WorldWideScience

Sample records for soft x-ray reflectivity

  1. Reflection of femtosecond pulses from soft X-ray free-electron laser by periodical multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, D.; Grigorian, S.; Pietsch, U. [Faculty of Physics, University of Siegen (Germany); Hendel, S.; Bienert, F.; Sacher, M.D.; Heinzmann, U. [Faculty of Physics, University of Bielefeld (Germany)

    2009-08-15

    Recent experiments on a soft X-ray free-electron laser (FEL) source (FLASH in Hamburg) have shown that multilayers (MLs) can be used as optical elements for highly intense X-ray irradiation. An effort to find most appropriate MLs has to consider the femtosecond time structure and the particular photon energy of the FEL. In this paper we have analysed the time response of 'low absorbing' MLs (e.g. such as La/B{sub 4}C) as a function of the number of periods. Interaction of a pulse train of Gaussian shaped sub-pulses using a realistic ML grown by electron-beam evaporation technique has been analysed in the soft-X-ray range. The structural parameters of the MLs were obtained by reflectivity measurements at BESSY II and subsequent profile fittings. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. RASOR: an advanced instrument for soft x-ray reflectivity and diffraction.

    Science.gov (United States)

    Beale, T A W; Hase, T P A; Iida, T; Endo, K; Steadman, P; Marshall, A R; Dhesi, S S; van der Laan, G; Hatton, P D

    2010-07-01

    We report the design and construction of a novel soft x-ray diffractometer installed at Diamond Light Source. The beamline endstation RASOR is constructed for general users and designed primarily for the study of single crystal diffraction and thin film reflectivity. The instrument is comprised of a limited three circle (theta, 2theta, and chi) diffractometer with an additional removable rotation (phi) stage. It is equipped with a liquid helium cryostat, and post-scatter polarization analysis. Motorized motions are provided for the precise positioning of the sample onto the diffractometer center of rotation, and for positioning the center of rotation onto the x-ray beam. The functions of the instrument have been tested at Diamond Light Source, and initial test measurements are provided, demonstrating the potential of the instrument.

  3. Study of Cr/Sc-based multilayer reflecting mirrors using soft x-ray reflectivity and standing wave-enhanced x-ray fluorescence

    Science.gov (United States)

    Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe

    2017-11-01

    We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.

  4. Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy

    Science.gov (United States)

    Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony

    The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.

  5. STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES

    International Nuclear Information System (INIS)

    Steiner, James F.; Remillard, Ronald A.; García, Javier A.; McClintock, Jeffrey E.

    2016-01-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe–K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe–K line, namely, the Compton power law. We find that reflection is several times more pronounced (∼3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  6. STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, James F.; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139 (United States); García, Javier A.; McClintock, Jeffrey E., E-mail: jsteiner@mit.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-10-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe–K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe–K line, namely, the Compton power law. We find that reflection is several times more pronounced (∼3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  7. High Reflectance Nanoscale V/Sc Multilayer for Soft X-ray Water Window Region.

    Science.gov (United States)

    Huang, Qiushi; Yi, Qiang; Cao, Zhaodong; Qi, Runze; Loch, Rolf A; Jonnard, Philippe; Wu, Meiyi; Giglia, Angelo; Li, Wenbin; Louis, Eric; Bijkerk, Fred; Zhang, Zhong; Wang, Zhanshan

    2017-10-10

    V/Sc multilayer is experimentally demonstrated for the first time as a high reflectance mirror for the soft X-ray water window region. It primarily works at above the Sc-L edge (λ = 3.11 nm) under near normal incidence while a second peak appears at above the V-L edge (λ = 2.42 nm) under grazing incidence. The V/Sc multilayer fabricated with a d-spacing of 1.59 nm and 30 bilayers has a smaller interface width (σ = 0.27 and 0.32 nm) than the conventional used Cr/Sc (σ = 0.28 and 0.47 nm). For V/Sc multilayer with 30 bilayers, the introduction of B 4 C barrier layers has little improvement on the interface structure. As the number of bilayers increasing to 400, the growth morphology and microstructure of the V/Sc layers evolves with slightly increased crystallization. Nevertheless, the surface roughness remains to be 0.25 nm. A maximum soft X-ray reflectance of 18.4% is measured at λ = 3.129 nm at 9° off-normal incidence using the 400-bilayers V/Sc multilayer. According to the fitted model, an s-polarization reflectance of 5.2% can also be expected at λ = 2.425 nm under 40° incidence. Based on the promising experimental results, further improvement of the reflectance can be achieved by using a more stable deposition system, exploring different interface engineering methods and so on.

  8. Soft X-ray reflectivity: from quasi-perfect mirrors to accelerator walls

    CERN Document Server

    Schäfers, F.

    2013-04-22

    Reflection of light from surfaces is a very common, but complex phenomenon not only in science and technology, but in every day life. The underlying basic optical principles have been developed within the last five centuries using visible light available from the sun or other laboratory light sources. X-rays were detected in 1895, and the full potential of soft- and hard-x ray radiation as a probe for the electronic and geometric properties of matter, for material analysis and its characterisation is available only since the advent of synchrotron radiation sources some 50 years ago. On the other hand high-brilliance and high power synchrotron radiation of present-days 3rd and 4th generation light sources is not always beneficial. Highenergy machines and accelerator-based light sources can suffer from a serious performance drop or limitations due to interaction of the synchrotron radiation with the accelerator walls, thus producing clouds of photoelectrons (e-cloud) which in turn interact with the accelerated ...

  9. Higher order structure analysis of nano-materials by spectral reflectance of laser-plasma soft x-ray

    International Nuclear Information System (INIS)

    Azuma, Hirozumi; Takeichi, Akihiro; Noda, Shoji

    1995-01-01

    We have proposed a new experimental arrangement to measure spectral reflectance of nano-materials for analyzing higher order structure with laser-plasma soft x-rays. Structure modification of annealed Mo/Si multilayers and a nylon-6/clay hybrid with poor periodicity was investigated. The measurement of the spectral reflectance of soft x-rays from laser-produced plasma was found to be a useful method for the structure analysis of nano-materials, especially those of rather poor periodicity

  10. Soft x-ray lasers

    International Nuclear Information System (INIS)

    Matthews, D.L.; Rosen, M.D.

    1988-01-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs

  11. Low energy (soft) x rays

    International Nuclear Information System (INIS)

    Hoshi, Masaharu; Antoku, Shigetoshi; Russell, W.J.; Miller, R.C.; Nakamura, Nori; Mizuno, Masayoshi; Nishio, Shoji.

    1987-05-01

    Dosimetry of low-energy (soft) X rays produced by the SOFTEX Model CMBW-2 was performed using Nuclear Associates Type 30 - 330 PTW, Exradin Type A2, and Shonka-Wyckoff ionization chambers with a Keithley Model 602 electrometer. Thermoluminescent (BeO chip) dosimeters were used with a Harshaw Detector 2000-A and Picoammeter-B readout system. Beam quality measurements were made using aluminum absorbers; exposure rates were assessed by the current of the X-ray tube and by exposure times. Dose distributions were established, and the average factors for non-uniformity were calculated. The means of obtaining accurate absorbed and exposed doses using these methods are discussed. Survival of V79 cells was assessed by irradiating them with soft X rays, 200 kVp X rays, and 60 Co gamma rays. The relative biological effectiveness (RBE) values for soft X rays with 0, 0.2, 0.7 mm added thicknesses of aluminum were 1.6, which were compared to 60 Co. The RBE of 200 kVp X rays relative to 60 Co was 1.3. Results of this study are available for reference in future RERF studies of cell survival. (author)

  12. Reflectivity around the gold L-edges of X-ray reector of the soft X-ray telescope onboard ASTRO-H

    DEFF Research Database (Denmark)

    Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho

    2017-01-01

    We report the atomic scattering factor in the 11.2-15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT)9 obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. I...

  13. A high-density relativistic reflection origin for the soft and hard X-ray excess emission from Mrk 1044

    Science.gov (United States)

    Mallick, L.; Alston, W. N.; Parker, M. L.; Fabian, A. C.; Pinto, C.; Dewangan, G. C.; Markowitz, A.; Gandhi, P.; Kembhavi, A. K.; Misra, R.

    2018-06-01

    We present the first results from a detailed spectral-timing analysis of a long (˜130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3-50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below ˜1.5 keV, iron Kα emission complex at ˜6 -7 keV and a `Compton hump' at ˜15 -30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ([2 - 6] × 10-5 Hz), the power-law continuum dominated 1.5-5 keV band lags behind the reflection dominated 0.3-1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ([1 - 2] × 10-4 Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk 1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.

  14. Characteristics of soft X-ray lens

    International Nuclear Information System (INIS)

    Qin Yi

    2007-12-01

    A soft X-lens was devised with waveguide X-ray optics of total external reflection (TER). The lens consists of a stack of 1 387 TER waveguides with inner diameter of 0.45 mm and outer diameter of 0.60 mm. With the help of plasma sources of soft X-ray radiation, high density of pure soft X-ray radiation (without plasma expansion fragments) with broad-band spectral range can be obtained at the focus of the lens. As laser-plasma is considered, the radiation density of 1.3 x 10 5 W/cm 2 is obtained, the transmission coefficient is 18.6%, the ratio of the density at the focus with and without the lens is 1000 and the radiation capture is 28.9 degree. The density of 0.5 TW/cm 2 can be obtained as far as Qiang-Guang I facility is considered. (authors)

  15. Soft x-ray Planetary Imager

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is to prototype a soft X-ray Imager for planetary applications that has the sensitivity to observe solar system sources of soft  X-ray emission. A strong...

  16. Transient soft X-ray sources

    International Nuclear Information System (INIS)

    Hayakawa, S.; Murakami, T.; Nagase, F.; Tanaka, Y.; Yamashita, K.

    1976-01-01

    A rocket observation of cosmic soft X-rays suggests the existence of transient, recurrent soft X-ray sources which are found variable during the flight time of the rocket. Some of the soft X-ray sources thus far reported are considered to be of this time. These sources are listed and their positions are shown. (Auth.)

  17. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au

    International Nuclear Information System (INIS)

    Capelli, R.; Koshmak, K.; Giglia, A.; Mukherjee, S.; Nannarone, S.; Mahne, N.; Doyle, B. P.; Pasquali, L.

    2016-01-01

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.

  18. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au

    Energy Technology Data Exchange (ETDEWEB)

    Capelli, R.; Koshmak, K.; Giglia, A.; Mukherjee, S.; Nannarone, S. [IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy); Mahne, N. [Elettra, s.s. 14, km 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy); Doyle, B. P. [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Pasquali, L., E-mail: luca.pasquali@unimore.it [IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy); Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Dipartimento di Ingegneria “Enzo Ferrari,” Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy)

    2016-07-14

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.

  19. Small scale soft x-ray lasers

    International Nuclear Information System (INIS)

    Skinner, C.H.; DiCicco, D.S.; Kim, D.; Voorhees, D.; Suckewer, S.

    1990-01-01

    The widespread application of soft x-ray laser technology is contingent on the development of small scale soft x-ray lasers that do not require large laser facilities. Progress in the development of soft x-ray lasers pumped by a Nd laser of energy 6-12J is reported below. Application of an existing soft x-ray laser to x-ray microscopy has begun. A soft x-ray laser of output energy 1-3 mJ at 18,2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. The authors present a composite optical x-ray laser microscope design

  20. Soft x-ray interferometry

    International Nuclear Information System (INIS)

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument's components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200 angstrom wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency

  1. Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems

    International Nuclear Information System (INIS)

    Howells, M.R.

    1986-04-01

    The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction

  2. Soft X-ray multilayers and filters

    CERN Document Server

    Wang Zhan Shan; Tang Wei Xing; Qin Shuji; Zhou Bing; Chen Ling Ya

    2002-01-01

    The periodic and non-periodic multilayers were designed by using a random number to change each layer and a suitable merit function. Ion beam sputtering and magnetron sputtering were used to fabricate various multilayers and beam splitters in soft X-ray range. The characterization of multilayers by small angle X-ray diffraction, Auger electron spectroscopy, Rutherford back scattering spectroscopy and reflectivity illustrated the multilayers had good structures and smooth interlayers. The reflectivity and transmission of a beam splitter is about 5%. The fabrication and transmission properties of Ag, Zr were studied. The Rutherford back scattering spectroscopy and auger electron spectroscopy were used to investigate the contents and distributions of impurities and influence on qualities of filters. The attenuation coefficients were corrected by the data obtained by measurements

  3. Applications of soft x-ray lasers

    International Nuclear Information System (INIS)

    Skinner, C.H.

    1993-01-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed

  4. High reflectance Cr/C multilayer at 250 eV for soft X-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Mingwu; Jiang, Li; Zhang, Zhong; Huang, Qiushi [MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering (IPOE), School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Wang, Zhanshan, E-mail: wangzs@tongji.edu.cn [MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering (IPOE), School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); She, Rui; Feng, Hua [Department of Engineering Physics, Tsinghua University, Beijing (China); Wang, Hongchang [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2015-10-01

    X-ray reflection near 45° via multilayer mirrors can be used for astronomical polarization measurements. A Cr/C multilayer mirror (designed for X-ray polarimetry at 250 eV), with a period thickness of 3.86 nm and a bi-layer number of 100, was fabricated using direct current magnetron sputtering. Grazing incidence X-ray reflectometry at 8 keV and transmission electron microscopy were used to investigate the multilayer structure. Different models were introduced to fit the hard X-ray reflectivity curve, which indicates that the layer thickness of two materials slightly drifts from the bottom to the top of the stack. Both the chromium and carbon layers are amorphous with asymmetric interfaces, while the Cr-on-C interface is slightly wider. Based on the good quality of the multilayer structure, a high reflectivity of 21.8% for the s-polarized light was obtained at 250 eV at a grazing incidence angle of 40.7°. The fabricated Cr/C multilayer mirror exhibits high reflectivity and polarization levels in the energy region of 240 eV–260 eV. - Highlights: • We fabricated Cr/C multilayer with 3.8 nm d-spacing. • X-ray reflectometry was used to determine the exact structure of Cr/C multilayer. • A high reflectivity of 21.8% for the s-polarized light was obtained at 250 eV. • Both Cr and C were found to be amorphous with slightly asymmetric interfaces. • A 4-layer model was used to fit and explain the results.

  5. Soft x rays for radiobiological studies

    International Nuclear Information System (INIS)

    Ban, Sadayuki; Iida, Shozo; Shimba, Hachiro; Awa, A.A.; Hamilton, H.B.; Clifton, K.H.

    1986-04-01

    Lethal effects and chromosome aberrations induced in cells exposed to low energy (soft) X rays demonstrated that these relatively low energy X rays are just as effective as those of higher energy for radiobiological studies, and even more effective for irradiating cultured mammalian cells than laboratory animals. (author)

  6. Evaluation of the soft x-ray reflectivity of micropore optics using anisotropic wet etching of silicon wafers.

    Science.gov (United States)

    Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Koshiishi, Masaki; Mita, Makoto; Maeda, Yoshitomo; Yamasaki, Noriko Y; Mitsuda, Kazuhisa; Shirata, Takayuki; Hayashi, Takayuki; Takano, Takayuki; Maeda, Ryutaro

    2010-02-20

    The x-ray reflectivity of an ultralightweight and low-cost x-ray optic using anisotropic wet etching of Si (110) wafers is evaluated at two energies, C K(alpha)0.28 keV and Al K(alpha)1.49 keV. The obtained reflectivities at both energies are not represented by a simple planar mirror model considering surface roughness. Hence, an geometrical occultation effect due to step structures upon the etched mirror surface is taken into account. Then, the reflectivities are represented by the theoretical model. The estimated surface roughness at C K(alpha) (approximately 6 nm rms) is significantly larger than approximately 1 nm at Al K(alpha). This can be explained by different coherent lengths at two energies.

  7. Evaluation of the soft x-ray reflectivity of micropore optics using anisotropic wet etching of silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Koshiishi, Masaki; Mita, Makoto; Maeda, Yoshitomo; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Shirata, Takayuki; Hayashi, Takayuki; Takano, Takayuki; Maeda, Ryutaro

    2010-02-20

    The x-ray reflectivity of an ultralightweight and low-cost x-ray optic using anisotropic wet etching of Si (110) wafers is evaluated at two energies, C K{alpha}0.28 keV and Al K{alpha}1.49 keV. The obtained reflectivities at both energies are not represented by a simple planar mirror model considering surface roughness. Hence, an geometrical occultation effect due to step structures upon the etched mirror surface is taken into account. Then, the reflectivities are represented by the theoretical model. The estimated surface roughness at C K{alpha} ({approx}6 nm rms) is significantly larger than {approx}1 nm at Al K{alpha}. This can be explained by different coherent lengths at two energies.

  8. 3D reconstruction of pentacene structural organization in top-contact OTFTs via resonant soft X-ray reflectivity

    Science.gov (United States)

    Capelli, Raffaella; Nardi, Marco Vittorio; Toccoli, Tullio; Verucchi, Roberto; Dinelli, Franco; Gelsomini, Carolina; Koshmak, Konstantin; Giglia, Angelo; Nannarone, Stefano; Pasquali, Luca

    2018-01-01

    Herein, we describe the use of soft X-ray reflectivity at the carbon K-edge to study the molecular organization (orientation, structure, and morphology) of pentacene active films in a top-contact transistor geometry. This technique is not affected by sample charging, and it can be applied in the case of insulating substrates. In addition, the sampling depth is not limited to the near-surface region, giving access to buried device interfaces (metal/organic and dielectric/organic). Spectral lineshape simulations, based on ab-initio calculations using a realistic 3D layer-by-layer model, allow us to unravel the details of the molecular organization in all the specific and crucial areas of the active film, overcoming the limitations of conventional approaches. The tilt angle of the long molecular axis in the whole film is found to progressively decrease with respect to the substrate normal from 25° to 0° with the increasing film thickness. A full vertical alignment, optimal for in-plane charge hopping, is reached only after the complete formation of the first five monolayers. Remarkably, starting from the first one in contact with the dielectric substrate, all the monolayers in the stack show a change in orientation with the increasing thickness. On the other hand, at the buried interface with a gold top-contact, the molecules assume a flat orientation that only propagates for two or three monolayers into the organic film. Top-contact devices with the highest performances can thus be obtained using films of at least ten monolayers. This explains the observed thickness dependence of charge mobility in pentacene transistors.

  9. Measuring device for soft X-rays

    International Nuclear Information System (INIS)

    Dissing, E.

    1978-09-01

    An instrument for the measurement of the absorbed energy per unit area of diagnostic X-rays in soft human tissue was developed. The instrument is intended for dosimetry applications in the field of dental and small skeleton radiography and for mammography. The detector assembly consists of a Polyvinyltoluene scintillator 2.54 diametre x 5.08 cm CsSb semitransparent head-on vacuum phototube. Polyvinyltoluene being a pure hydrocarbon may be considered a good representative material of human soft tissue concerning the absorption of X-rays. In the photon energy range of interest, 5 - 40 keV, the mass energy absorption coefficient for muscle tissue and for PVT differ about a factor 2 due to the considerable content of Oxygen in muscle tissue. This is to some extend reflected in the photon energy response characteristic for the instrument. For human adipose, the characteristic is practically flat from 5- 40 keV. The instrument is integrating the absorbed power per unit area and the digital display shows Joules/m 2 . The range for the instrument is from 000.1 μJ/m 2 to 19.99 J/m 2 (absorbed energy in 5 cm tissue). (author)

  10. Soft x-ray streak cameras

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1988-01-01

    This paper is a discussion of the development and of the current state of the art in picosecond soft x-ray streak camera technology. Accomplishments from a number of institutions are discussed. X-ray streak cameras vary from standard visible streak camera designs in the use of an x-ray transmitting window and an x-ray sensitive photocathode. The spectral sensitivity range of these instruments includes portions of the near UV and extends from the subkilovolt x- ray region to several tens of kilovolts. Attendant challenges encountered in the design and use of x-ray streak cameras include the accommodation of high-voltage and vacuum requirements, as well as manipulation of a photocathode structure which is often fragile. The x-ray transmitting window is generally too fragile to withstand atmospheric pressure, necessitating active vacuum pumping and a vacuum line of sight to the x-ray signal source. Because of the difficulty of manipulating x-ray beams with conventional optics, as is done with visible light, the size of the photocathode sensing area, access to the front of the tube, the ability to insert the streak tube into a vacuum chamber and the capability to trigger the sweep with very short internal delay times are issues uniquely relevant to x-ray streak camera use. The physics of electron imaging may place more stringent limitations on the temporal and spatial resolution obtainable with x-ray photocathodes than with the visible counterpart. Other issues which are common to the entire streak camera community also concern the x-ray streak camera users and manufacturers

  11. Soft x-ray tomography on TFTR

    International Nuclear Information System (INIS)

    Kuo-Petravic, G.

    1988-12-01

    The tomographic method used for deriving soft x-ray local emissivities on TFTR, using one horizontal array of 60 soft x-ray detectors, is described. This method, which is based on inversion of Fourier components and subsequent reconstruction, has been applied to the study of a sawtooth crash. A flattening in the soft x-ray profile, which we interpret as an m = 1 island, is clearly visible during the precursor phase and its location and width correlate well with those from electron temperature profiles reconstructed from electron cyclotron emission measurement. The limitations of the Fourier method, due notably to the aperiodic nature of the signals in the fast crash phase and the difficulty of obtaining accurately the higher Fourier harmonics, are discussed. 9 refs., 13 figs

  12. A compact scanning soft X-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.

    1989-01-01

    Soft x-ray microscopes operating at wavelengths between 2.3 nm and 4.4 nm are capable of imaging wet biological cells with a resolution many times that of a visible light microscope. Several such soft x-ray microscopes have been constructed. However, with the exception of contact microscopes, all use synchrotrons as the source of soft x-ray radiation and Fresnel zone plates as the focusing optics. These synchrotron based microscopes are very successful but have the disadvantage of limited access. This dissertation reviews the construction and performance of a compact scanning soft x-ray microscope whose size and accessibility is comparable to that of an electron microscope. The microscope uses a high-brightness laser-produced plasma as the soft x-ray source and normal incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 -10 5 s -1 when operated with only 170 mW of average laser power. The complete system, including the laser, fits on a single 4' x 8' optical table. The significant components of the compact microscope are the laser-produced plasma (LPP) source, the multilayer coatings, and the Schwarzschild objective. These components are reviewed, both with regard to their particular use in the current microscope and with regard to extending the microscope performance to higher resolution, higher speed, and operation at shorter wavelengths. Measurements of soft x-ray emission and debris emission from our present LPP source are presented and considerations given for an optimal LPP source. The LPP source was also used as a broadband soft x-ray source for measurement of normal incidence multilayer mirror reflectance in the 10-25 nm spectral region

  13. Tunable Soft X-Ray Oscillators

    International Nuclear Information System (INIS)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X.-W.; Fawley, William M.; Reinsch, Matthia; Penn, Gregory; Kim, K.-J.; Lindberg, Ryan; Zholents, Alexander

    2010-01-01

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  14. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  15. X-ray scattering of soft matter

    International Nuclear Information System (INIS)

    Stribeck, N.

    2007-01-01

    This coherently written volume summarizes the analytical power of modern X-ray scattering in the field of soft matter. Applications of X-ray scattering to soft matter have advanced considerably within recent years, both conceptually and technically. There are now mature high-power X-ray sources, synchrotrons and rotating anodes, as well as high-speed detectors, which have become readily available and which make the whole process more viable. High-quality time-resolved experiments on polymer structure can now be performed with ease, a major advancement due to the genuine power of the scattering method. This manual is a detailed description of simple tools that can elucidate the mechanisms of structure evolution in the studied materials. It is also a step-by-step guide to more advanced methods of the latest X-ray scattering techniques, and breaks down these methods. Data analysis based on clear, unequivocal results is rendered simple and straightforward - with a stress on the careful planning of experiments and adequate recording of all required data. This book, then, serves as a useful ready-reference guide. It has been written for the modern scientist who is a generalist and needs a concise reference, and demonstrates typical errors in data evaluation. (orig.)

  16. X-ray reflectivity and surface roughness

    International Nuclear Information System (INIS)

    Ocko, B.M.

    1988-01-01

    Since the advent of high brightness synchrotron radiation sources there has been a phenomenal growth in the use of x-rays as a probe of surface structure. The technique of x-ray reflectivity is particularly relevant to electrochemists since it is capable of probing the structure normal to an electrode surface in situ. In this paper the theoretical framework for x-ray reflectivity is reviewed and the results from previous non-electrochemistry measurements are summarized. These measurements are from the liquid/air interface (CCl 4 ), the metal crystal vacuum interface (Au(100)), and from the liquid/solid interface(liquid crystal/silicon). 34 refs., 5 figs

  17. Correlation of measured neon soft X-ray pulses of the INTI plasma focus with the reflected shock phase at 12KV

    International Nuclear Information System (INIS)

    Roy, Federico A. Jr; Chong, Perk Lin; Saw, S.H.

    2014-01-01

    The six-phase Lee Model Code is used to fit the computed current waveform to the measured waveform of the INTI Plasma Focus (PF;2.2 kJ at 12 kV), a T2 PF device, operated as a source of Neon soft X-ray (SXR) with optimum yield around 2.5 - 3 Torr of neon. The characteristic He-like and H-like neon line SXR pulse is measured using a pair of SXR detectors with selected filters that, by subtraction, have a photon energy window of 900 to 1550 eV covering the region of the characteristic neon SXR lines. The aim of this paper is to investigate the correlation between the time histories of the measured Neon soft X-ray pulse and the reflected shock phase of the computed current waveform which has been fitted to the measured current waveform. Results shows that the characteristic neon SXR measured at 3.17 J with a pulse duration of 249 ns starts typically after the radial inward shock phase and increases in magnitude few ns before the pinch phase. It tails unto the first anomalous resistance, and decays at the second anomalous resistance. (author)

  18. Soft X-ray focusing Telescope aboard AstroSat

    DEFF Research Database (Denmark)

    Singh, K. P.; Dewangan, G. C.; Chandra, S.

    2017-01-01

    The Soft X-ray focusing Telescope (SXT) is a moderateresolution X-ray imaging spectrometer supplementing the ultraviolet and hard X-ray payloads for broadband studies of cosmic sources with AstroSat. Well suited for observing bright X-ray sources, SXT observations of nearby active galactic nuclei...

  19. Ultimate capabilities of soft x-ray optics

    International Nuclear Information System (INIS)

    Vinogradov, A.V.; Zorev, N.N.; Kozhevnikov, I.V.

    1988-01-01

    Nonimaging soft X-ray optics is examined. The ultimate capabilities of a number of X-ray optical components designed for concentration and collimation of radiation from point sources are determined. The applications of X-ray optics are discussed together with the properties of materials in the X-ray range

  20. X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

    International Nuclear Information System (INIS)

    Ikeda, Kenichi; Kotaki, Hideyuki; Nakajima, Kazuhisa

    2002-01-01

    We have developed laser-produced plasma X-ray sources using femtosecond laser pulses at 10Hz repetition rate in a table-top size in order to investigate basic mechanism of X-ray emission from laser-matter interactions and its application to a X-ray microscope. In a soft X-ray region over 5 nm wavelength, laser-plasma X-ray emission from a solid target achieved an intense flux of photons of the order of 1011 photons/rad per pulse with duration of a few 100 ps, which is intense enough to make a clear imaging in a short time exposure. As an application of laser-produced plasma X-ray source, we have developed a soft X-ray imaging microscope operating in the wavelength range around 14 nm. The microscope consists of a cylindrically ellipsoidal condenser mirror and a Schwarzshird objective mirror with highly-reflective multilayers. We report preliminary results of performance tests of the soft X-ray imaging microscope with a compact laser-produced plasma X-ray source

  1. The soft x-ray transform

    International Nuclear Information System (INIS)

    Klukowska, Joanna; Herman, Gabor T; Otón, Joaquin; Marabini, Roberto; Carazo, José-María

    2014-01-01

    Several new forward models are introduced as mathematical formalizations of the processes that take place during image formation in transmission soft x-ray microscopy, which has the unique capability of imaging whole cells in their native environment with high resolution. Mathematical solutions of some of the associated inverse problems are provided by deriving closed-form formulas specifying the inverse transforms. Numerical experimental results are presented to demonstrate how the inverse transforms can be used to improve the reconstructions computed from data acquired according to the forward models. (paper)

  2. Lasers, extreme UV and soft X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  3. Beam line for experiments with coherent soft x-rays

    International Nuclear Information System (INIS)

    Howells, M.R.; Kirz, J.; Krinsky, S.

    1982-12-01

    The advantages of coherent soft x-rays for three-dimensional imaging of biological specimens are discussed, the x-ray source requirements are described, and the general design of the beam line and its optical system are given

  4. Soft X-ray resonant scattering from magnetic heterostructures

    International Nuclear Information System (INIS)

    Grabis, J.

    2005-01-01

    Heterogenous magnetic multilayers are of great interest both because of their relevance for technological applications and since they provide model systems to understand magnetic behavior and interactions. Soft x-ray resonant magnetic scattering (XRMS) allows to determine element-specific and depth-resolving information of the local magnetic order of such systems. Within the framework of the present thesis the diffractometer ALICE for soft XRMS has been constructed. XRMS measurements of two different physical systems are presented in this thesis: The antiferromagnetic and ferromagnetic order in interlayer exchange-coupled Fe/Cr(001) superlattices are studied as a function of the applied field by measuring the reflected intensity at different positions in reciprocal space. Thin films and multilayers of the Heusler compound Co 2 MnGe are studied by means of soft x-ray absorption spectroscopy, magnetic circular dichroism and resonant magnetic scattering

  5. Synchrotron radiation calibration for soft X-ray detector

    International Nuclear Information System (INIS)

    Ning, Jiamin; Guo, Cun; Xu, Rongkun; Jiang, Shilun; Xu, Zeping; Chen, Jinchuan; Xia, Guangxin; Xue, Feibiao; Qin, Yi

    2009-04-01

    The calibration experiments were carried out to X-ray film, scintillator and transmission grating by employing the soft X-ray station at 3W1B beam-line in Beijing synchrotron Radiation Facility. The experiments presented the black intensity curve and energy response curve of soft X-ray film. And the experimental results can be used in diagnosis of X-ray radiation characterization of Z-pinch, such as in the measurement of soft X-ray Power Meter, grating spectrometer, pinhole camera and one-dimension imaging system which can ensure precision of Z-pinch results. (authors)

  6. Submicron, soft x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    La Fontaine, B.; MacDowell, A.A.; Tan, Z.; White, D.L.; Taylor, G.N.; Wood, O.R. II; Bjorkholm, J.E.; Tennant, D.M.; Hulbert, S.L.

    1995-01-01

    Submicron fluorescence imaging of soft x-ray aerial images, using a high resolution fluorescent crystal is reported. Features as small as 0.1 μm were observed using a commercially available single-crystal phosphor, STI-F10G (Star Tech Instruments Inc. P. O. Box 2536, Danbury, CT 06813-2536), excited with 139 A light. Its quantum efficiency was estimated to be 5--10 times that of sodium salicylate and to be constant over a broad spectral range from 30 to 400 A. A comparison with a terbium-activated yttrium orthosilicate fluorescent crystal is also presented. Several applications, such as the characterization of the aerial images produced by deep ultraviolet or extreme ultraviolet lithographic exposure tools, are envisaged

  7. Design and fabrication of soft x-ray mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, Masaru; Sasai, Hiroyuki; Sano, Kazuo [Shimadzu Corp., Production Engineering Laboratory, Kyoto (Japan)

    2000-03-01

    Soft x-ray photoelectron spectroscopic technology is important for measuring the chemical status of material surface in the LSI manufacturing process. We report on non-spherical mirrors focusing laser-induced plasma soft x-ray to fine sample surface. We designed toric and ellipsoidal mirror as soft x-ray condensing means, simulated focusing image, manufactured mirror surface on fused quartz substrate, and measured form accuracy. (author)

  8. Experimental studies on pulse soft X-ray generator

    International Nuclear Information System (INIS)

    Li Chengrong; Yang Qinchi; Luo Chengmu; Han Min

    1990-01-01

    Emission sources of soft x rays (2 keV < hv < 6 keV) from hot plasmas have been studied in a small gas-puff Z-pinch. The emission sources are a group of uncontinuous hot spots. The output of soft x rays from the hot spots have been measured and the effect of the initial gas density on the yield of soft x rays has been investigated

  9. A soft X-ray image of the Moon

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Predehl, P.; Truemper, J.; Snowden, S.L.; Wisconsin Univ., Madison, WI

    1991-01-01

    A soft X-ray image of the Moon obtained by the Roentgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the Moon's X-ray luminosity arises from backscattering of solar X-rays. The Moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one per cent that of the bright side; this emission very probably results from energetic solar-wind electrons striking the Moon's surface. (author)

  10. X ray reflection masks: Manufacturing, characterization and first tests

    Science.gov (United States)

    Rahn, Stephen

    1992-09-01

    SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  11. Total reflection X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Michaelis, W.; Prange, A.

    1987-01-01

    In the past few years, total reflection X-ray flourescence analysis (TXRF) has found an increasing number of assignments and applications. Experience of trace element analysis using TXRF and examples of applications are already widespread. Therefore, users of TXRF had the opportunity of an intensive exchange of their experience at the 1st workshop on total reflection X-ray fluorescence analysis which took place on May 27th and 28th 1986 at the GKSS Research Centre at Geesthacht. In a series of lectures and discussions dealing with the analytical principle itself, sample preparation techniques and applications as well as comuter programs for spectrum evaluation, the present state of development and the range of applications were outlined. 3 studies out of a total of 14 were included separately in the INIS and ENERGY databases. With 61 figs., 12 tabs [de

  12. The development for small scale soft X-ray spectrometer

    International Nuclear Information System (INIS)

    Sun Kexu; Jiang Shaoen; Yi Rongqing; Cui Yanli

    2004-12-01

    For the development of small-scale soft X-ray spectrometer, first, some small-scale soft X-ray detection elements are developed, it is included GaAs irradiated with neutron, GaAs irradiated with proton, multi-layer mirror, plane mirror and small scale X-ray diode et al. Soft X-ray spectrometers built of multi-layer mirror-GaAs (with neutron irradiation), and plane mirror-small-scale XRD, and plane mirror-GaAs (with proton irradiation) are prepared. These spectrometers are examined in Shen Guang-II laser facility, and some external estimation are given. (authors)

  13. Resonant soft x-ray reflectivity of Me/B4C multilayers near the boron K edge

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Schlemper, Christoph; Pietsch, Ullrich

    2010-09-01

    Energy dependence of the optical constants of boron carbide in the short period Ru/B4C and Mo/B4C multilayers (MLs) are evaluated from complete reflectivity scans across the boron K edge using the energy-resolved photon-in-photon-out method. Differences between the refractive indices of the B4Cmaterial inside and close to the surface are obtained from the peak profile of the first order ML Bragg peak and the reflection profile near the critical angle of total external reflection close to the surface. Where a Mo/B4C ML with narrow barrier layers appears as a homogeneous ML at all energies, a Ru/B4C ML exhibits another chemical nature of boron at the surface compared to the bulk. From evaluation of the critical angle of total external reflection in the energy range between 184 and 186 eV, we found an enriched concentration of metallic boron inside the Ru-rich layer at the surface, which is not visible in other energy ranges.

  14. Soft x-ray source by laser produced Xe plasma

    International Nuclear Information System (INIS)

    Amano, Sho; Masuda, Kazuya; Miyamoto, Shuji; Mochizuki, Takayasu

    2010-01-01

    The laser plasma soft X-ray source in the wavelength rage of 5-17 nm was developed, which consisted of the rotating drum system supplying cryogenic Xe target and the high repetition rate pulse Nd:YAG slab laser. We found the maximum conversion efficiency of 30% and it demonstrated the soft X-ray generation with the high repetition rate pulse of 320 pps and the high average power of 20 W. The soft X-ray cylindrical mirror was developed and successfully focused the soft X-ray with an energy intensity of 1.3 mJ/cm 2 . We also succeeded in the plasma debris mitigation with Ar gas. This will allow a long lifetime of the mirror and a focusing power intensity of 400 mW/cm 2 with 320 pps. The high power soft X-ray is useful for various applications. (author)

  15. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    Science.gov (United States)

    Pal, Main

    We study a detailed broad-band X-ray/UV emission from the narrow line Seyfert 1 galaxy II Zw 177 based on two XMM-Newton and single Swift/XRT observations. Both XMM-Newton observations show the soft X-ray excess emission below 2 keV when the best-fit 2 - 10 keV power law is extrapolated down to 0.3 keV. We find the blurred reflection from an ionized accretion disc and Comptonized disc emission both describe the observed soft excess well. We find a remarkable trend of decreasing UV flux with increasing soft X-ray excess and power law emission. We suggest that this could be due to that the external edge of corona hide a fraction of accretion disk. Co-Author: Prof. Gulab C. Dewangan (IUCAA), Prof. Ranjeev Misra (IUCAA), Pramod Kumar (Nanded university)

  16. Diagnostics for an XUV/soft x-ray laser

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Matthews, D.L.; Ceglio, N.; Medecki, H.

    1984-01-01

    We have begun investigating the production of an XUV/soft x-ray laser, using our high-powered glass lasers as drivers. A major diagnostic for lasing is the measure of the absolute power produced in the lasing line. I have developed a spectrograph to time-resolved lasing lines in the energy range from 50 eV to greater than 200 eV. the spectrograph combines a transmission grating and x-ray streak camera to produce a flat field instrument. A cylindrical mirror is used in front of the grating to image the source and act as a collecting optic. The efficiency of the components is calibrated so that absolute intensities can be measured. I will compare the performance of this instrument with reflection grating systems. I will also discuss planned improvements to the system which should increase total throughput, image quality, and resolving power

  17. Resonant magnetic scattering of polarized soft x rays

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, M. [Centre Universitaire Paris-Sud, Orsay (France); Hague, C.F. [Universite Pierre et Marie Curie, Paris (France); Gullikson, E.M.; Underwood, J. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  18. Development of small scale soft x-ray lasers

    International Nuclear Information System (INIS)

    Kim, D.; Suckewer, S.; Princeton Univ., NJ; Skinner, C.H.; Voorhees, D.

    1991-05-01

    At present rapid progress is being made in the application of soft x-ray lasers to fields such as microscopy and microlithography. A critical factor in the range of suitable applications is the scale and hence cost of the soft x-ray lasers. At Princeton, gain at 183 angstrom has been obtained with relatively low pump laser energies (as low as 6J) in a ''portable'' small-scale soft x-ray laser system. We will also discuss aspects of data interpretation and pitfalls to be avoided in measurements of gain in such systems. 14 refs., 7 figs

  19. Novel spectroscopic techniques with using soft x-ray

    International Nuclear Information System (INIS)

    Gejo, Tatsuo

    2010-01-01

    Recent progress of experimental techniques related to synchrotron radiation makes possible of detail investigation of molecular dynamics after irradiation of soft X-ray. We introduce several novel spectroscopic techniques with using soft X-ray: Symmetry-resolved zero kinetic energy electron spectroscopy, symmetry-resolved metastable photofragment spectroscopy, soft X-ray emission spectroscopy, time-resolved fluorescence spectroscopy, and time-resolved-fluorescence mass-selected-ion coincidence spectroscopy. We also show new techniques performed by other groups at BL27SU in SPring-8. (author)

  20. Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data

    Science.gov (United States)

    Toot, G. David

    1989-01-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  1. Soft x-ray amplification in an ablative capillary discharge

    International Nuclear Information System (INIS)

    Kwek, K.H.; Low, K.S.; Tan, C.A.; Lim, C.S.

    1999-01-01

    Soft x-ray amplification in CVI 18.2 nm line is observed in an ablative UHMW-PE capillary discharge. The gain coefficient is measured to be 1.9 cm -1 . The electron density is about 2 x 10 19 cm -3 . This indicates that capillary discharge pumping device can be a source for a compact soft x-ray laser. (author)

  2. Thin film soft X-ray absorption filters

    International Nuclear Information System (INIS)

    Stattin, H.

    1992-11-01

    This report discusses the composition, reparation and performance of soft x-ray transmission filters for a water window soft x-ray microscope. Unbacked thin films of aluminum, silver and vanadium/aluminum were made by evaporation on a substrate from which they were released. Measured transmittances agree reasonably well with calculations. The report also includes some related theory and discussions about film preparation methods, film contamination and evaluation methods. 33 refs

  3. Soft-X-Ray Projection Lithography Using a High-Repetition-Rate Laser-Induced X-Ray Source for Sub-100 Nanometer Lithography Processes

    NARCIS (Netherlands)

    E. Louis,; F. Bijkerk,; Shmaenok, L.; Voorma, H. J.; van der Wiel, M. J.; Schlatmann, R.; Verhoeven, J.; van der Drift, E. W. J. M.; Romijn, J.; Rousseeuw, B. A. C.; Voss, F.; Desor, R.; Nikolaus, B.

    1993-01-01

    In this paper we present the status of a joint development programme on soft x-ray projection lithography (SXPL) integrating work on high brightness laser plasma sources. fabrication of multilayer x-ray mirrors. and patterning of reflection masks. We are in the process of optimization of a

  4. Effects of soft x-ray irradiation on cell ultrastructure

    International Nuclear Information System (INIS)

    Ford, T.W.; Page, A.M.; Stead, A.D.; Foster, G.F.

    1993-01-01

    The future of X-ray microscopy lies mainly in its potential for imaging fresh, hydrated biological material at a resolution superior to that of light microscopy. For the image to be accepted as representing the cellular organization of the living cell, it is essential that artifacts are not introduced as a result of the image collection system. One possible source of artifacts is cellular damage resulting from the irradiation of the material with soft X-rays. Cells of the unicellular alga Chlorella have been examined by transmission electron microscopy (TEM) following exposure to different doses of monochromatic (380eV) soft X-rays. Extreme ultrastructural damage has been detected following doses of 10 3 -10 4 Gy, in particular loss of cellular membranes such as the internal thylakoid membranes of the chloroplast. This is discussed in relation to dosage commonly used for imaging by soft X-ray microscopy

  5. X-ray reflection in oxygen-rich accretion discs of ultracompact X-ray binaries

    DEFF Research Database (Denmark)

    Madej, O. K.; Garcia, Jeronimo; Jonker, P. G.

    2014-01-01

    We present spectroscopic X-ray data of two candidate ultracompact X-ray binaries (UCXBs): 4U 0614+091 and 4U 1543-624. We confirm the presence of a broad O viii Ly alpha reflection line (at a parts per thousand 18 angstrom) using XMM-Newton and Chandra observations obtained in 2012 and 2013. The ...

  6. Structure in galactic soft X-ray features

    International Nuclear Information System (INIS)

    Davelaar, J.

    1979-01-01

    Observations are described of the soft X-ray background in a part of the northern hemisphere in the energy range 0.06 - 3.0 keV. The X-ray instruments, placed onboard a sounding rocket, are a one-dimensional focusing collector with multi-cell proportional counters in the focal plane and eight large area counters on deployable panels. A description of the instruments and their preflight calibration is given. Precautions were taken to prevent UV sensitivity of the X-ray instruments. The observation program, which consisted of a number of pre-programmed slow scans, is outlined. The spectral date on the soft X-ray background in these and previous observations showed that at least two components of different temperature are present. A low temperature component of approximately (3-10)x10 5 is found all over the sky. Components of higher temperature approximately 3x10 6 K are found in regions of soft X-ray enhancement; The North Polar Spur has been observed in two scans at the galactic latitude b=25 0 and b=75 0 . The X-ray ridge structure is found to be strongly energy dependent. The low energy data ( 0 reveals two separate emission features on the ridge, both probably of finite extensions (approximately equal to 0 0 .5). A wider X-ray ridge (approximately equal to 10 0 ) is observed above 0.4 keV. (Auth.)

  7. Review of soft x-ray lasers and their applications

    International Nuclear Information System (INIS)

    Skinner, C.H.

    1991-03-01

    The emerging technology of soft x-ray lasers is in a transition phase between the first laboratory demonstrations of gain and the acceptance of soft x-ray lasers as practical tools for novel applications. Current research is focused on several fronts. The operational wavelength range has been extended to the ''water window'', important for applications in the life sciences. Gain has also been generated with substantially simpler technology (such as a 6J laser) and this augurs well for the commercially availability in the near future of soft x-ray lasers for a variety of applications. Advanced soft x-ray laser concepts are being developed from investigations into ultra-high intensity laser/matter interactions. The first paper a brief historical perspective of x-ray microscopy and holography have begun. In this paper a brief historical perspective of x-ray laser development will be followed by a review of recent advances in recombination, collisional and photo-pumped systems and applications. A summary of current gain-length performance achieved in laboratories worldwide is presented. Near term prospects for applications to novel fields are discussed. 81 refs., 9 figs., 1 tab

  8. Soft X-Ray amplification in laser plasmas

    International Nuclear Information System (INIS)

    Louis-Jacquet, M.

    1988-01-01

    The principles, experiments and theoretical models of soft x-ray, amplification, produced in laser plasmas, are studied. In the discussion of the principles, the laser plasma medium, the definition of the gain, the population inversions, saturation and superradiance are described. The results concerning recombination and collisional excitation experiments, as well as experimental devices are shown. A complete physical simulation to design and interpret x-ray laser experiments is given. Applications of x-ray lasers in grating production techniques, in contact microscopy and holography are considered

  9. Soft X-ray spectrographs for solar observations

    Science.gov (United States)

    Bruner, M. E.

    1988-01-01

    Recent advances in soft X-ray spectrometery are reviewed, with emphasis on techniques for studying the windowless region from roughly 1-100 A. Recent technological developments considered include multilayer mirrors, large-format CCD detectors which are sensitive to X-rays, position-sensitive photon counting detectors, new kinds of X-ray films, and optical systems based on gratings with nonuniform ruling spacings. Improvements in the extent and accuracy of the atomic physics data sets on which the analysis of spectroscopic observatons depend are also discussed.

  10. Contact microscopy with a soft x-ray laser

    International Nuclear Information System (INIS)

    DiCicco, D.S.; Kim, D.; Rosser, R.J.; Skinner, C.H.; Suckewer, S.; Gupta, A.P.; Hirschberg, J.G.

    1989-03-01

    A soft x-ray laser of output energy 1-3 mJ at 19.2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. We also present a Composite Optical X- ray Laser Microscope ''COXRALM'' of novel design. 14 refs., 8 figs., 1 tab

  11. Time-dependent nonequilibrium soft x-ray response during a spin crossover

    Energy Technology Data Exchange (ETDEWEB)

    van Veenendaal, Michel

    2018-03-01

    The rapid development of high-brilliance pulsed X-ray sources with femtosecond time resolution has created a need for a better theoretical understanding of the time-dependent soft-X-ray response of dissipative many-body quantum systems. It is demonstrated how soft-X-ray spectroscopies, such as X-ray absorption and resonant inelastic X-ray scattering at transition-metal L-edges, can provide insight into intersystem crossings, such as a spin crossover. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogues is used as an example to demonstrate how the X-ray response is affected by the dissipative nonequilibrium dynamics. The time-dependent soft-X-ray spectra provide a wealth of information that reflect the changes in the nonequilibrium initial state via continuously changing spectral lineshapes that cannot be decomposed into initial photoexcited and final metastable spectra, strong broadenings, a collapse of clear selection rules during the intersystem crossing, strong fluctuations in the isotropic branching ratio in X-ray absorption, and crystal-field collapse/oscillations and strongly time-dependent anti-Stokes processes in RIXS.

  12. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  13. Laboratory soft x-ray microscopy and tomography

    International Nuclear Information System (INIS)

    Bertilson, Michael

    2011-01-01

    Soft x-ray microscopy in the water-window (λ = 2.28 nm - 4.36 nm) is based on zone-plate optics and allows high-resolution imaging of, e.g., cells and soils in their natural or near-natural environment. Three-dimensional imaging is provided via tomographic techniques, soft x-ray cryo tomography. However, soft x-ray microscopes with such capabilities have been based on large-scale synchrotron x-ray facilities, thereby limiting their accessibility for a wider scientific community. This Thesis describes the development of the Stockholm laboratory soft x-ray microscope to three-dimensional cryo tomography and to new optics-based contrast mechanisms. The microscope relies on a methanol or nitrogen liquid-jet laser-plasma source, normal-incidence multilayer or zone-plate condenser optics, in-house fabricated zone-plate objectives, and allows operation at two wavelengths in the water-window, λ = 2.48 nm and λ = 2.48 nm. With the implementation of a new state-of-the-art normal-incidence multilayer condenser for operation at λ = 2.48 nm and a tiltable cryogenic sample stage the microscope now allows imaging of dry, wet or cryo-fixed samples. This arrangement was used for the first demonstration of laboratory soft x-ray cryo microscopy and tomography. The performance of the microscope has been demonstrated in a number of experiments described in this Thesis, including, tomographic imaging with a resolution of 140 nm, cryo microscopy and tomography of various cells and parasites, and for studies of aqueous soils and clays. The Thesis also describes the development and implementation of single-element differential-interference and Zernike phase-contrast zone-plate objectives. The enhanced contrast provided by these optics reduce exposure times or lowers the dose in samples and are of major importance for harder x-ray microscopy. The implementation of a high-resolution 50 nm compound zone-plate objective for sub-25-nm resolution imaging is also described. All experiments

  14. Soft x-ray spectrographs for solar observations

    International Nuclear Information System (INIS)

    Bruner, M.E.

    1988-01-01

    This paper surveys some of the recent advances in the state of the art of soft X-ray spectrometers, particularly as they might be applied to Solar Observations. The discussions center on the windowless region from roughly 1 to 100 A, and covers both grating and crystal instruments. The author begins with a short discussion of the solar soft X-ray spectrum and its interpretation, followed by a few general comments on problems peculiar to soft X-ray instruments. The paper reviews of recent developments in spectrometer optical design, which has been a lively field during the last dozen years. This is particularly true in the case of grating spectrometers. The paper concludes with a short section on telescope considerations, and some remarks on future flight opportunities

  15. Rocket Experiment Demonstration of a Soft X-ray Polarimeter

    Science.gov (United States)

    Marshall, Herman

    This proposal is the lead proposal. Boston University will submit, via NSPIRES, a Co-I proposal, per instructions for Suborbital proposals for multiple-award. Our scientific goal of the Rocket Experiment Demonstration of a Soft X-ray Polarimeter (REDSoX Polarimeter) is to make the first measurement of the linear X-ray polarization of an extragalactic source in the 0.2-0.8 keV band. The first flight of the REDSoX Polarimeter would target Mk 421, which is commonly modeled as a highly relativistic jet aimed nearly along the line of sight. Such sources are likely to be polarized at a level of 30-60%, so the goal is to obtain a significant detection even if it is as low as 10%. Significant revisions to the models of jets emanating from black holes at the cores of active galaxies would be required if the polarization fraction lower than 10%. We employ multilayer-coated mirrors as Bragg reflectors at the Brewster angle. By matching to the dispersion of a spectrometer, one may take advantage of high multilayer reflectivities and achieve polarization modulation factors over 90%. Using replicated foil mirrors from MSFC and gratings made at MIT, we construct a spectrometer that disperses to three laterally graded multilayer mirrors (LGMLs). The lateral grading changes the wavelength of the Bragg peak for 45 degree reflections linearly across the mirror, matching the dispersion of the spectrometer. By dividing the entrance aperture into six equal sectors, pairs of blazed gratings from opposite sectors are oriented to disperse to the same LGML. The position angles for the LGMLs are 120 degrees to each other. CCD detectors then measure the intensities of the dispersed spectra after reflection and polarizing by the LGMLs, giving the three Stokes parameters needed to determine the source polarization. We will rely on components whose performance has been verified in the laboratory or in space. The CCD detectors are based on Chandra and Suzaku heritage. The mirror fabrication team

  16. Soft x-ray spectro microscope

    International Nuclear Information System (INIS)

    Campuzano, J.C.; Jennings, G.; Beaulaigue, L.; Rodricks, B.G.; Brizard, C.

    1990-01-01

    This paper reports on the development of an x-ray photoelectron microscope that provides spatial as well as chemical information on the nature of the sample. Photons from the Aladdin Synchrotron at the Synchrotron Radiation Center in Stoughton, WI are monochromatized by an extended-range Grasshopper monochromator covering the range 40 to 1500 eV with energy resolution varying between 10 and 200 MeV. The monochromatized radiation generates photoelectrons in the sample, which are energy-analyzed with a resolving power E|ΔE > 5 x 10 4 and imaged by a multichannel plate array. The visible image is transferred to a computer by a virtual-phase charge-coupled device camera with a dynamic range of 4096:1. Preliminary coarse measurements indicate a spatial resolution of the instrument of better than 1μm, although a limit of 600 Angstrom is possible. The instrument provides chemical shift-resolved images of low-lying core levels in a variety of samples

  17. Characterization of X-ray optics by soft X-ray diffractometry

    International Nuclear Information System (INIS)

    Biltoft, P.J.

    1988-01-01

    The authors have constructed a soft x-ray diffractometer to characterize layered synthetic microstructures (LSMs). The source, sample stage, and counter sections of the diffractometer operate under vacuum. The design differs from most others in two respects: the preamplifier and amplifier that process pulses from the subatmospheric-pressure gas-flow proportional counter are located outside the vacuum chamber and are separated from the proportional counter by approximately 76 cm of shielded cable; in addition, the conventional gear-driven, theta-two-theta diffractometer motion is accomplished with synchronized stepper motors. Characterizations of several LSMs have yielded data on d-spacing (distance between layers of different composition), critical angle, and peak reflectivity. Future work includes incorporation of an improved laser alignment system, in vacuo sample articulation (in addition to the theta-two-theta diffractometer movements), and a higher-flux photon source with a close-coupled fluorescent target carousel. Such a capability will permit multiple-energy diffraction work in a single pumpdown cycle

  18. Diversity of soft X-ray spectra in quasars

    International Nuclear Information System (INIS)

    Elvis, M.; Wilkes, B.J.; Tananbaum, H.

    1985-01-01

    Soft X-ray spectra for three quasars obtained with the Einstein Imaging Proportional Counter covering the 0.1-4.0 keV band are reported. Power-law fits to these spectra have best-fit energy indices of 1.2 +0.6 or -0.2, for the quasar NAB 0205 + 024, 0.6 +0.3 or -0.2 for the quasar B2 1028 + 313, and 2.2 + or -0.4 for the quasar PG 1211 + 143. None of the quasars shows any evidence for a column density of cold matter in excess of the galactic values. The derived spectra demonstrate that there is no single universal power law slope for quasar X-ray spectra. The implications of these results for the X-ray background, X-ray continuum emission mechanisms, and the production of the optical/UV emission lines are briefly discussed. 46 references

  19. Soft x-ray streak camera for laser fusion applications

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1981-04-01

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown

  20. Rockets for Extended Source Soft X-ray Spectroscopy

    Science.gov (United States)

    McEntaffer, Randall

    The soft X-ray background surrounds our local galactic environment yet very little is known about the physical characteristics of this plasma. A high-resolution spectrum could unlock the properties of this million degree gas but the diffuse, low intensity nature of the background have made it difficult to observe, especially with a dispersive spectrograph. Previous observations have relied on X-ray detector energy resolution which produces poorly defined spectra that are poorly fit by complex plasma models. Here we propose a series of suborbital rocket flights that will begin the characterization of this elusive source through high-resolution X-ray grating spectroscopy. The rocket-based spectrograph can resolve individual emission lines over the soft X-ray band and place tight constraints on the temperature, density, abundance, ionization state and age of the plasma. These payloads will draw heavily from the heritage gained from previous rocket missions, while also benefiting from related NASA technology development programs. The Pennsylvania State University (PSU) team has a history of designing and flying spectrometer components onboard rockets while also being scientific leaders in the field of diffuse soft X-ray astronomy. The PSU program will provide hands-on training of young scientists in the techniques of instrumental and observational X-ray astronomy. The proposed rocket program will also expose these researchers to a full experiment cycle: design, fabrication, tolerance analysis, assembly, flight-qualification, calibration, integration, launch, and data analysis; using a combination of technologies suitable for adaptation to NASA's major missions. The PSU program in suborbital X-ray astronomy represents an exciting mix of compelling science, heritage, cutting-edge technology development, and training of future scientists.

  1. Development of soft x-ray optical elements at the advanced photon research center

    International Nuclear Information System (INIS)

    Ishino, Masahiko; Yoda, Osamu; Koike, Masato; Sano, Kazuo; Iwasaki, Hiroshi

    2003-01-01

    We have been developing soft X-ray optical elements such as diffraction gratings and multilayer mirrors to applied to X-ray plasma sources and X-ray lasers and so on. In the field of the development of diffraction gratings, the laminar-type holographic gratings for flat-field spectrographs were found to be very effective in suppressing the higher orders and stray-light level. The fabricated holographic grating has a comparable spectral resolution to the replica commercial grating. In the development of the soft X-ray multilayer mirrors, the improvement of the heat stability of the Mo/Si multilayer was carried out. We have found that the Mo/SiO 2 /Si/SiO 2 multilayer having the SiO 2 layer thicknesses of 0.5 nm at the Si-on-Mo interface and of 1.5 nm at the Mo-on-Si interface has thermally stable structure up to 500degC and maintains high soft X-ray reflectivity after annealing at 400degC. In addition, we have developed an evaluation system capable of measuring the wavelength and angular characteristics of the reflectivity and diffraction efficiency of soft X-ray optical elements. (author)

  2. Theory and analysis of soft x-ray laser experiments

    International Nuclear Information System (INIS)

    Whitten, B.L.; Hazi, A.U.

    1985-10-01

    The atomic modeling of soft x-ray laser schemes presents a formidable challenge to the theorists - a challenge magnified by the recent successful experiments. A complex plasma environment with many ion species present must be simulated. Effects such as turbulence, time dependence, and radiation transport, which are very difficult to model accurately, may be important. We shall describe our efforts to model the recently demonstrated soft x-ray laser in collisionally pumped neon-like selenium, with emphasis on the ionization balance and excited state kinetics. The relative importance of various atomic processes, such as collisional excitation and dielectronic recombination, on the inversion kinetics will be demonstrated. We shall compare our models with experimental results and evaluate the success of this technique in predicting and analyzing the results of x-ray laser experiments. 22 refs., 5 figs., 3 tabs

  3. Soft x-ray measurements on the PLT Tokamak

    International Nuclear Information System (INIS)

    Von Goeler, S.; Sauthoff, N.; Bitter, M.

    1977-10-01

    Four experiments are described that currently run on the PLT tokamak and which utilize the soft x-ray emission of the plasma as a diagnostic: the pulse height analysis system for temperature and impurity measurements; the curved crystal Bragg spectrometer for the determination of ionization states of impurities; ''windowless'' surface barrier detectors for the investigation of the ultra soft x-ray radiation in the energy range 0.1 keV < hν < 1 keV and a silicon diode array for x-ray fluctuation measurements. For each diagnostic a short technical description and some recent results obtained with it on PLT are given in order to demonstrate its use

  4. Time-dependent nonequilibrium soft x-ray response during a spin crossover

    Science.gov (United States)

    van Veenendaal, Michel

    2018-03-01

    A theoretical framework is developed for better understanding the time-dependent soft-x-ray response of dissipative quantum many-body systems. It is shown how x-ray absorption and resonant inelastic x-ray scattering (RIXS) at transition-metal L edges can provide insight into ultrafast intersystem crossings of importance for energy conversion, ultrafast magnetism, and catalysis. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogs is used as a model system to demonstrate how the x-ray response is affected by the nonequilibrium dynamics on a femtosecond time scale. Changes in local spin and symmetry and the underlying mechanism are reflected in strong broadenings, a collapse of clear selection rules during the intersystem crossing, fluctuations in the isotropic branching ratio in x-ray absorption, crystal-field collapse and/or oscillations, and time-dependent anti-Stokes processes in RIXS.

  5. Soft x-ray virtual diagnostics for tokamak simulations

    Science.gov (United States)

    Kim, J. S.; Zhao, L.; Bogatu, I. N.; In, Y.; Turnbull, A.; Osborne, T.; Maraschek, M.; Comer, K.

    2009-11-01

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling.

  6. Progress toward a soft X-ray FEL

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1988-01-01

    We review the FEL physics and obtain scaling laws for the extension of its operation to the soft X-ray region. We also discuss the properties of an electron beam needed to drive such an FEL, and the present state of the art for the beam production. (orig.)

  7. Scandium/carbon filters for soft x rays

    NARCIS (Netherlands)

    Artioukov, IA; Kasyanov, YS; Kopylets, IA; Pershin, YP; Romanova, SA

    2003-01-01

    This Note deals with thin-film soft x-ray filters for operation at the wavelengths near carbon K edge (similar to4.5 nm). The filters were fabricated by magnetron sputtering deposition of thin layers of scandium (total thickness 0.1-0.2 mum) onto films of polypropylene (thickness 1.5 mum) and

  8. Soft x-ray virtual diagnostics for tokamak simulations

    International Nuclear Information System (INIS)

    Kim, J. S.; Zhao, L.; Bogatu, I. N.; In, Y.; Turnbull, A.; Osborne, T.; Maraschek, M.; Comer, K.

    2009-01-01

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling.

  9. Soft X-ray contact microscopy of nematode Caenorhabditis elegans

    Czech Academy of Sciences Publication Activity Database

    Poletti, G.; Orsini, F.; Batani, D.; Bernadinello, A.; Desai, T.; Ullschmied, Jiří; Skála, Jiří; Králiková, Božena; Krouský, Eduard; Juha, Libor; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomáš; Präg R., Ansgar; Renner, Oldřich; Cotelli, F.; Lamia, C. L.; Zullini, A.

    2004-01-01

    Roč. 30, č. 2 (2004), s. 235-241 ISSN 1434-6060 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z2043910 Keywords : soft X-ray Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.692, year: 2004

  10. Soft x-ray measurements in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, T; Toi, K; Nakamura, K; Nakamura, Y; Hiraki, N [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-07-01

    Soft X-ray pulse height analysis system has been designed and constructed for measurements of electron distribution function and impurity with high spatial resolution (0.5 cm) and temporal resolution (2 msec) in the TRIAM-1 tokamak. The experimental results about electron temperature, enhancement factor, Z sub(eff) and runaway electrons are presented and discussed.

  11. Moving the Frontier of Quantum Control into the Soft X-Ray Spectrum

    Directory of Open Access Journals (Sweden)

    A. Aquila

    2011-01-01

    Full Text Available The femtosecond nature of X-ray free electron laser (FEL pulses opens up exciting research possibilities in time-resolved studies including femtosecond photoemission and diffraction. The recent developments of seeding X-ray FELs extend their capabilities by creating stable, temporally coherent, and repeatable pulses. This in turn opens the possibility of spectral engineering soft X-ray pulses to use as a probe for the control of quantum dynamics. We propose a method for extending coherent control pulse-shaping techniques to the soft X-ray spectral range by using a reflective geometry 4f pulse shaper. This method is based on recent developments in asymmetrically cut multilayer optic technology and piezoelectric substrates.

  12. Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Beye, M., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Pietzsch, A.; Quevedo, W.; Hantschmann, M. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ochmann, M.; Huse, N. [Institute for Nanostructure and Solid State Physics, University of Hamburg, Jungiusstr. 11, 20355 Hamburg, Germany and Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg (Germany); Ross, M.; Khalil, M. [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States); Minitti, M. P.; Turner, J. J.; Moeller, S. P.; Schlotter, W. F.; Dakovski, G. L. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Föhlisch, A. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam (Germany)

    2015-02-09

    The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response.

  13. Resonant soft X-ray emission spectroscopy of liquids

    International Nuclear Information System (INIS)

    Guo, J.-H.; Augustsson, A.; Englund, C.-J.; Nordgren, J.

    2004-01-01

    We present now a possible way to carry out soft-x-ray fluorescence spectroscopy of liquids. The liquid cell has a window to attain compatibility with UHV conditions of the spectrometer and beamline. The synchrotron radiation enters the liquid cell through a 100nm-thick silicon nitride window and the emitted x-rays exit through the same window. This allows in particular liquid solid interfaces to be studied. Such a liquid cell has been used to study the electronic structure of a variety of systems ranging from water solutions of inorganic salts and inertial drugs to nano materials and actinide compounds in their wet conditions

  14. Soft X-ray beam induced current technique

    Energy Technology Data Exchange (ETDEWEB)

    Watts, B; Ade, H [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Queen, D; Hellman, F [Department of Physics, University of California, Berkeley, CA 94720 (United States); Kilcoyne, A L D; Tyliszczak, T, E-mail: benjamin.watts@gmail.co [Advanced Light Source, Lawrence Berkeley Nat. Lab., Berkeley, CA 94720 (United States)

    2009-09-01

    Direct mapping of the charge transport efficiency of polymer solar cell devices using a soft X-ray beam induced current (SoXBIC) method is described. By fabricating a polymer solar cell on an x-ray transparent substrate, we demonstrate the ability to map polymer composition and nanoscale structure within an operating solar cell device and to simultaneously measure the local charge transport efficiency via the short-circuit current. A simple model is calculated and compared to experimental SoXBIC data of a PFB:F8BT bulk-heterojunction device in order to gain greater insight into the device operation and physics.

  15. The Solar-A soft X-ray telescope experiment

    Science.gov (United States)

    Acton, L.; Bruner, M.; Brown, W.; Lemen, J.; Hirayama, T.

    1988-01-01

    The Japanese Solar-A mission for the study of high energy solar physics is timed to observe the sun during the next activity maximum. This small spacecraft includes a carefully coordinated complement of instruments for flare studies. In particular, the soft X-ray telescope (SXT) will provide X-ray images of flares with higher sensitivity and time resolution than have been available before. This paper describes the scientific capabilities of the SXT and illustrates its application to the study of an impulsive compact flare.

  16. The advantages of soft X-rays and cryogenic spectrometers for measuring chemical speciation by X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Drury, Owen B. [Lawrence Livermore National Laboratory, Advanced Detector Group, 7000 East Ave., L-270, Livermore, CA 94550 (United States); UC Davis, Biophysics Graduate Group, 1 Shields Ave, CA 95616 (United States); LBNL, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 92720 (United States); Friedrich, Stephan [Lawrence Livermore National Laboratory, Advanced Detector Group, 7000 East Ave., L-270, Livermore, CA 94550 (United States) and LBNL, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 92720 (United States)]. E-mail: friedrich1@llnl.gov; George, Simon J. [LBNL, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 92720 (United States); Cramer, Stephen P. [UC Davis, Biophysics Graduate Group, 1 Shields Ave, CA 95616 (United States); LBNL, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 92720 (United States)

    2006-04-15

    We have built a 36-pixel high-resolution superconducting tunnel junction (STJ) soft X-ray spectrometer for chemical analysis of dilute metals by fluorescence-detected X-ray absorption spectroscopy (XAS) at the Advanced Light Source synchrotron. Soft X-ray absorption edges are preferred over traditional hard X-ray spectroscopy at the K-edges, since they have narrower natural linewidths and exhibit stronger chemical shifts. STJ detectors are preferred in the soft X-ray band over traditional Ge or grating spectrometers, since they have sufficient energy resolution to resolve transition metal L and M lines from light element K emission, and sufficient detection efficiency to measure the weak lines of dilute specimens within an acceptable time. We demonstrate the capabilities of our STJ spectrometer for chemical analysis with soft XAS measurements of molybdenum speciation on the Mo M{sub 4,5}-edges.

  17. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  18. Soft X-ray microscopy and lithography with synchrotron radiation

    International Nuclear Information System (INIS)

    Gudat, W.

    1977-12-01

    Considerable progress in the technique microscopy with soft X-ray radiation has been achieved in particular through the application of synchrotron radiation. Various methods which are currently being studied theoretically or already being used practically will be described briefly. Attention is focussed on the method of contact microscopy. Various biological specimens have been investigated by this method with a resolution as good as 100 A. X-ray lithography which in the technical procedure is very similar to contact microscopy gives promise for the fabrication of high quality submicron structures in electronic device production. Important factors limiting the resolution and determining the performance of contact microscopy and X-ray lithography will be discussed. (orig.) [de

  19. Black hole and neutron star soft X-ray transients: a hard X-ray view of their outbursts

    International Nuclear Information System (INIS)

    Yu, W.

    2004-01-01

    The RXTE public observations of the outbursts of black hole soft X-ray transients XTE J1550-564, XTE J1859+226, 4U 1630-47, XTE J1118+480, XTE J1650-500, and the neutron star soft X-ray transients 4U 1608-52, Aquila X-1, including a variable 'persistent' neutron star low mass X-ray binary 4U 1705-44, are summarized in this paper. The hard X-ray view of those outbursts, which is quite different from that of the soft X-ray band, suggests that there are several types of outbursts which result in different hard X-ray outburst profile - the outburst profiles are energy dependent. One type is the low/hard state outbursts, the other type is the outburst showing transitions from the low/hard state to the high/soft state, or to the intermediate or to the very high state. The later has an initial low/hard state, introducing the phenomena that the hard X-ray precedes the soft X-ray in the outburst rise. Such outbursts in XTE J1550-564, Aql X-1 and 4U 1705-44 support a two-accretion-flow model which involves one Keplerian disk flow and one sub-Keplerian flow for the initial outburst rise

  20. The Correlation between Hard X-Ray Peak Flux and Soft X-Ray Peak Flux in the Outburst Rise of Low-Mass X-Ray Binaries

    NARCIS (Netherlands)

    Yu, W.; van der Klis, M.; Fender, R.P.

    2004-01-01

    We have analyzed Rossi X-Ray Timing Explorer pointed observations of the outbursts of black hole and neutron star soft X-ray transients in which an initial low/hard state, or ``island'' state, followed by a transition to a softer state was observed. In three sources-the black hole transient XTE

  1. Basic X-ray scattering for soft matter

    CERN Document Server

    De Jeu, Wim H

    2016-01-01

    X-ray scattering is a well-established technique in materials science. Several excellent textbooks exist in the field, typically written by physicists who use mathematics to make things clear. Often these books do not reach students and scientists in the field of soft matter (polymers, liquid crystals, colloids, and self-assembled organic systems), who usually have a chemical-oriented background with limited mathematics. Moreover, often these people like to know more about x-ray scattering as a technique to be used, but do not necessarily intend to become an expert. This volume is unique in trying to accommodate both points. The aim of the book is to explain basic principles and applications of x-ray scattering in a simple way. The intention is a paperback of limited size that people will like to have on hand rather than on a shelf. Second, it includes a large variety of examples of x-ray scattering of soft matter with, at the end of each chapter, a more elaborate case study. Third, the book contains a separa...

  2. The soft x ray telescope for Solar-A

    Science.gov (United States)

    Brown, W. A.; Acton, L. W.; Bruner, M. E.; Lemen, J. R.; Strong, K. T.

    1989-01-01

    The Solar-A satellite being prepared by the Institute for Sapce and Astronautical Sciences (ISAS) in Japan is dedicated to high energy observations of solar flares. The Soft X Ray Telescope (SXT) is being prepared to provide filtered images in the 2 to 60 A interval. The flight model is now undergoing tests in the 1000 foot tunnel at MSFC. Launch will be in September 1991. Earlier resolution and efficiency tests on the grazing incidence mirror have established its performance in soft x rays. The one-piece, two mirror grazing incidence telescope is supported in a strain free mount separated from the focal plane assembly by a carbon-epoxy metering tube whose windings and filler are chosen to minimize thermal and hygroscopic effects. The CCD detector images both the x ray and the concentric visible light aspect telescope. Optical filters provide images at 4308 and 4700 A. The SXT will be capable of producing over 8000 of the smallest partial frame images per day, or fewer but larger images, up to 1024 x 1024 pixel images. Image sequence with two or more of the five x ray analysis filters, with automatic exposure compensation to optimize the charge collection by the CCD detector, will be used to provide plasma diagnostics. Calculations using a differential emission measure code were used to optimize filter selection over the range of emission measure variations and to avoid redundancy, but the filters were chosen primarily to give ratios that are monotonic in plasma temperature.

  3. The soft x ray telescope for Solar-A

    International Nuclear Information System (INIS)

    Brown, W.A.; Acton, L.W.; Bruner, M.E.; Lemen, J.R.; Strong, K.T.

    1989-01-01

    The Solar-A satellite being prepared by the Institute for Sapce and Astronautical Sciences (ISAS) in Japan is dedicated to high energy observations of solar flares. The Soft X Ray Telescope (SXT) is being prepared to provide filtered images in the 2 to 60 A interval. The flight model is now undergoing tests in the 1000 foot tunnel at MSFC. Launch will be in September 1991. Earlier resolution and efficiency tests on the grazing incidence mirror have established its performance in soft x rays. The one-piece, two mirror grazing incidence telescope is supported in a strain free mount separated from the focal plane assembly by a carbon-epoxy metering tube whose windings and filler are chosen to minimize thermal and hygroscopic effects. The CCD detector images both the x ray and the concentric visible light aspect telescope. Optical filters provide images at 4308 and 4700 A. The SXT will be capable of producing over 8000 of the smallest partial frame images per day, or fewer but larger images, up to 1024 x 1024 pixel images. Image sequence with two or more of the five x ray analysis filters, with automatic exposure compensation to optimize the charge collection by the CCD detector, will be used to provide plasma diagnostics. Calculations using a differential emission measure code were used to optimize filter selection over the range of emission measure variations and to avoid redundancy, but the filters were chosen primarily to give ratios that are monotonic in plasma temperature

  4. Utilization of synchrotron radiation in analytical chemistry. Soft X-ray emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Muramatsu, Yasuji

    2015-01-01

    Synchrotron soft X-ray spectroscopy includes three major types of spectroscopy such as X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), and X-ray photoelectron spectroscopy (XPS). This paper takes up XAS and XES of soft X-rays, and briefly describes the principle. XAS is roughly classified into XANES (X-ray absorption near-edge structure) and EXAFS (extended X-ray absorption fine structure), and XANES is mainly used in the analysis based on XAS of soft X-rays. As the examples of the latest soft X-ray analyses, the following are introduced: (1) bandgap of boron implantation diamond and the local structure of boron, (2) catalytic sites in solid fuel cell carbon electrode, and (3) soft X-ray analysis under atmospheric pressure. (A.O.)

  5. Overview of the program on soft x-ray lasers and their applications at Princeton

    International Nuclear Information System (INIS)

    Suckewer, S.; Ilcisin, K.; Princeton Univ., NJ

    1991-05-01

    In the last several years, rapid progress in the development of soft x-ray lasers (SXL) has been observed at a number of laboratories worldwide. Although SXLs are very ''young'' devices they have already been used for microscopy and holography, and new ideas emerging for broader application of SXLs to microscopy, holography and lithography. This paper describes the work at Princeton University on the development of a soft x-ray imaging transmission microscopy using a SXL as a radiation source and work on the development of a novel soft x-ray reflection microscope and its application to biological cell studies and lithography. Progress in the development of a photopumped VUV laser (60 nm), and programs for the development of a small scale SXL and for the application of a powerful subpicosecond KrF laser system are also discussed. 35 refs., 9 figs., 1 tab

  6. Toward a soft x-ray Fourier-transform spectrometer

    International Nuclear Information System (INIS)

    Howells, M.R.; Frank, K.; Hussain, Z.; Moler, E.J.; Reich, T.; Moeller, D.

    1993-01-01

    The use of Fourier transform spectroscopy (FTS) in the soft x-ray region is advocated as a possible route to spectral resolution superior to that attainable with a grating system. A technical plan is described for applying FTS to the study of the absorption spectrum of helium in the region of double ionization around 60--80 eV. The proposed scheme includes a Mach-Zehnder interferometer deformed into a rhombus shape to provide grazing incidence reflections. The path difference between the interfering beams is to be tuned by translation of a table carrying four mirrors over a range ±1 cm which, in the absence of errors generating relative tilts of the wave fronts, would provide a resolving power equal to the number of waves of path difference: half a million at 65 eV, for example. The signal-to-noise ratio of the spectrum is analyzed and for operation on an Advanced Light Source bending magnet beam line should be about 330

  7. The JET multi-camera soft X-ray diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Alper, B; Blackler, K; Dillon, S F; Edwards, A W; Gill, R D; Lyadina, E; Mulligan, W; Staunton-Lambert, S A.B.; Thompson, D G; Wilson, D J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    A new soft X-ray detector system has been constructed for the pumped divertor phase of JET which incorporates a number of enhancements over the previous system in both hardware and data acquisition. The hardware improvements include: six independent views of the plasma at one toroidal location (as opposed to two in the old system), spatial resolution improved from 7 cm to 3 cm, frequency response increased from 30 khz to 100 khz and improved toroidal mode resolution. These enhancements will allow the study of MHD activity in finer detail. The tomographic reconstruction of soft X-ray emissivities will be improved to include Fourier terms up to cos(5{theta}) compared with only cos(2{theta}) before. Through the implementation of a fast central acquisition and trigger system, data from a range of diagnostics will be available at high bandwidth to allow processing of plasma phenomena of far greater complexity than was possible before. (authors). 2 refs., 5 figs.

  8. Soft x-ray tomography on the Alcator C tokamak

    International Nuclear Information System (INIS)

    Camacho, J.F.

    1985-06-01

    A soft x-ray tomography experiment has been performed on the Alcator C tokamak. An 80-chord array of detectors consisting of miniature PIN photodiodes was used to obtain tomographic reconstructions of the soft x-ray emissivity function's poloidal cross-section. The detectors are located around the periphery of the plasma at one toroidal location (top and bottom ports) and are capable of yielding useful information over a wide range of plasma operating parameters and conditions. The reconstruction algorithm employed makes no assumption whatsoever about plasma rotation, position, or symmetry. Its performance was tested, and it was found to work well and to be fairly insensitive to estimated levels of random and systematic errors in the data

  9. Soft x-ray absorption spectra of ilmenite family.

    Science.gov (United States)

    Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E

    2001-03-01

    We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.

  10. Quantifying the Exospheric Component of Soft X-ray Emission

    Science.gov (United States)

    Kuntz, Kip; Collier, Michael R.; Snowden, Steven L.; Robertson, Ina; Hansen, Kenneth; Cravens, Thomas

    2007-01-01

    High charge state heavy ions in the solar wind exchange charge with ambient neutral gas. This process creates a product ion in an excited state. During the radiative cascade process, EUV and X-ray photons are emitted with energies in the range of about 100 eV to 1 keV. Because the terrestrial exospheric density at the nominal magnetopause location is relatively high, approx. 10 cu cm, solar wind charge exchange, or SWCX, can be observed by Earth-orbiting soft X-ray instruments such as the ROSAT Position Sensitive Proportional Counters (PSPC). In this presentation, we will compare simulated and observed soft Xray emission during an event on August 18-19, 1991 and discuss the role of exospheric SWCX emission for this and other events.

  11. Probing nucleobase photoprotection with soft x-rays

    Directory of Open Access Journals (Sweden)

    Osipov T.

    2013-03-01

    Full Text Available Nucleobases absorb strongly in the ultraviolet region, leading to molecular excitation into reactive states. The molecules avoid the photoreactions by funnelling the electronic energy into less reactive states on an ultrafast timescale via non-Born-Oppenheimer dynamics. Current theory on the nucleobase thymine discusses two conflicting pathways for the photoprotective dynamics. We present our first results of our free electron laser based UV-pump soft x-ray-probe study of the photoprotection mechanism of thymine. We use the high spatial sensitivity of the Auger electrons emitted after the soft x-ray pulse induced core ionization. Our transient spetra show two timescales on the order of 200 fs and 5 ps, in agreement with previous (all UV ultrafast experiments. The timescales appear at different Auger kinetic energies which will help us to decipher the molecular dynamics.

  12. Soft x-ray photoionization of atoms and molecules

    International Nuclear Information System (INIS)

    Svensson, Svante

    2005-01-01

    A review of resonant and non-resonant electron spectroscopy on atoms and molecules at third generation synchrotron radiation facilities is given. The high brilliance of the soft x-ray radiation has made possible new types of experiments giving information on the fundamental behaviour of photoionization. The relevance of Einstein's photoelectric law, and notably the question of when electron energies disperse or do not disperse with the photon energy, is given special attention

  13. A Soft X-ray Imager for MIRAX

    International Nuclear Information System (INIS)

    Zand, Jean in 't; Mels, Wim; Heise, John

    2006-01-01

    The flight spare model of the BeppoSAX Wide Field Cameras is being considered as the Soft X-ray Imager for MIRAX. A description is provided of this instrument, the performance of its siblings on BeppoSAX, and the prospects of flying it on MIRAX. Like on BeppoSAX, the instrument on MIRAX will excel in the study of transient phenomena lasting shorter than 1 day

  14. High resolution solar soft X-ray spectrometer

    International Nuclear Information System (INIS)

    Zhang Fei; Wang Huanyu; Peng Wenxi; Liang Xiaohua; Zhang Chunlei; Cao Xuelei; Jiang Weichun; Zhang Jiayu; Cui Xingzhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed. A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer. The spectrometer consists of the detectors and their readout electronics, a data acquisition unit and a payload data handling unit. A ground test system is also developed to test SOX. The test results show that the design goals of the spectrometer system have been achieved. (authors)

  15. Soft x-ray resonant magnetic powder diffraction on PrNiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Staub, U [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); GarcIa-Fernandez, M [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Mulders, A M [Department of Applied Physics, Curtin University of Technology, GPO Box U1987, Perth WA 6845 (Australia); Bodenthin, Y [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); MartInez-Lope, M J [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Alonso, J A [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain)

    2007-03-07

    We report on the first soft x-ray resonant powder diffraction experiments performed at the Ni L{sub 2,3} edges of PrNiO{sub 3}. The temperature, polarization and energy dependence of the (1/2 0 1/2) reflection indicates a magnetic origin for the signal. This experiment demonstrates that x-ray resonant magnetic powder diffraction can be relatively easily performed in the soft x-ray regime due to the very large enhancement factors at the absorption edges. Such experiments allow us to extract important information on the electronic states of the d shell. Similar results can be anticipated from orbital reflections measured in a powder. (fast track communication)

  16. Development and characterization of femtosecond laser driven soft x-ray lasers

    International Nuclear Information System (INIS)

    Bettaibi, I.

    2005-06-01

    Coherent soft x-ray sources have an important potential for scientific, medical and industrial applications. The development of high intensity laser systems allowed the realization of new coherent and fast soft x-ray sources like high order harmonic generation and soft x-ray lasers. These sources are compact, cheaper than traditional sources such as synchrotrons, and are thus interesting. This thesis presents the study of a new soft x-ray laser pumped by a femto-second laser beam working at 10 Hz. The circularly polarized ultra intense laser is longitudinally focused in a cell filled with xenon or krypton, to obtain the amplification of two lasing lines at 41.8 nm and 32.8 nm in Pd-like xenon and Ni-like krypton respectively. We carry out an experimental and numerical study of the source to understand the importance of different parameters such as the laser intensity and polarization, the gas pressure and the cell length. We have also spatially and temporally characterized the soft x-ray laser beam. To compensate the refraction of the driving laser we have investigated guiding techniques consisting in creating a plasma channel by electric discharge or using the multiple reflections of the driving laser on the internal walls of the dielectric tubes of sapphire or glass. A spectacular improvement of the source performances has been observed in both cases. Finally, we present a preliminary study on a different x-ray scheme: the inner shell photo pumping of neutral atoms. We have developed an optical system, which should create the appropriate conditions for the realisation of short wavelength x-ray amplifier. (author)

  17. PAL-XFEL soft X-ray scientific instruments and X-ray optics: First commissioning results

    Science.gov (United States)

    Park, Sang Han; Kim, Minseok; Min, Changi-Ki; Eom, Intae; Nam, Inhyuk; Lee, Heung-Soo; Kang, Heung-Sik; Kim, Hyeong-Do; Jang, Ho Young; Kim, Seonghan; Hwang, Sun-min; Park, Gi-Soo; Park, Jaehun; Koo, Tae-Yeong; Kwon, Soonnam

    2018-05-01

    We report an overview of soft X-ray scientific instruments and X-ray optics at the free electron laser (FEL) of the Pohang Accelerator Laboratory, with selected first-commissioning results. The FEL exhibited a pulse energy of 200 μJ/pulse, a pulse width of power of 10 500 was achieved. The estimated total time resolution between optical laser and X-ray pulses was <270 fs. A resonant inelastic X-ray scattering spectrometer was set up; its commissioning results are also reported.

  18. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States)], E-mail: Friedrich1@llnl.gov; Drury, O.B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States); George, S.J. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Cramer, S.P. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States)

    2007-11-11

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of {approx}10-20 eV FWHM below 1 keV, a solid angle coverage of {approx}10{sup -3}, and can be operated at total rates of up to {approx}10{sup 6} counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  19. Total-reflection x-ray fluorescence with a brillant undulator x-ray source

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.; Numako, C.; Suzuki, M.; Inoue, K.; Yagi, N.

    2000-01-01

    Total-reflection x-ray fluorescence (TXRF) is a highly sensitive technique for analyzing trace elements, because of the very low background from the sample support. Use of third-generation synchrotron x-ray source could further enhance the detection power. However, while such high sensitivity permits the detection of signals from trace elements of interest, it also means that one can observe weak parasitic x-rays as well. If the sample surface becomes even slightly contaminated, owing to air particulates near the beamline, x-ray fluorescence lines of iron, zinc, copper, nickel, chromium, and titanium can be observed even for a blank sample. Another critical problem is the low-energy-side tail of the scattering x-rays, which ultimately restricts the detection capability of the technique using a TXRF spectrometer based on a Si(Li) detector. The present paper describes our experiments with brilliant undulator x-ray beams at BL39XU and BL40XU, at the SPring-8, Harima, Japan. The emphasis is on the development of instruments to analyze a droplet of 0.1 μl containing trace elements of ppb level. Although the beamline is not a clean room, we have employed equipment for preparing a clean sample and also for avoiding contamination during transferring the sample into the spectrometer. We will report on the successful detection of the peak from 0.8 ppb selenium in a droplet (absolute amount 80 fg). We will also present the results of recent experiments obtained from a Johansson spectrometer rather than a Si(Li) detector. (author)

  20. Soft x-ray measurements from the PDX tokamak

    International Nuclear Information System (INIS)

    Silver, E.H.; Bitter, M.; Brau, K.; Eames, D.; Greenberger, A.; Hill, K.W.; Meade, D.M.; Roney, W.; Sauthoff, N.R.; von Goeler, S.

    1982-05-01

    Temporally and spatially-resolved profiles of the PDX soft x-ray spectra have been measured during single tokamak pulses of circular and divertor plasmas with a recently developed pulse height analyzer. This detection system incorporates an array of five vertically displaced sets of lithium-drifted silicon detectors, each consisting of three independent channels optimized for rapid data collection in adjacent energy regions. Simultaneous measurement of x-ray emission integrated along five chords of the plasma cross section can thereby be achieved. Abel inversion of these data yields temporally-resolved radial profiles of the local electron temperature from the slope of the continuum, concentrations of high-Z impurities from the characteristic line intensities, and a measure of Z/sub eff/ from the continuum intensity. The techniques of x-ray pulse height analysis, with illustrations featuring the results from the initial PDX circular plasma experiments are discussed in detail. In addition, comparisons between circular and divertor plasmas on PDX, derived from the x-ray measurements, are also presented

  1. Detectability of Sungrazing Comet Soft X-ray Irradiance

    Directory of Open Access Journals (Sweden)

    Su Yeon Oh

    2007-12-01

    Full Text Available Originating from the Oort cloud, some comets disappear to impact against the Sun or to split up by strong gravitational force. Then they don't go back to the Oort cloud. They are called sungrazing comets. The comets are detected by sublimation of ices and ejection of gas and dust through solar heat close to the Sun. There exists the charge transfer from heavy ions in the solar wind to neutral atoms in the cometary atmosphere by interaction with the solar wind. Cometary atoms would be excited to high electronic levels and their de-excitation would result in X-ray emission, or it would be scattering of solar X-ray emission by very small cometary grains. We calculated the X-ray emission applying the model suggested by Mendis & Flammer (1984 and Cravens (1997. In our estimation, the sungrazing comet whose nucleus size is about 1 km in radius might be detectable within a distance of 3 solar radius from the sun on soft X-ray solar camera.

  2. Soft x-ray circular dichroism of biomolecules

    International Nuclear Information System (INIS)

    Nakagawa, Kazumichi; Tanaka, Makoto; Agui, Akane

    2005-01-01

    We succeeded to observe natural circular dichroism NCD for biomolecules in soft X-ray region for the first time. Evaporated films of amino acids, phenylalanine (phe) and serine (ser) were prepared in vacuum with the thickness of about 300 nm. Measurement was carried out at the soft X-ray undulator beamline BL23SU of the Spring-8, where left- and right-circularly polarized light (LCPL and RCPL) was available from an APPLE-2 undulator. Difference spectra DA(hν) was plotted as a function of photon energy hν of soft X-ray to be the difference between absorption coefficient A L for LCPL and absorption coefficient A R for RCPL, namely, DA(hν) ≡ A L (hν) - A R (hν). Values of A L and A R were determined by means of the photoelectric drain current measurement. In the DA(hν) spectra for L-phe films, negative peak was observed at 407 eV. On the contrary, for D-phe films, positive peak was observed at 407 eV with the same magnitude but opposite sign. Moreover, no signal was observed for racemic phenylalanine (DL-phe). In the wavelength region of visible to ultraviolet, there is well-known general law in which NCD signals for D- and L-enantiomers are the same magnitude but opposite sign and racemic compound does not show NCD spectra. Characteristic features in DA(hν) spectra of the L-phe, D-phe and DL-phe were of good agreement with this well-known general law. Based on this good agreement, we concluded that peaks at 407 eV in the DA(hν) spectra are true NCD peaks. For ser films, we assigned peaks at 540 eV and 548 eV to be NCD peaks in the same manner. We hope that our first observation of NCD for biomolecules at soft X-ray region will open new science and technologies such as basic science including elucidation of fundamental mechanism of NCD and application to manipulate biomolecules using circularly polarized soft X-ray beams. (author)

  3. High efficiency spectro graphs for the EUV and soft x-rays

    International Nuclear Information System (INIS)

    Cash, W.

    1983-01-01

    A basic need of modern UV and x-ray astronomy is the capability to perform high resolution spectroscopy of faint stars. The use of modern grazing incidence optics can be coupled to high blaze angle reflection gratings used in the conical diffraction mount to offer a versatile, efficient approach to the design problem. The authors discuss two designs of interest: an echelle spectrograph for use longward of 100 A, and an Objective Reflection Grating Spectrograph for use in the soft x-rays. General design considerations and measurements of grating efficiencies are also presented

  4. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    Science.gov (United States)

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed.

  5. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.; Cooper, G. [Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1 (Canada); West, M. M.; Berejnov, V. [Faculty of Health Sciences Electron Microscopy, McMaster University, Hamilton, ON L8N 3Z5 (Canada); Soboleva, T.; Susac, D.; Stumper, J. [Automotive Fuel Cell Cooperation Corp., Burnaby BC V5J 5J8 (Canada)

    2016-01-28

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  6. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    International Nuclear Information System (INIS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; Cooper, G.; West, M. M.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined

  7. SOFT X-RAY IRRADIATION OF SILICATES: IMPLICATIONS FOR DUST EVOLUTION IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Ciaravella, A.; Cecchi-Pestellini, C.; Jiménez-Escobar, A. [INAF—Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy); Chen, Y.-J.; Huang, C.-H. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Muñoz Caro, G. M. [Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain); Venezia, A. M., E-mail: aciaravella@astropa.unipa.it [ISMN—CNR, Via Ugo La Malfa 153, I-90146 Palermo (Italy)

    2016-09-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol–gel technique. Its chemical composition reflects the Mg{sub 2}SiO{sub 4} stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.

  8. Soft x-ray emission from classical novae in outburst

    International Nuclear Information System (INIS)

    Starrfield, S.; Krautter, J.; MacDonald, J.

    1989-01-01

    Theoretical modeling of novae in outburst predicts that they should be active emitters of radiation at soft x-ray wavelengths twice during their outburst. The first time occurs very early in the outburst when only a very sensitive all sky survey will be able to detect them. This period lasts only a few hours for the very fastest novae. They again become bright in x-rays late in the outburst when the remnant object becomes very hot and is still luminous. Both simulations and observations show that novae can remain very hot for months to years. It is important to observe them at these late times because a measurement both of the flux and temperature can provide information about the mass of the white dwarf, the turn-off time scale, and the energy budget of the outburst. 8 refs., 2 figs

  9. How to Model Super-Soft X-ray Sources?

    Science.gov (United States)

    Rauch, Thomas

    2012-07-01

    During outbursts, the surface temperatures of white dwarfs in cataclysmic variables exceed by far half a million Kelvin. In this phase, they may become the brightest super-soft sources (SSS) in the sky. Time-series of high-resolution, high S/N X-ray spectra taken during rise, maximum, and decline of their X-ray luminosity provide insights into the processes following such outbursts as well as in the surface composition of the white dwarf. Their analysis requires adequate NLTE model atmospheres. The Tuebingen Non-LTE Model-Atmosphere Package (TMAP) is a powerful tool for their calculation. We present the application of TMAP models to SSS spectra and discuss their validity.

  10. Direct comparison of soft x-ray images of organelles with optical fluorescence images

    International Nuclear Information System (INIS)

    Ishino, Masahiko; Kado, Masataka; Kishimoto, Maki; Nishikino, Masaharu; Ohba, Toshiyuki; Kaihori, Takeshi; Kawachi, Tetsuya; Tamotsu, Satoshi; Yasuda, Keiko; Mikata, Yuji; Shinohara, Kunio

    2011-01-01

    Soft x-ray microscopes operating in the water window region are capable of imaging living hydrated cells. Up to now, we have been able to take some soft x-ray images of living cells by the use of a contact x-ray microscope system with laser produced plasma soft x-ray source. Since the soft x-ray images are different from the optical images obtained with an ordinary microscope, it is very important to identify what is seen in the x-ray images. Hence, we have demonstrated the direct comparison between the images of organelles obtained with a fluorescence microscope and those with a soft x-ray microscope. Comparing the soft x-ray images to the fluorescence images, the fine structures of the organelles could be identified and observed. (author)

  11. Considerations for a soft x-ray spectromicroscopy beamline

    International Nuclear Information System (INIS)

    Winn, B.; Hao, X.; Jacobsen, C.

    1996-01-01

    The X-1A soft x-ray undulator at the NSLS is the source for the experimental programs in spectromicroscopy. The authors require both spatial and temporal coherence. Due to the relatively large horizontal divergence of the electron beam in the low β straight section of the x-ray storage ring, it has been possible to split the beam using a scraping mirror into two branches: X-1A used by the authors' program and X-1B used for high resolution spectroscopy. They are now rebuilding the X-1A beamline to provide improved resolving power and essentially linear trade-off between photon rate at the zone plate and resolving power for the soft x-ray spectromicroscopy experiments. This new beamline will exploit both additional floorspace due to the NSLS building expansion and increases in the brightness of the x-ray ring. The beam will be further split into two separate beamlines, both of which will use toroidal mirrors to focus the source on the monochromator entrance slits horizontally and to focus on the monochromator exit slits vertically. This separation comes at no loss of coherent flux and permits low thermal loading on the optics, since the authors need little more than the coherent fraction of the beam at the Fresnel zone plate for microfocusing. Because of the small angular acceptance for spatially coherent illumination of the zone plates and the use of an approximately satisfied Rowland condition, the monochromators have sufficient resolving power with fixed exit arms. Experiments can then be placed near the exit slits, with spatial coherence established by the exit slit size. Resolving power will be controlled by adjusting the entrance slit alone with no change of spatial coherence. The zone plates will be overfilled to be less sensitive to beam vibration and drift

  12. Measurement of soft X-ray power from high-power Z-pinch plasma

    International Nuclear Information System (INIS)

    Wang Wensheng; Qiu Aici; Sun Fengrong; Luo Jianhui; Zhou Haisheng; He Duohui

    2003-01-01

    A Ni-film bolometer driven by the pulsed constant-voltage supply was developed for measuring soft X-ray energy under 1 keV generated from the Qiang-Guang-I, while the measuring system of the soft X-ray power was established with an X-ray diode detector. Results of the soft X-ray energy and power measurements were obtained at the experiment of Kr gas-puff high-power Z-pinch plasma

  13. High quality multilayer mirrors for soft X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Grimmer, H.; Boeni, P.; Breitmeier, U.; Clemens, D.; Horisberger, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Mertins, H.C.; Schaefers, F. [BESSY, Berlin (Germany)

    1997-09-01

    In an effort to develop optical components for X-rays with wavelengths in the water window (2.3 -4.4 nm) multilayer structures have been designed for the following applications: in transmission as phase shifters to change linear into circular polarization, in reflection as mirrors close to normal incidence and as linear polarizers at an angle of incidence of 45{sup o}. (author) 1 fig., 1 tab., 1 ref.

  14. Iridium/Iridium Silicide as an Oxidation Resistant Capping Layer for Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Prisbrey, S; Vernon, S

    2004-01-01

    Rust on a sword, tarnish on the silverware, and a loss in reflectivity for soft x-ray mirrors are all caused by oxidation that changes the desired characteristics of a material. Methods to prevent the oxidation have varied over the centuries with the default method of a protective coating being the most common. The protective coating for x-ray mirrors is usually a self-limiting oxidized layer on the surface of the material that stops further oxidation of the material by limiting the diffusion of oxygen to the material underneath

  15. OSO-8 soft X-ray wheel experiment: Data analysis

    Science.gov (United States)

    Kraushaar, W. L.

    1982-01-01

    The soft X-ray experiment hardware and its operation are described. The device included six X-ray proportional counters, two of which, numbers 1 and 4, were pressurized with on-board methane gas supplies. Number 4 developed an excessive leak rate early in the mission and was turned off on 1975 day number 282 except for brief (typically 2-hour) periods up to day 585 after which it as left off. Counter 1 worked satisfactorily until 1975 day number 1095 (January 1, 1978) at which time the on-board methane supply was depleted. The other four counters were sealed and all except number 3 worked satisfactorily throughout the mission which terminated with permanent satellie shut-down on day 1369. This was the first large area thin-window, gas-flow X-ray detector to be flown in orbit. The background problems were severe and consumed a very large portion of the data analysis effort. These background problems were associated with the Earth's trapped electron belts.

  16. Soft x-ray scanning microtomography with submicron resolution

    International Nuclear Information System (INIS)

    McNulty, I.; Haddad, W.S.; Trebes, J.E.; Anderson, E.H.

    1994-01-01

    Scanning soft x-ray microtomography was used to obtain high-resolution three-dimensional images of a microfabricated test object. Using a special rotation stage mounted on the scanning transmission x-ray microscope at the XIA Beamline at the National Synchrotron Light Source, we recorded nine two-dimensional projections of the 3D test object over an angular range of -50 degrees to +55 degrees. The x-ray wavelength was 3.6 nm and the radiation dose to the object per projection was approximately 2 x 10 6 Gy. The object consisted of two gold patterns supported on transparent silicon nitride membranes, separated by 4.75 Jim, with 100 to 300-nm wide and 65-nm thick features. We reconstructed a volumetric data set of the test object from the two-dimensional projections using an algebraic reconstruction technique algorithm. Features of the test object were resolved to ∼100 nm in transverse and longitudinal extent in three-dimensional images rendered from the volumetric set

  17. Soft x-ray microscope using Fourier transform holography

    International Nuclear Information System (INIS)

    McNulty, I.; Kirz, J.; Jacobsen, C.; Anderson, E.; Howells, M.R.; Rarback, H.

    1989-01-01

    A Fourier transform holographic microscope with an anticipated resolution of better than 100 nm has been built. Extensive testing of the apparatus has begun. Preliminary results include the recording of interference fringes using 3.6 nm x-rays. The microscope employs a charge-coupled device (CCD) detector array of 576 x 384 elements. The system is illuminated by soft x-rays from a high brightness undulator. The reference point source is formed by a Fresnel zone plate with a finest outer zone width of 50 nm. Sufficient temporal coherence for hologram formation is obtained by a spherical grating monochromator. The x-ray hologram intensities at the recording plane are to be collected, digitized and reconstructed by computer. Data acquisition is under CAMAC control, while image display and off-line processing takes place on a VAX graphics workstation. Computational models of Fourier transform hologram synthesis, and reconstruction in the presence of noise, have demonstrated the feasibility of numerical methods in two dimensions, and that three-dimensional information is potentially recoverable. 13 refs., 3 figs

  18. Soft x-ray scanning microtomography with submicrometer resolution

    International Nuclear Information System (INIS)

    McNulty, I.; Haddad, W.S.; Trebes, J.E.; Anderson, E.H.

    1995-01-01

    Scanning soft x-ray microtomography was used to obtain high-resolution three-dimensional images of a microfabricated test object. Using a special rotation stage mounted on the scanning transmission x-ray microscope at the X1A beamline at the National Synchrotron Light Source, we recorded nine two-dimensional projections of the 3D test object over an angular range of -50 degree to +55 degree. The x-ray wavelength was 3.6 nm and the radiation dose to the object per projection was approximately 2x10 6 Gy. The object consisted of two gold patterns supported on transparent silicon nitride membranes, separated by 4.75 μm, with 100- to 300-nm-wide and 65-nm-thick features. We reconstructed a volumetric data set of the test object from the two-dimensional projections using an algebraic reconstruction technique algorithm. Features of the test object were resolved to ∼100 nm in transverse and longitudinal extent with low artifact in three-dimensional images rendered from the volumetric set

  19. Phase retrieval from coherent soft X-ray optics

    International Nuclear Information System (INIS)

    Peele, A.G.; Mancuso, A.P.; Tran, C.Q.; Paterson, D.; McNulty, I.; Hayes, J.P.; Nugent, K.A.

    2005-01-01

    We have recently probed the coherence of soft X-ray flux from a third generation synchrotron source [D. Paterson, B.E. Allman, P.J. McMahon, J. Lin, N. Moldovan, K.A. Nugent, I. McNulty, C.T. Chantler, C.C. Retsch, T.H.K. Irving, D.C. Mancini, Opt. Commun. 195 (2001) 79; C.Q. Tran, A.G. Peele, D. Paterson, A. Roberts, I. McNulty, K.A. Nugent, Opt. Lett. 30 (2005) 204.]. The 1-2 keV radiation exhibits transverse coherence lengths of 60 μm, which means that coherent optical effects may be observed in reasonably sized objects. We present experimental results demonstrating the creation of a phase singularity in a synchrotron beam by passing the beam through a phase mask at similarly low X-ray energies. This complements our earlier work at higher energies and demonstrates that we can now produce phase singularities across a range of energies where we have tested certain intensity-based phase recovery methods. These methods fail when the field contains phase singularities. We describe the X-ray optical vortex and outline its use as a pathological test object for phase retrieval methods. We also present recent progress towards overcoming the problem of phase retrieval in singular optics

  20. Soft x-ray spectroscopy optimisation for the direct determination of valence

    International Nuclear Information System (INIS)

    Wison, N.C.; MacRae, C.M.; Nelson, S.

    2002-01-01

    Full text: Measuring the valence of elements and mapping their occurrence throughout a sample can give important insights into the chemistry of complex systems. The toxic nature of Cr 6+ gives great concern over its disposal in the environment. Being able to resolve Cr 6+ from Cr 3+ allows us to tackle these important problems. The electron probe micro-analyser (EPMA) is routinely used to provide micron resolution chemical analysis. However it is often possible to resolve changes in soft X-ray peak shape and position that reflect changes in the chemical state and crystal structure. A soft x-rays is usually considered to be one of less than 1.5 keV in energy In this study we have compared a range of Cr containing compounds, and measured the differences in the Cr Lα line. In some samples, the Cr L line can be 'relatively weak, so to maximise its excitation probability, a set of Monte Carlo simulations were performed using the CASINO V2.0 package and the most efficient excitation voltage was determined. We also investigate the soft x-ray spectroscopy using electronic structure calculations to produce theoretical Density of States (DOS) for comparison with the measured spectra. The theoretical calculations can aid in understanding spectrum shape and polarisation of the soft x-ray signal in unknown samples, when a full range of standards is not available. Copyright (2002) Australian Society for Electron Microscopy Inc

  1. LNLS soft x-ray spectroscopy (SXS) beamline

    International Nuclear Information System (INIS)

    Tolentino, Helio; Rocha, Milton C.; Tamura, Edilson; Cezar, Julio C.; Vicentin, Flavio C.; Giles, Carlos; Compagnon-Cailhol, Valerie; Abbate, Miguel; Cruz, Daniela Z.N.; Mocellin, Alexandra

    1996-01-01

    The Soft X-ray Spectroscopy beamline will be dedicated to the study of structural, electronic and magnetic properties of materials by using photoabsorption and photoemission techniques, X-ray dischroism will be used to study magnetism of transition metals and rare earths compounds. This beamline is one of the first seven beamlines which were decided to start operation along with the storage ring. Part of the beamline - mostly importations - has been granted by fundings from the state of Sao Paulo (Fapesp). The electron energy analyser came through EEC from a cooperation with a French group at LURE. All components of the beamline are either constructed or bougth and being mounted at the storage ring. The monochromator has already been commissioned under UHV, attaining the specification of 5x10 -9 Torr. To cover the whole energy range, from 800 eV up to 4000 eV, many crystals have been bought, cut and tested. The mirror has been specified in order to focus the source in both directions. Simulations using the Shadow code (source simulation and ray tracing technique) were performed in order to optimize the performance of the optics. We expert to focus 10 mrad down to a spot of 3.0x1.5 mm 2 . The mirror chamber has already been constructed and commissioned under UHV conditions (pressure -9 Torr). The mechanics (mechanical feedthroughs, stability, etc..) has been tested using an X-ray source and has been approved. The experimental chamber has already been used for photoemission experiments using a conventional AL/Mg X-ray source. Many results have been obtained and two master thesis have been performed using this set-up. (author)

  2. Laser-driven soft-X-ray undulator source

    International Nuclear Information System (INIS)

    Fuchs, Matthias

    2010-01-01

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of ∝17 nm from a compact setup. Undulator spectra were detected in ∝70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of ∝10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  3. Laser-driven soft-X-ray undulator source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Matthias

    2010-08-04

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of {proportional_to}17 nm from a compact setup. Undulator spectra were detected in {proportional_to}70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of {proportional_to}10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  4. A new streaked soft x-ray imager for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Benstead, J., E-mail: james.benstead@awe.co.uk; Morton, J.; Guymer, T. M.; Garbett, W. J.; Rubery, M. S.; Skidmore, J. W. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Moore, A. S.; Ahmed, M. F.; Soufli, R.; Pardini, T.; Hibbard, R. L.; Bailey, C. G.; Bell, P. M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bedzyk, M.; Shoup, M. J.; Reagan, S.; Agliata, T.; Jungquist, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Schmidt, D. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); and others

    2016-05-15

    A new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters were used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.

  5. Actinide science with soft x-ray synchrotron radiation

    International Nuclear Information System (INIS)

    Shuh, D.

    2002-01-01

    Several workshops, some dating back more than fifteen years, recognised both the potential scientific impact and opportunities that would be made available by the capability to investigate actinide materials in the vacuum ultraviolet (VUV)/soft X-ray region of the synchrotron radiation (SR) spectrum. This spectral region revolutionized the approach to surface materials chemistry and physics nearly two decades ego. The actinide science community was unable to capitalize on these SR methodologies for the study of actinide materials until recently because of radiological safety concerns. ,The Advanced Light Source (ALS) at LBNL is a third-generation light source providing state-of-the-art performance in the VUV/soft X-ray region. Along with corresponding improvements in detector and vacuum technology, the ALS has rendered experiments with small amounts of actinide materials possible. In particular, it has been the emergence and development of micro-spectroscopic techniques that have enabled investigations of actinide materials at the ALS. The primary methods for the experimental investigation of actinide materials in the VUV/soft X-ray region are the complementary photoelectron spectroscopies, near-edge X-ray absorption fine structure (NEXAFS) and X-ray emission spectroscopy (XES) techniques. Resonant photo-emission is capable of resolving the 5f electron contributions to actinide bonding and can be used to characterise the electronic structure of actinide materials. This technique is clearly a most important methodology afforded by the tunable SR source. Core level and valence band photoelectron spectroscopies are valuable for the characterisation of the electronic properties of actinide materials, as well as for general analytical purposes. High-resolution core-level photo-emission and resonant photo-emission measurements from the a (monoclinic) and δ (FCC) allotropic phases of plutonium metal have been collected on beam line 7.0 at the ALS and the spectra show

  6. Center for X-Ray Optics, 1992

    International Nuclear Information System (INIS)

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors

  7. Imaging bacterial spores by soft-x-ray microscopy

    International Nuclear Information System (INIS)

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-01-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark

  8. Theoretical simulation of soft x-rays for recombining pump

    International Nuclear Information System (INIS)

    Peng Huimin; Zhang Guoping; Sheng Jiatian

    1990-05-01

    The theoretical study and computational simulation of soft X-ray laser produced by the recombination of highly ionized plasma are given. An one-dimensional non LTE radiative hydrodynamic code JB-19 is used for simulating the process of soft X-ray laser produced by the recombination. The incident laser light is focused linearly onto the thin carbon fibre. In the duration of incident laser pulse a highly ionized plasma is generated. After the incident laser has been ended the plasma adiabatically expands and rapidly cools down. During the time of three-body recombination and cascading transition, the population inversion between n = 3 and n = 2 is produced and transition gain is obtained. The analysis and evolution is presented, and factors effected on the gain are also discussed. The calculated results have been compared with the experimental data of RAL. It is found that some were in good agreement with them but some are not. Under the limitation of laser energy, the gain is inversely proportional to the wave-length and pulse width of incident laser. For obtaining high gain it is necessary to have double frequency and to shorten the pulse width of Nd-glass laser. Finally the preliminary results about H-like F ion are also given

  9. Imaging bacterial spores by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W. [Univ. of London, Surrey (United Kingdom); Judge, J. [Unilever plc, Sharnbrook (United Kingdom)] [and others

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  10. Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE

    Science.gov (United States)

    Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich

    1993-01-01

    SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  11. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    Science.gov (United States)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  12. Modeling the focusing efficiency of lobster-eye optics for image shifting depending on the soft x-ray wavelength.

    Science.gov (United States)

    Su, Luning; Li, Wei; Wu, Mingxuan; Su, Yun; Guo, Chongling; Ruan, Ningjuan; Yang, Bingxin; Yan, Feng

    2017-08-01

    Lobster-eye optics is widely applied to space x-ray detection missions and x-ray security checks for its wide field of view and low weight. This paper presents a theoretical model to obtain spatial distribution of focusing efficiency based on lobster-eye optics in a soft x-ray wavelength. The calculations reveal the competition mechanism of contributions to the focusing efficiency between the geometrical parameters of lobster-eye optics and the reflectivity of the iridium film. In addition, the focusing efficiency image depending on x-ray wavelengths further explains the influence of different geometrical parameters of lobster-eye optics and different soft x-ray wavelengths on focusing efficiency. These results could be beneficial to optimize parameters of lobster-eye optics in order to realize maximum focusing efficiency.

  13. Performance limitations of imaging microscopes for soft x-ray applications

    International Nuclear Information System (INIS)

    Lewotsky, K.L.; Kotha, A.; Harvey, J.E.

    1993-01-01

    Recent advances in the fabrication of nanometer-scale multilayer structures have yielded high-reflectance mirrors operating at near-normal incidence for soft X-ray wavelengths. These developments have stimulated renewed interest in high-resolution soft X-ray microscopy. The design of a Schwarzschild imaging microscope for soft X-ray applications has been reported by Hoover and Shealy. Based upon a geometrical ray-trace analysis of the residual design errors, diffraction-limited performance at a wavelength of 100 angstrom was predicted over an object size (diameter) of 0.4 mm. In this paper the authors expand upon the previous analysis of the Schwarzschild X-ray microscope design by determining the total image degradation due to diffraction, geometrical aberrations, alignment errors, and realistic assumptions concerning optical fabrication errors. NASA's Optical Surface Analysis Code (OSAC) is used to model the image degradation effects of residual surface irregularities over the entire range of relevant spatial frequencies. This includes small angle scattering effects due to mid spatial frequency surface errors falling between the traditional figure and finish specifications. Performance predictions are presented parametrically to provide some insight into the optical fabrication and alignment tolerances necessary to meet a particular image quality requirement

  14. Fabrication of the multilayer beam splitters with large area for soft X-ray laser interferometer

    International Nuclear Information System (INIS)

    Wang Zhanshan; Zhang Zhong; Wang Fengli; Wu Wenjuan; Wang Hongchang; Qin Shuji; Chen Lingyan

    2004-01-01

    The soft X-ray laser Mach-Zehnder interferometer is an important tool to measure the electron densities of a laser-produced plasma near the critical surface. The design of a multilayer beam splitter at 13.9 nm for soft X-ray laser Mach-Zehnder interferometer is completed based on the standard of maximizing product of reflectivity and transmission of the beam splitter. The beam splitters which is Mo/Si multilayers on 10 mm x 10 mm area Si 3 N 4 membrane are fabricated using the magnetron sputtering. The figure error of the beam splitter has reached the deep nanometer magnitude by using optical profiler and the product of reflectivity and transmission measured by synchrotron radiation is up to to 4%. (authors)

  15. Total reflection X-ray photoelectron spectroscopy: A review

    International Nuclear Information System (INIS)

    Kawai, Jun

    2010-01-01

    Total reflection X-ray photoelectron spectroscopy (TRXPS) is reviewed and all the published papers on TRXPS until the end of 2009 are included. Special emphasis is on the historical development. Applications are also described for each report. The background reduction is the most important effect of total reflection, but interference effect, relation to inelastic mean free path, change of probing depth are also discussed.

  16. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.; Lee, H.R.; McNulty, I.; Zalensky, A.O.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5 microm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼ 1,000 angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼ 6,000 angstrom, however some features were clearly reconstructed with a depth resolution of ∼ 1,000 angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution, bringing it down to ∼ 1,200 angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  17. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5μm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼1000 Angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼6000 Angstrom, however some features were clearly reconstructed with a depth resolution of ∼1000 Angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to ∼1200 Angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  18. Resonant soft x-ray GISAXS on block copolymer films

    Science.gov (United States)

    Wang, Cheng; Araki, T.; Watts, B.; Ade, H.; Hexemer, A.; Park, S.; Russell, T. P.; Schlotter, W. F.; Stein, G. E.; Tang, C.; Kramer, E. J.

    2008-03-01

    Ordered block copolymer thin films may have important applications in modern device fabrication. Current characterization methods such as conventional GISAXS have fixed electron density contrast that can be overwhelmed by surface scattering. However, soft x-rays have longer wavelength, energy dependent contrast and tunable penetration, making resonant GISAXS a very promising tool for probing nanostructured polymer thin films. Our preliminary investigation was performed using PS-b-P2VP block copolymer films on beam-line 5-2 SSRL, and beam-line 6.3.2 at ALS, LBNL. The contrast/sensitivity of the scattering pattern varies significantly with photon energy close to the C K-edge (˜290 eV). Also, higher order peaks are readily observed, indicating hexagonal packing structure in the sample. Comparing to the hard x-ray GISAXS data of the same system, it is clear that resonant GISAXS has richer data and better resolution. Beyond the results on the A-B diblock copolymers, results on ABC block copolymers are especially interesting.

  19. Soft X-ray emission studies of biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kurmaev, E.Z. E-mail: kurmaev@ifmlrs.uran.ru; Werner, J.P.; Moewes, A.; Chiuzbaian, S.; Bach, M.; Ching, W.-Y.; Motozaki, W.; Otsuka, T.; Matsuya, S.; Endo, K.; Neumann, M

    2004-07-01

    Soft X-ray fluorescence measurements are used to characterize three groups of biomaterials: Vitamin B{sub 12} and derivatives, antioxidants (aspirin and paracetamol), and human teeth. We show that the chemical bonding in Vitamin B{sub 12} is characterized by the strong Co-C bond and the relatively weak Co-N bond. The Co-C bond in cyanocobalamin is found to be stronger than that of methylcobalamin leading to their different biological activity. The chemical bonding of paracetamol and aspirin is characterized by the formation of oxygen lone-pair {pi}-orbitals, which can neutralize free radicals and therefore be related to antioxidant activity of these compounds. Carbon K{alpha} emission spectra of a caries lesion suggest that the CaCO{sub 3} like phase exists in sound enamel and that a selective loss of carbonate occurs during the early stages of a caries attack.

  20. The Development of a Scanning Soft X-Ray Microscope.

    Science.gov (United States)

    Rarback, Harvey Miles

    We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.

  1. Studies of soft x-ray emission during solar flares

    International Nuclear Information System (INIS)

    Anandaram, M.N.

    1973-01-01

    Solar flare soft x-ray emission from 0.5 A to 8.5 A was observed during 1967-68 by Bragg crystal (LiF and EDDT) spectrometers aboard the OSO-4 satellite and also by NRL broad-band ionization detectors aboard the OGO-4 satellite. In this work, instrumental parameters for the LiF crystal spectrometer based on experimental values have been determined and used in the data analysis. The total continuum emission in the 0.5 to 3 A and the 1 to 8 A broad band segments has been determined from OGO-4 data for 21 flares. In doing this, a simple and approximate method of converting the total emission based on the gray body approximation (in which the OGO-4 data are reported) to one based on the thermal continuum spectrum has been developed. (author)

  2. Soft X-ray emission studies of biomaterials

    International Nuclear Information System (INIS)

    Kurmaev, E.Z.; Werner, J.P.; Moewes, A.; Chiuzbaian, S.; Bach, M.; Ching, W.-Y.; Motozaki, W.; Otsuka, T.; Matsuya, S.; Endo, K.; Neumann, M.

    2004-01-01

    Soft X-ray fluorescence measurements are used to characterize three groups of biomaterials: Vitamin B 12 and derivatives, antioxidants (aspirin and paracetamol), and human teeth. We show that the chemical bonding in Vitamin B 12 is characterized by the strong Co-C bond and the relatively weak Co-N bond. The Co-C bond in cyanocobalamin is found to be stronger than that of methylcobalamin leading to their different biological activity. The chemical bonding of paracetamol and aspirin is characterized by the formation of oxygen lone-pair π-orbitals, which can neutralize free radicals and therefore be related to antioxidant activity of these compounds. Carbon Kα emission spectra of a caries lesion suggest that the CaCO 3 like phase exists in sound enamel and that a selective loss of carbonate occurs during the early stages of a caries attack

  3. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  4. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  5. Soft x-ray lasing in a capillary discharge

    International Nuclear Information System (INIS)

    Lee, Tong-Nyong; Shin, Hyun-Joon; Kim, Dong-Eon

    1995-01-01

    Soft x-ray lasing in the C VI Balmer α transition is observed in a capillary discharge. The capillary is made of polyethylene with a bore diameter of 1.2 mm. Plasma radiation from the discharge is analyzed using a toroidal mirror and a two-meter grazing-incidence spectrograph-monochromator. The electron temperatures are measured at both the axial and the peripheral region close to the capillary wall, using space-resolved spectra. A comparison of the branching ratio in the hot (axial) and the cool (peripheral) plasma regions indicates that there is a large population inversion between n=3 and 2 states of C 5+ ions in the cool (Te∼13 eV) region of the capillary plasma. Relative line intensities of the C VI Hα and a number of non-lasing lines are compared in this cool region as a function of capillary length. The C VI Hα line intensity increases exponentially whereas those of non-lasing transitions increase linearly with an increase of the capillary length. The gain coefficient thus measured indicates 2.8 cm -1 . The lasing line intensity does not seem to increase exponentially beyond a capillary length of 16 mm and the gain-length product, gL, obtained here is 3.9, which is a typical value one would expect for a recombination soft x-ray laser. The photoelectric signals of the lasing line indicate that the lasing takes place about 40 ns after the current peak in the first half cycle of the capillary discharge, with a lasing pulse width of 60 ns in FWHM

  6. Development of small scale soft x-ray lasers: Aspects of data interpretation

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kim, D.; Voorhees, D.; Suckewer, S.

    1990-02-01

    The widespread application of soft x-ray laser technology is contingent on the development of small scale soft x-ray lasers that do not require large laser facilities. Progress in the development of soft x-ray lasers pumped by a Nd laser of energy 6-12J is reported below. Some aspects of data interpretation and gain measurements in such systems are discussed. 11 refs., 11 figs

  7. Linear luminescence for thin plastic scintillator under intense soft X-ray irradiation

    International Nuclear Information System (INIS)

    Ning Jiamin; Jiang Shilun; Xu Rongkun; Guo Cun

    2006-01-01

    The basic principle of soft X-ray power meter is introduced in the paper and the experimental process and the result of thin plastic scintillator linear luminescence under intense soft X-ray irradiation are described. A range of flux density of energy for thin plastic scintillator linear luminescence under intense soft X-ray irradiation is included. The upper limit of the flux density is 1.47 x 10 5 W/cm 2 . (authors)

  8. Cr/B{sub 4}C multilayer mirrors: Study of interfaces and X-ray reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Burcklen, C.; Meltchakov, E.; Jérome, A.; Rossi, S. de; Delmotte, F. [Laboratoire Charles Fabry, Institut d' Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex (France); Soufli, R. [Laboratoire Charles Fabry, Institut d' Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex (France); Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Dennetiere, D.; Polack, F.; Capitanio, B.; Thomasset, M. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, BP 48F-91192 Gif sur Yvette Cedex (France); Gullikson, E. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720 (United States)

    2016-03-28

    We present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B{sub 4}C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B{sub 4}C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L{sub 2,3} absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (optical constants) values for Cr.

  9. Real time 2 dimensional detector for charged particle and soft X-ray images

    International Nuclear Information System (INIS)

    Ishikawa, M.; Ito, M.; Endo, T.; Oba, K.

    1995-01-01

    The conventional instruments used in experiments for the soft X-ray region such as X-ray diffraction analysis are X-ray films or imaging plates. However, these instruments are not suitable for real time observation. In this paper, newly developed imaging devices will be presented, which have the capability to take X-ray images in real time with a high detection efficiency. Also, another capability, to take elementary particle tracking images, is described. (orig.)

  10. TiO2 Nanoparticles as a Soft X-ray Molecular Probe

    Energy Technology Data Exchange (ETDEWEB)

    Larabell, Carolyn; Ashcroft, Jared M.; Gu, Weiwei; Zhang, Tierui; Hughes, Steven M.; Hartman, Keith B.; Hofmann, Cristina; Kanaras, Antonios G.; Kilcoyne, David A.; Le Gros, Mark; Yin, Yadong; Alivisatos, A. Paul; Larabell, Carolyn A.

    2007-06-30

    With the emergence of soft x-ray techniques for imaging cells, there is a pressing need to develop protein localization probes that can be unambiguously identified within the region of x-ray spectrum used for imaging. TiO2 nanocrystal colloids, which have a strong absorption cross-section within the "water-window" region of x-rays, areideally suited as soft x-ray microscopy probes. To demonstrate their efficacy, TiO2-streptavidin nanoconjugates were prepared and subsequently labeled microtubules polymerized from biotinylated tubulin. The microtubules were imaged using scanning transmission x-ray microscopy (STXM), and the TiO2 nanoparticle tags were specifically identified using x-ray absorption near edge spectroscopy (XANES). These experiments demonstrate that TiO2 nanoparticles are potential probes for protein localization analyses using soft x-ray microscopy.

  11. Observations of several disruptions in PLT using soft and ultra-soft x-ray radiation

    International Nuclear Information System (INIS)

    Eames, D.R.; von Goeler, S.; Sauthoff, N.R.; Stodiek, W.

    1979-03-01

    The evolution of ultra-soft x-ray radiation (USX, hν approx. > 100 eV) is compared to that of the soft x-ray radiation (SX, hν approx. > 1000 eV) during several disruptions in PLT. Spatial resolution is obtained in both cases by arrays of silicon surface barrier detectors viewing along different chords. During some disruptions the USX behaves quite differently from the SX, and a classification is made based on the USX behavior. Different interpretations of the data are discussed, along with the possibility that these measurements may distinguish between the roles of temperature and impurity density changes during disruptions

  12. Testing warm Comptonization models for the origin of the soft X-ray excess in AGNs

    Science.gov (United States)

    Petrucci, P.-O.; Ursini, F.; De Rosa, A.; Bianchi, S.; Cappi, M.; Matt, G.; Dadina, M.; Malzac, J.

    2018-03-01

    The X-ray spectra of many active galactic nuclei (AGNs) show a soft X-ray excess below 1-2 keV on top of the extrapolated high-energy power law. The origin of this component is uncertain. It could be a signature of relativistically blurred, ionized reflection or the high-energy tail of thermal Comptonization in a warm (kT 1 keV), optically thick (τ ≃ 10-20) corona producing the optical/UV to soft X-ray emission. The purpose of the present paper is to test the warm corona model on a statistically significant sample of unabsorbed, radio-quiet AGNs with XMM-Newton archival data, providing simultaneous optical/UV and X-ray coverage. The sample has 22 objects and 100 observations. We use two thermal Comptonization components to fit the broadband spectra, one for the warm corona emission and one for the high-energy continuum. In the optical/UV, we also include the reddening, the small blue bump, and the Galactic extinction. In the X-rays, we include a warm absorber and a neutral reflection. The model gives a good fit (reduced χ2 uniformly distributed in the 0.1-1 keV range, while the optical depth is in the range 10-40. These values are consistent with a warm corona covering a large fraction of a quasi-passive accretion disk, i.e., that mostly reprocesses the warm corona emission. The disk intrinsic emission represents no more than 20% of the disk total emission. According to this interpretation, most of the accretion power would be released in the upper layers of the accretion flow.

  13. Calibrating an ellipsometer using x-ray reflectivity

    International Nuclear Information System (INIS)

    Richter, Andrew; Guico, Rodney; Wang, Jin

    2001-01-01

    X-ray reflectivity has been used to find the optical refractive index of polymer thin film in order to calibrate a Stokes ellipsometer for film thickness measurements during the deposition procedure. A thin, spun-cast film of poly(tert-butyl acrylate) (PtBA) was made with a film thickness of ∼500 {angstrom}. An x-ray reflectivity measurement was taken and the data were fit to determine the thickness of the PtBA film and the underlying silicon--oxide layer. This measurement was then used to calculate the optical refractive index for PtBA at the ellipsometer wavelength. Using this value for the refractive index subsequently allowed us to determine the film thickness for a series of PtBA films made by using a number of polymer solution concentrations resulting in film thickness ranging from 100 to 1300 {angstrom}. These film thicknesses were found to be generally the same as those found using x-ray reflectivity. The success of this procedure suggests a useful method for calibrating an ellipsometer for fast in-lab measurements, especially on ultrathin films when simultaneous determination of the film thickness and the refractive index is less reliable

  14. Chemically selective soft x-ray patterning of polymers

    International Nuclear Information System (INIS)

    Wang, J.; Stover, H.D.; Hitchcock, A.P.; Tyliszczak, T.

    2007-01-01

    The chemically selective modification of polymer mixtures by monochromated soft X-rays has been explored using the high-brightness fine-focused 50 nm beam of a scanning transmission X-ray microscope. Four different polymer systems were examined: a polymethylmethacrylate (PMMA) polyacrylonitrile (PAN) bilayer film; a PMMA-blend-PAN microphase-separated film; a poly(MMA-co-AN) copolymer film; and a poly(ethyl cyanoacrylate) homopolymer film. A high level of chemically selective modification was achieved for the PMMA/PAN bilayer; in particular, irradiation at 288.45 eV selectively removed the carbonyl group from PMMA while irradiation at 286.80 eV selectively reduced the nitrile group of PAN, even when these irradiations were carried out at the same (x,y) position of the sample. In the last two homogeneous polymer systems, similar amounts of damage to the nitrile and carbonyl groups occurred during irradiation at either 286.80 or 288.45 eV. This is attributed to damage transfer between the C=N and C=O groups mediated by primary electrons, secondary electrons or radical/ionic processes, aided by their close spatial proximity. Although the overall thickness of the bilayer sample at 70 nm is smaller than the lateral line spreading of 100 nm, the interface between the layers appears to effectively block the transport of energy, and hence damage, between the two layers. The origins of the line spreading in homogeneous phases and possible origins of the damage blocking effect of the interface are discussed. To demonstrate chemically selective patterning, high-resolution multi-wavelength patterns were created in the PMMA/PAN bilayer system

  15. The structure of the coronal soft X-ray source associated with the dark filament disappearance of 1991 September 28 using the Yohkoh Soft X-ray Telescope

    Science.gov (United States)

    Mcallister, Alan; Uchida, Yutaka; Tsuneta, Saku; Strong, Keith T.; Acton, Loren W.; Hiei, Eijiro; Bruner, Marilyn E.; Watanabe, Takashi; Shibata, Kazunari

    1992-01-01

    The structure of the coronal soft X-ray source associated with the dark filament disappearance on September 28, 1991, observed with the Soft X-ray Telescope, is examined as a possible example of the 'eruption-reconnection' model of filament disappearance. The results suggest, however, that this model may not fit. There is a strong possibility that much of the dark filament mass remains in the heated unwinding axial field.

  16. Space- and time-resolved diagnostics of soft x-ray emission from laser plasmas

    International Nuclear Information System (INIS)

    Richardson, M.C.; Jaanimagi, P.A.; Chen, H.

    1988-01-01

    The analysis of soft x-ray emission from plasmas created by intense short-wavelength laser radiation can provide much useful information on the density, temperature and ionization distribution of the plasma. Until recently, limitations of sensitivity and the availability of suitable x-ray optical elements have restricted studies of soft x-ray emission from laser plasmas. In this paper, the authors describe novel instrumentation which provides high sensitivity in the soft x-ray spectrum with spatial and temporal resolution in the micron and picosecond ranges respectively. These systems exploit advances made in soft x-ray optic and electro-optic technology. Their application in current studies of laser fusion, x-ray lasers, and high density atomic physics are discussed

  17. Soft X-ray Foucault test: A path to diffraction-limited imaging

    Science.gov (United States)

    Ray-Chaudhuri, A. K.; Ng, W.; Liang, S.; Cerrina, F.

    1994-08-01

    We present the development of a soft X-ray Foucault test capable of characterizing the imaging properties of a soft X-ray optical system at its operational wavelength and its operational configuration. This optical test enables direct visual inspection of imaging aberrations and provides real-time feedback for the alignment of high resolution soft X-ray optical systems. A first application of this optical test was carried out on a Mo-Si multilayer-coated Schwarzschild objective as part of the MAXIMUM project. Results from the alignment procedure are presented as well as the possibility for testing in the hard X-ray regime.

  18. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.; Divan, Ralu; Jacobsen, Chris

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, and without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.

  19. The Soft X-Ray Spectra of Sulfur Compounds.

    Science.gov (United States)

    Zhou, Ling

    1995-01-01

    The sulfur compounds including CdS, ZnS, rm MoS_2, WS_2, NiS, FeS, GaS, SnS, MgS and Alloy rm ZnS_{x }Se_{1-x} were investigated by using photon/e-beam excited soft x-ray spectroscopy through SXA, SXE, SXF and inelastic Resonant Raman scattering and resonant elastic scattering processes. For valence bands, the PDOS of S L_{2,3}, Zn M_{2,3}, Se M _{4,5}, bands locations, band gaps Eg, core level spin splitting, the lifetime broadening of valence band t_{1/2}, branching ratio of rm L_2/L_3 and shallow d level and exciton state were measured in some of these materials respectively. The excitation mechanism or threshold effects were studied for CdS, ZnS, MoS_2, WS_2, FeS, NiS, and alloy. In photon excited S L_ {2,3}^ectra, local core levels with spin splitting were found to charge threshold effects. The threshold effects are also found to be influenced by resonant elastic and inelastic scattering process. A simple model and the second order perturbation theory are used to explain the observed inelastic Raman scattering of Zn M _{2,3} spectra near d threshold. The d participation in the chemical bonding and interactions was studied. Atomiclike d bands were found in FeS and NiS from strong d-d and d-p couplings. Two groups of d bands were observed in Transitional Metal Sulfides (TMS) and the no-bonding group with a few d bands was found to across whole valence bands in TMS. The direct connection between valence bands and conduction bands is built and some conduction bands were studied. A study of alloy was included briefly. These experiments provide a rich information about TMS, and prove that Soft X-ray Spectroscopy is a powerful, precise and reliable tool in the study of fine electronic band structure in solids.

  20. Detection of soft X-rays from α Lyrae and eta Bootis with an imaging X-ray telescope

    International Nuclear Information System (INIS)

    Topka, K.; Fabricant, D.; Harnden, F.R. Jr.; Gorenstein, P.; Rosner, R.

    1979-01-01

    Two nearby stars have been detected in the soft X-ray band with an imaging X-ray telescope flown aboard two sounding rockets. The exposure times were 4.8 and 4.5 s for the images of the AO V star α Lyrae (Vega) and the GO IV star eta Bootis, respectively. Laboratory measurements rule out the possibility that the observed signals were due to UV contamination. These X-ray observations imply luminosities of L/sub X/(0.2--0.8 keV) approx. =3 x 10 28 ergs s -1 for Vega and L/sub X/(0.15--1.5 keV) approx. =1 x 10 29 ergs s -1 for eta Boo. A coronal interpretation of the X-rays from Vega is in serious conflict with simple convective models for early-type main-sequence stars. Magnetic field activity may be responsible for heating the corona, as has been suggested for the Sun. In the case of eta Boo, a coronal interpretation is also favored; however, if the unseen companion of eta Boo is degenerate, the X-ray emission may instead originate in a stellar wind accreting upon a white dwarf or neutron star

  1. Soft x-ray driven ablation and its positive use for a new efficient acceleration

    International Nuclear Information System (INIS)

    Yabe, Takashi; Kiyokawa, Shuji; Mochizuki, Takayasu; Sakabe, Shuji; Yamanaka, Chiyoe

    1983-01-01

    The ablation process driven by soft X-ray is investigated by one-dimensional hydrodynamic code coupled with LTE, average ion model and multi-group radiation package. The following two major results are obtained: (1) the ablation pressure and mass ablation rate scalings, and (2) a new acceleration scheme which positively uses the unique property of soft X-ray transport. (author)

  2. Shot-noise limited throughput of soft X-ray ptychography for nanometrology applications

    NARCIS (Netherlands)

    Koek, Wouter; Florijn, Bastiaan; Bäumer, Stefan; Kruidhof, Rik; Sadeghian, Hamed

    2018-01-01

    Due to its potential for high resolution and three-dimensional imaging, soft X-ray ptychography has received interest for nanometrology applications. We have analyzed the measurement time per unit area when using soft X-ray ptychography for various nanometrology applications including mask

  3. Compact X-ray sources: X-rays from self-reflection

    Science.gov (United States)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  4. The Soft X-ray real time fast trigger system

    International Nuclear Information System (INIS)

    Blackler, K.; Edwards, A.; Holm, J.

    1992-05-01

    Most current diagnostics are limited to recording data either at fixed times and data rates, or in response to certain predefined events - such as the injection of a pellet. The previous Soft X-Ray trigger system at Joint European Torus Joint Undertaking (JET)(A.W. Edwards et al., Rev Sci Instrum. 57(8), p2142, 1986) improved upon this by using Analogue Signal Processors to monitor the analogue data in real time and to provide 'triggers' to the data acquisition system in response to an event such as a sawtooth collapse. This system was however limited in the type of events that could be detected. It was also incapable of being rapidly re-configured. Advances in digital electronics caused a study to be undertaken to see if this situation could be improved. The system described below is the result of this study and has successfully run at JET since the summer of 1990, providing a greatly increased quality of data as well as recording some new phenomena such as the spontaneous snake. This note has been produced to describe the function and operation of the trigger system. (author)

  5. Soft X-ray diffractometer for synchrotron radiation

    CERN Document Server

    Gau, T S; Liu, K Y; Chung, C H; Chen, C K; Lai, S C; Shu, C H; Huang, Y S; Chao, C H; Lee, Y R; Chen, C T; Chang, S L

    2001-01-01

    An ultra-high vacuum soft X-ray diffractometer has been constructed and commissioned at the Synchrotron Radiation Research Center (SRRC) to investigate materials structures in mesoscale. The diffractometer, housed in a UHV tank, consists of a 6-circle goniometer, together with the systems for beam-collimation, signal detection, vacuum, and control panels. The kappa-phi (cursive,open) Greek-psi goniostat is adopted for the sample orientation. Crystal samples can be rotated along a given reciprocal lattice vector by using psi scan. Two orthogonal axes, gamma (or 2 theta) and delta, are used to move the detector. The detector is a semiconductor pin diode, which can be used in UHV ambient. This 6-circle goniometer allows for sample scanning of a wide range in the momentum space. The motors used for goniometer rotation and slit selection are UHV compatible. The UHV tank is placed on an XYZ table capable of positioning the center of the goniometer onto the incident beam. Test experiments have been carried on the 1-...

  6. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    Science.gov (United States)

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  7. X-Pinch soft x-ray source for microlithography

    International Nuclear Information System (INIS)

    Glidden, S.C.; Hammer, D.A.; Kalantar, D.H.; Qi, N.

    1993-01-01

    The x-pinch soft x-ray source is described for application in submicron resolution lithography. Experiments have been performed to characterize the radiation emitted from magnesium wire x-pinch plasmas using an 80 ns, ≤500 kA pulse. Yields of 14.2 J averaged over three independent calibrated diagnostics at 445 kA have been measured in magnesium K-shell radiation (predominantly 8.4 angstrom to 9.4 angstrom or 1.5 keV to 1.3 keV) from a submillimeter source, with as little as 5-10% of the yield below the 6.74 angstrom silicon absorption edge. A new ≤700 kA, 100 ns pulser being used for x-pinch physics experiments is described. The design of a 40 pulse per second pulsed power system and wire loading mechanism for exposing a resist in 1 second at a distance 40 cm is presented

  8. Soft x-ray emission studies of several aluminum alloys

    International Nuclear Information System (INIS)

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.; Biancaniello, F.; Curelaru, I.

    1986-01-01

    During the first few months of operation of our soft x-ray spectrometer at the NSLS, we have measured the L emission spectrum for three classes of aluminum alloys: dilute aluminum-magnesium alloys to extend the Al-Mg system to the impurity limit; a 50-50 alloy of aluminum-lithium to characterize the band structure of bulk samples of this potential battery electrolite; and the icosahedral and normal Al-Mn alloys to see if the two phases had measurably different density of states which have been predicted. All spectra shown are produced when core holes generated by energetic electrons or photons are filled by radiative transitions from conduction band states. Dipole selection rules govern the transitions. Thus, K spectra provide a measure of the p-symmetic partial density of states (DOS) near the atom. Similarly, L spectra produced by transitions to p-core holes map the s and d symmetric DOS in the vicinity of the atom with the core hole

  9. Soft x-ray photochemistry in solid surfaces

    International Nuclear Information System (INIS)

    Sekiguchi, Tetsuhiro; Baba, Yuji

    2000-01-01

    Resent studies on photochemistry using synchrotron soft x-rays in solid surfaces are reviewed. A type of site-selective chemical reaction induced by inner-shell excitation is classified into two model systems that are referred to as 'Element-specific fragmentation' and 'Bonding-site-specific dissociation.' The former system uses difference of core-binding-energies in different elements and the latter is based on the existence of plural unoccupied molecular orbitals with different antibonding character. The selectivity of the reaction in respective systems is discussed in terms of mass-patterns of desorbed fragment-ions and photon-energy dependence of the ion yields. Also discussed are the fragmentation and desorption mechanisms which include intrinsic direct photofragmentation and indirect channels induced by secondary electrons. The latter process reduces the selectivity of the reaction. Furthermore, two experimental approaches, which have recently been performed to estimate the relative magnitude of contribution in the direct and indirect processes to the total yields, are described: (1) the layer-thickness dependence and (2) polarization-angle dependence in the photofragmentation. (author)

  10. Soft x-ray emission studies of several aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.; Biancaniello, F.; Curelaru, I.

    1986-09-23

    During the first few months of operation of our soft x-ray spectrometer at the NSLS, we have measured the L emission spectrum for three classes of aluminum alloys: dilute aluminum-magnesium alloys to extend the Al-Mg system to the impurity limit; a 50-50 alloy of aluminum-lithium to characterize the band structure of bulk samples of this potential battery electrolite; and the icosahedral and normal Al-Mn alloys to see if the two phases had measurably different density of states which have been predicted. All spectra shown are produced when core holes generated by energetic electrons or photons are filled by radiative transitions from conduction band states. Dipole selection rules govern the transitions. Thus, K spectra provide a measure of the p-symmetic partial density of states (DOS) near the atom. Similarly, L spectra produced by transitions to p-core holes map the s and d symmetric DOS in the vicinity of the atom with the core hole.

  11. Human soft tissue analysis using x-ray or gamma-ray techniques

    International Nuclear Information System (INIS)

    Theodorakou, C; Farquharson, M J

    2008-01-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus. (topical review)

  12. A development of laser-plasma-based soft x-ray microscope system

    International Nuclear Information System (INIS)

    Nam, Ki Yong; Kim, Kyong Woo; Kim, Kyu Gyeom; Kwon, Young Man; Yoon, Kwon Ha

    2003-01-01

    Soft x-ray nano-imaging microscopy system for biomedical application with a high resolution about 50 nm has been designed and described, and its integrated techniques also have been studied. The system is mainly composed of soft x-ray generation system, nano-scaled control system, x-ray optical device like a condenser or object mirror, a CCD camera coupled with multichannel plate (MCP) and vacuum system. In the system, soft x-ray is generated from the laser-based plasma by focusing Nd:YAG laser beam on tantalum (Ta) target. In an x-ray optical system, a wolter mirror has been considering condensing the x-ray beam on a biological specimen and zone plate was adapted as an object mirror. A Si 3 N 4 was used as specimen holder for keeping a biological sample alive in atmosphere conditions. A back-illuminated-CCD camera coupled with multichannel plate was determined to set up.

  13. Soft X-Ray Observations of a Complete Sample of X-Ray--selected BL Lacertae Objects

    Science.gov (United States)

    Perlman, Eric S.; Stocke, John T.; Wang, Q. Daniel; Morris, Simon L.

    1996-01-01

    We present the results of ROSAT PSPC observations of the X-ray selected BL Lacertae objects (XBLs) in the complete Einstein Extended Medium Sensitivity Survey (EM MS) sample. None of the objects is resolved in their respective PSPC images, but all are easily detected. All BL Lac objects in this sample are well-fitted by single power laws. Their X-ray spectra exhibit a variety of spectral slopes, with best-fit energy power-law spectral indices between α = 0.5-2.3. The PSPC spectra of this sample are slightly steeper than those typical of flat ratio-spectrum quasars. Because almost all of the individual PSPC spectral indices are equal to or slightly steeper than the overall optical to X-ray spectral indices for these same objects, we infer that BL Lac soft X-ray continua are dominated by steep-spectrum synchrotron radiation from a broad X-ray jet, rather than flat-spectrum inverse Compton radiation linked to the narrower radio/millimeter jet. The softness of the X-ray spectra of these XBLs revives the possibility proposed by Guilbert, Fabian, & McCray (1983) that BL Lac objects are lineless because the circumnuclear gas cannot be heated sufficiently to permit two stable gas phases, the cooler of which would comprise the broad emission-line clouds. Because unified schemes predict that hard self-Compton radiation is beamed only into a small solid angle in BL Lac objects, the steep-spectrum synchrotron tail controls the temperature of the circumnuclear gas at r ≤ 1018 cm and prevents broad-line cloud formation. We use these new ROSAT data to recalculate the X-ray luminosity function and cosmological evolution of the complete EMSS sample by determining accurate K-corrections for the sample and estimating the effects of variability and the possibility of incompleteness in the sample. Our analysis confirms that XBLs are evolving "negatively," opposite in sense to quasars, with Ve/Va = 0.331±0.060. The statistically significant difference between the values for X-ray

  14. Reflection of attosecond x-ray free electron laser pulses

    International Nuclear Information System (INIS)

    Hau-Riege, Stefan P.; Chapman, Henry N.

    2007-01-01

    In order to utilize hard x-ray free electron lasers (XFEL's) when they are extended to attosecond pulse lengths, it is necessary to choose optical elements with minimal response time. Specular grazing-incidence optics made of low-Z materials are popular candidates for reflectors since they are likely to withstand x-ray damage and provide sufficiently large reflectivities. Using linear-optics reflection theory, we calculated the transient reflectivity of a delta-function electric pulse from a homogenous semi-infinite medium as a function of angle of incidence for s- and p-polarized light. We specifically considered the pulse response of beryllium, diamond, silicon carbide, and silicon, all of which are of relevance to the XFEL's that are currently being built. We found that the media emit energy in a damped oscillatory way, and that the impulse-response times are shorter than 0.3 fs for normal incidence. For grazing incidence, the impulse-response time is substantially shorter, making grazing-incidence mirrors a good choice for deep subfemtosecond reflective optics

  15. Biological imaging by soft X-ray diffraction microscopy

    Science.gov (United States)

    Shapiro, David

    We have developed a microscope for soft x-ray diffraction imaging of dry or frozen hydrated biological specimens. This lensless imaging system does not suffer from the resolution or specimen thickness limitations that other short wavelength microscopes experience. The microscope, currently situated at beamline 9.0.1 of the Advanced Light Source, can collect diffraction data to 12 nm resolution with 750 eV photons and 17 nm resolution with 520 eV photons. The specimen can be rotated with a precision goniometer through an angle of 160 degrees allowing for the collection of nearly complete three-dimensional diffraction data. The microscope is fully computer controlled through a graphical user interface and a scripting language automates the collection of both two-dimensional and three-dimensional data. Diffraction data from a freeze-dried dwarf yeast cell, Saccharomyces cerevisiae carrying the CLN3-1 mutation, was collected to 12 run resolution from 8 specimen orientations spanning a total rotation of 8 degrees. The diffraction data was phased using the difference map algorithm and the reconstructions provide real space images of the cell to 30 nm resolution from each of the orientations. The agreement of the different reconstructions provides confidence in the recovered, and previously unknown, structure and indicates the three dimensionality of the cell. This work represents the first imaging of the natural complex refractive contrast from a whole unstained cell by the diffraction microscopy method and has achieved a resolution superior to lens based x-ray tomographic reconstructions of similar specimens. Studies of the effects of exposure to large radiation doses were also carried out. It was determined that the freeze-dried cell suffers from an initial collapse, which is followed by a uniform, but slow, shrinkage. This structural damage to the cell is not accompanied by a diminished ability to see small features in the specimen. Preliminary measurements on frozen

  16. Soft x-ray imaging system for measurement of noncircular tokamak plasmas

    International Nuclear Information System (INIS)

    Fonck, R.J.; Reusch, M.; Jaehnig, K.P.; Hulse, R.; Roney, P.

    1986-08-01

    A soft x-ray camera and image processing system has been constructed to provide measurements of the internal shape of high temperature tokamak plasmas. The camera consists of a metallic-foil-filtered pinhole aperture and a microchannel plate image intensifier/convertor which produces a visible image for detection by a CCD TV camera. A wide-angle tangential view of the toroidal plasma allows a single compact camera to view the entire plasma cross section. With Be filters 12 to 50 μm thick, the signal from the microchannel plate is produced mostly by nickel L-line emissions which orignate in the hot plasma core. The measured toroidal image is numerically inverted to produce a cross-sectional soft x-ray image of the plasma. Since the internal magnetic flux surfaces are usually isothermal and the nickel emissivity depends strongly on the local electron temperature, the x-ray emission contours reflect the shape of the magnetic surfaces in the plasma interior. Initial results from the PBX tokamak experiment show clear differences in internal plasma shapes for circular and bean-shaped discharges

  17. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  18. X-ray reflection from cold matter in the nuclei of active galaxies

    International Nuclear Information System (INIS)

    Pounds, K.A.; Nandra, K.; Stewart, G.C.; George, I.M.; Fabian, A.C.

    1990-01-01

    The evidence accumulated over the past few years for strong soft X-ray emission from active galactic nuclei has been interpreted as black body emission from the innermost stable region of an accretion disk feeding the putative black hole at the centre of the active nucleus, a view given strong support by the rapid variability of some soft X-ray components. More recently, new X-ray data from the Exosat and Ginga satellites have revealed a second indicator of optically thick matter in the vicinity of the active nucleus, in the form of an iron K-fluorescence line at ≅ 6.4 keV. We report the discovery of two further common features of continuum absorption and reflection, revealed in a composite spectrum from twelve Ginga observations of Seyfert-type active galactic nuclei. Most of these spectral features are shown to be well modelled by reprocessing of the hard X-ray power-law continuum in a slab (or perhaps a disk) of cold matter. There is also evidence for a substantial line-of-sight column of photoionized material. (author)

  19. X-ray microscopy using grazing-incidence reflections optics

    International Nuclear Information System (INIS)

    Price, R.H.

    1983-01-01

    The role of Kirkpatrick-Baez microscopes as the workhorse of the x-ray imaging devices is discussed. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics

  20. X-ray microscopy using grazing-incidence reflection optics

    International Nuclear Information System (INIS)

    Price, R.H.

    1981-01-01

    The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics

  1. Soft x-ray detection with diamond photoconductive detectors

    International Nuclear Information System (INIS)

    Kania, D.R.; Pan, L.; Kornblum, H.; Bell, P.; Landen, O.N.; Pianetta, P.

    1990-01-01

    Photoconductive detectors fabricated from natural lla diamonds have been used to measure the x-ray power emitted from laser produced plasmas. The detector was operated without any absorbing filters to distort the x-ray power measurement. The 5.5 eV bandgap of the detector material practically eliminates its sensitivity to scattered laser radiation thus permitting filterless operation. The detector response time or carrier life time was 90 ps. Excellent agreement was achieved between a diamond PCD and a multichannel photoemissive diode array in the measurement of radiated x-ray power and energy. 4 figs

  2. Final Report on Small Particle Speciation for Forensics Analysis by Soft X-ray Scanning Transmission X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pacold, J. I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Altman, A. B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Donald, S B [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davisson, M. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holliday, K S [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kristo, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Minasian, S. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nelson, A J [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tyliszczak, T [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-30

    Materials of interest for nuclear forensic science are often highly heterogeneous, containing complex mixtures of actinide compounds in a wide variety of matrices. Scanning transmission X-ray microscopy (STXM) is ideally suited to study such materials, as it can be used to chemically image specimens by acquiring X-ray absorption near-edge spectroscopy (XANES) data with 25 nm spatial resolution. In particular, STXM in the soft X-ray synchrotron radiation regime (approximately 120 – 2000 eV) can collect spectroscopic information from the actinides and light elements in a single experiment. Thus, STXM combines the chemical sensitivity of X-ray absorption spectroscopy with high spatial resolution in a single non-destructive characterization method. This report describes the application of STXM to a broad range of nuclear materials. Where possible, the spectroscopic images obtained by STXM are compared with information derived from other analytical methods, and used to make inferences about the process history of each material. STXM measurements can yield information including the morphology of a sample, “elemental maps” showing the spatial distribution of major chemical constituents, and XANES spectra from localized regions of a sample, which may show spatial variations in chemical composition.

  3. Total reflection x-ray fluorescence - an approach to nanoanalysis

    International Nuclear Information System (INIS)

    Klockenkaemper, R.

    2000-01-01

    X-ray fluorescence analysis (XRFA) is a powerful tool used for industrial production, geological prospecting and for environmental control. However, the method suffers from a lack of sensitivity so that analyses are restricted to microanalytical investigations. That means: the sample amount needed for analysis is above some 10 micrograms, concentrations to be determined have to be on the μg/ml level, and thin layers to be characterized must be of micrometer thickness. In contrast to conventional XRFA, total-reflection X-ray fluorescence (TXRF) is extremely sensitive and even allows nano-analytical investigations. Three different ways can be taken: (i) use of minute sample amounts of only 10 nano-grams, (ii) determination of extreme traces below ng/ml and (iii) surface analysis and depth profiling of shallow layers with nano-meter thickness. In this lecture, the basic physical phenomena of total reflection and standing waves are outlined. The experimental equipment for TXRF is sketched out and commercially available instruments of different manufacturers are compared. Furthermore, examples are given for the three kinds of nano-analytical applications: ultra-micro, analysis, ultra trace analysis and mono- and thin-layer analysis. (author)

  4. Characterization and modeling of soft x-ray lasers

    International Nuclear Information System (INIS)

    Wan, A.S.; Cauble, R.; Celliers, P.; DaSilva, L.B.; Libby, S.B.; London, R.A.; Nilsen, J.; Moreno, J.C.; Weber, F.

    1995-01-01

    This paper describes our theoretical, numerical, and experimental development of short-pulse-duration, high brightness, and enhanced coherence x-ray lasers (XRLs) as sources suitable for applications as imaging diagnostics for laser plasmas

  5. F K-edge soft X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Sugimura, Tetsuro; Kawai, Jun; Maeda, Kuniko; Fukushima, Akiko; Shin, S.; Motoyama, Muneyuki; Nakajima Tsuyoshi

    2001-01-01

    We measured F X-ray absorption spectra of various fluorine compounds using a synchrotron radiation at KEK-PF. The absorption spectra were measured using X-ray fluorescence yield (XFY) and total electron yield (TEY) methods. Change of the spectral shape has a relation to the metal-fluorine bond distance. By comparing with the experimental spectrum and calculated spectrum, F 2p state density is divined into up and down states. (author)

  6. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance

    DEFF Research Database (Denmark)

    Singh, K; Stewart, G.; Westergaard, Niels Jørgen Stenfeldt

    2017-01-01

    The Soft X-ray focusing Telescope (SXT), India’s first X-ray telescope based on the principle of grazing incidence, was launched aboard the AstroSat and made operational on October 26, 2015. X-rays in the energy band of 0.3–8.0 keV are focussed on to a cooled charge coupled device thus providing ...

  7. Changes of surface electron states of InP under soft X-rays irradiation

    International Nuclear Information System (INIS)

    Yang Zhian; Yang Zushen; Jin Tao; Qui Rexi; Cui Mingqi; Liu Fengqin

    1999-01-01

    Changes of surface electronic states of InP under 1 keV X-ray irradiation is studied by X-ray photoelectron spectroscopy (XPS) and ultraviolet ray energy spectroscopy (UPS). The results show that the soft X-ray irradiation has little effect on In atoms but much on P atoms. The authors analysed the mechanism of irradiation and explained the major effect

  8. Soft x-ray imaging by a commercial solid-state television camera

    International Nuclear Information System (INIS)

    Matsushima, I.; Koyama, K.; Tanimoto, M.; Yano, M.

    1987-01-01

    A commerical, solid-state television camera has been used to record images of soft x radiation (0.8--12 keV). The performance of the camera is theoretically analyzed and experimentally evaluated compared with an x-ray photographic film (Kodak direct exposure film). In the application, the camera has been used to provide image patterns of x rays from laser-produced plasmas. It is demonstrated that the camera has several advantages over x-ray photographic film

  9. A SOFT X-RAY REVERBERATION LAG IN THE AGN ESO 113–G010

    International Nuclear Information System (INIS)

    Cackett, E. M.; Fabian, A. C.; Kara, E.; Zogbhi, A.; Reynolds, C.; Uttley, P.

    2013-01-01

    Reverberation lags have recently been discovered in a handful of nearby, variable active galactic nuclei (AGNs). Here, we analyze a ∼100 ks archival XMM-Newton observation of the highly variable AGN, ESO 113–G010, in order to search for lags between hard, 1.5-4.5 keV, and soft, 0.3-0.9 keV, energy X-ray bands. At the lowest frequencies available in the light curve (∼ –4 Hz), we find hard lags where the power-law-dominated hard band lags the soft band (where the reflection fraction is high). However, at higher frequencies in the range (2-3) × 10 –4 Hz we find a soft lag of –325 ± 89 s. The general evolution from hard to soft lags as the frequency increases is similar to other AGNs where soft lags have been detected. We interpret this soft lag as due to reverberation from the accretion disk, with the reflection component responding to variability from the X-ray corona. For a black hole mass of 7 × 10 6 M ☉ this corresponds to a light-crossing time of ∼9 R g /c; however, dilution effects mean that the intrinsic lag is likely longer than this. Based on recent black hole mass scaling for lag properties, the lag amplitude and frequency are more consistent with a black hole a few times more massive than the best estimates, though flux-dependent effects could easily add scatter this large.

  10. Characterization of diffraction gratings by use of a tabletop soft-x-ray laser

    International Nuclear Information System (INIS)

    Seminario, Max; Rocca, Jorge J.; Depine, Ricardo A.; Bach, Benny; Bach, Bernie

    2001-01-01

    We have demonstrated the use of a high-repetition-rate 46.9-mm tabletop laser to characterize diffraction gratings designed for grazing-incidence operation in the soft-x-ray spectral region. The efficiencies for various diffraction orders were measured as a function of angle of incidence and compared with the results of model simulations. This measurement technique provides benchmarks with which to improve electromagnetic codes used in the design of soft-x-ray diffraction gratings. The results illustrate the potential of compact tabletop soft-x-ray lasers for use as a new tool for characterization of short-wavelength optics at the manufacturer's site

  11. Update on VUV and soft X-ray facilities at SSRL

    International Nuclear Information System (INIS)

    Waldhauer, A.

    1988-01-01

    The number of experimental stations at SSRL devoted to the VUV and soft X-ray region is increasing rapidly. In 1986 there were five VUV/soft X-ray beam lines in regular operation. These consisted of two grasshopper lines, a Seya-Namioka line, a white light lithography line, and the UHV double crystal line, Jumbo. By 1988 ten beam lines, including two with insertion devices, covering the spectral range 5-4000 eV in five overlapping ranges will be operational. With the addition of these new stations, SSRL will have increased dramatically its facilities for performing VUV and soft X-ray research. (orig.)

  12. Determination of technetium by total reflection x-ray fluorescence

    International Nuclear Information System (INIS)

    Bermudez, J.I.; Greaves, E.D.; Nemeth, P.

    2000-01-01

    We describe a technique using total reflection x-ray fluorescence (TXRF) for determination of Technetium produced by elution of chromatography generators with physiological saline solutions. The analysis with the 18.41 keV K α line of Technetium was accomplished with monochromatized K α radiation from a silver anode x-ray tube operated at 45 keV and 20 mA. This radiation at 22.104 keV is efficiently coupled to the 21.054 keV absorption edge of Tc. It is also of advantage in the direct analysis of organic and saline properties of the Tc-bearing samples. Quantification was accomplished by internal standard addition of Ga and using an interpolated value of the sensitivity for Tc between Molybdenum and Rhenium. Data processing was carried out with the QXAS-AXIL software package. System sensitivity was found adequate for direct Tc determination of eluted saline solutions. The interest and advantages of the use of the technique as an auxiliary in the synthesis and characterization of Tc-labeled radiopharmaceuticals used for diagnosis in nuclear medicine are discussed. Detection limits in the matrices analyzed are reported. (author)

  13. A laboratory based x-ray reflectivity system

    International Nuclear Information System (INIS)

    Holt, S.A.; Creagh, D.C.; Jamie, I.M.; Dowling, T.L.; Brown, A.S.

    1996-01-01

    Full text: X-ray Reflectivity (XRR) over the last decade has proved to be a versatile and powerful technique by which the thickness of thin films, surface roughness and interface roughness can be determined. The systems amenable to study range from organic monolayers (liquid or solid substrates) to layered metal or semiconductor systems. Access to XRR has been limited by the requirement for synchrotron radiation sources. The development of XRR systems for the laboratory environment was pioneered by Weiss. An X-ray Reflectometer has been constructed by the Department of Physics (Australian Defence Force Academy) and the Research School of Chemistry (Australian National University). The general principles of the design were similar to those described by Weiss. The reflectometer is currently in the early stages of commissioning, with encouraging results thus far. The diffraction pattern of Mobil Catalytic Material (MCM), consisting primarily of SiO 2 . The poster will describe the reflectometer, its operation and present a summary of the most important results obtained to date

  14. Soft x-ray induced femtosecond solid-to-solid phase transition

    Czech Academy of Sciences Publication Activity Database

    Tavella, F.; Höppner, H.; Tkachenko, V.; Medvedev, Nikita; Capotondi, F.; Golz, T.; Kai, Y.; Manfredda, M.; Pedersoli, E.; Prandolini, M.J.; Stojanovic, N.; Tanikawa, T.; Teubner, U.; Toleikis, S.; Ziaja, B.

    Roč. 24, Sep (2017), s. 22-27 ISSN 1574-1818 Institutional support: RVO:68378271 Keywords : soft x-ray * ultrashort x-ray pulses * grafitization of diamond * non-thermal phase transition Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.908, year: 2016

  15. Soft X-rays from the sunlit earth's atmosphere

    International Nuclear Information System (INIS)

    McKenzie, D.L.; Rugge, H.R.; Charles, P.A.

    1982-01-01

    The HEAO-1 A-2 experiment low energy proportional counters have been used to measure the X-ray spectrum of the sunlit earth in the energy range 0.2 to 0.8 keV. The X-rays arise by coherent scattering of, or fluorescence of atmospheric constituents by, solar coronal X-rays incident on the atmosphere. Although the relative spectral contributions of the two processes depend upon the sun-earth-satellite geometry, fluorescent oxygen and nitrogen K X-ray emission is always important. The observed spectra were compared with calculations in order to derive the coronal temperature and emission measure, parameters that characterize the incident solar spectrum. These derived parameters agree well with the expected values for the nonflaring sun, and good agreement was obtained between measurements closely spaced in time but having a wide range of geometries and counting rates. Thus X-ray observations of the sunlit earth's atmosphere can be a useful monitor of solar activity for satellite-borne instrumentation unable to view the sun directly. The total measured fluorescent line flux agreed well with calculations, but the N:O line ratio did not. This disagreement is attributed to several causes which are discussed. (author)

  16. An experimental measurement of metal multilayer x-ray reflectivity degradation due to intense x-ray flux

    International Nuclear Information System (INIS)

    Hockaday, M.Y.P.

    1987-06-01

    The degradation of the x-ray reflection characteristics of metal multilayer Bragg diffractors due to intense x-ray flux was investigated. The Z-pinch plasma produced by PROTO II of Sandia National Laboratories, Albuquerque, New Mexico, was used as the source. The plasma generated total x-ray yields of as much as 40 kJ with up to 15 kJ in the neon hydrogen- and helium-like resonance lines in nominal 20-ns pulses. Molybdenum-carbon, palladium-carbon, and tungsten-carbon metal multilayers were placed at 15 and 150 cm from the plasma center. The multilayers were at nominal angles of 5 0 and 10 0 to diffract the neon resonance lines. The time-integrated x-ray reflection of the metal multilayers was monitored by x-ray film. A fluorescer-fiber optic-visible streak camera detector system was then used to monitor the time-resolved x-ray reflection characteristics of 135 A- 2d tungsten-carbon multilayers. A large specular component in the reflectivity prevented determination of the rocking curve of the multilayer. For a neon implosion onto a vanadium-doped polyacrylic acid foam target shot, detailed modeling was attempted. The spectral flux was determined with data from 5 XRD channels and deconvolved using the code SHAZAM. The observed decay in reflectivity was assumed to correspond to the melting of the first tungsten layer. A ''conduction factor'' of 82 was required to manipulate the heat loading of the first tungsten layer such that the time of melting corresponded to the observed decay. The power at destruction was 141 MW/cm 2 and the integrated energy at destruction was 2.0 J/cm 2 . 82 refs., 66 figs., 10 tabs

  17. Characterizing morphology in organic systems with resonant soft X-ray scattering

    International Nuclear Information System (INIS)

    Carpenter, Joshua H.; Hunt, Adrian; Ade, Harald

    2015-01-01

    Highlights: • A brief history of the development of R-SoXS for studying soft matter systems. • A theoretical background and an overview of analysis methodology. • Applications to block copolymers, organic electronics, and biological systems. • A discussion of emerging applications and an outlook on the future of R-SoXS. - Abstract: Resonant soft X-ray scattering (R-SoXS) has proven to be a highly useful technique for studying the morphology of soft matter thin films due to the large intrinsic contrast between organic materials and the anisotropic nature of the resonant electronic state transitions from which the contrast originates. This allows R-SoXS users to measure spatial composition correlations from crystalline and amorphous phases in heterogeneous organic samples, infer relative domain purity, and determine average local molecular ordering correlations. R-SoXS has been used to study the morphology of organic photovoltaics, organic thin film transistors, biological systems, and block copolymer engineering applications. The mesoscopic morphological information compliments molecular packing information determined with hard X-rays, so that complex structure–property relationships can be elucidated over a large range of length scales. Extensions of R-SoXS have also emerged that make use of more advanced sample setups or different experimental geometries than normal transmission, such as θ–2θ reflectivity or grazing incidence.

  18. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    Science.gov (United States)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  19. Soft-x-ray magneto-optical Kerr effect and element-specific hysteresis measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Interest in the utilization of x-ray magneto-optical properties to provide element-specific magnetic information, combined with recent development of tunable linear polarizers for spectroscopic polarization measurement, have led the authors to the study of magneto-optical rotation (MOR) near core levels of magnetic atoms in magnetic multilayer and alloy films. Their initial observation of Faraday rotation (in transmission) demonstrated that for Fe MOR is easily measured and is larger at its L{sub 3} resonance than in the near-visible spectral regions. This work also demonstrated that the spectroscopic behavior of the MOR signal in transmission, resulting from the differential reaction of left- and right-circular components of a linearly polarized beam, is related to the magnetic circular dichroism (MCD), or differential absorption, as expected by a Kramers-Kronig transformation. Thus MCD measurements using circular polarization and MOR measurements using linear polarization can provide complementary, and in some cases equivalent, information. On beamline 6.3.2 the authors have begun to investigate soft x-ray MOR in the reflection geometry, the x-ray magneto-optic Kerr effect (XMOKE). Early measurements have demonstrated the ability to measure element-specific hysteresis loops and large rotations compared to analogous near-visible measurements. The authors are investigating the spectral dependence of the XMOKE signal, and have initiated systematic materials studies of sputter-deposited films of Fe, Fe{sub x}Cr{sub 1{minus}x} alloys, and Fe/Cr multilayers.

  20. Time-Resolved Soft X-ray Diffraction Reveals Transient Structural Distortions of Ternary Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Klaus Mann

    2009-11-01

    Full Text Available Home-based soft X-ray time-resolved scattering experiments with nanosecond time resolution (10 ns and nanometer spatial resolution were carried out at a table top soft X-ray plasma source (2.2–5.2 nm. The investigated system was the lyotropic liquid crystal C16E7/paraffin/glycerol/formamide/IR 5. Usually, major changes in physical, chemical, and/or optical properties of the sample occur as a result of structural changes and shrinking morphology. Here, these effects occur as a consequence of the energy absorption in the sample upon optical laser excitation in the IR regime. The liquid crystal shows changes in the structural response within few hundred nanoseconds showing a time decay of 182 ns. A decrease of the Bragg peak diffracted intensity of 30% and a coherent macroscopic movement of the Bragg reflection are found as a response to the optical pump. The Bragg reflection movement is established to be isotropic and diffusion controlled (1 μs. Structural processes are analyzed in the Patterson analysis framework of the time-varying diffraction peaks revealing that the inter-lamellar distance increases by 2.7 Å resulting in an elongation of the coherently expanding lamella crystallite. The present studies emphasize the possibility of applying TR-SXRD techniques for studying the mechanical dynamics of nanosystems.

  1. The possible effect of solar soft X rays on thermospheric nitric oxide

    International Nuclear Information System (INIS)

    Siskind, D.E.; Barth, C.A.; Cleary, D.D.

    1990-01-01

    A rocket measurement of thermospheric nitric oxide (NO) is used to evaluate the production of odd nitrogen by solar soft X rays (18-50 angstrom). The rocket observation was performed over White Sands Missile Range on November 9, 1981, at 1500 LT for solar maximum conditions (F10.7 = 233). The peak observed NO density was 6.3 x 10 7 cm -3 at 102 km. A photochemical model which included soft X rays was used for comparison with the data. The soft X rays create photoelectrons which lead to enhanced ionization of N 2 and thus increased odd nitrogen production. A good fit to the data was achieved using a soft X ray flux of 0.75 erg cm -2 s -1

  2. Grenz rays. An illustrated guide to the theory and practical application of soft x-rays

    International Nuclear Information System (INIS)

    Graham, D.; Thomson, J.

    1980-01-01

    The uses of soft x-rays (Grenz rays) as investigative tools in the fields of medical diagnosis, botany, art, entomology and forensic science, are discussed and the practical applications of the techniques illustrated by numerous photographs. (U.K.)

  3. The Elusive Soft Emission from Hard X-ray Symbiotic System RT Cru

    Science.gov (United States)

    Karovska, Margarita

    2014-09-01

    RT Cru is a fascinating member of a new class of hard X-ray emitting symbiotic binaries showing X-ray emission extending to over 50keV. While its hard X-ray emission has been studied in detail, the soft component of the spectrum, including flares, remains elusive, since previous observations have focused on the high-energy regime. We propose Chandra HRC-S/LETG observations to determine the spatial, spectral, and temporal characteristics of the source of the soft X-ray emission with a goal to establish the origin of the soft component, and determine whether and how it is tied to the hard component. Determining the origin of the soft emission is a crucial piece of the puzzle to understanding the geometry, energetics, and the environment of WD accretion in this class of symbiotic systems.

  4. The X-ray eclipse geometry of the super-soft X-ray source CAL 87

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, T.; Lopes de Oliveira, R. [Departamento de Física, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão, SE (Brazil); Borges, B. W., E-mail: tribeiro@ufs.br, E-mail: rlopes@ufs.br, E-mail: bernardo@astro.ufsc.br [Universidade Federal de Santa Catarina, Campus Araranguá, 88905-120 Araranguá, SC (Brazil)

    2014-09-01

    We explore XMM-Newton observations of the eclipsing super-soft X-ray source CAL 87 in order to map the accretion structures of the system. Indirect imaging techniques were applied in X-ray light curves to provide eclipse maps. The surface brightness distribution exhibits an extended and symmetric emission, and a feature is revealed from the hardest X-rays that is likely due to a bright spot. A rate of P-dot =(+6±2)×10{sup −10} for changes in the orbital period of the system was derived from the eclipses. There is no significant variation of the emission lines even during eclipses, arguing that the lines are formed in an extended region. The continuum emission dominates the decrease in flux that is observed during eclipses. The O VIII Lyα line reveals a broadening velocity that is estimated to be 365{sub −69}{sup +65} km s{sup –1} (at 1σ), marginal evidence for asymmetry in its profile, and sometimes shows evidence of double-peaked emission. Together, the results support that the wind-driven mass transfer scenario is running in CAL 87.

  5. Progress and prospects in soft x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Howells, M.R.; Jacobsen, C.; Kirz, J.; McQuaid, K.; Rothman, S.S.

    1987-12-01

    We report some of the latest developments in x-ray holography experiments and make some speculations about the limits of performance of the approaches currently in use. We also make some suggestions about where the technique can (and cannot) go in the future. 32 refs., 5 figs., 1 tab

  6. Fourier-limited seeded soft x-ray laser pulse

    Czech Academy of Sciences Publication Activity Database

    Guilbaud, O.; Tissandier, F.; Goddet, J-P.; Ribière, M.; Sebban, S.; Gautier, J.; Joyeux, D.; Ros, D.; Cassou, K.; Kazamias, S.; Klisnick, A.; Habib, J.; Zeitoun, P.; Benredjem, D.; Mocek, Tomáš; Nejdl, Jaroslav; De Rossi, S.; Maynard, G.; Cros, B.; Boudaa, A.; Calisti, A.

    2010-01-01

    Roč. 35, č. 9 (2010), s. 1326-1328 ISSN 0146-9592 Grant - others:AVČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : lasers and laser optics * UV * EUV * x-ray lasers * spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.316, year: 2010

  7. Soft x-ray emission from the direction of the Coma cluster

    International Nuclear Information System (INIS)

    Hayakawa, Satio; Tanaka, Yasuo; Yamashita, Koujun; Bleeker, J.A.M.; Deerenberg, A.J.M.

    1975-01-01

    A soft X-ray source was observed in the direction of the Coma cluster. The flux in the energy range 0.2--0.4 keV was found to change within a time scale shorter than 80 s. The fast transient and the energy spectrum prohibit identification of this source with the Coma cluster. It is suggested that this source belongs to a class of nearby transient soft X-ray sources. (auth.)

  8. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    Directory of Open Access Journals (Sweden)

    Chithra Karunakaran

    Full Text Available Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  9. [Experimental investigation of laser plasma soft X-ray source with gas target].

    Science.gov (United States)

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  10. Progress in compact soft x-ray lasers and their applications

    International Nuclear Information System (INIS)

    Suckewer, S.; Skinner, C.H.

    1995-01-01

    The ultra-high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. A crucial factor in the availability of these devices is their scale and cost. Recent breakthroughs in this field has brought closer the advent of table-top devices, suitable for applications to fields such as x-ray microscopy, chemistry, material science, plasma diagnostics, and lithography. In this article we review recent progress in the development of compact (table-top) soft x-ray lasers

  11. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    International Nuclear Information System (INIS)

    Bussard, R.W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column. 13 references

  12. The Soft X-ray Telescope for Solar-A - Design evolution and lessons learned

    Science.gov (United States)

    Bruner, Marilyn E.

    1992-01-01

    The Japanese Solar-A satellite mission's Soft X-ray Telescope uses grazing-incidence optics, a CCD detector, and a pair of filter wheels for wavelength selection. A coaxially-mounted visible-light lens furnished sunspot and magnetic plage images, together with aspect information which aids in aligning the soft X-ray images with those from the satellite's Hard X-ray Telescope. Instrument electronics are microprocessor-based, and imbedded in a tightly integrated distributed system. Control software is divided between the instrument microprocessor and the spacecraft control computer.

  13. Time correlation between plasma behaviour and soft x-ray emission in a plasma focus

    International Nuclear Information System (INIS)

    Hirano, Katsumi; Tagaya, Yutaka; Shimoda, Katsuji; Okabe, Yushiro; Yamamoto, Toshikazu

    1986-01-01

    Soft X-rays emitted from a plasma focus are investigated experimentally. In contrast to single-pulsive burst of neutron, hard X-rays, ion- and electron beams, the soft X-rays are observed from the collapse phase to the decay phase of the plasma column, and have typically three successive peaks in its signal. Each peak corresponds to the maximum compression, the disruption and the decay phase of plasma column. It is revealed that the first and the second peaks are radiated by plasma itself, whereas the third peak is caused by emission from the inner electrode face. (author)

  14. A Feasibility Experiment for a Soft X-Ray Laser

    Science.gov (United States)

    1976-09-01

    has embarked on a large scale laser fusion program initially aimed at achieving sufficient thermometric yield from a single pellet to initiate a...gold, aluminum ). The report suggests that 10 to 20 percent of the incident laser energy can be converted to X rays below 1 keV. A Lawrence Livermore...Computa- tions of the population inversion for the inner shell electrons, as found in 3 I-.--I~ . . AFWL-TR-76-107 aluminum , indicate a favorable

  15. Soft X ray spectrometry at high count rates

    International Nuclear Information System (INIS)

    Blanc, P.; Brouquet, P.; Uhre, N.

    1978-06-01

    Two modifications of the classical method of X-ray spectrometry by a semi-conductor diode permit a count rate of 10 5 c/s with an energy resolution of 350 eV. With a specially constructed pulse height analyzer, this detector can measure four spectra of 5 ms each, in the range of 1-30 keV, during a plasma shot

  16. The Columbia University proton-induced soft x-ray microbeam.

    Science.gov (United States)

    Harken, Andrew D; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2011-09-15

    A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K(α) 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 μm × 50 μm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced x-rays from this spot project a 50 μm round x-ray generation spot into the vertical direction. The x-rays are focused to a spot size of 5 μm in diameter using a Fresnel zone plate. The x-rays have an attenuation length of (1/e length of ~145 μm) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultra soft x-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments.

  17. Real-time soft x-ray imaging on composite materials

    International Nuclear Information System (INIS)

    Polichar, R.

    1985-01-01

    The increased use of composite materials in aircraft structures has emphasized many of the unique and difficult aspects of the inspection of such components. Ultrasound has been extensively applied to certain configurations since it is relatively sensitive to laminar discontinuities in structure. Conversely, the use of conventional x-ray examination has been severely hampered by the fact that these composite materials are virtually transparent to the x-ray energies commonly encountered in industrial radiography (25 kv and above). To produce images with contrast approaching conventional radiography, one must use x-ray beams with average energies below 10 KEV where the absorption coefficients begin to rise rapidly for these low atomic number materials. This new regime of soft x-rays presents a major challenge to real-time imaging components. Special screen and window technology is required if these lower energy x-rays are to be effectively detected. Moreover, conventional x-ray tubes become very inefficient for generating the required x-ray flux at potentials much below 29 kv and the increased operating currents put significant limitations on conventional power sources. The purpose of this paper is to explore these special problems related to soft x-ray real-time imaging and to define the optimal technologies. Practical results obtained with the latest commerical and developmental instruments for real-time imaging will be shown. These instruments include recently developed imaging systems, new x-ray tubes and various approaches to generator design. The measured results convincingly demonstrate the effectiveness practicality of real-time soft x-ray imaging. They also indicate the major changes in technology and approach that must be taken for practical systems to be truly effective

  18. SWIFT X-RAY OBSERVATIONS OF CLASSICAL NOVAE. II. THE SUPER SOFT SOURCE SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Greg J. [American Astronomical Society, 2000 Florida Avenue, NW, Suite 400, Washington, DC 20009-1231 (United States); Ness, Jan-Uwe [XMM-Newton Science Operations Centre, ESAC, Apartado 78, 28691 Villanueva de la Canada, Madrid (Spain); Osborne, J. P.; Page, K. L.; Evans, P. A.; Beardmore, A. P. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Walter, Frederick M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Andrew Helton, L. [SOFIA Science Center, USRA, NASA Ames Research Center, M.S. N211-3, Moffett Field, CA 94035 (United States); Woodward, Charles E. [Minnesota Institute of Astrophysics, 116 Church Street S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Bode, Mike [Astrophysics Research Institute, Liverpool John Moores University, Birkenhead CH41 1LD (United Kingdom); Starrfield, Sumner [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Drake, Jeremy J., E-mail: Greg.Schwarz@aas.org [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 3, Cambridge, MA 02138 (United States)

    2011-12-01

    The Swift gamma-ray burst satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the X-Ray Telescope (0.3-10 keV) instrument count rates and the UltraViolet and Optical Telescope (1700-8000 A) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with Super Soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than three years after the outburst begins. Previous relationships, such as the nuclear burning duration versus t{sub 2} or the expansion velocity of the eject and nuclear burning duration versus the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.

  19. SWIFT X-RAY OBSERVATIONS OF CLASSICAL NOVAE. II. THE SUPER SOFT SOURCE SAMPLE

    International Nuclear Information System (INIS)

    Schwarz, Greg J.; Ness, Jan-Uwe; Osborne, J. P.; Page, K. L.; Evans, P. A.; Beardmore, A. P.; Walter, Frederick M.; Andrew Helton, L.; Woodward, Charles E.; Bode, Mike; Starrfield, Sumner; Drake, Jeremy J.

    2011-01-01

    The Swift gamma-ray burst satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the X-Ray Telescope (0.3-10 keV) instrument count rates and the UltraViolet and Optical Telescope (1700-8000 Å) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with Super Soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than three years after the outburst begins. Previous relationships, such as the nuclear burning duration versus t 2 or the expansion velocity of the eject and nuclear burning duration versus the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.

  20. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction.

    Science.gov (United States)

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-05-09

    An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Laser interaction with matter as a source of U.V. and soft X-ray radiation: application to X-ray cinematography

    International Nuclear Information System (INIS)

    Tonon, G.F.; Colombant, Denis; Delmare, Claude; Rabeau, Maxime

    A new detecting device is described. It allows one to get the frequency, the time and space resolution of pictures of U.V. and soft X ray emission of a laser created plasma in a single shot: X ray pictures of such a plasma are presented. After these preliminary results, it is possible to set up readily an X ray framing camera. A laser created plasma is an X ray source of special interest: the emitted power can be 10% of the laser intensity and the emitted spectrum is centered around 1A wavelength [fr

  2. Auger and depth profile analysis of synthetic crystals for dispersion of soft x-rays

    International Nuclear Information System (INIS)

    Rachocki, K.D.; Brown, D.R.; Springer, R.W.; Arendt, P.N.

    1983-01-01

    Numerous samples have been fabricated and analyzed as part of a program to produce soft x-ray dispersion elements for various laboratory applications. The majority of this work has centered around the carbon/tungsten system, although several other low-Z/high-Z pairs have been investigated. This report describes the development of certain vacuum-deposition techniques for fabricating these dispersion elements, based upon results obtained from x-ray reflectivity measurements and Auger depth-profile analysis. The composition of the films is chiefly alternating layers of tungsten carbide and carbon. Excess carbon is introduced during the deposition of the tungsten to ensure that the carbide layer is fully stoichiometric. Layer thickness ranged from approx. 5 to 30 A for the carbide and from approx. 15 to 80 A for the carbon. The reflectivity measurements were made using Fe and Al K/sub α/ at grazing incidence. The emphasis in these studies is on the application of surface-analysis results in suggesting modifications to the fabrication process and in evaluating the results such modifications have on the layer stoichiometry, continuity, and periodicity of the dispersion elements so produced

  3. Soft X-Ray Measurements of Z-Pinch-Driven Vacuum Hohlraums

    International Nuclear Information System (INIS)

    Baker, K.L.; Porter, J.L.; Ruggles, L.E.; Chandler, G.A.; Deeney, Chris; Varas, M.; Moats, Ann; Struve, Ken; Torres, J.; McGurn, J.; Simpson, W.W.; Fehl, D.L.; Chrien, R.E.; Matuska, W.; Idzorek, G.C.

    1999-01-01

    This article reports the experimental characterization of a z-pinch driven-vacuum hohlraum. The authors have measured soft x-ray fluxes of 5 x 10 12 W/cm 2 radiating from the walls of hohlraums which are 2.4--2.5 cm in diameter by 1 cm tall. The x-ray source used to drive these hohlraums was a z-pinch consisting of a 300 wire tungsten array driven by a 2 MA, 100 ns current pulse. In this hohlraum geometry, the z-pinch x-ray source can produce energies in excess of 800 kJ and powers in excess of 100 TW to drive these hohlraums. The x-rays released in these hohlraums represent greater than a factor of 25 in energy and more than a factor of three in x-ray power over previous laboratory-driven hohlraums

  4. Design considerations for soft X-ray television imaging detectors

    International Nuclear Information System (INIS)

    Kalata, K.; Golub, L.

    1988-01-01

    Television sensors for X-rays can be coupled to converters and image intensifiers to obtain active areas, high flux capabilities, quantum efficiency, high time resolution, or ease of construction and operation that may not be obtained with a directly illuminated sensor. A general purpose system which makes use of these capabilities for a number of applications is decribed. Some of the performance characteristics of this type of system are examined, and the expected future developments for such systems are briefly addressed. 19 refs

  5. Young Stellar Objects from Soft to Hard X-rays

    Science.gov (United States)

    Güdel, Manuel

    2009-05-01

    Magnetically active stars are the sites of efficient particle acceleration and plasma heating, processes that have been studied in detail in the solar corona. Investigation of such processes in young stellar objects is much more challenging due to various absorption processes. There is, however, evidence for violent magnetic energy release in very young stellar objects. The impact on young stellar environments (e.g., circumstellar disk heating and ionization, operation of chemical networks, photoevaporation) may be substantial. Hard X-ray devices like those carried on Simbol-X will establish a basis for detailed studies of these processes.

  6. Soft x-ray laser experiments at Novette Laser Facility

    International Nuclear Information System (INIS)

    Matthews, D.; Hagelstein, P.; Rosen, M.

    1984-01-01

    We discuss the results of and future plans for experiments to study the possibility of producing an x-ray laser. The schemes we have investigated are all pumped by the Novette Laser, operated at short pulse (tau/sub L/ approx. 100 psec) and an incident wavelength of lambda /sub L/ approx. 0.53 μm. We have studied the possibility of lasing at 53.6, 68.0 to 72.0, 119.0, and 153.0 eV, using the inversion methods of resonant photo-excitation, collisional excitation, and three-body recombination

  7. Soft X-ray radiation power characteristics of tungsten wire arrays on Yang accelerator

    International Nuclear Information System (INIS)

    Zhang Siqun; Ouyang Kai; Huang Xianbin; Dan Jiakun; Zhou Rongguo; Yang Liang

    2013-01-01

    A series of experiments were carried out to research the X-ray radiation characteristics of tungsten wire arrays on Yang accelerator. In those experiments, we charged the Marx generator of 60 kV, and the load current of 0.85-1.00 MA, the rise time of 75-90 ns (10%-90%). A soft X-ray scintillator powermeter which responded flatly to 50-1800 eV X-rays was used to measure the power of soft X-ray emitted from implosion plasma. In this paper, we present the measuring results of time-resolved soft X-ray radiation power, and discuss the radiation characteristics of implosion plasma by analyzing the correlations of soft X-ray radiant power and the diameter, length, wire number of the tungsten wire arrays. The optimizing wire array configuration parameters on Yang are as follows: 8 mm array diameter, 15 mm wire length, and 24 wire number. We also present the radiant power difference in radial and axial directions of the wire arrays. (authors)

  8. Soft X-ray synchrotron radiation investigations of actinide materials systems utilizing X-ray emission spectroscopy and resonant inelastic X-ray scattering

    International Nuclear Information System (INIS)

    Shuh, D.K.; Butorin, S.M.; Guo, J.-H.; Nordgren, J.

    2004-01-01

    Synchrotron radiation (SR) methods have been utilized with increasing frequency over the past several years to study topics in actinide science, ranging from those of a fundamental nature to those that address a specifically-targeted technical need. In particular, the emergence of microspectroscopic and fluorescence-based techniques have permitted investigations of actinide materials at sources of soft x-ray SR. Spectroscopic techniques with fluorescence-based detection are useful for actinide investigations since they are sensitive to small amounts of material and the information sampling depth may be varied. These characteristics also serve to simplify both sample preparation and safety considerations. Examples of investigations using these fluorescence techniques will be described along with their results, as well as the prospects for future investigations utilizing these methodologies

  9. Determination of sulphur with total reflection x-ray spectrometry

    International Nuclear Information System (INIS)

    Steinmeyer, S.; Kolbesen, B.O.

    2000-01-01

    The potential and limitations of total reflection x-ray spectrometry (TXRF) were tested for the quantitative determination of the light element sulphur in inorganic and biological samples. As representatives of inorganic samples alkali, transition metal, magnesium and aluminum sulphates were investigated. As biological samples the sulphur containing amino acid methionine and the pharmaceutical drug insulin were chosen. All measurements were performed on a TXRF-spectrometer EXTRA IIA (Atomika Instruments, Oberschleissheim/Germany) using tungsten L-radiation as the excitation tube. Various concentrations of all samples ranging from 20 mg/l to 0.5 mg/l were determined. In addition the surface topography and thickness of the dry residue of these samples were investigated with SEM and a thickness profilometer (Alpha-Step). The result show that the reliable determination of sulphur in sulphates depends on the cation involved. Alkali sulphates like Na 2 SO 4 , or K 2 SO 4 form bulky residues resulting in significant deviations of the recovery rate of sulphur. In this case the use of smoothing detergents like 1 % HF, 1 % malic acid and 2 % hydrazinhydrat was found to be necessary for accurate determination. The results for the biological samples agree well with the expected values. The investigations lead to the conclusion that TXRF combined with a proper samples preparation is well suited for the determination of sulphur in different samples with various concentrations and matrices. (author)

  10. Ionic liquids: an x-ray reflectivity study

    International Nuclear Information System (INIS)

    Sloutskin, E.; Deutsch, M.; Tamam, L.; Ocko, B.; Kuzmenko, I.; Gog, T.

    2005-01-01

    Full Text:Ionic liquids are non-volatile, non-flammable and thermally stable solvents, and as such are promising 'green' replacements for traditional volatile organic solvents. In the last years hundreds of Ionic liquids were synthesized. Due to the Ionic liquids great industrial potential, this number is growing at an exceedingly fast rate. Despite the great importance of the interfacial properties of materials for technological applications and basic science, the atomic-scale surface structure of the Ionic liquids has never been studied previously. In our study, synchrotron x-ray reflectivity and surface tensiometry were employed to obtain the surface structure and thermodynamics of two ionic liquids, based on the 1-alkyl-3-methylimidazolium cations. A molecular layer of a density ∼18% higher than that of the bulk is found to form at the free surface of these liquids. The excess concentration of the oppositely charged ions within the surface layer is determined by chemical substitution of the anion. Finally, the observed layering at the surface is contrasted with our measurements on the behavior of classical aqueous salt solutions

  11. Thin film characterization by total reflection x-ray fluorescence

    International Nuclear Information System (INIS)

    Danel, Adrien; Nolot, Emmanuel; Veillerot, Marc; Olivier, Segolene; Decorps, Tifenn; Calvo-Munoz, Maria-Luisa; Hartmann, Jean-Michel; Lhostis, Sandrine; Kohno, Hiroshi; Yamagami, Motoyuki; Geoffroy, Charles

    2008-01-01

    Sensitive and accurate characterization of films thinner than a few nm used in nanoelectronics represents a challenge for many conventional production metrology tools. With capabilities in the 10 10 at/cm 2 , methods usually dedicated to contamination analysis appear promising, especially Total-reflection X-Ray Fluorescence (TXRF). This study shows that under usual configuration for contamination analysis, with incident angle smaller than the critical angle of the substrate, TXRF signal saturation occurs very rapidly for dense films (below 0.5 nm for HfO 2 films on Si wafers using a 9.67 keV excitation at 0.5 deg.). Increasing the incident angle, the range of linear results can be extended, but on the other hand, the TXRF sensitivity is degraded because of a strong increase of the measurement dead time. On HfO 2 films grown on Si wafers, an incident angle of 0.32 deg. corresponding to a dead time of 95% was used to achieve linear analysis up to 2 nm. Composition analysis by TXRF, and especially the detection of minor elements into thin films, requires the use of a specific incident angle to optimize sensitivity. Although quantitative analyses might require specific calibration, this work shows on Co-based films that the ratio between minor elements (W, P, Mo) and Co taking into account their relative sensitivity factors is a good direct reading of the composition

  12. The Einstein soft X-ray survey of the Pleiades

    Science.gov (United States)

    Caillault, J.-P.; Helfand, D. J.

    1985-01-01

    The results of a 0.1-4.5-keV X-ray survey of a 2 x 2-deg area centered on the Pleiades open cluster, performed using the imaging proportional counter and high-resolution imager of the Einstein Observatory on four days in 1980-1981, are presented in extensive tables, graphs, maps, histograms, and finding charts and characterized. A total of 61 sources are detected, and 44 of these are identified with cluster members of spectral types B-M. Findings discussed include Lx/Lbol of 10 the -7th for early-type stars; F-star mean Lx like that of F stars in the Hyades and in the field (denying time evolution of Lx); mean G-star Lx = 3.7 x 10 to the 29th erg/sec; G-star activity decay more gradual than 1/sq rt t, with sharp fall for t greater than 1 Gyr; and no evidence for X-ray-emissivity/rotational-velocity correlation in a homogeneous sample of K dwarfs or a sample of K and M stars with established V sin i data.

  13. Generation of attosecond soft X-ray pulses in a longitudinal space charge amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, M.; Schneidmiller, E.A.; Yurkov, M.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    A longitudinal space charge amplifier (LSCA), operating in soft X-ray regime, was recently proposed. Such an amplifier consists of a few amplification cascades (focusing channel and chicane) and a short radiator undulator in the end. Broadband nature of LSCA supports generation of few-cycle pulses as well as wavelength compression. In this paper we consider an application of these properties of LSCA for generation of attosecond X-ray pulses. It is shown that a compact and cheap addition to the soft X-ray free electron laser facility FLASH would allow to generate 60 attosecond (FWHM) long X-ray pulses with the peak power at 100 MW level and a contrast above 98%. (orig.)

  14. Measurement of electron density profiles by soft X-ray tomography on the RTP tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, D.F. da; Donne, A.J.H.; Lyadina, E.S.; Rutteman, R.H.; Tanzi, C.P. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands)

    1993-12-31

    Tomographic diagnosis of the soft x-ray emissivity profile is a powerful method for studying several plasma parameters. The x-ray emissivity is a complicated function of plasma quantities like the electron density and temperature, and the impurity content in the plasma. These quantities can be studied separately provided that information is available on the remaining parameters. Soft x-ray emissivity profiles have already been used successfully in other machines to determine local values of impurity densities and the effective charge Z{sub eff}. In the RTP tokamak the electron density profile has been inferred from a modelling of the x-ray emissivity in situations where information is available on the electron temperature profile, the value of Z{sub eff}, and the relative proportion of the impurities. The method can be useful for the study of hollow density profiles that cannot be properly reconstructed by Abel inversion of interferometer or reflectometer data. (author) 7 refs., 2 figs.

  15. Measurement of electron density profiles by soft X-ray tomography on the RTP tokamak

    International Nuclear Information System (INIS)

    Cruz, D.F. da; Donne, A.J.H.; Lyadina, E.S.; Rutteman, R.H.; Tanzi, C.P.

    1993-01-01

    Tomographic diagnosis of the soft x-ray emissivity profile is a powerful method for studying several plasma parameters. The x-ray emissivity is a complicated function of plasma quantities like the electron density and temperature, and the impurity content in the plasma. These quantities can be studied separately provided that information is available on the remaining parameters. Soft x-ray emissivity profiles have already been used successfully in other machines to determine local values of impurity densities and the effective charge Z eff . In the RTP tokamak the electron density profile has been inferred from a modelling of the x-ray emissivity in situations where information is available on the electron temperature profile, the value of Z eff , and the relative proportion of the impurities. The method can be useful for the study of hollow density profiles that cannot be properly reconstructed by Abel inversion of interferometer or reflectometer data. (author) 7 refs., 2 figs

  16. Generation of attosecond soft X-ray pulses in a longitudinal space charge amplifier

    International Nuclear Information System (INIS)

    Dohlus, M.; Schneidmiller, E.A.; Yurkov, M.V.

    2011-03-01

    A longitudinal space charge amplifier (LSCA), operating in soft X-ray regime, was recently proposed. Such an amplifier consists of a few amplification cascades (focusing channel and chicane) and a short radiator undulator in the end. Broadband nature of LSCA supports generation of few-cycle pulses as well as wavelength compression. In this paper we consider an application of these properties of LSCA for generation of attosecond X-ray pulses. It is shown that a compact and cheap addition to the soft X-ray free electron laser facility FLASH would allow to generate 60 attosecond (FWHM) long X-ray pulses with the peak power at 100 MW level and a contrast above 98%. (orig.)

  17. Generation of attosecond soft x-ray pulses in a longitudinal space charge amplifier

    Directory of Open Access Journals (Sweden)

    M. Dohlus

    2011-09-01

    Full Text Available A longitudinal space charge amplifier (LSCA, operating in soft x-ray regime, was recently proposed. Such an amplifier consists of a few amplification cascades (focusing channel and chicane and a short radiator undulator in the end. The broadband nature of LSCA supports generation of few-cycle pulses as well as wavelength compression. In this paper we consider an application of these properties of LSCA for generation of attosecond x-ray pulses. It is shown that a compact and cheap addition to the soft x-ray free-electron laser facility FLASH would allow one to generate 60 attosecond (FWHM long x-ray pulses with the peak power at the 100 MW level and a contrast above 98%.

  18. Coordinated soft X-ray and H-alpha observation of solar flares

    Science.gov (United States)

    Zarro, D. M.; Canfield, R. C.; Metcalf, T. R.; Lemen, J. R.

    1988-01-01

    Soft X-ray, Ca XIX, and H-alpha observations obtained for a set of four solar flares in the impulsive phase are analyzed. A blue asymmetry was observed in the coronal Ca XIX line during the soft-Xray rise phase in all of the events. A red asymmetry was observed simultaneously in chromospheric H-alpha at spatial locations associated with enhanced flare heating. It is shown that the impulsive phase momentum of upflowing soft X-ray plasma equalled that of the downflowing H-alpha plasma to within an order of magnitude. This supports the explosive chromospheric evaporation model of solar flares.

  19. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    International Nuclear Information System (INIS)

    Stead, A.D.; Ford, T.W.; Page, A.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called open-quotes water windowclose quotes area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition

  20. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W.; Page, A.M. [Univ. of London (United Kingdom); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.

  1. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    Science.gov (United States)

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; Beerwerth, Randolf; Holmes, Michael; Aldrich, Jeff; Lin, Ming-Fu; Minitti, Michael; Osipov, Timur; Schlotter, William; Cederbaum, Lorenz S.; Fritzsche, Stephan; Berrah, Nora

    2018-02-01

    We measured the fluorescence photon yield of neon upon soft x-ray ionization (∼1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  2. The soft X-ray telescope for the SOLAR-A mission

    Science.gov (United States)

    Tsuneta, S.; Acton, L.; Bruner, M.; Lemen, J.; Brown, W.; Caravalho, R.; Catura, R.; Freeland, S.; Jurcevich, B.; Owens, J.

    1991-01-01

    The Soft X-ray Telescope (SXT) of the SOLAR-A mission is designed to produce X-ray movies of flares with excellent angular and time resolution as well as full-disk X-ray images for general studies. A selection of thin metal filters provide a measure of temperature discrimination and aid in obtaining the wide dynamic range required for solar observing. The co-aligned SXT aspect telescope will yield optical images for aspect reference, white-light flare and sunspot studies, and, possibly, helioseismology. This paper describes the capabilities and characteristics of the SXT for scientific observing.

  3. Recording soft-X-ray images with photographic materials at large gamma background

    International Nuclear Information System (INIS)

    Izrailev, I.M.

    1993-01-01

    The sensitivity of photographic materials to soft X-rays and 60 Co γ-quanta when developed by visible light and a chemical developer is investigated. When the photographic paper is developed by visible light, its sensitivity is reduced by 200-300 times independent of the quantum energy. This method allows an X-ray image to be recorded even when there is γ-background of 10 5 R. 2 refs., 1 tab

  4. Some implications of excess soft X-ray emission from Seyfert 1 galaxies

    International Nuclear Information System (INIS)

    Fabian, A.C.; Guilbert, P.W.; Arnaud, K.A.; Shafer, R.A.; Tennant, A.F.; Ward, M.J.

    1986-01-01

    The X-ray spectrum of Seyfert 1 galaxies is characterized by a hard power-law spectrum. It is often postulated that this maintains a Compton-heated two-phase Broad-Line Region (BLR) around the central source. It is shown here that the strong excess soft X-ray emission observed in MKN 841 and other Seyfert galaxies invalidates this model if the BLR is spherically symmetric. Alternatives are proposed. (author)

  5. An optimal ross filter system for soft X-ray spectra measurement

    International Nuclear Information System (INIS)

    Huang Tianxuan; Zheng Zhijian; Sun Kexu; Jiang Shaoen

    2000-01-01

    A broadband Ross filter spectrometer is described for measuring soft X-ray radiation (0.1∼1.5 keV) emitted from laser plasma. It consists of a number of channels, each representing a Ross filter pair in conjunction with Al cathode X-ray diodes. An optimal channel has flat response within the sensitivity band, and minimal response outside it. The effect of some uncertainties on the accuracy of measurements is calculated

  6. Soft X-ray imaging techniques for calculating the Earth's dayside boundaries

    Science.gov (United States)

    Connor, Hyunju; Kuntz, Kip; Sibeck, David; Collier, Michael; Aryan, Homayon; Branduardi-Raymont, Graziella; Collado-Vega, Yaireska; Porter, Frederick; Purucker, Michael; Snowden, Steven; Raeder, Joachim; Thomas, Nicholas; Walsh, Brian

    2016-04-01

    Charged particles and neutral atoms exchange electrons in many space plasma venues. Soft X-rays are emitted when highly charged solar wind ions, such as C6+. O7+, and Fe13+, interact with Hydrogen and Helium atoms. Soft X-ray images can be a powerful technique to remotely probe the plasma and neutral density structures created when the solar wind interacts with planetary exospheres, such as those at the Earth, Moon, Mars, Venus, and comets. The recently selected ESA-China joint spacecraft mission, "Solar wind - Magnetosphere - Ionosphere Link Explorer (SMILE)" will have a soft X-ray imager on board and provide pictures of the Earth's dayside system after its launch in 2021. In preparation for this future mission, we simulate soft X-ray images of the Earth's dayside system, using the OpenGGCM global magnetosphere MHD model and the Hodges model of the Earth's exosphere. Then, we discuss techniques to determine the location of the Earth's dayside boundaries (bow shock and magnetopause) from the soft X-ray images.

  7. Evaluation of moisture content distribution in wood by soft X-ray imaging

    International Nuclear Information System (INIS)

    Tanaka, T.; Avramidis, S.; Shida, S.

    2009-01-01

    A technique for nondestructive evaluation of moisture content distribution of Japanese cedar (sugi) during drying using a newly developed soft X-ray digital microscope was investigated. Radial, tangential, and cross-sectional samples measuring 100 x 100 x 10 mm were cut from green sugi wood. Each sample was dried in several steps in an oven and upon completion of each step, the mass was recorded and a soft X-ray image was taken. The relationship between moisture content and the average grayscale value of the soft X-ray image at each step was linear. In addition, the linear regressions overlapped each other regardless of the sample sections. These results showed that soft X-ray images could accurately estimate the moisture content. Applying this relationship to a small section of each sample, the moisture content distribution was estimated from the image differential between the soft X-ray pictures obtained from the sample in question and the same sample in the oven-dried condition. Moisture content profiles for 10-mm-wide parts at the centers of the samples were also obtained. The shapes of the profiles supported the evaluation method used in this study

  8. Key electronic states in lithium battery materials probed by soft X-ray spectroscopy

    International Nuclear Information System (INIS)

    Yang, Wanli; Liu, Xiaosong; Qiao, Ruimin; Olalde-Velasco, Paul; Spear, Jonathan D.; Roseguo, Louis; Pepper, John X.; Chuang, Yi-de; Denlinger, Jonathan D.; Hussain, Zahid

    2013-01-01

    Highlights: •Key electronic states in battery materials revealed by soft X-ray spectroscopy. •Soft X-ray absorption consistently probes Mn oxidation states in different systems. •Soft X-ray absorption and emission fingerprint battery operations in LiFePO 4 . •Spectroscopic guidelines for selecting/optimizing polymer materials for batteries. •Distinct SEI formation on same electrode material with different crystal orientations. -- Abstract: The formidable challenges for developing a safe, low-cost, high-capacity, and high-power battery necessitate employing advanced tools that are capable of directly probing the key electronic states relevant to battery performance. Synchrotron based soft X-ray spectroscopy directly measures both the occupied and unoccupied states in the vicinity of the Fermi level, including transition-metal-3d and anion-p states. This article presents the basic concepts on how fundamental physics in electronic structure could provide valuable information for lithium-ion battery applications. We then discuss some of our recent studies on transition-metal oxide based cathodes, silicon based anode, and solid-electrolyte-interphase through soft X-ray absorption and emission spectroscopy. We argue that spectroscopic results reveal the evolution of electronic states for fingerprinting, understanding, and optimizing lithium-ion battery operations

  9. SOFT CORONAL X-RAYS FROM {beta} PICTORIS

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H. M.; Wolk, S. J.; Drake, J. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lisse, C. M. [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Robrade, J.; Schmitt, J. H. M. M., E-mail: hguenther@cfa.harvard.edu [Hamburger Sternwarte, Universitaet Hamburg, Gojenbergsweg 112, 21029 Hamburg (Germany)

    2012-05-01

    A-type stars are expected to be X-ray dark, yet weak emission has been detected from several objects in this class. We present new Chandra/HRC-I observations of the A5 V star {beta} Pictoris. It is clearly detected with a flux of (9 {+-} 2) Multiplication-Sign 10{sup -4} counts s{sup -1}. In comparison with previous data this constrains the emission mechanism and we find that the most likely explanation is an optically thin, collisionally dominated, thermal emission component with a temperature around 1.1 MK. We interpret this component as a very cool and dim corona, with log L{sub X} /L{sub bol} = -8.2 (0.2-2.0 keV). Thus, it seems that {beta} Pictoris shares more characteristics with cool stars than previously thought.

  10. Soft X-ray Absorption Spectroscopy of Liquids and Solutions.

    Science.gov (United States)

    Smith, Jacob W; Saykally, Richard J

    2017-12-13

    X-ray absorption spectroscopy (XAS) is an electronic absorption technique for which the initial state is a deeply buried core level. The photon energies corresponding to such transitions are governed primarily by the binding energies of the initial state. Because the binding energies of core electrons vary significantly among atomic species, this makes XAS an element-selective spectroscopy. Proper interpretation of XA spectra can provide detailed information on the local chemical and geometric environment of the target atom. The introduction of liquid microjet and flow cell technologies into XAS experiments has enabled the general study of liquid samples. Liquids studied to date include water, alcohols, and solutions with relevance to biology and energy technology. This Review summarizes the experimental techniques employed in XAS studies of liquid samples and computational methods used for interpretation of the resulting spectra and summarizes salient experiments and results obtained in the XAS investigations of liquids.

  11. A development of laser-plasma-based soft x-ray microscope system

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Yong; Kim, Kyong Woo; Kim, Kyu Gyeom; Kwon, Young Man; Yoon, Kwon Ha [X-ray Microscopy Research Center, Wonkwang University, Iksan (Korea, Republic of)

    2003-07-01

    Soft x-ray nano-imaging microscopy system for biomedical application with a high resolution about 50 nm has been designed and described, and its integrated techniques also have been studied. The system is mainly composed of soft x-ray generation system, nano-scaled control system, x-ray optical device like a condenser or object mirror, a CCD camera coupled with multichannel plate (MCP) and vacuum system. In the system, soft x-ray is generated from the laser-based plasma by focusing Nd:YAG laser beam on tantalum (Ta) target. In an x-ray optical system, a wolter mirror has been considering condensing the x-ray beam on a biological specimen and zone plate was adapted as an object mirror. A Si{sub 3}N{sub 4} was used as specimen holder for keeping a biological sample alive in atmosphere conditions. A back-illuminated-CCD camera coupled with multichannel plate was determined to set up.

  12. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    Science.gov (United States)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred

    2017-03-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement

  13. Dichroism in resonant inelastic soft X-ray scattering

    International Nuclear Information System (INIS)

    Braicovich, L.

    2004-01-01

    Full text: The dichroism (and in particular the magnetic dichroism) has emerged in the last decade as a key method in the study of electronic states in solids. This has been largely due to the exploitation of the modern sources of Synchrotron Radiation. This approach has been extensively used in X ray Absorption Spectroscopy i.e. in a first order process giving a straightforward access, trough sum rules, to the ground state properties of the sample. On the other hand the studies of dichroism in second order processes as the photon scattering experiments has been up to now relatively limited probably due to experimental difficulties. This is too bad because, at least in principle, the scattering experiments offer unique opportunities typical of second order processes, beyond the possibilities offered by absorption spectroscopy. This requires specific scattering experiments able to give information that cannot be obtained in the absorption mode. A typical example is the circular magnetic dichroism in resonant inelastic scattering in perpendicular geometry i.e. with the light incident perpendicular to the magnetisation. In this case the circular dichroism in absorption is zero by symmetry while the detection of the scattered photons at an angle breaks the left-right symmetry and allows a dichroism to be observed. The aim of the present talk is to review critically the dichroism in resonant X-ray scattering and to show the potential of this approach. In particular it will be shown how to recover, in magnetic samples, the ground state information up to the moments of order four. In this connection original results will be presented including the demonstration of a new experimental approach. The perspectives of the field will be also discussed

  14. High-precision soft x-ray polarimeter at Diamond Light Source.

    Science.gov (United States)

    Wang, H; Dhesi, S S; Maccherozzi, F; Cavill, S; Shepherd, E; Yuan, F; Deshmukh, R; Scott, S; van der Laan, G; Sawhney, K J S

    2011-12-01

    The development and performance of a high-precision polarimeter for the polarization analysis in the soft x-ray region is presented. This versatile, high-vacuum compatible instrument is supported on a hexapod to simplify the alignment with a resolution less than 5 μrad, and can be moved with its own independent control system easily between different beamlines and synchrotron facilities. The polarimeter can also be used for the characterization of reflection and transmission properties of optical elements. A W/B(4)C multilayer phase retarder was used to characterize the polarization state up to 1200 eV. A fast and accurate alignment procedure was developed, and complete polarization analysis of the APPLE II undulator at 712 eV has been performed.

  15. Deexcitation Dynamics of Superhydrogenated Polycyclic Aromatic Hydrocarbon Cations after Soft-x-Ray Absorption

    Science.gov (United States)

    Reitsma, G.; Boschman, L.; Deuzeman, M. J.; González-Magaña, O.; Hoekstra, S.; Cazaux, S.; Hoekstra, R.; Schlathölter, T.

    2014-08-01

    We have investigated the response of superhydrogenated gas-phase coronene cations upon soft x-ray absorption. Carbon (1s)⟶π⋆ transitions were resonantly excited at hν =285 eV. The resulting core hole is then filled in an Auger decay process, with the excess energy being released in the form of an Auger electron. Predominantly highly excited dications are thus formed, which cool down by hydrogen emission. In superhydrogenated systems, the additional H atoms act as a buffer, quenching loss of native H atoms and molecular fragmentation. Dissociation and transition state energies for several H loss channels were computed by means of density functional theory. Using these energies as input into an Arrhenius-type cascade model, very good agreement with the experimental data is found. The results have important implications for the survival of polyaromatic hydrocarbons in the interstellar medium and reflect key aspects of graphene hydrogenation.

  16. Coherent Sources of XUV Radiation Soft X-Ray Lasers and High-Order Harmonic Generation

    CERN Document Server

    Jaeglé, Pierre

    2006-01-01

    Extreme ultraviolet radiation, also referred to as soft X-rays or XUV, offers very special optical properties. The X-UV refractive index of matter is such that normal reflection cannot take place on polished surfaces whereas beam transmission through one micrometer of almost all materials reduces to zero. Therefore, it has long been a difficult task to imagine and to implement devices designed for complex optics experiments in this wavelength range. Thanks to new sources of coherent radiation - XUV-lasers and High Order Harmonics - the use of XUV radiation, for interferometry, holography, diffractive optics, non-linear radiation-matter interaction, time-resolved study of fast and ultrafast phenomena and many other applications, including medical sciences, is ubiquitous.

  17. Two-color spatial and temporal temperature measurements using a streaked soft x-ray imager

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S., E-mail: alastair.moore@physics.org; Ahmed, M. F.; Soufli, R.; Pardini, T.; Hibbard, R. L.; Bailey, C. G.; Bell, P. M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Benstead, J.; Morton, J.; Guymer, T. M.; Garbett, W. J.; Rubery, M. S.; Skidmore, J. W. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Bedzyk, M.; Shoup, M. J.; Regan, S. P.; Agliata, T.; Jungquist, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Schmidt, D. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); and others

    2016-11-15

    A dual-channel streaked soft x-ray imager has been designed and used on high energy-density physics experiments at the National Ignition Facility. This streaked imager creates two images of the same x-ray source using two slit apertures and a single shallow angle reflection from a nickel mirror. Thin filters are used to create narrow band pass images at 510 eV and 360 eV. When measuring a Planckian spectrum, the brightness ratio of the two images can be translated into a color-temperature, provided that the spectral sensitivity of the two images is well known. To reduce uncertainty and remove spectral features in the streak camera photocathode from this photon energy range, a thin 100 nm CsI on 50 nm Al streak camera photocathode was implemented. Provided that the spectral shape is well-known, then uncertainties on the spectral sensitivity limits the accuracy of the temperature measurement to approximately 4.5% at 100 eV.

  18. The spherical pinch as a soft x-ray source for microlithography and other industrial applications

    International Nuclear Information System (INIS)

    Aithal, S.; Lamari, M.; Panarella, E.

    1992-01-01

    In the course of the past several years, an R and D program has been carried out at ALFT in order to exploit the Spherical Pinch concept of plasma heating to create a hot plasma of radiation emission characteristics of interest for industrial X-ray microlithography. The program has been successful and a prototype machine has now been built. The plasma is generated by inductively discharging 30 kJ of electrical energy from a condenser bank in a spherically shaped coil. Since the energy transfer efficiency is ∼ 25%, in excess of 7 kJ of energy is deposited into the plasma. The strong implosion thus generated, on compressing a preformed central plasma, creates a source of soft X-rays having the following characteristics: X-ray energy, 1--3, keV; X-ray energy per pulse, ∼ 50, J; Source size, ∼ 1, mm; X-ray flux at--20 cm from source, ∼10, mJ/cm 2 /shot; position reproducibility, 0.1, Hz. These characteristics are very close to what is required by the semiconductor industries for microlithography. For this reason, a commercial unit is now being designed and manufactured and will be available for marketing by the end of 1992. This source of soft X-rays has recently found another industrial application, paper radiography for quality evaluation and control in the paper industry. The possibility of imaging by means of soft X-rays the microstructure of paper on production line enables the operator to adjust the paper manufacturing configuration through variations of the relative speed of the jet compared to that of the wire. A compact X-ray source for paper radiography is now being designed and manufactured, and a prototype machine will be ready by the beginning of 1993. The Spherical Pinch plasma source is a good radiation emitter also in the UV and the deep UV range of the spectrum

  19. Spectral and correlation analysis of soft X-ray signals from the Joint European Torus tokamak

    International Nuclear Information System (INIS)

    Karlsson, J.; Pazsit, I.

    1997-01-01

    Tomographic methods applied to soft X-rays emitted from a fusion plasma have long been used to diagnose and interpret magnetohydrodynamic and other plasma activities. However, fluctuation analysis has recently been proposed as a complementary method to tomography. The novelty of the suggested method is that the various modes can be determined without tomographic inversion. This paper reports on the results of correlation and spectral analysis of soft X-ray data. The seven measurements analyzed were made by the Joint European Torus (JET) Joint Undertaking using their old soft X-ray measurement system. Auto power spectral densities and phase relations were evaluated from the measured signals as functions of the lines of sight. The fundamental mode m=n=1 was identified in several measurements. The corresponding frequency and toroidal rotation velocity were determined. Higher order modes were also observed and identified. Furthermore, simple model calculations were performed and the results compared with evaluated auto-spectra. (orig.)

  20. Wide Field-of-View Soft X-Ray Imaging for Solar Wind-Magnetosphere Interactions

    Science.gov (United States)

    Walsh, B. M.; Collier, M. R.; Kuntz, K. D.; Porter, F. S.; Sibeck, D. G.; Snowden, S. L.; Carter, J. A.; Collado-Vega, Y.; Connor, H. K.; Cravens, T. E.; hide

    2016-01-01

    Soft X-ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X-ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field-of-view imaging can determine the significance of the various proposed solar wind-magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field-of-view (several to tens of degrees) soft X-ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.

  1. Description of EMX computer code. System for measuring soft X rays

    International Nuclear Information System (INIS)

    Marty, D.A.; Smeulders, P.; Launois, D.

    1978-07-01

    After briefly describing the system for measuring soft X rays implanted in TFR 600, the objectives and principles of the E.M.X calculation programme are presented. This model is divided into two distinct parts. The ultimate aim of EMX 1, the first part, is to build the soft X ray photo of a plasma with varied characteristics, seen through a certain collimation system (in this case a slit). That of EMX 2, the second part, is to filter the previously built soft X ray photo, by means of the system of absorbents belonging to the measuring system and to calculate the currents generated by each detector aimed at a plasma chord. The first calculation results are commented and discussed [fr

  2. Soft X-Ray Second Harmonic Generation as an Interfacial Probe

    Energy Technology Data Exchange (ETDEWEB)

    Lam, R. K.; Raj, S. L.; Pascal, T. A.; Pemmaraju, C. D.; Foglia, L.; Simoncig, A.; Fabris, N.; Miotti, P.; Hull, C. J.; Rizzuto, A. M.; Smith, J. W.; Mincigrucci, R.; Masciovecchio, C.; Gessini, A.; Allaria, E.; De Ninno, G.; Diviacco, B.; Roussel, E.; Spampinati, S.; Penco, G.; Di Mitri, S.; Trovò, M.; Danailov, M.; Christensen, S. T.; Sokaras, D.; Weng, T. -C.; Coreno, M.; Poletto, L.; Drisdell, W. S.; Prendergast, D.; Giannessi, L.; Principi, E.; Nordlund, D.; Saykally, R. J.; Schwartz, C. P.

    2018-01-01

    Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.

  3. ALP conversion and the soft X-ray excess in the outskirts of the Coma cluster

    International Nuclear Information System (INIS)

    Kraljic, David; Rummel, Markus; Conlon, Joseph P.

    2015-01-01

    It was recently found that the soft X-ray excess in the center of the Coma cluster can be fitted by conversion of axion-like-particles (ALPs) of a cosmic axion background (CAB) to photons. We extend this analysis to the outskirts of Coma, including regions up to 5 Mpc from the center of the cluster. We extract the excess soft X-ray flux from ROSAT All-Sky Survey data and compare it to the expected flux from ALP to photon conversion of a CAB. The soft X-ray excess both in the center and the outskirts of Coma can be simultaneously fitted by ALP to photon conversion of a CAB. Given the uncertainties of the cluster magnetic field in the outskirts we constrain the parameter space of the CAB. In particular, an upper limit on the CAB mean energy and a range of allowed ALP-photon couplings are derived

  4. Heating of low-density CHO-foam layers by means of soft X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, O.N., E-mail: o.rosmej@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstrasse 1, 164291 Darmstadt (Germany); Bagnoud, V.; Eisenbarth, U. [GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstrasse 1, 164291 Darmstadt (Germany); Vatulin, V.; Zhidkov, N.; Suslov, N.; Kunin, A.; Pinegin, A. [All Russian Scientific Research Institute of Experimental Physics, RFNC-VNIIEF, Mira St. 37, Sarov (Russian Federation); Schaefer, D.; Nisius, Th.; Wilhein, Th. [RheinAhrCampus Remagen, Institute for X-optics, Suedallee 2, 53424 Remagen (Germany); Rienecker, T.; Wiechula, J.; Jacoby, J. [Goethe University, Frankfurt am Main (Germany); Zhao, Y. [Institute of Modern Physics, CAS, Nanchang Road 509, 730000 Lanzhou (China); Vergunova, G.; Borisenko, N. [Lebedev Physical Institute, Leninskii Prospekt, 65 Moscow (Russian Federation); Orlov, N. [Joint Institute for High Temperatures RAS, Institute for High Energy Density, Izhorskaya. 13, building 2, 125412 Moscow (Russian Federation)

    2011-10-11

    Interaction of soft X-ray thermal radiation with polymer foam layers has been studied experimentally. Indirectly heated CHO-foams were used to create a plasma target for applications in combined heavy ion beam-laser experiments that are aimed at investigation of the heavy ion energy loss in ionized matter. In this work, we report experimental results on heating of low Z foams by means of the Planckian radiation generated in gold hohlraums. The experimental goal was to study the hohlraum radiation field, duration of the soft X-ray pulse, the conversion efficiency of the laser energy into soft X-rays, measurements of the absorption properties of foam layers and parameters of the foam targets heated by the Plankian radiation.

  5. Heating of low-density CHO-foam layers by means of soft X-rays

    International Nuclear Information System (INIS)

    Rosmej, O.N.; Bagnoud, V.; Eisenbarth, U.; Vatulin, V.; Zhidkov, N.; Suslov, N.; Kunin, A.; Pinegin, A.; Schaefer, D.; Nisius, Th.; Wilhein, Th.; Rienecker, T.; Wiechula, J.; Jacoby, J.; Zhao, Y.; Vergunova, G.; Borisenko, N.; Orlov, N.

    2011-01-01

    Interaction of soft X-ray thermal radiation with polymer foam layers has been studied experimentally. Indirectly heated CHO-foams were used to create a plasma target for applications in combined heavy ion beam-laser experiments that are aimed at investigation of the heavy ion energy loss in ionized matter. In this work, we report experimental results on heating of low Z foams by means of the Planckian radiation generated in gold hohlraums. The experimental goal was to study the hohlraum radiation field, duration of the soft X-ray pulse, the conversion efficiency of the laser energy into soft X-rays, measurements of the absorption properties of foam layers and parameters of the foam targets heated by the Plankian radiation.

  6. Debris-free soft x-ray source with gas-puff target

    Science.gov (United States)

    Ni, Qiliang; Chen, Bo; Gong, Yan; Cao, Jianlin; Lin, Jingquan; Lee, Hongyan

    2001-12-01

    We have been developing a debris-free laser plasma light source with a gas-puff target system whose nozzle is driven by a piezoelectric crystal membrane. The gas-puff target system can utilize gases such as CO2, O2 or some gas mixture according to different experiments. Therefore, in comparison with soft X-ray source using a metal target, after continuously several-hour laser interaction with gas from the gas-puff target system, no evidences show that the light source can produce debris. The debris-free soft X-ray source is prepared for soft X-ray projection lithography research at State Key Laboratory of Applied Optics. Strong emission from CO2, O2 and Kr plasma is observed.

  7. CVD diamond based soft X-ray detector with fast response

    International Nuclear Information System (INIS)

    Li Fang; Hou Lifei; Su Chunxiao; Yang Guohong; Liu Shenye

    2010-01-01

    A soft X-ray detector has been made with high quality chemical vapor deposited (CVD) diamond and the electrical structure of micro-strip. Through the measurement of response time on a laser with the pulse width of 10 ps, the full width at half maximum of the data got in the oscilloscope was 115 ps. The rise time of the CVD diamond detector was calculated to be 49 ps. In the experiment on the laser prototype facility, the signal got by the CVD diamond detector was compared with that got by a soft X-ray spectrometer. Both signals coincided well. The detector is proved to be a kind of reliable soft X-ray detector with fast response and high signal-to-noise ratio. (authors)

  8. First images from the Stanford tabletop scanning soft x-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.; Byer, R.L.

    1988-01-01

    The authors have constructed a scanning soft x-ray microscope which uses a laser-produced plasma as the soft x-ray source and normal incidence multilayer coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 140 angstrom, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 s -1 when operated with only 170 mW of average laser power. The microscope is compact; the complete system, including the laser, fits on a single optical table. In this paper they describe the microscope and present images of metallic microstructures

  9. Electron-confinement studies on EBT-S using soft-x-ray techniques

    International Nuclear Information System (INIS)

    Hillis, D.L.; Haste, G.R.; Berry, L.A.

    1982-08-01

    Soft x-ray bremsstrahlung measurements have been performed on the ELMO Bumpy Torus (EBT-S) plasma to determine the electron temperature T/sub e/ and electron density n/sub e/ using a calibrated Si(Li) detector over a wide range of operating conditions. The purpose of this paper is to outline the necessary assumptions and essential x-ray techniques that are inherent in soft x-ray measurements in order to investigate the electron heating and confinement properties of EBT-S. In addition, by utilizing the electron density as determined by the soft x-ray measurements, the previous EBT-S confinement analyses have been extended. The steady-state plasma of EBT-S is heated by microwaves using a cw gyrotron that can operate up to power levels of 200 kW. From the soft x-ray measurements, both the electron temperature and density are found to increase at higher microwave power levels. For operation at microwave power levels of 200 kW, T/sub e/ approaches 1 keV while n/sub e/ approaches 1.2 x 10 12 cm -3 . In general, confinement properties are found to improve with increased microwave power. The data are compared with neoclassical transport scaling and the electron transport is found to be collisionless (nu/Ω < 1) as well as neoclassical

  10. Development of Compact Soft X-ray Source Based on Laser Undulator

    CERN Document Server

    Kuroda, Ryunosuke; Minamiguchi, S; Saitô, T; Ueyama, D; Washio, Masakazu

    2004-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on backward Compton scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser and 4 MeV high quality electron beam generated from rf gun system. The range of energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein’s coefficient in this range, a dehydration of the specimens is not necessary. As a preliminary experiment, about 300 eV X-ray generation was carried out. As next step, soft X-ray optics with zone plate was proposed for Soft X-ray microscopy. In this conference, we will report details and results of the experiment.

  11. Current sheath curvature correlation with the neon soft x-ray emission from plasma focus device

    International Nuclear Information System (INIS)

    Zhang, T; Lin, X; Chandra, K A; Tan, T L; Springham, S V; Patran, A; Lee, P; Lee, S; Rawat, R S

    2005-01-01

    The insulator sleeve length is one of the major parameters that can severely affect the neon soft x-ray yield from a plasma focus. The effect of the insulation sleeve length on various characteristic timings of plasma focus discharges and hence the soft x-ray emission characteristics has been investigated using a resistive divider. The pinhole images and laser shadowgraphy are used to explain the observed variation in the average soft x-ray yield (measured using a diode x-ray spectrometer) with variation of the insulator sleeve length. We have found that for a neon filled plasma focus device the change in insulator sleeve length changes the current sheath curvature angle and thus the length of the focused plasma column. The optimized current sheath curvature angle is found to be between 39 0 and 41 0 , at the specific axial position of 6.2-9.3 cm from the cathode support plate, for our 3.3 kJ plasma focus device. A strong dependence of the neon soft x-ray yield on the current sheath curvature angle has thus been reported

  12. A linear motion machine for soft x-ray interferometry

    International Nuclear Information System (INIS)

    Duarte, R.; Howells, M.R.; Hussain, Z.; Lauritzen, T.; McGill, R.

    1997-07-01

    A Fourier Transform X-ray Spectrometer has been designed and built for use at the Advanced light source at Lawrence Berkeley National Laboratory. The design requires a total rectilinear motion of 15 mm with a maximum pitch error of the stage below ±0.4 μradians, to achieve this the authors chose to build the entire machine as a single monolithic flexure. A hydraulic driver with sliding O-ring seals was developed with the intention to provide motion with a stick-slip position error of less than 0.8 nm at a uniform velocity of 20 μm/sec. The machine is comprised of two pairs of nested linear motion flexures, all explained by means of a theory published earlier by Hathaway. Certain manufacturing errors were successfully corrected by an extra weak-link feature in the monolith frame. The engineering details of all the subsystems of the linear motion machine are described and measured performance reported

  13. The ISM From the Soft X-ray Background Perspective

    Science.gov (United States)

    Snowden, S. L.

    2003-01-01

    In the past few years progress in understanding the local and Galactic ISM in terms of the diffuse X-ray background has been as much about what hasn't been seen as it has been about detections. High resolution spectra of the local SXRB have been observed, but are inconsistent with current thermal emission models. An excess over the extrapolation of the high-energy (most clearly visible at E greater than 1.5 keV) extragalactic power law down to 3/4 keV has been observed but only at the level consistent with cosmological models, implying the absence of at least a bright hot Galactic halo. A very recent FUSE result indicates that O VI emission from the Local Hot Bubble is insignificant, if it exists at all, a result which is also inconsistent with current thermal emission models. A short review of the current status of our (well, at least my) understanding of the Galactic SXRB and ISM is presented here.

  14. Nanostructured diffractive optical devices for soft X-ray microscopes

    CERN Document Server

    Hambach, D; Schneider, G

    2001-01-01

    The new transmission X-ray microscope (TXM) installed at the BESSY II electron storage ring uses an off-axis transmission zone plate (OTZ) as diffractive and focusing element of the condenser-monochromator setup. A high resolution micro-zone plate (MZP) forms a magnified image on a CCD-detector. Both, the OTZ with an active area of up to 24 mm sup 2 and the MZP with zone widths as small as 25 nm are generated by a process including electron beam lithography (EBL), dry etching and subsequent electroplating of nickel on top of silicon membrane substrates with about 100-150 nm thickness. The combination of a larger zone width and the usage of nickel zone structures allows to increase the diffraction efficiency of the condenser element at least by a factor of 3 compared to the earlier used KZP7 condenser zone plate in the TXM at BESSY I. Groove diffraction efficiencies of 21.6% and 14.7% were measured for MZP objectives with 40 and 25 nm outermost zone width, respectively.

  15. Soft x-ray transmission measurements on thin films used for XMM CCD-filters

    Science.gov (United States)

    Stephan, K.-H.; Reppin, C.; Maier, H. J.; Frischke, D.; Fuchs, D.; Müller, P.

    1997-02-01

    We have been developing optical filters for ESA's X-ray astronomy project XMM (X-ray Multi Mirror Mission). Specific CCDs will be used as detectors in the focal plane on board the observatory (1). Since these detectors are sensitive from the X-ray to the near infrared spectral range, X-ray observations require optical filters, which combine a high transparency for photon energies in the soft X-ray region and a high opacity for ultraviolet and visible radiation as well. With respect to the mission goal in orbit three types of flight model filters are designed having different spectral transmittance functions. We report on one of these types, a so-called "thick" filter, which has been realized within the EQM (Electrical Qualification Model)-phase of the project. The filter features a cut-off in the extreme ultraviolet spectral range and suppresses radiation below ˜10 eV photon energy by more than 8 orders of magnitude. It has an effective aperture of 73 mm without any support structure. A 0.35 μm thick polypropylene carrier foil is coated with metallic films of Al and Sn. We describe transmission measurements in the soft X-ray photon energy range to determine the thickness of the individual layers and present the optical performance data of the filter.

  16. Soft X-ray radio-sensitivities of pollens in several fruit species

    International Nuclear Information System (INIS)

    Hu Chungen; Deng Xiuxin

    1996-01-01

    Irradiated with different dosages of soft X-ray, pollen germinations of prunus baimang, pear kieffer, trifoliate orange and pummelo, were investigated immediately or several days later after irradiation. The results revealed that the pollens of these fruit tress had different sensitivites to soft X-ray and various responses to storage duration. Therefore, even to the same kind of pollen, irradiation with different optimal exposure doses, as well as pollination at different times during storage, should be adopted variously according to the different aims and methods of breeding programs. (author)

  17. Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy

    DEFF Research Database (Denmark)

    Gilbert, B.; Frandsen, Cathrine; Maxey, E.R.

    2009-01-01

    Chemical and photochemical processes at semiconductor surfaces are highly influenced by the size of the band gap, and ability to control the band gap by particle size in nanomaterials is part of their promise. The combination of soft x-ray absorption and emission spectroscopies provides band......-gap determination in bulk and nanoscale itinerant electron semiconductors such as CdS and ZnO, but this approach has not been established for materials such as iron oxides that possess band-edge electronic structure dominated by electron correlations. We performed soft x-ray spectroscopy at the oxygen K...

  18. A simple, semi-quantitative method for measuring pulsed soft x-rays

    International Nuclear Information System (INIS)

    Takahama, Y.; Du, J.; Yanagidaira, T.; Hirano, K.

    1993-01-01

    A simple semi-quantitative measurement and image processing system for pulsed soft X-rays with a time and spatial resolution is proposed. Performance of the system is examined using a cylindrical soft X-ray source generated with a plasma device. The system consists of commercial facilities which are easily obtained such as a microchannel plate-phosphor screen combination, a CCD camera, an image memory board and a personal computer. To make a quantitative measurement possible, the image processing and observation of the phosphor screen current are used in conjunction. (author)

  19. The design of a measuring system for soft X ray absolute intensity

    International Nuclear Information System (INIS)

    Cui Congwu; Cui Mingqi

    1997-01-01

    The design of a measuring system for soft X ray absolute intensity in detail is presented. The system consists of two parts: the ionization chamber, the silicon photodiode and its transferring system. The system can be used as the primary standard detector for the measurement of soft X ray absolute radiation flux in the energy range of 50 to 2000 eV after being calibrated. The whole system will be installed to the newly built beamline of 3W1B at Beijing Synchrotron Radiation Facility

  20. Coronal temperature diagnostics from high-resolution soft X-ray spectra

    Science.gov (United States)

    Strong, K. T.; Claflin, E. S.; Lemen, J. R.; Linford, G. A.

    1988-01-01

    The problem of deriving the temperature of the coronal plasma from soft X-ray spectra is discussed. Spectral atlas scans of the soft X-ray spectrum from the Flat Crystal Spectrometer on the Solar Maximum Mission are compared with theoretical predictions of the relative intensities of some of the brighter lines to determine which line intensity ratios give the most reliable temperature diagnostics. The techniques considered include line widths, He-like G ratios, intensity ratios, and ratios of lines formed by different elements. It is found that the best temperature diagnostics come from the ratios of lines formed by successive ionization stages of the same element.

  1. Optimization of soft X-ray tomography on the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Imríšek, Martin; Mlynář, Jan; Löffelmann, Viktor; Weinzettl, Vladimír; Odstrčil, T.; Odstrčil, M.; Tomeš, Matěj

    2016-01-01

    Roč. 61, č. 4 (2016), s. 403-408 ISSN 0029-5922. [Summer School of Plasma Diagnostics PhDiaFusion 2015: “Soft X-ray Diagnostics for Fusion Plasma”. Bezmiechowa, 16.06.2015-20.06.2015] R&D Projects: GA MŠk(CZ) LM2011021; GA MŠk LG14002; GA MŠk(CZ) 8D15001 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : soft X-ray * tomography * Tikhonov regularization * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.760, year: 2016 http://www.ichtj.waw.pl/nukleonikaa/?p=1256

  2. Triggering photochemical processes in frozen extraterrestrial worlds by soft X-rays

    International Nuclear Information System (INIS)

    Pilling, Sergio; Bergantini, Alexandre; Vasconcelos, Fredson A; Rocha, Will R M

    2015-01-01

    We presents and experimental investigation on the effects produced by broad band soft X-rays (combined with a small fraction of vacuum ultra violet photons and possibly secondary elec-trons) on the surface of three moons of giant planets: Europa, Titan and Enceladus. Such environ-ments are constantly exposed to space ionizing agents (UV and soft X-rays photons, electrons and ions) allowing photodissociation processes, surface photochemistry and prebiotic chemistry. The processing of such spatial ices have promoted an enhancement in the chemical complexity, similar what may have happened in the early earth triggering the arising of life. (paper)

  3. Application of total reflection X-ray fluorescence spectrometry for ...

    Indian Academy of Sciences (India)

    Applicability of total reflection X-ray fluorescence (TXRF) spectrometry for trace elemental analysis of rainwater samples was studied. The study was used to develop these samples as rainwater standards by the National University of Singapore (NUS). Our laboratory was one of the participants to use TXRF for this study.

  4. Two-axis Neutron and X-ray Reflectivity

    DEFF Research Database (Denmark)

    Bouwman, W.G.; Vigild, M.E.; Findeisen, E.

    1997-01-01

    Sample alignment for neutron (and in some cases x-ray) reflectometry can be complicated due to a coupling between angle and position which occurs when slits are used to define the path of the beam. Misalignments in sample position or sample rotation angle give rise to systematic errors in the exp...

  5. Contributions of late-type dwarf stars to the soft X-ray diffuse background

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J.H.M.M.; Snowden, S.L. (Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany, F.R.) Wisconsin Univ., Madison (USA))

    1990-09-01

    Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law. 41 refs.

  6. Contributions of late-type dwarf stars to the soft X-ray diffuse background

    Science.gov (United States)

    Schmitt, J. H. M. M.; Snowden, S. L.

    1990-01-01

    Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law.

  7. Electronic structure of multiferroic BiFeO3 by resonant soft-x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Tohru; Higuchi, T.; Liu, Y.-S.; Yao, P.; Glans, P.-A.; Guo, Jinghua; Chang, C.; Wu, Z.; Sakamoto, W.; Itoh, N.; Shimura, T.; Yogo, T.; Hattori, T.

    2008-07-11

    The electronic structure of multiferroic BiFeO{sub 3} has been studied using soft-X-ray emission spectroscopy. The fluorescence spectra exhibit that the valence band is mainly composed of O 2p state hybridized with Fe 3d state. The band gap corresponding to the energy separation between the top of the O 2p valence band and the bottom of the Fe 3d conduction band is 1.3 eV. The soft-X-ray Raman scattering reflects the features due to charge transfer transition from O 2p valence band to Fe 3d conduction band. These findings are similar to the result of electronic structure calculation by density functional theory within the local spin-density approximation that included the effect of Coulomb repulsion between localized d states.

  8. Soft X-ray induced chemical modification of polysaccharides in vascular plant cell walls

    International Nuclear Information System (INIS)

    Cody, George D.; Brandes, Jay; Jacobsen, Chris; Wirick, Susan

    2009-01-01

    Scanning transmission X-ray microscopy and micro carbon X-ray Absorption Near Edge Spectroscopy (C-XANES) can provide quantitative information regarding the distribution of the biopolymers cellulose, hemicellulose, and lignin in vascular plant cell walls. In the case of angiosperms, flowering plants, C-XANES may also be able to distinguish variations in lignin monomer distributions throughout the cell wall. Polysaccharides are susceptible to soft X-ray irradiation induced chemical transformations that may complicate spectral analysis. The stability of a model polysaccharide, cellulose acetate, to variable doses of soft X-rays under conditions optimized for high quality C-XANES spectroscopy was investigated. The primary chemical effect of soft X-ray irradiation on cellulose acetate involves mass loss coincident with de-acetylation. A lesser amount of vinyl ketone formation also occurs. Reduction in irradiation dose via defocusing does enable high quality pristine spectra to be obtained. Radiation induced chemical modification studies of oak cell wall reveals that cellulose and hemicellulose are less labile to chemical modification than cellulose acetate. Strategies for obtaining pristine C-XANES spectra of polysaccharides are presented.

  9. Soft X-ray observations of two BL Lacertae objects - markarian 421 and 501

    International Nuclear Information System (INIS)

    Singh, K.P.; Garmire, G.P.

    1985-01-01

    This paper reports on the soft X-ray (0.15-2.8 keV) observations of two BL Lacertae-type objects, viz., Mrk 421 and Mrk 501. The observations were made with the low-energy detectors on the HEAO 1 satellite during the period 1977 August-1978 December. Steep, soft X-ray power-law spectra with photon index Gamma = 3 are found for both Mrk 421 and Mrk 501. The power-law models are found to give a significantly better fit than the thermal models to the observed pulse-height spectra of Mrk 421 and Mrk 501. Day-to-day soft X-ray (0.25 keV band) intensity variations are observed only in Mrk 501. No significant change is found in Gamma from both the BL Lac objects during the period of observations. However, the sum of all the X-ray observations from 1976 until 1980 can be understood in terms of two spectral components of variable intensity to account for the X-ray emission observed between 0.15 and 20 keV from Mrk 421 and Mrk 501. 24 references

  10. Resolving the Origin of the Diffuse Soft X-ray Background

    Science.gov (United States)

    Smith, Randall K.; Foster, Adam R.; Edgar, Ricard J.; Brickhouse, Nancy S.; Sanders, Wilton T.

    2012-01-01

    In January 1993, the Diffuse X-ray Spectrometer (DXS) measured the first high-resolution spectrum of the diffuse soft X-ray background between 44-80A. A line-dominated spectrum characteristic of a 10(exp 6)K collisionally ionized plasma' was expected but while the observed spectrum was clearly line-dominated, no model would fit. Then in 2003 the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) launched and observed the diffuse extreme-ultraviolet (EUV) spectrum between 90- 265A. Although many emission lines were again expected; only Fe IX at 171.1A was detected. The discovery of X-rays from comets led to the realization that heavy ions (Z=6-28) in the solar wind will emit soft X-rays as the ions interact via charge exchange with neutral atoms in the heliosphere and geocorona. Using a new model for solar wind charge exchange (SWCX) emission, we show that the diffuse soft X-ray background can be understood as a combination of emission from charge exchange onto the slow and fast solar wind together with a more distant and diffuse hot (10(exp 6)K) plasma.

  11. MODELING THE THERMAL DIFFUSE SOFT AND HARD X-RAY EMISSION IN M17

    International Nuclear Information System (INIS)

    Velázquez, P. F.; Rodríguez-González, A.; Esquivel, A.; Rosado, M.; Reyes-Iturbide, J.

    2013-01-01

    We present numerical models of very young wind driven superbubbles. The parameters chosen for the simulations correspond to the particular case of the M17 nebula, but are appropriate for any young superbubble in which the wind sources have not completely dispersed their parental cloud. From the simulations, we computed the diffuse emission in the soft ([0.5-1.5] keV) and hard ([1.5-5] keV) X-ray bands. The total luminosity in our simulations agrees with the observations of Hyodo et al., about two orders of magnitude below the prediction of the standard model of Weaver et al.. The difference with respect to the standard (adiabatic) model is the inclusion of radiative cooling, which is still important in such young bubbles. We show that for this type of object the diffuse hard X-ray luminosity is significant compared to that of soft X-rays, contributing as much as 10% of the total luminosity, in contrast with more evolved bubbles where the hard X-ray emission is indeed negligible, being at least four orders of magnitude lower than the soft X-ray emission.

  12. Soft x-ray spectroscopy for probing electronic and chemical states of battery materials

    International Nuclear Information System (INIS)

    Yang Wanli; Qiao Ruimin

    2016-01-01

    The formidable challenge of developing high-performance battery system stems from the complication of battery operations, both mechanically and electronically. In the electrodes and at the electrode–electrolyte interfaces, chemical reactions take place with evolving electron states. In addition to the extensive studies of material synthesis, electrochemical, structural, and mechanical properties, soft x-ray spectroscopy provides unique opportunities for revealing the critical electron states in batteries. This review discusses some of the recent soft x-ray spectroscopic results on battery binder, transition-metal based positive electrodes, and the solid-electrolyte-interphase. By virtue of soft x-ray’s sensitivity to electron states, the electronic property, the redox during electrochemical operations, and the chemical species of the interphases could be fingerprinted by soft x-ray spectroscopy. Understanding and innovating battery technologies need a multimodal approach, and soft x-ray spectroscopy is one of the incisive tools to probe the chemical and physical evolutions in batteries. (topical review)

  13. Surface characterization of selected polymer thin films by total-reflection x-ray fluorescence spectroscopy and x-ray reflectivity

    International Nuclear Information System (INIS)

    Innis, Vallerie Ann A.

    2006-01-01

    Development of available x-ray characterizations tools for grazing incidence techniques was done to be able to probe nano-size thin films. Alignment of a Philips x-ray powder diffractometer was improved to let it perform as an x-ray reflectometer. X-ray reflectometry was coupled with total-reflection x-ray fluorescence spectroscopy. Evaluation of the performance of this grazing incidence techniques was done by preparing polymer thin films of carboxymethylcellulose, carrageenan and polyvinylpyrrolidone (PVP). The thickness of the films were varied by varying the process parameters such as concentration, spin speed and spin time. Angle-dispersive total-reflection x-ray fluorescence spectroscopy profiles of three films showed film formation only in carrageenan and PVP. For both carrageenan and PVP, an increase in concentration yielded a corresponding increase in intensity of the fluorescent or scattered peaks. XRR profiles of carrageenan thin films yielded a mean value for the critical angle close to quartz substrate. Thickness measurements of the prepared carrageenan thin films showed that concentration was the main determinant for final film thickness over the other process parameters. Sulfur fluorescent intensity derived from the TXRF measurement showed a linear relationship with the measured thickness by XRR. For PVP, measured critical angle is lower than quartz. Poor adhesion of the polymer onto the substrate yielded a limited number of thickness measurements made from the XRR profiles. (Author)

  14. Soft X-ray imaging with axisymmetry microscope and electronic readout

    International Nuclear Information System (INIS)

    Sauneuf, A.; Cavailler, C.; Henry, Ph.; Launspach, J.; Mascureau, J. de; Rostaing, M.

    1984-11-01

    An axisymmetric microscope with 10 X magnification has been constructed; its resolution has been measured using severals grids, backlighted by an X-ray source and found to be near 25 μm. So it could be used to make images of laser driven plasmas in the soft X-ray region. In order to see rapidly those images we have associated it with a new detector. It is a small image converter tube with a soft X-ray photocathode and a P20 phosphor deposited on an optic fiber plate. The electronic image appearing on the screen is read by a CCD working in the spectral range. An electronic image readout chain, which is identical to those we use with streak cameras, then processes automatically and immediatly the images given by the microscope

  15. Relations Between FUV Excess and Coronal Soft X-Ray Emission Among Dwarf Stars

    Science.gov (United States)

    Smith, Graeme H.; Hargrave, Mason; Eckholm, Elliot

    2017-11-01

    The far-ultraviolet magnitudes of late-F, G and early-K dwarfs with (B - V) ⩾ 0.50 as measured by the GALEX satellite are shown to correlate with soft X-ray luminosity. This result indicates that line and continuum emission from stellar active regions make significant contributions to the flux in the GALEX FUV band for late-F, G and K dwarfs. By contrast, detection of a correlation between FUV brightness and soft X-ray luminosity among early-F dwarfs requires subtraction of the photospheric component from the FUV flux. The range in (B - V) among F and G dwarfs over which a correlation between uncorrected FUV magnitude and X-ray luminosity is detected coincides with the range in colour over which coronal and chromospheric emission correlates with stellar rotation.

  16. Resolving the origin of the diffuse soft X-ray background

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Randall K.; Foster, Adam R.; Edgar, Richard J.; Brickhouse, Nancy S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States)

    2014-05-20

    The ubiquitous diffuse soft (1/4 keV) X-ray background was one of the earliest discoveries of X-ray astronomy. At least some of the emission may arise from charge exchange between solar wind ions and neutral atoms in the heliosphere, but no detailed models have been fit to the available data. Here, we report on a new model for charge exchange in the solar wind, which, when combined with a diffuse hot plasma component, filling the Local Cavity provides a good fit to the only available high-resolution soft X-ray and extreme ultraviolet spectra using plausible parameters for the solar wind. The implied hot plasma component is in pressure equilibrium with the local cloud that surrounds the solar system, creating for the first time a self-consistent picture of the local interstellar medium.

  17. Scintillator power meter applied on Z-pinch plasma soft X-ray yield measurement

    International Nuclear Information System (INIS)

    Zhang Siqun; Huang Xianbin; Li Jing; Dan Jiakun; Li Jun; Yang Libing; Cui Mingqi; Zhao Yidong

    2010-01-01

    This paper presents the configuration and measuring parameters of scintillator power meter applied in Z-pinch plasma soft X-ray yield measurement on Yang accelerator. It also introduces the calibration experiment on BSRF, and analyzes the defect of the power meter from calibration results, the possible errors and feasible method for correcting the errors. The measuring results are revised according to spectrum acquired from Dante spectrometer. The revised discrepancy of two instruments is decreased from over 30% to subter-15%. Finally, the result of yield measurement of the puff Z-pinch X-ray radiation is reported as well, i.e., hundreds of Joule, multigigawatt levels of soft X ray radiation were produced by puff Z-pinch on Yang accelerator. (authors)

  18. Soft X-ray variability and the covering fraction of active galactic nuclei

    International Nuclear Information System (INIS)

    Wachter, K.W.; Strauss, M.A.; Filippenko, A.V.

    1988-01-01

    A model to explain the observed soft X-ray variability to some low-luminosity Seyfert 1 galaxies is developed. The variability is due to changes in the covering fraction of the central source as broad-line clouds move across our line of sight. A formalism is developed which is used to demonstrate how analysis of a soft X-ray light curve can provide three important quantities: the radius of the X-ray emitting region, the radius of a typical broad-line cloud, and the electron density in the cloud. It is shown that the results are rather insensitive to the assumed radial dependence of the surface brightness of the source, but are quite sensitive to a large dispersion in cloud sizes. 55 references

  19. Laser-produced multi-charged heavy ions as efficient soft x-ray sources

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Suzuki, Yuhei; Kawasaki, Masato

    2016-01-01

    We demonstrate EUV and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6x nm and a water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on a high-Z plasma UTA source, coupled to x-ray optics. We will discuss the progress and Z-scaling of UTA emission spectra to achieve lab-scale table-top, efficient, high-brightness high-Z plasma EUV-soft x-ray sources for in vivo bio-imaging applications. (author)

  20. Figure tolerance of a Wolter type I mirror for a soft-x-ray microscope

    International Nuclear Information System (INIS)

    Chon, Kwon Su; Namba, Yoshiharu; Yoon, Kwon-Ha

    2007-01-01

    The demand for an x-ray microscope has received much attention because of the desire to study living cells at a high resolution and in a hydrated environment. A Wolter type I mirror used for soft-x-ray microscope optics has many advantages. From the mirror fabrication point of view, it is necessary to perform tolerance analysis, particularly with respect to figure errors that considerably degrade the image quality.The figure tolerance of a Wolter type I mirror for a biological application in terms of the image quality and the state-of-the-art fabrication technology is discussed. The figure errors rapidly destroyed the image quality, and the required slope error depended on the detector used in the soft-x-ray microscope

  1. Spectroscopic study of site selective DNA damage induced by intense soft X-rays

    CERN Document Server

    Fujii, K

    2003-01-01

    To investigate the mechanisms of DNA damage induced by direct photon impact, we observed the near edge X-ray absorption fine structures (NEXAFS) of DNA nucleobases using monochromatic synchrotron soft X-rays around nitrogen and oxygen K-shell excitation regions. Each spectrum obtained has unique structure corresponding to pi* excitation of oxygen or nitrogen 1s electron. These aspects open a way of nucleobase-selective photo-excitation in a DNA molecule using high resolution monochromatized soft X-rays. From the analysis of polarization-dependent intensities of the pi* resonance peak, it is clarified that adenine, guanine an uracil form orientated surface structure. Furthermore from the direct measurement of positive ions desorbed from photon irradiated DNA components, it is revealed that the sugar moiety is a fragile site in a DNA molecule. (author)

  2. Reflectivity and diffraction of X rays applied to organic thin films

    International Nuclear Information System (INIS)

    Rieutord, Francois

    1987-01-01

    This research thesis reports the study of organic thin films by using X-ray-based technologies, and more particularly X-ray reflectivity. After some recalls on X ray diffraction, and on the fabrication of Langmuir-Blodgett films, the author shows how, by combining three X-ray-based techniques, it is possible to study a volume structure of a thin film. He describes the technique of measurement by X- ray reflexivity, its experimental implementation, and methods for result interpretation. In the next part, the author reports the study of peculiar interference effects which are noticed in reflexivity on Langmuir-Blodgett films, and then describes the nature of these films by correlating results of X ray reflexivity with direct observations performed by electronic microscopy on replica [fr

  3. X-ray total reflection mirrors for coherent illumination

    CERN Document Server

    Ishikawa, T; Yabashi, M; Souvorov, A; Yamauchi, K; Yamamura, K; Mimura, H; Saito, A; Mori, Y

    2002-01-01

    X-ray mirrors for coherent illumination demand much higher surface quality than is achievable with the conventional polishing techniques. Plasma chemical vaporization machining (CVM) and elastic emission machining (EEM) have been applied for x-ray mirror manufacturing. Figure error of a flat silicon single crystal mirrors made with CVM+EEM process was reduced to 2.0 nm peak-to-valley and 0.2 nm RMS. The machining process was also applied to make elliptical mirrors. One-dimensional focusing with a single elliptical mirror showed diffraction-limited properties with the focal width of 200 nm. Two-dimensional focusing with Kirkpatric-Baez configuration gave a focal spot size of 200 nm x 200 nm. (author)

  4. Interaction between lipid monolayers and poloxamer 188: An X-ray reflectivity and diffraction study

    DEFF Research Database (Denmark)

    Wu, G.H.; Majewski, J.; Ege, C.

    2005-01-01

    The mechanism by which poloxamer 188 (P188) seals a damaged cell membrane is examined using the lipid monolayer as a model system. X-ray reflectivity and grazing-incidence x-ray diffraction results show that at low nominal lipid density, P188, by physically occupying the available area and phase ...

  5. First application experiments with the Stockholm compact soft x-ray microscope

    International Nuclear Information System (INIS)

    Bertilson, M; Hofsten, O von; Lindblom, M; Holmberg, A; Takman, P; Vogt, U; Hertz, H; Thieme, J

    2009-01-01

    Most soft x-ray microscopes operating in the water window (λ = 2.3 - 4.4 nm) rely on synchrotron radiation sources. In the future we believe scientists will use soft x-ray microscopes as one imaging tool among others in their own laboratory. For this purpose we have developed a full field soft x-ray microscope with a laser-plasma source compact enough to fit on an optical table. In this contribution we describe the current status of this microscope now featuring stable operation at λ = 3.37 nm or λ 2.48 nm. In-house fabricated single element zone plates offering the possibility to perform phase contrast imaging have been implemented. We also report on the first application experiments for compact soft x-ray microscopy, including results from studies of clay minerals and colloids existing in nature and results from phase optics experiments. Planned upgrades of the microscope include increasing the source brightness, implementing more efficient condenser optics, and installing a cryo sample stage for tomography. These improvements will open up for further applications, especially in the field of biological imaging.

  6. Soft X-ray excess in the cluster of galaxies Sérsic 159-03

    NARCIS (Netherlands)

    de Plaa, J.; Kaastra, J.S.; Méndez, R.M.; Tamura, T.; Bleeker, J.A.M.; Peterson, J.; Paerels, F.B.S.; Bonamente, M.; Lieu, R.

    2004-01-01

    We present the results from a new 120 ks XMM-Newton observation of Sérsic 159-03. A previous XMM-Newton observation of this cluster shows the presence of a soft X-ray excess in the outer parts of the cluster, which is possibly connected to the interaction between the cluster and the gas from the

  7. Xenon capillary discharge as a source of soft X-ray

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.

    2002-01-01

    Roč. 52, supplement D (2002), s. 112-116 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : capillary discharge, soft X-ray Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  8. Optimization of soft x-ray line emission from laser-produced carbon ...

    Indian Academy of Sciences (India)

    Intense XUV soft x-ray emission from laser-produced plasma sources is currently ... absorption edges of oxygen and carbon respectively) is particularly attractive as it permits ... ability of the target element producing intense discrete lines in the water .... ficient due to Pert [17] and dielectronic recombination coefficient due to ...

  9. Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source

    Czech Academy of Sciences Publication Activity Database

    Tiedtke, K.; Sorokin, A. A.; Jastrow, U.; Juranić, P.; Kreis, S.; Gerken, N.; Richter, M.; Arp, U.; Feng, Y.; Nordlund, D.; Soufli, R.; Fernández-Perea, M.; Juha, Libor; Heimann, P.; Nagler, B.; Lee, H.J.; Mack, S.; Cammarata, M.; Krupin, O.; Messerschmidt, M.; Holmes, M.; Rowen, M.; Schlotter, W.; Moeller, S.; Turner, J.J.

    2014-01-01

    Roč. 22, č. 18 (2014), s. 21214-21226 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LG13029 Institutional support: RVO:68378271 Keywords : soft x-ray * free electron laser * LCLS * instrumentation * measurement * metrology Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.488, year: 2014

  10. Soft x-ray laser gain measurements in a recombining plasma column

    International Nuclear Information System (INIS)

    Suckewer, S.; Skinner, C.H.; Milchberg, H.; Keane, C.; Voorhees, D.

    1985-03-01

    An enhancement of approx. 100 of stimulated emission over spontaneous emission of the CVI 182 A line (one-pass gain approx. = 6.5) was measured in a recombining, magnetically confined plasma column by two independent techniques using intensity calibrated XUV monochromators. Additional confirmation that the enhancement was due to stimulated emission has been obtained with a soft x-ray mirror

  11. Resonant soft x-ray scattering and charge density waves in correlated systems

    NARCIS (Netherlands)

    Rusydi, Andrivo

    2006-01-01

    Summary This work describes results obtained on the study of charge density waves (CDW) in strongly correlated systems with a new experimental method: resonant soft x-ray scattering (RSXS). The basic motivation is the 1986 discovery by Bednorz and Müler of a new type of superconductor, based on Cu

  12. Soft X-ray magnetic scattering study of rotational magnetisation processes in cobalt/copper multilayers

    International Nuclear Information System (INIS)

    Hase, T.P.A.; Fulthorpe, B.D.; Wilkins, S.B.; Tanner, B.K.; Marrows, C.H.; Hickey, B.J.

    2001-01-01

    We report the observation of magnetic viscosity in the intensity of resonant magnetic soft X-ray scattering during rotational magnetisation processes in antiferromagnetically coupled Co/Cu multilayers. The hysteretic time-dependent component of the signal can be fitted to a single-exponential function that varies as a function of magnetising field

  13. Self-seeding scheme for the soft X-ray line at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-02-15

    This paper discusses the potential for enhancing the capabilities of the European FEL in the soft X-ray regime. A high longitudinal coherence will be the key to such performance upgrade. In order to reach this goal we study a very compact soft X-ray self-seeding scheme originally designed at SLAC. The scheme is based on a grating monochromator, and can be straightforwardly installed in the SASE3 undulator beamline at the European XFEL. For the European XFEL fully-coherent soft X-ray pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap SASE3 undulator. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations we show that soft X-ray FEL power reaches about 800 GW, that is about an order of magnitude higher than the SASE level at saturation (100 GW). The self-seeding setup studied in this work is extremely compact (about 5 m long), and cost-effective. This last characteristic may justify to consider it as a possible addition to the European XFEL capabilities from the very beginning of the operation phase. (orig.)

  14. Experimental study of soft X-ray intensity with different anode tips in ...

    Indian Academy of Sciences (India)

    2016-06-15

    Jun 15, 2016 ... c Indian Academy of Sciences. DOI 10.1007/s12043-016-1224-8. Experimental study of soft X-ray intensity with different anode tips in Amirkabir plasma focus device. MORTEZA HABIBI. ∗ and MAHSA MAHTAB. Energy Engineering and Physics Department, Amirkabir University of Technology, Tehran, Iran.

  15. Self-seeding scheme for the soft X-ray line at the European XFEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2012-02-01

    This paper discusses the potential for enhancing the capabilities of the European FEL in the soft X-ray regime. A high longitudinal coherence will be the key to such performance upgrade. In order to reach this goal we study a very compact soft X-ray self-seeding scheme originally designed at SLAC. The scheme is based on a grating monochromator, and can be straightforwardly installed in the SASE3 undulator beamline at the European XFEL. For the European XFEL fully-coherent soft X-ray pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap SASE3 undulator. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations we show that soft X-ray FEL power reaches about 800 GW, that is about an order of magnitude higher than the SASE level at saturation (100 GW). The self-seeding setup studied in this work is extremely compact (about 5 m long), and cost-effective. This last characteristic may justify to consider it as a possible addition to the European XFEL capabilities from the very beginning of the operation phase. (orig.)

  16. Analytic theory of soft x-ray diffraction by lamellar multilayer gratings

    NARCIS (Netherlands)

    Kozhevnikov, I.V.; van der Meer, R.; Bastiaens, Hubertus M.J.; Boller, Klaus J.; Bijkerk, Frederik

    2011-01-01

    An analytic theory describing soft x-ray diffraction by Lamellar Multilayer Gratings (LMG) has been developed. The theory is derived from a coupled waves approach for LMGs operating in the single-order regime, where an incident plane wave can only excite a single diffraction order. The results from

  17. Soft-X ray electronics for temperature measurement in SST-1 tokamak

    International Nuclear Information System (INIS)

    Kumari, Praveena; Raval, Jayesh V.; Chauhan, Harsad; Hansalia, C.J.; Joisa, Y.S.; Rajpal, Rachana

    2015-01-01

    Soft-X ray diagnostic is used for the measurement of core temperature of plasma in tokamak. Signal conditioning electronics is designed, developed and tested for Soft-X ray measurement in SST-1. Silicon Surface Barrier Detectors (SBD) are used for detection of Soft -X ray. The detector is very sensitive and have a large leakage current (1-10) nA/cm"2. The preamplifier is designed to measure (10-100) nA of current signal. Virtual bias is supplied to detector through preamplifier. The front end electronics are mounted directly on the feed through in air side. Detectors are interfaced with feed through by 2-wire shielded cable. In the way of getting good results, problems are identified and troubleshooted. Soft-X ray signals are observed consistently in SST-1 campaign XIII. Different scheme were tested during the plasma experimental shots to get better measurement. This poster will describe the design details, interfacing with detector, problem faced, remedy and results. (author)

  18. Deexcitation Dynamics of Superhydrogenated Polycyclic Aromatic Hydrocarbon Cations after Soft-x-Ray Absorption

    NARCIS (Netherlands)

    Reitsma, Geert; Boschman, Leon; Deuzeman, Mart Johan; Gonzalez Magana, Olmo; Hoekstra, Steven; Cazaux, Stéphanie; Hoekstra, Ronnie; Schlathölter, Thomas

    We have investigated the response of superhydrogenated gas-phase coronene cations upon soft x-ray absorption. Carbon (1s)⟶π⋆ transitions were resonantly excited at hν =285 eV. The resulting core hole is then filled in an Auger decay process, with the excess energy being released in the form of an

  19. Investigations of Caenorhabditis Elegans Using Soft X-ray Contact Microscopy

    Czech Academy of Sciences Publication Activity Database

    Desai, T.; Batani, D.; Bernardinello, A.; Poletti, G.; Orsini, F.; Ullschmied, Jiří; Skála, Jiří; Králiková, Božena; Krouský, Eduard; Mocek, Karel; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomáš; Präg R., Ansgar; Renner, Oldřich; Juha, Libor; Cotelli, F.; Lamia, C. L.; Zullini, A.

    2004-01-01

    Roč. 20, č. 3 (2004), s. 121-125 ISSN 1120-1797 R&D Projects: GA MŠk LN00A100 Keywords : C. elegans * soft X-ray contact microscopy * intense laser plasma * gold target Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.341, year: 2004

  20. Recent progress of soft X-ray photoelectron spectroscopy studies of uranium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Shin-ichi; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Fujimori, Atsushi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033 (Japan); Yamagami, Hiroshi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Yamamoto, Etsuji; Haga, Yoshinori [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ōnuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan)

    2016-04-15

    Recent progresses in the soft X-ray photoelectron spectroscopy (PES) studies (hν ≳ 100 eV) for uranium compounds are briefly reviewed. The soft X-ray PES has enhanced sensitivities for the bulk U 5f electronic structure, which is essential to understand the unique physical properties of uranium compounds. In particular, the recent remarkable improvement in energy resolutions from an order of 1 eV to 100 meV made it possible to observe fine structures in U 5f density of states. Furthermore, soft X-ray ARPES becomes available due to the increase of photon flux at beamlines in third generation synchrotron radiation facilities.The technique made it possible to observe bulk band structures and Fermi surfaces of uranium compounds and therefore, the results can be directly compared with theoretical models such as band-structure calculations. The core-level spectra of uranium compounds show a systematic behavior depending on their electronic structures, suggesting that they can be utilized to determine basic physical parameters such as the U 5f-ligand hybridizations or Comlomb interaction between U 5f electrons. It is shown that soft X-ray PES provides unique opportunities to understand the electronic structures of uranium compounds.

  1. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    NARCIS (Netherlands)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Louis, Eric; Bijkerk, Frederik

    2017-01-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV

  2. Electron beam requirements for soft x-ray/XUV free-electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.

    1987-01-01

    A discussion of the electron beam quality (peak current, energy spread, and transverse emittance) required to drive short wavelength free-electron lasers in the XUV (10-100 nm) and soft x-ray (<10 nm) optical wavelength ranges is presented

  3. Low-temperature crystallization of amorphous silicon and amorphous germanium by soft X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Heya, Akira, E-mail: heya@eng.u-hyogo.ac.jp [Department of Materials Science and Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671–2280 (Japan); Kanda, Kazuhiro [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan); Toko, Kaoru; Sadoh, Taizoh [Department of Electronics, Kyushu University, 744 Nishi-ku, Motooka, Fukuoka 819–0395 (Japan); Amano, Sho [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan); Matsuo, Naoto [Department of Materials Science and Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671–2280 (Japan); Miyamoto, Shuji [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan); Miyao, Masanobu [Department of Electronics, Kyushu University, 744 Nishi-ku, Motooka, Fukuoka 819–0395 (Japan); Mochizuki, Takayasu [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan)

    2013-05-01

    The low-temperature-crystallization effects of soft X-ray irradiation on the structural properties of amorphous Si and amorphous Ge films were investigated. From the differences in crystallization between Si and Ge, it was found that the effects of soft X-ray irradiation on the crystallization strongly depended on the energy band gap and energy level. The crystallization temperatures of the amorphous Si and amorphous Ge films decreased from 953 K to 853 K and 773 K to 663 K, respectively. The decrease in crystallization temperature was also related to atoms transitioning into a quasi-nucleic phase in the films. The ratio of electron excitation and migration effects to thermal effects was controlled using the storage-ring current (photon flux density). Therefore, we believe that low-temperature crystallization can be realized by controlling atomic migration through electron excitation. - Highlights: • This work investigates the crystallization mechanism for soft X-ray irradiation. • The soft X-ray crystallization depended on the energy band gap and energy level. • The decrease in the crystallization temperature for Si and Ge films was 100 K. • This decrement was related to atoms transitioning into a quasi-nucleic phase.

  4. Hard X-ray/soft gamma-ray telescope designs for future astrophysics missions

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Pivovaroff, Michael J.

    2013-01-01

    We present several concept designs of hard X-ray/soft λ-ray focusing telescopes for future astrophysics missions. The designs are based on depth graded multilayer coatings. These have been successfully employed on the NuSTAR mission for energies up to 80 keV. Recent advances in demonstrating...

  5. On the Origin of the Soft X-ray excess in radio quiet AGN

    Science.gov (United States)

    Petrucci, P.; Ursini, F.; Cappi, M.; Bianchi, S.; Matt, G.; De Rosa, A.; Malzac, J.; Henri, G.

    2016-06-01

    Known since the 80s, the origin of the soft X-ray (talk I will present the results obtained applying the same method to a sample of objects selected to have: a) 3 XMM observations b) at least 3 OM filters in use and c) a low (methodology and the important implications of the results.

  6. Production of Coherent xuv and soft-x-ray light using a transverse optical klystron

    International Nuclear Information System (INIS)

    Kincaid, B.M.; Freeman, R.R.

    1984-01-01

    This section describes the theory of the production of coherent xuv radiation and soft x rays using a transverse optical klystron (TOK). A TOK uses a high-power laser in conjunction with an undulator magnet to produce laserlike output of xuv radiation from a relativistic electron beam. 16 references, 5 figures

  7. Study of soft X-ray energy spectra from gas-puff Z-pinch plasma

    International Nuclear Information System (INIS)

    Zou Xiaobing; Wang Xinxin; Zhang Guixin; Han Min; Luo Chengmu

    2006-01-01

    A ROSS-FILTER-PIN spectrometer in the spectral range of 0.28 keV-1.56 keV was developed to study the soft X-ray radiation emitted from gas-puff Z-pinch plasma. It is composed of five channels covering the energy interval of interest without gaps. Soft X-ray spectral energy cuts were determined by the L absorption edges of selected filter elements (K absorption edges being used for light filter elements), and the optimum thickness of filter material was designed using computer code. To minimize the residual sensitivity outside the sensitivity range of each channel, element of the first filter was added into the second filter of all the Ross pair. To diminish the area of each filter, PIN detector with small sensitive area of 1 mm 2 was adopted for the spectrometer. A filter with small area is easy to fabricate and would be helpful to withstand the Z-pinch discharge shock wave. With this ROSS-FILTER-PIN spectrometer, the energy spectra of soft X-ray from a small gas-puff Z-pinch were investigated, and the correlation between the soft X-ray yield and the plasma implosion state was also studied. (authors)

  8. In-flight calibration of Hitomi Soft X-ray Spectrometer. (1) Background

    Science.gov (United States)

    Kilbourne, Caroline A.; Sawada, Makoto; Tsujimoto, Masahiro; Angellini, Lorella; Boyce, Kevin R.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kelley, Richard L.; Koyama, Shu; Leutenegger, Maurice A.; Loewenstein, Michael; McCammon, Dan; Mitsuda, Kazuhisa; Nakashima, Shinya; Porter, Frederick S.; Seta, Hiromi; Takei, Yoh; Tashiro, Makoto S.; Terada, Yukikatsu; Yamada, Shinya; Yamasaki, Noriko Y.

    2018-03-01

    The X-Ray Spectrometer (XRS) instrument of Suzaku provided the first measurement of the non-X-ray background (NXB) of an X-ray calorimeter spectrometer, but the data set was limited. The Soft X-ray Spectrometer (SXS) instrument of Hitomi was able to provide a more detailed picture of X-ray calorimeter background, with more than 360 ks of data while pointed at the Earth, and a comparable amount of blank-sky data. These data are important not only for analyzing SXS science data, but also for categorizing the contributions to the NXB in X-ray calorimeters as a class. In this paper, we present the contributions to the SXS NXB, the types and effectiveness of the screening, the interaction of the screening with the broad-band redistribution, and the residual background spectrum as a function of magnetic cut-off rigidity. The orbit-averaged SXS NXB in the range 0.3-12 keV was 4 × 10-2 counts s-1 cm-2. This very low background in combination with groundbreaking spectral resolution gave SXS unprecedented sensitivity to weak spectral lines.

  9. Overview of nanoscale NEXAFS performed with soft X-ray microscopes

    Directory of Open Access Journals (Sweden)

    Peter Guttmann

    2015-02-01

    Full Text Available Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM as well as full-field transmission X-ray microscopes (TXM allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.

  10. Overview of nanoscale NEXAFS performed with soft X-ray microscopes.

    Science.gov (United States)

    Guttmann, Peter; Bittencourt, Carla

    2015-01-01

    Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.

  11. Soft X-ray spectromicroscopy of biological and synthetic polymer systems

    International Nuclear Information System (INIS)

    Hitchcock, A.; Morin, C.; Araki, T.; Zhang, X.; Dynes, J.; Stover, H.; Brash, J.

    2004-01-01

    Full text: Scanning transmission X-ray microscopy (STXM) and X-ray photoemission electron microscopy (X-PEEM) are synchrotron based, soft X-ray spectromicroscopy techniques which provide chemical speciation at 50 nm spatial resolution based on near edge X-ray absorption spectral (NEXAFS) contrast. The instrumentation and techniques of soft X-ray spectro- microscopy will be described and illustrated with applications to wet biofilms, protein interactions with patterned polymer surfaces, and polymer microstructure optimization. STXM can be applied to samples in air, He, vacuum, or a fully hydrated environment. With many collaborators, my group is using STXM to study fundamental and applied aspects of polymer microstructure, to map metal ions and anti-microbial agents in wet biofilms, and to identify sites of selective adsorption of proteins on phase separated polymer thin films in the presence of an overlayer of protein solution. X-PEEM has greater surface sensitivity than STXM but requires a flat, conductive, and vacuum-compatible sample. Comparison of X-PEEM and STXM for the same system - fibrinogen adsorption on a PS:PMMA blend, will be used to illustrate advantages and limitations of each technique. Measurements at 5.3.2 STXM and 7.3.1 PEEM at the Advanced Light Source, funded by DoE under contract DE-AC03- 76SF00098. Research supported by NSERC (Canada), AFMnet (Advanced Food and Biomaterials Network) and the Canada Research Chair program

  12. Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials.

    Science.gov (United States)

    Lawrence, J R; Swerhone, G D W; Dynes, J J; Korber, D R; Hitchcock, A P

    2016-02-01

    There is a critical need for methods that provide simultaneous detection, identification, quantitation and visualization of nanomaterials at their interface with biological and environmental systems. The approach should allow speciation as well as elemental analysis. Using the intrinsic X-ray absorption properties, soft X-ray scanning transmission X-ray spectromicroscopy (STXM) allows characterization and imaging of a broad range of nanomaterials, including metals, oxides and organic materials, and at the same time is able to provide detailed mapping of biological components. Thus, STXM offers considerable potential for application to research on nanomaterials in biology and the environment. The potential and limitations of STXM in this context are discussed using a range of examples, focusing on the interaction of nanomaterials with microbial cells, biofilms and extracellular polymers. The studies outlined include speciation and mapping of metal-containing nanomaterials (Ti, Ni, Cu) and carbon-based nanomaterials (multiwalled carbon nanotubes, C60 fullerene). The benefits of X-ray fluorescence detection in soft X-ray STXM are illustrated with a study of low levels of Ni in a natural river biofilm. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  13. Atypical locations of retropharyngeal abscess: beware of the normal lateral soft tissue neck X-ray.

    LENUS (Irish Health Repository)

    Uzomefuna, Vincent

    2012-02-01

    Retropharyngeal abscesses (RPA) are uncommon but potentially lethal deep neck space infections, over 95% of which occur in children under six years of age. Without a high index of suspicion, early recognition and prompt intervention, catastrophic consequences can ensue, and mortality can be as high as 60% if jugular vein thrombosis or mediastinitis occurs. While older children may have specific complaints referable to the pharynx, infants and young children may present with vague symptoms. To date, a lot of emphasis continues to be placed on the importance of lateral soft tissue neck X-ray in the diagnosis and management of patients with suspected retropharyngeal abscesses; and lateral neck X-ray has been cited as the most useful radiological view of the laryngopharynx. While we recognise the role of lateral neck X-rays in retropharyngeal and other upper airway pathologies, we present three case series in which lateral neck X-rays were normal and diagnosis was made only after CT scanning. These three cases were unusual as the abscesses were located high in the naso-pharynx making them impossible to detect on the lateral soft tissue neck X-rays and this underscores the need for high index of suspicion and prompt CT or MRI scanning, in any child with symptoms or signs suggestive of a possible retropharyngeal abscess.

  14. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    Science.gov (United States)

    Cordova, F. A.; Middleditch, J.; Hjellming, R. M.; Mason, K. O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62 percent) and circular (19 percent) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18 percent + or - 6 percent, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar.

  15. Soft x-ray generation in gases with an ultrashort pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, Todd Raymond [Univ. of California, Davis, CA (United States)

    1996-01-08

    An experimental investigation of soft x-ray production resulting from the interaction of intense near infra-red laser radiation with gases is presented in this thesis. Specifically, soft x-ray generation through high order harmonic generation or exploiting intense inverse bremsstrahlung heating is examined. Most of these studies are conducted with femtosecond, terawatt class Cr:LiSrAlF6 (LiSAF) laser, though results derived from studies with other laser systems are presented as well. The majority of this work is devoted to experimental investigations, however, theoretical and computational models are developed to interpret the data. These studies are motivated by the possibility of utilizing the physics of intense laser/matter interactions as a potential compact source of bright x-rays. Consequently, the thrust of many of the experiments conducted is aimed at characterizing the x-rays produced for possible use in applications. In general, the studies of this manuscript fall into three categories. First, a unique 130 fs, 8 TW laser that is based on chirped pulse amplification, is described, and its performance is evaluated. The generation of x-rays through high order harmonics is then discussed with emphasis on characterizing and optimizing harmonic generation. Finally, the generation of strong, incoherent x-ray radiation by the intense irradiation of large (>1,000 atom) clusters in gas jets, is explored. The physics of laser energy absorption by clusters illuminated with intensities of 1015 to 1017 W/cm2 is considered in detail. X-ray spectroscopy of the hot plasmas that result from the irradiation of the clusters is conducted, and energy transport and kinetics issues in these plasmas are discussed.

  16. A compact soft X-ray microscope using an electrode-less Z-pinch source

    Science.gov (United States)

    Horne, S. F.; Silterra, J.; Holber, W.

    2009-09-01

    Soft X-rays (medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. (Supported by NIH grants 5R44RR022488-03 and 5R44RR023753-03)

  17. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    International Nuclear Information System (INIS)

    Cordova, F.A.; Middleditch, J.; Hjellming, R.M.; Mason, K.O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62%) and circular (19%) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18% + or - 6%, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar. 46 refs

  18. Design of soft-X-ray tomographic system in WEST using GEM detectors

    Czech Academy of Sciences Publication Activity Database

    Mazon, D.; Chernyshova, M.; Jiolat, G.; Czarski, T.; Malard, P.; Kowalska-Strzeciwilk, E.; Jablonski, S.; Figacz, W.; Zagorski, R.; Kubkowska, M.; Kasprowicz, G.; Pozniak, K.; Zabolotny, W.; Larroque, S.; Verger, J.-M.; O’Mullane, M.; Mlynář, Jan; Byszuk, A.; Wojenski, A.

    96-97, October (2015), s. 856-860 ISSN 0920-3796. [Symposium on Fusion Technology 2014(SOFT-28)/28./. San Sebastián, 29.09.2014-03.10.2014] Institutional support: RVO:61389021 Keywords : Soft-X-ray * Gas detector * Tomography * WEST * Tokamak Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.301, year: 2015 http://www.sciencedirect.com/science/article/pii/S0920379615002215

  19. Investigation of HF-plasma-treated soft x-ray optical elements

    Science.gov (United States)

    Eggenstein, F.; Krivenkov, M.; Rudolph, I.; Sertsu, M. G.; Sokolov, A.; Varykhalov, A.; Wolf, J.; Zeschke, T.; Schäfers, F.

    2017-09-01

    The contamination of optical elements (mirrors and gratings) with carbon still is an issue when using soft x-ray synchrotron radiation. With an in-house developed HF-plasma treatment we are able to decontaminate our optics in-situ from carbon very efficiently. The cleaning device, a simple Al-antenna, is mounted in situ inside the mirror- and grating vacuum chambers. A systematic study of the HF-plasma cleaning efficiency was performed acquired with in-situ and exsitu methods for monitoring: An atomic force microscope (AFM) and a scanning tunneling microscope (STM) were used before and after the cleaning process to determine the surface morphology and roughness. Reflectivity angular scans using the reflectometer at the BESSY-II Metrology Station [1-3] allowed to estimate the thickness of the remaining Clayer after different cleaning steps and thereby helped us to determine the etching rate. Reflection spectra measurements in the range of 200 eV - 900 eV show the complete removal of Carbon from the optics without contaminating it with any other elements due to the plasma treatment. The data show that the plasma process improves the reflectivity and reduces the roughness of the surface. In addition to that, the region of the optical surface where the carbon has been removed becomes passivated.

  20. SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES

    Energy Technology Data Exchange (ETDEWEB)

    Ciaravella, A.; Candia, R.; Collura, A. [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, 90134 Palermo (Italy); Jimenez-Escobar, A.; Munoz Caro, G. M. [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Cecchi-Pestellini, C. [INAF-Osservatorio Astronomico di Cagliari, Strada n.54, Loc. Poggio dei Pini, I-09012 Capoterra (Italy); Giarrusso, S. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Barbera, M., E-mail: aciaravella@astropa.unipa.it [Dipartimento di Scienze Fisiche and Astronomiche, Universita di Palermo, Sezione di Astronomia, Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2012-02-10

    There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ultraviolet radiation is severely inhibited. After H{sub 2}O, CO is often the most abundant component of icy grain mantles in dense interstellar clouds and circumstellar disks. In this work we present irradiation of a pure carbon monoxide ice using a soft X-ray spectrum peaked at 0.3 keV. Analysis of irradiated samples shows formation of CO{sub 2}, C{sub 2}O, C{sub 3}O{sub 2}, C{sub 3}, C{sub 4}O, and CO{sub 3}/C{sub 5}. Comparison of X-rays and ultraviolet irradiation experiments, of the same energy dose, shows that X-rays are more efficient than ultraviolet radiation in producing new species. With the exception of CO{sub 2}, X-ray photolysis induces formation of a larger number of products with higher abundances, e.g., C{sub 3}O{sub 2} column density is about one order of magnitude higher in the X-ray experiment. To our knowledge this is the first report on X-ray photolysis of CO ices. The present results show that X-ray irradiation represents an efficient photo-chemical way to convert simple ices to more complex species.

  1. Long-term storage method for soft X-ray irradiated 'Hyuganatsu' pollen

    International Nuclear Information System (INIS)

    Yano, S.; Tanaka, M.; Ohara, N.

    2008-01-01

    The long-term storage conditions for 'Hyuganatsu ' pollen that had been irradiated with soft X-rays was examined. This study, was aimed at production of 'Tosa-buntan' without formation of nuclear fruit. 1. We evaluated the germination rate of pollen that had been irradiated with soft X-ray (500 or 1,000 Gy) and stored at 3 deg C, -20 deg C, and -40 deg C. The germination rate was the same as that of unirradiated pollen, even after storage for 1 year. Soft X-ray irradiation did not influence the storage attributes of pollen. 2. In unirradiated pollen and pollen that had been irradiated with soft X-ray (500 or 1,000 Gy), temperature conditions necessary for storing from 3 months to 1 year were -20 deg C or less, and pollen stored at -40 deg C had a higher germination rate after 1 year. 3. The germination rate was 1% or less in 4 months if silica gel was sealed into a gas barrier bag with 1,000 Gy-irradiated pollen at a rate of 10:1 (w/w). The ability to germinate was completely lost after 1 year in these conditions. 4. We evaluated the effect of sealing methods on 1,000 Gy-irradiated pollen stored at -20 deg C. There was no difference in germination rates among pollen stored in gas-barrier bags, vacuum-packaged pollen, and pollen stored with nitrogen in gas-barrier bags. Moreover, the germination rate of 750 Gy-irradiated pollen stored at -20 deg C decreased from 3 months onwards when pollen was stored with a free-oxygen absorber (Ageless ZP). 5. Pollen that was treated with acetone before or after soft X-ray irradiation (750 Gy) withstood long-term storage of 1 year. Long-term storage was possible if pollen was stored at -20 deg C, as is the case for rough pollen

  2. Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru/B4C multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Panzner, Tobias; Schlemper, Christoph; Morawe, Christian; Pietsch, Ullrich

    2009-12-10

    Soft-x-ray Bragg reflection from two Ru/B4C multilayers with 10 and 63 periods was used for independent determination of both real and imaginary parts of the refractive index n = 1 -{delta} + i{beta} close to the boron K edge ({approx}188 eV). Prior to soft x-ray measurements, the structural parameters of the multilayers were determined by x-ray reflectometry using hard x rays. For the 63-period sample, the optical properties based on the predictions made for elemental boron major deviations were found close to the K edge of boron for the 10-period sample explained by chemical bonding of boron to B4C and various boron oxides.

  3. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  4. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-03-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  5. Unification of Active Galactic Nuclei at X-rays and soft gamma-rays

    International Nuclear Information System (INIS)

    Beckmann, Volker

    2010-01-01

    Through the work on X-ray and gamma-ray data of AGN I contributed significantly to the progress in the unification of AGN since I finished my PhD in 2000. The study of the evolutionary behaviour of X-ray selected N blazars (Beckmann and Wolter 2001; Beckmann et al. 2002, 2003b; Beckmann 2003) shows that their evolution is not as strongly negative as indicated by previous studies. The overall luminosity function is consistent with no evolution in the 0.1-2.4 keV band as seen by ROSAT/PSPC. There is still a difference compared to the luminosity function of FSRQ and LBL, which seem to show a positive evolution, indicating that they have been more luminous and/or numerous at cosmological distances. We indicated a scenario in order to explain this discrepancy, in which the high luminous FSRQ develop into the fainter LBL and finally into the BL Lac objects with high frequency peaks in their spectral energy distribution but overall low bolometric luminosity. Studying the variability pattern of hard X-ray selected Seyfert galaxies, we actually found differences between type 1 and type 2 objects, in the sense that type 2 seemed to be more variable (Beckmann et al. 2007a). This breaking of the unified model is caused by the different average luminosity of the absorbed and unabsorbed sources, as discussed in Sect. 4.7.3. This can be explained by a larger inner disk radius when the AGN core is most active (the so-called receding disc model). The work on the sample characteristics of hard X-ray detected AGN also led to the proof that the average intrinsic spectra of type 1 and type 2 objects are the same when reflection processes are taken into account (Beckmann et al. 2009d). This also explains why in the past Seyfert 2 objects were seen to have harder X-ray spectra than Seyfert 1, as the stronger reflection hump in the type 2 objects makes the spectra appear to be flatter, although the underlying continuum is the same. Further strong evidence for the unification scheme comes

  6. A 36-pixel superconducting tunnel junction soft X-ray detector for environmental science applications

    International Nuclear Information System (INIS)

    Friedrich, Stephan; Drury, Owen B.; Cramer, Stephen P.; Green, Peter G.

    2006-01-01

    We are operating a superconducting tunnel junction detector for high-resolution soft X-ray spectroscopy at the Advanced Biological and Environmental X-ray Facility at the Advanced Light Source synchrotron. We have recently upgraded the instrument from 9 to 36 pixels for increased sensitivity. We have also acquired a new digital signal readout to increase the total count rate capabilities to ∼10 6 counts/s while maintaining a high peak-to-background ratio. We report on the performance of the spectrometer, and discuss speciation measurements of chromium in welding aerosols as a typical application of the instrument in environmental science

  7. Observation of brightness profiles of the soft X-ray background in Gemini, Orion and Eridanus

    International Nuclear Information System (INIS)

    Zwijnenberg, E.

    1976-01-01

    The instrumentation and the measuring plan of a rocket flight experiment has been described, where the soft X-ray background (0.1-2.0 keV) of the sky near the galactic anti-center is measured. The equipment contains among other things an X-ray focussing instrument with high angular resolution and a large area detection system. Brightness profiles are taken from a number of objects among which are supernova remnants like the crab nebula and IC 443. The hot spot in Eridanus could be attributed to a supernova remnant with more than one shock front. Other objects seen are the Gemini enhancement and the Monoceros nebula

  8. Soft x-ray emission from the Lupus Loop and SN 1006 supernova remnants

    International Nuclear Information System (INIS)

    Winkler, P.F. Jr.; Hearn, D.R.; Richardson, J.A.; Behnken, J.M.

    1979-01-01

    X-ray maps of the Lupus region have been obtained in a raster scan observation from SAS 3. These show the Lupus Loop to be a faint, extended source of soft x-rays with a temperature about 2.5 x 10 6 K. The most prominent feature of the region is the A.D. 1006 supernova remnant, which is unexpectedly bright at 0.2--1.0 keV. One speculative interpretation of the low-energy flux from SN 1006 is as blackbody radiation from a hot neutron star

  9. Design of an imaging microscope for soft X-ray applications

    Science.gov (United States)

    Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    1988-01-01

    An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.

  10. Structural mechanics of the solar-A Soft X-ray Telescope

    Science.gov (United States)

    Jurcevich, B. K.; Bruner, M. E.; Gowen, K. F.

    1992-01-01

    The Soft X-ray Telescope (SXT) is one of four major instruments that constitute the payload of the NASA-Japanese mission YOHKOH (formerly known as Solar-A), scheduled to be launched in August, 1991. This paper describes the design of the SXT, the key system requirements, and the SXT optical and structural systems. Particular attention is given to the design considerations for stiffness and dimensional stability, temperature compensation, and moisture sensitivyty control. Consideration is also given to the X-ray mirror, the aspect telescope, the entrance filters, the mechanical structure design, the aft support plate and mount, the SXT finite element model, and other subsystems.

  11. Soft x-ray-controlled dose deposition in yeast cells: techniques, model, and biological assessment

    Science.gov (United States)

    Milani, Marziale; Batani, Dimitri; Conti, Aldo; Masini, Alessandra; Costato, Michele; Pozzi, Achille; Turcu, I. C. Edmond

    1996-12-01

    A procedure is presented to release soft x-rays onto yeast cell membrane allegedly damaging the resident enzymatic processes connected with fermentation. The damage is expected to be restricted to regulating fermentation processes without interference with respiration. By this technique fermentation is followed leading to CO2 production, and respiration resulting in global pressure measurements. A solid state pressure sensor system has been developed linked to a data acquisition system. Yeast cells cultures have been investigated at different concentrations and with different nutrients. A non-monotone response in CO2 production as a function of the delivered x-ray dose is observed.

  12. A 36-pixel superconducting tunnel junction soft X-ray detector for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephan [Lawrence Livermore National Laboratory, Advanced Detector Group, 7000 East Avenue, L-270, Livermore, CA 94550 (United States) and Lawrence Berkeley National Laboratory, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, Berkeley, CA 94720 (United States)]. E-mail: friedrich1@llnl.gov; Drury, Owen B. [Lawrence Livermore National Laboratory, Advanced Detector Group, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Lawrence Berkeley National Laboratory, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Cramer, Stephen P. [Lawrence Berkeley National Laboratory, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Green, Peter G. [University of California Davis, Department of Civil and Environmental Engineering, 1 Shields Avenue, Davis, CA 95616 (United States)

    2006-04-15

    We are operating a superconducting tunnel junction detector for high-resolution soft X-ray spectroscopy at the Advanced Biological and Environmental X-ray Facility at the Advanced Light Source synchrotron. We have recently upgraded the instrument from 9 to 36 pixels for increased sensitivity. We have also acquired a new digital signal readout to increase the total count rate capabilities to {approx}10{sup 6} counts/s while maintaining a high peak-to-background ratio. We report on the performance of the spectrometer, and discuss speciation measurements of chromium in welding aerosols as a typical application of the instrument in environmental science.

  13. Fabrication update on critical-angle transmission gratings for soft x-ray grating spectrometers

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alex; Mukherjee, Pran; Yam, Jonathan; Schattenburg, Mark L.

    2011-09-01

    Diffraction grating-based, wavelength dispersive high-resolution soft x-ray spectroscopy of celestial sources promises to reveal crucial data for the study of the Warm-Hot Intergalactic Medium, the Interstellar Medium, warm absorption and outflows in Active Galactic Nuclei, coronal emission from stars, and other areas of interest to the astrophysics community. Our recently developed critical-angle transmission (CAT) gratings combine the advantages of the Chandra high and medium energy transmission gratings (low mass, high tolerance of misalignments and figure errors, polarization insensitivity) with those of blazed reflection gratings (high broad band diffraction efficiency, high resolution through use of higher diffraction orders) such as the ones on XMM-Newton. Extensive instrument and system configuration studies have shown that a CAT grating-based spectrometer is an outstanding instrument capable of delivering resolving power on the order of 5,000 and high effective area, even with a telescope point-spread function on the order of many arc-seconds. We have fabricated freestanding, ultra-high aspect-ratio CAT grating bars from silicon-on-insulator wafers using both wet and dry etch processes. The 200 nm-period grating bars are supported by an integrated Level 1 support mesh, and a coarser external Level 2 support mesh. The resulting grating membrane is mounted to a frame, resulting in a grating facet. Many such facets comprise a grating array that provides light-weight coverage of large-area telescope apertures. Here we present fabrication results on the integration of CAT gratings and the different high-throughput support mesh levels and on membrane-frame bonding. We also summarize recent x-ray data analysis of 3 and 6 micron deep wet-etched CAT grating prototypes.

  14. Soft x-ray emission from gamma-ray bursts observed with ginga

    International Nuclear Information System (INIS)

    Yoshida, Atsumasa; Murakami, Toshio; Itoh, Masayuki

    1989-01-01

    The soft X-ray emission of gamma-ray bursts below 10 keV provides information about size, location, and emission mechanism. The Gamma-ray Burst Detector (GBD) on board Ginga, which consists of a proportional counter and a scintillation detector, covers an energy range down to 1.5 keV with 63 cm 2 effective area. In several of the observed gamma-ray bursts, the intensity of the soft X-ray emission showed a longer decay time of 50 to 100s after the higher energy gamma-ray emission had ended. Although we cannot rule out other models, such as bremsstrahlung and thermal cyclotron types, due to poor statistics, the soft X-ray spectra are consistent with a blackbody of 1 to 2 keV in the late phase of the gamma-ray bursts. This enables us to estimate the size of the blackbody responsible for the X-ray emission. (author)

  15. Comparison of nonflare solar soft x ray flux with 10.7-cm radio flux

    International Nuclear Information System (INIS)

    Donnelly, R.F.

    1982-01-01

    The similarities and differences of the nonflare solar 1- to 8-A X ray flux and the daily 10.7-cm Ottawa solar radio flux are examined. The radio flux is shown to be much less sensitive than the soft X ray flux on the average to the coronal emission of active regions located near or beyond the solar chromospheric limb relative to regions near the center of the solar disk. This is caused by the solar soft X ray emission's being optically thin while much of the 10.7-cm active region emission is from optical depths of tauapprox.1. The radio flux includes a large quiet sun flux which is emitted mostly from the tenuous chromosphere-corona transition region (Tapprox.10 4 --10 6 0 K) and partly from the cooler portions of the quiet corona Tapprox.1.5 x 10 6 0 K. Conversely, the solar soft X ray flux has a very small quiet sun component

  16. Localization of proteins and nucleic acids using soft x-ray microscopy

    International Nuclear Information System (INIS)

    Larabell, Carolyn A.; Yager, Deborah; Meyer-Ilse, Werner

    2000-01-01

    The high-resolution soft x-ray microscope (XM-1) at the Advanced Light Source was used to examine whole, hydrated mammalian cells, both chemically fixed and rapidly frozen and viewed in a cryostage. Using x-ray microscopy, high contrast information about the organization of the cytoplasm and nucleus of these cells was revealed at unsurpassed resolution. It is important to note that cryo-fixed cells have been examined in a state that most closely resembles their natural environment in that the cells were not exposed to chemical fixatives or chemical contrast enhancement reagents. We also used the power of soft x-ray microscopy to examine the localization of proteins and nucleic acids in whole, hydrated cells using silver-enhanced, immunogold labeling techniques. With this approach, we have obtained information about the distribution of such molecules with respect to cellular ultrastructure at five times better resolution than light microscopy. The power of soft x-ray microscopy to provide superb resolution information about the subcellular localization of proteins and nucleic acids places it in a commanding position to contribute to our understanding of the numerous molecules being identified through modern molecular biology techniques

  17. Off-plane x-ray reflection grating fabrication

    Science.gov (United States)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  18. Optimization of neon soft X-ray emission from 200 J plasma focus device for application in soft X-ray lithography

    International Nuclear Information System (INIS)

    Kalaiselvi, S.M. P.; Tan, T.L.; Talebitaher, A.; Lee, Paul; Rawat, R.S.

    2014-01-01

    The Fast Miniature Plasma Focus (FMPF) device is basically made up of coaxial electrodes with centrally placed anode and six cathode rods surrounding them concentrically. They are enclosed in a vacuum chamber, filled with low pressure operating gas. However, in our experiments, these cathode rods were removed to investigate the influence of them on neon soft X-ray (SXR) and hard X-ray (HXR) emission from the device. On removal of cathode rods, the cathode base plate serves as cathode and the plasma sheath is formed between the anode and the base plate of cathode. Neon was used as the operating gas for our experiments and the FMPF device used is of 235 J energy capacities. The experimental results showed that the FMPF device was able to focus better and the SXR emission efficiency was five times higher without cathode rods than with cathode rods. On the contrary, HXR emission did not vary with and without cathode rods. This observed phenomenon was further cross-checked through imaging of plasma dynamics, with and without cathode rods. FMPF device consists of 4 Pseudo Spark Gap (PSG) switches, which need to operate synchronously to deliver high voltage from capacitors to the anode. It was also seen that, the presence or absence of cathode rods also influence the synchronous operation of PSG switches. It also implies that this is one definite way to optimize the SXR emission from the FMPF device. This study reveals an important finding that, cathode rods play a vital role in the formation of plasma sheath with consequential influence on the radiation emission from plasma focus devices. Enhancement of the X-ray emission from this device is definitely a stepping stone in the realization of this device for industrial applications such as X-ray lithography for semiconductor industries. (author)

  19. Sweeping total reflection X-ray fluorescence optimisation to monitor the metallic contamination into IC manufacturing

    International Nuclear Information System (INIS)

    Borde, Yannick; Danel, Adrien; Roche, Agnes; Veillerot, Marc

    2008-01-01

    Among the methods available on the market today to control as metallic contamination in integrated circuit manufacturing, Sweeping Total reflection X-ray Fluorescence mode appears a very good method, providing fast and entire wafer mapping. With the goal of a pertinent use of Sweeping Total reflection X-ray Fluorescence in advanced Integrated Circuit manufacturing this work discusses how acceptable levels of contamination specified by the production (low levels to be detected) can be taken into account. The relation between measurement results (surface coverage, throughput, low limit of detection, limit of quantification, quantification of localized contamination) and Sweeping Total reflection X-ray Fluorescence parameters (number of measurement points and integration time per point) is presented in details. In particular, a model is proposed to explain the mismatch between actual surface contamination in a localized spot on wafer and Total reflection X-ray Fluorescence reading. Both calibration and geometric issues have been taken into account

  20. Soft X-ray excited colour-centre luminescence and XANES studies of calcium oxide

    International Nuclear Information System (INIS)

    Ko, J.Y.P.; Heigl, F.; Yiu, Y.M.; Zhou, X.-T.; Regier, T.; Blyth, R.I.R.; Sham, T.-K.

    2007-01-01

    In this study, we show that colour centres can be produced by irradiating calcium oxide with soft X-rays from a synchrotron radiation source. Using the X-ray excited optical Iuminescence (XEOL) technique, two colour centres, F-centre, and F + -centre can be identified. These colour centres emit photons at characteristic wavelengths. In addition, by performing time-resolved XEOL (TRXEOL), we are able to reveal timing and decay characteristics of the colour centres. We also present X-ray absorption near-edge structure (XANES) spectra collected across oxygen K-edge, calcium L 3,2 -edge, and calcium K-edge. Experimental results are compared with density functional theory (DFT) calculations. (author)

  1. Time-resolved soft x-ray spectra from laser-produced Cu plasma

    International Nuclear Information System (INIS)

    Cone, K.V.; Dunn, J.; Baldis, H.A.; May, M.J.; Purvis, M.A.; Scott, H.A.; Schneider, M.B.

    2012-01-01

    The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated from a plasma produced using the Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) laser. A variable spaced grating spectrometer coupled to an x-ray streak camera measured soft x-ray emission (800-1550 eV) from the back of the copper target to characterize the bulk heating of the target. Radiation hydrodynamic simulations were modeled in 2-dimensions using the HYDRA code. The target conditions calculated by HYDRA were post-processed with the atomic kinetics code CRETIN to generate synthetic emission spectra. A comparison between the experimental and simulated spectra indicates the presence of specific ionization states of copper and the corresponding electron temperatures and ion densities throughout the laser-heated copper target.

  2. Supercrystallization of KCl from solution irradiated by soft X-rays

    Science.gov (United States)

    Janavičius, A. J.; Rinkūnas, R.; Purlys, R.

    2016-10-01

    The X-rays influence on KCl crystallization in a saturated water solution has been investigated for the aim of comparing it with previously considered NaCl crystallization. The rate of crystallization has been measured in the drying drop in the solution activated by the irradiation. We have measured the influence of the irradiation time of the solution on the rates of KCl crystallization as well as the beginning of the crystallization processes on drying drops. For a longer irradiation time of the solution early crystallization in the drops occurs. A saturated water solution of KCl was irradiated with the diffractometer DRON-3M (Russian device) and this had a great influence on the two-step processes of crystallization. The ionization of the solution by soft X-rays can produce ions, metastable radicals in water, excited crystals' seeds and vacancies in growing crystals by Auger's effect. The X-rays generate a very fast crystallization in the drying drop.

  3. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    International Nuclear Information System (INIS)

    Jakubek, Jan; Granja, Carlos; Dammer, Jiri; Hanus, Robert; Holy, Tomas; Pospisil, Stanislav; Tykva, Richard; Uher, Josef; Vykydal, Zdenek

    2007-01-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences

  4. Characterization of LiF-based soft X-ray imaging detectors by confocal fluorescence microscopy

    International Nuclear Information System (INIS)

    Bonfigli, F; Gaudio, P; Lupelli, I; Nichelatti, E; Richetta, M; Vincenti, M A; Montereali, R M

    2010-01-01

    X-ray microscopy represents a powerful tool to obtain images of samples with very high spatial resolution. The main limitation of this technique is represented by the poor spatial resolution of standard imaging detectors. We proposed an innovative high-performance X-ray imaging detector based on the visible photoluminescence of colour centres in lithium fluoride. In this work, a confocal microscope in fluorescence mode was used to characterize LiF-based imaging detectors measuring CC integrated visible fluorescence signals of LiF crystals and films (grown on several kinds of substrates) irradiated by soft X-rays produced by a laser plasma source in different exposure conditions. The results are compared with the CC photoluminescence spectra measured on the same samples and discussed.

  5. Soft X-ray spectroscopy of transition metal compounds: a theoretical perspective

    International Nuclear Information System (INIS)

    Bokarev, S.I.; Hilal, R.; Aziz, S.G.; Kühn, O.

    2017-01-01

    To date, X-ray spectroscopy has become a routine tool that can reveal highly local and element-specific information on the electronic structure of atoms in complex environments. Here, we report on the development of an efficient and versatile theoretical methodology for the treatment of soft X-ray spectra of transition metal compounds based on the multi-configurational self-consistent field electronic structure theory. A special focus is put on the L-edge photon-in/photon-out and photon-in/electron-out processes, i.e. X-ray absorption, resonant inelastic scattering, partial fluorescence yield, and photoelectron spectroscopy, all treated on the same theoretical footing. The investigated systems range from small prototypical coordination compounds and catalysts to aggregates of biomolecules.

  6. Forensic application of total reflection X-ray fluorescence spectrometry for elemental characterization of ink samples

    International Nuclear Information System (INIS)

    Dhara, Sangita; Misra, N.L.; Maind, S.D.; Kumar, Sanjukta A.; Chattopadhyay, N.; Aggarwal, S.K.

    2010-01-01

    The possibility of applying Total Reflection X-ray Fluorescence for qualitative and quantitative differentiation of documents printed with rare earth tagged and untagged inks has been explored in this paper. For qualitative differentiation, a very small amount of ink was loosened from the printed documents by smoothly rubbing with a new clean blade without destroying the manuscript. 50 μL of Milli-Q water was put on this loose powder, on the manuscript, and was agitated by sucking and releasing the suspension two to three times with the help of a micropipette. The resultant dispersion was deposited on quartz sample support for Total Reflection X-ray Fluorescence measurements. The Total Reflection X-ray Fluorescence spectrum of tagged and untagged inks could be clearly differentiated. In order to see the applicability of Total Reflection X-ray Fluorescence for quantitative determinations of rare earths and also to countercheck such determinations in ink samples, the amounts of rare earth in painted papers with single rare earth tagged inks were determined by digesting the painted paper in HNO 3 /HClO 4 , mixing this solution with the internal standard and recording their Total Reflection X-ray Fluorescence spectra after calibration of the instrument. The results thus obtained were compared with those obtained by Inductively Coupled Plasma Mass Spectrometry and were found in good agreement. The average precision of the Total Reflection X-ray Fluorescence determinations was 5.5% (1σ) and the average deviation of Total Reflection X-ray Fluorescence determined values with that of Inductively Coupled Plasma Mass Spectrometry was 7.3%. These studies have shown that Total Reflection X-ray Fluorescence offers a promising and potential application in forensic work of this nature.

  7. Forensic application of total reflection X-ray fluorescence spectrometry for elemental characterization of ink samples

    Energy Technology Data Exchange (ETDEWEB)

    Dhara, Sangita [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Misra, N.L., E-mail: nlmisra@barc.gov.i [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Maind, S.D. [NAA Unit of Central Forensic Science Laboratory Hyderabad at Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kumar, Sanjukta A. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Chattopadhyay, N. [NAA Unit of Central Forensic Science Laboratory Hyderabad at Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Aggarwal, S.K. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2010-02-15

    The possibility of applying Total Reflection X-ray Fluorescence for qualitative and quantitative differentiation of documents printed with rare earth tagged and untagged inks has been explored in this paper. For qualitative differentiation, a very small amount of ink was loosened from the printed documents by smoothly rubbing with a new clean blade without destroying the manuscript. 50 muL of Milli-Q water was put on this loose powder, on the manuscript, and was agitated by sucking and releasing the suspension two to three times with the help of a micropipette. The resultant dispersion was deposited on quartz sample support for Total Reflection X-ray Fluorescence measurements. The Total Reflection X-ray Fluorescence spectrum of tagged and untagged inks could be clearly differentiated. In order to see the applicability of Total Reflection X-ray Fluorescence for quantitative determinations of rare earths and also to countercheck such determinations in ink samples, the amounts of rare earth in painted papers with single rare earth tagged inks were determined by digesting the painted paper in HNO{sub 3}/HClO{sub 4}, mixing this solution with the internal standard and recording their Total Reflection X-ray Fluorescence spectra after calibration of the instrument. The results thus obtained were compared with those obtained by Inductively Coupled Plasma Mass Spectrometry and were found in good agreement. The average precision of the Total Reflection X-ray Fluorescence determinations was 5.5% (1sigma) and the average deviation of Total Reflection X-ray Fluorescence determined values with that of Inductively Coupled Plasma Mass Spectrometry was 7.3%. These studies have shown that Total Reflection X-ray Fluorescence offers a promising and potential application in forensic work of this nature.

  8. Soft-x-ray fluorescence study of buried silicides in antiferromagnetically coupled Fe/Si multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, J.A.; Chaiken, A.; Michel, R.P. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Multilayer films made by alternate deposition of two materials play an important role in electronic and optical devices such as quantum-well lasers and x-ray mirrors. In addition, novel phenomena like giant magnetoresistance and dimensional crossover in superconductors have emerged from studies of multilayers. While sophisticated x-ray techniques are widely used to study the morphology of multilayer films, progress in studying the electronic structure has been slower. The short mean-free path of low-energy electrons severely limits the usefulness of photoemission and related electron free path of low-energy electrons severely limit spectroscopies for multilayer studies. Soft x-ray fluorescence (SXF) is a bulk-sensitive photon-in, photon-out method to study valence band electronic states. Near-edge x-ray absorption fine-structure spectroscopy (NEXAFS) measured with partial photon yield can give complementary bulk-sensitive information about unoccupied states. Both these methods are element-specific since the incident x-ray photons excite electrons from core levels. By combining NEXAFS and SXF measurements on buried layers in multilayers and comparing these spectra to data on appropriate reference compounds, it is possible to obtain a detailed picture of the electronic structure. Results are presented for a study of a Fe/Si multilayer system.

  9. Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation

    Science.gov (United States)

    Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.

    1999-01-01

    Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.

  10. Characterization results from several commercial soft X-ray streak cameras

    Science.gov (United States)

    Stradling, G. L.; Studebaker, J. K.; Cavailler, C.; Launspach, J.; Planes, J.

    The spatio-temporal performance of four soft X-ray streak cameras has been characterized. The objective in evaluating the performance capability of these instruments is to enable us to optimize experiment designs, to encourage quantitative analysis of streak data and to educate the ultra high speed photography and photonics community about the X-ray detector performance which is available. These measurements have been made collaboratively over the space of two years at the Forge pulsed X-ray source at Los Alamos and at the Ketjak laser facility an CEA Limeil-Valenton. The X-ray pulse lengths used for these measurements at these facilities were 150 psec and 50 psec respectively. The results are presented as dynamically-measured modulation transfer functions. Limiting temporal resolution values were also calculated. Emphasis is placed upon shot noise statistical limitations in the analysis of the data. Space charge repulsion in the streak tube limits the peak flux at ultra short experiments duration times. This limit results in a reduction of total signal and a decrease in signal to no ise ratio in the streak image. The four cameras perform well with 20 1p/mm resolution discernable in data from the French C650X, the Hadland X-Chron 540 and the Hamamatsu C1936X streak cameras. The Kentech X-ray streak camera has lower modulation and does not resolve below 10 1p/mm but has a longer photocathode.

  11. A reaction cell for ambient pressure soft x-ray absorption spectroscopy

    Science.gov (United States)

    Castán-Guerrero, C.; Krizmancic, D.; Bonanni, V.; Edla, R.; Deluisa, A.; Salvador, F.; Rossi, G.; Panaccione, G.; Torelli, P.

    2018-05-01

    We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.

  12. Soft-x-ray fluorescence study of buried silicides in antiferromagnetically coupled Fe/Si multilayers

    International Nuclear Information System (INIS)

    Carlisle, J.A.; Chaiken, A.; Michel, R.P.

    1997-01-01

    Multilayer films made by alternate deposition of two materials play an important role in electronic and optical devices such as quantum-well lasers and x-ray mirrors. In addition, novel phenomena like giant magnetoresistance and dimensional crossover in superconductors have emerged from studies of multilayers. While sophisticated x-ray techniques are widely used to study the morphology of multilayer films, progress in studying the electronic structure has been slower. The short mean-free path of low-energy electrons severely limits the usefulness of photoemission and related electron free path of low-energy electrons severely limit spectroscopies for multilayer studies. Soft x-ray fluorescence (SXF) is a bulk-sensitive photon-in, photon-out method to study valence band electronic states. Near-edge x-ray absorption fine-structure spectroscopy (NEXAFS) measured with partial photon yield can give complementary bulk-sensitive information about unoccupied states. Both these methods are element-specific since the incident x-ray photons excite electrons from core levels. By combining NEXAFS and SXF measurements on buried layers in multilayers and comparing these spectra to data on appropriate reference compounds, it is possible to obtain a detailed picture of the electronic structure. Results are presented for a study of a Fe/Si multilayer system

  13. Measurements of fast electron beams and soft X-ray emission from plasma-focus experiments

    Directory of Open Access Journals (Sweden)

    Surała Władysław

    2016-06-01

    Full Text Available The paper reports results of the recent experimental studies of pulsed electron beams and soft X-rays in plasma-focus (PF experiments carried out within a modified PF-360U facility at the NCBJ, Poland. Particular attention was focused on time-resolved measurements of the fast electron beams by means of two different magnetic analyzers, which could record electrons of energy ranging from about 41 keV to about 715 keV in several (6 or 8 measuring channels. For discharges performed with the pure deuterium filling, many strong electron signals were recorded in all the measuring channels. Those signals were well correlated with the first hard X-ray pulse detected by an external scintillation neutron-counter. In some of the analyzer channels, electron spikes (lasting about dozens of nanoseconds and appearing in different instants after the current peculiarity (so-called current dip were also recorded. For several discharges, fast ion beams, which were emitted along the z-axis and recorded with nuclear track detectors, were also investigated. Those measurements confirmed a multibeam character of the ion emission. The time-integrated soft X-ray images, which were taken side-on by means of a pinhole camera and sensitive X-ray films, showed the appearance of some filamentary structures and so-called hot spots. The application of small amounts of admixtures of different heavy noble gases, i.e. of argon (4.8% volumetric, krypton (1.6% volumetric, or xenon (0.8% volumetric, decreased intensity of the recorded electron beams, but increased intensity of the soft X-ray emission and showed more distinct and numerous hot spots. The recorded electron spikes have been explained as signals produced by quasi-mono-energetic microbeams emitted from tiny sources (probably plasma diodes, which can be formed near the observed hot spots.

  14. Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms

    International Nuclear Information System (INIS)

    Singh, Surendra; Basu, Saibal

    2016-01-01

    X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependent structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.

  15. Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms

    Science.gov (United States)

    Singh, Surendra; Basu, Saibal

    2016-05-01

    X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependent structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.

  16. Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surendra, E-mail: surendra@barc.gov.in; Basu, Saibal [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 India (India)

    2016-05-23

    X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependent structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.

  17. Resonant Soft X-ray Scattering of Cellulose Microstructure in Plant Primary Cell Walls

    Science.gov (United States)

    Ye, Dan; Kiemle, Sarah N.; Wang, Cheng; Cosgrove, Daniel J.; Gomez, Esther W.; Gomez, Enrique D.

    Cellulosic biomass is the most abundant raw material available for the production of renewable and sustainable biofuels. Breaking down cellulose is the rate-limiting step in economical biofuel production; therefore, a detailed understanding of the microscopic structure of plant cell walls is required to develop efficient biofuel conversion methods. Primary cell walls are key determinants of plant growth and mechanics. Their structure is complex and heterogeneous, making it difficult to elucidate how various components such as pectin, hemicellulose, and cellulose contribute to the overall structure. The electron density of these wall components is similar; such that conventional hard X-ray scattering does not generate enough contrast to resolve the different elements of the polysaccharide network. The chemical specificity of resonant soft X-ray scattering allows contrast to be generated based on differences in chemistry of the different polysaccharides. By varying incident X-ray energies, we have achieved increased scattering contrast between cellulose and other polysaccharides from primary cell walls of onions. By performing scattering at certain energies, features of the network structure of the cell wall are resolved. From the soft X-ray scattering results, we obtained the packing distance of cellulose microfibrils embedded in the polysaccharide network.

  18. The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas

    International Nuclear Information System (INIS)

    Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; Mancuso, Christopher; Perez-Hernandez, Jose A.; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L.; Tarazkar, Maryam; Romanov, Dmitri A.; Levis, Robert J.; Gaffney, Jim A.; Foord, Mark; Libby, Stephen B.; Jaron-Becker, Agnieskzka; Becker, Andreas; Plaja, Luis; Muranane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2015-01-01

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching - the constructive addition of x-ray waves from a large number of atoms - favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidt-limited pulse trains of ~100 attoseconds

  19. Soft X-ray-induced decomposition of amino acids: An XPS, mass spectrometry, and NEXAFS study

    International Nuclear Information System (INIS)

    Zubavichus, Yan; Fuchs, Oliver; Weinhardt, Lothar; Heske, Clemens; Umbach, Eberhard; Denlinger, Jonathan D.; Grunze, Michael

    2003-01-01

    Decomposition of five amino acids, alanine, serine, cysteine, aspartic acid, and asparagine, under irradiation with soft X-rays (magnesium Ka X-ray source) in ultra-high vacuum was studied by means of X-ray photoelectron spectrometry (XPS) and mass spectrometry. A comparative analysis of changes in XPS line shapes, stoichiometry and residual gas composition indicates that the molecules decompose by several pathways. Dehydration, decarboxylation, decarbonylation,deamination and desulfurization of pristine molecules accompanied by desorption of H2, H2O, CO2, CO, NH3and H2S are observed with rates depending on the specific amino acid. NEXAFS spectra of cysteine at the carbon, oxygen and nitrogen K-shell and sulfur L2,3 edges complement the XPS and mass spectrometry data and show that the exposure of the sample to an intense soft X-ray synchrotron beam results in the formation of C-C and C-N double and triple bonds. Qualitatively, the amino acids studied can be arranged in the following ascending order of radiation stability:serine< alanine< aspartic acid< cysteine< asparagine

  20. Analysis of neon soft x-ray spectra from short-pulse laser-produced plasmas

    International Nuclear Information System (INIS)

    Abare, A.C.; Keane, C.J.; Crane, J.K.; DaSilva, L.B.; Lee, R.W.; Perry, M.D.; Falcone, R.W.

    1993-04-01

    We report preliminary results from the analysis of streaked soft x-ray neon spectra a gas jet target. In obtained from the interaction of a picosecond Nd:glass laser with these experiments streaked spectra show prompt harmonic emission followed by longer time duration soft x-ray line emission. The majority of the line emission observed was found to originate from Li- and Be-like Ne and the major transitions in the observed spectra have been identified. Li-like emission lines were observed to decay faster in time than Be-like transitions, suggesting that recombination is taking place. Line ratios of n=4-2 and n=3-2 transitions supported the view that these lines were optically thin and thick, respectively. The time history of Li-like Ne 2p-4d and 2p-3d lines is in good agreement with a simple adiabatic expansion model coupled to a time dependent collisional-radiative code. Further x-ray spectroscopic analysis is underway which is aimed at diagnosing plasma conditions and assessing the potential of this recombining neon plasma as a quasi-steady-state recombination x-ray laser medium

  1. CHEMICAL EVOLUTION OF A CO ICE INDUCED BY SOFT X-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Ciaravella, A.; Cecchi-Pestellini, C.; Jiménez-Escobar, A. [INAF—Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy); Chen, Y.-J.; Chuang, K.-J.; Huang, C.-H. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Muñoz Caro, G. M., E-mail: aciaravella@astropa.unipa.it [Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain)

    2016-03-01

    We irradiated a pure carbon monoxide ice with soft X-rays of energies up to 1.2 keV. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan, exploiting both monochromatic (at 0.3 and 0.55 keV) and broader energy (0.25–1.2 keV) fluxes. The infrared spectra of the irradiated ices showed the formation of a number of products such as polycarbon mono- and dioxides C{sub n}O{sub m}, and chains containing up to 10 carbon atoms. While a gentle increase in the energy absorbed by the ice sample is reflected by an increase in the column densities of newly born species, such correlation breaks down at very high fluxes. In this regime the production yield falls down sharply by about a factor of 100. The refractory residue obtained in the broad energy irradiation is a “compromise” between those obtained with proton irradiation of C{sub 3}O{sub 2} and CO ices in previous experiments. Finally, we discuss the possible implications for space chemistry.

  2. Electronic structure of titania aerogels: Soft x-ray absorption study

    International Nuclear Information System (INIS)

    Kucheyev, S.O.; Van Buuren, T.V.; Baumann, T.F.; Satcher, J.H.; Willey, T.M.; Muelenberg, R.W.; Felter, T.E.; Poco, J.E.; Gammon, S.A.; Terminello, L.J.

    2004-01-01

    Full text: Titania aerogels - a somewhat extreme form of nanoporous TiO 2 - are open-cell solid foams derived from highly crosslinked gels by drying them under supercritical conditions. In this presentation, the unoccupied electronic states of TiO 2 aerogels are studied by soft x-ray absorption near-edge structure (XANES) spectroscopy. High-resolution O K-edge and Ti L 2,3 -edge XANES spectra of aerogels are compared with those of rutile, anatase, and unrelaxed amorphous phases of full- density TiO 2 . Results show that all the main spectroscopic features of aerogels, reflecting the element-specific partial density of empty electronic states and correlation effects, can be attributed to the absence of long-range order in stoichiometric amorphous TiO 2 . Based on these results, we discuss the effects of short- and long-range order on the electronic structure of TiO 2 . This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48

  3. Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

    Science.gov (United States)

    Newby, David, Jr.

    Soft x-ray spectroscopy can provide a wealth of information on the electronic structure of solids. In this work, a suite of soft x-ray spectroscopies is applied to organic and inorganic materials with potential applications in electronic and energy generation devices. Using the techniques of x-ray absorption (XAS), x-ray emission spectroscopy (XES), and x-ray photoemission spectroscopy (XPS), the fundamental properties of these different materials are explored. Cycloparaphenylenes (CPPs) are a recently synthesized family of cyclic hydrocarbons with very interesting properties and many potential applications. Unusual UV/Visible fluorescence trends have spurred a number of theoretical investigations into the electronic properties of the CPP family, but thus far no comprehensive electronic structure measurements have been conducted. XPS, XAS, and XES data for two varieties, [8]- and [10]-CPP, are presented here, and compared with the results of relevant DFT calculations. Turning towards more application-centered investigations, similar measurements are applied to two materials commonly used in solid oxide fuel cell (SOFC) cathodes: La1-xSrxMnO 3 (LSMO) and La1-xSr1- xCo1-yFe yO3 (LSCF). Both materials are structurally perovskites, but they exhibit strikingly different electronic properties. SOFC systems very efficiently produce electricity by catalyzing reactions between oxygen and petroleum-based hydrocarbons at high temperatures (> 800 C). Such systems are already utilized to great effect in many industries, but more widespread adoption could be had if the cells could operate at lower temperatures. Understanding the electronic structure and operational evolution of the cathode materials is essential for the development of better low-temperature fuel cells. LSCF is a mixed ion-electron conductor which holds promise for low-temperature SOFC applications. XPS spectra of LSCF thin films are collected as the films are heated and gas-dosed in a controlled environment. The

  4. A beam intensity monitor for the evaluation beamline for soft x-ray optical elements

    International Nuclear Information System (INIS)

    Imazono, Takashi; Moriya, Naoji; Harada, Yoshihisa; Sano, Kazuo; Koike, Masato

    2012-01-01

    Evaluation Beamline for Soft X-Ray Optical Elements (BL-11) at the SR Center of Ritsumeikan University has been operated to measure the wavelength and angular characteristics of soft x-ray optical components in a wavelength range of 0.65-25 nm using a reflecto-diffractometer (RD). The beam intensity monitor that has been equipped in BL-11 has observed the signal of the zero-th order light. For the purpose of more accurate evaluation of the performance of optical components, a new beam intensity monitor to measure the intensity of the first order light from the monochromator in BL-11 has been developed and installed in just front of RD. The strong positive correlation between the signal of the beam monitor and a detector equipped in the RD is shown. It is successful that the beam intensity of the first order light can be monitored in real time.

  5. Soft X-ray spectroscopic investigation of a plasma focus operated in pure neon

    International Nuclear Information System (INIS)

    Presura, R.; Zoita, V.; Paraschiv, I.

    1996-01-01

    The soft X-ray emission of the medium-energy plasma focus device IPF-2/20 operated in pure neon was studied with spectral resolution. The spectra of H- and He-like Ne ions were recorded by means of a de Broglie spectrograph for initial filling pressures in the range 1.3 to 7 torr. Both the soft X-ray emission characteristics and the plasma parameters are strongly dependent on the working gas pressure. The intensity of the He-like neon ions lines increases when the working gas pressure is raised, while for the H-like ions it has a maximum for about 5 torr filling. The electron density has values of the order of 10 20 cm -3 . The electron temperature ranges between 300 and 350 eV. Both the plasma density and the plasma temperature decrease when the initial gas pressure is increased. (author). 2 figs., 9 refs

  6. Report on the workshop on new directions in soft x-ray near-threshold phenomena

    International Nuclear Information System (INIS)

    Lindle, D.W.; Perera, R.C.C.

    1988-07-01

    The ''Workshop on New Directions in Soft X-Ray Near-Threshold Phenomena'' was held at the Asilomar Conference Center in Pacific Grove, CA on March 1--4, 1987. It was attended by 59 scientists from 8 countries, representing 27 institutions. Major funding for the meeting was donated by L-Division of the Lawrence Livermore National Laboratory, who hosted and organized two previous workshops on photoabsorption and scattering in the soft x-ray energy range. Additional funding was provided by the User's Group of the Advanced Light Source. The Workshop, as its name suggests, emphasized physical phenomena in atoms, molecules, and solids near inner-shell thresholds. Of particular interest were threshold ionization, post-collisional interaction, resonant photoemission and fluorescence, and multi-electron effects such as shake-up and shake-off. In these areas and others, special consideration was given to presenting recent discoveries and potential ''new directions'' for future work

  7. Soft x-ray spectroscopy undulator beamline at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Randall, K.J.; Xu, Z.; Moore, J.F.; Gluskin, E.

    1997-09-01

    Construction of the high-resolution soft x ray spectroscopy undulator beamline, 2ID-C, at the Advanced Photon Source (APS) has been completed. The beamline, one of two soft x ray beamlines at the APS, will cover the photon energy range from 500 to 3,000 eV, with a maximum resolving power between 7,000 and 14,000. The optical design is based on a spherical grating monochromator (SGM) giving both high resolution and high flux throughput. Photon flux is calculated to be approximately 10{sup 12}--10{sup 13} photons per second with a beam size of approximately 1 x 1 mm{sup 2} at the sample.

  8. Soft x-ray measurement of internal tearing mode structure in a reversed-field pinch

    International Nuclear Information System (INIS)

    Chartas, G.; Hokin, S.

    1991-01-01

    The structure of internally resonant tearing modes has been studied in the Madison Symmetric Torus reversed-field pinch with a soft x-ray detector system consisting of an imaging array at one toroidal location and several detectors at different toroidal locations. The toroidal mode numbers of m = 1 structures are in the range n = -5, -6, -7. The modes propagate with phase velocity v = 1--6 x 10 6 cm/s, larger than the diamagnetic drift velocity v d ∼ 5 x 10 5 cm/s. Phase locking between modes with different n in manifested as a beating of soft x-ray signals which is found to be strongest near the resonant surfaces of the modes (r/a = 0.1 -- 0.5). 15 refs., 5 figs

  9. EXOSAT observations of a strong soft X-ray excess in MKN841

    International Nuclear Information System (INIS)

    Arnaud, K.A.; Fabian, A.C.; Shafer, R.A.; Tennant, A.F.; Ward, M.J.; Hazard, C.

    1985-01-01

    EXOSAT observations of the spectrum of the Seyfert 1 galaxy MKN 841 show that it is well-fitted by a power law of photon index 1.6, similar to that of other Seyferts, and a large additional soft component. The X-ray luminosity over the observed band exceeds 4x10 44 erg s -1 . A single-temperature blackbody fit to the soft X-rays and the short-wavelength ultraviolet continuum gives a luminosity of 2x10 46 erg s -1 while an accretion disc spectrum fitted to the same points gives a luminosity of 4.3x10 45 erg s -1 . The flux measured by both the EXOSAT low- and medium-energy instruments exhibits 12 per cent amplitude variability on a time-scale of one day. (author)

  10. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    Science.gov (United States)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  11. Soft x-ray power diagnostic improvements at the Omega Laser Facility

    International Nuclear Information System (INIS)

    Sorce, C.; Schein, J.; Weber, F.; Widmann, K.; Campbell, K.; Dewald, E.; Turner, R.; Landen, O.; Jacoby, K.; Torres, P.; Pellinen, D.

    2006-01-01

    Soft x-ray power diagnostics are essential for evaluating high temperature laser plasma experiments. The Dante soft x-ray spectrometer, a core diagnostic for radiation flux and temperature measurements of Hohlraums, installed on the Omega Laser Facility at the Laboratory for Laser Energetics has recently undergone a series of upgrades. Work performed at Brookhaven National Laboratory for the development of the National Ignition Facility (NIF) Dante spectrometer enables the Omega Dante to offer a total of 18 absolutely calibrated channels in the energy range from 50 eV to 20 keV. This feature provides Dante with the capability to measure higher, NIF relevant, radiation temperatures with increased accuracy including a differentiation of higher energy radiation such as the Au M and L bands. Diagnostic monitoring using experimental data from directly driven Au spherical shots is discussed

  12. Experiment and application of soft x-ray grazing incidence optical scattering phenomena

    Science.gov (United States)

    Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun

    2017-08-01

    For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.

  13. Soft X-ray images of the solar corona using normal incidence optics

    Science.gov (United States)

    Bruner, M. E.; Haisch, B. M.; Brown, W. A.; Acton, L. W.; Underwood, J. H.

    1988-01-01

    A solar coronal loop system has been photographed in soft X-rays using a normal incidence telescope based on multilayer mirror technology. The telescope consisted of a spherical objective mirror of 4 cm aperture and 1 m focal length, a film cassette, and a focal plane shutter. A metallized thin plastic film filter was used to exclude visible light. The objective mirror was covered with a multilayer coating consisting of alternating layers of tungsten and carbon whose combined thicknesses satisfied the Bragg diffraction condition for 44 A radiation. The image was recorded during a rocket flight on October 25, 1985 and was dominated by emission lines arising from the Si XII spectrum. The rocket also carried a high resolution soft X-ray spectrograph that confirmed the presence of Si XII line radiation in the source. This image represents the first successful use of multilayer technology for astrophysical observations.

  14. Space power distribution of soft x-ray source ANGARA-5-1

    Energy Technology Data Exchange (ETDEWEB)

    Dyabilin, K S [High Energy Density Research Center, Moscow (Russian Federation); Fortov, V E; Grabovskij, E V; Lebedev, M E; Smirnov, V P [Troitsk Inst. of Innovative and Fusion Research, Troitsk (Russian Federation)

    1997-12-31

    The contribution deals with the investigation of shock waves in condensed targets generated by intense pulses of soft X radiation. Main attention is paid to the spatial distribution of the soft x-ray power, which influence strongly the shock wave front uniformity. Hot z-pinch plasma with the temperature of 60-100 eV produced by imploding double liner in the ANGARA-5-1 machine was used as a source of x rays. The maximum pinch current was as high as 3.5 MA. In order to eliminate the thermal heating of the targets, thick stepped Al/Pb, Sn/Pb, or pure Pb targets were used. The velocity of shock waves was determined by means of optical methods. Very uniform shock waves and shock pressures of up to several hundreds of GPa have been achieved. (J.U.). 3 figs., 2 refs.

  15. Soft X-ray spectroscopic investigation of a plasma focus operated in pure neon

    Energy Technology Data Exchange (ETDEWEB)

    Presura, R; Zoita, V; Paraschiv, I [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania)

    1997-12-31

    The soft X-ray emission of the medium-energy plasma focus device IPF-2/20 operated in pure neon was studied with spectral resolution. The spectra of H- and He-like Ne ions were recorded by means of a de Broglie spectrograph for initial filling pressures in the range 1.3 to 7 torr. Both the soft X-ray emission characteristics and the plasma parameters are strongly dependent on the working gas pressure. The intensity of the He-like neon ions lines increases when the working gas pressure is raised, while for the H-like ions it has a maximum for about 5 torr filling. The electron density has values of the order of 10{sup 20} cm{sup -3}. The electron temperature ranges between 300 and 350 eV. Both the plasma density and the plasma temperature decrease when the initial gas pressure is increased. (author). 2 figs., 9 refs.

  16. Soft x-ray camera for internal shape and current density measurements on a noncircular tokamak

    International Nuclear Information System (INIS)

    Fonck, R.J.; Jaehnig, K.P.; Powell, E.T.; Reusch, M.; Roney, P.; Simon, M.P.

    1988-05-01

    Soft x-ray measurements of the internal plasma flux surface shaped in principle allow a determination of the plasma current density distribution, and provide a necessary monitor of the degree of internal elongation of tokamak plasmas with a noncircular cross section. A two-dimensional, tangentially viewing, soft x-ray pinhole camera has been fabricated to provide internal shape measurements on the PBX-M tokamak. It consists of a scintillator at the focal plane of a foil-filtered pinhole camera, which is, in turn, fiber optically coupled to an intensified framing video camera (/DELTA/t />=/ 3 msec). Automated data acquisition is performed on a stand-alone image-processing system, and data archiving and retrieval takes place on an optical disk video recorder. The entire diagnostic is controlled via a PDP-11/73 microcomputer. The derivation of the polodial emission distribution from the measured image is done by fitting to model profiles. 10 refs., 4 figs

  17. Fresnel diffraction correction by phase-considered iteration procedure in soft X-ray projection microscopy

    International Nuclear Information System (INIS)

    Shiina, Tatsuo; Suzuki, Tsuyoshi; Honda, Toshio; Ito, Atsushi; Kinjo, Yasuhito; Yoshimura, Hideyuki; Yada, Keiji; Shinohara, Kunio

    2009-01-01

    In soft X-ray projection microscopy, it is easy to alter the magnification by changing the distance between the pinhole and the specimen, while the image is blurred because the soft X-rays are diffracted through the propagation from specimen to CCD detector. We corrected the blurred image by the iteration procedure of Fresnel to inverse Fresnel transformation taking phase distribution of the specimen into account. The experiments were conducted at the BL-11A of the Photon Factory, KEK, Japan for the specimens such as glass-capillaries, latex-particles, dried mammalian cells and human chromosomes. Many of those blurred images were corrected adequately by the iteration procedure, though some images such as those which have high-contrast or are overlapped by small cells still remain to be improved.

  18. Hydrodynamic evolution of plasma waveguides for soft-x-ray amplifiers

    Science.gov (United States)

    Oliva, Eduardo; Depresseux, Adrien; Cotelo, Manuel; Lifschitz, Agustín; Tissandier, Fabien; Gautier, Julien; Maynard, Gilles; Velarde, Pedro; Sebban, Stéphane

    2018-02-01

    High-density, collisionally pumped plasma-based soft-x-ray lasers have recently delivered hundreds of femtosecond pulses, breaking the longstanding barrier of one picosecond. To pump these amplifiers an intense infrared pulse must propagate focused throughout all the length of the amplifier, which spans several Rayleigh lengths. However, strong nonlinear effects hinder the propagation of the laser beam. The use of a plasma waveguide allows us to overcome these drawbacks provided the hydrodynamic processes that dominate the creation and posterior evolution of the waveguide are controlled and optimized. In this paper we present experimental measurements of the radial density profile and transmittance of such waveguide, and we compare them with numerical calculations using hydrodynamic and particle-in-cell codes. Controlling the properties (electron density value and radial gradient) of the waveguide with the help of numerical codes promises the delivery of ultrashort (tens of femtoseconds), coherent soft-x-ray pulses.

  19. Nearly copropagating sheared laser pulse FEL undulator for soft x-rays

    International Nuclear Information System (INIS)

    Lawler, J E; Yavuz, D; Bisognano, J; Bosch, R A; Chiang, T C; Green, M A; Jacobs, K; Miller, T; Wehlitz, R; York, R C

    2013-01-01

    A conceptual design for a soft x-ray free-electron laser (FEL) using a short-pulsed, high energy near infrared laser undulator and a low-emittance modest-energy (∼170 MeV) electron beam is described. This low-cost design uses the laser undulator beam in a nearly copropagating fashion with respect to the electron beam, instead of the traditional ‘head-on’ fashion. The nearly copropagating geometry reduces the Doppler shift of scattered radiation to yield soft, rather than hard x-rays. To increase the FEL gain a sheared laser pulse from a Ti : sapphire or other broadband laser is used to extend the otherwise short interaction time of the nearly copropagating laser undulator beam with a relativistic electron beam. (paper)

  20. An iterative method for unfolding time-resolved soft x-ray spectra of laser plasmas

    International Nuclear Information System (INIS)

    Tang Yongjian; Shen Kexi; Xu Hepin

    1991-01-01

    Dante-recorded temporal waveforms have been unfolded by using Fast Fourier transformation (FFT) and the inverted convolution theorem of Fourier analysis. The conversion of the signals to time-dependent soft x-ray spectra is accomplished on the IBM-PC/XT-286 microcomputer system with the code DTSP including SAND II reported by W.N.Mcelory et al.. An amplitude-limited iterative and periodic smoothing technique has been developed in the code DTSP. Time-resolved soft x-ray spectra with sixteen time-cell, and time-dependent radiation, [T R (t)], have been obtained for hohlraum targets irradiated with laser beams (λ = 1.06 μm) on LF-12 in 1989

  1. Soft X-ray observations of the supernova remnants HB 3 and 3C 58

    Science.gov (United States)

    Galas, C. M. F.; Tuohy, I. R.; Garmire, G. P.

    1980-01-01

    The HEAO 1 A-2 low energy detectors have discovered soft X-ray emission from a source positionally coincident with the supernova remnant HB 3. The flux in the energy range 0.3-2.2 keV is about 6 x 10 to the -11th ergs per sq cm s. The spectral data are fitted to a hydrogen thermal bremsstrahlung model, and the physical parameters of the supernova remnant are estimated. The age derived is about 21,000 years, and the initial blast energy is about 3.1 x 10 to the 50th ergs. Upper limits to the soft X-ray flux and the luminosity of the supernova remnant 3 C 58 are also derived.

  2. Center for X-ray Optics, 1988

    International Nuclear Information System (INIS)

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source

  3. A gas microstrip X-ray detector for soft energy fluorescence EXAFS

    CERN Document Server

    Smith, A D; Derbyshire, G E; Duxbury, D M; Lipp, J; Spill, E J; Stephenson, R

    2001-01-01

    Gas microstrip detectors have been previously developed by the particle physics community, where their robustness, compactness and high counting speed have been recognised. These features are particularly attractive to synchrotron radiation use. In this paper, we describe a gas microstrip detector employing multi-element readout and specifically developed for high count rate fluorescence EXAFS at soft X-ray energies below 4 keV.

  4. Comparison of a CCD and an APS for soft x-ray diffraction

    OpenAIRE

    Stewart, G.; Bates, R.; Blue, A.; Clark, A.; Dhesi, S.S.; Maneuski, D.; Marchal, J.; Steadman, P.; Tartoni, N.; Turchetta, R.

    2011-01-01

    We compare a new CMOS Active Pixel Sensor (APS) to a Princeton Instruments PIXIS-XO: 2048B Charge Coupled Device (CCD) with soft X-rays tested in a synchrotron beam line at the Diamond Light Source (DLS). Despite CCDs being established in the field of scientific imaging, APS are an innovative technology that offers advantages over CCDs. These include faster readout, higher operational temperature, in-pixel electronics for advanced image processing and reduced manufacturing cost.\\ud \\ud The AP...

  5. Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, S.-C.; Thieme, J.; Chao, W.; Fischer, P.

    2008-09-01

    The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.

  6. Soft X-ray magnetic circular dichroism study of UFe2

    International Nuclear Information System (INIS)

    Okane, T.; Takeda, Y.; Fujimori, S.-I.; Terai, K.; Saitoh, Y.; Muramatsu, Y.; Fujimori, A.; Haga, Y.; Yamamoto, E.; Onuki, Y.

    2006-01-01

    Soft X-ray magnetic circular dichroism has been measured at the U N 4,5 and Fe L 2,3 absorption edges of ferromagnetic UFe 2 . The orbital and spin magnetic moments of U 5f and Fe 3d electrons are evaluated by a sum-rule analysis of the XMCD data. It is confirmed that the U 5f orbital moment is parallel to the Fe 3d spin moment

  7. Bulk band gaps in divalent hexaborides: A soft x-ray emission study

    International Nuclear Information System (INIS)

    Denlinger, Jonathan D.; Gweon, Gey-Hong; Allen, James W.; Bianchi, Andrea D.; Fisk, Zachary

    2001-01-01

    Boron K-edge soft x-ray emission and absorption are used to address the fundamental question of whether divalent hexaborides are intrinsic semimetals or defect-doped bandgap insulators. These bulk sensitive measurements, complementary and consistent with surface-sensitive angle-resolved photoemission experiments, confirm the existence of a bulk band gap and the location of the chemical potential at the bottom of the conduction band

  8. Calibration technique for radiation measurements in vacuum ultraviolet - soft x-ray region

    International Nuclear Information System (INIS)

    Mizui, Jun-ichi

    1986-05-01

    This is a collection of the papers presented at the workshop on ''Calibration Technique for Radiation Measurements in Vacuum Ultraviolet - Soft X-ray Region'' held at the Institute of Plasma Physics, Nagoya University, on December 19 - 20, 1985, under the Collaborating Research Program at the Institute. The following topics were discussed at the workshop: the needs for the calibration of plasma diagnostic devices, present status of the calibration technique, use of the Synchrotron Orbit Radiations for radiometry, and others. (author)

  9. Homogenious focusing with a transient soft X-ray laser for irradiation experiments

    Czech Academy of Sciences Publication Activity Database

    Kazamias, S.; Cassou, K.; Guilbaud, O.; Klisnick, A.; Ros, D.; Plé, F.; Jamelot, G.; Rus, Bedřich; Kozlová, Michaela; Stupka, Michal; Mocek, Tomáš; Douillet, D.; Zeitoun, P.; Joyeux, D.; Phalippou, D.

    2006-01-01

    Roč. 263, - (2006), s. 98-104 ISSN 0030-4018 R&D Projects: GA MŠk(CZ) LC528; GA ČR GA202/05/2316 Institutional research plan: CEZ:AV0Z10100523 Keywords : soft X-Ray laser * focusing * laser plasma * UV radiation * beam profile Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.480, year: 2006

  10. Route to Soft X-ray Laser Pumped by Gas-Filled-Capillary Discharge

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Řípa, Milan; Frolov, Oleksandr; Štraus, Jaroslav; Vrba, Pavel

    2004-01-01

    Roč. 34, - (2004), s. 154-157 ISSN 1433-5581. [First Cairo Conference on Plasma Physics & Applications. Cairo, 11.10.2003-15.10.2003] R&D Projects: GA ČR(CZ) GA202/03/0711 Grant - others:GA MŠk1(CZ) LA 235 Keywords : fast capillary discharge * soft x-Ray laser Subject RIV: BL - Plasma and Gas Discharge Physics

  11. Prototyping a Global Soft X-Ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  12. Prototyping a Global Soft X-ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission

  13. Thermal states of coldest and hottest neutron stars in soft X-ray transients

    OpenAIRE

    Yakovlev, D. G.; Levenfish, K. P.; Potekhin, A. Y.; Gnedin, O. Y.; Chabrier, G.

    2003-01-01

    We calculate the thermal structure and quiescent thermal luminosity of accreting neutron stars (warmed by deep crustal heating in accreted matter) in soft X-ray transients (SXTs). We consider neutron stars with nucleon and hyperon cores and with accreted envelopes. It is assumed that an envelope has an outer helium layer (of variable depth) and deeper layers of heavier elements, either with iron or with much heavier nuclei (of atomic weight A > 100) on the top (Haensel & Zdunik 1990, 2003, as...

  14. OI Fluorescent Line Contamination in Soft X-Ray Diffuse Background Obtained with Suzaku/XIS

    OpenAIRE

    Sekiya, Norio; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Takei, Yoh

    2014-01-01

    The quantitative measurement of OVII line intensity is a powerful method for understanding the soft X-ray diffuse background. By systematically analyzing the OVII line intensity in 145 high-latitude Suzaku/XIS observations, the flux of OI fluorescent line in the XIS spectrum, contaminating the OVII line, is found to have an increasing trend with time especially after 2011. For these observations, the OVII line intensity would be overestimated unless taking into consideration the OI fluorescen...

  15. Probing symmetry and symmetry breaking in resonant soft-x-ray fluorescence spectra of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Glans, P.; Gunnelin, K.; Guo, J. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Conventional non-resonant soft X-ray emission brings about information about electronic structure through its symmetry and polarization selectivity, the character of which is governed by simple dipole rules. For centro-symmetric molecules with the emitting atom at the inversion center these rules lead to selective emission through the required parity change. For the more common classes of molecules which have lower symmetry or for systems with degenerate core orbitals (delocalized over identical sites), it is merely the local symmetry selectivity that provides a probe of the local atomic orbital contribution to the molecular orbital. For instance, in X-ray spectra of first row species the intensities essentially map the p-density at each particular atomic site, and, in a molecular orbital picture, the contribution of the local p-type atomic orbitals in the LCAO description of the molecular orbitals. The situation is different for resonant X-ray fluorescence spectra. Here strict parity and symmetry selectivity gives rise to a strong frequency dependence for all molecules with an element of symmetry. In addition to symmetry selectivity the strong frequency dependence of resonant X-ray emission is caused by the interplay between the shape of a narrow X-ray excitation energy function and the lifetime and vibrational broadenings of the resonantly excited core states. This interplay leads to various observable effects, such as linear dispersion, resonance narrowing and emission line (Stokes) doubling. Also from the point of view of polarization selectivity, the resonantly excited X-ray spectra are much more informative than the corresponding non-resonant spectra. Examples are presented for nitrogen, oxygen, and carbon dioxide molecules.

  16. Interference between magnetism and surface roughness in coherent soft X-ray scattering

    International Nuclear Information System (INIS)

    Rahmim, A.; Tixier, S.; Tiedje, T.; Eisebitt, S.; Lorgen, M.; Scherer, R.; Eberhardt, W.; Luning, J.; Scholl, A.

    2002-01-01

    In coherent soft x-ray scattering from magnetically ordered surfaces there are contributions to the scattering from the magnetic domains, from the surface roughness, and from the diffraction associated with the pinhole aperture used as a coherence filter. In the present work, we explore the interplay between these contributions by analyzing speckle patterns in diffusely scattered x rays from the surface of magnetic thin films. Magnetic contrast from the surface of anti ferro magnetically ordered LaFeO3 films is caused by magnetic linear dichroism in resonant x-ray scattering. The samples studied possess two types of domains with their magnetic orientations perpendicular to each other. By tuning the x-ray energy from one of the two Fe-L3 resonant absorption peaks to the other, the relative amplitudes of the x-ray scattering from the two domains is inverted which results in speckle pattern changes. A theoretical expression is derived for the intensity correlation between the speckle patterns with the magnetic contrast inverted and not inverted. The model is found to be in good agreement with the x-ray-scattering observations and independent measurements of the surface roughness. An analytical expression for the correlation function gives an explicit relation between the change in the speckle pattern and the roughness, and magnetic and aperture scattering. Changes in the speckle pattern are shown to arise from beating of magnetic scattering with the roughness scattering and diffraction from the aperture. The largest effect is found when the surface roughness scatter is comparable in intensity to the magnetic scatter

  17. Confocal total reflection X-ray fluorescence technology based on an elliptical monocapillary and a parallel polycapillary X-ray optics.

    Science.gov (United States)

    Zhu, Yu; Wang, Yabing; Sun, Tianxi; Sun, Xuepeng; Zhang, Xiaoyun; Liu, Zhiguo; Li, Yufei; Zhang, Fengshou

    2018-07-01

    A total reflection X-ray fluorescence (TXRF) spectrometer based on an elliptical monocapillary X-ray lens (MXRL) and a parallel polycapillary X-ray lens (PPXRL) was designed. This TXRF instrument has micro focal spot, low divergence and high intensity of incident X-ray beam. The diameter of the focal spot of MXRL was 16.5 µm, and the divergence of the incident X-ray beam was 3.4 mrad. We applied this TXRF instrument to the micro analysis of a single-layer film containing Ni deposited on a Si substrate by metal vapor vacuum arc ion source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. An in-vacuum diffractometer for resonant elastic soft x-ray scattering

    Czech Academy of Sciences Publication Activity Database

    Hawthorn, D.G.; He, F.; Venema, L.; Davis, H.; Achkar, A.J.; Zhang, J.; Sutarto, R.; Wadati, H.; Radi, A.; Wilson, T.; Wright, G.; Shen, K.M.; Geck, J.; Zhang, H.; Novák, Vít; Sawatzky, G.A.

    2011-01-01

    Roč. 82, č. 7 (2011), 073104/1-073104/8 ISSN 0034-6748 Institutional research plan: CEZ:AV0Z10100521 Keywords : gallium arsenide * lanthanum compounds * manganese compounds * neodymium * reflectivity * semiconductor thin films * strontium compounds * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.367, year: 2011

  19. Regularity of wound healing in rats irradiated locally with different doses of soft X-rays

    International Nuclear Information System (INIS)

    Liu Jianzhong; Zhou Yuanguo; Cheng Tianmin; Zhou Ping; Liu Xia; Li Ping

    2002-01-01

    Objective: To study the regular patter of wound healing in rats irradiated locally with different doses of soft X-rays. Methods: Rats were locally irradiated, and wounded immediately thereafter. Gross observation, histopathology and immunohistochemistry examinations, and image analysis were used to study the wound healing process. Results: The authors found that the delayed time of wound healing induced by soft X-ray irradiation of 0.50, 1.01, 1.96, 3,26, 4.00, 5.21 Gy was 1.6, 4.2, 5.4, 6.6, 8.2 and 9.4 days, respectively. Irradiation with 7.0 and 10.0 Gy caused failure of wound healing (up to 40 days). Compared to the non-irradiated wounds, the healing rates of irradiation-impaired wounds were lower during the whole healing process. From day 3 to day 9 after irradiation, the healing rates decreased along with increasing of the radiation dose, indicating the key phase of wound healing was delayed. After irradiation, the collagen synthesis was decreased, its arrangement was disordered, and the structure of granulation tissue was irregular. Conclusion: Soft X-rays irradiation may cause a delay of wound healing in a dose-dependent manner, and irradiation with 7.0 and 10.0 Gy cause failure of wound healing

  20. Soft excess and orbital evolution studies of X-ray pulsars with BeppoSAX

    International Nuclear Information System (INIS)

    Paul, B.; Naik, S.; Bhatt, N.

    2004-01-01

    We present here a spectral study of two accreting binary X-ray pulsars LMC X-4 and SMC X-1 made with the BeppoSAX observatory. The energy spectrum of both the pulsars in 0.1-10.0 keV band can be described by a model consisting of a hard power-law component, a soft excess and an iron emission line at 6.4 keV. In addition, the power-law component of SMC X-1 also has an exponential cutoff at ∼ 6 keV. Pulse-phase resolved spectroscopy confirms a pulsating nature of the soft spectral component in both the pulsars, with a certain phase offset compared to the hard power-law component. A dissimilar pulse profile of the two spectral components and a phase difference between the pulsating soft and hard spectral components are evidence for their different origins. In another study of an accreting binary X-ray pulsar Her X-1, we have made accurate measurements of new mid-eclipse times from pulse arrival time delays using observations made with the BeppoSAX and RXTE observatories. The new measurements, combined with the earlier reported mid-eclipse times are used to investigate orbital evolution of the binary. The most recent observation indicates deviation from a quadratic trend coincident with an anomalous low X-ray state, observed for the second time in this pulsar

  1. Fast Soft X-ray Images of MHD Phenomena in NSTX

    International Nuclear Information System (INIS)

    Bush, C.E.; Stratton, B.C.; Robinson, J.; Zakharov, L.E.; Fredrickson, E.D.; Stutman, D.; Tritz, K.

    2008-01-01

    A variety of magnetohydrodynamic (MHD) phenomena have been observed on the National Spherical Torus Experiment (NSTX). Many of these affect fast particle losses, which are of major concern for future burning plasma experiments. Usual diagnostics for studying these phenomena are arrays of Mirnov coils for magnetic oscillations and PIN diode arrays for soft x-ray emission from the plasma core. Data reported here are from an unique fast soft x-ray imaging camera (FSXIC) with a wide-angle (pinhole) tangential view of the entire plasma minor cross section. The camera provides a 64x64 pixel image, on a CCD chip, of light resulting from conversion of soft x-rays incident on a phosphor to the visible. We have acquired plasma images at frame rates of 1-500 kHz (300 frames/shot), and have observed a variety of MHD phenomena: disruptions, sawteeth, fishbones, tearing modes, and ELMs. New data including modes with frequency > 90 kHz are also presented. Data analysis and modeling techniques used to interpret the FSXIC data are described and compared, and FSXIC results are compared to Mirnov and PIN diode array results.

  2. Highly ionized copper contribution to the soft X-ray emission in a plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Zoita, V; Patran, A [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania); Larour, J [Ecole Polytechnique, Palaiseau (France). Lab. de Physique des Milieux Ionises

    1997-12-31

    In order to discriminate between the contributions of the gas plasma and of the anode (solid or plasma) to the soft X-ray emission in a plasma focus device, a series of experiments was carried out using the following combinations of experimental conditions: various gases, different absorption filters and viewing different regions in front of the centre electrode. The experiments were performed on the IPF-2/20 plasma focus device using the following working gases: helium, neon and helium-argon mixtures. The diagnostics used: magnetic probe for current derivative, PIN diode for the minimum pinch radius detection, PIN diodes for the soft X-ray emission, scintillator-photomultiplier detector for the hard X-ray emission. From the analysis of the various diagnostics data recorded with very good time correlation, it followed that the soft K-ray signals had a strong contribution from optical transitions of the highly ionised Cu (Cu XX to XXII) emitting in the range 0.8-1.3 nm. (author). 7 figs., 9 refs.

  3. DNA strand breaks induced by soft X-ray pulses from a compact laser plasma source

    Science.gov (United States)

    Adjei, Daniel; Wiechec, Anna; Wachulak, Przemyslaw; Ayele, Mesfin Getachew; Lekki, Janusz; Kwiatek, Wojciech M.; Bartnik, Andrzej; Davídková, Marie; Vyšín, Luděk; Juha, Libor; Pina, Ladislav; Fiedorowicz, Henryk

    2016-03-01

    Application of a compact laser plasma source of soft X-rays in radiobiology studies is demonstrated. The source is based on a laser produced plasma as a result of irradiation of a double-stream gas puff target with nanosecond laser pulses from a commercially available Nd:YAG laser. The source allows irradiation of samples with soft X-ray pulses in the "water window" spectral range (wavelength: 2.3-4.4 nm; photon energy: 280-560 eV) in vacuum or a helium atmosphere at very high-dose rates and doses exceeding the kGy level. Single-strand breaks (SSB) and double-strand breaks (DBS) induced in DNA plasmids pBR322 and pUC19 have been measured. The different conformations of the plasmid DNA were separated by agarose gel electrophoresis. An exponential decrease in the supercoiled form with an increase in linear and relaxed forms of the plasmids has been observed as a function of increasing photon fluence. Significant difference between SSB and DSB in case of wet and dry samples was observed that is connected with the production of free radicals in the wet sample by soft X-ray photons and subsequent affecting the plasmid DNA. Therefore, the new source was validated to be useful for radiobiology experiments.

  4. Hard and soft x-ray study of the correlation between substrate quality and multilayer performance for Co/C coating produced by electron beam evaporation using ion polishing

    DEFF Research Database (Denmark)

    Abdali, S.; Christensen, Finn Erland; Spiller, E.

    1995-01-01

    as the transverse scan have demonstrated different qualities, influenced by the different substrates. The investigations were performed with both hard x-ray (8.05 keV) as well as soft x-ray (0.25 keV). The reflectivity varies up to factor 3 between the best and the worst of these substrates. The results...

  5. Short-wavelength soft-x-ray laser pumped in double-pulse single-beam non-normal incidence

    International Nuclear Information System (INIS)

    Zimmer, D.; Ros, D.; Guilbaud, O.; Habib, J.; Kazamias, S.; Zielbauer, B.; Bagnoud, V.; Ecker, B.; Aurand, B.; Kuehl, T.; Hochhaus, D. C.; Neumayer, P.

    2010-01-01

    We demonstrated a 7.36 nm Ni-like samarium soft-x-ray laser, pumped by 36 J of a neodymium:glass chirped-pulse amplification laser. Double-pulse single-beam non-normal-incidence pumping was applied for efficient soft-x-ray laser generation. In this case, the applied technique included a single-optic focusing geometry for large beam diameters, a single-pass grating compressor, traveling-wave tuning capability, and an optimized high-energy laser double pulse. This scheme has the potential for even shorter-wavelength soft-x-ray laser pumping.

  6. Simultaneous analysis of Grazing Incidence X-Ray reflectivity and X-ray standing waves from periodic multilayer systems

    NARCIS (Netherlands)

    Yakunin, S.N.; Makhotkin, Igor Alexandrovich; Chuyev, M.A.; Seregin, A.Y.; Pashayev, E.M.; Louis, Eric; van de Kruijs, Robbert Wilhelmus Elisabeth; Bijkerk, Frederik; Kovalchuk, M.V.

    2012-01-01

    Structural analysis of periodic multilayers with small period thickness (~4 nm) is a challenging task, especially when thicknesses of intermixed interfaces become comparable to individual layer thicknesses. In general, angular dependent X-ray fluorescence measurements, excited by the X-ray standing

  7. First peek of ASTRO-H Soft X-ray Telescope (SXT) in-orbit performance

    Science.gov (United States)

    Okajima, Takashi; Soong, Yang; Serlemitsos, Peter; Mori, Hideyuki; Olsen, Larry; Robinson, David; Koenecke, Richard; Chang, Bill; Hahne, Devin; Iizuka, Ryo; Ishida, Manabu; Maeda, Yoshitomo; Sato, Toshiki; Kikuchi, Naomichi; Kurashima, Sho; Nakaniwa, Nozomi; Hayashi, Takayuki; Ishibashi, Kazunori; Miyazawa, Takuya; Tachibana, Kenji; Tamura, Keisuke; Furuzawa, Akihiro; Tawara, Yuzuru; Sugita, Satoshi

    2016-07-01

    ASTRO-H (Hitomi) is a Japanese X-ray astrophysics satellite just launched in February, 2016, from Tanegashima, Japan by a JAXA's H-IIA launch vehicle. It has two Soft X-ray Telescopes (SXTs), among other instruments, that were developed by NASA's Goddard Space Flight Center in collaboration with ISAS/JAXA and Nagoya University. One is for an X-ray micro-calorimeter instrument (Soft X-ray Spectrometer, SXS) and the other for an X-ray CCD camera (Soft X-ray Imager, SXI), both covering the X-ray energy band up to 15 keV. The two SXTs were fully characterized at the 30-m X-ray beamline at ISAS/JAXA. The combined SXT+SXS system effective area is about 250 and 300 cm2 at 1 and 6 keV, respectively, although observations were performed with the gate valve at the dewar entrance closed, which blocks most of low energy X-rays and some of high energy ones. The angular resolution for SXS is 1.2 arcmin (Half Power Diameter, HPD). The combined SXT+SXI system effective area is about 370 and 350 cm2 at 1 and 6 keV, respectively. The angular resolution for SXI is 1.3 arcmin (HPD). The both SXTs have a field of view of about 16 arcmin (FWHM of their vignetting functions). The SXT+SXS field of view is limited to 3 x 3 arcmin by the SXS array size. In-flight data available to the SXT team was limited at the time of this conference and a point-like source data is not available for the SXT+SXS. Although due to lack of attitude information we were unable to reconstruct a point spread function of SXT+SXI, according to RXJ1856.5-3754 data, the SXT seems to be working as expected in terms of imaging capability. As for the overall effective area response for both SXT+SXS and SXT+SXI, consistent spectral model fitting parameters with the previous measurements were obtained for Crab and G21.5-0.9 data. On the other hand, their 2-10 keV fluxes differ by about 20% at this point. Calibration work is still under progress. The SXT is the latest version of the aluminum foil X-ray mirror, which is

  8. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    Science.gov (United States)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  9. Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography.

    Science.gov (United States)

    Zhu, Xiaohui; Hitchcock, Adam P; Bazylinski, Dennis A; Denes, Peter; Joseph, John; Lins, Ulysses; Marchesini, Stefano; Shiu, Hung-Wei; Tyliszczak, Tolek; Shapiro, David A

    2016-12-20

    Characterizing the chemistry and magnetism of magnetotactic bacteria (MTB) is an important aspect of understanding the biomineralization mechanism and function of the chains of magnetosomes (Fe 3 O 4 nanoparticles) found in such species. Images and X-ray absorption spectra (XAS) of magnetosomes extracted from, and magnetosomes in, whole Magnetovibrio blakemorei strain MV-1 cells have been recorded using soft X-ray ptychography at the Fe 2p edge. A spatial resolution of 7 nm is demonstrated. Precursor-like and immature magnetosome phases in a whole MV-1 cell were visualized, and their Fe 2p spectra were measured. Based on these results, a model for the pathway of magnetosome biomineralization for MV-1 is proposed. Fe 2p X-ray magnetic circular dichroism (XMCD) spectra have been derived from ptychography image sequences recorded using left and right circular polarization. The shape of the XAS and XMCD signals in the ptychographic absorption spectra of both sample types is identical to the shape and signals measured with conventional bright-field scanning transmission X-ray microscope. A weaker and inverted XMCD signal was observed in the ptychographic phase spectra of the extracted magnetosomes. The XMCD ptychographic phase spectrum of the intracellular magnetosomes differed from the ptychographic phase spectrum of the extracted magnetosomes. These results demonstrate that spectro-ptychography offers a superior means of characterizing the chemical and magnetic properties of MTB at the individual magnetosome level.

  10. The Soft X-ray Spectrophotometer SphinX for the CORONAS-Photon Mission

    Science.gov (United States)

    Sylwester, Janusz; Kowalinski, Miroslaw; Szymon, Gburek; Bakala, Jaroslaw; Kuzin, Sergey; Kotov, Yury; Farnik, Frantisek; Reale, Fabio

    The purpose, construction details and calibration results of the new design, Polish-led solar X-ray spectrophotometer SphinX will be presented. The instrument constitutes a part of the Russian TESIS X-ray and EUV complex aboard the forthcoming CORONAS-Photon solar mission to be launched later in 2008. SphinX uses Si-PIN detectors for high time resolution (down to 0.01 s) measurements of solar spectra in the energy range between 0.5 keV and 15 keV. The spectral resolution allows separating 256 individual energy channels in this range with particular groups of lines clearly distinguishable. Unprecedented accuracy of the instrument calibration at the XACT (Palermo) and BESSY (Berlin) synchrotron will allow for establishing the solar soft X-ray photometric reference system. The cross-comparison between SphinX and the other instruments presently in orbit like XRT on Hinode, RHESSI and GOES X-ray monitor, will allow for a precise determination of the coronal emission measure and temperature during both very low and very high activity periods. Examples of the detectors' ground calibration results as well as the calculated synthetic spectra will be presented. The operation of the instrument while in orbit will be discussed allowing for suggestions from other groups to be still included in mission planning.

  11. Intense soft x-rays from RS Ophiuchi during the 1985 outburst

    International Nuclear Information System (INIS)

    Mason, K.O.; Cordova, F.A.; Bode, M.F.; Barr, P.

    1985-01-01

    Intense soft x-ray emission with a characteristic temperature of a few million degrees has been detected from the recurrent nova RS Oph approximately two months after its January 1985 optical outburst. This is the first detection of x-rays from such a system at outburst. The x-radiation is interpreted as emission from circumstellar gas that is shock heated by the passage of the blast wave from the nova explosion. The rapid decline of the x-ray flux between about 60 and 90 days after the outburst probably occurs because the blast wave has reached the edge of the volume filled, between outbursts, by the stellar wind of the red giant component of the binary system. Residual x-ray emission detected from RS Oph 250 days after the outburst is interpreted as coming from the surface of a white dwarf, at a temperature of approx.300,000K, where thermonuclear burning is persisting. 7 refs., 3 figs

  12. Introducing a New Capability at SSRL: Resonant Soft X-ray Scattering

    Science.gov (United States)

    Lee, Jun-Sik; Jang, Hoyoung; Lu, Donghui; Kao, Chi-Chang

    Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC recently developed a setup for the resonant soft x-ray scattering (RSXS). In general, the RSXS technique uniquely probes not only structural information, but also chemical specific information. This is because this technique can explore the spatial periodicities of charge, orbital, spin, and lattice with spectroscopic aspect. Moreover, the soft x-ray range is particularly relevant for a study of soft materials as it covers the K-edge of C, N, F, and O, as well as the L-edges of transition metals and M-edges of rare-earth elements. Hence, the RSXS capability has been regarded as a very powerful technique for investigating the intrinsic properties of materials such as quantum- and energy-materials. The RSXS capability at the SSRL composes of in-vacuum 4-circle diffractometer. There are also the fully motorized sample-motion manipulations. Also, the sample can be cooled down to 25 K via the liquid helium. This capability has been installed at BL 13-3, where the photon source is from elliptically polarized undulator (EPU). Covering the photon energies is from 230 eV to 1400 eV. Furthermore, this EPU system offers more degree of freedoms for controlling x-ray polarizations (linear and circular). Using the advance of controlling x-ray polarization, we can also investigate a morphology effect of local domain/grain in materials. The detailed introduction of the RSXS end-station and several results will be touched in this poster presentation.

  13. Imaging mammalian cells with soft x rays: The importance of specimen preparation

    International Nuclear Information System (INIS)

    Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    Studies of mammalian cell structure and spatial organization are a very prominent part of modern cell biology. The interest in them as well as their size make them very accommodating subject specimens for imaging with soft x-rays using the XM-1 transmission microscope built and operated by The Center for X-ray Optics on Beam Line 6.1 at the Advanced Light Source. The purpose of these experiments was to determine if the fixative protocols normally used in electron or visible light microscopy were adequate to allow imaging cells, either fibroblasts or neurons, with minimal visible radiation damage due to imaging with soft x-rays at 2.4 nm. Two cell types were selected. Fibroblasts are easily cultured but fragile cells which are commonly used as models for the detailed study of cell physiology. Neurons are complex and sensitive cells which are difficult to prepare and to culture for study in isolation from their connections with surrounding cells. These cell types pose problems in their preparation for any microscopy. To improve the contrast and to prevent postmortem alteration of the chemistry and hence the structure of cells extracted from culture or from living organisms, fixation and staining techniques are employed in electron and visible light microscopy. It has been accepted by biologists for years that these treatments create artifacts and false structure. The authors have begun to develop protocols for specimens of each of these two cell types for soft x-ray microscopy which will preserve them in as near normal state as possible using minimal fixation, and make it possible to image them in either a hydrated or dried state free of secondary addition of stains or other labels

  14. Imaging mammalian cells with soft x rays: The importance of specimen preparation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Studies of mammalian cell structure and spatial organization are a very prominent part of modern cell biology. The interest in them as well as their size make them very accommodating subject specimens for imaging with soft x-rays using the XM-1 transmission microscope built and operated by The Center for X-ray Optics on Beam Line 6.1 at the Advanced Light Source. The purpose of these experiments was to determine if the fixative protocols normally used in electron or visible light microscopy were adequate to allow imaging cells, either fibroblasts or neurons, with minimal visible radiation damage due to imaging with soft x-rays at 2.4 nm. Two cell types were selected. Fibroblasts are easily cultured but fragile cells which are commonly used as models for the detailed study of cell physiology. Neurons are complex and sensitive cells which are difficult to prepare and to culture for study in isolation from their connections with surrounding cells. These cell types pose problems in their preparation for any microscopy. To improve the contrast and to prevent postmortem alteration of the chemistry and hence the structure of cells extracted from culture or from living organisms, fixation and staining techniques are employed in electron and visible light microscopy. It has been accepted by biologists for years that these treatments create artifacts and false structure. The authors have begun to develop protocols for specimens of each of these two cell types for soft x-ray microscopy which will preserve them in as near normal state as possible using minimal fixation, and make it possible to image them in either a hydrated or dried state free of secondary addition of stains or other labels.

  15. Analysis of x-ray reflectivity data from low-contrast polymer bilayer systems using a Fourier method

    International Nuclear Information System (INIS)

    Seeck, O. H.; Kaendler, I. D.; Tolan, M.; Shin, K.; Rafailovich, M. H.; Sokolov, J.; Kolb, R.

    2000-01-01

    X-ray reflectivity data of polymer bilayer systems have been analyzed using a Fourier method which takes into account different limits of integration in q-space. It is demonstrated that the interfacial parameters can be determined with high accuracy although the difference in the electron density (the contrast) of the two polymers is extremely small. This method is not restricted to soft-matter thin films. It can be applied to any reflectivity data from low-contrast layer systems. (c) 2000 American Institute of Physics

  16. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe

    2016-01-01

    © 2016 Optical Society of America. X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.

  17. The SMILE Soft X-ray Imager (SXI) CCD design and development

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Holland, A. D.; Burgon, R.; Buggey, T.; Skottfelt, J.; Sembay, S.; Drumm, P.; Thornhill, J.; Read, A.; Sykes, J.; Walton, D.; Branduardi-Raymont, G.; Kennedy, T.; Raab, W.; Verhoeve, P.; Agnolon, D.; Woffinden, C.

    2018-01-01

    SMILE, the Solar wind Magnetosphere Ionosphere Link Explorer, is a joint science mission between the European Space Agency and the Chinese Academy of Sciences. The spacecraft will be uniquely equipped to study the interaction between the Earth's magnetosphere-ionosphere system and the solar wind on a global scale. SMILE's instruments will explore this science through imaging of the solar wind charge exchange soft X-ray emission from the dayside magnetosheath, simultaneous imaging of the UV northern aurora and in-situ monitoring of the solar wind and magnetosheath plasma and magnetic field conditions. The Soft X-ray Imager (SXI) is the instrument being designed to observe X-ray photons emitted by the solar wind charge exchange process at photon energies between 200 eV and 2000 eV . X-rays will be collected using a focal plane array of two custom-designed CCDs, each consisting of 18 μm square pixels in a 4510 by 4510 array. SMILE will be placed in a highly elliptical polar orbit, passing in and out of the Earth's radiation belts every 48 hours. Radiation damage accumulated in the CCDs during the mission's nominal 3-year lifetime will degrade their performance (such as through decreases in charge transfer efficiency), negatively impacting the instrument's ability to detect low energy X-rays incident on the regions of the CCD image area furthest from the detector outputs. The design of the SMILE-SXI CCDs is presented here, including features and operating methods for mitigating the effects of radiation damage and expected end of life CCD performance. Measurements with a PLATO device that has not been designed for soft X-ray signal levels indicate a temperature-dependent transfer efficiency performance varying between 5×10-5 and 9×10-4 at expected End of Life for 5.9 keV photons, giving an initial set of measurements from which to extrapolate the performance of the SXI CCDs.

  18. Controllable reflection of X-rays on crystals of saccharose

    CERN Document Server

    Navasardyan, M A; Hayrapetyan, K T; Gabrielyan, R T

    2003-01-01

    Multiple (ten times and more) increase in intensities of separate reflections and of lauegram reflections from organic single crystals of saccharose (C sub 1 2H sub 2 2O sub 1 1) was observed under influence of certain temperature gradient. On the base of the present experiment and the data of our previous woks we show that the controllable reflection process has a common nature and the intensity of the diffracted beam under external influences does not depend on the total number of electrons per unit volume of the unit cell of the single crystal.

  19. Use of an axisymmetric microscope with electronic readout for collecting soft X-ray images

    International Nuclear Information System (INIS)

    Cavailler, C.; Henry, P.; Launspach, J.; De Mascureau, J.; Millerioux, M.; Rostaing, M.; Sauneuf, R.

    1984-08-01

    The axisymmetric microscope, first discussed by Wolter, provides high resolution and sensitivity for investigating the soft X-ray emission of laser-driven plasmas. Such a device having a 10 X magnification has been constructed. We present a comparison between the images of laser-driven plasmas given by this microscope and by a 10 X pinhole camera. Until now these images were recorded on X-ray film. We have shown that film could be replaced by C.C.D. in a pinhole camera when the photon energy lies within the 1-10 keV range. Below 1 keV the quantum yield is too low so we have used an image converter tube made by RTC. It is a diode-inverter tube with a soft X-ray photocathode and a P20 phosphor deposited on an optic fiber plate. The electronic image appearing on the screen is read by a C.C.D. working in the visible spectral fields. An electronic image readout chain, which is identical to those associated with streak cameras, then processes automatically and immediately the images given by the microscope [fr

  20. Thin absorbers for large-area soft X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Rocks, L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: rocks@wisp.physics.wisc.edu; Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Brekosky, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gwynne Crowder, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Figueroa-Feliciano, E. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Nelms, K.L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sivananthan, S. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Zhao, J. [University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2006-04-15

    The X-ray Quantum Calorimeter (XQC) sounding rocket experiment utilizes a microcalorimeter array for observing the diffuse soft X-ray background. Observations of such low surface-brightness targets require a large-area detector. We will be using an array of large absorbers. Good absorbers must rapidly and completely thermalize photons, have small heat capacity for high stopping efficiency and have good lateral thermal transport. For observing the soft X-ray background (energies <1 keV), the volume and heat capacity of absorber material can be kept to a minimum by making the absorbers only as thick as needed for high quantum efficiency at these low energies. These thin, large-area absorbers are not self-supporting and have poor lateral heat transport. Depositing the absorber material on a Si substrate provides support and improves lateral thermal conduction. We present heat capacity results for thin HgTe and thin Bi, each on Si substrates. We also describe the HgTe absorber fabrication.

  1. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Padmore, H. A.

    2016-01-01

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs via numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4"t"h or 5"t"h order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.

  2. Electron density measurement of a colliding plasma using soft x-ray laser interferometry

    International Nuclear Information System (INIS)

    Wan, A.S.; Back, C.A.; Barbee, T.W.Jr.; Cauble, R.; Celliers, P.; DaSilva, L.B.; Glenzer, S.; Moreno, J.C.; Rambo, P.W.; Stone, G.F.; Trebes, J.E.; Weber, F.

    1996-05-01

    The understanding of the collision and subsequent interaction of counter-streaming high-density plasmas is important for the design of indirectly-driven inertial confinement fusion (ICF) hohlraums. We have employed a soft x-ray Mach-Zehnder interferometer, using a Ne- like Y x-ray laser at 155 angstrom as the probe source, to study interpenetration and stagnation of two colliding plasmas. We observed a peaked density profile at the symmetry axis with a wide stagnation region with width of order 100 μm. We compare the measured density profile with density profiles calculated by the radiation hydrodynamic code LASNEX and a multi-specie fluid code which allows for interpenetration. The measured density profile falls in between the calculated profiles using collisionless and fluid approximations. By using different target materials and irradiation configurations, we can vary the collisionality of the plasma. We hope to use the soft x-ray laser interferometry as a mechanism to validate and benchmark our numerical codes used for the design and analysis of high-energy- density physics experiments

  3. Principal component analysis of solar flares in the soft X-ray flux

    International Nuclear Information System (INIS)

    Teuber, D.L.; Reichmann, E.J.; Wilson, R.M.; National Aeronautics and Space Administration, Huntsville, AL

    1979-01-01

    Principal component analysis is a technique for extracting the salient features from a mass of data. It applies, in particular, to the analysis of nonstationary ensembles. Computational schemes for this task require the evaluation of eigenvalues of matrices. We have used EISPACK Matrix Eigen System Routines on an IBM 360-75 to analyze full-disk proportional-counter data from the X-ray event analyzer (X-REA) which was part of the Skylab ATM/S-056 experiment. Empirical orthogonal functions have been derived for events in the soft X-ray spectrum between 2.5 and 20 A during different time frames between June 1973 and January 1974. Results indicate that approximately 90% of the cumulative power of each analyzed flare is contained in the largest eigenvector. The first two largest eigenvectors are sufficient for an empirical curve-fit through the raw data and a characterization of solar flares in the soft X-ray flux. Power spectra of the two largest eigenvectors reveal a previously reported periodicity of approximately 5 min. Similar signatures were also obtained from flares that are synchronized on maximum pulse-height when subjected to a principal component analysis. (orig.)

  4. Fast plasma discharge capillary design as a high power throughput soft x-ray emission source.

    Science.gov (United States)

    Wyndham, E S; Favre, M; Valdivia, M P; Valenzuela, J C; Chuaqui, H; Bhuyan, H

    2010-09-01

    We present the experimental details and results from a low energy but high repetition rate compact plasma capillary source for extreme ultraviolet and soft x-ray research and applications. Two lengths of capillary are mounted in two versions of a closely related design. The discharge operates in 1.6 and 3.2 mm inner diameter alumina capillaries of lengths 21 and 36 mm. The use of water both as dielectric and as coolant simplifies the compact low inductance design with nanosecond discharge periods. The stored electrical energy of the discharge is approximately 0.5 J and is provided by directly charging the capacitor plates from an inexpensive insulated-gate bipolar transistor in 1 μs or less. We present characteristic argon spectra from plasma between 30 and 300 Å as well as temporally resolved x-ray energy fluence in discrete bands on axis. The spectra also allow the level of ablated wall material to be gauged and associated with useful capillary lifetime according to the chosen configuration and energy storage. The connection between the electron beams associated with the transient hollow cathode mechanism, soft x-ray output, capillary geometry, and capillary lifetime is reported. The role of these e-beams and the plasma as measured on-axis is discussed. The relation of the electron temperature and the ionization stages observed is discussed in the context of some model results of ionization in a non-Maxwellian plasma.

  5. In-flight calibration of the Hitomi Soft X-ray Spectrometer. (2) Point spread function

    Science.gov (United States)

    Maeda, Yoshitomo; Sato, Toshiki; Hayashi, Takayuki; Iizuka, Ryo; Angelini, Lorella; Asai, Ryota; Furuzawa, Akihiro; Kelley, Richard; Koyama, Shu; Kurashima, Sho; Ishida, Manabu; Mori, Hideyuki; Nakaniwa, Nozomi; Okajima, Takashi; Serlemitsos, Peter J.; Tsujimoto, Masahiro; Yaqoob, Tahir

    2018-03-01

    We present results of inflight calibration of the point spread function of the Soft X-ray Telescope that focuses X-rays onto the pixel array of the Soft X-ray Spectrometer system. We make a full array image of a point-like source by extracting a pulsed component of the Crab nebula emission. Within the limited statistics afforded by an exposure time of only 6.9 ks and limited knowledge of the systematic uncertainties, we find that the raytracing model of 1 {^'.} 2 half-power-diameter is consistent with an image of the observed event distributions across pixels. The ratio between the Crab pulsar image and the raytracing shows scatter from pixel to pixel that is 40% or less in all except one pixel. The pixel-to-pixel ratio has a spread of 20%, on average, for the 15 edge pixels, with an averaged statistical error of 17% (1 σ). In the central 16 pixels, the corresponding ratio is 15% with an error of 6%.

  6. Soft X-ray microscopy to 25 nm with applications to biology and magnetic materials

    CERN Document Server

    Denbeaux, G; Chao, W; Eimueller, T; Johnson, L; Köhler, M; Larabell, C; Legros, M; Fischer, P; Pearson, A; Schuetz, G; Yager, D; Attwood, D

    2001-01-01

    We report both technical advances in soft X-ray microscopy (XRM) and applications furthered by these advances. With new zone plate lenses we record test pattern features with good modulation to 25 nm and smaller. In combination with fast cryofixation, sub-cellular images show very fine detail previously seen only in electron microscopy, but seen here in thick, hydrated, and unstained samples. The magnetic domain structure is studied at high spatial resolution with X-ray magnetic circular dichroism (X-MCD) as a huge element-specific magnetic contrast mechanism, occurring e.g. at the L sub 2 sub , sub 3 edges of transition metals. It can be used to distinguish between in-plane and out-of-plane contributions by tilting the sample. As XRM is a photon based technique, the magnetic images can be obtained in unlimited varying external magnetic fields. The images discussed have been obtained at the XM-1 soft X-ray microscope on beamline 6.1 at the Advanced Light Source in Berkeley.

  7. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    International Nuclear Information System (INIS)

    Späth, Andreas; Raabe, Jörg; Fink, Rainer H.

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed

  8. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Späth, Andreas [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Raabe, Jörg [Paul Scherrer Institut, 5232 Villigen (Switzerland); Fink, Rainer H., E-mail: rainer.fink@fau.de [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany)

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed.

  9. Radiobiological investigations of soft X-rays near carbon, nitrogen, oxygen K-shell edges on Aspergillus oryzae spores

    International Nuclear Information System (INIS)

    Chen, L.; Jiang, S. P.; Wan, L. B.; Ma, X. D.; Li, M. F.

    2008-01-01

    Soft X-rays at carbon, nitrogen, oxygen K-shell edges have special radiobiological effects. Using Aspergillus oryzae spores as sample, the radiation effects of soft X-rays near the K-shell edges of C, N and O elements from synchrotron radiation were investigated. Also the dose depositions of different X-ray energies in spore were discussed. At the same time, the spores were irradiated by gamma rays from 60 Co and relative biological effects were compared with those produced by soft X-rays. The results showed that soft X-rays near K-shell edges of O element had higher ability of radiation damage than that of X-rays near K-shell edges of C and N elements as compared with one another. But they all had higher killing abilities per unit dose than that of gamma rays from 60 Co. The relative biological effects (RBEs), the comparison of dose to gamma rays at 10% survival level, of the three soft X-rays were 1.65, 1.73 and 1.91, respectively. (authors)

  10. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: ursula.fittschen@chemie.uni-hamburg.de; Meirer, F. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: fmeirer@ati.ac.at; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: wobi@ati.ac.at; Thiele, J. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: Julian.Thiele@gmx.de; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: falkenbe@mail.desy.de; Pepponi, G. [ITC-irst, Via Sommarive 18, 38050 Povo (Trento) (Italy)], E-mail: pepponi@itc.it

    2008-12-15

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 {mu}m, 8.0-2.0 {mu}m, 2.0-0.13 {mu}m 0.13-0.015 {mu}m (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 {mu}m, 1-2 {mu}m, 2-4 {mu}m, 4-8 {mu}m, 8-16 {mu}m. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in

  11. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Fittschen, U.E.A.; Meirer, F.; Streli, C.; Wobrauschek, P.; Thiele, J.; Falkenberg, G.; Pepponi, G.

    2008-01-01

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 μm, 8.0-2.0 μm, 2.0-0.13 μm 0.13-0.015 μm (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 μm, 1-2 μm, 2-4 μm, 4-8 μm, 8-16 μm. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions

  12. A soft X-Ray flat field grating spectrograph and its experimental applications

    International Nuclear Information System (INIS)

    Ni Yuanlong; Mao Chusheng

    2001-01-01

    The principle, structure, and application results of a flat field grating spectrograph for X-ray laser research is presented. There are two kinds of the spectrograph. One uses a varied space grating with nominal line spacing 1200 l/mm, the spectral detection range is 5 - 50 nm, and another uses a 2400 l/mm varied line space grating, detection range is 1 - 10 nm. The experimental results of the former is introduced only. Both experimental results of this instrument using the soft X-ray film and a streak camera as the detecting elements are given. The spectral resolutions are 0.01 nm and 0.05 nm, respectively. The temporal resolution is 30 ps. Finally, the stigmatic structure of the spectrograph is introduced, which uses cylindrical mirror and spherical mirror as a focusing system. The magnification is 5, spatial resolution is 25 μm. The experimental results are given as well

  13. Real world issues for the new soft x-ray synchrotron sources

    International Nuclear Information System (INIS)

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs

  14. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    Science.gov (United States)

    Kouveliotou, C.; Norris, J. P.; Cline, T. L.; Dennis, B. R.; Desai, U. D.; Orwig, L. E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster.

  15. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    International Nuclear Information System (INIS)

    Kouveliotou, C.; Norris, J.P.; Cline, T.L.; Dennis, B.R.; Desai, U.D.; Orwig, L.E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster. 19 references

  16. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    International Nuclear Information System (INIS)

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-01

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8 m and capable of 10 5 resolving power.

  17. Atomic force microscopy employed as the final imaging stage for soft x-ray contact microscopy

    International Nuclear Information System (INIS)

    Cotton, R.A.; Stead, A.D.; Ford, T.W.; Fletcher, J.H.

    1993-01-01

    Soft X-ray contact microscopy (SXCM) enables a high resolution image of a living biological specimen to be recorded in an X-ray sensitive photoresist at unity magnification. Until recently scanning electron microscopes (SEM) have been employed to obtain the final magnified image. Although this has been successful in producing many high resolution images, this method of viewing the resist has several disadvantages. Firstly, a metallic coating has to be applied to the resist surface to provide electrical conductivity, rendering further development of the resist impossible. Also, electron beam damage to the resist surface can occur, in addition to poor resolution and image quality. Atomic force microscopy (AFM) allows uncoated resists to be imaged at a superior resolution, without damage to the surface. The use of AFM is seen as a major advancement in SXCM. The advantages and disadvantages of the two technologies are discussed, with illustrations from recent studies of a wide variety of hydrated biological specimens imaged using SXCM

  18. Changes of soft X-ray emission spectra of oxygen and copper in high Tc superconductors

    International Nuclear Information System (INIS)

    Fukushima, Sei; Gohshi, Yohichi; Kohiki, Shigemi; Saitoh, Naoki

    1989-01-01

    X-ray induced soft X-ray emission spectroscopy is one of the bulk analysis methods used to characterize high-Tc superconductor. In this report, some observations on the changes in O Kα and Cu L spectra of thin layer LnBa 2 Cu 3 O 7-δ (Ln=Er,Gd) samples are presented. From the measurement of O Kα, no discernible difference was found between those of Gd compounds which were composed single phase or not. It may be said that the electronic structure of p state localized on the O is not sensitive to the change of Tc or zero-resistance temperature. From the measurement of Cu L spectra, it was found that Cu Lα of only Gd containing compounds has a low energy shoulder

  19. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.

  20. Design of solar cell materials via soft X-ray spectroscopy

    DEFF Research Database (Denmark)

    Himpsel, F.J.; Cook, P.L.; de la Torre, G.

    2013-01-01

    This overview illustrates how spectroscopy with soft X-rays can assist the development of new materials and new designs for solar cells. The starting point is the general layout of a solar cell, which consists of a light absorber sandwiched between an electron donor and an electron acceptor....... There are four relevant energy levels that can be measured with a combination of X-ray absorption spectroscopy and photoelectron spectroscopy, as illustrated for an organic dye as absorber attached to a p-doped diamond film as donor. Systematic measurements of organometallic dyes (phthalocyanines and porphyrins......) as a function of the metal atom are presented for the metal 2p and N 1s absorption edges. In combination with density functional theory one can discern trends that are useful for tailoring absorber molecules. A customized porphyrin molecule is investigated that combines an absorber with a donor and a linker...

  1. 'Optical' soft x-ray arrays for fluctuation diagnostics in magnetic fusion energy experiments

    International Nuclear Information System (INIS)

    Delgado-Aparicio, L.F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Kaita, R.; Roquemore, L.; Johnson, D.; Majeski, R.

    2004-01-01

    We are developing large pixel count, fast (≥100 kHz) and continuously sampling soft x-ray (SXR) array for the diagnosis of magnetohydrodynamics (MHD) and turbulent fluctuations in magnetic fusion energy plasmas. The arrays are based on efficient scintillators, high thoughput multiclad fiber optics, and multichannel light amplification and integration. Compared to conventional x-ray diode arrays, such systems can provide vastly increased spatial coverage, and access to difficult locations with small neutron noise and damage. An eight-channel array has been built using columnar CsI:Tl as an SXR converter and a multianode photomultiplier tube as photoamplifier. The overall system efficiency is measured using laboratory SXR sources, while the time response and signal-to-noise performance have been evaluated by recording MHD activity from the spherical tori (ST) Current Drive Experiment-Upgrade and National Spherical Torus Experiment, both at Princeton Plasma Physics Laboratory

  2. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    International Nuclear Information System (INIS)

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-01

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8m and capable of 10 5 resolving power.

  3. Quasar energy distributions. I. Soft X-ray spectra of quasars

    International Nuclear Information System (INIS)

    Wilkes, B.J.; Elvis, M.

    1987-01-01

    As the initial stage of a study of quasar energy distributions (QEDs), Einstein IPC spectra of 24 quasars are presented. These are combined with previously reported IPC spectra to form a sample of 33 quasars with well-determined soft X-ray slopes. A correlation analysis shows that radio loudness, rather than redshift or luminosity, is fundamentally related to the X-ray slope. This correlation is not followed by higher energy spectra of active galaxies. Two components are required to explain both sets of results. The best-fit column densities are systematically smaller than the Galactic values. The same effect is not present in a sample of BL Lac objects, implying that the effect is intrinsic to the quasars and is caused by a low-energy turnup in the quasar spectra. 74 references

  4. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  5. NLTE Model Atmospheres for Super-Soft X-ray Sources

    Science.gov (United States)

    Rauch, Thomas; Werner, Klaus

    2009-09-01

    Spectral analysis by means of fully line-blanketed Non-LTE model atmospheres has arrived at a high level of sophistication. The Tübingen NLTE Model Atmosphere Package (TMAP) is used to calculate plane-parallel NLTE model atmospheres which are in radiative and hydrostatic equilibrium. Although TMAP is not especially designed for the calculation of burst spectra of novae, spectral energy distributions (SEDs) calculated from TMAP models are well suited e.g. for abundance determinations of Super Soft X-ray Sources like nova V4743 Sgr or line identifications in observations of neutron stars with low magnetic fields in low-mass X-ray binaries (LMXBs) like EXO 0748-676.

  6. Determining biological fine structure by differential absorption of soft x-rays

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.; Warren, J.B.

    1979-06-01

    The use of soft x-ray contact microscopy in examining histochemically treated human tissue embedded in plastic and exposed as unstained thin sections is demonstrated. When our preliminary data revealed that we could clearly image not only the histochemical reaction product, but the unstained biological fine structure of the surrounding tissues, we decided to test our hypothesis further and see if we could image unstained biological molecular aggregates as well. For this part of the investigation, we chose to examine hydrated proteoglycan aggregates. Proteoglycans are an essential component of the organic matrix of cartilage, and play a primary role in the retention and maintenance of extracellular water. To avoid any artifacts due to the introduction of exogeneous materials, and examine the proteoglycan aggregates in their hydrated, natural configuration, we made contact x-ray images of isolated proteoglycan aggregates in water

  7. Final Summary of On-Orbit ADR Operation on Hitomis Soft X-Ray Spectrometer Instrument

    Science.gov (United States)

    Shirron, Peter

    2016-01-01

    The Soft X-ray Spectrometer (SXS) on the Astro-H observatory contains a 6x6 array of x-ray microcalorimeters that are cooled to 50 mK by an adiabatic demagnetization refrigerator (ADR). The ADR consists of three stages in order to provide stable detector cooling using either a 1.2 K superfluid helium bath or a 4.5 K Joule-Thomson (JT) cryocooler as its heat sink. Astro-H was renamed Hitomi after it was successfully launched in February 2016. The SXS carried approximately 36 liters of helium into orbit, and by day 5 the helium had cooled sufficiently (1.4 K) to allow operation of the ADR. This paper summarizes the ADRs performance during the 38 days that the satellite was operational.

  8. Magnetic imaging with full-field soft X-ray microscopies

    International Nuclear Information System (INIS)

    Fischer, Peter; Im, Mi-Young; Baldasseroni, Chloe; Bordel, Catherine; Hellman, Frances; Lee, Jong-Soo; Fadley, Charles S.

    2013-01-01

    Progress toward a fundamental understanding of magnetism continues to be of great scientific interest and high technological relevance. To control magnetization on the nanoscale, external magnetic fields and spin polarized currents are commonly used. In addition, novel concepts based on spin manipulation by electric fields or photons are emerging which benefit from advances in tailoring complex magnetic materials. Although the nanoscale is at the very origin of magnetic behavior, there is a new trend toward investigating mesoscale magnetic phenomena, thus adding complexity and functionality, both of which will become crucial for future magnetic devices. Advanced analytical tools are thus needed for the characterization of magnetic properties spanning the nano- to the meso-scale. Imaging magnetic structures with high spatial and temporal resolution over a large field of view and in three dimensions is therefore a key challenge. A variety of spectromicroscopic techniques address this challenge by taking advantage of variable-polarization soft X-rays, thus enabling X-ray dichroism effects provide magnetic contrast. These techniques are also capable of quantifying in an element-, valence- and site-sensitive way the basic properties of ferro(i)- and antiferro-magnetic systems, such as spin and orbital moments, spin configurations from the nano- to the meso-scale and spin dynamics with sub-ns time resolution. This paper reviews current achievements and outlines future trends with one of these spectromicroscopies, magnetic full field transmission soft X-ray microscopy (MTXM) using a few selected examples of recent research on nano- and meso-scale magnetic phenomena. The complementarity of MTXM to X-ray photoemission electron microscopy (X-PEEM) is also emphasized

  9. Magnetic imaging with full-field soft X-ray microscopies

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter, E-mail: PJFischer@lbl.gov [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Im, Mi-Young [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Baldasseroni, Chloe [Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720 (United States); Bordel, Catherine; Hellman, Frances [Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States); Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270 (United States); Lee, Jong-Soo [Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Fadley, Charles S. [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270 (United States)

    2013-08-15

    Progress toward a fundamental understanding of magnetism continues to be of great scientific interest and high technological relevance. To control magnetization on the nanoscale, external magnetic fields and spin polarized currents are commonly used. In addition, novel concepts based on spin manipulation by electric fields or photons are emerging which benefit from advances in tailoring complex magnetic materials. Although the nanoscale is at the very origin of magnetic behavior, there is a new trend toward investigating mesoscale magnetic phenomena, thus adding complexity and functionality, both of which will become crucial for future magnetic devices. Advanced analytical tools are thus needed for the characterization of magnetic properties spanning the nano- to the meso-scale. Imaging magnetic structures with high spatial and temporal resolution over a large field of view and in three dimensions is therefore a key challenge. A variety of spectromicroscopic techniques address this challenge by taking advantage of variable-polarization soft X-rays, thus enabling X-ray dichroism effects provide magnetic contrast. These techniques are also capable of quantifying in an element-, valence- and site-sensitive way the basic properties of ferro(i)- and antiferro-magnetic systems, such as spin and orbital moments, spin configurations from the nano- to the meso-scale and spin dynamics with sub-ns time resolution. This paper reviews current achievements and outlines future trends with one of these spectromicroscopies, magnetic full field transmission soft X-ray microscopy (MTXM) using a few selected examples of recent research on nano- and meso-scale magnetic phenomena. The complementarity of MTXM to X-ray photoemission electron microscopy (X-PEEM) is also emphasized.

  10. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Adjei, Daniel, E-mail: nana.adjeidan@gmail.com [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Vyšín, Luděk [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, 152, Radzikowskiego Str., 31-342 Cracow (Poland); Pina, Ladislav [Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Davídková, Marie [Institute of Nuclear Physics, Czech Academy of Sciences, Řež (Czech Republic); Juha, Libor [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray “water window” spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280–540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 10{sup 3} photons/μm{sup 2}/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms’ sensitivity to pulsed radiation in the “water window”, where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET – Linear Energy Transfer) and dose-rate effects in radiobiology.

  11. Total-reflection X-ray fluorescence analysis of Austrian wine

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, X. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria); Kregsamer, P. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria); Wobrauschek, P. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria); Streli, C. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria)]. E-mail: streli@ati.ac.at

    2006-11-15

    The concentration of major, minor and trace elements in Austrian wine was determined by total-reflection X-ray fluorescence using gallium as internal standard. A multi-elemental analysis was possible by pipetting 6 {mu}l of wine directly on the reflector and drying. Total-reflection X-ray fluorescence analysis was performed with Atomika EXTRA II A (Cameca) X-rays from a Mo tube with a high-energy cut-off at 20 keV in total-reflection geometry. The results showed that it was possible to identify only by the elemental analysis as fingerprint the vineyards and year of vintage among 11 different wines.

  12. Analysis of archaeological ceramics by total-reflection X-ray fluorescence: Quantitative approaches

    International Nuclear Information System (INIS)

    Fernandez-Ruiz, R.; Garcia-Heras, M.

    2008-01-01

    This paper reports the quantitative methodologies developed for the compositional characterization of archaeological ceramics by total-reflection X-ray fluorescence at two levels. A first quantitative level which comprises an acid leaching procedure, and a second selective level, which seeks to increase the number of detectable elements by eliminating the iron present in the acid leaching procedure. Total-reflection X-ray fluorescence spectrometry has been compared, at a quantitative level, with Instrumental Neutron Activation Analysis in order to test its applicability to the study of this kind of materials. The combination of a solid chemical homogenization procedure previously reported with the quantitative methodologies here presented allows the total-reflection X-ray fluorescence to analyze 29 elements with acceptable analytical recoveries and accuracies

  13. Total-reflection X-ray fluorescence analysis of Austrian wine

    International Nuclear Information System (INIS)

    Gruber, X.; Kregsamer, P.; Wobrauschek, P.; Streli, C.

    2006-01-01

    The concentration of major, minor and trace elements in Austrian wine was determined by total-reflection X-ray fluorescence using gallium as internal standard. A multi-elemental analysis was possible by pipetting 6 μl of wine directly on the reflector and drying. Total-reflection X-ray fluorescence analysis was performed with Atomika EXTRA II A (Cameca) X-rays from a Mo tube with a high-energy cut-off at 20 keV in total-reflection geometry. The results showed that it was possible to identify only by the elemental analysis as fingerprint the vineyards and year of vintage among 11 different wines

  14. Analysis of archaeological ceramics by total-reflection X-ray fluorescence: Quantitative approaches

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ruiz, R. [Servicio Interdepartamental de Investigacion, Facultad de Ciencias, Universidad Autonoma de Madrid, Modulo C-9, Laboratorio de TXRF, Crta. Colmenar, Km 15, Cantoblanco, E-28049, Madrid (Spain)], E-mail: ramon.fernandez@uam.es; Garcia-Heras, M. [Grupo de Arqueometria de Vidrios y Materiales Ceramicos, Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C/ Albasanz, 26-28, 28037 Madrid (Spain)

    2008-09-15

    This paper reports the quantitative methodologies developed for the compositional characterization of archaeological ceramics by total-reflection X-ray fluorescence at two levels. A first quantitative level which comprises an acid leaching procedure, and a second selective level, which seeks to increase the number of detectable elements by eliminating the iron present in the acid leaching procedure. Total-reflection X-ray fluorescence spectrometry has been compared, at a quantitative level, with Instrumental Neutron Activation Analysis in order to test its applicability to the study of this kind of materials. The combination of a solid chemical homogenization procedure previously reported with the quantitative methodologies here presented allows the total-reflection X-ray fluorescence to analyze 29 elements with acceptable analytical recoveries and accuracies.

  15. Search for Thermal X-ray Features from the Crab nebula with Hitomi Soft X-ray Spectrometer

    Science.gov (United States)

    Tsujimoto, M.; Mori, K.; Lee, S.; Yamaguchi, H.; Tominaga, N.; Moriya, T.; Sato, T.; Bamba, A.

    2017-10-01

    The Crab nebula originates from a core-collapse SN in 1054. It has an anomalously low observed ejecta mass for a Fe-core collapse SN. Intensive searches were made for an undetected massive shell to solve this discrepancy. An alternative idea is that the SN1054 is an electron-capture (EC) explosion with a lower explosion energy than Fe-core collapse SNe. In the X-rays, imaging searches were performed for the plasma emission from the shell in the Crab outskirts. However, the extreme brightness hampers access to its vicinity. We used spectroscopic technique using the X-ray micro-calorimeter onboard Hitomi. We searched for the emission or absorption features by the thermal plasma and set a new limit. We re-evaluated the existing data to claim that the X-ray plasma mass is wind). We found that the observed mass limit can be compatible with both SN models if the environment has a low density of wind density parameter for the wind environment.

  16. Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.

    Science.gov (United States)

    Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V

    2010-10-01

    The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.

  17. Optical and x-ray alignment approaches for off-plane reflection gratings

    Science.gov (United States)

    Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt

    2015-09-01

    Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.

  18. Time-dependent Bloch-Maxwell modelling of 1 mJ, 200 fs seeded soft x-ray laser

    International Nuclear Information System (INIS)

    Zeitoun, Ph.; Oliva, E.; Fajardo, M.; Velarde, P.; Ros, D.; Sebban, S.

    2010-01-01

    Complete text of publication follows. Seeding of high harmonic generation in a soft x-ray plasma amplifier has been first proposed and tested by T. Ditmire and collaborators. The experiment demonstrated low amplification (*2), with a very strong background coming from the soft x-ray laser ASE. Later seeding experiments reached very high amplification factors (up to 600) in both gas (Ph. Zeitoun et al.) and solid amplifiers (Wang et at.). Surprisingly, solid amplifiers extracted less energy (90 nJ) than gas amplifier (∼ 1 μJ) with equivalent pump energy. We recently demonstrated that 50-100 μJ is achievable with adequate plasma tailoring. However, this energy is still low as compared to the 10 mJ per pulse demonstrated on the ASE soft x-ray laser running at PALS facility (Czech Republic). In order to model the seeding process of PALS soft x-ray laser, we developed a time-dependent Bloch-Maxwell model that solves coherently the pumping, amplification and saturation processes. We demonstrated that direct seeding, with femtosecond pulse, a soft x-ray plasma amplifier having gain duration of several 100s of picosecond cannot extract the stored energy keeping the output beam energy in the 100 μJ range. We proposed and fully modelled a new seeding scheme that allows to achieve 10 mJ, 200 fs soft x-ray laser.

  19. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Bertram, F.; Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-01-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  20. X-ray reflectivity measurements of liquid/solid interfaces under high hydrostatic pressure conditions.

    Science.gov (United States)

    Wirkert, Florian J; Paulus, Michael; Nase, Julia; Möller, Johannes; Kujawski, Simon; Sternemann, Christian; Tolan, Metin

    2014-01-01

    A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.