleached soils, respectively. Meanwhile, the other soil properties, such as amorphous Fe and Al oxides and clay, were also found to be important for determining soluble Ni concentrations, indicating that they were also presented as active adsorbent surfaces. Additionally, the whole soil speciation including bulk soil properties and total soils Ni concentrations were analyzed by mechanistic speciation models WHAM VI and Visual MINTEQ3.0. It was found that WHAM VI provided the best predictions for the soils with pH 8. The Visual MINTEQ3.0 could provide better estimation for pH 8. These results indicated the possibility and applicability of these models to predict soil soluble Ni concentration by soil properties.

  7. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    International Nuclear Information System (INIS)

    Li, X.; Sawatsky, N.

    1995-01-01

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils

  8. Soil Properties Database of Spanish Soils Volume III.- Extremadura

    International Nuclear Information System (INIS)

    Trueba, C; Millan, R.; Schmid, T.; Roquero, C; Magister, M.

    1998-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-13 7 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalized and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma de Extremadura. (Author) 50 refs

  9. Soil protists: a fertile frontier in soil biology research.

    Science.gov (United States)

    Geisen, Stefan; Mitchell, Edward A D; Adl, Sina; Bonkowski, Michael; Dunthorn, Micah; Ekelund, Flemming; Fernández, Leonardo D; Jousset, Alexandre; Krashevska, Valentyna; Singer, David; Spiegel, Frederick W; Walochnik, Julia; Lara, Enrique

    2018-05-01

    Protists include all eukaryotes except plants, fungi and animals. They are an essential, yet often forgotten, component of the soil microbiome. Method developments have now furthered our understanding of the real taxonomic and functional diversity of soil protists. They occupy key roles in microbial foodwebs as consumers of bacteria, fungi and other small eukaryotes. As parasites of plants, animals and even of larger protists, they regulate populations and shape communities. Pathogenic forms play a major role in public health issues as human parasites, or act as agricultural pests. Predatory soil protists release nutrients enhancing plant growth. Soil protists are of key importance for our understanding of eukaryotic evolution and microbial biogeography. Soil protists are also useful in applied research as bioindicators of soil quality, as models in ecotoxicology and as potential biofertilizers and biocontrol agents. In this review, we provide an overview of the enormous morphological, taxonomical and functional diversity of soil protists, and discuss current challenges and opportunities in soil protistology. Research in soil biology would clearly benefit from incorporating more protistology alongside the study of bacteria, fungi and animals.

  10. Soil Properties Database of Spanish Soils. Volume V.- Madrid

    International Nuclear Information System (INIS)

    Trueba, C.; Millan, R.; Schmid, T.; Roquero, C.; Magister, M.

    1998-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-137 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma de Madrid. (Author) 39 refs

  11. Soil Properties Database of Spanish Soils. Volume XV.- Aragon

    International Nuclear Information System (INIS)

    Trueba, C; Millan, R.; Schmid, T.; Lago, C.; Roquero, C; Magister, M.

    1999-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-137 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma of Aragon. (Author) 47 refs

  12. Soil Properties Database of Spanish Soils. Volume XIV.- Cataluna

    International Nuclear Information System (INIS)

    Trueba, C; Millan, R.; Schmid, T.; Lago, C.; Roquero, C; Magister, M.

    1999-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-137 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma of Cataluna. (Author) 57 refs

  13. Fauna-associated changes in chemical and biochemical properties of soil.

    Science.gov (United States)

    Tripathi, G; Sharma, B M

    2006-12-01

    To study the impacts of abundance of woodlice, termites, and mites on some functional aspects of soil in order to elucidate the specific role of soil fauna in improving soil fertility in desert. Fauna-rich sites were selected as experimental sites and adjacent areas were taken as control. Soil samples were collected from both sites. Soil respiration was measured at both sites. The soil samples were sent to laboratory, their chemical and biochemical properties were analyzed. Woodlice showed 25% decrease in organic carbon and organic matter as compared to control site. Whereas termites and mites showed 58% and 16% decrease in organic carbon and organic matter. In contrast, available nitrogen (nitrate and ammonical both) and phosphorus exhibited 2-fold and 1.2-fold increase, respectively. Soil respiration and dehydrogenase activity at the sites rich in woodlice, termites and mites produced 2.5-, 3.5- and 2-fold increases, respectively as compared to their control values. Fauna-associated increase in these biological parameters clearly reflected fauna-induced microbial activity in soil. Maximum decrease in organic carbon and increase in nitrate-nitrogen and ammonical-nitrogen, available phosphorus, soil respiration and dehydrogenase activity were produced by termites and minimum by mites reflecting termite as an efficient soil improver in desert environment. The soil fauna-associated changes in chemical (organic carbon, nitrate-nitrogen, ammonical-nitrogen, phosphorus) and biochemical (soil respiration, dehydrogenase activity) properties of soil improve soil health and help in conservation of desert pedoecosystem.

  14. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    Lombard, K.H.

    1994-01-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays

  15. Soil degradation effect on biological activity in Mediterranean calcareous soils

    Science.gov (United States)

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.

    2009-04-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  16. A soil mechanics approach to study soil compaction and traffic effect on the preconsolidation pressure of tropical soils

    International Nuclear Information System (INIS)

    Dias Junior, Moacir de Souza

    2004-01-01

    Several researchers have already demonstrated the causes and the effects of soil compaction. These studies showed that the soil compaction is a limiting factor in the agricultural production. The attributes of the soil conventionally monitored has not been capable to quantify the load support capacity of the soil, not allowing to foresee the levels of pressures that can be applied to the soils at different moisture conditions without additional soil compaction (structure degradation) happens. The researches done in the soil compressive behaviour of some tropical soils indicate that the pre-compression stress may be used as an alternative measure of the load support capacity and as a quantitative indicator of the structure sustainability of the tropical soils

  17. Relationships between soil erosion risk, soil use and soil properties in Mediterranean areas. A comparative study of three typical sceneries

    Science.gov (United States)

    Gil, Juan; Priego-Navas, Mercedes; Zavala, Lorena M.; Jordán, Antonio

    2013-04-01

    Generally, literature shows that the high variability of rainfall-induced soil erosion is related to climatic differences, relief, soil properties and land use. Very different runoff rates and soil loss values have been reported in Mediterranean cropped soils depending on soil management practices, but also in soils under natural vegetation types. OBJECTIVES The aim of this research is to study the relationships between soil erosion risk, soil use and soil properties in three typical Mediterranean areas from southern Spain: olive groves under conventional tillage, minimum tillage and no-till practices, and soils under natural vegetation. METHODS Rainfall simulation experiments have been carried out in order to assess the relationship between soil erosion risk, land use, soil management and soil properties in olive-cropped soils under different types of management and soils under natural vegetation type from Mediterranean areas in southern Spain RESULTS Results show that mean runoff rates decrease from 35% in olive grove soils under conventional tillage to 25% in olive (Olea europaea) grove soils with minimum tillage or no-till practices, and slightly over 22% in soils under natural vegetation. Moreover, considering the different vegetation types, runoff rates vary in a wide range, although runoff rates from soils under holm oak (Quercus rotundifolia), 25.70%, and marginal olive groves , 25.31%, are not significantly different. Results from soils under natural vegetation show that the properties and nature of the organic residues play a role in runoff characteristics, as runoff rates above 50% were observed in less than 10% of the rainfall simulations performed on soils with a organic layer. In contrast, more than half of runoff rates from bare soils reached or surpassed 50%. Quantitatively, average values for runoff water losses increase up to 2.5 times in unprotected soils. This is a key issue in the study area, where mean annual rainfall is above 600 mm

  18. Soil color - a window for public and educators to understands soils

    Science.gov (United States)

    Libohova, Zamir; Beaudette, Dylan; Wills, Skye; Monger, Curtis; Lindbo, David

    2017-04-01

    Soil color is one of the most visually striking properties recorded by soil scientists around the world. Soil color is an important characteristic related to soil properties such organic matter, parent materials, drainage. It is a simplified way for the public and educators alike to understand soils and their functions. Soil color is a quick measurement that can be recorded by people using color charts or digital cameras, offering an opportunity for the citizen science projects to contribute to soil science. The US Soil Survey has recorded soil colors using Munsell color system for over 20,000 soil types representing a wide range of conditions throughout the Unites States. The objective of this research was to generate a US soil color map based on color descriptions from the Official Series Descriptions (OSDs). A color calculator developed in R and ArcMap were used to spatially display the soil colors. Soil colors showed vertical trends related to soil depth and horizontal trends related to parent material and climate. Soil colors represent development processes depending upon environment and time that have influenced their appearance and geographic distribution. Dark colors represent soils that are rich in organic matter, such as the soils of the Midwest USA, which are some of the most fertile soils in the world. These soils are relatively "young" in that they developed over the last 20,000 years in materials left behind after continental Glaciers retreated and reflect long- term prairie vegetation that dominated this area prior to European settlements. Dark soils of the Pacific Northwest reflect the influence of forests (and volcanic activity) but are shallower and less fertile than the deep dark Midwest soils. Soils of the eastern and southern Coastal Plains are older and are enriched with iron oxides ('rust') which gives them their red coloring. Soils of flood plains, like the broad Mississippi Valley, have multi-colored soils that reflect the process of

  19. Effect of Management Practices on Soil Microstructure and Surface Microrelief

    Directory of Open Access Journals (Sweden)

    R. Garcia Moreno

    2012-01-01

    Full Text Available Soil surface roughness (SSR and porosity were evaluated from soils located in two farms belonging to the Plant Breeding Institute of the University of Sidney. The sites differ in their soil management practices; the first site (PBI was strip-tilled during early fall (May 2010, and the second site (JBP was under power harrowed tillage at the end of July 2010. Both sites were sampled in mid-August. At each location, SSR was measured for three 1 m2 subplots using shadow analysis. To evaluate porosity and aggregation, soil samples were scanned using X-ray computed tomography with 5 μm resolution. The results show a strong negative correlation between SSR and porosity, 20.13% SSR and 41.38% porosity at PBI versus 42.00% SSR and 18.35% porosity at JBP. However, soil images show that when soil surface roughness is higher due to conservation and soil management practices, the processes of macroaggregation and structural porosity are enhanced. Further research must be conducted on SSR and porosity in different types of soils, as they provide complementary information on the evaluation of soil erosion susceptibility.

  20. Developing and using artificial soils to analyze soil microbial processes

    Science.gov (United States)

    Gao, X.; Cheng, H. Y.; Boynton, L.; Masiello, C. A.; Silberg, J. J.

    2017-12-01

    Microbial diversity and function in soils are governed by soil characteristics such as mineral composition, particles size and aggregations, soil organic matter (SOM), and availability of nutrients and H2O. The spatial and temporal heterogeneity of soils creates a range of niches (hotspots) differing in the availability of O2, H2O, and nutrients, which shapes microbial activities at scales ranging from nanometer to landscape. Synthetic biologists often examine microbial response trigged by their environment conditions in nutrient-rich aqueous media using single strain microbes. While these studies provided useful insight in the role of soil microbes in important soil biogeochemical processes (e.g., C cycling, N cycling, etc.), the results obtained from the over-simplified model systems are often not applicable natural soil systems. On the contrary, soil microbiologists examine microbial processes in natural soils using longer incubation time. However, due to its physical, chemical and biological complexity of natural soils, it is often difficult to examine soil characteristics independently and understand how each characteristic influences soil microbial activities and their corresponding soil functioning. Therefore, it is necessary to bridge the gap and develop a model matrix to exclude unpredictable influences from the environment while still reliably mimicking real environmental conditions. The objective of this study is to design a range of ecologically-relevant artificial soils with varying texture (particle size distribution), structure, mineralogy, SOM content, and nutrient heterogeneity. We thoroughly characterize the artificial soils for pH, active surface area and surface morphology, cation exchange capacity (CEC), and water retention curve. We demonstrate the effectiveness of the artificial soils as useful matrix for microbial processes, such as microbial growth and horizontal gene transfer (HGT), using the gas-reporting biosensors recently developed in

  1. The contribution of Japanese Soil Science Societies to scientific knowledge, education and sustainability: Good practices in the International Year of Soils 2015 towards the International Decade of Soils.

    Science.gov (United States)

    Kosaki, Takashi; Matoh, Toru; Inubushi, Kazuyuki; Sakurai, Katsutoshi

    2017-04-01

    general public were, however, not very much well known or widely accepted and thus were attended only by one to two hundred participants. Mobile exhibitions were well attended by the public and the educational programs out-of-doors for school children (with their parents) co-organized by a private (and environment conservation-oriented) company were very successful in terms of the promotion of the public awareness as well as CSR activities of a business firm. The TV stations paid a very little attention in broadcasting special and/or educational programs on soil and soil science. Based on the above experiences and evaluation, the societies are now planning next activities and actions aiming at the goals of the International Decade of Soils 2015-2024 and the UN SDGs till 2030.

  2. farmers' preference for soil and water conservation practices

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    However, failure by research and development organisations to ... economic perspective; as a basis for enhancing adoption of the technologies in the central highlands of Ethiopia. ... country. The highest rate of soil loss occurs from cultivated lands, ranging from 50 t ha-1 yr-1 ... However, investments in land management.

  3. Effect of soil solarization on soil-borne pathogens

    International Nuclear Information System (INIS)

    Sobh, Hana

    1995-01-01

    Author.Soil solarization was conducted at three locations on the Lebanese coast. Maximum soil temperatures recorded were 53 and 48 celsius degrees at Jiyeh, 48.9, 46 and 43 celsius degrees at Naameh and 48, 45 and 43.5 celsius degrees at Khaldeh at 5, 15 and 25cm soil depths respectively. Mean soil temperatures recorded at 3pm were at Jiyeh 51.6, 47 and 46 celsius degrees compared to Naameh 47, 45 and 41 celsius degrees and Khaldeh 44, 42 and 41 celsius degrees at 5, 15 and 25 cm respectively. The mean temperature in solarized soils were 7.3 to 15 celsius degrees higher than those of the nonsolarized soils indicating a sustained increase of soil temperature in the solarized soils. The effect of soil solarization on artificially introduced fungal pathogens in the soil at Khaldeh, resulted in complete destruction of sclerotia of Sclerotinia spp. at three depths studied. However, with respect to the two other pathogens tested, solarization resulted in reduction of the viability of microsclerotia of Verticillium spp. by 99-79% and of Fusarium oxysporum f. sp. melonis inoculum by 88-54% at 5 and 15 cm respectively, but only by 45% and 14% reduction at 25 cm. This level of control is significant when it is compared to the percentage of control where the level of reduction of inoculum viability did not exceed 10% at any soil depth. As there were contradicting reports in the literature on nematodes, two field trials in greenhouses were conducted to study the possibility of integrating 2 methods for management on nematodes. Soil solarization alone or in combination with biological control of nematodes using Arthrobotrys spp. and Dactyl ella brocophaga to control the root-knot nematodes on two crops, tomato at Naameh and cucumber at Jiyeh were compared to Methyl Bromide treatment. It was evident that, even on a very susceptible crop like cucumber, the integration of biological control and soil solarization gave a good level of control similar to methyl bromide. Neither root

  4. Modelling soil anaerobiosis from water retention characteristics and soil respiration

    NARCIS (Netherlands)

    Schurgers, G.; Dörsch, P.; Bakken, L.; Leffelaar, P.A.; Egil Haugen, L.

    2006-01-01

    Oxygen is a prerequisite for some and an inhibitor to other microbial functions in soils, hence the temporal and spatial distribution of oxygen within the soil matrix is crucial in soil biogeochemistry and soil biology. Various attempts have been made to model the anaerobic fraction of the soil

  5. Soil gas radon response to environmental and soil physics variables

    International Nuclear Information System (INIS)

    Thomas, D.M.; Chen, C.; Holford, D.

    1991-01-01

    During the last three years a field study of soil gas radon activities conducted at Poamoho, Oahu, has shown that the primary environmental variables that control radon transport in shallow tropical soils are synoptic and diurnal barometric pressure changes and soil moisture levels. Barometric pressure changes drive advective transport and mixing of soil gas with atmospheric air; soil moisture appears to control soil porosity and permeability to enhance or inhibit advective and diffusive radon transport. An advective barrier test/control experiment has shown that advective exchange of soil gas and air may account for a substantial proportion of the radon loss from shallow soils but does not significantly affect radon activities at depths greater than 2.3 m. An irrigation test/control experiment also suggests that, at soil moisture levels approaching field capacity, saturation of soil macroporosity can halt all advective transport of radon and limit diffusive mobility to that occurring in the liquid phase. The results of the authors field study have been used to further refine and extend a numerical model, RN3D, that has been developed by Pacific Northwest Laboratories to simulate subsurface transport of radon. The field data have allowed them to accurately simulate the steady state soil gas radon profile at their field site and to track transient radon activities under the influence of barometric pressure changes and in response to changes in soil permeability that result from variations in soil moisture levels. Further work is continuing on the model to enable it to properly account for the relative effects of advective transport of soil gas through cracks and diffusive mobility in the bulk soils

  6. SoilEffects – start characterization of the experimental soil

    OpenAIRE

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun; Riley, Hugh

    2013-01-01

    This report describes the establishment, experimental plan and initial soil characteristics of the field experiment linked to the project “Effects of anaerobically digested manure on soil fertility - establishment of a long-term study under Norwegian conditions” (SoilEffects, 2010-14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on...

  7. Chemical, biochemical and microbiological indicators to assess soil quality in temperate agro-ecosystems

    OpenAIRE

    Giacometti, Caterina

    2013-01-01

    Soil is a critically important component of the earth’s biosphere. Developing agricultural production systems able to conserve soil quality is essential to guarantee the current and future capacity of soil to provide goods and services. This study investigates the potential of microbial and biochemical parameters to be used as early and sensitive soil quality indicators. Their ability to differentiate plots under contrasting fertilization regimes is evaluated based also on their sensitivi...

  8. The uptake of radionuclides from the soil

    International Nuclear Information System (INIS)

    Steffens, W.; Fuehr, F.; Mittelstaedt, W.

    1980-01-01

    Radioactive materials, fission products of fuels used and corrosion nuclides are transferred in small amounts through waste gases and waste liquids of nuclear plants to the environment. They are deposited on plants and soil, are subjected there to nuclide-specific distribution patterns, can be enriched in the soil over years, are taken up from plants via the roots and hence get into the food chains and contribute to the radiation burden to man. The annual radiation burden via food absorption is determined by calculation models. These models take into account the uptake of radionuclides via the plant roots by nuclide-specific transfer factors. Close-to-practice tests with representative soils of the Federal Republic of Germany enable the fluctuation of these transfer factors to be determined and hence contribute to the conservative assessment of the ingestion burden via the soil/plant transfer for the operation of nuclear power plants or reprocessing plants. (orig.) [de

  9. Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes.

    Science.gov (United States)

    Tamburini, Giovanni; De Simone, Serena; Sigura, Maurizia; Boscutti, Francesco; Marini, Lorenzo

    2016-08-31

    Agroecosystems are principally managed to maximize food provisioning even if they receive a large array of supporting and regulating ecosystem services (ESs). Hence, comprehensive studies investigating the effects of local management and landscape composition on the provision of and trade-offs between multiple ESs are urgently needed. We explored the effects of conservation tillage, nitrogen fertilization and landscape composition on six ESs (crop production, disease control, soil fertility, water quality regulation, weed and pest control) in winter cereals. Conservation tillage enhanced soil fertility and pest control, decreased water quality regulation and weed control, without affecting crop production and disease control. Fertilization only influenced crop production by increasing grain yield. Landscape intensification reduced the provision of disease and pest control. We also found tillage and landscape composition to interactively affect water quality regulation and weed control. Under N fertilization, conventional tillage resulted in more trade-offs between ESs than conservation tillage. Our results demonstrate that soil management and landscape composition affect the provision of several ESs and that soil management potentially shapes the trade-offs between them. © 2016 The Author(s).

  10. Water repellent soils: the case for unsaturated soil mechanics

    Directory of Open Access Journals (Sweden)

    Beckett Christopher

    2016-01-01

    Full Text Available Water repellent (or “hydrophobic” or “non-wetting” soils have been studied by soil scientists for well over a century. These soils are typified by poor water infiltration, which leads to increased soil erosion and poor crop growth. However, the importance of water repellence on determining soil properties is now becoming recognised by geotechnical engineers. Water repellent soils may, for example, offer novel solutions for the design of cover systems overlying municipal or mine waste storage facilities. However, investigations into factors affecting their mechanical properties have only recently been initiated. This purpose of this paper is to introduce geotechnical engineers to the concept of water repellent soils and to discuss how their properties can be evaluated under an unsaturated soils framework. Scenarios in which water repellent properties might be relevant in geotechnical applications are presented and methods to quantify these properties in the laboratory and in the field examined.

  11. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations

    NARCIS (Netherlands)

    Bouma, T.J.; Bryla, D.R.

    2000-01-01

    Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil

  12. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Institute of Scientific and Technical Information of China (English)

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  13. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Science.gov (United States)

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, Ji; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) soil respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  14. Quicklime-induced changes of soil properties: Implications for enhanced remediation of volatile chlorinated hydrocarbon contaminated soils via mechanical soil aeration.

    Science.gov (United States)

    Ma, Yan; Dong, Binbin; He, Xiaosong; Shi, Yi; Xu, Mingyue; He, Xuwen; Du, Xiaoming; Li, Fasheng

    2017-04-01

    Mechanical soil aeration is used for soil remediation at sites contaminated by volatile organic compounds. However, the effectiveness of the method is limited by low soil temperature, high soil moisture, and high soil viscosity. Combined with mechanical soil aeration, quicklime has a practical application value related to reinforcement remediation and to its action in the remediation of soil contaminated with volatile organic compounds. In this study, the target pollutant was trichloroethylene, which is a volatile chlorinated hydrocarbon pollutant commonly found in contaminated soils. A restoration experiment was carried out, using a set of mechanical soil-aeration simulation tests, by adding quicklime (mass ratios of 3, 10, and 20%) to the contaminated soil. The results clearly indicate that quicklime changed the physical properties of the soil, which affected the environmental behaviour of trichloroethylene in the soil. The addition of CaO increased soil temperature and reduced soil moisture to improve the mass transfer of trichloroethylene. In addition, it improved the macroporous cumulative pore volume and average pore size, which increased soil permeability. As soil pH increased, the clay mineral content in the soils decreased, the cation exchange capacity and the redox potential decreased, and the removal of trichloroethylene from the soil was enhanced to a certain extent. After the addition of quicklime, the functional group COO of soil organic matter could interact with calcium ions, which increased soil polarity and promoted the removal of trichloroethylene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A new approach for soil-plant transfer calculations

    International Nuclear Information System (INIS)

    Dorp, F. van; Eleveld, R.; Frissel, M.J.

    1979-01-01

    Models to calculate radiation doses to man caused by normal or accidental release of radionuclides from nuclear industries often include the transfer of these nuclides from soil to plant. This soil-plant transfer is mostly described with a black box approach by using concentration factors. This approach has several disadvantages, the most important being the lack of physical meaning of a concentration factor. We propose to describe the soil-plant transfer of radionuclides as a function of plant and soil parameters all having a physical meaning. The separate parameters are open to experimental determination but a realistic estimation of the parameters is also possible, or the use of a combination of both. Depending on the purpose of the calculation, realistic or conservative values of the parameters can be used and the degree of conservatism can be indicated. (author)

  16. Thermal-treated soil for mercury removal: Soil and phytotoxicity tests

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Y.; Edwards, N.T.; Lee, S.Y.; Stiles, C.A.; Armes, S.; Foss, J.E.

    2000-04-01

    Mercury (Hg) contamination of soils and sediments is one of many environmental problems at the Oak Ridge Reservation, Oak Ridge, TN. Mercury-contaminated soil from the Lower East Fork Poplar Creek (LEFPC) at the Oak Ridge Reservation was treated thermally to reduce Hg concentration to a below target level (20 mg kg{sup {minus}1}) as a pilot scale thermal treatment demonstration. As a part of performance evaluation, the soil characteristics and plant growth response of the untreated and treated soil were examined. The soil treated at 350 C retained most of its original soil properties, but the soil treated at 600 C exhibited considerable changes in mineralogical composition and physicochemical characteristics. Growth and physiological response of the three plant species radish (Raphanus sativus L.), fescue (Festuca arundinacea Schreb.), and oat (Avena sativa L.) indicated adverse effects of the thermal treatment. The addition of N fertilizer had beneficial effects in the 350 C treated soil, but had little beneficial effect in the 600 C treated soil. Some changes of soil characteristics induced by thermal treatment cannot be avoided. Soil characteristics and phytotoxicity test results strongly suggest that changes occurring following the 350 C treatment do not limit the use of the treated soil to refill the excavated site for full-scale remediation. The only problem with the 350 C treatment is that small amounts of Hg compounds (<15 mg kg{sup {minus}1}) remain in the soil and a processing cost of $45/Mg.

  17. Soils in art as a teaching tool in soil science

    Science.gov (United States)

    Poch, Rosa M.

    2017-04-01

    The representation of soils in the different artistic expressions occurs much less often than that of other naturalistic scientific disciplines, like botany or zoology, due to the minor perception of soils as a natural body since the humans started to express themselves through art. Nevertheless, painters, writers and even musicians and film directors have been forced to deal with soils in their works, as a component of the landscape and as the main actor of the various soil functions. Even if the artists are not aware of soils in the sense of soil science - a study object - their observation of nature invariably leads to express their properties, the problems due to their misuse or degradation and their management practices. These art works have a great value when teaching soil science to students, because the latter can learn to intepret and go beyond the artist's observation and therefore they can appreciate the perception of soils and soil properties along the history of humankind. Paintings from various periods can be used as exercises, mainly those depicting landscapes or agricultural works. Some examples are Dutch landscape painters, as Brueghel the Young showing detailed soil erosion features; or Wijnants (XVII century) depicting very clear podzols on sand dunes. Also the impressionists (Van Gogh, Cézanne, Gaugin), or the landscapes of the romantic nationalists (XIX- early XX century) show forest or agricultural soils that can be used either to deduce soil forming processes and describe horizons, or to discuss the effectivity of soil management practices (deforestation, burning, plowing, terracing). Also some pieces of literature can be used either for illustrating real soil landscapes and soil-water relationships (Steinbeck's "The Grapes of Wrath") or in case of fiction literature, as exercice for soil mapping (Tolkien's Middle Earth in "The Hobbit" and "The Lord of the Rings"). Films as "The field" (Jim Sheridan, 1990) or "Corn Island" (George Ovasvili

  18. Basic Soils. Revision.

    Science.gov (United States)

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  19. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration

    Directory of Open Access Journals (Sweden)

    Sonia Chamizo

    2018-06-01

    Full Text Available Cyanobacteria are ubiquitous components of biocrust communities and the first colonizers of terrestrial ecosystems. They play multiple roles in the soil by fixing C and N and synthesizing exopolysaccharides, which increase soil fertility and water retention and improve soil structure and stability. Application of cyanobacteria as inoculants to promote biocrust development has been proposed as a novel biotechnological technique for restoring barren degraded areas and combating desertification processes in arid lands. However, previous to their widespread application under field conditions, research is needed to ensure the selection of the most suitable species. In this study, we inoculated two cyanobacterial species, Phormidium ambiguum (non N-fixing and Scytonema javanicum (N-fixing, on different textured soils (from silt loam to sandy, and analyzed cyanobacteria biocrust development and evolution of physicochemical soil properties for 3 months under laboratory conditions. Cyanobacteria inoculation led to biocrust formation in all soil types. Scanning electron microscope (SEM images showed contrasting structure of the biocrust induced by the two cyanobacteria. The one from P. ambiguum was characterized by thin filaments that enveloped soil particles and created a dense, entangled network, while the one from S. javanicum consisted of thicker filaments that grouped as bunches in between soil particles. Biocrust development, assessed by chlorophyll a content and crust spectral properties, was higher in S. javanicum-inoculated soils compared to P. ambiguum-inoculated soils. Either cyanobacteria inoculation did not increase soil hydrophobicity. S. javanicum promoted a higher increase in total organic C and total N content, while P. ambiguum was more effective in increasing total exopolysaccharide (EPS content and soil penetration resistance. The effects of cyanobacteria inoculation also differed among soil types and the highest improvement in soil

  20. High Resolution Mapping of Soils and Landforms for the Desert Renewable Energy Conservation Plan (DRECP)

    Science.gov (United States)

    Potter, Christopher S.; Li, Shuang

    2014-01-01

    The Desert Renewable Energy Conservation Plan (DRECP), a major component of California's renewable energy planning efforts, is intended to provide effective protection and conservation of desert ecosystems, while allowing for the sensible development of renewable energy projects. This NASA mapping report was developed to support the DRECP and the Bureau of Land Management (BLM). We outline in this document remote sensing image processing methods to deliver new maps of biological soils crusts, sand dune movements, desert pavements, and sub-surface water sources across the DRECP area. We focused data processing first on the largely unmapped areas most likely to be used for energy developments, such as those within Renewable Energy Study Areas (RESA) and Solar Energy Zones (SEZs). We used imagery (multispectral and radar) mainly from the years 2009-2011.

  1. Effect of soil moisture on the temperature sensitivity of Northern soils

    Science.gov (United States)

    Minions, C.; Natali, S.; Ludwig, S.; Risk, D.; Macintyre, C. M.

    2017-12-01

    Arctic and boreal ecosystems are vast reservoirs of carbon and are particularly sensitive to climate warming. Changes in the temperature and precipitation regimes of these regions could significantly alter soil respiration rates, impacting atmospheric concentrations and affecting climate change feedbacks. Many incubation studies have shown that both temperature and soil moisture are important environmental drivers of soil respiration; this relationship, however, has rarely been demonstrated with in situ data. Here we present the results of a study at six field sites in Alaska from 2016 to 2017. Low-power automated soil gas systems were used to measure soil surface CO2 flux from three forced diffusion chambers and soil profile concentrations from three soil depth chambers at hourly intervals at each site. HOBO Onset dataloggers were used to monitor soil moisture and temperature profiles. Temperature sensitivity (Q10) was determined at each site using inversion analysis applied over different time periods. With highly resolved data sets, we were able to observe the changes in soil respiration in response to changes in temperature and soil moisture. Through regression analysis we confirmed that temperature is the primary driver in soil respiration, but soil moisture becomes dominant beyond a certain threshold, suppressing CO2 flux in soils with high moisture content. This field study supports the conclusions made from previous soil incubation studies and provides valuable insights into the impact of both temperature and soil moisture changes on soil respiration.

  2. Soil Organic Carbon Fractions Differ in Two Contrasting Tall Fescue Systems

    Science.gov (United States)

    The value of tall fescue (Festuca arundinacea Schreb.) for C sequestration in addition to forage production and soil conservation is of current interest. However, studies relating to the impacts of endophyte infected (E+) and endophyte free (E-) tall fescue on soil organic matter fractions are few....

  3. Effects of environmental factors and soil properties on topographic variations of soil respiration

    Directory of Open Access Journals (Sweden)

    K. Tamai

    2010-03-01

    Full Text Available Soil respiration rates were measured along different parts of a slope in (a an evergreen forest with common brown forest soil and (b a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by the fact that different soil properties matured within different environments. It can be argued that the low soil respiration rates in the low parts of the slope in the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties. These effects were likely due to the immaturity of the forest soil.

  4. Wetting properties of fungi mycelium alter soil infiltration and soil water repellency in a γ-sterilized wettable and repellent soil.

    Science.gov (United States)

    Chau, Henry Wai; Goh, Yit Kheng; Vujanovic, Vladimir; Si, Bing Cheng

    2012-12-01

    Soil water repellency (SWR) has a drastic impact on soil quality resulting in reduced infiltration, increased runoff, increased leaching, reduced plant growth, and increased soil erosion. One of the causes of SWR is hydrophobic fungal structures and exudates that change the soil-water relationship. The objective of this study was to determine whether SWR and infiltration could be manipulated through inoculation with fungi. The effect of fungi on SWR was investigated through inoculation of three fungal strains (hydrophilic -Fusarium proliferatum, chrono-amphiphilic -Trichoderma harzianum, and hydrophobic -Alternaria sp.) on a water repellent soil (WR-soil) and a wettable soil (W-soil). The change in SWR and infiltration was assessed by the water repellency index and cumulative infiltration respectively. F. proliferatum decreased the SWR on WR-soil and slightly increased SWR in W-soil, while Alternaria sp. increased SWR in both the W-soil and the WR-soil. Conversely T. harzianum increased the SWR in the W-soil and decreased the SWR in the WR-soil. All strains showed a decrease in infiltration in W-soil, while only the F. proliferatum and T. harzianum strain showed improvement in infiltration in the WR-soil. The ability of fungi to alter the SWR and enmesh soil particles results in changes to the infiltration dynamics in soil. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Soil-Web: An online soil survey for California, Arizona, and Nevada

    Science.gov (United States)

    Beaudette, D. E.; O'Geen, A. T.

    2009-10-01

    Digital soil survey products represent one of the largest and most comprehensive inventories of soils information currently available. The complex structure of these databases, intensive use of codes and scientific jargon make it difficult for non-specialists to utilize digital soil survey resources. A project was initiated to construct a web-based interface to digital soil survey products (STATSGO and SSURGO) for California, Arizona, and Nevada that would be accessible to the general public. A collection of mature, open source applications (including Mapserver, PostGIS and Apache Web Server) were used as a framework to support data storage, querying, map composition, data presentation, and contextual links to related materials. Application logic was written in the PHP language to "glue" together the many components of an online soil survey. A comprehensive website ( http://casoilresource.lawr.ucdavis.edu/map) was created to facilitate access to digital soil survey databases through several interfaces including: interactive map, Google Earth and HTTP-based application programming interface (API). Each soil polygon is linked to a map unit summary page, which includes links to soil component summary pages. The most commonly used soil properties, land interpretations and ratings are presented. Graphical and tabular summaries of soil profile information are dynamically created, and aid with rapid assessment of key soil properties. Quick links to official series descriptions (OSD) and other such information are presented. All terminology is linked back to the USDA-NRCS Soil Survey Handbook which contains extended definitions. The Google Earth interface to Soil-Web can be used to explore soils information in three dimensions. A flexible web API was implemented to allow advanced users of soils information to access our website via simple web page requests. Soil-Web has been successfully used in soil science curriculum, outreach activities, and current research projects

  6. Socio-economic modifications of the Universal Soil Loss Equation

    Science.gov (United States)

    Erol, A.; Koşkan, Ö.; Başaran, M. A.

    2015-06-01

    While social scientists have long focused on socio-economic and demographic factors, physical modelers typically study soil loss using physical factors. In the current environment, it is becoming increasingly important to consider both approaches simultaneously for the conservation of soil and water, and the improvement of land use conditions. This study uses physical and socio-economic factors to find a coefficient that evaluates the combination of these factors. It aims to determine the effect of socio-economic factors on soil loss and, in turn, to modify the Universal Soil Loss Equation (USLE). The methodology employed in this study specifies that soil loss can be calculated and predicted by comparing the degree of soil loss in watersheds, with and without human influence, given the same overall conditions. A coefficient for socio-economic factors, therefore, has been determined based on adjoining watersheds (WS I and II), employing simulation methods. Combinations of C and P factors were used in the USLE to find the impact of their contributions on soil loss. The results revealed that these combinations provided good estimation of soil loss amounts for the second watershed, i.e. WS II, from the adjoining watersheds studied in this work. This study shows that a coefficient of 0.008 modified the USLE to reflect the socio-economic factors as settlement influencing the amount of soil loss in the watersheds studied.

  7. Effects of natural and synthetic soil conditioners on soil moisture ...

    African Journals Online (AJOL)

    The efficacy of a natural soil conditioner, Coco-Peat (C-P), and synthetic soil conditioners, Terawet (T-200) and Teraflow (T-F), in improving soil moisture content were examined on five Ghanaian soil series (Akroso, Akuse, Amo, Hake and Oyarifa). In general, the water retention of T-200 and C-P treated soils were similar ...

  8. Variability of the soil-to-plant radiocaesium transfer factor for Japanese soils predicted with soil and plant properties.

    Science.gov (United States)

    Uematsu, Shinichiro; Vandenhove, Hildegarde; Sweeck, Lieve; Van Hees, May; Wannijn, Jean; Smolders, Erik

    2016-03-01

    Food chain contamination with radiocaesium (RCs) in the aftermath of the Fukushima accident calls for an analysis of the specific factors that control the RCs transfer. Here, soil-to-plant transfer factors (TF) of RCs for grass were predicted from the potassium concentration in soil solution (mK) and the Radiocaesium Interception Potential (RIP) of the soil using existing mechanistic models. The mK and RIP were (a) either measured for 37 topsoils collected from the Fukushima accident affected area or (b) predicted from the soil clay content and the soil exchangeable potassium content using the models that had been calibrated for European soils. An average ammonium concentration was used throughout in the prediction. The measured RIP ranged 14-fold and measured mK varied 37-fold among the soils. The measured RIP was lower than the RIP predicted from the soil clay content likely due to the lower content of weathered micas in the clay fraction of Japanese soils. Also the measured mK was lower than that predicted. As a result, the predicted TFs relying on the measured RIP and mK were, on average, about 22-fold larger than the TFs predicted using the European calibrated models. The geometric mean of the measured TFs for grass in the affected area (N = 82) was in the middle of both. The TFs were poorly related to soil classification classes, likely because soil fertility (mK) was obscuring the effects of the soil classification related to the soil mineralogy (RIP). This study suggests that, on average, Japanese soils are more vulnerable than European soils at equal soil clay and exchangeable K content. The affected regions will be targeted for refined model validation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Spatiotemporal Dynamics of Soil Penetration Resistance of Recultivated Soil

    Directory of Open Access Journals (Sweden)

    Zadorozhnaya Galina

    2018-03-01

    Full Text Available This article examines changes in the spatial distribution of soil penetration resistance in ordinary chernozem (Calcic Chernozem and in the recultivated soil in 2012 and 2014. The measurements were carried out in the field using an Eijkelkamp penetrometer on a regular grid. The depth of measurement was 50 cm, the interval was 5 cm. The indices of variation of soil penetration resistance in space and time have been determined. The degree of spatial dependence of soil penetration resistance has been determined layer by layer. The nature of temporal dynamics of soil penetration resistance of chernozem and technical soil has been described. A significant positive relationship of the structure of chernozem in the two years of the research has been shown. Significant correlations between the data of different years in the technical soil were found to be mostly negative.

  10. Complex linkage between soil, soil water, atmosphere and Eucalyptus Plantations

    Science.gov (United States)

    Shukla, C.; Tiwari, K. N.

    2017-12-01

    Eucalyptus is most widely planted genus grown in waste land of eastern region of India to meet the pulp industry requirements. Sustainability of these plantations is of concern because in spite of higher demand water and nutrients of plantations, they are mostly planted on low-fertility soils. This study has been conducted to quantify effect of 25 years old, a fully established eucalyptus plantations on i.) Alteration in physico-chemical and hydrological properties of soil of eucalyptus plantation in comparison to soil of natural grassland and ii.) Spatio-temporal variation in soil moisture under eucalyptus plantations. Soil physico-chemical properties of two adjacent plots covered with eucatuptus and natural grasses were analyzed for three consecutive depths (i.e. 0-30 cm, 30-60 cm and 60-90 cm) with five replications in each plot. Soil infiltration rate and saturated hydraulic conductivity (Ks) were measured in-situ to incorporate the influence of macro porosity caused due to roots of plantations. Daily soil moisture at an interval of 10 cm upto 160 cm depth with 3 replications and Leaf Area Index (LAI) at an interval of 15 days with 5 replications were recorded over the year. Significant variations found at level of 0.05 between soil properties of eucalyptus and natural grass land confirm the effect of plantations on soil properties. Comparative results of soil properties show significant alteration in soil texture such as percent of sand, organic matter and Ks found more by 20%, 9% and 22% respectively in eucalyptus plot as compare to natural grass land. Available soil moisture (ASM) was found constantly minimum in top soil excluding rainy season indicate upward movement of water and nutrients during dry season. Seasonal variation in temperature (T), relative humidity (RH) and leaf area index (LAI) influenced the soil moisture extraction phenomenon. This study clearly stated the impact of long term establishment of eucalyptus plantations make considerable

  11. Derivation of Soil Ecological Criteria for Copper in Chinese Soils.

    Science.gov (United States)

    Wang, Xiaoqing; Wei, Dongpu; Ma, Yibing; McLaughlin, Mike J

    2015-01-01

    Considerable information on copper (Cu) ecotoxicity as affected by biological species and abiotic properties of soils has been collected from the last decade in the present study. The information on bioavailability/ecotoxicity, species sensitivity and differences in laboratory and field ecotoxicity of Cu in different soils was collated and integrated to derive soil ecological criteria for Cu in Chinese soils, which were expressed as predicted no effect concentrations (PNEC). First, all ecotoxicity data of Cu from bioassays based on Chinese soils were collected and screened with given criteria to compile a database. Second, the compiled data were corrected with leaching and aging factors to minimize the differences between laboratory and field conditions. Before Cu ecotoxicity data were entered into a species sensitivity distribution (SSD), they were normalized with Cu ecotoxicity predictive models to modify the effects of soil properties on Cu ecotoxicity. The PNEC value was set equal to the hazardous concentration for x% of the species (HCx), which could be calculated from the SSD curves, without an additional assessment factor. Finally, predictive models for HCx based on soil properties were developed. The soil properties had a significant effect on the magnitude of HCx, with HC5 varying from 13.1 mg/kg in acidic soils to 51.9 mg/kg in alkaline non-calcareous soils. The two-factor predictive models based on soil pH and cation exchange capacity could predict HCx with determination coefficients (R2) of 0.82-0.91. The three-factor predictive models--that took into account the effect of soil organic carbon--were more accurate than two-factor models, with R2 of 0.85-0.99. The predictive models obtained here could be used to calculate soil-specific criteria. All results obtained here could provide a scientific basis for revision of current Chinese soil environmental quality standards, and the approach adopted in this study could be used as a pragmatic framework for

  12. Courses for "Soil Practitioner" and other measures for raising soil awareness

    Science.gov (United States)

    Hartl, Wilfried

    2014-05-01

    Today, unfortunately, little use is made of the findings of rhizosphere research in practice. Therefore the author, together with the organic farmers` associations Distelverein and Bio Austria, developed the education programme "Soil Practitioner" for organic farmers. The 9-days` course focuses on the topics nutrient dynamics in soil, plant-root interactions, soil management, humus management and practical evaluation of soil functions. A second series of courses developed by Bio Forschung Austria aims at improving organic matter management on farm level. In order to enable the farmers to estimate if the humus content of their fields is increasing or decreasing, they are familiarized with the humus balancing method. In a second step, humus balances of farmers' fields are calculated and the results are discussed together. Another activity to raise soil awareness is the "Mobile Soil Laboratory", which is presented at various events. The soil functions are demonstrated to the public using special exhibits, which illustrate for example infiltration rate in soils with and without earthworms, or water holding capacity of soils with and without earthworms or erosion intensity on soil blocks from adjacent plots which had been cultivated with different crop rotations. The habitat function of soil is illustrated with portable rhizotrons, which show the ability of plants to root surprisingly deep and to penetrate compacted soil layers. Another exhibit shows a habitat preference test between differently fertilized soils with earthworms as indicator organisms. In the "Mobile Soil Laboratory", visitors are also invited to watch live soil animals through the binocular microscope. They are supplied with information on the soil animals` habitat and behaviour and on how agriculture benefits from biologically active soil. And last but not least, the "Root Demonstration Arena" at our institute features a 3-m-deep excavation lined with large viewing windows into the soil profile, where

  13. Soil washing results for mixed waste pond soils at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.; Freeman, H.D.; Baker, E.G.; Riemath, W.F.

    1991-01-01

    Soil washing technology was assessed as a means for remediating soil contaminated with mixed wastes primarily composed of heavy metals and radionuclides. The soils at the US Department of Energy's Hanford Site are considered suitable for soil washing because of their relatively low quantities of silt and clay. However, in a limited number of soil washing experiments using soils from different locations in the north pond of the 300 Area, the degree of decontamination achieved for the coarse fraction of the soil varied considerably. Part of this variation appears to be due to the presence of a discrete layer of contaminated sediment found in some of the samples

  14. Validation of site-specific soil Ni toxicity thresholds with independent ecotoxicity and biogeochemistry data for elevated soil Ni.

    Science.gov (United States)

    Hale, Beverley; Gopalapillai, Yamini; Pellegrino, Amanda; Jennett, Tyson; Kikkert, Julie; Lau, Wilson; Schlekat, Christian; McLaughlin, Mike J

    2017-12-01

    The Existing Substances Regulation Risk Assessments by the European Union (EU RA) generated new toxicity data for soil organisms exposed to Ni added to sixteen field-collected soils with low background concentration of metals and varying physico-chemical soil characteristics. Using only effective cation exchange capacity (eCEC) as a bioavailability correction, chronic toxicity of Ni in soils with a wide range of characteristics could be predicted within a factor of two. The objective of the present study was to determine whether this was also the case for three independent data sets of Ni toxicity thresholds. Two of the data sets were from Community Based Risk Assessments in Port Colborne ON, and Sudbury ON (Canada) for soils containing elevated concentrations of Ni, Co and Cu arising from many decades of Ni mining, smelting and refining. The third data set was the Metals in Asia study of soluble Ni added to field soils in China. These data yielded 72 leached and aged EC 10 /NOEC values for soil Ni, for arthropods, higher plants and woodlot structure and function. These were reduced to nine most sensitive single or geometric mean species/function endpoints, none of which were lower than the HC 5 predicted for a soil with an eCEC of 20 cmol/kg. Most of these leached and aged EC 10 /NOEC values were from soils co-contaminated with Cu, in some cases at its median HC 5 as predicted by the EU RA from soil characteristics. We conclude that the EU RA is protective of Ni toxicity to higher-tier ecological endpoints, including in mixture with Cu, before the assessment factor of 2 is applied. We suggest that for prospective risk assessment, the bioavailability based PNEC (HC 5 /2) be used as a conservative screen, but for retrospective and site-specific risk assessment, the bioavailability based HC 5 is sufficient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of rainfall infiltration into unsaturated soil using soil column

    Science.gov (United States)

    Ibrahim, A.; Mukhlisin, M.; Jaafar, O.

    2018-02-01

    Rainfall especially in tropical region caused infiltration to the soil slope. The infiltration may change pore water pressure or matric suction of the soil. The event of rainfall infiltration into soil is a complex mechanism. Therefore, the main objectives of this research paper is to study the influence of rainfall intensity and duration that changed pore water pressure to soil. There are two types of soils used in this study; forest soil and kaolin. Soil column apparatus is used for experiments. Rainfall were applied to the soil and result for 3, 6, 12, 24, 72, 120 and 168 hours were retrieved. Result shows that for the both types of soil, the negative pore water pressures were increased during wetting process and gradually decreased towards drying process. The results also show that pore water pressure at top part was increased greatly as the wetting process started compared to the middle and bottom part of the column.

  16. Metals in European roadside soils and soil solution--a review.

    Science.gov (United States)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-06-01

    This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Describing Soils: Calibration Tool for Teaching Soil Rupture Resistance

    Science.gov (United States)

    Seybold, C. A.; Harms, D. S.; Grossman, R. B.

    2009-01-01

    Rupture resistance is a measure of the strength of a soil to withstand an applied stress or resist deformation. In soil survey, during routine soil descriptions, rupture resistance is described for each horizon or layer in the soil profile. The lower portion of the rupture resistance classes are assigned based on rupture between thumb and…

  18. Soil Plasticity Model for Analysis of Collapse Load on Layers Soil

    Directory of Open Access Journals (Sweden)

    Md Nujid Masyitah

    2016-01-01

    Full Text Available Natural soil consist of soil deposits which is a soil layer overlying a thick stratum of another soil. The bearing capacity of layered soil studies have been conducted using different approach whether theoretical, experimental and combination of both. Numerical method in computer programme has become a powerful tool in solving complex geotechnical problems. Thus in numerical modelling, stress-strain soil behaviour is well predicted, design and interpreted using appropriate soil model. It is also important to identify parameters and soil model involve in prediction real soil problem. The sand layer overlaid clay layer soil is modelled with Mohr-Coulomb and Drucker-Prager criterion. The bearing capacity in loaddisplacement analysis from COMSOL Multiphysics is obtained and presented. In addition the stress distribution and evolution of plastic strain for each thickness ratio below centre of footing are investigated. The results indicate the linear relation on load-displacement which have similar trend for both soil models while stress and plastic strain increase as thickness ratio increase.

  19. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils.

    Science.gov (United States)

    Uematsu, Shinichiro; Smolders, Erik; Sweeck, Lieve; Wannijn, Jean; Van Hees, May; Vandenhove, Hildegarde

    2015-08-15

    The high variability of the soil-to-plant transfer factor of radiocaesium (RCs) compels a detailed analysis of the radiocaesium interception potential (RIP) of soil, which is one of the specific factors ruling the RCs transfer. The range of the RIP values for agricultural soils in the Fukushima accident affected area has not yet been fully surveyed. Here, the RIP and other major soil chemical properties were characterised for 51 representative topsoils collected in the vicinity of the Fukushima contaminated area. The RIP ranged a factor of 50 among the soils and RIP values were lower for Andosols compared to other soils, suggesting a role of soil mineralogy. Correlation analysis revealed that the RIP was most strongly and negatively correlated to soil organic matter content and oxalate extractable aluminium. The RIP correlated weakly but positively to soil clay content. The slope of the correlation between RIP and clay content showed that the RIP per unit clay was only 4.8 mmol g(-1) clay, about threefold lower than that for clays of European soils, suggesting more amorphous minerals and less micaceous minerals in the clay fraction of Japanese soils. The negative correlation between RIP and soil organic matter may indicate that organic matter can mask highly selective sorption sites to RCs. Multiple regression analysis with soil organic matter and cation exchange capacity explained the soil RIP (R(2)=0.64), allowing us to map soil RIP based on existing soil map information. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Spatial patterns of soil organic carbon stocks in Estonian arable soils

    Science.gov (United States)

    Suuster, Elsa; Astover, Alar; Kõlli, Raimo; Roostalu, Hugo; Reintam, Endla; Penu, Priit

    2010-05-01

    Soil organic carbon (SOC) determines ecosystem functions, influencing soil fertility, soil physical, chemical and biological properties and crop productivity. Therefore the spatial pattern of SOC stocks and its appropriate management is important at various scales. Due to climate change and the contribution of carbon store in the soils, the national estimates of soil carbon stocks should be determined. Estonian soils have been well studied and mapped at a scale 1:10,000. Previous studies have estimated SOC stocks based on combinations of large groups of Estonian soils and the mean values of the soil profile database, but were not embedded into the geo-referenced databases. These studies have estimated SOC stocks of Estonian arable soils 122.3 Tg. Despite of available soil maps and databases, this information is still very poorly used for spatial soil modelling. The aim of current study is to assess and model spatial pattern of SOC stocks of arable soils on a pilot area Tartu County (area 3089 sq km). Estonian digital soil map and soil monitoring databases are providing a good opportunity to assess SOC stocks at various scales. The qualitative nature of the initial data from a soil map prohibits any straightforward use in modelling. Thus we have used several databases to construct models and linkages between soil properties that can be integrated into soil map. First step was to reorganize the soil map database (44,046 mapping units) so it can be used as an input to modelling. Arable areas were distinguished by a field layer of Agricultural Registers and Information Board, which provides precise information of current land use as it is the basis of paying CAP subsidies. The estimates of SOC content were found by using the arable land evaluation database of Tartu from the Estonian Land Board (comprising 950 sq km and 31,226 fields), where each soil type was assessed separately and average SOC content grouped by texture was derived. SOC content of epipedon varies in