WorldWideScience

Sample records for soft subgrade soil

  1. Stabilization treatment of soft subgrade soil by sewage sludge ash and cement.

    Science.gov (United States)

    Chen, Li; Lin, Deng-Fong

    2009-02-15

    In this study, incinerated sewage sludge ash (ISSA) is mixed with cement in a fixed ratio of 4:1 for use as a stabilizer to improve the strength of soft, cohesive, subgrade soil. Five different ratios (in wt%: 0%, 2%, 4%, 8%, and 16%) of ISSA/cement admixture are mixed with cohesive soil to make soil samples. In order to understand the influences of admixtures on the soil properties, tests of the pH value, Atterberg limits, compaction, California bearing ratio (CBR), unconfined compressive strength, and triaxial compression were performed on those samples. The study shows that the unconfined compressive strength of specimens with the ISSA/cement addition was improved to approximately 3-7 times better than that of the untreated soil; furthermore, the swelling behavior was also effectively reduced as much as 10-60% for those samples. In some samples, the ISSA/cement additive improved the CBR values by up to 30 times that of untreated soil. This suggests that ISSA/cement has many potential applications in the field of geotechnical engineering.

  2. Improvement of strength characteristics of lateritic sub-grade soil ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... Abstract. This paper presents the results of investigation of the behavior of pavement subgrade soil stabilized with shredded polyethylene waste. ... Keywords: Lateritic soil, High density polyethylene (HDPE) waste, Pavement thickness, Sub-grade soil ...

  3. Improvement of poor subgrade soils using cement kiln dust

    Directory of Open Access Journals (Sweden)

    Ahmed Mancy Mosa

    2017-12-01

    Full Text Available Construction of pavements layers on subgrade with excellent to good properties reduces the thickness of the layers and consequently reduces the initial and maintenance cost of highways and vice versa. However, construction of pavements on poor subgrade is unavoidable due to several constrains. Improvement of subgrade properties using traditional additives such as lime and Portland cement adds supplementary costs. Therefore, using by-products in this domain involves technical, economic, and environmental advantages. Cement kiln dust (CKD is generated in huge quantities as a by-product material in Portland cement plants. Therefore, it can be considered as an excellent alternative in this domain. In Iraq, Portland cement plants generate about 350000 tons of CKD annually which is available for free. Therefore, Iraq can be adopted as a case study. This paper covers using CKD to improve the properties of poor subgrade soils based on series of California Bearing Ration (CBR tests on sets of untreated samples and samples treated with different doses of CKD in combination with different curing periods to investigate their effects on soil properties. The results exhibited that adding 20% of CKD with curing for 14 days increases the CBR value from 3.4% for untreated soil to 48% for treated soil; it, also, decreases the swelling ratio. To determine the effects of using this dose under the mentioned curing period on the designed thicknesses of pavements layers, a case study was adopted. The case study results exhibited that treatment of the subgrade soil by 20% of CKD with curing for 14 days reduces the cost of the pavements by $25.875 per square meter.

  4. Soil stabilization with recycled materials improves subgrade performance : research spotlight.

    Science.gov (United States)

    2016-02-29

    The use of recycled materials for subgrade stabilization can provide the support needed for construction vehicle loading and more typical long-term traffic loading. This is a particular need in Michigan due to the prevalence of weak subgrade soils. U...

  5. Drying shrinkage problems in high PI subgrade soils.

    Science.gov (United States)

    2014-01-01

    The main objective of this study was to investigate the longitudinal cracking in pavements due to drying : shrinkage of high PI subgrade soils. The study involved laboartory soil testing and modeling. The : shrinkage cracks usually occur within the v...

  6. Long-Term benefits of stabilizing soil subgrades.

    Science.gov (United States)

    2002-06-01

    The main intent of this study was an attempt to address questions concerning bearing strengths, longevity, durability, structural credit, economics, and performance of pavements resting on soil subgrades mixed with chemical admixtures. In-depth field...

  7. Instability improvement of the subgrade soils by lime addition at Borg El-Arab, Alexandria, Egypt

    Science.gov (United States)

    El Shinawi, A.

    2017-06-01

    Subgrade soils can affect the stability of any construction elsewhere, instability problems were found at Borg El-Arab, Alexandria, Egypt. This paper investigates geoengineering properties of lime treated subgrade soils at Borg El-Arab. Basic laboratory tests, such as water content, wet and dry density, grain size, specific gravity and Atterberg limits, were performed for twenty-five samples. Moisture-density (compaction); California Bearing Ratio (CBR) and Unconfined Compression Strength (UCS) were conducted on treated and natural soils. The measured geotechnical parameters of the treated soil shows that 6% lime is good enough to stabilize the subgrade soils. It was found that by adding lime, samples shifted to coarser side, Atterberg limits values of the treated soil samples decreased and this will improve the soil to be more stable. On the other hand, Subgrade soils improved as a result of the bonding fine particles, cemented together to form larger size and reduce the plastiCity index which increase soils strength. The environmental scanning electron microscope (ESEM) is point to the presence of innovative aggregated cement materials which reduce the porosity and increase the strength as a long-term curing. Consequently, the mixture of soil with the lime has acceptable mechanical characteristics where, it composed of a high strength base or sub-base materials and this mixture considered as subgrade soil for stabilizations and mitigation the instability problems that found at Borg Al-Arab, Egypt.

  8. Soft Soil Improvement for Sub-grade Layer Using Hexagonal Micropiles Layout

    Science.gov (United States)

    Ambak, K.; Abdullah, N. A. H.; Yusoff, M. F.; Abidin, M. H. Z.

    2018-04-01

    Soft soil problems are often associated with sediment and stability where it represents a major challenge in Geotechnical Engineering. Research on a soft soil was carried out to determine the level of sediment resulting from the applied load and thus compare the most ideal form of arrangement by the results obtained from bearing capacity. The study was conducted at Research Centre for Soft Soil (RECESS), UTHM by using kaolin. There are several tests conducted on kaolin before the arrangement of pile which is liquid limit test. Through these tests, the level of water content can be maintained which is 1.2 liquid limit where it is in the homogeneous condition. Density test also carried to know weight of kaolin and water that needed in the model. Meanwhile, large strain consolidation test carried on the soil by placing a load of 8 kPa. Then, the pile was arranged in the soil in the shape of a hexagon and square. Load was increased to 12 kPa and imposed on the surface of the pile with a different forms. After 24 hours, the reading of sediment was measured everyday and the process collecting data conducted for 3 week. Based on data obtained, time against sediment can be plotted. To determine the bearing capacity, direct shear test was conducted to get the value coefficient of cohesion, c as a parameter in the calculation of the soil bearing capacity. The results showed that the rate of settlement occurs is different where hexagonal form less the rate of settlement compared to square form which is 64.2% while the results of bearing capacity have the same value.

  9. Occurrence of shale soils along the Calabar-Itu highway, Southeastern Nigeria and their implication for the subgrade construction.

    Science.gov (United States)

    Ilori, Abidemi Olujide

    2016-01-01

    This study concerned a stretch of 17 km of a 94-km highway alignment in Southeastern Nigeria that has a high incidence of pavement failure arising from subgrade failure. The subgrade of this section of the roadway is composed of Ekenkpon shale, New Netim marl, and Nkporo shale. Under the Unified Soil Classification System, the shales classify as OH (organic clay) and the marl classifies as MH (inorganic silt). Under the American Association of State and Transportation Officials (AASHTO) M 145 soil classification, all these soils classify as A-7-5 soil. Using the AASHTO M 145 group index, none of these soils was considered suitable as subgrade in its native form. Therefore, cement was investigated as a stabilizing agent. Testing demonstrated that 7, 3 and 12 % by weight were the optimum cement contents to reinforce the Ekenkpon shale, New Netim marl, and Nkporo shale, respectively.

  10. Comparative analysis of calculation models of railway subgrade

    Directory of Open Access Journals (Sweden)

    I.O. Sviatko

    2013-08-01

    Full Text Available Purpose. In transport engineering structures design, the primary task is to determine the parameters of foundation soil and nuances of its work under loads. It is very important to determine the parameters of shear resistance and the parameters, determining the development of deep deformations in foundation soils, while calculating the soil subgrade - upper track structure interaction. Search for generalized numerical modeling methods of embankment foundation soil work that include not only the analysis of the foundation stress state but also of its deformed one. Methodology. The analysis of existing modern and classical methods of numerical simulation of soil samples under static load was made. Findings. According to traditional methods of analysis of ground masses work, limitation and the qualitative estimation of subgrade deformations is possible only indirectly, through the estimation of stress and comparison of received values with the boundary ones. Originality. A new computational model was proposed in which it will be applied not only classical approach analysis of the soil subgrade stress state, but deformed state will be also taken into account. Practical value. The analysis showed that for accurate analysis of ground masses work it is necessary to develop a generalized methodology for analyzing of the rolling stock - railway subgrade interaction, which will use not only the classical approach of analyzing the soil subgrade stress state, but also take into account its deformed one.

  11. Evaluation of Subgrade Soils using California Bearing Ratio (Cbr) in ...

    African Journals Online (AJOL)

    The two options that are fit for the upgrade are the over – excavation and stabilization options. The over - excavation method of enhancement of the performance of the subgrade materials that have been studied will require the excavation of the sub- grade soil to the depth of 0.7m and the subsequent replacement with ...

  12. Resilient modulus characteristics of soil subgrade with geopolymer additive in peat

    Science.gov (United States)

    Zain, Nasuhi; Hadiwardoyo, Sigit Pranowo; Rahayu, Wiwik

    2017-06-01

    Resilient modulus characteristics of peat soil are generally very low with high potential of deformation and low bearing capacity. The efforts to improve the peat subgrade resilient modulus characteristics is required, one among them is by adding the geopolymer additive. Geopolymer was made as an alternative to replace portland cement binder in the concrete mix in order to promote environmentally friendly, low shrinkage value, low creep value, and fire resistant material. The use of geopolymer to improve the mechanical properties of peat as a road construction subgrade, hence it becomes important to identify the effect of geopolymer addition on the resilient modulus characteristics of peat soil. This study investigated the addition of 0% - 20% geopolymer content on peat soil derived from Ogan Komering Ilir, South Sumatera Province. Resilient modulus measurement was performed by using cyclic triaxial test to determine the resilience modulus model as a function of deviator stresses and radial stresses. The test results showed that an increase in radial stresses did not necessarily lead to an increase in modulus resilient, and on the contrary, an increase in deviator stresses led to a decrease in modulus resilient. The addition of geopolymer in peat soil provided an insignificant effect on the increase of resilient modulus value.

  13. Evaluation and field verification of strength and structural improvement of chemically stabilized subgrade soil.

    Science.gov (United States)

    2008-07-01

    Often subgrade soils exhibit properties, particularly strength and/or volume change properties that limit their performance as a support element for pavements. : Typical problems include shrink-swell, settlement, collapse, erosion or simply insuffici...

  14. Performance evaluation of subgrade stabilization with recycled materials.

    Science.gov (United States)

    2016-02-29

    Due to rising costs of good quality acceptable materials for remove/replace options and traditional : subgrade stabilization materials, MDOT is in need to identify potential recycled materials to treat : unacceptable subgrade soils. Use of recycled m...

  15. Lime Kiln Dust for Treated Subgrades : Technical Summary

    Science.gov (United States)

    2017-11-01

    Chemical and cementitious materials are often used to modify and stabilize the subgrade soils that serve as foundations for pavements. Improvement of the subgrade provides a better working platform for construction of the layers above and improves th...

  16. Lime Kiln Dust for Treated Subgrades : Final Report

    Science.gov (United States)

    2017-11-01

    Chemical and cementitious materials are often used to modify and stabilize the subgrade soils that serve as foundations for pavements. Improvement of the subgrade provides a better working platform for construction of the layers above and improves th...

  17. Evaluation of Carbonation Effects on Cement-Solidified Contaminated Soil Used in Road Subgrade

    Directory of Open Access Journals (Sweden)

    Yundong Zhou

    2018-01-01

    Full Text Available Cement solidification/stabilization is widely used towards contaminated soil since it has a low price and significant improvement for the structural capacity of soil. To increase the usage of the solidified matrix, cement-solidified contaminated soil was used as road subgrade material. In this study, carbonation effect that reflected the durability on strength characteristics of cement-solidified contaminated soil and the settlement of pavement were evaluated through experimental and numerical analysis, respectively. According to results, compressive strengths of specimens with 1% Pb(II under carbonation and standard curing range from 0.44 MPa to 1.17 MPa and 0.14 MPa to 2.67 MPa, respectively. The relatively low strengths were attributed to immobilization of heavy metal, which consumed part of SiO2, Al2O3, and CaO components in the cement or kaolin and reduced the hydration and pozzolanic reaction materials. This phenomenon further decreased the strength of solidified soils. The carbonation depth of 1% Cu(II or Zn(II contaminated soils was 18 mm, which significantly increased with the increase of curing time and contamination concentration. Furthermore, the finite element calculation results showed that surface settlements decreased with the increase of modulus of subgrade and the distance away from the center. At the center, the pavement settlement was proportional to the level of traffic load.

  18. Engineering properties of stabilized subgrade soils for implementation of the AASHTO 2002 pavement design guide.

    Science.gov (United States)

    2009-06-01

    A comprehensive laboratory study was undertaken to determine engineering properties of cementitiously stabilized common subgrade soils in Oklahoma for the design of roadway pavements in accordance with the AASHTO 2002 Mechanistic-Empirical Pavement D...

  19. Experimental Study on the Utilization of Fine Steel Slag on Stabilizing High Plastic Subgrade Soil

    Directory of Open Access Journals (Sweden)

    Hussien Aldeeky

    2017-01-01

    Full Text Available The three major steel manufacturing factories in Jordan dump their byproduct, steel slag, randomly in open areas, which causes many environmental hazardous problems. This study intended to explore the effectiveness of using fine steel slag aggregate (FSSA in improving the geotechnical properties of high plastic subgrade soil. First soil and fine steel slag mechanical and engineering properties were evaluating. Then 0%, 5%, 10%, 15%, 20%, and 25% dry weight of soil of fine steel slag (FSSA were added and mixed into the prepared soil samples. The effectiveness of the FSSA was judged by the improvement in consistency limits, compaction, free swell, unconfined compression strength, and California bearing ratio (CBR. From the test results, it is observed that 20% FSSA additives will reduce plasticity index and free swell by 26.3% and 58.3%, respectively. Furthermore, 20% FSSA additives will increase the unconfined compressive strength, maximum dry density, and CBR value by 100%, 6.9%, and 154%. By conclusion FSSA had a positive effect on the geotechnical properties of the soil and it can be used as admixture in proving geotechnical characteristics of subgrade soil, not only solving the waste disposal problem.

  20. Investigation of Stabilised Batu Pahat Soft Soil Pertaining on its CBR and Permeability Properties for Road Construction

    Science.gov (United States)

    Mohd Idrus, M. M.; Singh, J. S. M.; Musbah, A. L. A.; Wijeyesekera, D. C.

    2016-07-01

    Soil stabilization by adding materials such as cement, lime and bitumen is one of the effective methods for improving the geotechnical properties of soils [11] Nano-particle is one of the newest additives and many studies about using nano-particle in soil improvement has been done but it was given less attention when soft clay soils stabilization is concerned. To evaluate the strength characteristics of stabilized Batu Pahat soft clay, laboratory investigation on early strength gained by the stabilized soil must be conducted to formulate a suitable and economical mix design [10]. To achieve such purpose, the study examined the effect of NanoClay on the California Bearing Ratio and the Permeability of soft clay. The results gained shows that the Nano-Clay is able to increase the strength of the soft clay [9]. The California Bearing Ratio of the soil is increase significantly where the results for the highest percentage of admixture is 14.4% while the permeability of the soil decreases significantly with increasing Nano-Clay whereby the results of the highest percentage of admixture is 2.0187x10-11 m/s. After doing this research, it is proven that Nano-clay can contribute towards better soil stabilization and enhance the quality of soil as subgrade and foundation at large.

  1. Experimental Study on the Utilization of Fine Steel Slag on Stabilizing High Plastic Subgrade Soil

    OpenAIRE

    Hussien Aldeeky; Omar Al Hattamleh

    2017-01-01

    The three major steel manufacturing factories in Jordan dump their byproduct, steel slag, randomly in open areas, which causes many environmental hazardous problems. This study intended to explore the effectiveness of using fine steel slag aggregate (FSSA) in improving the geotechnical properties of high plastic subgrade soil. First soil and fine steel slag mechanical and engineering properties were evaluating. Then 0%, 5%, 10%, 15%, 20%, and 25% dry weight of soil of fine steel slag (FSSA) w...

  2. Pemanfaatan Limbah Pabrik Tekstil (Sludge) Sebagai Penstabil Tanah Lempung untuk Subgrade Jalan

    OpenAIRE

    Subarkah, Subarkah

    2009-01-01

    Soil subgrade has an important role in supporting road pavement construction, especially in establishment of the pavement structure. Swelling characteristic and bearing capacity of the clay soil as a subgrade should be carefully considered in the design to fit the specification. In fact, poor soil such as clay, in some cases, should be replaced by another soil from remote location, or by stabilization of this origin soils to overcome the weakness. In other hand, textile industry has a d...

  3. Subgrade stabilization alternatives to lime and cement.

    Science.gov (United States)

    2010-04-15

    This project involved four distinct research activities, (1) the influence of temperature on lime-stabilized soils, (2) the influence of temperature on cement-stabilized soils (3) temperature modeling of stabilized subgrade and (4) use of calcium chl...

  4. Evaluation of techniques for the improvement of subgrade soils in flood and rainfall inundation affected areas

    International Nuclear Information System (INIS)

    Khan, A.H.

    2016-01-01

    Highways are amongst the most costly resources contributing directly to the growth of any Country's economy. Subgrade soils as component of highways deteriorate normally from numerous factors resulting into flushing or excessive settlements of embankment involving huge maintenance costs. In this research, an attempt has been made to evaluate suitable technique for stabilization of commonly available subgrade soils of Pakistan based on cost effectiveness and ease in construction. The soils identified as A-3(0) by American Association of State Highway and Transportation Officials (AASHTO) criteria has been stabilized with conventional additives i.e. cement and bitumen in this research. The optimum content of each additive for stabilization based on their relative effectiveness was used. Trials were also made to economize the cost of stabilization from both conventional additives by controlled replacing of them with waste polythene and polyester fibers. The construction methodology for stabilization using waste fibers was also proposed. Cement was observed to be the most effective stabilizer with respect to strength and durability for A-3(0) soils. Bitumen was found effective but uneconomical for A-3(0) soils. Waste polythene and polyester wastes (organic materials) have potential to economize the cost of stabilization with cement and bitumen for A-3(0) soils. However, long term degradation of these organic materials in soil stabilized mixtures needs further exploration. (author)

  5. Resilient modulus for unbound granular materials and subgrade soils in Egypt

    Directory of Open Access Journals (Sweden)

    Mousa Rabah

    2017-01-01

    Full Text Available Mechanistic Empirical (ME pavement design methods started to gain attention especially the last couple of years in Egypt and the Middle East. One of the challenges facing the spread of these methods in Egypt is lack of advanced properties of local soil and asphalt, which are needed as input data in ME design. Resilient modulus (Mr for example is an important engineering property that expresses the elastic behavior of soil/unbound granular materials (UGMs under cyclic traffic loading for ME design. In order to overcome the scarcity of the resilient modulus data for soil/UGMs in Egypt, a comprehensive laboratory testing program was conducted to measure resilient modulus of typical UGMs and subgrade soils typically used in pavement construction in Egypt. The factors that affect the resilient modulus of soil/UGMs were reviewed, studied and discussed. Finally, the prediction accuracy of the most well-known Mr Prediction models for the locally investigated materials was investigated.

  6. Chemical stabilization of subgrade soil for the strategic expeditionary landing field

    Science.gov (United States)

    Conaway, M. H.

    1983-06-01

    The Strategic Expeditionary Landing Field (SELF) is a military expeditionary-type airfield with an aluminum matted surface that is designed for sustained tactical and cargo airlift operations in an amphibious objective area. Because of the operational traffic parameters such as loads of the various types of aircraft, tire pressures and volume of traffic, a base layer must be constructed over subgrade soil support conditions which may be only marginal. The base layer could be constructed with conventional soil construction techniques (compaction) and yield the required strength. It would be difficult, however, to maintain this strength for the required one-year service life under many climatic conditions due to the degrading effects of water on the support capacity of many soils. Chemical soil stabilization with lime, portland cement and asphalt stabilizing agents could be used to treat the soil. These additives, when properly mixed with certain types of soils, initiate reactions which will increase soil support strength and enhance durability (resistance to the degrading effects of water). Technically, this procedure is quite viable but logistically, it may not be feasible.

  7. Expansive soil stabilization with coir waste and lime for flexible pavement subgrade

    Science.gov (United States)

    Narendra Goud, G.; Hyma, A.; Shiva Chandra, V.; Sandhya Rani, R.

    2018-03-01

    Expansive soil properties can be improved by various methods to make it suitable for construction of flexible pavement. The coir pith is the by-product (bio-waste) generated from coir industry during extraction of coir fiber from coconut husk. Openly disposed coir pith can make the surrounding areas unhygienic. This bio-waste can be one of the potential materials to stabilize the expansive soils. In the present study coir pith and lime are used as stabilizers. Different combinations of coir pith contents (1%, 2% and 3%) and lime contents (2%, 3% and 4%)are used to study the behavior of expansive soil. Unconfined compressive strength (UCS) of unstabilized and stabilized soils was determined. Optimum content of coir pith and lime are determined based on UCS of the soil. California bearing ratio of soil determined at optimum contents of coir pith and lime. Flexible pavement layer compositions for two levels of traffic using stabilized soil subgrade.

  8. ESTIMATION OF SUBGRADE STRENGTHENING INFLUENCE USING SOILCEMENT ELEMENTS

    Directory of Open Access Journals (Sweden)

    V. D. Petrenko

    2016-08-01

    Full Text Available Purpose. The aim of this work is to identify dependencies and options to strengthen the roadbed and a weak base by grouting piles. Analysis of software package SCAD to assess the effect of the selected option of strengthening the construction of spatial subgrade models. Methodology. In this paper the method of calculation of the soil mass in the software package SCAD is considered, which is a universal accounting system of finite-element analysis of structures and is focused on solving problems of designing buildings and structures rather complex structure. The finite element method is among the most modern and effective methods for the calculation of structures for various purposes. In the simulation, we get a complete picture of the stress-strain state of the study area, as well as the value of the limit load, rainfall, and so on. The spatial model based on the finite element volume, to better address the real characteristics of the soil mass, meets all the geometric characteristics of size and natural subgrade and the top structure the path that has been adopted in Ukraine. Findings. It was found that the most effective option to strengthen the roadbed, when applying grouting piles at the base of the subgrade and body, is to strengthen the five piles. At the same time there is even strengthen the soil mass at the level of 25 … 30% of the entire depth. However, even with the strengthening of the only two piles at the base of the effect of the strengthening of 14.1%. Established equation is linear and describes the decrease in strain. Taking into account the results of the research can be concluded that the consolidation is proportional to the depth with any number of piles. The dependence of the strain on the number of piles adheres to a polynomial function. Strengthening the bases of the subgrade and body depth also occurs in proportion with any number of piles. Originality. Design scheme generation algorithm for the calculation of the

  9. Investigation on Insar Time Series Deformation Model Considering Rheological Parameters for Soft Clay Subgrade Monitoring

    Science.gov (United States)

    Xing, X.; Yuan, Z.; Chen, L. F.; Yu, X. Y.; Xiao, L.

    2018-04-01

    The stability control is one of the major technical difficulties in the field of highway subgrade construction engineering. Building deformation model is a crucial step for InSAR time series deformation monitoring. Most of the InSAR deformation models for deformation monitoring are pure empirical mathematical models, without considering the physical mechanism of the monitored object. In this study, we take rheology into consideration, inducing rheological parameters into traditional InSAR deformation models. To assess the feasibility and accuracy for our new model, both simulation and real deformation data over Lungui highway (a typical highway built on soft clay subgrade in Guangdong province, China) are investigated with TerraSAR-X satellite imagery. In order to solve the unknows of the non-linear rheological model, three algorithms: Gauss-Newton (GN), Levenberg-Marquarat (LM), and Genetic Algorithm (GA), are utilized and compared to estimate the unknown parameters. Considering both the calculation efficiency and accuracy, GA is chosen as the final choice for the new model in our case study. Preliminary real data experiment is conducted with use of 17 TerraSAR-X Stripmap images (with a 3-m resolution). With the new deformation model and GA aforementioned, the unknown rheological parameters over all the high coherence points are obtained and the LOS deformation (the low-pass component) sequences are generated.

  10. Resilient modulus prediction of soft low-plasticity Piedmont residual soil using dynamic cone penetrometer

    Directory of Open Access Journals (Sweden)

    S. Hamed Mousavi

    2018-04-01

    Full Text Available Dynamic cone penetrometer (DCP has been used for decades to estimate the shear strength and stiffness properties of the subgrade soils. There are several empirical correlations in the literature to predict the resilient modulus values at only a specific stress state from DCP data, corresponding to the predefined thicknesses of pavement layers (a 50 mm asphalt wearing course, a 100 mm asphalt binder course and a 200 mm aggregate base course. In this study, field-measured DCP data were utilized to estimate the resilient modulus of low-plasticity subgrade Piedmont residual soil. Piedmont residual soils are in-place weathered soils from igneous and metamorphic rocks, as opposed to transported or compacted soils. Hence the existing empirical correlations might not be applicable for these soils. An experimental program was conducted incorporating field DCP and laboratory resilient modulus tests on “undisturbed” soil specimens. The DCP tests were carried out at various locations in four test sections to evaluate subgrade stiffness variation laterally and with depth. Laboratory resilient modulus test results were analyzed in the context of the mechanistic-empirical pavement design guide (MEPDG recommended universal constitutive model. A new approach for predicting the resilient modulus from DCP by estimating MEPDG constitutive model coefficients (k1, k2 and k3 was developed through statistical analyses. The new model is capable of not only taking into account the in situ soil condition on the basis of field measurements, but also representing the resilient modulus at any stress state which addresses a limitation with existing empirical DCP models and its applicability for a specific case. Validation of the model is demonstrated by using data that were not used for model development, as well as data reported in the literature. Keywords: Dynamic cone penetrometer (DCP, Resilient modulus, Mechanistic-empirical pavement design guide (MEPDG, Residual

  11. Laboratory Evaluation of the Effects of 3-Chloride Compounds on the Geotechnical Properties of an Expansive Subgrade Soil

    Science.gov (United States)

    Radhakrishnan, G.; Anjan Kumar, M.; Raju, G. V. R. Prasada

    2017-12-01

    Expansive soils are known to be problematic due to their nature and behavior. These soils show volume changes due to changes in moisture content, which cause distortions to structures constructed on them. Relentless efforts are being made all over the world to find solution to the problems of expansive soils. In the case of flexible pavements, unless the subgrade is appropriately treated during the construction stage, the maintenance cost will increase substantially due to deterioration. There are many methods of stabilising expansive subgrade soils. Chemical stabilisation is one such technique employed in improving the engineering properties of the expansive soil. Investigations on chemical stabilization of expansive soils revealed that conventionally used lime could be replaced by the chloride compound chemicals because of their ready dissolvability in water, ease of mixing with soil and supply of sufficient cations for ready cation exchange. The main objective of this work is to study the effectiveness of three chloride compound chemicals, ammonium chloride (NH4Cl), magnesium chloride (MgCl2) and aluminum chloride (AlCl3) on the geotechnical properties of an expansive soil. The chemicals content up to 2% were added to the soil and its effect on the index limits, swell pressure, compaction characteristics as well as California bearing ratio are studied. It was observed that aluminum chloride chemical content has a significantly higher influence than the other two chemicals and it could be recognized as an effective chemical stabilizer.

  12. Evaluation of the base/subgrade soil under repeated loading : phase II, in-box and ALF cyclic plate load tests.

    Science.gov (United States)

    2012-03-01

    This research study aims at evaluating the performance of base and subgrade soil in flexible pavements under repeated loading test conditions. For this purpose, an indoor cyclic plate load testing equipment was developed and used to conduct a series ...

  13. Effect of moisture content and dry unit weight on the resilient modulus of subgrade soils predicted by cone penetration test.

    Science.gov (United States)

    2002-06-01

    The objective of this study was to investigate the effect of moisture content and dry unit weight on the resilient characteristics of subgrade soil predicted by the cone penetration test. An experimental program was conducted in which cone penetratio...

  14. Pavement mechanic response of sulfate saline soil subgrade section based on fluid–structure interaction model

    Directory of Open Access Journals (Sweden)

    Xueying Zhao

    2017-11-01

    Full Text Available It is a consensus that salt heaving and frost heaving are urgent and typical distress in the sulfate saline soil area. To further investigate the microscopic performance of pavement structure in this special area, Jinan-Dongying Freeway in Shandong Province is selected as a case study engineering and the mechanic responses under salt heaving, frost heaving and traffic loads were analyzed through the finite element (FE Program (ANSYS. In this paper, the process of salt heaving and frost heaving was divided into 3 stages and FE models were established based on fluid–structure interaction (FSI model. It is shown that under both effects of salt heaving and frost heaving, the tensile stress of asphalt surface course could be up to 96.75% of its tensile strength, which means its tensile strength was seriously inadequate; however, traffic loads could help to dramatically counteract effects of salt heaving and frost heaving, which could decrease 40–80% of the tensile stress in asphalt surface course. It is also shown that in Jinan-Dongying Freeway effects of salt heaving had slightly larger effects on pavement compared with that of frost heaving, probably because salt heaving occurred from the top to the bottom of subgrade. However, as a whole, in sulfate saline soil area, compared with general area, crack resistance of asphalt courses and foundation treatment should always be strengthened. Keywords: Sulfate saline soil subgrade, Asphalt pavement, Pavement mechanic, FEM, FSI, Cracks and bulging

  15. Study on Flexible Pavement Failures in Soft Soil Tropical Regions

    Science.gov (United States)

    Jayakumar, M.; Chee Soon, Lee

    2015-04-01

    Road network system experienced rapid upgrowth since ages ago and it started developing in Malaysia during the colonization of British due to its significant impacts in transportation field. Flexible pavement, the major road network in Malaysia, has been deteriorating by various types of distresses which cause descending serviceability of the pavement structure. This paper discusses the pavement condition assessment carried out in Sarawak and Sabah, Malaysia to have design solutions for flexible pavement failures. Field tests were conducted to examine the subgrade strength of existing roads in Sarawak at various failure locations, to assess the impact of subgrade strength on pavement failures. Research outcomes from field condition assessment and subgrade testing showed that the critical causes of pavement failures are inadequate design and maintenance of drainage system and shoulder cross fall, along with inadequate pavement thickness provided by may be assuming the conservative value of soil strength at optimum moisture content, whereas the exiting and expected subgrade strengths at equilibrium moisture content are far below. Our further research shows that stabilized existing recycled asphalt and base materials to use as a sub-base along with bitumen stabilized open graded base in the pavement composition may be a viable solution for pavement failures.

  16. The estimation of parameter compaction values for pavement subgrade stabilized with lime

    Science.gov (United States)

    Lubis, A. S.; Muis, Z. A.; Simbolon, C. A.

    2018-02-01

    The type of soil material, field control, maintenance and availability of funds are several factors that must be considered in compaction of the pavement subgrade. In determining the compaction parameters in laboratory desperately requires considerable materials, time and funds, and reliable laboratory operators. If the result of soil classification values can be used to estimate the compaction parameters of a subgrade material, so it would save time, energy, materials and cost on the execution of this work. This is also a clarification (cross check) of the work that has been done by technicians in the laboratory. The study aims to estimate the compaction parameter values ie. maximum dry unit weight (γdmax) and optimum water content (Wopt) of the soil subgrade that stabilized with lime. The tests that conducted in the laboratory of soil mechanics were to determine the index properties (Fines and Liquid Limit/LL) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) > 10% were made with additional 3% lime for 30 samples. By using the Goswami equation, the compaction parameter values can be estimated by equation γd max # = -0,1686 Log G + 1,8434 and Wopt # = 2,9178 log G + 17,086. From the validation calculation, there was a significant positive correlation between the compaction parameter values laboratory and the compaction parameter values estimated, with a 95% confidence interval as a strong relationship.

  17. SIMULATION OF SUBGRADE EMBANKMENT ON WEAK BASE

    Directory of Open Access Journals (Sweden)

    V. D. Petrenko

    2015-08-01

    Full Text Available Purpose. This article provides: the question of the sustainability of the subgrade on a weak base is considered in the paper. It is proposed to use the method of jet grouting. Investigation of the possibility of a weak base has an effect on the overall deformation of the subgrade; the identification and optimization of the parameters of subgrade based on studies using numerical simulation. Methodology. The theoretical studies of the stress-strain state of the base and subgrade embankment by modeling in the software package LIRA have been conducted to achieve this goal. Findings. After making the necessary calculations perform building fields of a subsidence, borders cramped thickness, bed’s coefficients of Pasternak and Winkler. The diagrams construction of vertical stress performs at any point of load application. Also, using the software system may perform peer review subsidence, rolls railroad tracks in natural and consolidated basis. Originality. For weak soils is the most appropriate nonlinear model of the base with the existing areas of both elastic and limit equilibrium, mixed problem of the theory of elasticity and plasticity. Practical value. By increasing the load on the weak base as a result of the second track construction, adds embankment or increasing axial load when changing the rolling stock process of sedimentation and consolidation may continue again. Therefore, one of the feasible and promising options for the design and reconstruction of embankments on weak bases is to strengthen the bases with the help of jet grouting. With the expansion of the railway infrastructure, increasing speed and weight of the rolling stock is necessary to ensure the stability of the subgrade on weak bases. LIRA software package allows you to perform all the necessary calculations for the selection of a proper way of strengthening weak bases.

  18. Measurement of seasonal changes and spatial variations in pavement unbound base and subgrade properties.

    Science.gov (United States)

    2009-01-01

    Soils often undergo cyclic wetting/drying, but there is very limited research on unsaturated : soils subjected to variations in moisture content. More specifically, field moisture variation : over time in highway unbound bases and subgrade soils is a...

  19. Geogrid reinforced road subgrade influence on the pavement evenness

    Science.gov (United States)

    Šiukščius, A.; Vorobjovas, V.; Vaitkus, A.

    2018-05-01

    As a result of increasing geogrid reinforcement applications in the road subgrade, there are number of projects where geogrid reinforcement is used to control road pavement evenness when there are small layers of peat or mud deeper under road construction. For this task geogrid reinforcement application is not documented but widely used in Lithuania for over a decade. This paper evaluates the long term influence of the geogrid reinforced soil influence on the road surface evenness, when the organic soils stratify in the deeper layers of the subgrade. The geological conditions of the investigated sections are reviewed. The experiment methodology and test results are described, which leads to the conclusions and insights how the pavement evenness depend on the geological conditions and its enhancement. The question is raised about the need for including this geogrid application to the normative documentation. Explanation of the problems that are encountered and the need for further research is given.

  20. Effect of Cement Replacement with Carbide Waste on the Strength of Stabilized Clay Subgrade

    Directory of Open Access Journals (Sweden)

    Muntohar A.S.

    2016-03-01

    Full Text Available Cement is commonly used for soil stabilization and many other ground improvement techniques. Cement is believed to be very good to improve the compressive and split-tensile strength of clay subgrades. In some application cement could be partly or fully replaced with carbide waste. This research is to study the effectiveness of the cement replacement and to find the maximum carbide waste content to be allowed for a clay subgrade. The quantities of cement replaced with the carbide waste were 30, 50, 70, 90, and 100% by its mass. The results show that replacing the cement with carbide waste decreased both the compressive and split tensile strength. Replacing cement content with carbide waste reduced its ability for stabilization. The carbide waste content should be less than 70% of the cement to provide a sufficient stabilizing effect on a clay subgrade.

  1. Experimental Study on the Feasibility of Using Water Glass and Aluminum Sulfate to Treat Complications in High Liquid Limit Soil Subgrade

    Directory of Open Access Journals (Sweden)

    Wen-hui Zhang

    2015-01-01

    Full Text Available The feasibility of using water glass and aluminum sulfate to treat high liquid limit soil subgrade diseases is studied through laboratory experiments, and the following results were observed. After improving the high liquid limit clay with water glass and aluminum sulfate, the liquid limit decreases, the plastic limit increases, and the plasticity index decreases. Compared with untreated soil, the clay content of the improved soil decreases, while the silt and coarse contents increase. The absolute and relative expansion rates of the improved soil are both lower than those of the untreated soil. With the same number of dry and wet cycles, the decreased degrees of cohesion and internal friction angle of the improved soil are, respectively, one-half and one-third of those of the untreated soil. After three dry and wet cycles, the California bearing ratio (CBR of the untreated soil does not meet the requirements of specifications. However, after being cured for seven days and being subjected to three dry and wet cycles, the CBR of the improved soil, with 4% water glass solution and 0.4% aluminum sulfate, meets the requirements of specifications.

  2. Chemical Modification of Uniform Soils and Soils with High/Low Plasticity Index

    OpenAIRE

    Li, Xuanchi; Tao, Fei; Bobet, Antonio

    2015-01-01

    Lime and/or cement are used to treat weak subgrade soils during construction of highways. These chemicals are mixed with the soil to improve its workability, compactability and engineering properties. INDOT (Indiana Department of Transportation) has been using chemical modification of native soils for the past 20 years. In fact, 90% of current subgrade is treated, typically with quick lime, lime byproducts or cement. For pavement design, it is customary to not include any improvement of the s...

  3. Subgrade design models

    CSIR Research Space (South Africa)

    Theyse, HL

    2002-02-01

    Full Text Available procedure commonly used in South Africa, namely the South African Mechanistic-Empirical Design Method (SAMDM). This was achieved through the development of a new design approach and permanent deformation model for the pavement subgrade. The new distress...

  4. Bamboo leaf ash as the stabilizer for soft soil treatment

    Science.gov (United States)

    Rahman, A. S. A.; Jais, I. B. M.; Sidek, N.; Ahmad, J.; Rosli, M. I. F.

    2018-04-01

    Soft soil is a type of soil that have the size of particle less than 0.063mm. The strength of the soft soil does not fulfil the requirement for construction. The present of soft soil at the construction site always give a lot of problems and issues to geotechnical sector. Soil settlement is one of the problems that related to soft soil. The determination of the soft soil physical characteristics will provide a detail description on its characteristic. Soft soil need to be treated in order to gain the standard strength for construction. One of the method to strengthen the soft soil is by using pozzolanic material as a treatment method for soft soil. Furthermore bamboo leaf ash is one of the newly founded materials that contain pozzolanic material. Any material that consist of Silicon Dioxide (SiO2) as the main component and followed by Aluminium Oxide (Al2O3) and Iron Oxide (Fe2O3) are consider as pozzolanic material. Bamboo leaf ash is mix with the cement as the treatment material. Bamboo leaf ash will react with the cement to produce additional cement binder. Thus, it will increase the soil strength and will ease the geotechnical sector to achieve high quality of construction product.

  5. Characterization of cementitiously stabilized subgrades for mechanistic-empirical pavement design

    Science.gov (United States)

    Solanki, Pranshoo

    Pavements are vulnerable to subgrade layer performance because it acts as a foundation. Due to increase in the truck traffic, pavement engineers are challenged to build more strong and long-lasting pavements. To increase the load-bearing capacity of pavements, subgrade layer is often stabilized with cementitious additives. Thus, an overall characterization of stabilized subgrade layer is important for enhanced short- and long-term pavement performance. In this study, the effect of type and amount of additive on the short-term performance in terms of material properties recommended by the new Mechanistic-Empirical Pavement Design Guide (MEPDG) is examined. A total of four soils commonly encountered as subgrades in Oklahoma are utilized. Results show that the changes in the Mr, ME and UCS values stabilized specimens depend on the soil type and properties of additives. The long-term performance (or durability) of stabilized soil specimens is investigated by conducting freeze-thaw (F-T) cycling, vacuum saturation and tube suction tests on 7-day cured P-, K- and C-soil specimens stabilized with 6% lime, 10% CFA and 10% CKD. This study is motivated by the fact that during the service life of pavement stabilized layers are subjected to F-T cycles and moisture variations. It is found that that UCS value of all the stabilized specimens decreased with increase in the number of F-T cycles. A strong correlation was observed between UCS values retained after vacuum saturation and F-T cycles indicating that vacuum saturation could be used as a time-efficient and inexpensive method for evaluating durability of stabilized soils. In this study, short- and long-term observations from stabilization of sulfate bearing soil with locally available low (CFA), moderate (CKD) and high (lime) calcium-based stabilizers are determined to evaluate and compare the effect of additive type on the phenomenon of sulfate-induced heave. The impact of different factors on the development of the

  6. Pavement Subgrade Performance Study

    DEFF Research Database (Denmark)

    Zhang, Wei; Ullidtz, Per; Macdonald, Robin

    1998-01-01

    The report describes the second test in the Danish Road Testing Machine (RTM) under the International Pavement Subgrade Performance Study. Pavement response was measured in different layers, and compared to different theroretical values. Performance in terms of plastic strains, rutting...

  7. Influence of Subgrade and Unbound Granular Layers Stiffness on Fatigue Life of Hot Mix Asphalts - HMA

    Directory of Open Access Journals (Sweden)

    Hugo A. Rondón-Quintana

    2013-11-01

    Full Text Available The mainly factors studied to predict fatigue life of hot mix asphalt-HMA in flexible pavements are the loading effect, type of test, compaction methods, design parameters of HMA (e.g., particle size and size distribution curve, fine content, type of bitumen and the variables associated with the environment (mainly moisture, temperature, aging. This study evaluated through a computer simulation, the influence of the granular layers and subgrade on the fatigue life of asphalt layers in flexible pavement structures. Mechanics parameters of granular layers of subgrade, base and subbase were obtained using the mathematical equations currently used for this purpose in the world. The emphasis of the study was the city of Bogotá, where the average annual temperature is 14°C and soils predominantly clay, generally experience CBR magnitudes between 1% and 4%. General conclusion: stiffness of the granular layers and subgrade significantly affect the fatigue resistance of HMA mixtures. Likewise, the use of different equations reported in reference literature in order to characterize granular layers may vary the fatigue life between 4.6 and 48.5 times, varying the thickness of the pavement layers in the design.

  8. Stabilization of soft clayey soils with sawdust ashes

    Directory of Open Access Journals (Sweden)

    Karim Hussein

    2018-01-01

    Full Text Available The problems of soft clayey soils are taken in considerations by many Iraqi geologists and civil engineers, because about 35% of the Iraqi clay soils (especially southern Iraq are weak. Thus, it is necessary to improve the properties of such soils for road construction by means of using of various stabilizers such as sawdust ash. The main goal of the present study is to stabilize soft clay models with sawdust ash (SDA additive using different percentages (0, 2, 4, 6, 8 and 10% by dry weight of soil. The results revealed that the additive has adverse effects on the property of soil indices by increasing its liquid limit and plasticity index due to clay content. The mixture of sawdust ashes with soft clay soils improves most other physical and mechanical properties of the soil, as expressed by a general reduction in specific gravity and maximum dry density (MDD, as well as a reduction in the compression coefficients (Cc and Cr with an increase in SDA content. While increasing the optimum moisture content (OMC and the undrained shear strength (cu with the increase in SDA content. The stabilized soils (with 4 and 10% ash content resulted in low CBR values (1.6-1.2% which can be used as sub-base. The SDA can be considered as a cheap and acceptable stabilizing agent in road construction for improving most of the geotechnical properties of the soft clayey soil.

  9. Design and development of the roadbed construction on the soft soils

    Directory of Open Access Journals (Sweden)

    Yushkov Boris Semenovich

    2014-12-01

    Full Text Available Now the considerable part of territories is presented by soft soils. Construction of highways under difficult conditions, in places of the soft heaving soil distribution having an excessive moistening, low bearing capability, high compressibility and other unfavorable properties, significantly complicates and raises the price of road construction. Improvement of technology of highway construction serves as a solution of problem. In this article the authors propose the design of a roadbed on the soft clay soil, strengthened by a spatial geoweb. The experimental studies of four designs were conducted: the first one is research of the roadbed — soft clay soil mutual interaction; the second one is research of work of the geotextile material laid in the base of roadbed with the soft clay soil; the third one is research of work of the spatial geoweb laid in the base of roadbed with the soft clay soil; the fourth one is research of joint action of a spatial geoweb and the geotextile material laid in the base of a roadbed with soft clay soil. Based on the results of the carried-out laboratory tests it has been revealed that the design with strengthening by a spatial geoweb and geotextile material has a rational one of the roadbed.

  10. Theoretical Analysis and Experimental Study of Subgrade Moisture Variation and Underground Antidrainage Technique under Groundwater Fluctuations

    Directory of Open Access Journals (Sweden)

    Liu Jie

    2013-01-01

    Full Text Available Groundwater is a main natural factor impacting the subgrade structure, and it plays a significant role in the stability of the subgrade. In this paper, the analytical solution of the subgrade moisture variations considering groundwater fluctuations is derived based on Richards’ equation. Laboratory subgrade model is built, and three working cases are performed in the model to study the capillary action of groundwater at different water tables. Two types of antidrainage materials are employed in the subgrade model, and their anti-drainage effects are discussed. Moreover, numerical calculation is conducted on the basis of subgrade model, and the calculate results are compared with the experimental measurements. The study results are shown. The agreement between the numerical and the experimental results is good. Capillary action is obvious when the groundwater table is rising. As the groundwater table is falling, the moisture decreases in the position of the subgrade near the water table and has no variations in the subgrade where far above the table. The anti-drainage effect of the sand cushion is associated with its thickness and material properties. New waterproofing and drainage material can prevent groundwater entering the subgrade effectively, and its anti-drainage effect is good.

  11. Tunnelling in Soft Soil : Tunnel Boring Machine Operation and Soil Response

    NARCIS (Netherlands)

    Festa, D.; Broere, W.; Bosch, J.W.

    2013-01-01

    Constructing tunnels in soft soil with the use of Tunnel Boring Machines may induce settlements including soil movements ahead of the face, soil relaxation into the tail void, possible heave due to grouting, long lasting consolidation processes, and potentially several other mechanisms. A

  12. Differences in Train-induced Vibration between Hard Soil and Soft Soil

    Science.gov (United States)

    Noyori, M.; Yokoyama, H.

    2017-12-01

    Vibration and noise caused by running trains sometimes raises environmental issues. Train-induced vibration is caused by moving static and dynamic axle loads. To reduce the vibration, it is important to clarify the conditions under which the train-induced vibration increases. In this study, we clarified the differences in train-induced vibration between on hard soil and on soft soil using a numerical simulation method. The numerical simulation method we used is a combination of two analysis. The one is a coupled vibration analysis model of a running train, a track and a supporting structure. In the analysis, the excitation force of the viaduct slabs generated by a running train is computed. The other analysis is a three-dimensional vibration analysis model of a supporting structure and the ground into which the excitation force computed by the former analysis is input. As a result of the numerical simulation, the ground vibration in the area not more than 25m from the center of the viaduct is larger under the soft soil condition than that under the hard soil condition in almost all frequency ranges. On the other hand, the ground vibration of 40 and 50Hz at a point 50m from the center of the viaduct under the hard soil condition is larger than that under the soft soil condition. These are consistent with the result of the two-dimensional FEM based on a ground model alone. Thus, we concluded that these results are obtained from not the effects of the running train but the vibration characteristics of the ground.

  13. New Method of Sinking Caisson Tunnel in Soft Soil

    OpenAIRE

    Bame, Abda Berisso

    2013-01-01

    Sinking a caisson tunnel in soft soil is new idea and this new concept could be an alternative method of tunneling in soft soil. The aim of this study is to evaluate geotechnical feasibility of sinking the caisson tunnel to the desired depth at the selected soil profile along tunnel alignment. This caisson tunneling method is proposed to reduce the use of temporary works such as propping of sheet pile walls and increase the ease and speed of construction. Besides, it reduces the disturbance o...

  14. Embedded Empiricisms in Soft Soil Technology

    Science.gov (United States)

    Wijeyesekera, D. C.; John, L. M. S. Alvin; Adnan, Z.

    2016-07-01

    Civil engineers of today are continuously challenged by innovative projects that push further the knowledge boundaries with conceptual and/or ingenious solutions leading to the realization of that once was considered impossible in the realms of geotechnology. Some of the forward developments rely on empirical methods embedded within soft soil technology and the spectral realms of engineering in its entirety. Empiricisms unlike folklore are not always shrouded in mysticism but can find scientific reasoning to justify them being adopted in design and tangible construction projects. This lecture therefore is an outline exposition of how empiricism has been integrally embedded in total empirical beginnings in the evolution of soft soil technology from the Renaissance time, through the developments of soil mechanics in the 19th century which in turn has paved the way to the rise of computational soil mechanics. Developments in computational soil mechanics has always embraced and are founded on a wide backdrop of empirical geoenvironment simulations. However, it is imperative that a competent geotechnical engineer needs postgraduate training combined with empiricism that is based on years of well- winnowed practical experience to fathom the diverseness and complexity of nature. However, experience being regarded more highly than expertise can, perhaps inadvertently, inhibit development and innovation.

  15. WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...

    African Journals Online (AJOL)

    Preferred Customer

    Page 1 ... corresponding single-parameter Winkler model presented in this work. Keywords: Heterogeneous subgrade, Reissner's simplified continuum, Shear interaction, Simplified continuum, Winkler ... model in practical applications and its long time familiarity among practical engineers, its usage has endured to this date ...

  16. Pavement Subgrade Performance Study in the Danish Road Testing Machine

    DEFF Research Database (Denmark)

    Ullidtz, Per; Ertman Larsen, Hans Jørgen

    1997-01-01

    Most existing pavement subgrade criteria are based on the AASHO Road Test, where only one material was tested and for only one climatic condition. To study the validity of these criteria and to refine the criteria a co-operative research program entitled the "International Pavement Subgrade...... Performance Study" was sponsored by the FHWA with American, Finnish and Danish partners. This paper describes the first test series which was carried out in the Danish Road Testing Machine (RTM).The first step in this program is a full scale test on an instrumented pavement in the Danish Road Testing Machine....... Pressure gauges and strain cells were installed in the upper part of the subgrade, for measuring stresses and strains in all three directions. During and after construction FWD testing was carried out to evaluate the elastic parameters of the materials. These parameters were then used with the theory...

  17. Strength and Stiffness Development in Soft Soils: A FESEM aided Soil Microstructure Viewpoint

    Science.gov (United States)

    Wijeyesekera, D. C.; Ho, M. H.; Bai, X.; Bakar, I.

    2016-07-01

    This paper opens with an overview of the debatable definition of soft soil that goes beyond a (CH) organic / inorganic clay and OH peat to include weakly cemented periglacial deposits of loess and alike. It then outlines the findings obtained from stiffness test on cement-stabilised soft clay. The findings are complemented with a microstructure viewpoint obtained using field emission scanning electron microscope (FESEM). Research also comprised of making cylindrical stabilised clay samples, prepared in the laboratory with various rubber chips contents and cement, and then aged for 28 days. The samples were then subjected to unconfined compressive strength (UCS) test and observations were also made of its microstructure using the FESEM. The impact of the soil microstructure on the stiffness result was studied both with the stabilized soil and also of some of the natural undisturbed loess soils. Sustainability aspect and the potential of the use of rubber chips and sand as additives to cement stabilisation are also discussed. The overall test results indicated that rubber chips and sand contributed to the improvement in unconfined compressive strength (qu). The derogatory influence of moisture on the stiffness of the stabilised clay was studied simultaneously. SEM micrographs are presented that show bonding of cement, rubber chips/ sand and soft clay, granular units and aggregated / agglomerated units in loess. The paper concludes with observations on the dependence of soil microstructure on the soil strength and deformability and even collapsibility of the loess. Current practices adopted as engineering solutions to these challenging soils are outlined.

  18. Pavement system with rubber tire chips in subgrade

    Energy Technology Data Exchange (ETDEWEB)

    Ashtakala, B.; Hoque, A.K.M.M. [Concordia Univ., Montreal, PQ (Canada). Dept. of Civil Engineering

    1995-12-31

    A pavement design method was developed in which shredded rubber tire chips mixed with sand were used as a material for pavement subgrade. Rubber tire chips are highly compressible and produce both elastic and plastic deformations under the application of loads. Sand was added to fill the void between the tire chips and make the mixture a strong material. The design method considered the vertical compressive strain produced by the design life traffic load 18k (80 KN) repetitions. The equivalent thicknesses of the layers above the subgrade corresponding to this vertical compressive strain were determined using contour charts. From this equivalent thickness, the thicknesses for asphalt pavement, base, and sub-base were determined by Odemark`s method. 3 refs., 1 tab., 3 figs.

  19. Mechanical behavior of embankments overlying on loose subgrade stabilized by deep mixed columns

    Directory of Open Access Journals (Sweden)

    Morteza Esmaeili

    2016-10-01

    Full Text Available Deep mixed column (DMC is known as one of the effective methods for stabilizing the natural earth beneath road or railway embankments to control stability and settlements under traffic loads. The load distribution mechanism of embankment overlying on loose subgrades stabilized with DMCs considerably depends on the columns' mechanical and geometrical specifications. The present study uses the laboratory investigation to understand the behavior of embankments lying on loose sandy subgrade in three different conditions: (1 subgrade without reinforcement, (2 subgrade reinforced with DMCs in a triangular pattern and horizontal plan, and (3 subgrade reinforced with DMCs in a square pattern and horizontal plan. For this purpose, by adopting the scale factor of 1:10, a reference embankment with 20 cm height, 250 cm length, and 93% maximum dry density achieved in standard Proctor compaction test was constructed over a 70 cm thick loose sandy bed with the relative density of 50% in a loading chamber, and its load-displacement behavior was evaluated until the failure occurred. In the next two tests, DMCs (with 10 cm diameter, 40 cm length, and 25 cm center-to-center spacing were placed in groups in two different patterns (square and triangular in the same sandy bed beneath the embankment and, consequently, the embankments were constructed over the reinforced subgrades and gradually loaded until the failure happened. In all the three tests, the load-displacement behaviors of the embankment and the selected DMCs were instrumented for monitoring purpose. The obtained results implied 64% increase in failure load and 40% decrease in embankment crest settlement when using the square pattern of DMCs compared with those of the reference embankment, while these values were 63% and 12%, respectively, for DMCs in triangular pattern. This confirmed generally better performance of DMCs with a triangular pattern.

  20. REVIEW OF MODERN TECHNOLOGIES OF REINFORCEMENT AND STABILIZATION OF SOFT SOILS

    Directory of Open Access Journals (Sweden)

    Romanov Nikita Valer’evich

    2018-05-01

    Full Text Available Subject: description of the current situation in technologies of soil improvement, namely mechanical and hydraulic consolidation of soils and vertical reinforcement of soils for different types of soft soils. Research objectives: demonstration of modern possibilities and approaches to the design and construction of improved soils. Materials and methods: in this paper, we consider such technologies of ground improvement as dynamic compaction, hydraulic consolidation (vertical drain consolidation, Menard vacuum consolidation, vertical reinforcement of soils (CMC - controlled modulus columns. Results: the result of the study is an intuitive representation of the applicability of described technologies for various types of soft soils. Conclusions: the technologies of ground improvement considered in this article are an effective alternative to both pile foundations and soil replacement. To this day, industrial implementation of soil improvement technologies has proved its applicability, efficiency and competitiveness.

  1. Influence of aging on bearing capacity of circular footing resting on soft soil

    Directory of Open Access Journals (Sweden)

    Mohamed B.D. Elsawy

    2013-12-01

    Full Text Available Structures constructed on soft soil are considered to be at risk due to its low shear strength and high compressibility. Thus constructed structures on soft soil are designed according to its undrained shear strength, representing the bearing capacity of the shallow foundation in the short term conditions, which varies with time under the applied load. The bearing capacity in short term conditions is limited because of the generation of excess pore water pressure as soon as the initial loads are applied. Hence in this paper, the bearing capacity of shallow foundations on soft soil is studied by varying the time and the applied loads. The shallow foundation is subjected to a series of applied loads and consolidation phases to study the effect of aging. The study is investigated by means of finite element analyses taking account of consolidation processes in the ground, in which the soft soil is modeled using the Soft Soil model. The analysis is performed by finite element package of Plaxis program. The numerical analysis clears that the bearing capacity in the long term conditions is enhanced and has a significant enhancement following each consolidation phase when compared with the short term conditions.

  2. Prediction of embankment settlement over soft soils.

    Science.gov (United States)

    2009-06-01

    The objective of this project was to review and verify the current design procedures used by TxDOT : to estimate the total and rate of consolidation settlement in embankments constructed on soft soils. Methods : to improve the settlement predictions ...

  3. Modulus of Subgrade Reaction and Deflection

    Directory of Open Access Journals (Sweden)

    Austin Potts

    2009-01-01

    Full Text Available Differential equations govern the bending and deflection of roads under a concentrated load. Identifying critical parameters, such as the maximum deflection and maximum bending moments of a street supported by an elastic subgrade, is key to designing safe and reliable roadways. This project solves the underlying differential equation in pavement deflection and tests various parameters to highlight the importance in selecting proper foundation materials.

  4. Applicability of recycled aggregates in concrete piles for soft soil improvement.

    Science.gov (United States)

    Medeiros-Junior, Ronaldo A; Balestra, Carlos Et; Lima, Maryangela G

    2017-01-01

    The expressive generation of construction and demolition waste is stimulating several studies for reusing this material. The improvement of soft soils by concrete compaction piles has been widely applied for 40 years in some Brazilian cities. This technique is used to improve the bearing capacity of soft soils, allowing executing shallow foundations instead of deep foundations. The compaction piles use a high volume of material. This article explored the possibility of using recycled aggregates from construction waste to replace the natural aggregates in order to improve the bearing capacity of the soft soil, regarding its compressive strength. Construction wastes from different stages of a construction were used in order to make samples of concrete with recycled aggregates. The strength of concretes with natural aggregates was compared with the strength of concretes with recycled (fine and coarse) aggregates. Results show that all samples met the minimum compressive strength specified for compaction piles used to improve the bearing capacity of soft soils. The concrete with recycled aggregate from the structural stage had even higher resistances than the concrete with natural aggregates. This behaviour was attributed to the large amount of cementitious materials in the composition of this type of concrete. It was also observed that concrete with recycled fine aggregate has a superior resistance to concrete with recycled coarse aggregate.

  5. Soil structure interaction model and variability of parameters in seismic analysis of nuclear island connected building

    International Nuclear Information System (INIS)

    Subramanian, K.V.; Palekar, S.M.; Bavare, M.S.; Mapari, H.A.; Patel, S.C.; Pillai, C.S.

    2005-01-01

    This paper provides salient features of the Soil Structure Interaction analysis of Nuclear Island Connected Building (NICB). The dynamic analysis of NICB is performed on a full 3D model accounting for the probable variation in the stiffness of the founding medium. A range analyses was performed to establish the effect of variability of subgrade parameters on the results of seismic analyses of NICB. This paper presents details of various analyses with respect to the subgrade model, uncertainties in subgrade properties, results of seismic analyses and a study of effect of the variability of parameters on the results of these analyses. The results of this study indicate that the variability of soil parameters beyond a certain value of shear wave velocity does not influence the response and in fact the response marginally diminishes. (authors)

  6. Experimental Studies on Geocells and Mat Systems for Stabilization of Unpaved Shoulders and Temporary Roads

    Science.gov (United States)

    Guo, Jun

    Geosynthetics have been used to improve the performance of geomaterials, especially when weak soil exists in roadway applications. In this study, two types of geosynthetic materials, geocell and a mat system, were studied for their applications for unpaved roads and shoulders. The study of geocell was focused on its application for unpaved shoulders. The ability of geocell to improve different geomaterials over intermediate strength subgrade and its possible effect on vegetation were investigated. The study of the mat system was focused on investigating the performance of the mat system over soft and intermediate subgrade with different strengths under cyclic loading to simulate temporary roadway conditions. In the study of geocell for the application for unpaved shoulders, six large scale plate loading tests were conducted on a single type of geocell on target 5% CBR subgrade to investigate the benefits of geocell reinforcement on different base course and topsoil combinations. Different base course and topsoil combinations were investigated including: 200-mm thick unreinforced aggregate, 200-mm thick soil-aggregate mixture (50% aggregate and 50% top soil) with and without geocell reinforcement, 200-mm thick geocell-reinforced topsoil, 50-mm thick aggregate over 150-mm soil-aggregate mixture (50% aggregate and 50% top soil), and 50-mm thick top soil over 150-mm thick geocell-reinforced soil-aggregate mixture (50% aggregate and 50% top soil). Earth pressure cells were install at the interface between subgrade and base course to monitor the load distribution. The cyclic plate loading tests showed that geocell effectively reduced the permanent deformation and the geocell-reinforced soil-aggregate mixture slightly outperformed the unreinforced aggregate at the same thickness. The plate loading tests also suggested the topsoil cover resulted in large permanent deformations. A one-year long outdoor field vegetation test was conducted on base courses with different

  7. Development of a fiber optic pavement subgrade strain measurement system

    Science.gov (United States)

    Miller, Craig Emerson

    2000-11-01

    This dissertation describes the development of a fiber optic sensing system to measure strains within the soil subgrade of highway pavements resulting from traffic loads. The motivation to develop such a device include improvements to: (1)all phases of pavement design, (2)theoretical models used to predict pavement performance, and (3)pavement rehabilitation. The design of the sensing system encompasses selecting an appropriate transducer design as well as the development of optimal optical and demodulation systems. The first is spring based, which attempts to match its spring stiffness to that of the soil-data indicate it is not an optimal transducer design. The second transducer implements anchoring plates attached to two telescoping tubes which allows the soil to be compacted to a desired density between the plates to dictate the transducer's behavior. Both transducers include an extrinsic Fabry- Perot cavity to impose the soil strains onto a phase change of the optical signal propagating through the cavity. The optical system includes a low coherence source and allows phase modulation via path length stretching by adding a second interferometer in series with the transducer, resulting in a path matched differential interferometer. A digitally implemented synthetic heterodyne demodulator based on a four step phase stepping algorithm is used to obtain unambiguous soil strain information from the displacement of the Fabry-Perot cavity. The demodulator is calibrated and characterized by illuminating the transducer with a second long coherence source of different wavelength. The transducer using anchoring plates is embedded within cylindrical soil specimens of varying soil types and soil moisture contents. Loads are applied to the specimen and resulting strains are measured using the embedded fiber optic gage and LVDTs attached to the surface of the specimen. This experimental verification is substantiated using a finite element analysis to predict any differences

  8. Tools to support maintenance strategies under soft soil conditions

    Directory of Open Access Journals (Sweden)

    J. W. M. Lambert

    2015-11-01

    Full Text Available Costs for maintenance of infrastructure in municipalities with soft soil underground conditions, are estimated to be almost 40 % higher than in others. As a result, these municipalities meet financial problems that cause overdue maintenance. In some cases municipalities are even afraid to be unable to offer a minimum service level in future. In common, traditional practice, roads and sewerage systems have been constructed in trenches that consist of sandy material that replaces the upper meters of the soft soil. Under influence of its weight, this causes accelerated settlements of the construction. A number of alternative constructions have been developed, e.g. using light-weight materials to limit settlement velocity. In order to limit future maintenance costs, improvement of maintenance strategies is desired. Tools have been and will be developed to support municipalities in improving their maintenance strategies and save money by doing that. A model (BALANS that weighs the attractiveness of alternative solutions under different soil, environmental and economic circumstances, will be presented.

  9. Dynamic deformation of soft soil media: Experimental studies and mathematical modeling

    Science.gov (United States)

    Balandin, V. V.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Kotov, V. L.; Lomunov, A. K.

    2015-05-01

    A complex experimental-theoretical approach to studying the problem of high-rate strain of soft soil media is presented. This approach combines the following contemporary methods of dynamical tests: the modified Hopkinson-Kolsky method applied tomedium specimens contained in holders and the method of plane wave shock experiments. The following dynamic characteristics of sand soils are obtained: shock adiabatic curves, bulk compressibility curves, and shear resistance curves. The obtained experimental data are used to study the high-rate strain process in the system of a split pressure bar, and the constitutive relations of Grigoryan's mathematical model of soft soil medium are verified by comparing the results of computational and natural test experiments of impact and penetration.

  10. Test procedure for determining organic matter content in soils : UV-VIS method.

    Science.gov (United States)

    2010-11-01

    The Texas Department of Transportation has been having problems with organic matter in soils that they : stabilize for use as subgrade layers in road construction. The organic matter reduces the effectiveness of : common soil additives (lime/cement) ...

  11. Assessment of Index Properties and Bearing Capacities of Soils for ...

    African Journals Online (AJOL)

    Mrs Owoyemi

    on the physical properties and foundation bearing capacity of the soil in this area. This research aimed ... While many new structures are springing up daily in the .... plasticity soil. Most soil samples from both locations classify as A-2 -4 under the AASHTO classification system, rating as good subgrade materials. Bulk density ...

  12. A Biogeotechnical approach to Stabilize Soft Marine Soil with a Microbial Organic Material called Biopolymer

    Science.gov (United States)

    Chang, I.; Cho, G. C.; Kwon, Y. M.; Im, J.

    2017-12-01

    The importance and demands of offshore and coastal area development are increasing due to shortage of usable land and to have access to valuable marine resources. However, most coastal soils are soft sediments, mainly composed with fines (silt and clay) and having high water and organic contents, which induce complicated mechanical- and geochemical- behaviors and even be insufficient in Geotechnical engineering aspects. At least, soil stabilization procedures are required for those soft sediments, regardless of the purpose of usage on the site. One of the most common soft soil stabilization method is using ordinary cement as a soil strengthening binder. However, the use of cement in marine environments is reported to occur environmental concerns such as pH increase and accompanying marine ecosystem disturbance. Therefore, a new environmentally-friendly treatment material for coastal and offshore soils. In this study, a biopolymer material produced by microbes is introduced to enhance the physical behavior of a soft tidal flat sediment by considering the biopolymer rheology, soil mineralogy, and chemical properties of marine water. Biopolymer material used in this study forms inter-particle bonds between particles which is promoted through cation-bridges where the cations are provided from marine water. Moreover, biopolymer treatment renders unique stress-strain relationship of soft soils. The mechanical stiffness (M) instantly increase with the presence of biopolymer, while time-dependent settlement behavior (consolidation) shows a big delay due to the viscous biopolymer hydrogels in pore spaces.

  13. Winkler's single-parameter subgrade model from the perspective of ...

    African Journals Online (AJOL)

    ... tensor are taken into consideration, whereas the shear stresses are intentionally dropped with the purpose of providing a useful perspective, with which Winkler's model and its associated coefficient of subgrade reaction can be viewed. The formulation takes into account the variation of the elasticity modulus with depth.

  14. Improvement of Characteristics of Clayey Soil Mixed with Randomly Distributed Natural Fibers

    Science.gov (United States)

    Maity, J.; Chattopadhyay, B. C.; Mukherjee, S. P.

    2017-11-01

    In subgrade construction for flexible road pavement, properties of clayey soils available locally can be improved by providing randomly distributed fibers in the soil. The fibers added in subgrade constructions are expected to provide better compact interlocking system between the fiber and the soil grain, greater resistance to deformation and quicker dissipation of pore water pressure, thus helping consolidation and strengthening. Many natural fibers like jute, coir, sabai grass etc. which are economical and eco-friendly, are grown in abundance in India. If suitable they can be used as additive material in the subgrade soil to result in increase in strength and decrease in deformability. Such application will also reduce the cost of construction of roads, by providing lesser thickness of pavement layer. In this paper, the efficacy of using natural jute, coir or sabai grass fibers with locally available clayey soil has been studied. A series of Standard Proctor test, Soaked and Unsoaked California Bearing Ratio (CBR) test, and Unconfined Compressive Strength test were done on locally available clayey soil mixed with different types of natural fiber for various length and proportion to study the improvement of strength properties of fiber-soil composites placed at optimum moisture content. From the test results, it was observed that there was a substantial increase in CBR value for the clayey soil when mixed with increasing percentage of all three types of randomly distributed natural fibers up to 2% of the dry weight of soil. The CBR attains maximum value when the length for all types of fibers mixed with the clay taken in this study, attains a value of 10 mm.

  15. Geotechnical Properties of Clayey Soil Stabilized with Cement ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-31

    Dec 31, 2017 ... ... to investigate the different effects of cement-sawdust ash and cement on a ... Keywords: Cement, Saw dust, strength test subgrade material, highway construction ... characteristics of lateritic soil stabilized with sawdust ash.

  16. Investigation of Influence Zones Induced by Shallow Tunnelling in Soft Soils

    NARCIS (Netherlands)

    Vu Minh, N.; Broere, W.; Bosch, J.W.

    2017-01-01

    The extent of the influence zone affected by shallow tunnelling depends on the value of volume loss which normally represents the amount of over-excavation and stress changes induced in the soil. This paper combines upper and lower estimates of volume loss for different soft soils and

  17. Acoustic Monitoring for Tunnel Boring in Soft Soils

    NARCIS (Netherlands)

    Swinnen, G.

    2003-01-01

    The TBM, not a blind mole! This thesis deals with some aspects of seismic imaging of the soft soil in front of a Tunnel Boring Machine to help tunnel constructors ``see'' the subsurface they are approaching, instead of steering the TBM forward like a ``blind mole''. The Dutch shallow subsurface has

  18. Experimental research on the structural characteristics of high organic soft soil in different deposition ages

    Science.gov (United States)

    Liu, Fei; Lin, Guo-he

    2018-03-01

    High organic soft soil, which is distributed at Ji Lin province in China, has been studied by a lot of scholars. In the paper, structural characteristics with different deposition ages have been researched by experimental tests. Firstly, the characteristics of deposition age, degree of decompositon, high-pressure consolidation and microstructure have been measured by a series of tests. Secondly, structural strengths which were deposited in different ages, have been carried out to test the significant differences of stress-strain relations between remoulded and undisturbed high organic soft soil samples. Results showed that high organic soft soil which is deposited at different ages will influence its structural characteristics.

  19. On the effects of the TBM-shield body articulation on tunnelling in soft soil

    NARCIS (Netherlands)

    Festa, D.; Broere, W.; Bosch, J.W.

    2013-01-01

    When a Tunnel Boring Machine (TBM) is driven in soft soil, the TBM-shield constantly interacts with the surrounding soil profile excavated by the cutting wheel. The interaction pattern of shield-soil interface displacements determines compression and extension sectors in the surrounding soil. Soil

  20. The role of curing period on the engineering characteristics of a cement-stabilized soil

    Directory of Open Access Journals (Sweden)

    Athanasopoulou Antonia

    2016-07-01

    Full Text Available Very often, pavements constructed in an economical manner or matching surface elevations of adjacent lanes cannot be designed for the soil conditions of the existing subgrade. Therefore, there is a need to stabilize the soil with an appropriate chemical substance in order to increase its strength to a satisfactory level. For the enhancement of subgrade soil strength characteristics, lime and cement are the most commonly used stabilizers. An experimental program was directed to the evaluation of a clayey soil and its mixtures with different cement contents performing tests on the index properties, the moisture-density relation, the unconfined compressive strength, and linear shrinkage. There is a definite improvement in strength. The time interval used to cure the prepared specimens affected positively both strength and plasticity features of the mixtures. A comparison with mixtures of the same soil with lime has been made, because of the wide use of lime in clay soil stabilization projects.

  1. Assessment of Some Geotechnical Properties of Nigerian Coastal Soil

    African Journals Online (AJOL)

    ADOWIE PERE

    The soil material however met the requirements of the Nigerian General Specifications for use as subgrade in ... Attribution License (CCL), which permits unrestricted use, distribution, and ... The tourist beach is arguably the most popular.

  2. Implementation of the UV-VIS method to measure organic content in clay soils : technical report.

    Science.gov (United States)

    2011-05-01

    The Texas Department of Transportation has been having problems with organic matter in soils that they : stabilize for use as subgrade layers in road construction. The organic matter reduces the effectiveness of : common soil additives (lime/cement) ...

  3. Pembuatan Makanan Ringan Produk Ekstrusi Dari Subgrade Ubi Jalar Goreng Beku Sebagai Bahan Substitusi Serta Analisis Kelayakan Finansial

    Directory of Open Access Journals (Sweden)

    Betha Ika Wilistien

    2017-03-01

    Full Text Available The objective of this research is to determine the influential proportion of sweet potato Subgrade frozen usage as the substitution material toward the production of an extract product snack by using corn grits and rice. The parameters examined were organoleptic characteristic and proper analysis of financial. The organoleptic analysis comprises taste, crispiness, appearance, color, and aroma. The chemical analysis includes sucrose, water, and essence, as well as protein content. The result of this research shows that organoleptic testing toward the taste of an extract product snack by using Beni azzuma sweet potato subgrade indicates that the combination treatments give a positive influence toward organoleptic characteristics of the product. An extract product of snack product from Beni azzuma sweet potato Subgrade as the substitution material with 95% rice formula and 5% Beni azzuma sweet potato Subgrade is chosen as the best product for having the highest weight or quality, 0.970. Proper analysis from the snack processing is shown by NPV score, Rp. 2.,016,418,748 (bigger than zero, the IRR score is 50.00% (bigger than deposit interest, 12.56%. The investment expense needed for constructing the unit of an extract product snack processing with Beni azzuma sweet potato Subgrade as the substitution material is Rp. 330,978,230. The investment will be back after 3 years 5 months, and every year the project can give the profit of 50% from the investment expense.

  4. Risk assessment framework on time impact: Infrastructure projects in soft soil during construction stage

    Science.gov (United States)

    Low, W. W.; Wong, K. S.; Lee, J. L.

    2018-04-01

    With the growth of economy and population, there is an increase in infrastructure construction projects. As such, it is unavoidable to have construction projects on soft soil. Without proper risk management plan, construction projects are vulnerable to different types of risks which will have negative impact on project’s time, cost and quality. Literature review showed that little or none of the research is focused on the risk assessment on the infrastructure project in soft soil. Hence, the aim of this research is to propose a risk assessment framework in infrastructure projects in soft soil during the construction stage. This research was focused on the impact of risks on project time and internal risk factors. The research method was Analytical Hierarchy Process and the sample population was experienced industry experts who have experience in infrastructure projects. Analysis was completed and result showed that for internal factors, the five most significant risks on time element are lack of special equipment, potential contractual disputes and claims, shortage of skilled workers, delay/lack of materials supply, and insolvency of contractor/sub-contractor. Results indicated that resources risk factor play a critical role on project time frame in infrastructure projects in soft soil during the construction stage.

  5. Dynamic analysis of the reactor building for soft (Kozloduy) and hard (Temelin) soil conditions and different seismic loading

    International Nuclear Information System (INIS)

    Krutzik, N.

    1995-01-01

    Analyses were conducted for the reactor building to determine the dynamic responses of the coupled system, soil and structure and the forces in the characteristic structural members. This report summarizes the results of structural dynamic analyses derived for soft and hard soil conditions by the modal time history method using substructure models as well as (for soft soil conditions) in the frequency domain using complex (coupled) models of the soil and the structure. The mathematical model of the reactor building is represented as a lumped mass beam model. The capabilities of the soil were represented by means of global frequency independent springs and dampers (substructure models) or by an appropriate final element model. The results of the above-mentioned analysis presented in this report comprise in particular the maximum values of accelerations, displacements and internal forces as well as the acceleration response spectra for the relevant building regions. The time domain (modal time history) calculations were performed for real soil conditions which corresponds to the site Kozloduy (soft) and Temelin (hard). As seismic input data the corresponding free-field data here been used. The dynamic response obtained for the soft-soil conditions using both type of (substructure and complex) models were compared and demonstrated in one plot. Similar comparison were performed for the results obtained for soft and hard soil conditions

  6. Field Verification of Undercut Criteria and Alternatives for Subgrade Stabilization-Coastal Plain

    Science.gov (United States)

    2012-06-01

    The North Carolina Department of Transportation (NCDOT) is progressing toward developing quantitative and systematic : criteria that address the implementation of undercutting as a subgrade stabilization measure. As part of this effort, a : laborator...

  7. Experimental study on the foundation of soft soil solidification formula based on the Design - Expert software search

    Science.gov (United States)

    Qian, Chaojun; Li, Dahua; Zhang, xian; Zhou, Dongqing; Zhang, Baoliang

    2017-08-01

    Xuan city + 1100 kv search for converter station in Anhui province, in the process of foundation treatment, there is a cloth with a large number of lacustrine soft soil can not reach the need of engineering construction, so we want to cure the soft soil. By combining ratio of blast furnace slag (GGBS), gypsum, exciting agent CaO as a main curing agent for combination of reinforcing soft soil, the indoor unconfined compressive strength test, the influence factors on blast furnace slag, exciting agent and dosage of gypsum as impact factors, response value is 7 d and 28 d unconfined compressive strength of solidified soil, the experimental method is the Box - Behnken. The results show that the 7 d gypsum and the interaction of the blast furnace slag is obvious; 28 d exciting agent and gypsum interaction is obvious. By the analysis plaster, CaO, GGBSIn 7 d optimal proportion is 3.71%, 3.62%, 12.18%, the actual strength of the solidified soil age 1479.33 kPa; 28 d optimal proportion was 4.08%, 4.50%, 11.6%, the actual strength of the solidified soil age 2936.78 kPa. In the soil and the water curing effect of GGBS solidified soil, thereby GGBS this is a kind of new solidification material that can be used as the engineering foundation treatment of soft soil stabilizer has a certain value.

  8. Soil settlement analysis in soft soil by using preloading system and prefabricated vertical draining runway of Kualanamu Airport

    Science.gov (United States)

    Roesyanto; Iskandar, R.; Silalahi, S. A.; Fadliansyah

    2018-02-01

    The method of soil improvement, using the combination of prefabricated vertical drain (PVD) and preloading, was used to accelerate the process of consolidation and the consolidation settlement in the runway of Kualanamu International Airport, which was constructed on the soft soil sediment like silty clay. In this research, the investigated area was the runway of Kualanamu International Airport zone I which had 11 meter-thickness of soft soil. Geotechnic instruments surveyed was settlement plate. Monitoring was done toward the behavior of landfill such as basic soil settlement. The result were compared with the analysis of finite element method of full scale in Mohr-Coulomb model by verifying the vertical drain of asymmetric unit cell and equivalent plane strain unit cell condition. The results of the research showed that there were an interesting behavior between the data in field observation and finite element of Mohr-Coulomb model. It was also found that the result of soil settlement of finite element method of Mohr-Coulomb model was closed to the result of settlement plate monitoring.

  9. Co-relationship between california bearing ratio and index properties of jamshoro soil

    International Nuclear Information System (INIS)

    Iqbal, F.; Kumar, A.; Murtaza, A.

    2018-01-01

    Subgrade is a most important part of a pavement structure, which should have a reasonable stiffness modulus and shear strength. CBR (California Bearing Ratio) test is performed to evaluate stiffness modulus and shear strength of subgrade soils. However, CBR test is laborious and time consuming, particularly when soil is highly plastic like Jamshoro soil. In order to overcome this limitation, it may be appropriate to correlate CBR value of soil with its index properties like grain size analysis, Atterberg limits, and compaction characteristics such as MDD (Maximum Dry Density) and OMC (Optimum Moisture Content). This paper expresses the correlations between CBR value of Jamshoro soil and its index properties. SLRA (Single Linear Regression Analysis) and MLRA(Multiple Linear Regression) based Models were utilized. It is seen that MLRA gave better correlations up to R2 of about 0.984. It is observed that the Soaked CBR value can be predicted with confidence from LL (Liquid Limit), PI (Plasticity Index) and percent finer while the un-soaked CBR value can be obtained from LL, plasticity index and MDD. (author)

  10. Deformations and damage to buildings adjacent to deep excavations in soft soils

    NARCIS (Netherlands)

    Korff, M.

    2009-01-01

    The objective of this study is to gain insight into mechanisms of soil-structure interaction for buildings adjacent to deep excavations and to find a reliable method to design and monitor deep excavations in urban areas with soft soil conditions. The research focuses on typical Dutch conditions. The

  11. Numerical analysis and comparison of three types of herringbone frame structure for highway subgrade slopes protection

    Science.gov (United States)

    Nie, Yihua; Tang, Saiqian; Xu, Yang; Mao, Kunli

    2018-04-01

    In order to obtain mechanical response distribution of herringbone frame structure for highway subgrade slopes protection and select the best structure type, 3D numerical models of three types herringbone frame structure were established and analyzed in finite element software ANSYS. Indoor physical model of soil slope protected by herringbone frame structure was built and mechanical response of the frame structure was measured by loading tests. Numerical results indicate slope foot is the stress most disadvantageous location. Comparative analysis shows that structure composed of mortar rubble base layer and precast concrete blocks paving layer is the best one for resisting deformation and structure with cement mortar base layer and precast concrete blocks paving layer is the best one for being of low stress.

  12. Prediction of stress-strain state of municipal solid waste with application of soft soil creep model

    Directory of Open Access Journals (Sweden)

    Ofrikhter Vadim Grigor'evich

    Full Text Available The deformation of municipal solid waste is a complex process caused by the nature of MSW, the properties of which differ from the properties of common soils. The mass of municipal solid waste shows the mixed behaviour partially similar to granular soils, and partially - to cohesive. So, one of mechanical characteristics of MSW is the cohesion typical to cohesive soils, but at the same time the filtration coefficient of MSW has an order of 1 m/day that is characteristic for granular soils. It has been established that MSW massif can be simulated like the soil reinforced by randomly oriented fibers. Today a significant amount of the verified and well proved software products are available for numerical modelling of soils. The majority of them use finite element method (FEM. The soft soil creep model (SSC-model seems to be the most suitable for modelling of municipal solid waste, as it allows estimating the development of settlements in time with separation of primary and secondary consolidation. Unlike the soft soil, one of the factors of secondary consolidation of MSW is biological degradation, the influence of which is possible to consider at the definition of the modified parameters essential for soft soil model. Application of soft soil creep model allows carrying out the calculation of stress-strain state of waste from the beginning of landfill filling up to any moment of time both during the period of operation and in postclosure period. The comparative calculation presented in the paper is executed in Plaxis software using the soft-soil creep model in contrast to the calculation using the composite model of MSW. All the characteristics for SSC-model were derived from the composite model. The comparative results demonstrate the advantage of SSC-model for prediction of the development of MSW stress-strain state. As far as after the completion of the biodegradation processes MSW behaviour is similar to cohesion-like soils, the demonstrated

  13. Drying shrinkage problems in high-plastic clay soils in Oklahoma.

    Science.gov (United States)

    2013-08-01

    Longitudinal cracking in pavements due to drying shrinkage of high-plastic subgrade soils has been a major : problem in Oklahoma. Annual maintenance to seal and repair these distress problems costs significant amount of : money to the state. The long...

  14. PLUTONIUM FINISHING PLANT (PFP) SUB-GRADE EE/CA EVALUATION OF ALTERNATIVES: A NEW MODEL

    International Nuclear Information System (INIS)

    HOPKINS, A.M.

    2007-01-01

    An engineering evaluation/cost analysis (EE/CA) was performed at the Hanford Site's Plutonium Finishing Plant (PFP). The purpose of the EVCA was to identify the sub-grade items to be evaluated; determine the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) hazardous substances through process history and available data; evaluate these hazards; and as necessary, identify the available alternatives to reduce the risk associated with the contaminants. The sub-grade EWCA considered four alternatives for an interim removal action: (1) No Action; (2) Surveillance and Maintenance (S and M); (3) Stabilize and Leave in Place (Stabilization); and (4) Remove, Treat and Dispose (RTD). Each alternative was evaluated against the CERCLA criteria for effectiveness, implementability, and cost

  15. Use of soft data in a GIS to improve estimation of the volume of contaminated soil

    International Nuclear Information System (INIS)

    Hendriks, L.A.M.; Leummens, H.; Stein, A.; Bruijn, P.J. de

    1998-01-01

    In the practice of soil remediation, organoleptic observations such as the smell or the colour of contaminated soil play an important role when determining well-defined volumes of contaminated soil. A geographical information system (GIS) is then used to combine quantitative measurements with such soft data. In this study general procedures concerning how to deal with this type of observation are presented. The procedures were applied to a former gas works site, which was contaminated with cyanide and polycyclic aromatic hydrocarbons in the Netherlands. The volume of contaminated soil was determined. Use of soft data reduced the uncertainty in the volume of contaminated soil 4 to 16%. 16 refs., 4 figs., 5 tabs

  16. Use of soft data in a GIS to improve estimation of the volume of contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Hendriks, L.A.M.; Leummens, H.; Stein, A.; Bruijn, P.J. de [Agricultural University, Wageningen (Netherlands). Dept. of Soil Science and Geology

    1998-01-01

    In the practice of soil remediation, organoleptic observations such as the smell or the colour of contaminated soil play an important role when determining well-defined volumes of contaminated soil. A geographical information system (GIS) is then used to combine quantitative measurements with such soft data. In this study general procedures concerning how to deal with this type of observation are presented. The procedures were applied to a former gas works site, which was contaminated with cyanide and polycyclic aromatic hydrocarbons in the Netherlands. The volume of contaminated soil was determined. Use of soft data reduced the uncertainty in the volume of contaminated soil 4 to 16%. 16 refs., 4 figs., 5 tabs.

  17. On application of stone filled subgrade construction technique in road construction%填石路基施工技术在公路工程中的应用

    Institute of Scientific and Technical Information of China (English)

    王宁

    2017-01-01

    介绍了填石路基的施工技术与质量控制要点,并以某公路工程为例,从基底施工、路基清理、边坡码砌、摊铺填料、路基平整等方面,阐述了填石路基的施工技术,提高了路基的性能.%The paper introduces the construction technique and quality control points for the stone filled subgrade,take a road project as an example,expounds the construction technique of the filling stone roadbed from the subgrade construction,subgrade cleaning,slope stone stocking,pavement and filling,and subgrade smoothness,so as to improve the performance of the subgrade.

  18. Implementation of centrifuge testing of expansive soils for pavement design.

    Science.gov (United States)

    2017-03-01

    The novel centrifuge-based method for testing of expansive soils from project 5-6048-01 was implemented into : use for the determination of the Potential Vertical Rise (PVR) of roadways that sit on expansive subgrades. The : centrifuge method was mod...

  19. Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

    Directory of Open Access Journals (Sweden)

    Su Young Yu

    2015-03-01

    Full Text Available In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear para- meters of soil models was investigated by Dynamic Embedment Factor (DEF concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

  20. Efficacy of road bond and condor as soil stabilizers : final report.

    Science.gov (United States)

    2013-08-01

    The Oklahoma Department of Transportation (ODOT) uses lime-based stabilizers including quick lime, hydrated lime, Class C fly ash (CFA) and cement kiln dust (CKD) to increase bearing capacity of fine-grained subgrade soils within the state of Oklahom...

  1. Experimental research on creep characteristics of Nansha soft soil.

    Science.gov (United States)

    Luo, Qingzi; Chen, Xiaoping

    2014-01-01

    A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility (Ca/Cc) is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply.

  2. Experimental Research on Creep Characteristics of Nansha Soft Soil

    Directory of Open Access Journals (Sweden)

    Qingzi Luo

    2014-01-01

    Full Text Available A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility Ca/Cc is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply.

  3. Experimental Research on Creep Characteristics of Nansha Soft Soil

    Science.gov (United States)

    Luo, Qingzi; Chen, Xiaoping

    2014-01-01

    A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility C a/C c is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply. PMID:24526925

  4. An Optimized Elasto-Plastic Subgrade Reaction For Modeling The Response Of A Nonlinear Foundation For A Structural Analysis

    Directory of Open Access Journals (Sweden)

    Ray Richard Paul

    2015-09-01

    Full Text Available Geotechnical and structural engineers are faced with a difficult task when their designs interact with each other. For complex projects, this is more the norm than the exception. In order to help bridge that gap, a method for modeling the behavior of a foundation using a simple elasto-plastic subgrade reaction was developed. The method uses an optimization technique to position 4-6 springs along a pile foundation to produce similar load deflection characteristics that were modeled by more sophisticated geotechnical finite element software. The methodology uses an Excel spreadsheet for accepting user input and delivering an optimized subgrade spring stiffness, yield, and position along the pile. In this way, the behavior developed from the geotechnical software can be transferred to the structural analysis software. The optimization is achieved through the solver add-in within Excel. Additionally, a beam on a nonlinear elastic foundation model is used to compute deflections of the optimized subgrade reaction configuration.

  5. Design and performance of subgrade biogeochemical reactors.

    Science.gov (United States)

    Gamlin, Jeff; Downey, Doug; Shearer, Brad; Favara, Paul

    2017-12-15

    Subgrade biogeochemical reactors (SBGRs), also commonly referred to as in situ bioreactors, are a unique technology for treatment of contaminant source areas and groundwater plume hot spots. SBGRs have most commonly been configured for enhanced reductive dechlorination (ERD) applications for chlorinated solvent treatment. However, they have also been designed for other contaminant classes using alternative treatment media. The SBGR technology typically consists of removal of contaminated soil via excavation or large-diameter augers, and backfill of the soil void with gravel and treatment amendments tailored to the target contaminant(s). In most cases SBGRs include installation of infiltration piping and a low-flow pumping system (typically solar-powered) to recirculate contaminated groundwater through the SBGR for treatment. SBGRs have been constructed in multiple configurations, including designs capable of meeting limited access restrictions at heavily industrialized sites, and at sites with restrictions on surface disturbance due to sensitive species or habitat issues. Typical performance results for ERD applications include 85 to 90 percent total molar reduction of chlorinated volatile organic compounds (CVOCs) near the SBGR and rapid clean-up of adjacent dissolved contaminant source areas. Based on a review of the literature and CH2M's field-scale results from over a dozen SBGRs with a least one year of performance data, important site-specific design considerations include: 1) hydraulic residence time should be long enough for sufficient treatment but not too long to create depressed pH and stagnant conditions (e.g., typically between 10 and 60 days), 2) reactor material should balance appropriate organic mulch as optimal bacterial growth media along with other organic additives that provide bioavailable organic carbon, 3) a variety of native bacteria are important to the treatment process, and 4) biologically mediated generation of iron sulfides along with

  6. Stabilisation of clayey soils with high calcium fly ash and cement

    Energy Technology Data Exchange (ETDEWEB)

    S. Kolias; V. Kasselouri-Rigopoulou; A. Karahalios [National Technical University of Athens, Athens (Greece)

    2005-02-01

    The effectiveness of using high calcium fly ash and cement in stabilising fine-grained clayey soils (CL,CH) was investigated in the laboratory. Strength tests in uniaxial compression, in indirect (splitting) tension and flexure were carried out on samples to which various percentages of fly ash and cement had been added. Modulus of elasticity was determined at 90 days with different types of load application and 90-day soaked CBR values are also reported. Pavement structures incorporating subgrades improved by in situ stabilisation with fly ash and cement were analyzed for construction traffic and for operating traffic. These pavements are compared with conventional flexible pavements without improved subgrades and the results clearly show the technical benefits of stabilising clayey soils with fly ash and cement. In addition TG-SDTA and XRD tests were carried out on certain samples in order to study the hydraulic compounds, which were formed.

  7. Influence of Excessive Moisture in the Subgrade on the Durability and Load-Bearing Capacity of Road Pavements

    Science.gov (United States)

    Mieczkowski, P.; Budziński, B.

    2018-05-01

    When well performed, pavement renewal or alteration shall ensure the desired properties of the road during the assumed period of operation. Presence of water in the subgrade can be one of the main factors affecting the structural capacity of pavement and can result in cracking of the bituminous layers, even after a very short period of trafficking. Reconstruction of one of regional roads in Poland has been chosen to serve as an example of inappropriate approach to the problem of the presence of water in the road structure. The project included construction of new layers of pavement and increasing the design life of the whole pavement structure to 4.06 million ESAL of 100 kN (as per the Standard Catalogue of Typical Flexible and Semi-rigid Road Pavement Structures, issue of 1997). After a relatively short period of trafficking (3-5 years) localised alligator cracking appeared on the surface along with structural deformations. The pavement condition assessment including FWD tests was carried out to reveal excessive deflections (over 500 μm) which classify the road for renewal. The analysis of data showed that the main cause of distress was softening of the subgrade caused by an ingress of precipitation water under the pavement layers through the roadway and shoulder edges. The deficiencies of the performed reconstruction occurred both in the roadway (including small step-outs in the cement-treated layer) and partly in the shoulders where the existing soil was in places replaced with impervious material, with the existing (cohesive) material left in place on a major part of the overall length.

  8. Laboratory study on subgrade soil stabilization using RBI grade 81

    Science.gov (United States)

    Cynthia, J. Bernadette; Kamalambikai, B.; Prasanna Kumar, R.; Dharini, K.

    2017-07-01

    The present study investigates the effect of reinforcing the sub grade soils with RBI 81 material. A soil nearby was collected and preliminary tests were conducted to classify the soil and it was found from the results that the sample collected was a poorly graded clay. Subsequently Tests such as Proctor Compaction, CBR, and UCC were conducted to study the various engineering properties of the identified soil. In addition to the above tests were also conducted on the soil by reinforcing with varying percentages of RBI 81. From the analysis of test results it was found that this material (RBI 81) will significantly improve the CBR value of the soil.

  9. Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots.

    Science.gov (United States)

    Belluau, Michaël; Shipley, Bill

    2018-01-01

    Species' habitat affinities along environmental gradients should be determined by a combination of physiological (hard) and morpho-anatomical (soft) traits. Using a gradient of soil water availability, we address three questions: How well can we predict habitat affinities from hard traits, from soft traits, and from a combination of the two? How well can we predict species' physiological responses to drought (hard traits) from their soft traits? Can we model a causal sequence as soft traits → hard traits → species distributions? We chose 25 species of herbaceous dicots whose affinities for soil moisture have already been linked to 5 physiological traits (stomatal conductance and net photosynthesis measured at soil field capacity, water use efficiency, stomatal conductance and soil water potential measured when leaves begin to wilt). Under controlled conditions in soils at field capacity, we measured five soft traits (leaf dry matter content, specific leaf area, leaf nitrogen content, stomatal area, specific root length). Soft traits alone were poor predictors (R2 = 0.129) while hard traits explained 48% of species habitat affinities. Moreover, hard traits were significantly related to combinations of soft traits. From a priori biological knowledge and hypothesized ecological links we built a path model showing a sequential pattern soft traits → hard traits → species distributions and accounting for 59.6% (p = 0.782) of habitat wetness. Both direct and indirect causal relationships existed between soft traits, hard traits and species' habitat preferences. The poor predictive abilities of soft traits alone were due to the existence of antagonistic and synergistic direct and indirect effects of soft traits on habitat preferences mediated by the hard traits. To obtain a more realistic model applicable to a population level, it has to be tested in an experiment including species competition for water supply.

  10. Improvement of Base and Soil Construction Quality by Using Intelligent Compaction Technology : Final Report.

    Science.gov (United States)

    2017-08-01

    Intelligent Compaction (IC) technique is a fast-developing technology for base and soil compaction quality control. Proof-rolling subgrades and bases using IC rollers upon completion of compaction can identify the less stiff spots and significantly i...

  11. Modification of strength properties of soil-aggregate system on ...

    African Journals Online (AJOL)

    Introduction. India is currently having a road network of 4.69 million kilometers. ... National Highways and State Highways, comprising only 3% of total road length, each carrying ... Two types of mixtures are specified in the code for soil – aggregate ..... performance of sabkha subgrade, Building and Environment, Vol. 41, No.

  12. Strength Improvement of Clay Soil by Using Stone Powder

    OpenAIRE

    Ahmed Sameer Abdulrasool

    2015-01-01

    Soil stabilization with stone powder is a good solution for the construction of subgrade for road way and railway lines, especially under the platforms and mostly in transition zones between embankments and rigid structures, where the mechanical properties of supporting soils are very influential. Stone powder often has a unique composition which justifies the need for research to study the feasibility of using this stone powder type for ground improvement applications. This paper presents re...

  13. Field Measurement of Dynamic Compressive Stress Response of Pavement-Subgrade Induced by Moving Heavy-Duty Trucks

    Directory of Open Access Journals (Sweden)

    Lingshi An

    2018-01-01

    Full Text Available This paper presents the dynamic compressive stress response of pavement-subgrade induced by moving heavy-duty trucks. In order to study the distribution characteristic of dynamic pressure of pavement-subgrade in more detail, truck loadings, truck speeds, and dynamic pressure distributions at different depths were monitored under twenty-five working conditions on the section of Qiqihar-Nenjiang Highway in Heilongjiang Province, China. The effects of truck loading, truck speed, and depth on dynamic compressive stress response can be concluded as follows: (1 increasing truck loading will increase the dynamic pressure amplitude of subgrade-pavement and dominant frequencies are close to the characteristic frequencies caused by heavy-duty trucks at the speed of 70 km/h; (2 as truck speed increases, the dynamic pressure amplitudes of measuring points have an increasing tendency; the dynamic pressure spectrums are also significantly influenced by truck speed: the higher the truck speed, the wider the spectrum and the higher the dominant frequencies; (3 as depth increases, the dynamic pressure amplitudes of measuring points decrease rapidly. The influence of the front axle decreases gradually until disappearing and the compressive stress superposition phenomenon caused by rear double axles can be found with increasing depth.

  14. Application of Soft Computing Techniques and Multiple Regression Models for CBR prediction of Soils

    Directory of Open Access Journals (Sweden)

    Fatimah Khaleel Ibrahim

    2017-08-01

    Full Text Available The techniques of soft computing technique such as Artificial Neutral Network (ANN have improved the predicting capability and have actually discovered application in Geotechnical engineering. The aim of this research is to utilize the soft computing technique and Multiple Regression Models (MLR for forecasting the California bearing ratio CBR( of soil from its index properties. The indicator of CBR for soil could be predicted from various soils characterizing parameters with the assist of MLR and ANN methods. The data base that collected from the laboratory by conducting tests on 86 soil samples that gathered from different projects in Basrah districts. Data gained from the experimental result were used in the regression models and soft computing techniques by using artificial neural network. The liquid limit, plastic index , modified compaction test and the CBR test have been determined. In this work, different ANN and MLR models were formulated with the different collection of inputs to be able to recognize their significance in the prediction of CBR. The strengths of the models that were developed been examined in terms of regression coefficient (R2, relative error (RE% and mean square error (MSE values. From the results of this paper, it absolutely was noticed that all the proposed ANN models perform better than that of MLR model. In a specific ANN model with all input parameters reveals better outcomes than other ANN models.

  15. Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils

    International Nuclear Information System (INIS)

    Lottermoser, Bernd G.; Schnug, Ewald; Haneklaus, Silvia

    2011-01-01

    There is a rising need for scientifically sound and quantitative as well as simple, rapid, cheap and readily available soil testing procedures. The purpose of this study was to explore selected soft drinks (Coca-Cola Classic (registered) , Diet Coke (registered) , Coke Zero (registered) ) as indicators of bioaccessible uranium and other trace elements (As, Ce, Cu, La, Mn, Ni, Pb, Th, Y, Zn) in contaminated soils of the Mary Kathleen uranium mine site, Australia. Data of single extraction tests using Coca-Cola Classic (registered) , Diet Coke (registered) and Coke Zero (registered) demonstrate that extractable arsenic, copper, lanthanum, manganese, nickel, yttrium and zinc concentrations correlate significantly with DTPA- and CaCl 2 -extractable metals. Moreover, the correlation between DTPA-extractable uranium and that extracted using Coca-Cola Classic (registered) is close to unity (+ 0.98), with reduced correlations for Diet Coke (registered) (+ 0.66) and Coke Zero (registered) (+ 0.55). Also, Coca-Cola Classic (registered) extracts uranium concentrations near identical to DTPA, whereas distinctly higher uranium fractions were extracted using Diet Coke (registered) and Coke Zero (registered) . Results of this study demonstrate that the use of Coca-Cola Classic (registered) in single extraction tests provided an excellent indication of bioaccessible uranium in the analysed soils and of uranium uptake into leaves and stems of the Sodom apple (Calotropis procera). Moreover, the unconventional reagent is superior in terms of availability, costs, preparation and disposal compared to traditional chemicals. Contaminated site assessments and rehabilitation of uranium mine sites require a solid understanding of the chemical speciation of environmentally significant elements for estimating their translocation in soils and plant uptake. Therefore, Cola soft drinks have potential applications in single extraction tests of uranium contaminated soils and may be used for

  16. Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils

    Energy Technology Data Exchange (ETDEWEB)

    Lottermoser, Bernd G., E-mail: Bernd.Lottermoser@utas.edu.au [School of Earth Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania 7001 (Australia); Schnug, Ewald; Haneklaus, Silvia [Institute for Crop and Soil Science, Federal Institute for Cultivated Plants, Julius Kuehn-Institute (JKI), Bundesallee 50, D-38116 Braunschweig (Germany)

    2011-08-15

    There is a rising need for scientifically sound and quantitative as well as simple, rapid, cheap and readily available soil testing procedures. The purpose of this study was to explore selected soft drinks (Coca-Cola Classic (registered) , Diet Coke (registered) , Coke Zero (registered) ) as indicators of bioaccessible uranium and other trace elements (As, Ce, Cu, La, Mn, Ni, Pb, Th, Y, Zn) in contaminated soils of the Mary Kathleen uranium mine site, Australia. Data of single extraction tests using Coca-Cola Classic (registered) , Diet Coke (registered) and Coke Zero (registered) demonstrate that extractable arsenic, copper, lanthanum, manganese, nickel, yttrium and zinc concentrations correlate significantly with DTPA- and CaCl{sub 2}-extractable metals. Moreover, the correlation between DTPA-extractable uranium and that extracted using Coca-Cola Classic (registered) is close to unity (+ 0.98), with reduced correlations for Diet Coke (registered) (+ 0.66) and Coke Zero (registered) (+ 0.55). Also, Coca-Cola Classic (registered) extracts uranium concentrations near identical to DTPA, whereas distinctly higher uranium fractions were extracted using Diet Coke (registered) and Coke Zero (registered) . Results of this study demonstrate that the use of Coca-Cola Classic (registered) in single extraction tests provided an excellent indication of bioaccessible uranium in the analysed soils and of uranium uptake into leaves and stems of the Sodom apple (Calotropis procera). Moreover, the unconventional reagent is superior in terms of availability, costs, preparation and disposal compared to traditional chemicals. Contaminated site assessments and rehabilitation of uranium mine sites require a solid understanding of the chemical speciation of environmentally significant elements for estimating their translocation in soils and plant uptake. Therefore, Cola soft drinks have potential applications in single extraction tests of uranium contaminated soils and may be used for

  17. Application of a Coupled Eulerian-Lagrangian Technique on Constructability Problems of Site on Very Soft Soil

    Directory of Open Access Journals (Sweden)

    Junyoung Ko

    2017-10-01

    Full Text Available This paper presents the application of the Coupled Eulerian–Lagrangian (CEL technique on the constructability problems of site on very soft soil. The main objective of this study was to investigate the constructability and application of two ground improvement methods, such as the forced replacement method and the deep mixing method. The comparison between the results of CEL analyses and field investigations was performed to verify the CEL modelling. The behavior of very soft soil and constructability with methods can be appropriately investigated using the CEL technique, which would be useful tools for comprehensive reviews in preliminary design.

  18. Stabilisasi Tanah Liat Dengan Kapur Pada Konstruksi Badan Jalan Hutan Di Pulau Laut

    OpenAIRE

    Suparto, Rahardjo S; Sutopo, S

    1984-01-01

    Subgrade construction is an important part in forest road building, Subgrade soils with a high clay content could not be used satisfactorily as forest road construction material unless it is treated to increase its stability. The improvement of the physical characteristics of clay soils related to subgrade construction can be achieved by mixing lime of certain proportion into the soil. The purpose of this investigation is to determine the amount of lime required for s...

  19. Application of Electrokinetic Stabilisation (EKS) Method for Soft Soil: A Review

    Science.gov (United States)

    Azhar, ATS; Azim, MAM; Syakeera, NN; Jefferson, IF; Rogers, CDF

    2017-08-01

    Soil properties such as low shear strength, excessive compression, collapsing behavior, high swell potential are some of the undesirable properties of soils in geotechnical engineering and those properties would cause severe distress to the structures. To solve these, an innovative stabilization of Electrokinetic (EKS) has been introduced. Electrokinetic is an applicable technique to transport charged particles and fluid in an electric potential. The EKS demonstrates changes in soil pH due to electrolysis reactions, water flow between the electrodes and migration of ions towards the cathode. This treatment has proven its efficiency in consolidating organic, peat and clayey silt as well as less expensive than other methods. Otherwise, this method also gives advantage by not disturbing site. The primary objective of this review is to discuss the application of electrokinetic and to investigate the current knowledge of electrokinetic in geotechnical application through a literature search and review, including consideration of certain aspects related to the soft soil application that may be relevant to the future study and at the same time addressing some key issues and their implications on soil behaviors.

  20. Soft soils reinforced by rigid vertical inclusions

    Directory of Open Access Journals (Sweden)

    Iulia-Victoria NEAGOE

    2013-12-01

    Full Text Available Reinforcement of soft soils by rigid vertical inclusions is an increasingly used technique over the last few years. The system consists of rigid or semi-rigid vertical inclusions and a granular platform for the loads transfer from the structure to the inclusions. This technique aims to reduce the differential settlements both at ground level as below the structure. Reinforcement by rigid inclusions is mainly used for foundation works for large commercial and industrial platforms, storage tanks, wastewater treatment plants, wind farms, bridges, roads, railway embankments. The subject is one of interest as it proves the recently concerns at international level in research and design; however, most studies deal more with the static behavior and less with the dynamic one.

  1. Use of coal fly ash and other waste products in soil stabilization and road construction-including non-destructive testing of roadways.

    Science.gov (United States)

    2012-02-01

    An extensive laboratory testing program was performed on subgrade soils stabilized using fly ash and lime kiln dust. The laboratory : program included measurements of: compaction curves, small strain elastic moduli, resilient modulus (Mr), Briaud Com...

  2. Use of coal fly ash and other waste products in soil stabilization and road construction including non-destructive testing of roadways.

    Science.gov (United States)

    2012-06-01

    An extensive laboratory testing program was performed on subgrade soils stabilized using fly ash and : lime kiln dust. The laboratory program included measurements of: compaction curves, small strain elastic moduli, : resilient modulus (Mr), Briaud C...

  3. Experimental Study on Vacuum Dynamic Consolidation Treatment of Soft Soil Foundation

    Science.gov (United States)

    Fu-lai, Ni; Xin, Wen; Xiao-bin, Zhang; Wei, Li

    2017-11-01

    In view of the deficiency of the saturated silt clay foundation reinforced by the dynamic consolidation method, combination the project of soft foundation treatment test area in Tangshan, the reaserch analysed indexes, included groundwater level, pore water pressure, settlement about soil layer and so on, by use of field tests and indoor geotechnical tests, The results showed that the whole reinforcement effect with vacuum dynamic compaction method to blow fill foundation is obvious, due to the result of vacuum precipitation, generally, the excess pore water pressure can be dissipated by 90% above in 2 days around and the effective compaction coefficient can reached more than 0.9,the research work in soft foundation treatment engineering provide a new method and thought to similar engineering.

  4. Evaluation of AM2 2 1 Lay Pattern Over a 25 CBR Subgrade

    Science.gov (United States)

    2018-04-30

    Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199 Final...which no subgrade maintenance is required during expeditionary operations. Recent investigations showed that the 2-1 configuration significantly... maintenance requirements for F-15E and C-17 operations. DISCLAIMER: The contents of this report are not to be used for advertising, publication

  5. Analysis of water and nitrogen use efficiency for maize (Zea mays L.) grown on soft rock and sand compound soil.

    Science.gov (United States)

    Wang, Huanyuan; Han, Jichang; Tong, Wei; Cheng, Jie; Zhang, Haiou

    2017-06-01

    Maize was grown on compound soils constituted from mixtures of soft rock and sand at different ratios, and water use efficiency (WUE), nitrogen use efficiency (NUE) and fertilizer nitrogen use efficiency (FNUE) were quantified. The data were used to assist in designing strategies for optimizing water and nitrogen management practices for maize on the substrates used. Maize was sown in composite soil prepared at three ratios of soft rock and sand (1:1, 1:2 and 1:5 v/v) in Mu Us Sandy Land, Yuyang district, Yulin city, China. Yields, amount of drainage, nitrogen (N) leaching, WUE and NUE were calculated. Then a water and nitrogen management model (WNMM) was calibrated and validated. No significant difference in evapotranspiration of maize was found among compound soils with soft rock/sand ratios of 1:1, 1:2 and 1:5, while water drainage increased significantly with increasing soft rock/sand ratio. WUE increased to 1.30 kg m -3 in compound soil with 1:2 soft rock/sand ratio. Nitrogen leaching and ammonia volatilization were the main reason for nitrogen loss, and N reduction mainly relied on crop uptake. NUE and FNUE could reach 33.1 and 24.9 kg kg -1 N respectively. Water drainage and nitrogen leaching occurred mostly during heavy rainfall or irrigation. Through a scenario analysis of different rainfall types, water and fertilizer management systems were formulated each year. This study shows that soft rock plays a key role in improving the WUE, NUE and FNUE of maize. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. A contribution to the better understanding of swelling in soils and soft rocks

    Directory of Open Access Journals (Sweden)

    Ana Petkovšek

    2010-12-01

    Full Text Available Swelling and shrinkage of sediments rich with clay belong to geologically conditioned risk factors. Economicloss as the consequence of volume changes in the geological catchment area of buildings and infrastructuralobjects is immense. Untimely detected swelling causes higher prices and unnecessary delays during the construction.In those cases when deep cuts and underground spaces are used as intervention into highly preconsolidatedsoils and soft rock with clay contents, failures of embankments and improperly designed supporting measures dueto swelling are not infrequent. Also periodic appearance of landslides at certain areas can be the consequence ofswelling. Some countries, such as the USA, introduced the guidelines and standards for the detection, assessmentand handling with swellable geological materials decades ago. Due to some other more urgent geologically conditionedrisks, such as landslides, earthquakes and constructions on soft ground, in Slovenia the development ofknowledge in the area of swelling soils was several years behind the knowledge in the rest of the world. With theconstruction of the Slovenian-Hungarian railway connection after 1998, motorways and the introduction of newknowledge about soil suction, also Slovenian experts were introduced to a different dimension of the problem ofswelling soils, as well as some important experiences were learned and new possibilities for the investigation andunderstanding of volume behaviour of swelling soils were opened. This is especially important for the predictedweather extremes, as only adequate knowledge will allow us to adequately explain any new phenomena in theground and prepare appropriate protection.

  7. Bearing Capacity of the Working Platform with Kinematic Method

    Directory of Open Access Journals (Sweden)

    Białek Katarzyna

    2015-03-01

    Full Text Available Bearing capacity of the working platform for heavy tracks was analysed using Distinct Layout Optimization (DLO method. The platform layer constructed from cohesionless soils is resting on weak cohesive subgrade. Different thickness of the platform, its effective angle of internal friction and undrained shear strength of the soft soil were taken into consideration. Kinematic method permits different failure mechanisms to be analyzed. Margin of safety for a given load and subsoil conditions was determined using two approaches: increasing the load or decreasing the shear strength up to failure. The results were compared with solution proposed in BRE recommendations.

  8. Bearing Capacity of Footings on Thin Layer of Sand on Soft Cohesive Soil

    DEFF Research Database (Denmark)

    Philipsen, J.; Sørensen, Carsten S.

    2004-01-01

    This paper contains the results of some numerical calculations performed with the aim to determine the bearing capacities of footings placed on a thin layer of sand underlain by soft cohesive soil. During the last 30-35 years different analytical and empirical calculation methods for this situation...... prepared model tests made in laboratories....

  9. Soft soil strengthening by stone columns: case of the embankment under the bridge “Moulay Youssef” (Rabat/Salé

    Directory of Open Access Journals (Sweden)

    Nehab Noura

    2014-04-01

    Full Text Available The soil is generally a heterogeneous material presenting very variable characteristics. In a general way, the main problems related to soils are: low bearing capacity, deformations under static or dynamic loads, large displacements and large settlements of soft soil where the soil moves according to a fixed ground water table. The development of soil mechanics and geotechnical engineering has led to the amelioration of a wide range of soil improvement techniques. These techniques consist in modifying the characteristics of the ground by physical action or by incorporating columnar inclusions made of highly compacted gravel or granular material into the original soil. Stone column is one of the soft ground improvement methods, applicable to a wide range of soil strata and an economical method of support in compressible and cohesive soils. However, there are many difficulties in quantitative analysis of soil column interaction due to the fact that bearing capacity and consolidation behavior of stone column-mat foundation system is affected by various parameters. In the present study, mechanism and various parameters of stone column behavior are investigated by loading tests. Also, tests results are compared to the finite element numerical modeling “Plaxis 2D” (case study: the embankment under the bridge “Moulay Youssef, Rabat/Salé”.

  10. Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils.

    Science.gov (United States)

    Lottermoser, Bernd G; Schnug, Ewald; Haneklaus, Silvia

    2011-08-15

    There is a rising need for scientifically sound and quantitative as well as simple, rapid, cheap and readily available soil testing procedures. The purpose of this study was to explore selected soft drinks (Coca-Cola Classic®, Diet Coke®, Coke Zero®) as indicators of bioaccessible uranium and other trace elements (As, Ce, Cu, La, Mn, Ni, Pb, Th, Y, Zn) in contaminated soils of the Mary Kathleen uranium mine site, Australia. Data of single extraction tests using Coca-Cola Classic®, Diet Coke® and Coke Zero® demonstrate that extractable arsenic, copper, lanthanum, manganese, nickel, yttrium and zinc concentrations correlate significantly with DTPA- and CaCl₂-extractable metals. Moreover, the correlation between DTPA-extractable uranium and that extracted using Coca-Cola Classic® is close to unity (+0.98), with reduced correlations for Diet Coke® (+0.66) and Coke Zero® (+0.55). Also, Coca-Cola Classic® extracts uranium concentrations near identical to DTPA, whereas distinctly higher uranium fractions were extracted using Diet Coke® and Coke Zero®. Results of this study demonstrate that the use of Coca-Cola Classic® in single extraction tests provided an excellent indication of bioaccessible uranium in the analysed soils and of uranium uptake into leaves and stems of the Sodom apple (Calotropis procera). Moreover, the unconventional reagent is superior in terms of availability, costs, preparation and disposal compared to traditional chemicals. Contaminated site assessments and rehabilitation of uranium mine sites require a solid understanding of the chemical speciation of environmentally significant elements for estimating their translocation in soils and plant uptake. Therefore, Cola soft drinks have potential applications in single extraction tests of uranium contaminated soils and may be used for environmental impact assessments of uranium mine sites, nuclear fuel processing plants and waste storage and disposal facilities. Copyright © 2011 Elsevier

  11. A comparative study of soil-structure interaction in the case of frame structures with raft foundation

    Directory of Open Access Journals (Sweden)

    Móczár Balázs

    2016-06-01

    Full Text Available Design and modelling of raft foundations and selecting the value of coefficient of vertical subgrade reaction are still actively discussed topics in geotechnical and structural engineering. In everyday practice, soil–structure interaction is mostly taken into account by using the theory of ‘beam on elastic foundation’, in which the soil is substituted by a certain set of coefficients of subgrade reaction. In this study, finite element analysis of a building was performed using a geotechnical software (Plaxis 3D, which is capable of modelling the subsoil as a continuum, and a structural software (Axis VM, which uses the concept of ‘beam on elastic foundation’. The evaluation of the results and recommendations for everyday engineering practice are introduced in this paper.

  12. Effects of Rice Husk Ash on Some Geotechnical Properties of Lateritic Soil

    Directory of Open Access Journals (Sweden)

    Fidelis O. OKAFOR

    2009-12-01

    Full Text Available The study is an investigation into the effect of RHA on some geotechnical properties of a lateritic soil classified as A-2-6 (0 or SW for sub-grade purposes. The investigation includes evaluation of properties such as compaction, consistency limits and strength of the soil with RHA content of 5%, 7.5%, 10% and 12.5% by weight of the dry soil. The results obtained show that the increase in RHA content increased the OMC but decreased the MDD. It was also discovered that increase in RHA content, reduced plasticity and increased volume stability as well as the strength of the soil. 10% RHA content was also observed to be the optimum content.

  13. AN APPROACH TO CHARACTERIZING and EVALUATING ALTERNATIVES FOR THE DECOMMISSIONING OF SUB-GRADE STRUCTURES AT THE PLUTONIUM FINISHING PLANT

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; KLOS, D.B.

    2007-01-01

    In 2002, the Richland Operations Office (RL) of the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) developed milestones for transitioning the Plutonium Finishing Plant (PFP) facility to a clean slab-on-grade configuration. These milestones required developing an engineering evaluation/cost analysis (EF/CA) for the facility's sub-grade structures and installations as part of a series of evaluations intended to provide for the transition of the facility to a clean slab-on-grade configuration. In addition to supporting decisions for interim actions, the analyses of sub-grade structures and installations performed through this EE/CA will contribute to the remedial investigation feasibility study(ies) and subsequently to the final records of decision for the relevant operable units responsible for site closure in the 200 West Area of the Hanford Site

  14. CONSTRUCTION OF A NEW HIGHWAY EMBANKMENT ON THE SOFT CLAY SOIL TREATMENT BY STONE COLUMNS IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    QASIM A. ALJANABI

    2013-08-01

    Full Text Available To continue of the second phase of the East Coast Expressway between Kuantan and Kula Terengganu in Malaysia system innovative solution are required. In this new phase there are embankment region has been subjected to extensive soft clay soil. These comprise typically of clayey silts of very high water content and undrained shear strengths in the range of 8 to 11 kPa to depths of up to 8m. To support an embankment height of up to 12 m, were filled and thereafter Vibro Replacement treatment was carried out to treat the very soft soil. Extensive instrumentation using rod settlement gauges, inclinometers and piezometers were installed to monitor the performance of the Vibro Replacement treatment. This paper reports on aspects of design, installation and the measured results from the instrumentation scheme.

  15. Evaluation of the effects of enzyme-based liquid chemical stabilizers on subgrade soils

    CSIR Research Space (South Africa)

    Mgangira, Martin B

    2009-07-01

    Full Text Available The purpose of this study was to asses the strength of enzyme treated soil material. Thus the aim of the paper is to present laboratory results on the effects of two enzyme-based liquid chemicals as soil stabilizers. Soil samples were prepared...

  16. Challenges in Construction Over Soft Soil - Case Studies in Malaysia

    Science.gov (United States)

    Mohamad, N. O.; Razali, C. E.; Hadi, A. A. A.; Som, P. P.; Eng, B. C.; Rusli, M. B.; Mohamad, F. R.

    2016-07-01

    Construction on soft ground area is a great challenge in the field of geotechnical engineering. Many engineering problems in the form of slope instability, bearing capacity failure or excessive settlement could occur either during or after the construction phase due to low shear strength and high compressibility of this soil. As main technical agencies responsible for implementation of development projects for Government of Malaysia, Public Works Department has vast experience in dealing with this problematic soil over the years. This paper discussed and elaborate on the engineering problems encountered in construction projects that have been carried out by PWD, namely Core Facilities Building of Polytechnic Kota Kinabalu in Sabah and Hospital Tengku Ampuan Rahimah Integration Quarters in Klang, Selangor. Instability of the ground during construction works had caused delay and cost overrun in completion of the project in Selangor, whereas occurrence of continuous post construction settlement had affected the integrity and serviceability of the building in Sabah. The causes of failure and proposed rehabilitation work for both projects also will be discussed in brief.

  17. Improvement in engineering properties of soft-soil using cement and lime additives: A case study of southern Vietnam

    Science.gov (United States)

    To-Anh Phan, Vu; Ngoc-Anh Pham, Kha

    2018-04-01

    This paper presents the experimental results of using two additives to improve natural soft soil properties in southern Vietnam (i.g., cement and cement-lime mixture). The specimens were prepared by compacting method. Firstly, the natural soil was mixed with cement or cement-lime to determine the optimum water contents of various additive contents. Then, optimum water content was used to produce samples to test some engineering properties such as unconfined compressive strength, splitting tensile strength, and Young’s modulus. The specimens were tested by various curing duration of 7, 14, and 28 days. Results indicated that using cement additive is suitable for improvement of soft soil in the local area and cement-soil stabilization can be replaced as the subbase layer of the flexible pavement according to current Vietnamese standard. In addition, a higher cement content has a greater compressive strength as well as tensile strength. Besides, the Young’ modulus has significantly increased with a long-term curing age and more cement content. No evidences of increasing in strength and modulus are found with the cement-lime-soil stabilization. Finally, the best-fit power function is established by the relationships between unconfined compressive strength and splitting tensile strength as well unconfined compressive strength and Young’s Modulus, with the coefficient of determination, R2>0.999.

  18. A bayesian nework based risk model for volume loss in soft soils in mechanized bored tunnels

    NARCIS (Netherlands)

    Chivatá Cárdenas, Ibsen; Al-Jibouri, Saad H.S.; Halman, Johannes I.M.

    2012-01-01

    Volume loss is one of the most important risks when boring a tunnel. This is particularly true when a tunnel is being constructed in soft soils. The risk of excessive volume loss, if materialised can lead to large consequences such as damage in buildings on the surface. This paper describes the

  19. Compressibility of soft Iraqi soil stabilized with traditional Iraqi stabilizers (cement and lime

    Directory of Open Access Journals (Sweden)

    Baqir Husam

    2018-01-01

    Full Text Available This study shows an improvement of two types of clay soil brought from different parts of Iraq. The first soil (A from Al - Zaafaraniya site in Baghdad governorate. The second soil (B from Garma Ali site in the Al Basra governorate, Iraq. Soft clayey soils were treated by a combination of sulphate resistance Portland cement (PC and Quicklime (LQ to modify and stability. PC was added in percentages of 2,4,6,8 and 10%, as well as, LQ was added to 2 and 4%, of dry weight. Laboratory tests to determine specific gravity, Atterbergs limits and standard proctor test were conducted. Also, the main objective of this research is the concentrating on compression ratio (CR, the Rebound (Swelling ratio (RR and the stiffness during the modulus of elasticity (Es for treated and natural soils procreation from consolidation test. The results from laboratory tests shows high ability on the enhancing in terms of reduction in plasticity index (greatly increased workability, reduction in compression ratio (CR, reduction in the Rebound (Swelling ratio (RR, increase in the modulus of elasticity (Es. The change in moisture-density relationships resulting in lower maximum dry densities, higher optimum water content, and less variation of dry density from the maximum over a much wider range of water contents.

  20. Study of the behavior of a reinforced embankment supported on alluvial soft soil - doi: 10.4025/actascitechnol.v35i4.16046

    Directory of Open Access Journals (Sweden)

    João Alexandre Paschoalin Filho

    2013-10-01

    Full Text Available This paper presented a study on the behavior of an embankment, 5.0 m high, reinforced with geogrids, and constructed over a soft soil 7.0 m thick. In order to determine the design strength (Td of the reinforcement, it was carried out a limit equilibrium analysis using the following methods: Simplified Bishop (1955 and Corrected Janbu (1954, for the hypothesis of circular and non circular slip surfaces respectively. In order to verify the behavior of the reinforced embankment, finite element analyses were performed using the software Phase2. Therefore, this work presented the determination of the reinforcement load design, verification of the magnitude of reinforcement strains, determination of the plastification zones in the foundation soil due to the elevation of the compacted soil, and values of distortion and horizontal displacement of the soft soil and mechanism of mobilization of reinforcement load.   

  1. Huygens' Principle: The capture of seismic energy by a soft soil layer

    Science.gov (United States)

    Lomnitz, Cinna; Meas, Yunny

    2004-07-01

    Possible nonlinear coupling in surface waves is described at the Texcoco Array (TXC) in Mexico City. Shear-coupled surface waves may be caused by interaction between Rayleigh modes in the basement and resonant shear modes in the uppermost mud layer. Large-amplitude, monochromatic wave trains of long duration appear to be modulated by the fundamental mode of the mud layer. Particle motion features frequent reversals from prograde to retrograde ground motion. Earthquake damage in Mexico City might be related to unrecognized effects related to nonlinear coupling in soft-soil conditions.

  2. Experimental Study on Fatigue Performance of Foamed Lightweight Soil

    Science.gov (United States)

    Qiu, Youqiang; Yang, Ping; Li, Yongliang; Zhang, Liujun

    2017-12-01

    In order to study fatigue performance of foamed lightweight soil and forecast its fatigue life in the supporting project, on the base of preliminary tests, beam fatigue tests on foamed lightweight soil is conducted by using UTM-100 test system. Based on Weibull distribution and lognormal distribution, using the mathematical statistics method, fatigue equations of foamed lightweight soil are obtained. At the same time, according to the traffic load on real road surface of the supporting project, fatigue life of formed lightweight soil is analyzed and compared with the cumulative equivalent axle loads during the design period of the pavement. The results show that even the fatigue life of foamed lightweight soil has discrete property, the linear relationship between logarithmic fatigue life and stress ratio still performs well. Especially, the fatigue life of Weibull distribution is more close to that derived from the lognormal distribution, in the instance of 50% guarantee ratio. In addition, the results demonstrated that foamed lightweight soil as subgrade filler has good anti-fatigue performance, which can be further adopted by other projects in the similar research domain.

  3. Characterizing shear properties of fine-grained subgrade soils under large capacity construction equipment

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2010-06-01

    Full Text Available properties including friction angle and cohesion for strength properties and shear modulus of the soil at three moisture states. Mohr-Coulomb failure models were developed together with shear modulus correlations for the soil sample. These models can be used...

  4. Improvement of the Assignment Methodology of the Approach Embankment Design to Highway Structures in Difficult Conditions

    Science.gov (United States)

    Chistyy, Y.; Kuzakhmetova, E.; Fazilova, Z.; Tsukanova, O.

    2018-03-01

    Design issues of junction of bridges and overhead road with approach embankment are studied. The reasons for the formation of deformations in the road structure are indicated. Activities to ensure sustainability and acceleration of the shrinkage of a weak subgrade approach embankment are listed. The necessity of taking into account the man-made impact of the approach embankment on the subgrade behavior is proved. Modern stabilizing agents to improve the properties of used soils in the embankment and the subgrade are suggested. Clarified methodology for determining an active zone of compression in the subgrade under load from the weight of the embankment is described. As an additional condition to the existing methodology for establishing the lower bound of the active zone of compression it is offered to accept the accuracy of evaluation of soil compressibility and determine shrinkage.

  5. Light Weight Deflectometer (LWD)

    OpenAIRE

    Siddiki, Nayyar Zia

    2012-01-01

    Light weight deflectometer (LWD) has been widely used for quality assurance in road construction, in particular compaction of both chemically treated subgrade soil and aggregate subbase. However, it has been recognized that LWD measurements vary with many factors. Based on LWD tests in actual road construction, this presentation provides updated information on the LWD deflection measurements for both chemically treated subgrade soil and aggregate subbase.

  6. The Physical Behavior of Stabilised Soft Clay by Electrokinetic Stabilisation Technology

    Science.gov (United States)

    Azhar, A. T. S.; Nordin, N. S.; Azmi, M. A. M.; Embong, Z.; Sunar, N.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Electrokinetic Stabilisation (EKS) technology is the combination processes of electroosmosis and chemical grouting. This technique is most effective in silty and clayey soils where the hydraulic conductivity is very low. Stabilising agents will assist the EKS treatment by inducing it into soil under direct current. The movement of stabilising agents into soil is governed by the principle of electrokinetics. The aim of this study is to evaluate the physical behavior of soft soil using the EKS technology as an effective method to strengthen soft clay soils with calcium chloride (CaCl2) as the stabilising agent. Stainless steel plates were used as the electrodes, while 1.0 mol/l of CaCl2 was used as the electrolyte that fed at the anode compartment. Soft marine clay at Universiti Tun Hussein Onn Malaysia was used as the soil sample. The EKS treatment was developed at Research Centre for Soft Soil (RECESS), UTHM with a constant voltage gradient (50 V/m) in 21 days. The result shows that the shear strength of treated soil was increased across the soil sample. The treated soil near the cathode showed the highest value of shear strength (24.5 – 33 kPa) compared with the anode and in the middle of the soil sample.

  7. Statistical Estimation of Subgrade Reaction Coefficient For Horizontally Loaded Piles

    International Nuclear Information System (INIS)

    Honjo, Yusuke; Zaika, Yulvi; Pokharel, Gyaneswor

    2002-01-01

    Appropriate horizontal subgrade reaction (k h ) is required to evaluate stress and displacement in horizontal loading pile. In order to obtain more accurate prediction of pile behavior, statistical analysis is employed. Based on 21 data set gathered on horizontal loading piles, inverse analysis and regression analysis are carried out. The main value and uncertainty are obtained by inverse analysis, could be employed in the regression analysis. The relationship between the lateral resistant constant (k c ) and SPT N value takes into account in correlated and uncorrelated condition. The results are compared with Port and Harbor Technical Research Institute (JPHA, 1999) and Japan Highway Bridge Specification IV (JRA, 1996). The computed values are found to be very close to the JPHA line and within the range of JRA lines in diameter 0.5 m and 2 m

  8. Settlement Control of Soft Ground using Cement-Ricehusk Stabilization

    Directory of Open Access Journals (Sweden)

    Mokhtar M.

    2012-01-01

    Full Text Available Cement is widely used for improvement of soft soils, but financial and environmental concerns are causing genuine concerns to all parties, leading to the quest for alternative and effective stabilizers. Ricehusk is an agricultural waste in Malaysia, commonly disposed of by open burning or dumping in landfills. Considering that the ashes derived from ricehusk are pozzolanic in nature, there is a possibility that a cement-ricehusk mixture could effectively improve soft soils with reduced cement dosage. This study examines the mixture’s effectiveness by monitoring the settlement reduction in a clay soil. Standard oedometer tests were carried out on a soft marine clay sample admixed with cement-ricehusk. Test specimens contained 0-10% cement and 0-5% of ricehusk respectively, and were left to cure for either seven or 28 days. The stabilized specimens were observed to undergo significant reduction in compressibility, verifying the potential of cement-ricehusk as an alternative soft soil stabilizer.

  9. Effect of soil-foundation-structure interaction on the seismic response of wind turbines

    Directory of Open Access Journals (Sweden)

    Sam Austin

    2017-09-01

    Full Text Available Soil-foundation-structure interaction can affect the seismic response of wind turbines. This paper studies the effects of soil-foundation-structure interaction on the seismic response of 65 kW, 1 MW, and 2 MW horizontal-axis wind turbines with truncated cone steel towers. Four types of foundations with frequency-based design were analyzed, including spread foundation, mono pile, pile group with cap, and anchored spread foundation. Soil is modeled both implicitly (subgrade reaction modulus and explicitly. The finite element model developed using the ANSYS program was first validated using experimental data. Numerical models are then analyzed in both frequency and time domains using the Block Lanczos and generalized HHT-α formulations. Recommendations were given to simplify the soil-foundation-structure interaction analysis of wind turbines subjected to seismic loading.

  10. THE BASING OF STABILIZATION PARAMETERS OF A FORTIFIED RAILWAY BED

    Directory of Open Access Journals (Sweden)

    V. D. Petrenko

    2014-12-01

    Full Text Available Purpose. The article is devoted to stabilization parameters determination of reinforced railway bed. At the present time, the railway plays the leading role in transport system to ensure the needs of freight and passenger traffic. In modern conditions railway operation concentrates on ensuring the necessary level of track reliability, including the roadbed, this is one of the main elements of road structures. The purpose of this article is the determination of basic parameters of stress-strain state to stabilize the soil subgrade embankment by reinforced materials. Methodology. To achieve this goal the following tasks of researches were solved: the effect of reinforcing layer of geomaterial on deformation properties of soil subgrade in various design of strengthening was investigated, the distributions of stresses in the subgrade were determined, reinforced of geomaterials under state load. Experimental studies to explore the nature of the deformation model subgrade at various degrees of stress were carried out. Findings. The analysis of the results of performed experimental and theoretical studies permitted to do the following conclusions. In conducting researches determined the distribution of stresses in the subgrade reinforced geomaterials under static load. The complex of experimental studies allows exploring the nature of the deformation model subgrade at various degrees of stress. Originality. On the basis of the theoretical studies have been regarded the problem of determining the stress-strain state of subgrade reinforced geomaterials by measuring stresses in its application for step loads. Practical value. The practical value was presented by the results of evaluating the effect of reinforcing way for changing the stress-strain state of subgrade.

  11. CLAY SOIL STABILISATION USING POWDERED GLASS

    Directory of Open Access Journals (Sweden)

    J. OLUFOWOBI

    2014-10-01

    Full Text Available This paper assesses the stabilizing effect of powdered glass on clay soil. Broken waste glass was collected and ground into powder form suitable for addition to the clay soil in varying proportions namely 1%, 2%, 5%, 10% and 15% along with 15% cement (base by weight of the soil sample throughout. Consequently, the moisture content, specific gravity, particle size distribution and Atterberg limits tests were carried out to classify the soil using the ASSHTO classification system. Based on the results, the soil sample obtained corresponded to Group A-6 soils identified as ‘fair to poor’ soil type in terms of use as drainage and subgrade material. This justified stabilisation of the soil. Thereafter, compaction, California bearing ratio (CBR and direct shear tests were carried out on the soil with and without the addition of the powdered glass. The results showed improvement in the maximum dry density values on addition of the powdered glass and with corresponding gradual increase up to 5% glass powder content after which it started to decrease at 10% and 15% powdered glass content. The highest CBR values of 14.90% and 112.91% were obtained at 5% glass powder content and 5mm penetration for both the unsoaked and soaked treated samples respectively. The maximum cohesion and angle of internal friction values of 17.0 and 15.0 respectively were obtained at 10% glass powder content.

  12. Analysis of the soil reinforcement by using geotextile on the pile of Medan - Kualanamu of highway project (STA 35 + 901) with the finite element method

    Science.gov (United States)

    Puji Hastuty, Ika; Roesyanto; Manulang, Agave

    2018-02-01

    Consolidation is the process of discharge of water from the soil through pore cavity. Poor subgrade condition which is in the form of plates, is necessary to be repaired so that the subgrade will be able to support the load of construction. One method used as soil improvement is by geotextile. The type of geotextile used on the road construction project (STA 35 + 901) Medan Kualanamu freeway is PP woven polypropleen geotextile. This study aims to determine the magnitude of the settlement, horizontal deformation, tensile strength of geotextile by using finite element method that affect the length of time the land decline to reach 90% consolidation or in other words does not decrease again or is considered zero. The results obtained from the calculation of this study obtained a decrease that occurred using geotextile with finite element method of 0.45 m, the horizontal deformation obtained by using the most extreme elemental method with geotextile was 0.08 m while the horizontal deformation occurring with no geotextile was 0.09 m and the tensile stress obtained by the geotextile tensile stress calculation was 19.51 KN/m2.

  13. Jute geotextiles and their applications in civil engineering

    CERN Document Server

    Sanyal, Tapobrata

    2017-01-01

    This book presents a first-of-its-kind exposition on the emerging technology of jute fibre geotextiles. The book covers the characteristics of jute fibre and jute yarns, types and functions of jute geotextiles, and the mechanism of control of surficial soil with jute geotextiles. The content also includes applications such as the mechanisms of functioning of jute geotextiles in strengthening road sub-grade and controlling river bank erosion, stabilization of earthen embankments, management of settlement of railway tracks, and consolidation of soft soil by use of pre-fabricated vertical jute drains (PVJD). Geotextile standards, properties and test methods, variants of jute geotextiles, economical and environmental advantages in different applications are covered along with a few case studies. A chapter on soil basics is included to enable clearer understanding of soil mechanisms. The book can be used as a reference work or as primary or supporting text for graduate and professional coursework. It will also pro...

  14. Excavation-caused extra deformation of existing masonry residence in soft soil region

    Science.gov (United States)

    Tang, Y.; Franceschelli, S.

    2017-04-01

    Growing need for construction of infrastructures and buildings in fast urbanization process creates challenges of interaction between buildings under construction and adjacent existing buildings. This paper presents the mitigation of contradiction between two parties who are involved the interaction using civil engineering techniques. Through the in-depth analysis of the results of monitoring surveys and enhanced accuracy and reliability of surveys, a better understanding of the behavior of deformable buildings is achieved. Combination with the original construction documents, the two parties agree that both of them are responsible for building damages and a better understanding for the rehabilitation of the existing buildings is focused on. Two cases studies are used to demonstrate and describe the importance of better understanding of the behavior of existing buildings and their rehabilitations. The objective of this study is to insight into mechanisms of soil-structure interaction for buildings adjacent to deep excavations, which can result in a damage in existing masonry residence, and to take the optimized measures to make deep excavations safety and economic and adjacent buildings keep good serviceability in urban areas with soft soil conditions.

  15. Three-dimensional modelling of an embankment built on a soft soil improved with prefabricated vertical drains

    OpenAIRE

    Venda Oliveira, P.J.; Cruz, R.F.P.M.L.; Lemos, L.J.L.; Almeida e Sousa, J.N.V.

    2015-01-01

    This work compares the field measurements of a non-symmetric embankment built on a Portuguese soft soil improved with prefabricated vertical drains (PVDs), with the numerical predictions of a 3D modelling where the PVDs are simulated according to the field flow conditions. The change in the permeability with the void ratio and the effect of the smear zone are also included in the numerical analysis. The numerical predictions are compared with the field data in terms of settlement, horizontal ...

  16. Validation and refinement of chemical stabilization procedures for pavement subgrade soils in Oklahoma : volume I.

    Science.gov (United States)

    2011-07-01

    Additions of byproduct chemicals, such as fly ash or cement kiln dust, have been shown to increase the unconfined compression strength (UCS) of soils. To be considered effective, the soil must exhibit a strength increase of at least 50 psi. Many curr...

  17. Effect of drains on the seepage of contaminants from subgrade tailings disposal areas

    International Nuclear Information System (INIS)

    Witten, A.J.; Pin, F.G.; Sharp, R.D.

    1984-01-01

    A numerical simulation study is performed to investigate the influence of ponded water and a bottom drain on the pathways for contaminant migration from a subgrade uranium mill tailings disposal pit. A numerical model is applied to a generic disposal pit constructed with a bottom clay liner and steep unlined sidewalls. The migration of a two-contaminant system is modeled assuming that neither contaminant decays and only one contaminant is retarded. Two dominant pathways are identified; one associated with lateral sidewall leakage and the other associated with transport through the bottom clay liner. It is found that the drain serves to reduce migration through the sidewall which, in turn, prevents the retarded contaminant from reaching the aquifer. The ponded water provides increased head which causes an accelerated vertical movement of moisture through the clay liner. 2 references, 8 figures

  18. Effect of Lime Stabilization on Vertical Deformation of Laterite Halmahera Soil

    Science.gov (United States)

    Saing, Zubair; Djainal, Herry

    2018-04-01

    In this paper, the study was conducted to determine the lime effect on vertical deformation of road base physical model of laterite Halmahera soil. The samples of laterite soil were obtained from Halmahera Island, North Maluku Province, Indonesia. Soil characteristics were obtained from laboratory testing, according to American Standard for Testing and Materials (ASTM), consists of physical, mechanical, minerals, and chemical. The base layer of physical model testing with the dimension; 2m of length, 2m of width, and 1.5m of height. The addition of lime with variations of 3, 5, 7, an 10%, based on maximum dry density of standard Proctor test results and cured for 28 days. The model of lime treated laterite Halmahera soil with 0,1m thickness placed on subgrade layer with 1,5m thickness. Furthermore, the physical model was given static vertical loading. Some dial gauge is placed on the lime treated soil surface with distance interval 20cm, to read the vertical deformation that occurs during loading. The experimentals data was analyzed and validated with numerical analysis using finite element method. The results showed that the vertical deformation reduced significantly on 10% lime content (three times less than untreated soil), and qualify for maximum deflection (standard requirement L/240) on 7-10% lime content.

  19. STUDY OF THE EFFECT OF SOIL CEMENT ELEMENTS WHEN STABILIZING ROADBED MODEL IN LABORATORY CONDITIONS

    Directory of Open Access Journals (Sweden)

    V. D Petrenko

    2017-12-01

    Full Text Available Purpose.Experimental studies allow determining th estress-strain state or bearing capacity of the tested soil body. A preliminary study of the results of model testing and experimental research allows us to find the optimal solutions and to justify the parameters of the chosen technology. The purpose of this work is to determine the effect of soil cement elements when stabilizing the roadbed on a weak subgrade using the soil tests in laboratory conditions. Methodology. During the development of measures for the reconstruction and consolidation of soil bodies, their strength is tested using many methods. In all cases, we take into account the physical and mechanical characteristics of soils obtained as a result of research, as well as the existing regulatory documents. We performed the experimental studies by model testing in laboratory conditions. The model testing was based on the corresponding relationships between geometric sizes, mechanical properties of materials, loads and other factors on which the stress-strain state depends. During testing, the model was loaded gradually. We maintained each load level up to conditional stabilization of the soil deformation. We took the readings from measuring devices at each stage of loading after achievement of stabilization of soil mass deformations. We fixed the readings in the test journal. Findings. During stabilization with soil cement piles there is an improvement in mechanical properties, which leads to a decrease in deformations by 2…3.5 times. Each test is accompanied with graphs of relative deformations-stress dependence, as well as deformation curves and compression curves. According to the results of experimental stu-dies, it can be seen that when testing a model with cement piles, compared with a model without soil cement piles, the relative deformations of the samples taken prior to the experiment and after the experiment almost coincide, indicating a decrease in deformability under

  20. The effect of drains on the seepage of contaminants from subgrade tailings disposal areas

    International Nuclear Information System (INIS)

    Witten, A.J.; Pin, F.G.; Sharp, R.D.

    1984-01-01

    A numerical simulation study is performed to investigate the influence of ponded water and a bottom drain on the pathways for contaminant migration from a subgrade uranium mill tailings disposal pit. A numerical model is applied to a generic disposal pit constructed with a bottom clay liner and steep unlined sidewalls. The migration of a two-contaminant system is modeled assuming that neither contaminant decays and only one contaminant is retarded. Two dominant pathways are indentified; one associated with lateral sidewall leakage and the other associated with transport through the bottom clay liner. It is found that the drain serves to reduce migration through the sidewall which, in turn, prevents the retarded contaminant from reaching the aquifer. The ponded water provides increased head which causes an accelarated vertical movement of moisture through the clay liner

  1. Soil mixing design methods and construction techniques for use in high organic soils.

    Science.gov (United States)

    2015-06-01

    Organic soils present a difficult challenge for roadway designers and construction due to the high : compressibility of the soil structure and the often associated high water table and moisture content. For : other soft or loose inorganic soils, stab...

  2. Effect of rice husk ash on some geotechnical properties of lateritic

    African Journals Online (AJOL)

    hp

    Keywords: Rice Husk Ash (RHA), Lateritic soil, Sub-grade, Maximum Dry ... stabilizing agent (cement or lime) included ... soil and then with distilled water. The clay mineral identification was done using ... California Bearing Ratio (CBR). 22.05.

  3. Development of artificial soft rock. Jinko nangan zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, K.; Nishioka, T. (The Tokyo Electric Power Co. Inc., Tokyo (Japan)); Nojiri, Y.; Kurihara, H.; Fukazawa, E. (Kajima Corp., Tokyo (Japan))

    1990-09-15

    When a part of the ground is replaced with artificial materials in the construction of important structures on soft rock foundations, it is desirable for the artificial materials to have the rigidity equivalent to that of the surrounding ground and to be stable in the long term. The article reports a success in the development and utilization of artificial soft rocks satisfying the above conditions by using a raw material produced locally at the construction site. The soft rock aimed at was mudstone belonging to the Neocene period, and the artificial material of soil-mortal system is selected as the equivalent having the same physical properties. Improvements in selection of solidification agents and cohesive soil were especially contrived: taht is, a new material for solidification was developed by mixing blast-furnace cement and gypsum; and the mudstone on the site was used as the cohesive soil by slurrying it to adjust its grain size to homogeneous composition. The artificial soft rock resulting from the above contrivance showed excellent flow, self-leveling, and filling properties at the stage of fresh mortar, and the physical properties after hardning was very similar to those of the natural ground. The long-term stability was also confirmed by the tests on hydration reaction and environmental factors. 2 figs., 1 tab.

  4. Soil mixing design methods and construction techniques for use in high organic soils : [summary].

    Science.gov (United States)

    2015-10-01

    The soils which serve as foundations for construction projects may be roughly classified as : inorganic or organic. Inorganic soils vary in firmness and suitability for construction. Soft : or loose inorganic soils may be stabilized using cement or s...

  5. Download this PDF file

    African Journals Online (AJOL)

    ADOWIE PERE

    the dry density of soil sample shows that low comparative energy would be required for the soil to attain its maximum .... Conventional/Standard (BPF, 2015). Used. Standards ..... subgrade with cement kiln dust stabilization. Transp. Geotech 1: ...

  6. Comparative Evaluation of Geotechnical Properties of Red Tropical ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-09

    Dec 9, 2017 ... Keywords: Red tropical soils, Geotechnical, termite hills, subgrade, suitability, construction. A considerable .... air-free distilled water was added so that the soil in the bottle is just ..... Iron Isotope composition of. Iron oxide as a ...

  7. A robotic system to characterize soft tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Lipsett, M.G.; Dwyer, S.C. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2009-07-01

    A robotic system for characterizing soft tailings deposits was discussed in this presentation. The system was developed to reduce variability in feedstocks and process performance as well as to improve the trafficability of composite tailings (CT). The method was designed to reliably sample different locations of a soft deposit. Sensors were used to determine water content, clay content, organic matter, and strength. The system included an autonomous rover with a sensor package and teleoperation capability. The system was also designed to be used without automatic controls. The wheeled mobile robot was used to conduct ground contact and soil measurements. The gas-powered robot included on-board microcontrollers and a host computer. The system also featured traction control and fault recovery sub-systems. Wheel contact was used to estimate soil parameters. It was concluded that further research is needed to improve traction control and soil parameter estimation testing capabilities. Overall system block diagrams were included. tabs., figs.

  8. geotechnical examination of the geophysical

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... that the soil is good as a filling material in road subgrade and other construction works and require modification to .... determine the liquid limit, plastic limit and the plas- ... the soil using any stabilizing agents or methods which.

  9. Response characteristics of reactor building on weathered soft rock ground

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Tochigi, Hitoshi

    1991-01-01

    The purpose of this study is to investigate the seismic stability of nuclear power plants on layered soft bedrock grounds, focusing on the seismic response of reactor buildings. In this case, the soft bedrock grounds refer to the weathered soft bedrocks with several tens meter thickness overlaying hard bedrocks. Under this condition, there are two subjects regarding the estimation of the seismic response of reactor buildings. One is the estimation of the seismic response of surface ground, and another is the estimation of soil-structure interaction characteristics for the structures embedded in the layered grounds with low impedandce ratio between the surface ground and the bedrock. Paying attention to these subjects, many cases of seismic response analysis were carried out, and the following facts were clarified. In the soft rock grounds overlaying hard bedrocks, it was proved that the response acceleration was larger than the case of uniform hard bedrocks. A simplified sway and rocking model was proposed to consider soil-structure interaction. It was proved that the response of reactor buildings was small when the effect of embedment was considered. (K.I.)

  10. Strength Improvement of Clay Soil by Using Stone Powder

    Directory of Open Access Journals (Sweden)

    Ahmed Sameer Abdulrasool

    2015-05-01

    Full Text Available Soil stabilization with stone powder is a good solution for the construction of subgrade for road way and railway lines, especially under the platforms and mostly in transition zones between embankments and rigid structures, where the mechanical properties of supporting soils are very influential. Stone powder often has a unique composition which justifies the need for research to study the feasibility of using this stone powder type for ground improvement applications. This paper presents results from a comprehensive laboratory study carried out to investigate the feasibility of using stone powder for improvement of engineering properties of clays. The stone powder contains bassanite (CaSO4. ½ H2O, and Calcite (CaCO3. Three percentages are used for stone powder (1%, 3% and 5% by dry weight of clay. Several tests are made to investigate the soil behavior after adding the stone powder (Atterberg limits, Standard Proctor density, Grain size distribution, Specific gravity, Unconfined Compressive test, and California bearing ratio test. Unconfined Compressive tests conducted at different curing. The samples are tested under both soaked and unsoaked condition. Chemical tests and X-ray diffraction analyses are also carried out. Stone powder reacts with clay producing decreasing in plasticity and The curves of grain size distribution are shifted to the coarse side as the stone powder percentage increase; the soil becomes more granular, and also with higher strength.

  11. Monitoring of Deep Foundation Pit Support and Construction Process in Soft Soil Area of Pearl River Delta

    Science.gov (United States)

    Weiyi, Xie; Pengcheng

    2018-03-01

    The deep foundation pit supporting technology in the soft soil area of the Pearl River Delta is more complicated, and many factors influence and restrict it. In this project as an example, according to the geological conditions and the surrounding circumstances, the main foundation using bored piles and pre-stressed anchor cable supporting structure + five axis cement mixing pile curtain supporting form; partial use of double row piles supporting structure + five axis cement mixing pile curtain support type. Through the monitoring results of construction show that the foundation pit, the indicators of environmental changes are in the design range, the supporting scheme of deep foundation pit technology is feasible and reliable.

  12. Full Scale Model Test of Consolidation Acceleration on Soft Soil deposition with Combination of Timber Pile and PVD (Hybrid Pile)

    OpenAIRE

    Sandyutama, Y.; Samang, L.; Imran, A. M.; Harianto4, T.

    2015-01-01

    This research aims to analyze the effect of composite pile-PVD (hybrid pile) as the reinforcement in embankment on soft soil by the means of numerical simulation and Full-Scale Trial Embankment. The first phase cunducted by numerical analysis and obtained 6-8 meters hybrid pile length effective. Full-Scale trial embankment. was installed hybrid pile of 6 m and preloading of 4,50 height. Full-scale tests were performed to investigate the performances of Hybrid pile reinforcement. This research...

  13. Dynamic Response of a Rigid Pavement Plate Based on an Inertial Soil.

    Science.gov (United States)

    Gibigaye, Mohamed; Yabi, Crespin Prudence; Alloba, I Ezéchiel

    2016-01-01

    This work presents the dynamic response of a pavement plate resting on a soil whose inertia is taken into account in the design of pavements by rational methods. Thus, the pavement is modeled as a thin plate with finite dimensions, supported longitudinally by dowels and laterally by tie bars. The subgrade is modeled via Pasternak-Vlasov type (three-parameter type) foundation models and the moving traffic load is expressed as a concentrated dynamic load of harmonically varying magnitude, moving straight along the plate with a constant acceleration. The governing equation of the problem is solved using the modified Bolotin method for determining the natural frequencies and the wavenumbers of the system. The orthogonal properties of eigenfunctions are used to find the general solution of the problem. Considering the load over the center of the plate, the results showed that the deflections of the plate are maximum about the middle of the plate but are not null at its edges. It is therefore observed that the deflection decreased 18.33 percent when the inertia of the soil is taken into account. This result shows the possible economic gain when taking into account the inertia of soil in pavement dynamic design.

  14. Enzyme based soil stabilization for unpaved road construction

    Directory of Open Access Journals (Sweden)

    Renjith Rintu

    2017-01-01

    Full Text Available Enzymes as soil stabilizers have been successfully used in road construction in several countries for the past 30 years. However, research has shown that the successful application of these enzymes is case specific, emphasizing that enzyme performance is dependent on subgrade soil type, condition and the type of enzyme used as the stabilizer. A universal standard or a tool for road engineers to assess the performance of stabilized unbound pavements using well-established enzymes is not available to date. The research aims to produce a validated assessment tool which can be used to predict strength enhancement within a generalized statistical framework. The objective of the present study is to identify new materials for developing the assessment tool which supports enzyme based stabilization, as well as to identify the correct construction sequence for such new materials. A series of characterization tests were conducted on several soil types obtained from proposed construction sites. Having identified the suitable soil type to mix with the enzyme, a trial road construction has been performed to investigate the efficiency of the enzyme stabilization along with the correct construction sequence. The enzyme stabilization has showed significant improvement of the road performance as was evidenced from the test results which were based on site soil obtained before and after stabilization. The research will substantially benefit the road construction industry by not only replacing traditional construction methods with economical/reliable approaches, but also eliminating site specific tests required in current practice of enzyme based road construction.

  15. Amazon soils : a reconnaissance of the soils of the Brazilian Amazon region

    NARCIS (Netherlands)

    Sombroek, W.G.

    1966-01-01

    The study deals with soils of the Brazilian part of the Amazon basin. Most soils are Latosols, some with soft or hardened plinthite. The Latosols are characterized by a latosolic B horizon as defined in Brazil.

    Plinthite, its formation and morphology were extensively described. Five main

  16. Effects of freeze-thaw on characteristics of new KMP binder stabilized Zn- and Pb-contaminated soils.

    Science.gov (United States)

    Wei, Ming-Li; Du, Yan-Jun; Reddy, Krishna R; Wu, Hao-Liang

    2015-12-01

    For viable and sustainable reuse of solidified/stabilized heavy metal-contaminated soils as roadway subgrade materials, long-term durability of these soils should be ensured. A new binder, KMP, has been developed for solidifying/stabilizing soils contaminated with high concentrations of heavy metals. However, the effects of long-term extreme weather conditions including freeze and thaw on the leachability and strength of the KMP stabilized contaminated soils have not been investigated. This study presents a systematic investigation on the impacts of freeze-thaw cycle on leachability, strength, and microstructural characteristics of the KMP stabilized soils spiked with Zn and Pb individually and together. For comparison purpose, Portland cement is also tested as a conventional binder. Several series of tests are conducted including the toxicity characteristic leaching procedure (TCLP), modified European Community Bureau of Reference (BCR) sequential extraction procedure, unconfined compression test (UCT), and mercury intrusion porosimetry (MIP). The results demonstrate that the freeze-thaw cycles have much less impact on the leachability and strength of the KMP stabilized soils as compared to the PC stabilized soils. After the freeze-thaw cycle tests, the KMP stabilized soils display much lower leachability, mass loss, and strength loss. These results are assessed based on the chemical speciation of Zn and Pb, and pore size distribution of the soils. Overall, this study demonstrates that the KMP stabilized heavy metal-contaminated soils perform well under the freeze-thaw conditions.

  17. Stability of embankments over cement deep soil mixing columns

    International Nuclear Information System (INIS)

    Morilla Moar, P.; Melentijevic, S.

    2014-01-01

    The deep soil mixing (DSM) is one of the ground improvement methods used for the construction of embankments over soft soils. DSM column-supported embankments are constructed over soft soils to accelerate its construction, improve embankment stability, increase bearing capacity and control of total and differential settlements. There are two traditional design methods, the Japanese (rigid columns) and the scandinavian (soft and semi-rigid columns). Based on Laboratory analysis and numerical analysis these traditional approaches have been questioned by several authors due to its overestimation of the embankment stability considering that the most common failures types are not assumed. This paper presents a brief review of traditional design methods for embankments on DSM columns constructed in soft soils, studies carried out determine the most likely failure types of DSM columns, methods to decrease the overestimation when using limit equilibrium methods and numerical analysis methods that permit detect appropriate failure modes in DSM columns. Finally a case study was assessed using both limited equilibrium and finite element methods which confirmed the overestimation in the factors of safety on embankment stability over DSM columns. (Author)

  18. Functional traits of soil invertebrates as indicators for exposure to soil disturbance

    International Nuclear Information System (INIS)

    Hedde, Mickaël; Oort, Folkert van; Lamy, Isabelle

    2012-01-01

    We tested a trait-based approach to link a soil disturbance to changes in invertebrate communities. Soils and macro-invertebrates were sampled in sandy soils contaminated by long-term wastewater irrigation, adding notably organic matter and trace metals (TM). We hypothesized that functional traits of invertebrates depict ways of exposure and that exposure routes relate to specific TM pools. Geophages and soft-body invertebrates were chosen to inform on exposure by ingestion or contact, respectively. Trait-based indices depicted more accurately effects of pollution than community density and diversity did. Exposure by ingestion had more deleterious effects than by contact. Both types of exposed invertebrates were influenced by TM, but geophages mainly responded to changes in soil organic matter contents. The trait-based approach requires to be applied in various conditions to uncorrelate specific TM impacts from those of other environmental factors. - Highlights: ► We linked pollution, exposure routes and impacts on soil invertebrates. ► Proportions of exposed animals accurately depicted pollution effects. ► Exposure by ingestion had more deleterious effects than exposure by contact. ► Geophages decline reflected changes in soil organic matter. ► Soft-body proportions were mainly influenced by TM pools. - A trait-based approach hierarchized impacts of soil pollution on soil invertebrate communities following ways of exposure

  19. Laboratory soft x-ray microscopy and tomography

    International Nuclear Information System (INIS)

    Bertilson, Michael

    2011-01-01

    Soft x-ray microscopy in the water-window (λ = 2.28 nm - 4.36 nm) is based on zone-plate optics and allows high-resolution imaging of, e.g., cells and soils in their natural or near-natural environment. Three-dimensional imaging is provided via tomographic techniques, soft x-ray cryo tomography. However, soft x-ray microscopes with such capabilities have been based on large-scale synchrotron x-ray facilities, thereby limiting their accessibility for a wider scientific community. This Thesis describes the development of the Stockholm laboratory soft x-ray microscope to three-dimensional cryo tomography and to new optics-based contrast mechanisms. The microscope relies on a methanol or nitrogen liquid-jet laser-plasma source, normal-incidence multilayer or zone-plate condenser optics, in-house fabricated zone-plate objectives, and allows operation at two wavelengths in the water-window, λ = 2.48 nm and λ = 2.48 nm. With the implementation of a new state-of-the-art normal-incidence multilayer condenser for operation at λ = 2.48 nm and a tiltable cryogenic sample stage the microscope now allows imaging of dry, wet or cryo-fixed samples. This arrangement was used for the first demonstration of laboratory soft x-ray cryo microscopy and tomography. The performance of the microscope has been demonstrated in a number of experiments described in this Thesis, including, tomographic imaging with a resolution of 140 nm, cryo microscopy and tomography of various cells and parasites, and for studies of aqueous soils and clays. The Thesis also describes the development and implementation of single-element differential-interference and Zernike phase-contrast zone-plate objectives. The enhanced contrast provided by these optics reduce exposure times or lowers the dose in samples and are of major importance for harder x-ray microscopy. The implementation of a high-resolution 50 nm compound zone-plate objective for sub-25-nm resolution imaging is also described. All experiments

  20. Application of geotechnical data to resource planning in southeast Alaska.

    Science.gov (United States)

    W.L. Schroeder; D.N. Swanston

    1987-01-01

    Recent quantification of engineering properties and index values of dominant soil types in the Alexander Archipelago, southeast Alaska, have revealed consistent diagnostic characteristics useful to evaluating landslide risk and subgrade material stability before timber harvesting and low-volume road construction. Shear strength data are summarized and grouped by Soil...

  1. SOIL STRUCTURE INTERACTION EFFECTS ON MULTISTOREY R/C STRUCTURES

    Directory of Open Access Journals (Sweden)

    Muberra ESER AYDEMIR

    2013-01-01

    Full Text Available This paper addresses the behavior of multistorey structures considering soil structure interaction under earthquake excitation. For this purpose, sample 3, 6, 9 storey RC frames are designed based on Turkish Seismic Design Code and analyzed in time domain with incremental dynamic analysis. Strength reduction factors are investigated for generated sample plane frames for 64 different earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil. According to the analysis result, strength reduction factors of sample buildings considering soil structure interaction are found to be almost always smaller than design strength reduction factors given in current seismic design codes, which cause an unsafe design and nonconservative design forces.

  2. The Estimation of Compaction Parameter Values Based on Soil Properties Values Stabilized with Portland Cement

    Science.gov (United States)

    Lubis, A. S.; Muis, Z. A.; Pasaribu, M. I.

    2017-03-01

    The strength and durability of pavement construction is highly dependent on the properties and subgrade bearing capacity. This then led to the idea of the selection methods to estimate the density of the soil with the proper implementation of the system, fast and economical. This study aims to estimate the compaction parameter value namely the maximum dry unit weight (γd max) and optimum moisture content (wopt) of the soil properties value that stabilized with Portland Cement. Tests conducted in the laboratory of soil mechanics to determine the index properties (fines and liquid limit) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) between 0-15% then mixed with Portland Cement (PC) with variations of 2%, 4%, 6%, 8% and 10%, each 10 samples. The results showed that the maximum dry unit weight (γd max) and wopt has a significant relationship with percent fines, liquid limit and the percentation of cement. Equation for the estimated maximum dry unit weight (γd max) = 1.782 - 0.011*LL + 0,000*F + 0.006*PS with R2 = 0.915 and the estimated optimum moisture content (wopt) = 3.441 + 0.594*LL + 0,025*F + 0,024*PS with R2 = 0.726.

  3. Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces

    Directory of Open Access Journals (Sweden)

    Muhammad Shabir

    2017-06-01

    Full Text Available Bipolar soft topological spaces are mathematical expressions to estimate interpretation of data frameworks. Bipolar soft theory considers the core features of data granules. Bipolarity is important to distinguish between positive information which is guaranteed to be possible and negative information which is forbidden or surely false. Connectedness and compactness are the most important fundamental topological properties. These properties highlight the main features of topological spaces and distinguish one topology from another. Taking this into account, we explore the bipolar soft connectedness, bipolar soft disconnectedness and bipolar soft compactness properties for bipolar soft topological spaces. Moreover, we introduce the notion of bipolar soft disjoint sets, bipolar soft separation, and bipolar soft hereditary property and study on bipolar soft connected and disconnected spaces. By giving the detailed picture of bipolar soft connected and disconnected spaces we investigate bipolar soft compact spaces and derive some results related to this concept.

  4. Stabilization of Clay Soil Using Tyre Ash

    Directory of Open Access Journals (Sweden)

    Mahmood Dheyab Ahmed

    2017-06-01

    Full Text Available The planning, designing, construction of excavations and foundations in soft to very soft clay soils are always difficult. They are problematic soil that caused trouble for the structures built on them because of the low shear strength, high water content, and high compressibility. This work investigates the geotechnical behavior of soft clay by using tyre ash material burnt in air. The investigation contains the following tests: physical tests, chemical tests, consolidation test, Compaction tests, shear test, California Bearing Ratio test CBR, and model tests. These tests were done on soil samples prepared from soft clay soil; tyre ash was used in four percentages (2, 4, 6, and 8%. The results of the tests were; The soil samples which gave the value of plasticity test were 2% (25, 4% (25.18, 6% (25.3, and 8% (26.7.The soil samples which gave the value of specific gravity were 2% (2.65, 4% (2.61, 6% (2.5, and 8% (2.36.The value of maximum dry density in a compaction test observed with 2% percentage gave the value 15.8 kN/m3, the 4% gave the value 15.4 kN/m 3 34 , 6% gave 15.3 kN/m 3 and 8%with 15.2 kN/m3 .Samples that gave the values of undrained shear strength test were 2% (55 kN/m 2 , 4% (76 kN/m2 , 6% (109 kN/m 2, and 8% (122 kN/m 2. The best of them is 8%. The sample that gave the best value for swelling test was 8%.The best value for compression index Cc was in 8%.The results of CBR test, were improved in all soil samples. The soil samples which gave the value for CBR were 2% (3.507%, 4% (4.308%, 6% (5.586%, and 8% (9.569%. The best value was obtained from 8%.

  5. Resilient modulus of black cotton soil

    Directory of Open Access Journals (Sweden)

    K.H. Mamatha

    2017-03-01

    Full Text Available Resilient modulus (MR values of pavement layers are the basic input parameters for the design of pavements with multiple layers in the current mechanistic empirical pavement design guidelines. As the laboratory determination of resilient modulus is costly, time consuming and cumbersome, several empirical models are developed for the prediction of resilient modulus for different regions of the world based on the database of resilient modulus values of local soils. For use of these relationships there is a need to verify the suitability of these models for local conditions. Expansive clay called black cotton soil (BC soil is found in several parts of India and is characterized by low strength and high compressibility. This soil shows swell – shrink behaviour upon wetting and drying and are problematic. The BC soil shows collapse behaviour on soaking and therefore the strength of the soil needs to be improved. Additive stabilization is found to be very effective in stabilizing black cotton soils and generally lime is used to improve the strength and durability of the black cotton soil. In this paper, the results of repeated load tests on black cotton soil samples for the determination of MR under soaked and unsoaked conditions at a relative compaction levels of 100% and 95% of both standard and modified proctor conditions are reported. The results indicate that the black cotton soil fails to meet the density requirement of the subgrade soil and shows collapse behaviour under soaked condition. To overcome this, lime is added as an additive to improve the strength of black cotton soil and repeated load tests were performed as per AASHTO T 307 - 99 for MR determination. The results have shown that the samples are stable under modified proctor condition with MR values ranging from 36 MPa to 388 MPa for a lime content of 2.5% and curing period ranging from 7 to 28 days. Also, it is observed that, the CBR based resilient modulus is not in agreement

  6. Cold in-place recycled bituminous pavement Dorset-Danby, VT.

    Science.gov (United States)

    2015-01-01

    The report documents the long-term performance and cost effectiveness of four rehabilitation : treatments in a mostly homogenous environment. The underlying subbase and subgrade soils, traffic : volume, existing pavement structure and ambient conditi...

  7. Improved Performance of Connected Foundations for Resilient Energy Transmission Infrastructure in Soft Soils

    Directory of Open Access Journals (Sweden)

    Doohyun Kyung

    2015-12-01

    Full Text Available The connected foundation is an effective structural type of foundation that can improve the sustainability of electrical transmission towers in soft soils to serve as a resilient energy supply system. In this study, the performance of electrical transmission towers reinforced with connected beams was investigated using a series of field load tests. Model transmission tower structures were manufactured and adopted into the tests. Based on the load capacity mobilization and failure mechanism, a criterion to define the load carrying capacity for connected foundation was proposed. It was found that the performance of connected foundation varies with the mechanical property of connection beam. The load capacity and differential settlement increased and decreased, respectively, with increasing connection beam stiffness. Such effect of connection beam was more pronounced as the height of load application point or tower height (zh increases. Based on the load test results, a design model was proposed that can be used to evaluate the sustainable performance and load carrying capacity of connected foundations. Field load tests with prototype transmission tower structure models were conducted to check and confirm the performance of connected foundation and the proposed design method.

  8. The UK Soil Observatory (UKSO) and mySoil app: crowdsourcing and disseminating soil information.

    Science.gov (United States)

    Robinson, David; Bell, Patrick; Emmett, Bridget; Panagos, Panos; Lawley, Russell; Shelley, Wayne

    2017-04-01

    Digital technologies in terms of web based data portals and mobiles apps offer a new way to provide both information to the public, and to engage the public in becoming involved in contributing to the effort of collecting data through crowdsourcing. We are part of the Landpotential.org consortium which is a global partnership committed to developing and supporting the adoption of freely available technology and tools for sustainable land use management, monitoring, and connecting people across the globe. The mySoil app was launched in 2012 and is an example of a free mobile application downloadable from iTunes and Google Play. It serves as a gateway tool to raise interest in, and awareness of, soils. It currently has over 50,000 dedicated users and has crowd sourced more than 4000 data records. Recent developments have expanded the coverage of mySoil from the United Kingdom to Europe, introduced a new user interface and provided language capability, while the UKSO displays the crowd-sourced records from across the globe. We are now trying to identify which industry, education and citizen sectors are using these platforms and how they can be improved. Please help us by providing feedback or taking the survey on the UKSO website. www.UKSO.org The UKSO is a collaboration between major UK soil-data holders to provide maps, spatial data and real-time temporal data from observing platforms such as the UK soil moisture network. Both UKSO and mySoil have crowdsourcing capability and are slowly building global citizen science maps of soil properties such as pH and texture. Whilst these data can't replace professional monitoring data, the information they provide both stimulates public interest and can act as 'soft data' that can help support the interpretation of monitoring data, or guide future monitoring, identifying areas that don't correspond with current analysis. In addition, soft data can be used to map soils with machine learning approaches, such as SoilGrids.

  9. Designing Base and Subbase to Resist Environmental Effects on Pavements

    Science.gov (United States)

    2018-02-02

    MnDOTs current pavement thickness design procedures do not characterize the effects of subgrade soil frost susceptibility. Previous research indicates frost action is the most severe environmental factor on pavement performance. The most accepted ...

  10. Earthquake response analysis of embedded reactor building considering soil-structure separation and nonlinearity of soil

    International Nuclear Information System (INIS)

    Ichikawa, T.; Hayashi, Y.; Nakai, S.

    1987-01-01

    The effect of the wall-ground separation depends on the relation between the fundamental frequency of the SSI system and that of the surface layer. The maximum accelerations of the upper floors are increased if the side soil is soft. The building shear force is decreased below the ground level if the fundamental frequency of the SSI system is nearly equal to that of the surface layer. The floor response spectra are slightly increased in the high frequency range. Yielding of the soil occurred only in case that the side soil is soft, and the yield zone was restricted in the upper part of the surface layer. Therefore, the material nonlinearity did not affect the results so much. The results of the sway-rocking model (lumped mass model) analysis showed good agreements with those of the FEM models. (orig./HP)

  11. Pavement mechanic response of sulfate saline soil subgrade section based on fluid–structure interaction model

    OpenAIRE

    Xueying Zhao; Aiqin Shen; Yinchuang Guo; Peng Li; Zhenhua Lv

    2017-01-01

    It is a consensus that salt heaving and frost heaving are urgent and typical distress in the sulfate saline soil area. To further investigate the microscopic performance of pavement structure in this special area, Jinan-Dongying Freeway in Shandong Province is selected as a case study engineering and the mechanic responses under salt heaving, frost heaving and traffic loads were analyzed through the finite element (FE) Program (ANSYS). In this paper, the process of salt heaving and frost heav...

  12. Centrifuge modelling of rigid piles in soft clay

    DEFF Research Database (Denmark)

    Klinkvort, R.T.; Poder, M.; Truong, P.

    2016-01-01

    of this study is to employ centrifuge modelling in order to derive experimental p-y curves for rigid piles embedded in over-consolidated soft clay. A kaolin clay sample was prepared and pre-consolidated by applying a constant pressure at the soil surface, while different over-consolidation ratios were achieved...

  13. Estimation of soft sediment thickness in Kuala Lumpur based on microtremor observation data

    Science.gov (United States)

    Chiew, Chang Chyau; Cheah, Yi Ben; Tan, Chin Guan; Lau, Tze Liang

    2017-10-01

    Seismic site effect is one of the major concerns in earthquake engineering. Soft ground tends to amplify the seismic wave in surficial geological layers. The determination of soft ground thickness on the surface layers of the earth is an important input for seismic hazard assessment. This paper presents an easy and convenient approach to estimate the soft sediment thickness at the site using microtremor observation technique. A total number of 133 survey points were conducted in selected sites around Kuala Lumpur area using a microtremor measuring instrument, but only 103 survey points contributed to the seismic microzonation and sediment thickness plots. The bedrock of Kuala Lumpur area is formed by Kenny Hill Formation, limestone, granite, and the Hawthornden Schist; however, the thickness of surface soft ground formed by alluvial deposits, mine tailings, and residual soils remains unknown. Hence, the predominant frequency of the ground in each site was determined based on Nakamura method. A total number of 14 sites with known depth to bedrock from the supply of geotechnical reports in the study area were determined. An empirical correlation was developed to relate the ground predominant frequency and soft ground thickness. This correlation may contribute to local soil underlying the subsurface of Kuala Lumpur area. The finding provides an important relationship for engineers to estimate the soft ground thickness in Kuala Lumpur area based on the dynamic characteristics of the ground measured from microtremor observation.

  14. Soil Retaining Structures : Development of models for structural analysis

    NARCIS (Netherlands)

    Bakker, K.J.

    2000-01-01

    The topic of this thesis is the development of models for the structural analysis of soil retaining structures. The soil retaining structures being looked at are; block revetments, flexible retaining walls and bored tunnels in soft soil. Within this context typical structural behavior of these

  15. DURABILITY OF FLEXIBLE PAVEMENTS: A CASE STUDY OF ...

    African Journals Online (AJOL)

    user

    years, ranking, predominant factors affecting pavement durability and the estimate of durability. In this regard .... subgrade soil into the base course and provide the drainage of ..... [3] Oguara T. M. “A management model for road infrastructure ...

  16. Soft Soil Impact Testing and Simulation of Aerospace Structures

    Science.gov (United States)

    Fasanella, Edwin L.; Jackson, Karen E.; Kellas, Sotiris

    2008-01-01

    In June 2007, a 38-ft/s vertical drop test of a 5-ft-diameter, 5-ft-long composite fuselage section that was retrofitted with a novel composite honeycomb Deployable Energy Absorber (DEA) was conducted onto unpacked sand. This test was one of a series of tests to evaluate the multi-terrain capabilities of the DEA and to generate test data for model validation. During the test, the DEA crushed approximately 6-in. and left craters in the sand of depths ranging from 7.5- to 9-in. A finite element model of the fuselage section with DEA was developed for execution in LS-DYNA, a commercial nonlinear explicit transient dynamic code. Pre-test predictions were generated in which the sand was represented initially as a crushable foam material MAT_CRUSHABLE_FOAM (Mat 63). Following the drop test, a series of hemispherical penetrometer tests were conducted to assist in soil characterization. The penetrometer weighed 20-lb and was instrumented with a tri-axial accelerometer. Drop tests were performed at 16-ft/s and crater depths were measured. The penetrometer drop tests were simulated as a means for developing a more representative soil model based on a soil and foam material definition MAT_SOIL_AND FOAM (Mat 5) in LS-DYNA. The model of the fuselage with DEA was reexecuted using the updated soil model and test-analysis correlations are presented.

  17. Elucidating differences in metal absorption efficiencies between terrestrial soft-bodied and aquatic species

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Veltman, Karin; Hauschild, Michael Zwicky

    2014-01-01

    species, with the covalent index being the best predictor. It is hypothesized that metal absorption by soft-bodied species in soil systems is influenced by the rate of metal supply to the membrane, while in aquatic systems accumulation is solely determined by metal affinity to membrane bound transport...... proteins. Our results imply that developing predictive terrestrial bioaccumulation and toxicity models for metals must consider metal interactions with soil solids. This may include desorption of a cation bound to soil solids through ion exchange, or metal release from soil surfaces involving breaking...

  18. Sustainable development of roadways in Africa

    OpenAIRE

    Akindeji-Oladeji, O.; Awomeso, J. A.; Taiwo, A. M.; Abu, S.

    2012-01-01

    Dallas Roadway Products (DRP) soil stabilization technology can effectively improve road foundation construction and with it the strength of roadway sub-grades and sub-bases. Soil samples were collected from roads in Nigeria’s six geo-political regions. DRP LS-40 (lignate sulfonate) and DRP SA-44 (sulfuric acid) were added to the soil materials. The mixture precipitated a non-reversible chemical reaction that involved a permanent change in the soil structure. The chemicals reacted with th...

  19. Sustainable development of roadways in Africa

    OpenAIRE

    Akindeji-Oladeji, O.; Awomeso, J. A.; Taiwo, A. M.; Abu, S.

    2012-01-01

    Dallas Roadway Products (DRP) soil stabilization technology can effectively improve road foundation construction and with it the strength of roadway sub-grades and sub-bases. Soil samples were collected from roads in Nigeria’s six geo-political regions. DRP LS-40 (lignate sulfonate) and DRP SA-44 (sulfuric acid) were added to the soil materials. The mixture precipitated a non-reversible chemical reaction that involved a permanent change in the soil structure. The chemicals reacted with the cl...

  20. Probabilistic Seismic Hazard Assessment Method for Nonlinear Soil Sites based on the Hazard Spectrum of Bedrock Sites

    International Nuclear Information System (INIS)

    Hahm, Dae Gi; Seo, Jeong Moon; Choi, In Kil

    2011-01-01

    For the probabilistic safety assessment of the nuclear power plants (NPP) under seismic events, the rational probabilistic seismic hazard estimation should be performed. Generally, the probabilistic seismic hazard of NPP site is represented by the uniform hazard spectrum (UHS) for the specific annual frequency. In most case, since that the attenuation equations were defined for the bedrock sites, the standard attenuation laws cannot be applied to the general soft soil sites. Hence, for the probabilistic estimation of the seismic hazard of soft soil sites, a methodology of probabilistic seismic hazard analysis (PSHA) coupled with nonlinear dynamic analyses of the soil column are required. Two methods are commonly used for the site response analysis considering the nonlinearity of sites. The one is the deterministic method and another is the probabilistic method. In the analysis of site response, there exist many uncertainty factors such as the variation of the magnitude and frequency contents of input ground motion, and material properties of soil deposits. Hence, nowadays, it is recommended that the adoption of the probabilistic method for the PSHA of soft soil deposits considering such uncertainty factors. In this study, we estimated the amplification factor of the surface of the soft soil deposits with considering the uncertainties of the input ground motions and the soil material properties. Then, we proposed the probabilistic methodology to evaluate the UHS of the soft soil site by multiplying the amplification factor to that of the bedrock site. The proposed method was applied to four typical target sites of KNGR and APR1400 NPP site categories

  1. Rapid Soil Stabilization of Soft Clay Soils for Contingency Airfields

    Science.gov (United States)

    2006-12-01

    quicklime or calcium carbide, could possibly crosslink the polymers of sodium or potassium polyacrylic acid together to form a harder material. Very...LiquiBlock 40K and 41K are both potassium salts of crosslinked polyacrylic acids/polyacrylamide copolymers in granular form that also gel in the presence...communication, 2006), soil could possibly be stabilized with calcium and super absorbent polymers, such as sodium or potassium polyacrylic acids. This

  2. Contamination of water and soil by the Erdenet copper-molybdenum mine in Mongolia

    Science.gov (United States)

    Battogtokh, B.; Lee, J.; Woo, N. C.; Nyamjav, A.

    2013-12-01

    As one of the largest copper-molybdenum (Cu-Mo) mines in the world, the Erdenet Mine in Mongolia has been active since 1978, and is expected to continue operations for at least another 30 years. In this study, the potential impacts of mining activities on the soil and water environments have been evaluated. Water samples showed high concentrations of sulfate, calcium, magnesium, Mo, and arsenic, and high pH values in the order of high to low as follows: tailing water > Khangal River > groundwater. Statistical analysis and the δ2H and δ18O values of water samples indicate that the tailing water directly affects the stream water and indirectly affects groundwater through recharge processes. Soil and stream sediments are highly contaminated with Cu and Mo, which are major elements of ore minerals. Based on the contamination factor (CF), the pollution load index (PLI), and the degree of contamination (Cd), soil appears to be less contaminated than stream sediments. The soil particle size is similar to that of tailing materials, but stream sediments have much coarser particles, implying that the materials have different origins. Contamination levels in stream sediments display a tendency to decrease with distance from the mine, but no such changes are found in soil. Consequently, soil contamination by metals is attributable to wind-blown dusts from the tailing materials, and stream sediment contamination is caused by discharges from uncontained subgrade ore stock materials. Considering the evident impact on the soil and water environment, and the human health risk from the Erdenet Mine, measures to mitigate its environmental impact should be taken immediately including source control, the establishment of a systematic and continuous monitoring system, and a comprehensive risk assessment. Sampling locations around the Erdenet Mine

  3. Impact of weathering on slope stability in soft rock mass

    Directory of Open Access Journals (Sweden)

    Predrag Miščević

    2014-06-01

    Full Text Available Weathering of soft rocks is usually considered as an important factor in various fields such as geology, engineering geology, mineralogy, soil and rock mechanics, and geomorphology. The problem of stability over time should be considered for slopes excavated in soft rocks, in case they are not protected against weathering processes. In addition to disintegration of material on slope surface, the weathering also results in shear strength reduction in the interior of the slope. Principal processes in association with weathering are discussed with the examples of marl hosted on flysch formations near Split, Croatia.

  4. Study on aseismic design of embedded structures in soft ground, 1

    International Nuclear Information System (INIS)

    Tohma, Jun-ichi; Kokusho, Takaji; Iwatate, Takahiro

    1984-01-01

    Shaking table tests were performed to clarify dynamic responses of a embedded duct in relatively soft sandy ground. Response characteristics of the coupled duct-soil system along its transverse direction are as follows. (1) Horizontal acceleration response in the deep embedded duct shows its oscillating characteristics identical to the surrounding soil response. (2) Dynamic soil pressure distribution in the deep embedded duct shows a shift to and from compression and tension along its walls. (3) The over-all distribution of the bending strain in the duct shows a lateral distortion pattern due to shearing deformation of the ground. In the shallow embedded duct, response amplitude become reduced. (4) Due to strong nonlinearity in the response of the surrounding soil, the dynamic response including soil pressure become less than linear response. (author)

  5. AM2 3-4 Alternate Lay Pattern Evaluation

    Science.gov (United States)

    2014-09-01

    Limits, modified- Proctor compaction, and unsoaked CBR testing. Classification data for the subgrade soil are shown in Figure 2. Moisture- density and CBR...mat.......................................................................................................... 4 2.1.2 High-plasticity clay (CH...4 Figure 2. Gradation curve for Vicksburg Buckshot high-plasticity clay (CH

  6. Bayesian Maximum Entropy prediction of soil categories using a traditional soil map as soft information.

    NARCIS (Netherlands)

    Brus, D.J.; Bogaert, P.; Heuvelink, G.B.M.

    2008-01-01

    Bayesian Maximum Entropy was used to estimate the probabilities of occurrence of soil categories in the Netherlands, and to simulate realizations from the associated multi-point pdf. Besides the hard observations (H) of the categories at 8369 locations, the soil map of the Netherlands 1:50 000 was

  7. Study on soil-pile-structure-TMD interaction system by shaking table model test

    Science.gov (United States)

    Lou, Menglin; Wang, Wenjian

    2004-06-01

    The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very soft soil, soil-structure interaction (SSI) could render a damper on the structure totally ineffective. In order to experimentally verify the SSI effect on the seismic performance of TMD, a series of shaking table model tests have been conducted and the results are presented in this paper. It has been shown that the TMD is not as effective in controlling the seismic responses of structures built on soft soil sites due to the SSI effect. Some test results also show that a TMD device might have a negative impact if the SSI effect is neglected and the structure is built on a soft soil site. For structures constructed on a soil foundation, this research verifies that the SSI effect must be carefully understood before a TMD control system is designed to determine if the control is necessary and if the SSI effect must be considered when choosing the optimal parameters of the TMD device.

  8. Stability of embankments over cement deep soil mixing columns; Estabilidad de terraplenes sobre columnas de suelo-cemento

    Energy Technology Data Exchange (ETDEWEB)

    Morilla Moar, P.; Melentijevic, S.

    2014-07-01

    The deep soil mixing (DSM) is one of the ground improvement methods used for the construction of embankments over soft soils. DSM column-supported embankments are constructed over soft soils to accelerate its construction, improve embankment stability, increase bearing capacity and control of total and differential settlements. There are two traditional design methods, the Japanese (rigid columns) and the scandinavian (soft and semi-rigid columns). Based on Laboratory analysis and numerical analysis these traditional approaches have been questioned by several authors due to its overestimation of the embankment stability considering that the most common failures types are not assumed. This paper presents a brief review of traditional design methods for embankments on DSM columns constructed in soft soils, studies carried out determine the most likely failure types of DSM columns, methods to decrease the overestimation when using limit equilibrium methods and numerical analysis methods that permit detect appropriate failure modes in DSM columns. Finally a case study was assessed using both limited equilibrium and finite element methods which confirmed the overestimation in the factors of safety on embankment stability over DSM columns. (Author)

  9. Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.

    Science.gov (United States)

    Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang

    2018-03-01

    Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Calcium soil amendment increases resistance of potato to blackleg ...

    African Journals Online (AJOL)

    This study shows that calcium soil amendments reduce blackleg and soft rot diseases under Zimbabwe's growing seasons in red fersiallitic soils. Compound S produces better results in potato production than compound D and farmers should be encouraged to use compound S when growing potatoes. Key words: potato ...

  11. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  12. From Soft Sculpture to Soft Robotics: Retracing a Physical Aesthetics of Bio-Morphic Softness

    DEFF Research Database (Denmark)

    Jørgensen, Jonas

    2017-01-01

    Soft robotics has in the past decade emerged as a growing subfield of technical robotics research, distinguishable by its bio-inspired design strategies, interest in morphological computation, and interdisciplinary combination of insights from engineering, computer science, biology and material...... science. Recently, soft robotics technology has also started to make its way into art, design, and architecture. This paper attempts to think an aesthetics of softness and the life-like through an artistic tradition deeply imbricated with an interrogation of softness and its physical substrates, namely...... the soft sculpture that started proliferating in the late 1960s. Critical descriptions of these works, interestingly, frequently emphasize their similarities with living organisms and bodies as a central tenet of their aesthetics. The paper seeks to articulate aspects of a contiguity between softness...

  13. Electrokinetic Stabilisation Method of Soft Clay in Pure System using Electrokinetic Geosynthetic Electrode

    Science.gov (United States)

    Azhar, A. T. S.; Jefferson, I.; Madun, A.; Abidin, M. H. Z.; Rogers, C. D. F.

    2018-04-01

    Electrokinetic stabilisation (EKS) method has the ability to solve the problems of soft highly compressibility soil. This study will present the results from an experimental study of EKS on soft soils using inactive kaolinite clay, inert electrode and distilled water (DW) as a pure system mechanism before any chemical stabilisers being used in this research. Therefore, this will provide a baseline study to improve the efficiency of EKS approach. The test model was using inert electrode of Electrokinetic Geosythentic (EKG) developed at the Newcastle University to apply a constant voltage gradient of 50 V/m across a soil sample approximately 400 mm. Distilled water was used at the pore electrolyte fluid compartments supplied under zero hydraulic gradient conditions for the periods of 3, 7 and 14 days. Throughout the monitoring, physical and chemical characteristics were measured. Results from the monitoring data, physical and chemical properties of the pure system showed the development of pH gradient, the changes of electrical conductivity and chemical concentrations with regards to the distance from anode and treatment periods due to the electrochemical effects even though there was no chemical stabilisers were introduced or released from the degradation of electrodes.

  14. The soft notion of China's 'soft power'

    OpenAIRE

    Breslin, Shaun

    2011-01-01

    · Although debates over Chinese soft power have increased in\\ud recent years, there is no shared definition of what ‘soft power’\\ud actually means. The definition seems to change depending on\\ud what the observer wants to argue.\\ud · External analyses of soft power often include a focus on\\ud economic relations and other material (hard) sources of power\\ud and influence.\\ud · Many Chinese analyses of soft power focus on the promotion of a\\ud preferred (positive) understanding of China’s inter...

  15. Predicting development of undrained shear strength in soft oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Masala, S. [Klohn Crippen Berger, Calgary, AB (Canada); Matthews, J. [Shell Canada Ltd., Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation discussed a method of predicting the development of undrained shear strength in soft oil sands tailings. Phenomenology charts of oil sands tailings ponds were used to present the suspension, density, stresses and hydrostatic behaviour of tailings. Sedimentation and consolidation processes were discussed. The charts demonstrated how the tailings slurry settles and consolidates, releases water and dissipates pore pressures. The slurry then develops intergranular stresses and increases in density. The increases correlate with increased resistance to deformation and decreased compressibility and hydraulic conductivity. A critical state soil mechanics (CSSM) was used to characterize the soft oil sands tailings. Undrained strength was determined using the concept of the undrained strength ratio (USR). The USR was determined using traditional geotechnical investigation methods. Settling of the non-consolidated (NC) soil deposits was simulated using the finite strain consolidation theory. The model was based on the premise that current effective stresses control undrained shear strength in the NC deposits. Case studies were used to demonstrate the predictive framework. tabs, figs.

  16. The Cultivation of Antagonistic Bacteria in Irradiated Sludge for Biological Control of Soft Rot Erwinias : Screening of Antagonistic Bacteria for biological Control of Soft Rot Erwinias

    International Nuclear Information System (INIS)

    Sermkiattipong, Ng.; Sangsuk, L; Rattanapiriyakul, P; Dejsirilert, S.; Thaveechai, N.

    1998-01-01

    Pure cultures of 57 bacterial isolates for antagonistic activity screening were isolated from three areas of soft rot infested vegetable soil and 58 isolates were obtained from commercial seed compost and seed compost product of Division of Soil and Water Conservation, Department of Land Development. A total of 115 bacterial isolates were evaluated for antagonizing activity against Erwinia carotovora subsp. atroceptica in vitro. Out of them, 18 isolates were antagonists by showing zone of inhibition ranging from 1 to 17 mm by diameter. Most of antagonistic bacteria were identified as Bacillus spp. whereas only one isolate was Pseudomonas vesicularis

  17. Soft ideal topological space and mixed fuzzy soft ideal topological space

    Directory of Open Access Journals (Sweden)

    Manash Borah

    2019-01-01

    Full Text Available In this paper we introduce fuzzy soft ideal and mixed fuzzy soft ideal topological spaces and some properties of this space. Also we introduce fuzzy soft $I$-open set, fuzzy soft $\\alpha$-$I$-open set, fuzzy soft pre-$I$-open set, fuzzy soft semi-$I$-open set and fuzzy soft $\\beta$-$I$-open set and discuss some of their properties.

  18. Effects of Freezing and Thawing Cycle on Mechanical Properties and Stability of Soft Rock Slope

    Directory of Open Access Journals (Sweden)

    Yanlong Chen

    2017-01-01

    Full Text Available To explore the variation laws of mechanical parameters of soft rock and the formed slope stability, an experiment was carried out with collected soft rock material specimens and freezing and thawing cycle was designed. Meanwhile, a computational simulation analysis of the freezing-thawing slope stability was implemented. Key factors that influence the strength of frozen rock specimens were analyzed. Results showed that moisture content and the number of freezing-thawing cycles influenced mechanical parameters of soft rock significantly. With the increase of moisture content, cohesion of frozen soft rock specimens presents a quadratic function decrease and the internal friction angle shows a negative exponential decrease. The stability coefficient of soft rock material slope in seasonal freeze soil area declines continuously. With the increase of freezing and thawing cycle, both cohesion and internal friction angle of soft rock decrease exponentially. The higher the moisture content, the quicker the reduction. Such stability coefficient presents a negative exponential reduction. After three freezing and thawing cycles, the slope stability coefficient only changes slightly. Findings were finally verified by the filed database.

  19. Atypical soil hardening during the Tohoku earthquake of March 11, 2011 ( M w = 9.0)

    Science.gov (United States)

    Pavlenko, O. V.

    2017-10-01

    Based on the records of KiK-net vertical arrays, models of soil behavior down to depths of 100-200 m in the near-fault zones during the Tohoku earthquake are examined. In contrast to the regular pattern observed during strong earthquakes, soft soils have not broadly demonstrated nonlinear behavior, or a reduction (with the onset of strong motions) and recovery (after strong motions finished) of the shear modulus in soil layers. At the stations where anomalously high peak ground accelerations were recorded (PGA > 1g), the values of the shear modulus in soil layers increased with the onset of strong motions and reached a maximum when motions were the most intensive, which indicated hardening of soils. Soil behavior was close to linear, here. The values of the shear moduli decrease along with a decrease in intensity of strong ground motions, and at soft soil stations, this was accompanied by a stepwise decrease in the frequency of motion.

  20. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid.

    Science.gov (United States)

    Kim, Daehyeon; Ha, Sungwoo

    2014-02-07

    In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm) were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  1. SoftAR: visually manipulating haptic softness perception in spatial augmented reality.

    Science.gov (United States)

    Punpongsanon, Parinya; Iwai, Daisuke; Sato, Kosuke

    2015-11-01

    We present SoftAR, a novel spatial augmented reality (AR) technique based on a pseudo-haptics mechanism that visually manipulates the sense of softness perceived by a user pushing a soft physical object. Considering the limitations of projection-based approaches that change only the surface appearance of a physical object, we propose two projection visual effects, i.e., surface deformation effect (SDE) and body appearance effect (BAE), on the basis of the observations of humans pushing physical objects. The SDE visualizes a two-dimensional deformation of the object surface with a controlled softness parameter, and BAE changes the color of the pushing hand. Through psychophysical experiments, we confirm that the SDE can manipulate softness perception such that the participant perceives significantly greater softness than the actual softness. Furthermore, fBAE, in which BAE is applied only for the finger area, significantly enhances manipulation of the perception of softness. We create a computational model that estimates perceived softness when SDE+fBAE is applied. We construct a prototype SoftAR system in which two application frameworks are implemented. The softness adjustment allows a user to adjust the softness parameter of a physical object, and the softness transfer allows the user to replace the softness with that of another object.

  2. Experiment Study on Determination of Surface Area of Finegrained Soils by Mercury Intrusion Porosimetry

    Science.gov (United States)

    Yan, X. Q.; Zhou, C. Y.; Fang, Y. G.; Lin, L. S.

    2017-12-01

    The specific surface area (SSA) has a great influence on the physical and chemical properties of fine-grained soils. Determination of specific surface area is an important content for fine-grained soils micro-meso analysis and characteristic research. In this paper, mercury intrusion porosimetry (MIP) was adopted to determine the SSA of fine-grained soils including quartz, kaolinite, bentonite and natural Shenzhen soft clay. The test results show that the average values of SSA obtained by MIP are 0.78m2/g, 11.31m2/g, 57.28m2/g and 27.15m2/g respectively for very fine-grained quartz, kaolin, bentonite and natural Shenzhen soft clay, and that it is feasible to apply MIP to obtain the SSA of fine-grained soils through statistical analysis of 97 samples. Through discussion, it is necessary to consider the state of fine-grained soils such as pore ratio when the SSA of fine-grained soils is determined by MIP.

  3. Development of artificial soft rock

    International Nuclear Information System (INIS)

    Kishi, Kiyoshi

    1995-01-01

    When foundation base rocks are deeper than the level of installing structures or there exist weathered rocks and crushed rocks in a part of base rocks, often sound artificial base rocks are made by substituting the part with concrete. But in the construction of Kashiwazaki Kariwa Nuclear Power Station of Tokyo Electric Power Co., Inc., the foundation base rocks consist of mudstone, and the stiffness of concrete is large as compared with the surrounding base rocks. As the quality of the substituting material, the nearly same stiffness as that of the surrounding soft rocks and long term stability are suitable, and the excellent workability and economical efficiency are required, therefore, artificial soft rocks were developed. As the substituting material, the soil mortar that can obtain the physical property values in stable form, which are similar to those of Nishiyama mudstone, was selected. The mechanism of its hardening and the long term stability, and the manufacturing plant are reported. As for its application to the base rocks of Kashiwazaki Kariwa Nuclear Power Station, the verification test at the site and the application to the base rocks for No. 7 plant reactor building and other places are described. (K.I.)

  4. Effet de la combinaison de la chaux et de la pouzzolane naturelle sur le compactage et la résistance des sols mous argileux Effect of the combination of lime and natural pozzolana on the compaction and strength of soft clayey soils

    Directory of Open Access Journals (Sweden)

    Kenai S.

    2012-09-01

    Full Text Available La stabilisation des sols mous a été pratiquée longtemps en mélangeant des ajouts, tels que le ciment, la chaux et les cendres volantes au sol pour augmenter sa résistance. Cependant, il y a un manque d’investigations sur l’utilisation de la pouzzolane naturelle seule ou combinée avec la chaux pour les applications d’amélioration des sols. Un programme expérimental a été entrepris pour étudier l’effet de la chaux, la pouzzolane naturelle ou leur combinaison sur les caractéristiques géotechniques des sols mous. La chaux ou la pouzzolane naturelle ont été ajoutées aux sols par des teneurs de 0-10% et 0-20% respectivement. Les échantillons préparés ont été soumis aux essais de compactage et de résistance à la compression non confinée. Les échantillons ont subis des périodes de cure de 1, 7, 28 et 90 jours après quoi ils ont été soumis aux essais de la résistance à la compression non confinée. Basé sur les résultats favorables obtenus, ilpeut être conclu que les sols mous argileux peuvent être stabilisés avec succès par l’action combinée de la chaux et de la pouzzolane naturelle. Puisque la pouzzolane naturelle est beaucoup moins chère que la chaux, l’addition de la pouzzolane naturelle dans le mélange chaux-sol peut en particulier devenir attirante et avoir comme conséquence une réduction des coûts de la construction. Soft soil stabilization has been practiced for quite some time by mixing additives, such as cement, lime and fly ash to the soil to increase its strength. However, there is a lack of investigations on the use of natural pozzolana alone or combined with lime for ground improvement applications. An experimental program was undertaken to study the effect of using lime, natural pozzolana or a combination of both on the geotechnical characteristics of soft soils. Lime or natural pozzolana was added to soft soils at ranges of 0-10% and 0-20%, respectively. In addition, combinations of

  5. Functional traits of soil invertebrates as indicators for exposure to soil disturbance.

    Science.gov (United States)

    Hedde, Mickaël; van Oort, Folkert; Lamy, Isabelle

    2012-05-01

    We tested a trait-based approach to link a soil disturbance to changes in invertebrate communities. Soils and macro-invertebrates were sampled in sandy soils contaminated by long-term wastewater irrigation, adding notably organic matter and trace metals (TM). We hypothesized that functional traits of invertebrates depict ways of exposure and that exposure routes relate to specific TM pools. Geophages and soft-body invertebrates were chosen to inform on exposure by ingestion or contact, respectively. Trait-based indices depicted more accurately effects of pollution than community density and diversity did. Exposure by ingestion had more deleterious effects than by contact. Both types of exposed invertebrates were influenced by TM, but geophages mainly responded to changes in soil organic matter contents. The trait-based approach requires to be applied in various conditions to uncorrelate specific TM impacts from those of other environmental factors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. An experimental study on advancement of damping performance of foundations in soft ground. Pt.1: Forced vibration tests of a foundation block constructed on improved soil medium

    International Nuclear Information System (INIS)

    Ishimaru, S.; Shimomura, Y.; Kawamura, M.; Ikeda, Y.; Hata, I.; Ishigaki, H.

    2005-01-01

    Purpose of this study is to enhance attenuation performance of structures that will be constructed in the soft ground area. We conducted material tests to obtain basic properties of the soil cement column. The forced vibration tests then were carried out to acquire dynamic feature of the reinforced concrete block constructed on improved soil mediums. Additional forced vibration tests for various conditions of trenches dug along the block were conducted to obtain fundamental features of damping effect of the side surfaces of the test block. According to results of the material testing, densities of the soil cement columns were 1.45-1.52 g/cm 3 and the unconfined compressive strengths were 2.4-4.2 times as large as the specified design strength (1 MPa). In comparison of resonance curves by experiments and simulation analysis, simulation analysis results estimated by the hybrid approach were in good agreement with experiment ones for both the X and Y-directions. From the results of the forced vibration test focusing on various condition of the trenches dug along the test block, it was indicated that response of tamping by the rammer decreased compared with that of treading. (authors)

  7. Soft Neutrosophic Bi-LA-semigroup and Soft Neutrosophic N-LA-seigroup

    Directory of Open Access Journals (Sweden)

    Mumtaz Ali

    2014-09-01

    Full Text Available Soft set theory is a general mathematical tool for dealing with uncertain, fuzzy, not clearly defined objects. In this paper we introduced soft neutrosophic biLA-semigroup,soft neutosophic sub bi-LA-semigroup, soft neutrosophic N -LA-semigroup with the discuission of some of their characteristics. We also introduced a new type of soft neutrophic bi-LAsemigroup, the so called soft strong neutrosophic bi-LAsemigoup which is of pure neutrosophic character. This is also extend to soft neutrosophic strong N-LA-semigroup. We also given some of their properties of this newly born soft structure related to the strong part of neutrosophic theory.

  8. Interacción del suelo, cimiento y estructura: el caso de las zapatas (1ª parte)

    OpenAIRE

    Freire Tellado, Manuel J.

    2001-01-01

    This paper proposes the improvement of the structural analysis models introducing both soil and foundation, in the model. Next the soil modelling is analyzed, using the model of the coefficient of subgrade reaction for this task. Its application to the matrix analysis is explained, too. At last, in the second part, the proposed model is aplicated to a number of plane frames belonging to various structural types with isolated foundations. The results derived from the variation of certain param...

  9. Precisiones para el empleo del método del módulo de balasto en edificación

    OpenAIRE

    Freiré Tellado, M. J.

    1999-01-01

    It has only been recently that computers were available to analyze the combined of structure and foundation, introducing more accuracy in structural analysis. Obviously, this technique involves the soil modeling as necessary. The model of the coefficient of subgrade reaction has been often used for this task. At last, the accuracy of the model depends on the agreement between predictions and soil behavior. The appropriate use of Winkler theory and the suitable determination of k are esse...

  10. Compaction and Plasticity Comparative Behaviour of Soft Clay Treated with Coarse and Fine Sizes of Ceramic Tiles

    Science.gov (United States)

    Al-Bared, Mohammed Ali Mohammed; Marto, Aminaton; Sati Hamonangan Harahap, Indra; Kasim, Fauziah

    2018-03-01

    Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.

  11. Compaction and Plasticity Comparative Behaviour of Soft Clay Treated with Coarse and Fine Sizes of Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    Al-Bared Mohammed Ali Mohammed

    2018-01-01

    Full Text Available Recycled blended ceramic tiles (RBT is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD and the optimum moisture content (OMC for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.

  12. Soft, embodied, situated & connected: enriching interactions with soft wearbles

    NARCIS (Netherlands)

    Tomico Plasencia, O.; Wilde, D.

    2016-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, soft wearables leverage the cultural, sociological and material qualities of textiles, fashion and dress;

  13. On the Interaction between a Tunnel Boring Machine and the Surrounding Soil

    NARCIS (Netherlands)

    Festa, D.

    2015-01-01

    The thesis investigates the mechanical equilibrium of a Tunnel Boring Machine (TBM) driving in soft soil. The interaction between the TBM-shield and the soil is also investigated. The analysis is based on monitoring data gathered during the construction of the Hubertus tunnel in The Hague,

  14. Soft electronics for soft robotics

    Science.gov (United States)

    Kramer, Rebecca K.

    2015-05-01

    As advanced as modern machines are, the building blocks have changed little since the industrial revolution, leading to rigid, bulky, and complex devices. Future machines will include electromechanical systems that are soft and elastically deformable, lending them to applications such as soft robotics, wearable/implantable devices, sensory skins, and energy storage and transport systems. One key step toward the realization of soft systems is the development of stretchable electronics that remain functional even when subject to high strains. Liquid-metal traces embedded in elastic polymers present a unique opportunity to retain the function of rigid metal conductors while leveraging the deformable properties of liquid-elastomer composites. However, in order to achieve the potential benefits of liquid-metal, scalable processing and manufacturing methods must be identified.

  15. Influence of hydraulic hysteresis on the mechanical behavior of unsaturated soils and interfaces

    Science.gov (United States)

    Khoury, Charbel N.

    Unsaturated soils are commonly widespread around the world, especially at shallow depths from the surface. The mechanical behavior of this near surface soil is influenced by the seasonal variations such as rainfall or drought, which in turn may have a detrimental effect on many structures (e.g. retaining walls, shallow foundations, mechanically stabilized earth walls, soil slopes, and pavements) in contact with it. Thus, in order to better understand this behavior, it is crucial to study the complex relationship between soil moisture content and matric suction (a stress state variable defined as pore air pressure minus pore water pressure) known as the Soil Water Characteristic Curve (SWCC). In addition, the influence of hydraulic hysteresis on the behavior of unsaturated soils, soil-structure interaction (i.e. rough and smooth steel interfaces, soil-geotextile interfaces) and pavement subgrade (depicted herein mainly by resilient modulus, Mr) was also studied. To this end, suction-controlled direct shear tests were performed on soils, rough and smooth steel interfaces and geotextile interface under drying (D) and wetting after drying (DW). The shearing behavior is examined in terms of the two stress state variables, matric suction and net normal stress. Results along the D and DW paths indicated that peak shear strength increased with suction and net normal stress; while in general, the post peak shear strength was not influenced by suction for rough interfaces and no consistent trend was observed for soils and soil-geotextiles interfaces. Contrary to saturated soils, results during shearing at higher suction values (i.e. 25 kPa and above) showed a decrease in water content eventhough the sample exhibited dilation. A behavior postulated to be related to disruption of menisci and/or non-uniformity of pore size which results in an increase in localized pore water pressures. Interestingly, wetting after drying (DW) test results showed higher peak and post peak shear

  16. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid

    Directory of Open Access Journals (Sweden)

    Daehyeon Kim

    2014-02-01

    Full Text Available In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  17. Soft leptogenesis

    International Nuclear Information System (INIS)

    D'Ambrosio, Giancarlo; Giudice, Gian F.; Raidal, Martti

    2003-01-01

    We study 'soft leptogenesis', a new mechanism of leptogenesis which does not require flavour mixing among the right-handed neutrinos. Supersymmetry soft-breaking terms give a small mass splitting between the CP-even and CP-odd right-handed sneutrino states of a single generation and provide a CP-violating phase sufficient to generate a lepton asymmetry. The mechanism is successful if the lepton-violating soft bilinear coupling is unconventionally (but not unnaturally) small. The values of the right-handed neutrino masses predicted by soft leptogenesis can be low enough to evade the cosmological gravitino problem

  18. Use of lime cement stabilized pavement construction

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M.A.; Raju, G.V.R.P. [JNTU College of Engineering, Kakinada (India). Dept. of Civil Engineering

    2009-08-15

    Expansive clay is a major source of heave induced structural distress. Swelling of expansive soils causes serious problems and produce damages to many structures. Many research organizations are doing extensive work on waste materials concerning the feasibility and environmental suitability. Fly ash, a waste by product from coal burning in thermal power stations, is abundant in India causing severe health, environmental and disposal problems. Attempts are made to investigate the stabilization process with model test tracks over expansive subgrade in flexible pavements. Cyclic plate load tests are carried out on the tracks with chemicals like lime and cement introduced in fly ash subbase laid on sand and expansive subgrades. Test results show that maximum load carrying capacity is obtained for stabilized fly ash subbase compared to untreated fly ash subbase.

  19. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Speciation of rare earth elements in different types of soils in China

    International Nuclear Information System (INIS)

    Wang Lijun; Zhang Shen; Gao Xiaojiang; Liu Shujuan

    1997-01-01

    Contents, distribution patterns, physical and chemical speciation of rare earth elements (REEs) in laterite (tropical zone), red earth (middle subtripical earth), yellow brown soil (Northern subtripical earth), cinnamon soil (warm temperature zone), leached chernozem (temperate zone) and albic bleached soil (temperate zone) in China were determined with instrumental neutron activation analysis (INAA). Content and distribution patterns of ERRs are closely related to soil mechanical composition. In laterite, red earth, yellow brown soil and leached chernozem, REEs mainly enrich in fine grain particles or coarser grain partials while in clay particles no such enrichment was found. The distribution patterns of REEs in these soils are consistent with the REE features of their parent rocks. In all the six soils, REEs mainly exist in residual form, and with the increase of atomic number, intermediate REEs (IRRE) have lower proportions of residual form than light REEs (LREE) and heavy REEs (HREE). For the six unstable forms, water soluble form has the lowest proportion. The proportions of exchangeable form, carbonate and specific adsorption form are lower. The proportions of Fe-Min oxides form in different types of soils decrease gradually from Southern China to Northern China following the order: laterite > red earth > yellow brown soil > cinnamon soil, leached chernozem, albic bleached soil. Proportions of bound organic matters are higher and follow the order: Albic bleached soil > leached chernozem > red earth > laterite > yellow brown soil > cinnamon soil. The albic bleached soil has higher proportion of softly bound organic matter form. The leached chernozem has higher proportion of tightly bound organic matter form. Form of bound to organic matter in laterite is almost totally made up of form of softly bound to organic matter

  1. Physical and numerical modelings of lateral drag in a pipeline in very soft clay; Modelagens fisica e numerica de arraste lateral de duto em argila mole

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Renato M.S.; Almeida, Maria C.F.; Almeida, Marcio S.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Borges, Ricardo G.; Amaral, Claudio S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2005-07-01

    This paper discusses some results from a joint research project undertaken by COPPE/UFRJ and CENPES/PETROBRAS about soil-structure interaction applied to thermal snaking of shallowly buried pipelines embedded in very soft clay. At this phase, the lateral soil reaction due to pipeline horizontal displacements was studied by means of physical and numerical modeling. In that way, a set of comprehensive centrifuge tests has been undertaken using a 1:30 scaled pipe dragged laterally, varying the burial depth condition. The soil used for the tests is a very soft clay sample collected at the Duque de Caxias Refinery area in Rio de Janeiro. The vertical and horizontal displacements of the pipe were imposed by computer-controlled actuators, with soil reaction forces being measured on both directions. The physical modeling results were compared with numerical simulations of the same centrifuge scenarios using the software AEEPECD, developed by PETROBRAS, showing good agreement in terms of horizontal and vertical soil reactions. (author)

  2. Site Classification using Multichannel Channel Analysis of Surface Wave (MASW) method on Soft and Hard Ground

    Science.gov (United States)

    Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.

  3. Soil-structure interaction analysis by Green function

    International Nuclear Information System (INIS)

    Muto, Kiyoshi; Kobayashi, Toshio; Nakahara, Mitsuharu.

    1985-01-01

    Using the method of discretized Green function which had been suggested by the authors, the parametric study of the effects of base mat foundation thickness and soil stiffness were conducted. There was no upper structure effects from the response and reaction stress of the soil by employing different base mat foundation thicknesses. However, the response stress of base mat itself had considerable effect on the base mat foundation stress. The harder the soil, became larger accelerations, and smaller displacements on the upper structure. The upper structure lines of force were directed onto the soil. In the case of soft soil, the reaction soil stress were distributed evenly over the entire reactor building area. Common characteristics of all cases, in-plane shear deformation of the upper floor occured and in-plane acceleration and displacement at the center of the structure become larger. Also, the soil stresses around the shield wall of the base mat foundation became large cecause of the effect of the shield wall bending. (Kubozono, M.)

  4. SUPRA SOFT SEPARATION AXIOMS AND SUPRA IRRESOLUTENESS BASED ON SUPRA B-SOFT SETS

    OpenAIRE

    Abd El-latif, Alaa Mohamed; Hosny, Rodyna Ahmed

    2016-01-01

    This paper introduces supra soft b-separation axioms based on the supra b-open soft sets which are more general than supra open soft sets. We investigate the relationships between these supra soft separation axioms. Furthermore, with the help of examples it is established that the converse does not hold. We show that, a supra soft topological space (X; t;E) is supra soft b-T1-space, if xE is supra b-closed soft set in for each x 2 X. Also, we prove that xE is supra b-closed soft set for each ...

  5. Peat Soil Stabilization using Lime and Cement

    Directory of Open Access Journals (Sweden)

    Mohd Zambri Nadhirah

    2018-01-01

    Full Text Available This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  6. Peat Soil Stabilization using Lime and Cement

    Science.gov (United States)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  7. Soft lubrication

    Science.gov (United States)

    Skotheim, Jan; Mahadevan, Laksminarayanan

    2004-11-01

    We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g a shell) or constitutive properties (e.g. a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving tangentially to a soft layer coating a rigid substrate; a soft cylinder moving tangentially to a rigid substrate; a cylindrical shell moving tangentially to a rigid substrate; and finally a journal bearing coated with a thin soft layer, which being a conforming contact allows us to gauge the influence of contact geometry. In addition, for the particular case of a soft layer coating a rigid substrate we consider both elastic and poroelastic material responses. Finally, we consider the role of contact geometry in the context of the journal bearing, a conforming contact. For all these cases we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness.

  8. Soft Congruence Relations over Rings

    Science.gov (United States)

    Xin, Xiaolong; Li, Wenting

    2014-01-01

    Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft congruence relations by using the soft set theory. The notions of soft quotient rings, generalized soft ideals and generalized soft quotient rings, are introduced, and several related properties are investigated. Also, we obtain a one-to-one correspondence between soft congruence relations and idealistic soft rings and a one-to-one correspondence between soft congruence relations and soft ideals. In particular, the first, second, and third soft isomorphism theorems are established, respectively. PMID:24949493

  9. Hydropodelogy From the Pedon to the Landscape: Challenges and Accomplishments in the National Cooperative Soil Survey

    Science.gov (United States)

    Hammer, D.; Richardson, J.; Hempel, J.; Market, P.

    2005-12-01

    American pedology has focused on the National Cooperative Soil Survey. Primary responsibility rests with the U.S. Department of Agriculture. The primary goals, are legislatively mandated, are to map the country's soils, make interpretations, provide information to clients, maintain and market the soil survey. The first goal is near completion and focus is shifting to the other three. Concomitantly, American pedological science is being impacted by several conditions: technological advances; land use changes at unprecedented scales and magnitudes; a burgeoning population increasingly "separated" from the land; and a major emphasis in universities upon biological ("life") sciences at the DNA scale - as if soil, nutrients and water are not life essentials. Effects of the Flood of 1993 and Hurricane Katrina suggest that humans do not understand earth/climate interactions, particularly climatic extremes. Pedologists know the focus on soil classification and mapping was at the expense of understanding processes. Hydropedology is a holistic approach to understanding soil and geomorphic process in order to predict the impacts of perturbations. Water movement on and in the soil is the primary mechanism of distributing and altering sediments and chemicals (pedogenesis), and depends for its success upon understanding that the soil profile is the record of developmental history at that landscape site. Hydropedologists believe soil scientists can use pedons (point data) from appropriate locations from flownets in complex landscapes to extrapolate processes. This is the "pedotransfer function" concept. Technological advances are coupled with the existing soil survey information to create important soil-landscape interpretations at a variety of scales. Early results have been very successful. Quantification of soil systems can be classified broadly into three categories; hard data, soft data and tacit knowledge. "Hard data" are measured numbers, and include such attributes as p

  10. Soft Tissue Sarcoma

    Science.gov (United States)

    ... muscles, tendons, fat, and blood vessels. Soft tissue sarcoma is a cancer of these soft tissues. There ... have certain genetic diseases. Doctors diagnose soft tissue sarcomas with a biopsy. Treatments include surgery to remove ...

  11. Design of a Soft Robot with Multiple Motion Patterns Using Soft Pneumatic Actuators

    Science.gov (United States)

    Miao, Yu; Dong, Wei; Du, Zhijiang

    2017-11-01

    Soft robots are made of soft materials and have good flexibility and infinite degrees of freedom in theory. These properties enable soft robots to work in narrow space and adapt to external environment. In this paper, a 2-DOF soft pneumatic actuator is introduced, with two chambers symmetrically distributed on both sides and a jamming cylinder along the axis. Fibers are used to constrain the expansion of the soft actuator. Experiments are carried out to test the performance of the soft actuator, including bending and elongation characteristics. A soft robot is designed and fabricated by connecting four soft pneumatic actuators to a 3D-printed board. The soft robotic system is then established. The pneumatic circuit is built by pumps and solenoid valves. The control system is based on the control board Arduino Mega 2560. Relay modules are used to control valves and pressure sensors are used to measure pressure in the pneumatic circuit. Experiments are conducted to test the performance of the proposed soft robot.

  12. Effect of geotextile and cement on the performance of sabkha subgrade

    Energy Technology Data Exchange (ETDEWEB)

    Aiban, S.A.; Al-Ahmadi, H.M.; Siddique, Z.U.; Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Asi, I.M. [Department of Civil Engineering, Hashemite University, Zarqa 13115 (Jordan)

    2006-06-15

    Many construction and post-construction problems have been reported in the literature when sabkha soils have been used without an understanding of their abnormal behavior, especially their inferior loading capability in their natural conditions. The strength of these soils can be further significantly decreased if the sabkha is soaked. The main objective of this study was to upgrade the load-carrying capacity of pavements constructed on sabkha soils using geotextiles, and to assess the effect of geotextile grade, base thickness, loading type (static and dynamic) and moisture condition (as-molded and soaked) on the performance of soil-fabric-aggregate (SFA) systems. In addition, the sabkha soil was treated with different dosages (5%, 7%, and 10%) of Portland cement and the performance of cement-stabilized sabkha was compared to that of the SFA system under different testing conditions. The ANOVA results indicated that the use of geotextile has a beneficial effect on sabkha soils, especially under wet conditions. Although the improvement in the load-carrying capacity of sabkha samples with high dosages of cement showed better results than the inclusion of geotextile, an economic analysis showed that the use of geotextiles would be superior. Moreover, mechanistic analysis was used to develop a prediction model for the percentage increase in the modulus of resilience. (author)

  13. Effect of biosurfactant[0] on the sorption of phenanthrene onto original and H2O2-treated soils

    Institute of Scientific and Technical Information of China (English)

    PEI Xiaohong; ZHAN Xinhua; ZHOU Lixiang

    2009-01-01

    The objective of this study was to examine the effect of biosurfactant on sorption of phenanthrene (PHE) onto the original or H2O2-treated black loamy soil (typic isohumisols) and red sandy soil (typic ferralisols). The sorption isotherms were performed with the original and "soft" carbon-removed soils in the presence and absence of biosurfactant (200 mg/L). The sorption and degradation of biosurfactant were investigated. The result showed that organic matter played an important role in PHE sorption onto the black loamy and red sandy soils, and the PHE sorption isotherms on the "soft" carbon-removed soils exhibited more nonlinearity than those on the original soils. The values of partition coefficient (Kd) on the original black loamy soil with or without 200 mg/L biosurfactant were 181.6 and 494.5 mL/g, respectively. Correspondingly, in the red sandy soil, Kd was 246.4 and 212.8 mL/g in the presence or absence of biosurfactant, respectively. The changes of Kd suggested that biosurfactant inhibited PHE sorption onto the black loamy soil, but facilitated PHE sorption onto the red sandy soil. The nonlinearity of PHE sorption isotherm was decreased in the presence of biosurfactant. Site specific sorption might occur during PHE sorption onto both the original and the "soft" carbon-removed soils in the presence of biosurfactant. It was noted that biosurfactant could also be sorbed onto soils. The maximal sorption capacity of the red sandy soil for biosurfactant was (76.9 ± 0.007) μg/g, which was 1.31 times that of black loamy soil. Biosurfactant was degraded quickly in the two selected soils, and 92% of biosurfactant were mineralized throughout the incubation experiment for 7 d. It implied that biosurfactant should be added frequently when the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils was conducted through PAH desorption approach facilitated by biosurfactant.

  14. AM2 Opposite Lay Evaluation

    Science.gov (United States)

    2015-06-01

    size analysis ( hydrometer ), Atterberg Limits, modified-Proctor com- paction, and un-soaked CBR testing. Classification data for the subgrade soil is...W E IG H T P E R C E N T C O A R S E R B Y W E IG H T U. S. STANDARD SIEVE OPENING IN INCHES U. S. STANDARD SIEVE NUMBERS HYDROMETER GRAIN SIZE IN

  15. Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation

    Science.gov (United States)

    2016-08-04

    and contact constraints using a time-stepping explicit integration procedure. The DEM soil model can account for the soil cohesion, compressibility ...maximum unconsolidated radius and when the particles are compressed that radius is reduced by the amount of plastic deformation. The primary soil ... compressing the soil to a desired consolidation stress using a lid, after which the lid is removed. This step is essential for cohesive soils since

  16. Coupling of impedance functions to nuclear reactor building for soil-structure interaction analysis

    International Nuclear Information System (INIS)

    Danisch, R.; Delinic, K.; Trbojevic, V.M.

    1991-01-01

    Finite element model of a nuclear reactor building is coupled to complex soil impedance functions and soil-structure-interaction analysis is carried out in frequency domain. In the second type of analysis applied in this paper, soil impedance functions are used to evaluate equivalent soil springs and dashpots of soil. These are coupled to the structure model in order to carry out the time marching analysis. Three types of soil profiles are considered: hard, medium and soft. Results of two analyzes are compared on the same structural model. Equivalent soil springs and dashpots are determined using new method based on the least square approximation. (author)

  17. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    Science.gov (United States)

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  18. Probabilistic Modeling of Landfill Subsidence Introduced by Buried Structure Collapse - 13229

    International Nuclear Information System (INIS)

    Foye, Kevin; Soong, Te-Yang

    2013-01-01

    The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass and buried structure placement. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the waste mass and sub-grade properties, especially discontinuous inclusions, which control differential settlement. An alternative is to use a probabilistic model to capture the non-uniform collapse of cover soils and buried structures and the subsequent effect of that collapse on the final cover system. Both techniques are applied to the problem of two side-by-side waste trenches with collapsible voids. The results show how this analytical technique can be used to connect a metric of final cover performance (inundation area) to the susceptibility of the sub-grade to collapse and the effective thickness of the cover soils. This approach allows designers to specify cover thickness, reinforcement, and slope to meet the demands imposed by the settlement of the underlying waste trenches. (authors)

  19. Fully Soft 3D-Printed Electroactive Fluidic Valve for Soft Hydraulic Robots.

    Science.gov (United States)

    Zatopa, Alex; Walker, Steph; Menguc, Yigit

    2018-06-01

    Soft robots are designed to utilize their compliance and contortionistic abilities to both interact safely with their environment and move through it in ways a rigid robot cannot. To more completely achieve this, the robot should be made of as many soft components as possible. Here we present a completely soft hydraulic control valve consisting of a 3D-printed photopolymer body with electrorheological (ER) fluid as a working fluid and gallium-indium-tin liquid metal alloy as electrodes. This soft 3D-printed ER valve weighs less than 10 g and allows for onboard actuation control, furthering the goal of an entirely soft controllable robot. The soft ER valve pressure-holding capabilities were tested under unstrained conditions, cyclic valve activation, and the strained conditions of bending, twisting, stretching, and indentation. It was found that the max holding pressure of the valve when 5 kV was applied across the electrodes was 264 kPa, and that the holding pressure deviated less than 15% from the unstrained max holding pressure under all strain conditions except for indentation, which had a 60% max pressure increase. In addition, a soft octopus-like robot was designed, 3D printed, and assembled, and a soft ER valve was used to stop the fluid flow, build pressure in the robot, and actuate six tentacle-like soft bending actuators.

  20. Soft matter physics

    CERN Document Server

    Doi, Masao

    2013-01-01

    Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students

  1. Soft buckling actuators

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian; Whitesides, George M.

    2017-12-26

    A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predetermined direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.

  2. Extreme Mechanics in Soft Pneumatic Robots and Soft Microfluidic Electronics and Sensors

    Science.gov (United States)

    Majidi, Carmel

    2012-02-01

    In the near future, machines and robots will be completely soft, stretchable, impact resistance, and capable of adapting their shape and functionality to changes in mission and environment. Similar to biological tissue and soft-body organisms, these next-generation technologies will contain no rigid parts and instead be composed entirely of soft elastomers, gels, fluids, and other non-rigid matter. Using a combination of rapid prototyping tools, microfabrication methods, and emerging techniques in so-called ``soft lithography,'' scientists and engineers are currently introducing exciting new families of soft pneumatic robots, soft microfluidic sensors, and hyperelastic electronics that can be stretched to as much as 10x their natural length. Progress has been guided by an interdisciplinary collection of insights from chemistry, life sciences, robotics, microelectronics, and solid mechanics. In virtually every technology and application domain, mechanics and elasticity have a central role in governing functionality and design. Moreover, in contrast to conventional machines and electronics, soft pneumatic systems and microfluidics typically operate in the finite deformation regime, with materials stretching to several times their natural length. In this talk, I will review emerging paradigms in soft pneumatic robotics and soft microfluidic electronics and highlight modeling and design challenges that arise from the extreme mechanics of inflation, locomotion, sensor operation, and human interaction. I will also discuss perceived challenges and opportunities in a broad range of potential application, from medicine to wearable computing.

  3. Effects of soil stiffness and embedment on reactor building response

    International Nuclear Information System (INIS)

    Michalopoulos, A.P.; Vardanega, C.; Cornaggia, L.

    1981-01-01

    A parametric study was made to assess the influence of soil conditions and foundation embedment depth on the floor response spectra for a reactor building. The analyses incorporated soft, medium and hard soils, and three different embedment depths, in a seismic environment described by a 0.36 g peak ground acceleration. The shear wave velocity profiles for the soft, medium and hard soil conditions, were assumed to increase in proportion to the square root of depth from their ground surface values of 300, 600 and 900 meters per second, respectively. Foundation embedment depths of zero, eight and fourteen meters were analyzed using elastic half-space theory, accounting for kinematic interaction. The variation of shear modulus with depth under earthquake excitation was determined using a deconvolution process. Horizontal and vertical synthetic time histories, matching the USNRC Regulatory Guide 1.60 design ground response spectra, were applied at the ground surface and then deconvolved to the foundation level to obtain the input for the soil-structure model. The mathematical model of the superstructure consisted of four lumped-mass close-coupled systems, representing containment shells and components, while the foundation mat was modeled as rigid. Lumped soil compliances (springs and dashpots) were used to represent the horizontal, vertical and rotational modes of vibration. The dynamic analyses were performed utilizing the computer code DAPSYS, and consisted of mode frequency analyses and modal superposition. Modal damping was computed as a weighted average of structural and soil (radiation and material) damping, using the strain energy stored in the respective components as the weighting factor and distinguishing the hysteric nature of the structural and soil material damping, and the viscous nature of the soil radiation damping. (orig./RW)

  4. Influence of granular material characteristics in the behaviour of “Bouregreg Valley” soft ground improved with stone columns

    Directory of Open Access Journals (Sweden)

    Nehab Noura

    2018-01-01

    Full Text Available The use of finite element analysis has become widespread in geotechnical practice as means of optimizing engineering tasks; it can be easily applied to the treated areas by stone columns, which are a method of improving the soil having low geotechnical properties and likely to deform significantly under load action, by incorporating granular material (commonly called ballast compacted by remounting passes, so they act mainly as inclusions with a higher stiffness, shear strength than the natural soil. Moreover the stone columns are highly permeable and act as vertical drains facilitating consolidation of the soft soil improving the performance of the foundation. However the characteristics of this granular material influence the behavior of soft soils treated by the stone columns technique, especially: the friction angle, the cohesion, the modular ratio and the constitutive model. The choice of the constitutive model depends on many factors but, in general, it is related to the type of analysis that we intend to perform. Numerical modeling must consider the diversity of the materials nature, the complex geometry of structures-land and the behavior of materials generally nonlinear (permanent deformation. It is a simple and effective alternative to approach the real behavior of soils reinforced by stone columns and the influence of materials characteristics, it allows settlement analysis, lateral deformation, vertical and horizontal stresses in order to understand the behavior of columns and soil. It also has the advantage of integrating the settlements of the underlying layers. This paper aims to study the mechanisms of functioning and interactions of stone columns with the surrounding ground, and vis-à-vis the various parameters characterizing the granular material "ballast" and the surrounding soil, which influence the behavior of the improved soil, The paper presents, in the first part, soil conditions and the parameters associated with

  5. A review of geotechnical behavior of stabilized soils:Design and analysis considerations

    OpenAIRE

    Makusa, Gregory Paul

    2013-01-01

    Utilization of stabilization technology for improving the engineering properties of soft soils and sediments for structural backfill, such as land reclamation is increasing. Mass stabilization solidification provides a comprehensive technology for improving the geotechnical properties of the problematic soils for civil engineering applications; hence, solving the problem of scarcity of natural resources, meanwhile, providing a sustainable solution for management of contaminated sediments.In g...

  6. Numerical Evaluation on the Different Shapes of Gravelly Sand Columns to Increase the Loading Capacity of Soft Clay

    Directory of Open Access Journals (Sweden)

    Meghzili Sif Allah

    2017-01-01

    Full Text Available Improvement on soft clay by the installation of stone column is one of the most popular methods followed worldwide. Different analytical and numerical solutions have already been developed for understanding the load transfer mechanism of soft soil reinforced with stone column. This study investigated a bearing capacity of the gravelly sand column, installed in soft clay bed at 15kpa of undrained shear strength. The column variable of length and diameter ratio at 7, 8 and 9 were evaluated. On top of that, the combination of two diameters in single column was tested and the uniform diameter was used as a control. In the numerical analysis, Mohrcoulomb model was adopted in the idealization of the behaviour of the gravelly sand column and soft clay materials. The results revealed that the optimum design that gave the highest loading capacity of the combination 11=12 of column diameter was the length and diameter ratio of 8.

  7. A-Soft Separation Axioms in Soft Topological Space

    Directory of Open Access Journals (Sweden)

    Luay Abd –Al-Hani Al-Sweedi

    2018-01-01

    Full Text Available The important science tools in a different kinds and  specialties , that considered the basic mainstay of ( the set theory and because of  huge development in all life fields. This causes great problems , that need solution and parallel tools for those developments , so the scientis become responsible to work on the development of number theory and open new horizons , that a new science had appeared  which is  ( soft figures theory which is considered the important tool to solve most difficult problems or overcome them ,in these sciences and their specific life specialization, economy, medicine , geometry and others. Also the theory of soft numbers had entered in general topology in power full and active way. The last years a new science has appeared is (soft topological space.              The main idea of this research is to define the separation axioms in  (soft topological space  and practically in certain point , and to study the most important  properties and results of it .

  8. Geotechnical properties of reinforced clayey soil using nylons carry’s bags by products

    Directory of Open Access Journals (Sweden)

    Salim Nahla

    2018-01-01

    Full Text Available All structures built on soft soil may experience uncontrollable settlement and critical bearing capacity. This may not meet the design requirements for the geotechnical engineer. Soil stabilization is the change of these undesirable properties in order to meet the requirements. Traditional methods of stabilizing or through in-situ ground improvement such as compaction or replacement technique is usually costly. Now a safe and economic disposal of industrial wastes and development of economically feasible ground improvement techniques are the important challenges being faced by the engineering community. This work focuses on improving the soft soil brought from Baghdad by utilizing the local waste material for stabilization of soil, such as by using “Nylon carry bag’s by product” with the different percentage and corresponding to 1 %, 3% and 5% (the portion of stabilizer matters to soil net weight of dried soil. The results indicated that as Nylon’s fiber content increases, the liquid limit decreases while the plastic limit increases, so the plasticity index decreases. Furthermore, the maximum dry density decreases while, the optimum moisture content increases as the Nylon’s fiber percentage increases. The compression index (decreases as the Nylon’s fiber increases and provides a maximum of 43% reduction by adding 5% nylon waste material. In addition, the results indicated that, the undrained shear strength increases as the nylon fiber increases.

  9. Soil classification in 15 accelerographic stations, using methods based on ambient vibrations and VS30

    International Nuclear Information System (INIS)

    Schmidt, Victor

    2014-01-01

    The techniques H/V, FK and SPAC were applied, all based on the measurement of surface waves main generated by ambient vibrations, for the soil characterization of 15 selected sites. 12 of them corresponding to accelerographic stations of the Laboratorio de Ingenieria Sismica of the Universidad de Costa Rica. 8 sensors (triaxial geophones) were placed for that purpose in circular arrayz, and spectral ratios (from H/V) dispersion curves (from FK) and autocorrelation curves (from SPAC) were obtained for each site considered. The soil type was determined, based on above, according to the site characteristic period (T 0 ) read from H/V. Each site was also classified according to the Seismic Code of Costa Rica (2010) and the parameter Vs30 calculated from the inversion of dispersion curves and autocorrelation. The values of T 0 vary between 0,3 s to 1,5 s and the Vs30 between 244 m/s to 379 m/s have indicated that soils correspond to S 3 (soft soil, 67% of all cases). The discovery of sites whose classification corresponds to S 1 (rock) or S 4 (very soft soil) was discarded. (author) [es

  10. Atomic Force Microscopy for Soil Analysis

    Science.gov (United States)

    gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis

    2016-04-01

    Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.

  11. A 3D finite element simulation model for TBM tunnelling in soft ground

    Science.gov (United States)

    Kasper, Thomas; Meschke, Günther

    2004-12-01

    A three-dimensional finite element simulation model for shield-driven tunnel excavation is presented. The model takes into account all relevant components of the construction process (the soil and the ground water, the tunnel boring machine with frictional contact to the soil, the hydraulic jacks, the tunnel lining and the tail void grouting). The paper gives a detailed description of the model components and the stepwise procedure to simulate the construction process. The soil and the grout material are modelled as saturated porous media using a two-field finite element formulation. This allows to take into account the groundwater, the grouting pressure and the fluid interaction between the soil and slurry at the cutting face and between the soil and grout around the tail void. A Cam-Clay plasticity model is used to describe the material behaviour of cohesive soils. The cementitious grouting material in the tail void is modelled as an ageing elastic material with time-dependent stiffness and permeability. To allow for an automated computation of arbitrarily long and also curvilinear driving paths with suitable finite element meshes, the simulation procedure has been fully automated. The simulation of a tunnel advance in soft cohesive soil below the ground water table is presented and the results are compared with measurements taken from the literature. Copyright

  12. Mappings on Neutrosophic Soft Classes

    Directory of Open Access Journals (Sweden)

    Shawkat Alkhazaleh

    2014-03-01

    Full Text Available In 1995 Smarandache introduced the concept of neutrosophic set which is a mathematical tool for handling problems involving imprecise, indeterminacy and inconsistent data. In 2013 Maji introduced the concept of neutrosophic soft set theory as a general mathematical tool for dealing with uncertainty. In this paper we define the notion of a mapping on classes where the neutrosophic soft classes are collections of neutrosophic soft set. We also define and study the properties of neutrosophic soft images and neutrosophic soft inverse images of neutrosophic soft sets.

  13. SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects

    Science.gov (United States)

    Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M

    1998-01-01

    SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.

  14. Integral abutment bridge for Louisiana's soft and stiff soils : Tech summary.

    Science.gov (United States)

    2016-03-01

    In this project, fi eld-instrumentation, monitoring, and analyzing the design and : construction of full integral abutment bridges for Louisianas fi ne sand and silty sand : deposit and clay soil conditions were conducted. Comparison of results wa...

  15. Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, S.-C.; Thieme, J.; Chao, W.; Fischer, P.

    2008-09-01

    The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.

  16. Ground tire rubber as a stabilizer for subgrade soils.

    Science.gov (United States)

    2014-05-01

    Over 250 million scrap tires are generated annually in the U.S. Historically, a significant portion of these tires : have been processed into finely ground tire rubber (GTR), or crumb rubber, for use as an additive in hot mix asphalt : (HMA) pavement...

  17. Special Provisions for Intelligent Compaction of Stabilized Soil Subgrades

    Science.gov (United States)

    2017-12-30

    Slowing the deterioration of highway infrastructure, reducing carbon emissions, conserving resources, repurposing industrial waste-this Exploratory Advanced Research (EAR) Program project is pursuing multiple benefits through a unique experimental ap...

  18. Blijvend vlakke wegen - CROW-werkgroep integraal wegontwerp - evaluatie van schadecases uit de praktijk

    NARCIS (Netherlands)

    Egmond-Weijburg, C.; Galjaard, P.J.; Van Gurp, C.A.P.M.

    2008-01-01

    This report presents an inquiry into cases of pavement design, construction and maintenance in which distress has been observed instigated by deeper subgrade or by inadequate attention for the interaction between subgrade and pavement structure. Almost all cases are situated in areas with subgrade

  19. Soft Neutrosophic Loops and Their Generalization

    Directory of Open Access Journals (Sweden)

    Mumtaz Ali

    2014-06-01

    Full Text Available Soft set theory is a general mathematical tool for dealing with uncertain, fuzzy, not clearly defined objects. In this paper we introduced soft neutrosophic loop,soft neutosophic biloop, soft neutrosophic N -loop with the discuission of some of their characteristics. We also introduced a new type of soft neutrophic loop, the so called soft strong neutrosophic loop which is of pure neutrosophic character. This notion also found in all the other corresponding notions of soft neutrosophic thoery. We also given some of their properties of this newly born soft structure related to the strong part of neutrosophic theory.

  20. Fundamentals of soft robot locomotion.

    Science.gov (United States)

    Calisti, M; Picardi, G; Laschi, C

    2017-05-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).

  1. Soil and periphyton indicators of anthropogenic water-quality changes in a rainfall-driven wetland

    Science.gov (United States)

    McCormick, P.V.

    2011-01-01

    Surface soils and periphyton communities were sampled across an oligotrophic, soft-water wetland to document changes associated with pulsed inputs of nutrient- and mineral-rich canal drainage waters. A gradient of canal-water influence was indicated by the surface-water specific conductance, which ranged between 743 and 963 ??S cm-1 in the canals to as low as 60 ??S cm-1 in the rainfall-driven wetland interior. Changes in soil chemistry and periphyton taxonomic composition across this gradient were described using piecewise regressions models. The greatest increase in soil phosphorus (P) concentration occurred at sites closest to the canal while soil mineral (sulfur, calcium) concentrations increased most rapidly at the lower end of the gradient. Multiple periphyton shifts occurred at the lower end of the gradient and included; (1) a decline in desmids and non-desmid filamentous chlorophytes, and their replacement by a diatom-dominated community; (2) the loss of soft-water diatom indicator species and their replacement by hard-water species. Increased dominance by cyanobacteria and eutrophic diatom indicators occurred closer to the canals. Soil and periphyton changes indicated four zones of increasing canal influence across the wetland: (1) a zone of increasing mineral concentrations where soft-water taxa remained dominant; (2) a transition towards hard-water, oligotrophic diatoms as mineral concentrations increased further; (3) a zone of dominance by these hard-water species; (4) a zone of rapidly increasing P concentrations and dominance by eutrophic taxa. In contrast to conclusions drawn from routine water-chemistry monitoring, measures of chemical and biological change presented here indicate that most of this rainfall-driven peatland receives some influence from canal discharges. These changes are multifaceted and induced by shifts in multiple chemical constituents. ?? 2010 US Government.

  2. Soft-Material Robotics

    OpenAIRE

    Wang, L; Nurzaman, SG; Iida, Fumiya

    2017-01-01

    There has been a boost of research activities in robotics using soft materials in the past ten years. It is expected that the use and control of soft materials can help realize robotic systems that are safer, cheaper, and more adaptable than the level that the conventional rigid-material robots can achieve. Contrary to a number of existing review and position papers on soft-material robotics, which mostly present case studies and/or discuss trends and challenges, the review focuses on the fun...

  3. Teaching Soft Skills Employers Need

    Science.gov (United States)

    Ellis, Maureen; Kisling, Eric; Hackworth, Robbie G.

    2014-01-01

    This study identifies the soft skills community colleges teach in an office technology course and determines whether the skills taught are congruent with the soft skills employers require in today's entry-level office work. A qualitative content analysis of a community college office technology soft skills course was performed using 23 soft skills…

  4. Spin waves in the soft layer of exchange-coupled soft/hard bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Zheng-min; Ge, Su-qin; Wang, Xi-guang; Li, Zhi-xiong; Xia, Qing-lin; Wang, Dao-wei; Nie, Yao-zhuang; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2016-05-15

    The magnetic dynamical properties of the soft layer in exchange-coupled soft/hard bilayers have been investigated numerically using a one-dimensional atomic chain model. The frequencies and spatial profiles of spin wave eigenmodes are calculated during the magnetization reversal process of the soft layer. The spin wave modes exhibit a spatially modulated amplitude, which is especially evident for high-order modes. A dynamic pinning effect of surface magnetic moment is observed. The spin wave eigenfrequency decreases linearly with the increase of the magnetic field in the uniformly magnetized state and increases nonlinearly with field when spiral magnetization configuration is formed in the soft layer.

  5. Spin waves in the soft layer of exchange-coupled soft/hard bilayers

    Directory of Open Access Journals (Sweden)

    Zheng-min Xiong

    2016-05-01

    Full Text Available The magnetic dynamical properties of the soft layer in exchange-coupled soft/hard bilayers have been investigated numerically using a one-dimensional atomic chain model. The frequencies and spatial profiles of spin wave eigenmodes are calculated during the magnetization reversal process of the soft layer. The spin wave modes exhibit a spatially modulated amplitude, which is especially evident for high-order modes. A dynamic pinning effect of surface magnetic moment is observed. The spin wave eigenfrequency decreases linearly with the increase of the magnetic field in the uniformly magnetized state and increases nonlinearly with field when spiral magnetization configuration is formed in the soft layer.

  6. Nasal Soft-Tissue Triangle Deformities.

    Science.gov (United States)

    Foda, Hossam M T

    2016-08-01

    The soft-tissue triangle is one of the least areas attended to in rhinoplasty. Any postoperative retraction, notching, or asymmetries of soft triangles can seriously affect the rhinoplasty outcome. A good understanding of the risk factors predisposing to soft triangle deformities is necessary to prevent such problems. The commonest risk factors in our study were the wide vertical domal angle between the lateral and intermediate crura, and the increased length of intermediate crus. Two types of soft triangle grafts were described to prevent and treat soft triangle deformities. The used soft triangle grafts resulted in an excellent long-term aesthetic and functional improvement. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Numerical Simulation for Mechanical Behavior of Asphalt Pavement with Graded Aggregate Base

    Directory of Open Access Journals (Sweden)

    Dongliang He

    2018-01-01

    Full Text Available The performance of asphalt pavement is determined by the combination of its material properties, road structure, and loading configurations. A DEM numerical simulation study was conducted to determine stress distribution and deformation behavior of asphalt pavement with graded aggregate base under standard traffic loading. Stress contour and displacement contour were presented via a self-made program. Compressive stress concentrated area located in both sides of wheel, while tensile stress concentrated area appeared in lower part of the asphalt layer. The traffic loading transferred downward by graded aggregate base and to both sides at the same time, and has a trend to expand gradually with increasing depth within graded aggregate base. Therefore, stress was well distributed in the subgrade soil layer with a great action scope, and the value decreased obviously because of the stress dispersion of graded aggregate base. Vertical displacement was the main displacement of the asphalt layer, and on the both sides of traffic loading, displacement was downward and inclined slightly to the central of loading. Vertical and horizontal deformations included in both graded aggregate base layers, and displacement extended to both sides gradually with increasing depth corresponding to stress-distribution trends. Vertical displacement was dominated in the subgrade soil layer which was relatively small.

  8. Reuse of polyethylene waste in road construction.

    Science.gov (United States)

    Raju, S S S V Gopala; Murali, M; Rengaraju, V R

    2007-01-01

    The cost of construction of flexible pavements depends on thickness of the pavement layers. The thickness of pavement mainly depends on the strength of the subgrade. By suitable improvement to the strength of the subgrade, considerable saving in the scarce resources and economy can be achieved. Because of their lightweight, easy handling, non-breakable and corrosion free nature, polyethylene have surpassed all other materials in utility. But polyethylene waste has been a matter of concern to environmentalists as it is non-biodegradable. In this investigation, an attempt has been made to study the improvement of California Bearing Ratio (CBR) value of soils stabilized with waste polyethylene bags. This alternative material is mixed in different proportions to the gravel and clay to determine the improvement ofCBR value. Use of the waste polyethylene bags observed to have a significant impact on the strength and economy in pavement construction, when these are available locally in large quantities.

  9. Holiday fun with soft gluons

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Emissions of soft gluons from energetic particles play an important role in collider processes. While the basic physics of soft emissions is simple, it gives rise to a variety of interesting and intricate phenomena (non-global logs, Glauber phases, super-leading logs, factorization breaking). After an introduction, I will review progress in resummation methods such as Soft-Collinear Effective Theory driven by a better understanding of soft emissions. I will also show some new results for computations of soft-gluon effects in gap-between-jets and isolation-cone cross sections.

  10. Proposed higher order continuum-based models for an elastic ...

    African Journals Online (AJOL)

    Three new variants of continuum-based models for an elastic subgrade are proposed. The subgrade is idealized as a homogenous, isotropic elastic layer of thickness H overlying a firm stratum. All components of the stress tensor in the subgrade are taken into account. Reasonable assumptions are made regarding the ...

  11. Fixing soft margins

    NARCIS (Netherlands)

    P. Kofman (Paul); A. Vaal, de (Albert); C.G. de Vries (Casper)

    1993-01-01

    textabstractNon-parametric tolerance limits are employed to calculate soft margins such as advocated in Williamson's target zone proposal. In particular, the tradeoff between softness and zone width is quantified. This may be helpful in choosing appropriate margins. Furthermore, it offers

  12. Advances in Soft Matter Mechanics

    CERN Document Server

    Li, Shaofan

    2012-01-01

    "Advances in Soft Matter Mechanics" is a compilation and selection of recent works in soft matter mechanics by a group of active researchers in the field. The main objectives of this book are first to disseminate the latest developments in soft matter mechanics in the field of applied and computational mechanics, and second to introduce soft matter mechanics as a sub-discipline of soft matter physics. As an important branch of soft matter physics, soft matter mechanics has developed rapidly in recent years. A number of the novel approaches discussed in this book are unique, such as the coarse grained finite element method for modeling colloidal adhesion, entropic elasticity, meshfree simulations of liquid crystal elastomers, simulations of DNA, etc. The book is intended for researchers and graduate students in the field of mechanics, condensed matter physics and biomaterials. Dr. Shaofan Li is a professor of the University of California-Berkeley, U.S.A; Dr. Bohua Sun is a professor of Cape Peninsula Universit...

  13. Evaluation of soil-structure interaction for structures subjected to earthquake loading with different types of foundation

    Directory of Open Access Journals (Sweden)

    Elwi Mohammed

    2018-01-01

    Full Text Available However though the structures are supported on soil, most of the designers do not consider the soil structure interaction and its subsequent effect on structure during an earthquake. Different soil properties can affect seismic waves as they pass through a soil layer. When a structure is subjected to an earthquake excitation, it interacts the foundation and soil, and thus changes the motion of the ground. It means that the movement of the whole ground structure system is influenced by type of soil as well as by the type of structure. Tall buildings are supposed to be of engineered construction in sense that they might have been analyzed and designed to meet the provision of relevant codes of practice and building bye-laws. IS 1893: 2002 “Criteria for Earthquake Resistant Design of Structures” gives response spectrum for different types of soil such as hard, medium and soft. An attempt has been made in this paper to study the effect of Soil-structure interaction on multi storeyed buildings with various foundation systems. Also to study the response of buildings subjected to seismic forces with Rigid and Flexible foundations. Multi storeyed buildings with fixed and flexible support subjected to seismic forces were analyzed under different soil conditions like hard, medium and soft. The buildings were analyzed by Response spectrum method using software SAP2000. The response of building frames such as Lateral deflection, Story drift, Base shear, Axial force and Column moment values for all building frames were presented in this paper.

  14. Clinical management of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Pinedo, H.M.; Verweij, J.

    1986-01-01

    This book is concerned with the clinical management of soft tissue sarcomas. Topics covered include: Radiotherapy; Pathology of soft tissue sarcomas; Surgical treatment of soft tissue sarcomas; and Chemotherapy in advanced soft tissue sarcomas

  15. Soft optics in intelligent optical networks

    Science.gov (United States)

    Shue, Chikong; Cao, Yang

    2001-10-01

    In addition to the recent advances in Hard-optics that pushes the optical transmission speed, distance, wave density and optical switching capacity, Soft-optics provides the necessary intelligence and control software that reduces operational costs, increase efficiency, and enhances revenue generating services by automating optimal optical circuit placement and restoration, and enabling value-added new services like Optical VPN. This paper describes the advances in 1) Overall Hard-optics and Soft-optics 2) Layered hierarchy of Soft-optics 3) Component of Soft-optics, including hard-optics drivers, Management Soft-optics, Routing Soft-optics and System Soft-optics 4) Key component of Routing and System Soft-optics, namely optical routing and signaling (including UNI/NNI and GMPLS signaling). In summary, the soft-optics on a new generation of OXC's enables Intelligent Optical Networks to provide just-in-time service delivery and fast restoration, and real-time capacity management that eliminates stranded bandwidth. It reduces operational costs and provides new revenue opportunities.

  16. Geotechnical properties of reinforced clayey soil using nylons carry’s bags by products

    OpenAIRE

    Salim Nahla; Al-Soudany Kawther; Jajjawi Nora

    2018-01-01

    All structures built on soft soil may experience uncontrollable settlement and critical bearing capacity. This may not meet the design requirements for the geotechnical engineer. Soil stabilization is the change of these undesirable properties in order to meet the requirements. Traditional methods of stabilizing or through in-situ ground improvement such as compaction or replacement technique is usually costly. Now a safe and economic disposal of industrial wastes and development of economica...

  17. CHARACTERIZATIONS OF FUZZY SOFT PRE SEPARATION AXIOMS

    OpenAIRE

    El-Latif, Alaa Mohamed Abd

    2015-01-01

    − The notions of fuzzy pre open soft sets and fuzzy pre closed soft sets were introducedby Abd El-latif et al. [2]. In this paper, we continue the study on fuzzy soft topological spaces andinvestigate the properties of fuzzy pre open soft sets, fuzzy pre closed soft sets and study variousproperties and notions related to these structures. In particular, we study the relationship betweenfuzzy pre soft interior fuzzy pre soft closure. Moreover, we study the properties of fuzzy soft pre regulars...

  18. Applications of the Advanced Light Source to problems in the earth, soil, and environmental sciences report of the workshop

    International Nuclear Information System (INIS)

    1992-10-01

    This report discusses the following topics: ALS status and research opportunities; advanced light source applications to geological materials; applications in the soil and environmental sciences; x-ray microprobe analysis; potential applications of the ALS in soil and environmental sciences; and x-ray spectroscopy using soft x-rays: applications to earth materials

  19. Soft Hair on Black Holes

    Science.gov (United States)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-06-01

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  20. Soft Hair on Black Holes.

    Science.gov (United States)

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  1. Soft skills and dental education.

    Science.gov (United States)

    Gonzalez, M A G; Abu Kasim, N H; Naimie, Z

    2013-05-01

    Soft skills and hard skills are essential in the practice of dentistry. While hard skills deal with technical proficiency, soft skills relate to a personal values and interpersonal skills that determine a person's ability to fit in a particular situation. These skills contribute to the success of organisations that deal face-to-face with clients. Effective soft skills benefit the dental practice. However, the teaching of soft skills remains a challenge to dental schools. This paper discusses the different soft skills, how they are taught and assessed and the issues that need to be addressed in their teaching and assessment. The use of the module by the Faculty of Dentistry, University of Malaya for development of soft skills for institutions of higher learning introduced by the Ministry of Higher Education, Malaysia. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  2. Soft Matter Characterization

    CERN Document Server

    Borsali, Redouane

    2008-01-01

    Progress in basic soft matter research is driven largely by the experimental techniques available. Much of the work is concerned with understanding them at the microscopic level, especially at the nanometer length scales that give soft matter studies a wide overlap with nanotechnology. This 2 volume reference work, split into 4 parts, presents detailed discussions of many of the major techniques commonly used as well as some of those in current development for studying and manipulating soft matter. The articles are intended to be accessible to the interdisciplinary audience (at the graduate student level and above) that is or will be engaged in soft matter studies or those in other disciplines who wish to view some of the research methods in this fascinating field. Part 1 contains articles with a largely (but, in most cases, not exclusively) theoretical content and/or that cover material relevant to more than one of the techniques covered in subsequent volumes. It includes an introductory chapter on some of t...

  3. Extraction and Study of Bacteriophages, Used against Agents of Potato Soft Rot

    Directory of Open Access Journals (Sweden)

    Magda D. Davitashvili

    2012-12-01

    Full Text Available The use of specific bacteriophages and their complex mixtures against bacterial diseases is very effective. As for causative agent of potato soft rot Erwinia carotovora, specific phages (25 phages in total were extracted from diseased potato, soil and sewage. The study of their biological properties showed the diversity of phages in terms of lytic action, virion plaque and morphology, as well as in relation to different environmental factors. Phages showed explicit antibacterial activity in vitro in liquid and solid media, as well as during model tests of potato tubers artificial inoculation.

  4. Soft Manipulators and Grippers: A Review

    Directory of Open Access Journals (Sweden)

    Josie Hughes

    2016-11-01

    Full Text Available Soft robotics is a growing area of research which utilises the compliance and adaptability of soft structures to develop highly adaptive robotics for soft interactions. One area in which soft robotics has the ability to make significant impact is in the development of soft grippers and manipulators. With an increased requirement for automation, robotics systems are required to perform task in unstructured and not well defined environments; conditions which conventional rigid robotics are not best suited. This requires a paradigm shift in the methods and materials used to develop robots such that they can adapt to and work safely in human environments. One solution to this is soft robotics, which enables soft interactions with the surroundings whilst maintaining the ability to apply significant force. This review paper assess the current materials and methods, actuation methods and sensors which are used in the development of soft manipulators. The achievements and shortcomings of recent technology in these key areas are evaluated, and this paper concludes with a discussion on the potential impacts of soft manipulators on industry and society.

  5. Minimum Thickness of Concrete Pavement for the F-15 and C-17 Aircraft

    Science.gov (United States)

    2013-07-01

    laboratory compaction according to modified Proctor ASTM D1557 are summarized in Figure 15, which shows the clay moisture- density curve. Laboratory...16  Figure 15. Moisture- density curve for clay subgrade (ASTM 1557...subgrade. Figure 15. Moisture- density curve for clay subgrade (ASTM 1557). ERDC/GSL TR-13-34 17 Figure 16. Relationship for strength as

  6. Critical issues in soft rocks

    OpenAIRE

    Milton Assis Kanji

    2014-01-01

    This paper discusses several efforts made to study and investigate soft rocks, as well as their physico-mechanical characteristics recognized up to now, the problems in their sampling and testing, and the possibility of its reproduction through artificially made soft rocks. The problems in utilizing current and widespread classification systems to some types of weak rocks are also discussed, as well as other problems related to them. Some examples of engineering works in soft rock or in soft ...

  7. Soft skills and dental education

    OpenAIRE

    Gonzalez, M. A. G.; Abu Kasim, N. H.; Naimie, Z.

    2014-01-01

    Soft skills and hard skills are essential in the practice of dentistry. While hard skills deal with technical proficiency, soft skills relate to a personal values and interpersonal skills that determine a person's ability to fit in a particular situation. These skills contribute to the success of organisations that deal face-to-face with clients. Effective soft skills benefit the dental practice. However, the teaching of soft skills remains a challenge to dental schools. This paper discusses ...

  8. MANAGEMENT SOFT-FACTORS IN INDUSTRIES

    Directory of Open Access Journals (Sweden)

    L. V. Fatkin

    2012-01-01

    Full Text Available No proper attention is given in existing management theories and concepts to systematization and analysis of non-material management factors, so-called «soft-factors». In industries, management soft-factors may be treated in a broader way. An example of a broader treatment of management soft-factors is given for the system of state regulation of foreign trade activities in industries along with specification, determination and rating of organizational and administrative management soft-factors.

  9. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...... archiving. The Soft Clouding Project is part of LARM - a major infrastructure combining research in and access to sound and radio archives in Denmark. In 2012 the LARM infrastructure will consist of more than 1 million hours of radio, combined with metadata who describes the content. The idea is to analyse...... the concept of ‘infrastructure’ and ‘interface’ on a creative play with the fundamentals of LARM (and any sound archive situation combining many kinds and layers of data and sources). This paper will present and discuss the Soft clouding project from the perspective of the three practices and competencies...

  10. Soft theorems from conformal field theory

    International Nuclear Information System (INIS)

    Lipstein, Arthur E.

    2015-01-01

    Strominger and collaborators recently proposed that soft theorems for gauge and gravity amplitudes can be interpreted as Ward identities of a 2d CFT at null infinity. In this paper, we will consider a specific realization of this CFT known as ambitwistor string theory, which describes 4d Yang-Mills and gravity with any amount of supersymmetry. Using 4d ambtwistor string theory, we derive soft theorems in the form of an infinite series in the soft momentum which are valid to subleading order in gauge theory and sub-subleading order in gravity. Furthermore, we describe how the algebra of soft limits can be encoded in the braiding of soft vertex operators on the worldsheet and point out a simple relation between soft gluon and soft graviton vertex operators which suggests an interesting connection to color-kinematics duality. Finally, by considering ambitwistor string theory on a genus one worldsheet, we compute the 1-loop correction to the subleading soft graviton theorem due to infrared divergences.

  11. The softness of an atom in a molecule and a functional group softness definition; an LCAO scale

    International Nuclear Information System (INIS)

    Giambiagi, M.; Giambiagi, M.S. de; Pires, J.M.; Pitanga, P.

    1987-01-01

    We introduce a scale for the softness of an atom in different molecules and we similarly define a functional group softness. These definitions, unlike previous ones, are not tied to the finite difference approximation neither, hence, to valence state ionization potentials and electron affinities; they result from the LCAO calculation itself. We conclude that a) the softness of an atom in a molecule shows wide variations; b) the geometric average of the softnesses of the atoms in the molecule gives the most consistent results for the molecular softnesses; c) the functional group softness is transferable within a homologous series. (Author) [pt

  12. Int-Soft Interior Hyperideals of Ordered Semihypergroups

    Directory of Open Access Journals (Sweden)

    Asghar Khan

    2017-07-01

    Full Text Available The main theme of this paper is to study ordered semihypergroups in the context of int-soft interior hyperideals. In this paper, the notion of int-soft interior hyperideals are studied and their related properties are discussed. We present characterizations of interior hyperideals in terms of int-soft interior hyperideals. The concepts of int-soft hyperideals and int-soft interior hyperideals coincide in a regular as well as in intra-regular ordered semihypergroups. We prove that every int-soft hyperideal is an int-soft interior hyperideal but the converse is not true which is shown with help of an example. Furthermore we characterize simple ordered semihypergroups by means of int-soft hyperideals and int-soft interior hyperideals.

  13. Feedback of the behaviour of a silo founded on a compressible soil improved by floating stone columns

    Directory of Open Access Journals (Sweden)

    Bahar Ramdane

    2018-01-01

    Full Text Available The coastal city of Bejaia, located 250 kilometers east of the capital Algiers, Algeria, is characterized by soft soils. The residual grounds encountered on the first 40 meters usually have a low bearing capacity, high compressibility, insufficient strength, and subject to the risk of liquefaction. These unfavorable soil conditions require deep foundations or soil improvement. Since late 1990s, stone columns technique is used to improve the weak soils of the harbor area of the city. A shallow raft foundation on soft soil improved by stone columns was designed for a heavy storage steel silo and two towers. The improvement of 18m depth have not reached the substratum located at 39m depth. The stresses transmitted to the service limit state are variable 73 to 376 kPa. A rigorous and ongoing monitoring of the evolution of loads in the silo and settlements of the soil was carried out during 1400 days that is from the construction of foundations in 2008 to 2012. After the loading of the silo in 2010, settlement occurred affecting the stability of the towers due to excessive differential settlements. Consequently, the towers were inclined and damaged the transporter. This paper presents and discusses the experience feedback of the behavior of these structures. Numerical calculations by finite elements have been carried and the results are compared with the measurements.

  14. Seismic soil-structure interaction of foundations with large piles

    International Nuclear Information System (INIS)

    Zeevaert, L.

    1996-01-01

    In seismic regions with soft soil deposits subjected to ground surface subsidence, there is the necessity to support the weight of constructions on large diameter piles or piers hearing on deep firm strata. To justify the action of these elements working under flexo compression and shear, it is necessary to perform calculations of soil pile interaction from a practical engineering point of view and estimate the order of magnitude of the forces and displacements to which these elements will be subjected during the seismic action assigned to the foundation. In this paper we defined a pier as a large diameter pile constructed on site. Furthermore, in the seismic analysis it is necessary to evaluate the seismic pore water pressure to learn on the effective seismic soil stresses close to the ground surface. (author)

  15. Preparing soft-bodied arthropods for microscope examination: Soft Scales (Insecta: Hemiptera: Coccidae)

    Science.gov (United States)

    Proper identification of soft scales (Hemiptera:Coccidae) requires preparation of the specimen on a microscope slide. This training video provides visual instruction on how to prepare soft scale specimens on microscope slides for examination and identification. Steps ranging from collection, speci...

  16. Pavement subgrade MR design values for Michigan's seasonal changes : appendices.

    Science.gov (United States)

    2009-07-22

    The resilient modulus (MR) of roadbed soil plays an integral role in the design of pavement systems. Currently, the various regions of the Michigan Department of Transportation (MDOT) use different procedures to determine the MR values. Most of these...

  17. Numerical modeling of solute transport in deformable unsaturated layered soil

    Directory of Open Access Journals (Sweden)

    Sheng Wu

    2017-07-01

    Full Text Available The effect of soil stratification was studied through numerical investigation based on the coupled model of solute transport in deformable unsaturated soil. The theoretical model implied two-way coupled excess pore pressure and soil deformation based on Biot's consolidation theory as well as a one-way coupled volatile pollutant concentration field developed from the advection-diffusion theory. Embedded in the model, the degree of saturation, fluid compressibility, self-weight of the soil matrix, porosity variance, longitudinal dispersion, and linear sorption were computed. Based on simulation results of a proposed three-layer landfill model using the finite element method, the multi-layer effects are discussed with regard to the hydraulic conductivity, shear modulus, degree of saturation, molecular diffusion coefficient, and thickness of each layer. Generally speaking, contaminants spread faster in a stratified field with a soft and highly permeable top layer; soil parameters of the top layer are more critical than the lower layers but controlling soil thicknesses will alter the results. This numerical investigation showed noticeable impacts of stratified soil properties on solute migration results, demonstrating the importance of correctly modeling layered soil instead of simply assuming the averaged properties across the soil profile.

  18. Evaluating Six Soft Approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Valqui Vidal, René Victor

    2008-01-01

    's interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable forsupporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology......, Strategic Option Development and Analysis, Strategic Choice Approach and Soft Systems Methodology. Evaluations of each methodology are carried out using a conceptual framework in which the organisation, the result, the process and the technology of the specific approach are taken into consideration. Using...

  19. Evaluating six soft approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Vidal, Rene Victor Valqui

    2008-01-01

    's interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable forsupporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology......, Strategic Option Development and Analysis, Strategic Choice Approach and Soft Systems Methodology. Evaluations of each methodology are carried out using a conceptual framework in which the organisation, the result, the process and the technology of the specific approach are taken into consideration. Using...

  20. Applications of Soft Sets in -Algebras

    Directory of Open Access Journals (Sweden)

    N. O. Alshehri

    2013-01-01

    Full Text Available In 1999, Molodtsov introduced the concept of soft set theory as a general mathematical tool for dealing with uncertainty and vagueness. In this paper, we apply the concept of soft sets to K-algebras and investigate some properties of Abelian soft K-algebras. We also introduce the concept of soft intersection K-algebras and investigate some of their properties.

  1. Earthquake analysis of structures including structure-soil interaction by a substructure method

    International Nuclear Information System (INIS)

    Chopra, A.K.; Guttierrez, J.A.

    1977-01-01

    A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure eliminates the deconvolution calculations and the related assumption-regarding type and direction of earthquake waves-required in the direct method. (Auth.)

  2. Transient soft X-ray sources

    International Nuclear Information System (INIS)

    Hayakawa, S.; Murakami, T.; Nagase, F.; Tanaka, Y.; Yamashita, K.

    1976-01-01

    A rocket observation of cosmic soft X-rays suggests the existence of transient, recurrent soft X-ray sources which are found variable during the flight time of the rocket. Some of the soft X-ray sources thus far reported are considered to be of this time. These sources are listed and their positions are shown. (Auth.)

  3. On Neutrosophic Soft Topological Space

    Directory of Open Access Journals (Sweden)

    Tuhin Bera

    2018-03-01

    Full Text Available In this paper, the concept of connectedness and compactness on neutrosophic soft topological space have been introduced along with the investigation of their several characteristics. Some related theorems have been established also. Then, the notion of neutrosophic soft continuous mapping on a neutrosophic soft topological space and it’s properties are developed here.

  4. Evaluating six soft approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene; Vidal, Rene Victor Valqui

    2006-01-01

    ’s interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable for supporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology......, Strategic Option Development and Analysis, Strategic Choice Approach and Soft Systems Methodology. Evaluations of each methodology are carried out using a conceptual framework in which the organisation, the result, the process and the technology of the specific approach are taken into consideration. Using...

  5. Soft, Embodied, Situated & Connected

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2015-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, they leverage the cultural, sociological and material qualities of textiles, fashion and dress; divers...

  6. Soft, embodied, situated & connected

    NARCIS (Netherlands)

    Tomico Plasencia, O.; Wilde, D.

    2015-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, they leverage the cultural, sociological and material qualities of textiles, fashion and dress; diverse

  7. Soft tissue modelling with conical springs.

    Science.gov (United States)

    Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan

    2015-01-01

    This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.

  8. Ground tire rubber as a stabilizer for subgrade soils : [summary].

    Science.gov (United States)

    2014-05-01

    Over 250 million scrap tires are generated : annually in the U.S. Historically, a significant : portion of these tires have been processed into : finely ground tire rubber (GTR), or crumb rubber, : for use as an additive in hot mix asphalt (HMA) : pa...

  9. Proof Rolling of Foundation Soil and Prepared Subgrade During Construction

    Science.gov (United States)

    2017-07-04

    The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...

  10. Mapping on complex neutrosophic soft expert sets

    Science.gov (United States)

    Al-Quran, Ashraf; Hassan, Nasruddin

    2018-04-01

    We introduce the mapping on complex neutrosophic soft expert sets. Further, we investigated the basic operations and other related properties of complex neutrosophic soft expert image and complex neutrosophic soft expert inverse image of complex neutrosophic soft expert sets.

  11. Dynamic calculations of a PWR - reactor building for different soil parameters for the safe shutdown earthquake and explosion pressure wave load cases

    International Nuclear Information System (INIS)

    Brandt, K.; Krutzik, N.; Kaiser, A.

    1982-01-01

    For different dynamic soil properties and soil dampings - ranging from very soft to very rigid soil parameters - time histoires of displacements and accelerations as well as response spectra are calculated for several floors for the reactor building of a nuclear power plant using a finite element shell model. As regards the loadcase safety earthquake the computations are carried out for four different soil properties, and the response spectra of different floors are compared. In the loadcase exterior explosion, results for three different soils are obtained. All results are discussed and explained extensively. (Author) [pt

  12. Soft-tissue tension total knee arthroplasty.

    Science.gov (United States)

    Asano, Hiroshi; Hoshino, Akiho; Wilton, Tim J

    2004-08-01

    It is far from clear how best to define the proper strength of soft-tissue tensioning in total knee arthroplasty (TKA). We attached a torque driver to the Monogram balancer/tensor device and measured soft-tissue tension in full extension and 90 degrees flexion during TKA. In our surgical procedure, when we felt proper soft-tissue tension was being applied, the mean distraction force was noted to be 126N in extension and 121N in flexion. There was no significant correlation between soft-tissue tension and the postoperative flexion angle finally achieved. To the best of our knowledge, this is the first study to assess the actual distraction forces in relation to soft-tissue tension in TKA. Further study may reveal the most appropriate forces to achieve proper soft-tissue tension in the wide variety of circumstances presenting at knee arthroplasty.

  13. Planar Elongation Measurements on Soft Elastomers

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Skov, Anne Ladegaard; Rasmussen, Henrik K.

    2009-01-01

    A new fixture to the filament stretch rheometer (FSR) has been developed to measure planar elongation of soft polymeric networks. To validate this new technique, soft polymeric networks of poly(propyleneoxide) (PPO) were investigated during deformation.......A new fixture to the filament stretch rheometer (FSR) has been developed to measure planar elongation of soft polymeric networks. To validate this new technique, soft polymeric networks of poly(propyleneoxide) (PPO) were investigated during deformation....

  14. Success of Chemotherapy in Soft Matter

    OpenAIRE

    Trifonova, I.; Kurteva, G.; Stefanov, S. Z.

    2014-01-01

    The success of chemotharapy in soft matter as a survival is found in the paper. Therefore, it is found the analogous tumor stretching force in soft matter; ultrasonography is performed for this tumor; restoration in soft matter with such a tumor is found; Bayes estimate of the probability of chemotherapy success is derived from the transferred chemical energy and from soft matter entropy; survival probability is juxtaposed to this probability of success.

  15. Soft Tissue Sarcoma—Health Professional Version

    Science.gov (United States)

    Soft tissue sarcomas are malignant tumors that arise in any of the mesodermal tissues of the extremities, trunk and retroperitoneum, or head and neck. Soft tissue sarcomas may be heterogeneous. Find evidence-based information on soft tissue sarcoma treatment and research.

  16. Relationship between soft stratum thickness and predominant frequency of ground based on microtremor observation data

    Science.gov (United States)

    Chia, Kenny; Lau, Tze Liang

    2017-07-01

    Despite categorized as low seismicity group, until being affected by distant earthquake ground motion from Sumatra and the recent 2015 Sabah Earthquake, Malaysia has come to realize that seismic hazard in the country is real and has the potential to threaten the public safety and welfare. The major concern in this paper is to study the effect of local site condition, where it could amplify the magnitude of ground vibration at sites. The aim for this study is to correlate the thickness of soft stratum with the predominant frequency of soil. Single point microtremor measurements were carried out at 24 selected points where the site investigation reports are available. Predominant period and frequency at each site are determined by Nakamura's method. The predominant period varies from 0.22 s to 0.98 s. Generally, the predominant period increases when getting closer to the shoreline which has thicker sediments. As far as the thickness of the soft stratum could influence the amplification of seismic wave, the advancement of micotremor observation to predict the thickness of soft stratum (h) from predominant frequency (fr) is of the concern. Thus an empirical relationship h =54.917 fr-1.314 is developed based on the microtremor observation data. The empirical relationship will be benefited in the prediction of thickness of soft stratum based on microtremor observation for seismic design with minimal cost compared to conventional boring method.

  17. Radiosensitivity of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Hirano, Toru; Iwasaki, Katsuro; Suzuki, Ryohei; Monzen, Yoshio; Hombo, Zenichiro

    1989-01-01

    The correlation between the effectiveness of radiation therapy and the histology of soft tissue sarcomas was investigated. Of 31 cases with a soft tissue sarcoma of an extremity treated by conservative surgery and postoperative radiation of 3,000-6,000 cGy, local recurrence occurred in 12; 5 out of 7 synovial sarcomas, 4 of 9 MFH, one of 8 liposarcomas, none of 4 rhabdomyosarcomas and 2 of 3 others. As for the histological subtyping, the 31 soft tissue sarcomas were divided into spindle cell, pleomorphic cell, myxoid and round cell type, and recurrence rates were 75%, 33.3%, 16.7% and 0%, respectively. From the remarkable difference in recurrent rate, it was suggested that round cell and myxoid type of soft tissue sarcomas showed a high radiosensitivity compared to the spindle cell type with low sensitivity. Clarifying the degree of radiosensitivity is helpful in deciding on the management of limb salvage in soft tissue sarcomas of an extremity. (author)

  18. Architecture design for soft errors

    CERN Document Server

    Mukherjee, Shubu

    2008-01-01

    This book provides a comprehensive description of the architetural techniques to tackle the soft error problem. It covers the new methodologies for quantitative analysis of soft errors as well as novel, cost-effective architectural techniques to mitigate them. To provide readers with a better grasp of the broader problem deffinition and solution space, this book also delves into the physics of soft errors and reviews current circuit and software mitigation techniques.

  19. Soft behavior of a closed massless state in superstring and universality in the soft behavior of the dilaton

    Energy Technology Data Exchange (ETDEWEB)

    Vecchia, Paolo Di [The Niels Bohr Institute, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Marotta, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli (Italy); Mojaza, Matin [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Potsdam (Germany)

    2016-12-06

    We consider the tree-level scattering amplitudes in the NS-NS (Neveu-Schwarz) massless sector of closed superstrings in the case where one external state becomes soft. We compute the amplitudes generically for any number of dimensions and any number and kind of the massless closed states through the subsubleading order in the soft expansion. We show that, when the soft state is a graviton or a dilaton, the full result can be expressed as a soft theorem factorizing the amplitude in a soft and a hard part. This behavior is similar to what has previously been observed in field theory and in the bosonic string. Differently from the bosonic string, the supersymmetric soft theorem for the graviton has no string corrections at subsubleading order. The dilaton soft theorem, on the other hand, is found to be universally free of string corrections in any string theory.

  20. Soft behavior of a closed massless state in superstring and universality of the soft behavior of the dilaton

    DEFF Research Database (Denmark)

    di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin

    2016-01-01

    We consider the tree-level scattering amplitudes in the NS-NS (Neveu-Schwarz) massless sector of closed superstrings in the case where one external state becomes soft. We compute the amplitudes generically for any number of dimensions and any number and kind of the massless closed states through...... the subsubleading order in the soft expansion. We show that, when the soft state is a graviton or a dilaton, the full result can be expressed as a soft theorem factorizing the amplitude in a soft and a hard part. This behavior is similar to what has previously been observed in field theory and in the bosonic string....... Differently from the bosonic string, the supersymmetric soft theorem for the graviton has no string corrections at subsubleading order. The dilaton soft theorem, on the other hand, is found to be universally free of string corrections in any string theory....

  1. On single and double soft behaviors in NLSM

    International Nuclear Information System (INIS)

    Du, Yi-Jian; Luo, Hui

    2015-01-01

    In this paper, we study the single and double soft behaviors of tree level off-shell currents and on-shell amplitudes in nonlinear sigma model (NLSM). We first propose and prove the leading soft behavior of the tree level currents with a single soft particle. In the on-shell limit, this single soft emission becomes the Adler’s zero. Then we establish the leading and subleading soft behaviors of tree level currents with two adjacent soft particles. With a careful analysis of the on-shell limit, we obtain the double soft behaviors of on-shell amplitudes where the two soft particles are adjacent to each other. By applying Kleiss-Kuijf (KK) relation, we further obtain the leading and subleading behaviors of amplitudes with two nonadjacent soft particles.

  2. Leading multi-soft limits from scattering equations

    Science.gov (United States)

    Zlotnikov, Michael

    2017-10-01

    A Cachazo-He-Yuan (CHY) type formula is derived for the leading gluon, bi-adjoint scalar ϕ 3, Yang-Mills-scalar and non-linear sigma model m-soft factors S m in arbitrary dimension. The general formula is used to evaluate explicit examples for up to three soft legs analytically and up to four soft legs numerically via comparison with amplitude ratios under soft kinematics. A structural pattern for gluon m-soft factor is inferred and a simpler formula for its calculation is conjectured. In four dimensions, a Cachazo-Svrček-Witten (CSW) recursive procedure producing the leading m-soft gluon factor in spinor helicity formalism is developed as an alternative, and Britto-Cachazo-Feng-Witten (BCFW) recursion is used to obtain the leading four-soft gluon factor for all analytically distinct helicity configurations.

  3. Soft Space Planning in Cities unbound

    DEFF Research Database (Denmark)

    Olesen, Kristian

    This paper analyses contemporary experiments of building governance capacity in new soft spaces in Denmark through processes of spatial strategy-making. The paper argues that new soft spaces are emerging in Danish spatial planning, which set out to promote more effective forms of strategic spatial...... planning, and how their obsession with promoting economic development at the expense of wider planning responsibilities support contemporary neoliberal transformations of strategic spatial planning....... planning. The Danish case of soft space planning demonstrates how Danish soft spaces at subnational scales fail to fill in the gaps between formal planning structures and provide the glue that binds formal scales of planning together as promised in the soft space literature. This raises a number...

  4. Small scale soft x-ray lasers

    International Nuclear Information System (INIS)

    Skinner, C.H.; DiCicco, D.S.; Kim, D.; Voorhees, D.; Suckewer, S.

    1990-01-01

    The widespread application of soft x-ray laser technology is contingent on the development of small scale soft x-ray lasers that do not require large laser facilities. Progress in the development of soft x-ray lasers pumped by a Nd laser of energy 6-12J is reported below. Application of an existing soft x-ray laser to x-ray microscopy has begun. A soft x-ray laser of output energy 1-3 mJ at 18,2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. The authors present a composite optical x-ray laser microscope design

  5. 1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag.

    Science.gov (United States)

    Islam, Shahidul; Haque, Asadul; Bui, Ha Hong

    2016-04-15

    Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS) cured up to 365 days. The void ratio-logarithm of pressure (e-logσ') behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.

  6. Soft Decision Analyzer

    Science.gov (United States)

    Lansdowne, Chatwin; Steele, Glen; Zucha, Joan; Schlesinger, Adam

    2013-01-01

    We describe the benefit of using closed-loop measurements for a radio receiver paired with a counterpart transmitter. We show that real-time analysis of the soft decision output of a receiver can provide rich and relevant insight far beyond the traditional hard-decision bit error rate (BER) test statistic. We describe a Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in live-time during the development of software defined radios. This test technique gains importance as modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more protocol overhead through noisier channels, and software-defined radios (SDRs) use error-correction codes that approach Shannon's theoretical limit of performance.

  7. Soft pneumatic grippers embedded with stretchable electroadhesion

    Science.gov (United States)

    Guo, J.; Elgeneidy, K.; Xiang, C.; Lohse, N.; Justham, L.; Rossiter, J.

    2018-05-01

    Current soft pneumatic grippers cannot robustly grasp flat materials and flexible objects on curved surfaces without distorting them. Current electroadhesive grippers, on the other hand, are difficult to actively deform to complex shapes to pick up free-form surfaces or objects. An easy-to-implement PneuEA gripper is proposed by the integration of an electroadhesive gripper and a two-fingered soft pneumatic gripper. The electroadhesive gripper was fabricated by segmenting a soft conductive silicon sheet into a two-part electrode design and embedding it in a soft dielectric elastomer. The two-fingered soft pneumatic gripper was manufactured using a standard soft lithography approach. This novel integration has combined the benefits of both the electroadhesive and soft pneumatic grippers. As a result, the proposed PneuEA gripper was not only able to pick-and-place flat and flexible materials such as a porous cloth but also delicate objects such as a light bulb. By combining two soft touch sensors with the electroadhesive, an intelligent and shape-adaptive PneuEA material handling system has been developed. This work is expected to widen the applications of both soft gripper and electroadhesion technologies.

  8. Soft timing closure for soft programmable logic cores: The ARGen approach

    OpenAIRE

    Bollengier , Théotime; Lagadec , Loïc; Najem , Mohamad; Le Lann , Jean-Christophe; Guilloux , Pierre

    2017-01-01

    International audience; Reconfigurable cores support post-release updates which shortens time-to-market while extending circuits’ lifespan. Reconfigurable cores can be provided as hard cores (ASIC) or soft cores (RTL). Soft reconfigurable cores outperform hard reconfigurable cores by preserving the ASIC synthesis flow, at the cost of lowering scalability but also exacerbating timing closure issues. This article tackles these two issues and introduces the ARGen generator that produces scalable...

  9. Neutrosophic Parameterized Soft Relations and Their Applications

    Directory of Open Access Journals (Sweden)

    Irfan Deli

    2014-06-01

    Full Text Available The aim of this paper is to introduce the concept of relation on neutrosophic parameterized soft set (NP- soft sets theory. We have studied some related properties and also put forward some propositions on neutrosophic parameterized soft relation with proofs and examples. Finally the notions of symmetric, transitive, reflexive, and equivalence neutrosophic parameterized soft set relations have been established in our work. Finally a decision making method on NP-soft sets is presented.

  10. learning and soft skills

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2000-01-01

    Learning of soft skills are becoming more and more necessary due to the complexe development of modern companies and their environments. However, there seems to be a 'gap' between intentions and reality regarding need of soft skills and the possiblities to be educated in this subject in particular...

  11. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Directory of Open Access Journals (Sweden)

    Junguo Hu

    Full Text Available Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK and Co-Kriging (Co-OK methods. The results indicated that the root mean squared errors (RMSEs and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193 were less than those for the OK method (1.146 and 1.539 when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  12. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Science.gov (United States)

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  13. Soft Mobility and Urban Transformation

    Directory of Open Access Journals (Sweden)

    Rosa Anna La Rocca

    2010-04-01

    Full Text Available This paper examines some European cases referred to promotion of soft mobility as a new lifestyle aimed to improve benefits on environment and urban liveability. Soft mobility includes any non-motorized transport (human powered mobility. According to this, soft mobility refers to pedestrian, bicycle, roller skate and skateboard transfers. It could be indented as “zeroimpact” mobility too. As a matter of fact, the words to define this way of moving have not been codified yet, therefore mobilitè douce, soft mobility, slow traffic are synonymous in referring mainly to pedestrians and cyclists to indicate alternative to car use. Soft mobility, indeed, can be defined as a special form of sustainable mobility able to optimize urban liveability, by keeping the individual right to move. At present, cities are engaged in defining policies, procedures and interventions to further “slow traffic”, both to relieve the traffic congestion, and to work for regeneration and environmental improvements. This asks for an in-depth cooperation between different political and administrative levels to achieve common objectives of development more attentive to environmental concerns. Despite this increasing attention, the idea of a “network” for soft mobility has not been yet achieved and the supply of integrated facilities and services as an alternative to the car use seems to be still difficult of accomplishment. High disparity characterizes European countries in promoting soft mobility: despite a prolific production of laws and roles referred to emergency of adopting alternative ways of moving to minimize negatives impacts (especially air and noise pollution as very threat to health due to car dependence for urban short distance too. And yet, soft mobility could represent a real occasion of urban and territorial regeneration aimed to rehabilitate some disused paths and routes (greenways. Some successful European cases show how it is possible to

  14. Fundamentals of soft robot locomotion

    OpenAIRE

    Calisti, M.; Picardi, G.; Laschi, C.

    2017-01-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human���robot interaction and locomotion. Although field applications have emerged for soft manipulation and human���robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This p...

  15. Imaging of musculoskeletal soft tissue infections

    Energy Technology Data Exchange (ETDEWEB)

    Turecki, Marcin B.; Taljanovic, Mihra S.; Holden, Dean A.; Hunter, Tim B.; Rogers, Lee F. [University of Arizona HSC, Department of Radiology, Tucson, AZ (United States); Stubbs, Alana Y. [Southern Arizona VA Health Care System, Department of Radiology, Tucson, AZ (United States); Graham, Anna R. [University of Arizona HSC, Department of Pathology, Tucson, AZ (United States)

    2010-10-15

    Prompt and appropriate imaging work-up of the various musculoskeletal soft tissue infections aids early diagnosis and treatment and decreases the risk of complications resulting from misdiagnosis or delayed diagnosis. The signs and symptoms of musculoskeletal soft tissue infections can be nonspecific, making it clinically difficult to distinguish between disease processes and the extent of disease. Magnetic resonance imaging (MRI) is the imaging modality of choice in the evaluation of soft tissue infections. Computed tomography (CT), ultrasound, radiography and nuclear medicine studies are considered ancillary. This manuscript illustrates representative images of superficial and deep soft tissue infections such as infectious cellulitis, superficial and deep fasciitis, including the necrotizing fasciitis, pyomyositis/soft tissue abscess, septic bursitis and tenosynovitis on different imaging modalities, with emphasis on MRI. Typical histopathologic findings of soft tissue infections are also presented. The imaging approach described in the manuscript is based on relevant literature and authors' personal experience and everyday practice. (orig.)

  16. Imaging of musculoskeletal soft tissue infections

    International Nuclear Information System (INIS)

    Turecki, Marcin B.; Taljanovic, Mihra S.; Holden, Dean A.; Hunter, Tim B.; Rogers, Lee F.; Stubbs, Alana Y.; Graham, Anna R.

    2010-01-01

    Prompt and appropriate imaging work-up of the various musculoskeletal soft tissue infections aids early diagnosis and treatment and decreases the risk of complications resulting from misdiagnosis or delayed diagnosis. The signs and symptoms of musculoskeletal soft tissue infections can be nonspecific, making it clinically difficult to distinguish between disease processes and the extent of disease. Magnetic resonance imaging (MRI) is the imaging modality of choice in the evaluation of soft tissue infections. Computed tomography (CT), ultrasound, radiography and nuclear medicine studies are considered ancillary. This manuscript illustrates representative images of superficial and deep soft tissue infections such as infectious cellulitis, superficial and deep fasciitis, including the necrotizing fasciitis, pyomyositis/soft tissue abscess, septic bursitis and tenosynovitis on different imaging modalities, with emphasis on MRI. Typical histopathologic findings of soft tissue infections are also presented. The imaging approach described in the manuscript is based on relevant literature and authors' personal experience and everyday practice. (orig.)

  17. Earthquake response analysis of embedded reactor building considering soil-structure separation and nonlinearity of soil

    International Nuclear Information System (INIS)

    Ichikawa, T.; Hayashi, Y.; Nakai, S.

    1987-01-01

    In the earthquake response analysis for a rigid and massive structure as a nuclear reactor building, it is important to estimate the effect of soil-structure interaction (SSI) appropriately. In case of strong earthquakes, the nonlinearity, such as the wall-ground separation, the base mat uplift of sliding, makes the behavior of the soil-structure system complex. But, if the nuclear reactor building is embedded in a relatively soft ground with surface layer, the wall-ground separation plays the most important role in the response of soil-structure system. Because, it is expected that the base uplift and slide would be less significant due to the effect of the embedment, and the wall-ground friction is usually neglected in design. But, the nonlinearity of ground may have some effect on the wall-ground separation and the response of the structure. These problems have been studied by use of FEM. Others used joint elements between the ground and the structure which does not resist tensile force. Others studied the effect of wall-ground separation with non-tension springs. But the relationship between the ground condition and the effect of the separation has not been clarified yet. To clarify the effect the analyses by FE model and lumped mass model (sway-rocking model) are performed and compared. The key parameter is the ground profile, namely the stiffness of the side soil

  18. Not-so-Soft Skills

    Science.gov (United States)

    Curran, Mary

    2010-01-01

    Much recent discussion about the skills needed to secure Britain's economic recovery has focused on skills for employability. However, too often, these fundamental skills are understood in narrow functional or vocational terms. So-called "soft skills", what Penelope Tobin, in her 2008 paper "Soft Skills: the hard facts", terms "traits and…

  19. Glass transition in soft-sphere dispersions

    International Nuclear Information System (INIS)

    RamIrez-Gonzalez, P E; Medina-Noyola, M

    2009-01-01

    The concept of dynamic equivalence among mono-disperse soft-sphere fluids is employed in the framework of the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics to calculate the ideal glass transition phase diagram of model soft-sphere colloidal dispersions in the softness-concentration state space. The slow dynamics predicted by this theory near the glass transition is compared with available experimental data for the decay of the intermediate scattering function of colloidal dispersions of soft-microgel particles. Increasing deviations from this simple scheme occur for increasingly softer potentials, and this is studied here using the Rogers-Young static structure factor of the soft-sphere systems as the input of the SCGLE theory, without assuming a priori the validity of the equivalence principle above.

  20. 3D printing of soft robotic systems

    Science.gov (United States)

    Wallin, T. J.; Pikul, J.; Shepherd, R. F.

    2018-06-01

    Soft robots are capable of mimicking the complex motion of animals. Soft robotic systems are defined by their compliance, which allows for continuous and often responsive localized deformation. These features make soft robots especially interesting for integration with human tissues, for example, the implementation of biomedical devices, and for robotic performance in harsh or uncertain environments, for example, exploration in confined spaces or locomotion on uneven terrain. Advances in soft materials and additive manufacturing technologies have enabled the design of soft robots with sophisticated capabilities, such as jumping, complex 3D movements, gripping and releasing. In this Review, we examine the essential soft material properties for different elements of soft robots, highlighting the most relevant polymer systems. Advantages and limitations of different additive manufacturing processes, including 3D printing, fused deposition modelling, direct ink writing, selective laser sintering, inkjet printing and stereolithography, are discussed, and the different techniques are investigated for their application in soft robotic fabrication. Finally, we explore integrated robotic systems and give an outlook for the future of the field and remaining challenges.

  1. Reinforcement of Soft Foundation with Geotextile and Observation for Sea Dike Project of Zhapu Port

    Institute of Scientific and Technical Information of China (English)

    章香雅; 郑祖祯

    2003-01-01

    The design method of reinforcement of soft foundation with geotextile for the sea dike of the Zhapu Port is discussed in this paper. The prototype behaviours such as pore water pressure, settlement and so on were observed. The degree of consolidation is found out from observed pore water pressure and observed settlement respectively, then the strength increment of soil is calculated and compared with that obtained from vane shear tests. For the use of observed pore water pressure, the consolidation coefficient of soil is deduced approximately with a method named experimental exponential interpolation. The degree of consolidation of the ground is deduced theoretically from the dissipation of pore water pressure. Besides, the logarithmic curve and hyperbola are used to fit the observed time-settlement curve, and the degree of consolidation of soil is obtained according to the definition of the consolidation degree. After preliminary verification with observed prototype data, the method to reinforce the low dike with geotextile is considered to be simple and rational, and it can also reduce the construction cost.

  2. Electroroentgenography in diagnosis of soft tissue tumors

    International Nuclear Information System (INIS)

    Vintergal'ter, S.F.; Vishevnik, B.I.

    1989-01-01

    Clinical, electroroentgenographic and X-ray studies of soft tissues were carried out in 425 patients with malignant (75), benign (246) soft tissue tumors and in cases of such soft tissue pathologies of the extremities and body (104). The paper discusses the technicalities of electroroentgenography which produces on one roentgenogram separate images of all components of soft tissues and bones in a given segment. A comparions of image quality assured by electroroentgeno- and roentgenography did not establish any significant difference in soft tissue tumor semiotics

  3. Soft Robotics: from scientific challenges to technological applications

    Science.gov (United States)

    Laschi, C.

    2016-05-01

    Soft robotics is a recent and rapidly growing field of research, which aims at unveiling the principles for building robots that include soft materials and compliance in the interaction with the environment, so as to exploit so-called embodied intelligence and negotiate natural environment more effectively. Using soft materials for building robots poses new technological challenges: the technologies for actuating soft materials, for embedding sensors into soft robot parts, for controlling soft robots are among the main ones. This is stimulating research in many disciplines and many countries, such that a wide community is gathering around initiatives like the IEEE TAS TC on Soft Robotics and the RoboSoft CA - A Coordination Action for Soft Robotics, funded by the European Commission. Though still in its early stages of development, soft robotics is finding its way in a variety of applications, where safe contact is a main issue, in the biomedical field, as well as in exploration tasks and in the manufacturing industry. And though the development of the enabling technologies is still a priority, a fruitful loop is growing between basic research and application-oriented research in soft robotics.

  4. Windchill-201 - Custom Soft-Type Construction

    Science.gov (United States)

    Jones, Corey; LaPha, Steven

    2013-01-01

    This presentation will explain Windchill soft-types-what they are, how they work, and how to construct custom ones, configured specifically for your system. The process and particulars of creating and implementing a WTDocument soft-type will be discussed, and the interaction between soft-types and Windchill objects will be shown.

  5. Embodying Soft Wearables Research

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2016-01-01

    of soft wearables. Throughout, we will experiment with how embodied design research techniques might be shared, developed, and used as direct and unmediated vehicles for their own reporting. Rather than engage in oral presentations, participants will lead each other through a proven embodied method...... and knowledge transfer in the context of soft wearables....

  6. The Effect of Binder and Waste Granular Materials (WGM on the Shear Strength and Shear Resistance of Dredged Marine Soils (DMS

    Directory of Open Access Journals (Sweden)

    Rosman Mohammad Zawawi

    2017-01-01

    Full Text Available Dredged marine soil (DMS is considered as weak and soft problematic soil. It is possible to give this type of soil a second life if only its geotechnical properties are improved. Infusing soil with solidification agent is the common practice of soil improvement. This study uses binder and waste granular material (WGM such as cement, bottom ash (BA and palm oil clinker (POC. The aforementioned materials are capable to fortify the poor features of the soil. Series numbers of soil bed samples were tested for its shear strength and shear resistance. Test results show that the mentioned soil parameters were corresponded with each other. In short, geo-waste and biomass materials are possible to be reused instead of being discarded.

  7. Dissecting soft radiation with factorization

    International Nuclear Information System (INIS)

    Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Amsterdam Univ.

    2014-05-01

    An essential part of high-energy hadronic collisions is the soft hadronic activity that underlies the primary hard interaction. It can receive contributions from soft radiation from the primary hard partons, secondary multiple parton interactions (MPI), and factorization violating effects. The invariant mass spectrum of the leading jet in Z+jet and H+jet events is directly sensitive to these effects. We use a QCD factorization theorem to predict the dependence on the jet radius R, jet p T , jet rapidity, and partonic process for both the perturbative and nonperturbative components of primary soft radiation. The nonperturbative contributions involve only odd powers of R, and the linear R term is universal for quark and gluon jets. The hadronization model in PYTHIA8 agrees well with these properties. The perturbative soft initial state radiation (ISR) has a contribution that depends on the jet area in the same way as the underlying event. This degeneracy is broken by the jet p T dependence. The size of this soft ISR contribution is proportional to the color state of the initial partons, yielding the same positive contribution for gg→Hg and gq→Zq, but a negative interference contribution for q anti q→Zg. Hence, measuring these dependencies allows one to separate hadronization, soft ISR, and MPI contributions in the data.

  8. Prefabricated Vertical Drain (PVD) and Deep Cement Mixing (DCM)/Stiffened DCM (SDCM) techniques for soft ground improvement

    Science.gov (United States)

    Bergado, D. T.; Long, P. V.; Chaiyaput, S.; Balasubramaniam, A. S.

    2018-04-01

    Soft ground improvement techniques have become most practical and popular methods to increase soil strength, soil stiffness and reduce soil compressibility including the soft Bangkok clay. This paper focuses on comparative performances of prefabricated vertical drain (PVD) using surcharge, vacuum and heat preloading as well as the cement-admixed clay of Deep Cement Mixing (DCM) and Stiffened DCM (SDCM) methods. The Vacuum-PVD can increase the horizontal coefficient of consolidation, Ch, resulting in faster rate of settlement at the same magnitudes of settlement compared to Conventional PVD. Several field methods of applying vacuum preloading are also compared. Moreover, the Thermal PVD and Thermal Vacuum PVD can increase further the coefficient of horizontal consolidation, Ch, with the associated reduction of kh/ks values by reducing the drainage retardation effects in the smear zone around the PVD which resulted in faster rates of consolidation and higher magnitudes of settlements. Furthermore, the equivalent smear effect due to non-uniform consolidation is also discussed in addition to the smear due to the mechanical installation of PVDs. In addition, a new kind of reinforced deep mixing method, namely Stiffened Deep Cement Mixing (SDCM) pile is introduced to improve the flexural resistance, improve the field quality control, and prevent unexpected failures of the Deep Cement Mixing (DCM) pile. The SDCM pile consists of DCM pile reinforced with the insertion of precast reinforced concrete (RC) core. The full scale test embankment on soft clay improved by SDCM and DCM piles was also analysed. Numerical simulations using the 3D PLAXIS Foundation finite element software have been done to understand the behavior of SDCM and DCM piles. The simulation results indicated that the surface settlements decreased with increasing lengths of the RC cores, and, at lesser extent, increasing sectional areas of the RC cores in the SDCM piles. In addition, the lateral movements

  9. Possibility Fuzzy Soft Set

    Directory of Open Access Journals (Sweden)

    Shawkat Alkhazaleh

    2011-01-01

    Full Text Available We introduce the concept of possibility fuzzy soft set and its operation and study some of its properties. We give applications of this theory in solving a decision-making problem. We also introduce a similarity measure of two possibility fuzzy soft sets and discuss their application in a medical diagnosis problem.

  10. Soft computing techniques in engineering applications

    CERN Document Server

    Zhong, Baojiang

    2014-01-01

    The Soft Computing techniques, which are based on the information processing of biological systems are now massively used in the area of pattern recognition, making prediction & planning, as well as acting on the environment. Ideally speaking, soft computing is not a subject of homogeneous concepts and techniques; rather, it is an amalgamation of distinct methods that confirms to its guiding principle. At present, the main aim of soft computing is to exploit the tolerance for imprecision and uncertainty to achieve tractability, robustness and low solutions cost. The principal constituents of soft computing techniques are probabilistic reasoning, fuzzy logic, neuro-computing, genetic algorithms, belief networks, chaotic systems, as well as learning theory. This book covers contributions from various authors to demonstrate the use of soft computing techniques in various applications of engineering.  

  11. Pavement subgrade MR design values for Michigan's seasonal changes : final report.

    Science.gov (United States)

    2009-07-22

    The resilient modulus (MR) of roadbed soil plays an integral role in the design of pavement systems. Currently, the : various regions of the Michigan Department of Transportation (MDOT) use different procedures to determine the : MR values. Most of t...

  12. Energy efficiency of mobile soft robots.

    Science.gov (United States)

    Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi

    2017-11-15

    The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy

  13. Wanted: Soft Skills for Today's Jobs

    Science.gov (United States)

    Hirsch, Barton J.

    2017-01-01

    Educating high school students for both college and career is difficult. Teaching trade skills seems alien to the academic culture. But new research indicates that soft skills are quite important to judgments of employability and that youth learn many soft skills in traditional academic subjects (e.g., literature). A focus on soft skills allows…

  14. Hydraulic Conductivity of Residual Soil-Cement Mix

    Science.gov (United States)

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  15. Analysis on the Long Term Effect of Trial Test Road Constructed on Batu Pahat Soft Clay (BPSC) at Recess UTHM

    Science.gov (United States)

    Idrus, M. M. M.; Edayu, A. E.; Adnan, Z.; Ismail, B.

    2016-07-01

    The reinforcement used in soil for construction of roads on the soft clay is very important as it will determine the level of service of the road after it was built. Damage or defects on the road surface to be an indicator of the level of the road has dropped and shows the deformation of the road. For this research, an analysis has carried out on the long-term effect of trial test road constructed on Batu Pahat Soft Clay (BPSC) at RECESS UTHM. Through this research, the reinforcement using Rawell Geosynthetic Clay Liner (RGCL) was the best with the stability is 14964 N, a low flow is 2.69mm, stiffness modulus is 1766 MPa, the peak load is 739.4 N and a lower horizontal deformation which is 1.71 µm compared Woven Geotextile section and section without geotextile [1] [9]. In terms of deformation can be seen clearly from physical observations that section without geotextile suffered significant damage than others. Settlement of road can also be analyzed by a longitudinal section that plotted based on the result of leveling work. After that, settlements are more visible way on the right side of the road trial. Through lab tests conducted, it indicate that the coring samples obtained from sites of each section meets the specifications set by the Jabatan Kerja Raya (JKR) in terms of stability, flow and stiffness [1]. Through this study, a trial road built on soft soil can be used as a test site because of the uniqueness of these roads which has three different types of reinforcements.

  16. Impulsive behavior in solar soft X-radiation

    Science.gov (United States)

    Hudson, H. S.; Strong, K. T.; Dennis, B. R.; Zarro, D.; Inda, M.; Kosugi, T.; Sakao, T.

    1994-01-01

    The Yohkoh soft X-ray telescope has observed impulsive, thermal, soft X-ray emission at the footpoints of magnetic loops during solar flares. The soft X-ray (thermal) time profiles at the footpoints closely match the hard X-ray (nonthermal) time profiles, directly demonstrating the heating of the lower solar atmosphere on short timescales during the interval of nonthermal energy release. This phenomenon is the rule, rather than the exception, occurring in the majority of flares that we have examined with the Yohkoh data. We illustrate the impulsive behavior with data from the major flare of 1992 January 26. For this flare, the soft X-ray peak times matched the hard X-ray peak times within the time resolution of the soft X-ray measurements (about 10 s), and the soft and hard X-ray locations match within the resolution of the hard X-ray imager. The impulsive soft X-ray emission clearly has a thermal spectral signature, but not at the high temperature of a 'superhot' source. We conclude that the impulsive soft X-ray emission comes from material heated by precipitating electrons at loop footpoints and evaporating from the deeper atmosphere into the flaring flux tube.

  17. Cyclic Soft Groups and Their Applications on Groups

    Directory of Open Access Journals (Sweden)

    Hacı Aktaş

    2014-01-01

    Full Text Available In crisp environment the notions of order of group and cyclic group are well known due to many applications. In this paper, we introduce order of the soft groups, power of the soft sets, power of the soft groups, and cyclic soft group on a group. We also investigate the relationship between cyclic soft groups and classical groups.

  18. Soft-sediment mullions

    Science.gov (United States)

    Ortner, Hugo

    2015-04-01

    In this contribution I describe the appearance, formation and significance of soft-sediment mullions. I use several examples from synorogenic turbidites of the Alps and the Pyrenees to show their appearance in the field. Soft-sediment mullions are elongate, slightly irregular bulges at the base of coarse-grained clastic beds (sand to conglomerate), separated by narrow, elongate flames of fine-grained material (mud) protruding into the coarse-grained bed. Various processes may lead to the formation of such structures: (1) longitudinal furrows parallel to the sediment transport direction may form by spiral motion in flow rolls during sediment transport (Dzulinski, 1966; Dzulinski & Simpson, 1966). (2) Loading combined with downslope movement can produce elongate structures parallelling the dowslope direction (Anketell et al., 1970). (3) Soft-sediment mullions are oriented perpendicular or oblique to the downslope direction, and show evidence of bedding-parallel shortening. Thus, they resemble cuspate-lobate folds or mullions, which are well-known in ductile structural geology (e.g. Urai et al., 2001). Soft-sediment mullions have been observed in two cases: Either bedding-parallel shortening can be achieved by slump processes, or by active tectonic shortening. Slumping is characterized by an alternation of stretching and shortening (e.g. Ortner, 2007; Alsop & Marco 2014), and therefore mullions do overprint or are overprinted by normal faults. In active depositional systems that are subject to tectonic shortening growth strata will form, but sediments already deposited will be shortened during lithification. In some cases, the formation of soft-sediment mullions predates folding, but the most widespread expression of syn-lithification shortening seems to be soft-sediment mullions, that form in the inner arcs of fold hinges. In the examples documented so far, the size of soft-sediment mullions is dependent on the grain-size of the coarse-grained layer, in which the

  19. Soft x-ray Planetary Imager

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is to prototype a soft X-ray Imager for planetary applications that has the sensitivity to observe solar system sources of soft  X-ray emission. A strong...

  20. 1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag

    Directory of Open Access Journals (Sweden)

    Shahidul Islam

    2016-04-01

    Full Text Available Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS cured up to 365 days. The void ratio-logarithm of pressure (e-logσ′ behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD and scanning electron microscopy (SEM analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.

  1. Biologically-inspired soft exosuit.

    Science.gov (United States)

    Asbeck, Alan T; Dyer, Robert J; Larusson, Arnar F; Walsh, Conor J

    2013-06-01

    In this paper, we present the design and evaluation of a novel soft cable-driven exosuit that can apply forces to the body to assist walking. Unlike traditional exoskeletons which contain rigid framing elements, the soft exosuit is worn like clothing, yet can generate moments at the ankle and hip with magnitudes of 18% and 30% of those naturally generated by the body during walking, respectively. Our design uses geared motors to pull on Bowden cables connected to the suit near the ankle. The suit has the advantages over a traditional exoskeleton in that the wearer's joints are unconstrained by external rigid structures, and the worn part of the suit is extremely light, which minimizes the suit's unintentional interference with the body's natural biomechanics. However, a soft suit presents challenges related to actuation force transfer and control, since the body is compliant and cannot support large pressures comfortably. We discuss the design of the suit and actuation system, including principles by which soft suits can transfer force to the body effectively and the biological inspiration for the design. For a soft exosuit, an important design parameter is the combined effective stiffness of the suit and its interface to the wearer. We characterize the exosuit's effective stiffness, and present preliminary results from it generating assistive torques to a subject during walking. We envision such an exosuit having broad applicability for assisting healthy individuals as well as those with muscle weakness.

  2. Isolation, Characterization, and Identification of Biological Control Agent for Potato Soft Rot in Bangladesh

    Science.gov (United States)

    Rahman, M. M.; Ali, M. E.; Khan, A. A.; Akanda, A. M.; Uddin, Md. Kamal; Hashim, U.; Abd Hamid, S. B.

    2012-01-01

    A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacterium Erwinia carotovora subsp. carotovora (Ecc) were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was tested in vitro against the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited the in vitro growth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genus Bacillus and the isolate E-45 as Lactobacillus sp. The stronger antagonistic activity against Ecc P-138 was found in E-65 in vitro screening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5–62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5%) antagonistic effect of E-65 was observed in the Granola and the lowest (32.7%) of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers. PMID:22645446

  3. Isolation, Characterization, and Identification of Biological Control Agent for Potato Soft Rot in Bangladesh

    Directory of Open Access Journals (Sweden)

    M. M. Rahman

    2012-01-01

    Full Text Available A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacterium Erwinia carotovora subsp. carotovora (Ecc were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was tested in vitro against the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited the in vitro growth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genus Bacillus and the isolate E-45 as Lactobacillus sp. The stronger antagonistic activity against Ecc P-138 was found in E-65 in vitro screening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5–62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5% antagonistic effect of E-65 was observed in the Granola and the lowest (32.7% of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers.

  4. Double soft theorems in gauge and string theories

    Energy Technology Data Exchange (ETDEWEB)

    Volovich, Anastasia [Brown University Department of Physics,182 Hope St, Providence, RI, 02912 (United States); Wen, Congkao [I.N.F.N. Sezione di Roma “Tor Vergata”,Via della Ricerca Scientifica, 00133 Roma (Italy); Zlotnikov, Michael [Brown University Department of Physics,182 Hope St, Providence, RI, 02912 (United States)

    2015-07-20

    We investigate the tree-level S-matrix in gauge theories and open superstring theory with several soft particles. We show that scattering amplitudes with two or three soft gluons of non-identical helicities behave universally in the limit, with multi-soft factors which are not the product of individual soft gluon factors. The results are obtained from the BCFW recursion relations in four dimensions, and further extended to arbitrary dimensions using the CHY formula. We also find new soft theorems for double soft limits of scalars and fermions in N=4 and pure N=2 SYM. Finally, we show that the double-soft-scalar theorems can be extended to open superstring theory without receiving any α{sup ′} corrections.

  5. Interval-Valued Vague Soft Sets and Its Application

    Directory of Open Access Journals (Sweden)

    Khaleed Alhazaymeh

    2012-01-01

    Full Text Available Molodtsov has introduced the concept of soft sets and the application of soft sets in decision making and medical diagnosis problems. The basic properties of vague soft sets are presented. In this paper, we introduce the concept of interval-valued vague soft sets which are an extension of the soft set and its operations such as equality, subset, intersection, union, AND operation, OR operation, complement, and null while further studying some properties. We give examples for these concepts, and we give a number of applications on interval-valued vague soft sets.

  6. Cohesive Soil Stabilized Using Sewage Sludge Ash/Cement and Nano Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Huan-Lin Luo

    2012-03-01

    Full Text Available In order to improve soft soil strength, a mixture of incinerated sewage sludge ash (SSA and cement was applied as a soil stabilizer. The intended mix ratio for SSA and cement was 3:1. A-6 clay was selected as the untreated soil. In this study, 15% of clay soil was replaced by SSA/cement to produce the treated soil specimens. Then, four different volumes, namely 0, 1, 2, and 3%, of nano-Al2O3 were mixed with the treated soil as an additive. Tests such as compaction, pH values, Atterberg limits, unconfined compressive strength (UCS, swell potential, California bearing ratio (CBR, and permeability were performed. The results indicate that both UCSs and CBR values of untreated soil were greatly improved by the use of 15% SSA/cement. Moreover, a 1% addition of nano-Al2O3 enhanced the treated soil in terms of both UCS and CBR values. Furthermore, the swell potential was effectively reduced by the use of 15% SSA/cement as compared with untreated soil and the 1% nano-Al2O3 additive fraction offered the best performance. From this study, we conclude that 15% of SSA/cement replacement could effectively stabilize A-6 clay soil, and 1% of nano-Al2O3 additive may be the optimum amount to add to the soil.

  7. Zur Dialektik von Soft Skills und fachlicher Kompetenz

    OpenAIRE

    Jendrowiak, Hans-Werner

    2010-01-01

    [Der Autor stellt folgende Thesen zur Dialektik von Soft Skills und fachlicher Bildung auf:] 1. Soft Skills sind normale Bildungskategorien und Teil einer Allgemeinen Bildung. […] 2. Soft Skills sind als personalgebundene Kriterien auch immer schon Gegenstand bildungstheoretischer Debatten. […] 3. Soft Skills ist eine trendorientierte Bezeichnung für Bildung. […] 4. Soft Skills sind Ausdruck von Vorstellungen, Ideen und Theorien (Schulkultur, Unternehmenskultur, Unternehmensphilosophie). 5. S...

  8. Conservative Soft Power: Liberal soft power bias and the ‘hidden’ attraction of Russia

    DEFF Research Database (Denmark)

    Keating, Vincent Charles; Kaczmarska, Katarzyna

    2018-01-01

    The study of soft power in international relations suffers from a liberal democratic bias. Throughout the literature, liberal concepts and values are assumed to be universal in their appeal. This bias has led scholars to underestimate Russian soft power by instrumentalizing it, that is, to see it...

  9. Soft tissue tumors - imaging methods

    International Nuclear Information System (INIS)

    Arlart, I.P.

    1985-01-01

    Soft Tissue Tumors - Imaging Methods: Imaging methods play an important diagnostic role in soft tissue tumors concerning a preoperative evaluation of localization, size, topographic relationship, dignity, and metastatic disease. The present paper gives an overview about diagnostic methods available today such as ultrasound, thermography, roentgenographic plain films and xeroradiography, radionuclide methods, computed tomography, lymphography, angiography, and magnetic resonance imaging. Besides sonography particularly computed tomography has the most important diagnostic value in soft tissue tumors. The application of a recently developed method, the magnetic resonance imaging, cannot yet be assessed in its significance. (orig.) [de

  10. Soft Active Materials for Actuation, Sensing, and Electronics

    OpenAIRE

    Kramer, Rebecca Krone

    2012-01-01

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components ...

  11. New Concepts and Applications in Soft Computing

    CERN Document Server

    Fodor, János; Várkonyi-Kóczy, Annamária

    2013-01-01

                  The book provides a sample of research on the innovative theory and applications of soft computing paradigms.             The idea of Soft Computing was initiated in 1981 when Professor Zadeh published his first paper on soft data analysis and constantly evolved ever since. Professor Zadeh defined Soft Computing as the fusion of the fields of fuzzy logic (FL), neural network theory (NN) and probabilistic reasoning (PR), with the latter subsuming belief networks, evolutionary computing including DNA computing, chaos theory and parts of learning theory into one multidisciplinary system. As Zadeh said the essence of soft computing is that unlike the traditional, hard computing, soft computing is aimed at an accommodation with the pervasive imprecision of the real world. Thus, the guiding principle of soft computing is to exploit the tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness, low solution cost and better rapport with reality. ...

  12. Multiple soft limits of cosmological correlation functions

    International Nuclear Information System (INIS)

    Joyce, Austin; Khoury, Justin; Simonović, Marko

    2015-01-01

    We derive novel identities satisfied by inflationary correlation functions in the limit where two external momenta are taken to be small. We derive these statements in two ways: using background-wave arguments and as Ward identities following from the fixed-time path integral. Interestingly, these identities allow us to constrain some of the O(q 2 ) components of the soft limit, in contrast to their single-soft analogues. We provide several nontrivial checks of our identities both in the context of resonant non-Gaussianities and in small sound speed models. Additionally, we extend the relation at lowest order in external momenta to arbitrarily many soft legs, and comment on the many-soft extension at higher orders in the soft momentum. Finally, we consider how higher soft limits lead to identities satisfied by correlation functions in large-scale structure

  13. Soft error mechanisms, modeling and mitigation

    CERN Document Server

    Sayil, Selahattin

    2016-01-01

    This book introduces readers to various radiation soft-error mechanisms such as soft delays, radiation induced clock jitter and pulses, and single event (SE) coupling induced effects. In addition to discussing various radiation hardening techniques for combinational logic, the author also describes new mitigation strategies targeting commercial designs. Coverage includes novel soft error mitigation techniques such as the Dynamic Threshold Technique and Soft Error Filtering based on Transmission gate with varied gate and body bias. The discussion also includes modeling of SE crosstalk noise, delay and speed-up effects. Various mitigation strategies to eliminate SE coupling effects are also introduced. Coverage also includes the reliability of low power energy-efficient designs and the impact of leakage power consumption optimizations on soft error robustness. The author presents an analysis of various power optimization techniques, enabling readers to make design choices that reduce static power consumption an...

  14. The definition of necessary axial force for extension of initial borehole for soft soil compaction process design

    Directory of Open Access Journals (Sweden)

    Ter-Martirosyan Zaven

    2016-01-01

    Full Text Available The article provides an analytical solution of the soil pile and surrounding soil cylinder interaction problem, with the possibility of extension of the pile shaft in its construction. Presents a closed solution for determination of radial and tangential stresses in the process of expansion of the pile shaft, as well as the minimum vertical force sufficient for the crushing of the pile material and move it in radial direction to the specified value. The problem is most actual for compacted soil bases with use of piles-drains of sand and sand-gravel mixture.

  15. 3D printing for soft robotics - a review.

    Science.gov (United States)

    Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun

    2018-01-01

    Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose.

  16. Dental plaque pH variation with regular soft drink, diet soft drink and high energy drink: an in vivo study.

    Science.gov (United States)

    Jawale, Bhushan Arun; Bendgude, Vikas; Mahuli, Amit V; Dave, Bhavana; Kulkarni, Harshal; Mittal, Simpy

    2012-03-01

    A high incidence of dental caries and dental erosion associated with frequent consumption of soft drinks has been reported. The purpose of this study was to evaluate the pH response of dental plaque to a regular, diet and high energy drink. Twenty subjects were recruited for this study. All subjects were between the ages of 20 and 25 and had at least four restored tooth surfaces present. The subjects were asked to refrain from brushing for 48 hours prior to the study. At baseline, plaque pH was measured from four separate locations using harvesting method. Subjects were asked to swish with 15 ml of the respective soft drink for 1 minute. Plaque pH was measured at the four designated tooth sites at 5, 10 and 20 minutes intervals. Subjects then repeated the experiment using the other two soft drinks. pH was minimum for regular soft drink (2.65 ± 0.026) followed by high energy drink (3.39 ± 0.026) and diet soft drink (3.78 ± 0.006). The maximum drop in plaque pH was seen with regular soft drink followed by high energy drink and diet soft drink. Regular soft drink possesses a greater acid challenge potential on enamel than diet and high energy soft drinks. However, in this clinical trial, the pH associated with either soft drink did not reach the critical pH which is expected for enamel demineralization and dissolution.

  17. Engineering applications of soft computing

    CERN Document Server

    Díaz-Cortés, Margarita-Arimatea; Rojas, Raúl

    2017-01-01

    This book bridges the gap between Soft Computing techniques and their applications to complex engineering problems. In each chapter we endeavor to explain the basic ideas behind the proposed applications in an accessible format for readers who may not possess a background in some of the fields. Therefore, engineers or practitioners who are not familiar with Soft Computing methods will appreciate that the techniques discussed go beyond simple theoretical tools, since they have been adapted to solve significant problems that commonly arise in such areas. At the same time, the book will show members of the Soft Computing community how engineering problems are now being solved and handled with the help of intelligent approaches. Highlighting new applications and implementations of Soft Computing approaches in various engineering contexts, the book is divided into 12 chapters. Further, it has been structured so that each chapter can be read independently of the others.

  18. Theory of electrostatics and electrokinetics of soft particles

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ohshima

    2009-01-01

    Full Text Available We investigate theoretically the electrostatics and electrokinetics of a soft particle, i.e. a hard particle covered with an ion-penetrable surface layer of polyelectrolytes. The electric properties of soft particles in an electrolyte solution, which differ from those of hard particles, are essentially determined by the Donnan potential in the surface layer. In particular, the Donnan potential plays an essential role in the electrostatics and electrokinetics of soft particles. Furthermore, the concept of zeta potential, which is important in the electrokinetics of hard particles, loses its physical meaning in the electrokinetics of soft particles. In this review, we discuss the potential distribution around a soft particle, the electrostatic interaction between two soft particles, and the motion of a soft particle in an electric field.

  19. PENINGKATAN SOFT SKILLS SISWA SMP MELALUI PEMBELAJARAN GENERATIF

    Directory of Open Access Journals (Sweden)

    La Moma

    2015-06-01

    Full Text Available Abstrak: Soft skills merupakan faktor yang turut menunjang kesuksesan siswa belajar matematika. Perlu ada upaya untuk menerapkan suatu model pembelajaran yang dapat memicu peningkatan soft skills siswa dalam matematika. Penelitian ini menerapkan model pembelajaran generatif sebagai alternatif pembelajaran yang diperkirakan akan memicu peningkatan ketiga kemampuan tersebut. Tujuan penelitian untuk mengetahui seberapa besar kontribusi penerapan model tersebut terhadap peningkatan kemampuan soft skills pada level sekolah (tinggi, sedang dan rendah. Penelitian menerapkan desain kuasi eksperimen. Sampel terdiri atas 191 orang siswa kelas VIII pada tiga SMP Negeri di Kota Yogyakarta yang mewakili level sekolah. Pengumpulan data dilakukan dengan teknik tes (pretes dan postes, sedang analisis data menggunakan statistik uji-t dan anova dua jalur. Dari hasil analisis data ditemukan bahwa (1 ada perbedaan pencapaian, peningkatan soft skills siswa antara kelas eksperimen dan kelas kontrol; (2 tidak terdapat interaksi antara pembelajaran dan level sekolah terhadap peningkatan soft skills. Kata Kunci: kemampuan soft skills, pembelajaran generatif THE ENHANCEMENT OF JUNIOR HIGH SCHOOL STUDENTS SOFT SKILLS THROUGH GENERATIVE LEARNING Abstract: Soft skills are factors that support students success in learning mathematics. The importance of the students soft skills, unfortunately, are not in line with at the students abilities in these competence. Therefore, we have to implemented a learning model that is expected to lead development soft skills of the students in mathematics. Generative learning model is applied in this study as an alternative learning is predicted to stimulate development soft skills of the students. This study is aimed at determining the contribution of generative learning model of the enhancement of soft skills for difference school levels (high, medium, low.This study is quasi-experimental research involving 191 students of eight

  20. Analysis of appearance of softness for interior plastic parts; Naiso jushi buhin no soft kan kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, T; Wada, T; Matsuda, M [Toyota Central R and D Laboratories Inc., Aichi (Japan); Nagata, M; Maeda, M [Toyoda Gosei Co. Ltd., Aichi (Japan)

    1997-10-01

    The Appearance of softness was evaluated using the paired comparison method for steering wheel pads. Many kinds of physical quantities of sample pads, such as the depth of wrinkles, surface roughness and gloss, were measured. Correlations between the appearance of softness and the physical quantities were analyzed. As a result, this appearance of softness was found to be characterized by four factors, the depth and slope of wrinkles, gloss and lightness. 3 refs., 4 figs., 4 tabs.

  1. From Soft Walls to Infrared Branes

    CERN Document Server

    von Gersdorff, Gero

    2010-01-01

    Five dimensional warped spaces with soft walls are generalizations of the standard Randall-Sundrum compactifications, where instead of an infrared brane one has a curvature singularity (with vanishing warp factor) at finite proper distance in the bulk. We project the physics near the singularity onto a hypersurface located a small distance away from it in the bulk. This results in a completely equivalent description of the soft wall in terms of an effective infrared brane, hiding any singular point. We perform explicitly this calculation for two classes of soft wall backgrounds used in the literature. The procedure has several advantages. It separates in a clean way the physics of the soft wall from the physics of the five dimensional bulk, facilitating a more direct comparison with standard two-brane warped compactifications. Moreover, consistent soft walls show a sort of universal behavior near the singularity which is reflected in the effective brane Lagrangian. Thirdly, for many purposes, a good approxima...

  2. Soft modes and structural phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, G [Reactor Research Centre, Kalpakkam (India)

    1979-12-01

    A survey of soft modes and their relationship to structural phase transitions is presented. After introducing the concept of a soft mode, the origin of softening is considered from a lattice-dynamical point. The Landau theory approach to structural transitions is then discussed, followed by a generalisation of the soft-mode concept through the use of the dynamic order-parameter susceptibility. The relationship of soft modes to broken symmetry is also examined. Experimental results for several classes of crystals are next presented, bringing out various features such as the co-operative Jahn-Teller effect. The survey concludes with a discussion of the central peak, touching upon both the experimental results and the theoretical speculations.

  3. Soft law as a new mode of governance

    OpenAIRE

    Peters, Anne

    2011-01-01

    The paper analyses soft law as a mode of EU governance. European soft law can be qualified as a relatively ‘new’ mode, notably due to its dramatic proliferation and the increasing involvement of private actors. The concept of ‘soft law’ is viable on the premiss that normativity may be graduated (‘the continuum view’). Soft law deploys specific legal effects apart from outright legal bindingness, and not merely political or otherwise factual effects. The legal effects of European soft law flow...

  4. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters

    Science.gov (United States)

    Wu, Hui; Hu, Liming; Wen, Qingbo

    2017-06-01

    Electro-osmotic consolidation is an effective method for soft ground improvement. A main limitation of previous numerical models on this technique is the ignorance of the non-linear variation of soil parameters. In the present study, a multi-field numerical model is developed with the consideration of the non-linear variation of soil parameters during electro-osmotic consolidation process. The numerical simulations on an axisymmetric model indicated that the non-linear variation of soil parameters showed remarkable impact on the development of the excess pore water pressure and degree of consolidation. A field experiment with complex geometry, boundary conditions, electrode configuration and voltage application was further simulated with the developed numerical model. The comparison between field and numerical data indicated that the numerical model coupling of the non-linear variation of soil parameters gave more reasonable results. The developed numerical model is capable to analyze engineering cases with complex operating conditions.

  5. Interaction with Soft Robotic Tentacles

    DEFF Research Database (Denmark)

    Jørgensen, Jonas

    2018-01-01

    Soft robotics technology has been proposed for a number of applications that involve human-robot interaction. In this tabletop demonstration it is possible to interact with two soft robotic platforms that have been used in human-robot interaction experiments (also accepted to HRI'18 as a Late...

  6. Simulation of granular soil behaviour using the bullet physics library

    OpenAIRE

    Izadi, Ehsan; Bezuijen, Adam

    2015-01-01

    A physics engine is computer software which provides a simulation of certain physical systems, such as rigid body dynamics, soft body dynamics and fluid dynamics. Physics engines were firstly developed for using in animation and gaming industry ; nevertheless, due to fast calculation speed they are attracting more and more attetion from researchers of the engineering fields. Since physics engines are capable of performing fast calculations on multibody rigid dynamic systems, soil particles ca...

  7. Mapping quantitative trait loci for a unique 'super soft' kernel trait in soft white wheat

    Science.gov (United States)

    Wheat (Triticum sp.) kernel texture is an important factor affecting milling, flour functionality, and end-use quality. Kernel texture is normally characterized as either hard or soft, the two major classes of texture. However, further variation is typically encountered in each class. Soft wheat var...

  8. Scalable manufacturing processes with soft materials

    OpenAIRE

    White, Edward; Case, Jennifer; Kramer, Rebecca

    2014-01-01

    The emerging field of soft robotics will benefit greatly from new scalable manufacturing techniques for responsive materials. Currently, most of soft robotic examples are fabricated one-at-a-time, using techniques borrowed from lithography and 3D printing to fabricate molds. This limits both the maximum and minimum size of robots that can be fabricated, and hinders batch production, which is critical to gain wider acceptance for soft robotic systems. We have identified electrical structures, ...

  9. Applications of Soft Union Sets in the Ring Theory

    Directory of Open Access Journals (Sweden)

    Yongwei Yang

    2013-01-01

    through discussing quotient soft subsets, an approach for constructing quotient soft union rings is made. Finally, isomorphism theorems of λ,μ-soft union rings related to invariant soft sets are discussed.

  10. Shortcomings of the Winkler Model in the Assessment of Sectioned Tunnels under Seismic Loading

    DEFF Research Database (Denmark)

    Andersen, Lars; Lyngs, J. H.

    2009-01-01

    A Winkler-type model is often applied in the design of tunnels subject to seismic loading. Since the subgrade stiffness is modelled by disjoint springs, distributed continuously along the tunnel, the model does not account for retroaction via the soil. This may not be a problem in the design......-element solution, using a planned tunnel at Thessaloniki, Greece, as a case study. The aim of the analysis is to quantify the inaccuracy of the Winkler model in the prediction of damage at a gasket between two tunnel elements....

  11. Shortcomings of the Winkler Model in the Assessment of Sectioned Tunnels under Seismic Loading

    DEFF Research Database (Denmark)

    Andersen, Lars; Lyngs, Jakob Hausgaard

    A Winkler-type model is often applied in the design of tunnels subject to seismic loading. Since the subgrade stiffness is modelled by disjoint springs, distributed continuously along the tunnel, the model does not account for retroaction via the soil. This may not be a problem in the design......-element solution, using a planned tunnel at Thessaloniki, Greece, as a case study. The aim of the analysis is to quantify the inaccuracy of the Winkler model in the prediction of damage at a gasket between two tunnel elements....

  12. Instrumentation and analysis of frost heave mitigation on WY-70, Encampment, WY.

    Science.gov (United States)

    2014-05-01

    This project investigated a novel procedure to reduce or prevent subgrade freezing non-destructively by injecting a two-part polymer foam at : the top of the subgrade. Controlled injection of Uretek Star, expanding structural polymer foam, created a ...

  13. The physical properties and compaction characteristics of swelling soils

    International Nuclear Information System (INIS)

    Komine, Hideo; Ogata, Nobuhide

    1990-01-01

    Expansive soils have recently attracted increasing attention as the back filling material for the repositories of high level nuclear wastes or as the material for improving extremely soft grounds. However, since very little has been known concerning the physical and mechanical properties of such materials, it is necessary to clarify the swelling, compaction and thermal characteristics of expansive soils. For this purpose, various kinds of index tests and a series of static compaction tests were performed using several kinds of swelling soils in order to investigate the relationship between the fundamental physical properties and the compaction characteristics. Since the ordinary testing method stipulated in JIS is difficult to perform for such expansive soils, the new method was proposed to obtained the reliable values of specific gravity, grain size distribution and liquid/plastic limits. By this method, some representative values were presented for various kinds of clay including bentonite. As the results of static compaction tests, the compaction characteristics of clay were strongly dependent on the plastic limit of clay. The maximum dry density and optimum water content were strongly dependent on both plastic limit and compaction pressure. (K.I.)

  14. Rapid field detection of moisture content for base and subgrade : technical report.

    Science.gov (United States)

    2015-03-01

    Mixing and compacting soil and flexible base pavement materials at the proper moisture content is critical : for obtaining adequate compaction and meeting construction specification requirements. This project sought : to evaluate rapid non-nuclear te...

  15. (M,N-Soft Intersection BL-Algebras and Their Congruences

    Directory of Open Access Journals (Sweden)

    Xueling Ma

    2014-01-01

    Full Text Available The purpose of this paper is to give a foundation for providing a new soft algebraic tool in considering many problems containing uncertainties. In order to provide these new soft algebraic structures, we discuss a new soft set-(M, N-soft intersection set, which is a generalization of soft intersection sets. We introduce the concepts of (M, N-SI filters of BL-algebras and establish some characterizations. Especially, (M, N-soft congruences in BL-algebras are concerned.

  16. Soil sterilization affects aging-related sequestration and bioavailability of p,p'-DDE and anthracene to earthworms

    International Nuclear Information System (INIS)

    Slizovskiy, Ilya B.; Kelsey, Jason W.

    2010-01-01

    Laboratory experiments investigated the effects of soil sterilization and compound aging on the bioaccumulation of spiked p,p'-DDE and anthracene by Eisenia fetida and Lumbricus terrestris. Declines in bioavailability occurred as pollutant residence time in both sterile and non-sterile soils increased from 3 to 203 d. Accumulation was generally higher in sterile soils during initial periods of aging (from 3-103 d). By 203 d, however, bioavailability of the compounds was unaffected by sterilization. Gamma irradiation and autoclaving may have altered bioavailability by inducing changes in the chemistry of soil organic matter (SOM). The results support a dual-mode partitioning sorption model in which the SOM components associated with short-term sorption (the 'soft' or 'rubbery' phases) are more affected than are the components associated with long-term sorption (the 'glassy' or microcrystalline phases). Risk assessments based on data from experiments in which sterile soil was used could overestimate exposure and bioaccumulation of pollutants. - Soil sterilization affects aging-related sequestration of organic contaminants.

  17. Soft shoulders ahead: spurious signatures of soft and partial selective sweeps result from linked hard sweeps.

    Science.gov (United States)

    Schrider, Daniel R; Mendes, Fábio K; Hahn, Matthew W; Kern, Andrew D

    2015-05-01

    Characterizing the nature of the adaptive process at the genetic level is a central goal for population genetics. In particular, we know little about the sources of adaptive substitution or about the number of adaptive variants currently segregating in nature. Historically, population geneticists have focused attention on the hard-sweep model of adaptation in which a de novo beneficial mutation arises and rapidly fixes in a population. Recently more attention has been given to soft-sweep models, in which alleles that were previously neutral, or nearly so, drift until such a time as the environment shifts and their selection coefficient changes to become beneficial. It remains an active and difficult problem, however, to tease apart the telltale signatures of hard vs. soft sweeps in genomic polymorphism data. Through extensive simulations of hard- and soft-sweep models, here we show that indeed the two might not be separable through the use of simple summary statistics. In particular, it seems that recombination in regions linked to, but distant from, sites of hard sweeps can create patterns of polymorphism that closely mirror what is expected to be found near soft sweeps. We find that a very similar situation arises when using haplotype-based statistics that are aimed at detecting partial or ongoing selective sweeps, such that it is difficult to distinguish the shoulder of a hard sweep from the center of a partial sweep. While knowing the location of the selected site mitigates this problem slightly, we show that stochasticity in signatures of natural selection will frequently cause the signal to reach its zenith far from this site and that this effect is more severe for soft sweeps; thus inferences of the target as well as the mode of positive selection may be inaccurate. In addition, both the time since a sweep ends and biologically realistic levels of allelic gene conversion lead to errors in the classification and identification of selective sweeps. This

  18. Soft Thermal Sensor with Mechanical Adaptability.

    Science.gov (United States)

    Yang, Hui; Qi, Dianpeng; Liu, Zhiyuan; Chandran, Bevita K; Wang, Ting; Yu, Jiancan; Chen, Xiaodong

    2016-11-01

    A soft thermal sensor with mechanical adaptability is fabricated by the combination of single-wall carbon nanotubes with carboxyl groups and self-healing polymers. This study demonstrates that this soft sensor has excellent thermal response and mechanical adaptability. It shows tremendous promise for improving the service life of soft artificial-intelligence robots and protecting thermally sensitive electronics from the risk of damage by high temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Accelerated load testing of geosynthetic base reinforced pavement test sections.

    Science.gov (United States)

    2011-02-01

    The main objective of this research is to evaluate the benefits of geosynthetic stabilization and reinforcement of subgrade/base aggregate layers in flexible pavements built on weak subgrades and the effect of pre-rut pavement sections, prior to the ...

  20. Integrating soft sensor systems using conductive thread

    Science.gov (United States)

    Teng, Lijun; Jeronimo, Karina; Wei, Tianqi; Nemitz, Markus P.; Lyu, Geng; Stokes, Adam A.

    2018-05-01

    We are part of a growing community of researchers who are developing a new class of soft machines. By using mechanically soft materials (MPa modulus) we can design systems which overcome the bulk-mechanical mismatches between soft biological systems and hard engineered components. To develop fully integrated soft machines—which include power, communications, and control sub-systems—the research community requires methods for interconnecting between soft and hard electronics. Sensors based upon eutectic gallium alloys in microfluidic channels can be used to measure normal and strain forces, but integrating these sensors into systems of heterogeneous Young’s modulus is difficult due the complexity of finding a material which is electrically conductive, mechanically flexible, and stable over prolonged periods of time. Many existing gallium-based liquid alloy sensors are not mechanically or electrically robust, and have poor stability over time. We present the design and fabrication of a high-resolution pressure-sensor soft system that can transduce normal force into a digital output. In this soft system, which is built on a monolithic silicone substrate, a galinstan-based microfluidic pressure sensor is integrated with a flexible printed circuit board. We used conductive thread as the interconnect and found that this method alleviates problems arising due to the mechanical mismatch between conventional metal wires and soft or liquid materials. Conductive thread is low-cost, it is readily wetted by the liquid metal, it produces little bending moment into the microfluidic channel, and it can be connected directly onto the copper bond-pads of the flexible printed circuit board. We built a bridge-system to provide stable readings from the galinstan pressure sensor. This system gives linear measurement results between 500-3500 Pa of applied pressure. We anticipate that integrated systems of this type will find utility in soft-robotic systems as used for wearable

  1. Scaling in soft spheres: fragility invariance on the repulsive potential softness

    International Nuclear Information System (INIS)

    Michele, Cristiano De; Sciortino, Francesco; Coniglio, Antonio

    2004-01-01

    We address the question of the dependence of the fragility of glass forming supercooled liquids on the 'softness' of an interacting potential by performing numerical simulation of a binary mixture of soft spheres with different power n of the interparticle repulsive potential. We show that the temperature dependence of the diffusion coefficients for various n collapses onto a universal curve, supporting the unexpected view that fragility is not related to the hard core repulsion. We also find that the configurational entropy correlates with the slowing down of the dynamics for all studied n. (letter to the editor)

  2. A Computational Model of Water Migration Flux in Freezing Soil in a Closed System

    Institute of Scientific and Technical Information of China (English)

    裘春晗

    2005-01-01

    A computational model of water migration flux of fine porous soil in frost heave was investigated in a closed system. The model was established with the heat-mass conservation law and from some previous experimental results. Through defining an auxiliary function an empirical function in the water migration flux, which is difficult to get, was replaced. The data needed are about the water content along the soft colunm after test with enough long time. We adopt the test data of sample soil colunms in [1] to verify the model. The result shows it can reflect the real situation on the whole.

  3. 4th World Conference on Soft Computing

    CERN Document Server

    Abbasov, Ali; Yager, Ronald; Shahbazova, Shahnaz; Reformat, Marek

    2016-01-01

    This book reports on advanced theories and cutting-edge applications in the field of soft computing. The individual chapters, written by leading researchers, are based on contributions presented during the 4th World Conference on Soft Computing, held May 25-27, 2014, in Berkeley. The book covers a wealth of key topics in soft computing, focusing on both fundamental aspects and applications. The former include fuzzy mathematics, type-2 fuzzy sets, evolutionary-based optimization, aggregation and neural networks, while the latter include soft computing in data analysis, image processing, decision-making, classification, series prediction, economics, control, and modeling. By providing readers with a timely, authoritative view on the field, and by discussing thought-provoking developments and challenges, the book will foster new research directions in the diverse areas of soft computing. .

  4. Soft Computing Applications : Proceedings of the 5th International Workshop Soft Computing Applications

    CERN Document Server

    Fodor, János; Várkonyi-Kóczy, Annamária; Dombi, Joszef; Jain, Lakhmi

    2013-01-01

                    This volume contains the Proceedings of the 5thInternational Workshop on Soft Computing Applications (SOFA 2012).                                The book covers a broad spectrum of soft computing techniques, theoretical and practical applications employing knowledge and intelligence to find solutions for world industrial, economic and medical problems. The combination of such intelligent systems tools and a large number of applications introduce a need for a synergy of scientific and technological disciplines in order to show the great potential of Soft Computing in all domains.                   The conference papers included in these proceedings, published post conference, were grouped into the following area of research: ·         Soft Computing and Fusion Algorithms in Biometrics, ·         Fuzzy Theory, Control andApplications, ·         Modelling and Control Applications, ·         Steps towa...

  5. Seismic response of elevated rectangular water tanks considering soil structure interaction

    Science.gov (United States)

    Visuvasam, J.; Simon, J.; Packiaraj, J. S.; Agarwal, R.; Goyal, L.; Dhingra, V.

    2017-11-01

    The overhead staged water tanks are susceptible for high lateral forces during earthquakes. Due to which, the failure of beam-columns joints, framing elements and toppling of tanks arise. To avoid such failures, they are analyzed and designed for lateral forced induced by devastating earthquakes assuming the base of the structures are fixed and considering functional needs, response reduction, soil types and severity of ground shaking. In this paper, the flexible base was provided as spring stiffness in order to consider the effect of soil properties on the seismic behaviour of water tanks. A linear time history earthquake analysis was performed using SAP2000. Parametric studies have been carried out based on various types of soils such as soft, medium and hard. The soil stiffness values highly influence the time period and base shear of the structure. The ratios of time period of flexible to fixed base and base shear of flexible to fixed base were observed against capacities of water tank and the overall height of the system. The both responses are found to be increased as the flexibility of soil medium decreases

  6. Q-Neutrosophic Soft Relation and Its Application in Decision Making

    Directory of Open Access Journals (Sweden)

    Majdoleen Abu Qamar

    2018-03-01

    Full Text Available Q-neutrosophic soft sets are essentially neutrosophic soft sets characterized by three independent two-dimensional membership functions which stand for uncertainty, indeterminacy and falsity. Thus, it can be applied to two-dimensional imprecise, indeterminate and inconsistent data which appear in most real life problems. Relations are a suitable tool for describing correspondences between objects. In this study we introduce and discuss Q-neutrosophic soft relations, which can be discussed as a generalization of fuzzy soft relations, intuitionistic fuzzy soft relations, and neutrosophic soft relations. Q-neutrosophic soft relation is a sub Q-neutrosophic soft set of the Cartesian product of the Q-neutrosophic soft sets, in other words Q-neutrosophic soft relation is Q-neutrosophic soft sets in a Cartesian product of universes. We also present the notions of inverse, composition of Q-neutrosophic soft relations and functions along with some related theorems and properties. Reflexivity, symmetry, transitivity as well as equivalence relations and equivalence classes of Q-neutrosophic soft relations are also defined. Some properties of these concepts are presented and supported by real life examples. Finally, an algorithm to solve decision making problems using Q-neutrosophic soft relations is developed and verified by an example to show the efficiency of this method.

  7. Radionuclide imaging of soft tissue neoplasms

    International Nuclear Information System (INIS)

    Chew, F.S.; Hudson, T.M.; Enneking, W.F.

    1981-01-01

    Two classes of radiopharmaceuticals may be used for imaging tumors of the musculoskeletal system. The first is comprised of soft tissue or tumor specific agents such as gallium-67, bleomycin, and radionuclide-labeled antibodies, which may be useful for detecting and localizing these tumors. The other class of tracer is comprised of those with avidity for bone. The 99mTc-labeled-phosphate skeletal imaging compounds have been found to localize in a variety of soft tissue lesions, including benign and malignant tumors. In 1972, Enneking began to include bone scans in the preoperative evaluation of soft tissue masses. Later, he and his associates reported that these scans were useful in planning operative treatment of sarcomas by detecting involvement of bone by the tumors. Nearly all malignant soft tissue tumors take up bone-seeking radiopharmaceuticals, and bone involvement was indicated in two-thirds of the scans we reviewed. About half of benign soft tissue lesions had normal scans, but the other half showed uptake within the lesion and a few also showed bone involvement. Careful, thorough imaging technique is essential to proper evaluation. Multiple, high-resolution static gamma camera images in different projections are necessary to adequately demonstrate the presence or absence of soft tissue abnormality and to define the precise relationship of the tumor to the adjacent bone

  8. An electromechanical based deformable model for soft tissue simulation.

    Science.gov (United States)

    Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan

    2009-11-01

    Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.

  9. [Soft contactlenses in general practice (author's transl)].

    Science.gov (United States)

    Miller, B

    1975-07-01

    In contrast to the hard lenses the soft lens has enough permeability for oxygen and water-soluble substances, whereas high molecular substances, bacteria and virus cannot penetrate the soft lenses, so long as their surfaces are intact. The two principal production methods, the spin cast method and the lathe-turned method are compared. The duration of wearing of the soft lens depends on the deposits of proteins from the tears on the surface of the lens and the desinfection method. The daily boiling of the lenses shortens their useful life, while chemical desinfection causes besides bacteriolysis, damage of the corneal cell protein. The new cleaners on the base of proteolytic plant enzymes promise good results. For the optical correction of astigmatism with more than 1 cyl, soft lenses with conic outer surface are used or combinations of a soft and a hard lens (Duosystem). The therapeutic use of soft lenses has as aim: protection of the cornea against mechanical irritation, release of pain, protracted administration output of medicaments. Further indications for use: aseptic corneal inflammation and corneal defects.

  10. Soft errors in modern electronic systems

    CERN Document Server

    Nicolaidis, Michael

    2010-01-01

    This book provides a comprehensive presentation of the most advanced research results and technological developments enabling understanding, qualifying and mitigating the soft errors effect in advanced electronics, including the fundamental physical mechanisms of radiation induced soft errors, the various steps that lead to a system failure, the modelling and simulation of soft error at various levels (including physical, electrical, netlist, event driven, RTL, and system level modelling and simulation), hardware fault injection, accelerated radiation testing and natural environment testing, s

  11. Soft Sensors - Modern Chemical Engineering Tool

    Directory of Open Access Journals (Sweden)

    N. Bolf

    2011-04-01

    Full Text Available Control systems and optimization procedures require regular and reliable measurements at the appropriate frequency. At the same time, legal regulations dictate strict product quality specifications and refinery emissions. As a result, a greater number of process variables need to be measured and new expensive process analyzers need to be installed to achieve efficient process control. This involves synergy between plant experts, system analysts and process operators. One of the common problems in industrial plants is the inability of the real time and continuous measurement of key process variables.Absence of key value measurement in a timely manner aggravates control, but it does not mean that it is always an impossible step. As an alternative, the use of soft sensors as a substitute for process analyzers and laboratory testing is suggested. With the soft sensors, the objective is to develop an inferential model to estimate infrequently measured variables and laboratory assays using the frequently measured variables. By development of soft sensors based on measurement of continuous variables (such as flow, temperature, pressure it is possible to estimate the difficult- -to-measure variables as well as product quality and emissions usually carried by laboratory assays.Software sensors, as part of virtual instrumentation, are focused on assessing the system state variables and quality products by applying the model, thus replacing the physical measurement and laboratory analysis. Multiple linear/nonlinear regression methods and artificial intelligence methods (such as neural network, fuzzy logic and genetic algorithms are usually applied in the design of soft sensor models for identification of nonlinear processes.Review of published research and industrial application in the field of soft sensors is given with the methods of soft sensor development and nonlinear dynamic model identification. Based on soft sensors, it is possible to estimate

  12. Dynamic Strength and Accumulated Plastic Strain Development Laws and Models of the Remolded Red Clay under Long-Term Cyclic Loads: Laboratory Test Results

    Directory of Open Access Journals (Sweden)

    Li Jian

    2015-09-01

    Full Text Available The dynamic strength and accumulated plastic strain are two important parameters for evaluating the dynamic response of soil. As a special clay, the remolded red clay is often used as the high speed railway subgrade filling, but studies on its dynamic characteristics are few. For a thorough analysis of the suitability of the remolded red clay as the subgrade filling, a series of long-term cyclic load triaxial test under different load histories are carried out. Considering the influence of compactness, confining pressure, consolidation ratio, vibration frequency and dynamic load to the remolded red clay dynamic property, the tests obtain the development curves of the dynamic strength and accumulated plastic strain under different test conditions. Then, through curve fitting method, two different hyperbolic models respectively for the dynamic strength and accumulated plastic strain are built, which can match the test datum well. By applying the dynamic strength model, the critical dynamic strength of the remolded red clay are gained. Meanwhile, for providing basic datum and reference for relevant projects, all key parameters for the dynamic strength and accumulated plastic strain of the remolded red clay are given in the paper.

  13. Soft Active Materials for Actuation, Sensing, and Electronics

    Science.gov (United States)

    Kramer, Rebecca Krone

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.

  14. Dynamics of Soft Matter

    CERN Document Server

    García Sakai, Victoria; Chen, Sow-Hsin

    2012-01-01

    Dynamics of Soft Matter: Neutron Applications provides an overview of neutron scattering techniques that measure temporal and spatial correlations simultaneously, at the microscopic and/or mesoscopic scale. These techniques offer answers to new questions arising at the interface of physics, chemistry, and biology. Knowledge of the dynamics at these levels is crucial to understanding the soft matter field, which includes colloids, polymers, membranes, biological macromolecules, foams, emulsions towards biological & biomimetic systems, and phenomena involving wetting, friction, adhesion, or micr

  15. Hard and Soft Governance

    DEFF Research Database (Denmark)

    Moos, Lejf

    2009-01-01

    of Denmark, and finally the third layer: the leadership used in Danish schools. The use of 'soft governance' is shifting the focus of governance and leadership from decisions towards influence and power and thus shifting the focus of the processes from the decision-making itself towards more focus......The governance and leadership at transnational, national and school level seem to be converging into a number of isomorphic forms as we see a tendency towards substituting 'hard' forms of governance, that are legally binding, with 'soft' forms based on persuasion and advice. This article analyses...... and discusses governance forms at several levels. The first layer is the global: the methods of 'soft governance' that are being utilised by transnational agencies. The second layer is the national and local: the shift in national and local governance seen in many countries, but here demonstrated in the case...

  16. 3D Bearing Capacity of Structured Cells Supported on Cohesive Soil: Simplified Analysis Method

    Directory of Open Access Journals (Sweden)

    Martínez-Galván Sergio Antonio

    2013-06-01

    Full Text Available In this paper a simplified analysis method to compute the bearing capacity of structured cell foundations subjected to vertical loading and supported in soft cohesive soil is proposed. A structured cell is comprised by a top concrete slab structurally connected to concrete external walls that enclose the natural soil. Contrary to a box foundation it does not include a bottom slab and hence, the soil within the walls becomes an important component of the structured cell. This simplified method considers the three-dimensional geometry of the cell, the undrained shear strength of cohesive soils and the existence of structural continuity between the top concrete slab and the surrounding walls, along the walls themselves and the walls structural joints. The method was developed from results of numerical-parametric analyses, from which it was found that structured cells fail according to a punching-type mechanism.

  17. Glass transition of soft colloids

    Science.gov (United States)

    Philippe, Adrian-Marie; Truzzolillo, Domenico; Galvan-Myoshi, Julian; Dieudonné-George, Philippe; Trappe, Véronique; Berthier, Ludovic; Cipelletti, Luca

    2018-04-01

    We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τα of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τα on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τα depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.

  18. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    Science.gov (United States)

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae -contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N -acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological

  19. Premature distress of a pavement on expansive black cotton soil in the Horn of Africa

    CSIR Research Space (South Africa)

    Mgangira, Martin B

    2008-11-01

    Full Text Available be noted that the field investigation was car- ried out at the end of the wet season. Table 1. Physical properties of the subgrade Property Unit Value Range Specific gravity - 2.43 – 2.45 Percent clay % 18 - 73 Percent silt % 25 -70 Percent sand...; Nwaiwu & Nuhu 2006 and others in Nelson & Miller 1992, to men- tion a few). The basis for the determination of the swelling potential differ, but generally range from methods based on the Plasticity Index, to those that include placement conditions...

  20. stabilisation of niger delta fat clay with blend of binders for subgrade

    African Journals Online (AJOL)

    HOD

    Construction of roads on fine-grained soils without any form of stabilisation is a major ... and Portland Cement (PC) to improve its plasticity, California Bearing Ratio (CBR), and swell. .... sand, DCA, lateralite, and cement in stabilising a fat clay.

  1. Pavement subgrade MR design values for Michigan's seasonal changes : table E4.

    Science.gov (United States)

    2009-07-22

    The resilient modulus (MR) of roadbed soil plays an integral role in the design of pavement systems. Currently, the various regions of the Michigan Department of Transportation (MDOT) use different procedures to determine the MR values. Most of these...

  2. Pavement subgrade MR design values for Michigan's seasonal changes : table E5.

    Science.gov (United States)

    2010-06-22

    The resilient modulus (MR) of roadbed soil plays an integral role in the design of pavement systems. Currently, the various regions of the Michigan Department of Transportation (MDOT) use different procedures to determine the MR values. Most of these...

  3. Spectator interactions in soft-collinear effective theory

    International Nuclear Information System (INIS)

    Hill, Richard J.; Neubert, Matthias

    2003-01-01

    Soft-collinear effective theory is generalized to include soft massless quarks in addition to collinear fields. This extension is necessary for the treatment of interactions with the soft spectator quark in a heavy meson. The power counting of the relevant fields and the construction of the effective Lagrangian are discussed at leading order in Λ/m b . Several novel effects occur in the matching of full-theory amplitudes onto effective-theory operators containing soft light quarks, such as the appearance of an intermediate mass scale and large non-localities of operators on scales of order 1/Λ. Important examples of effective-theory operators with soft light quarks are studied and their renormalization properties explored. The formalism presented here forms the basis for a systematic analysis of factorization and power corrections for any exclusive B-meson decay into light particles

  4. Spectator Interactions in Soft-Collinear Effective Theory

    International Nuclear Information System (INIS)

    Hill, Richard J

    2002-01-01

    Soft-collinear effective theory is generalized to include soft massless quarks in addition to collinear fields. This extension is necessary for the treatment of interactions with the soft spectator quark in a heavy meson. The power counting of the relevant fields and the construction of the effective Lagrangian are discussed at leading order in Λ/m b . Several novel effects occur in the matching of full-theory amplitudes onto effective-theory operators containing soft light quarks, such as the appearance of an intermediate mass scale and large non-localities of operators on scales of order 1/Λ. Important examples of effective-theory operators with soft light quarks are studied and their renormalization properties explored. The formalism presented here forms the basis for a systematic analysis of factorization and power corrections for any exclusive B-meson decay into light particles

  5. Hard evidence on soft skills.

    Science.gov (United States)

    Heckman, James J; Kautz, Tim

    2012-08-01

    This paper summarizes recent evidence on what achievement tests measure; how achievement tests relate to other measures of "cognitive ability" like IQ and grades; the important skills that achievement tests miss or mismeasure, and how much these skills matter in life. Achievement tests miss, or perhaps more accurately, do not adequately capture, soft skills -personality traits, goals, motivations, and preferences that are valued in the labor market, in school, and in many other domains. The larger message of this paper is that soft skills predict success in life, that they causally produce that success, and that programs that enhance soft skills have an important place in an effective portfolio of public policies.

  6. Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia

    Directory of Open Access Journals (Sweden)

    Bernardo Caicedo

    2018-04-01

    Full Text Available This work presents a study on the behaviors of diatomaceous soils. Although studies are rarely reported on these soils, they have been identified in Mexico City, the Sea of Japan, the northeast coast of Australia, the equatorial Pacific, and the lacustrine deposit of Bogotá (Colombia, among other locations. Features of this kind of soil include high friction angle, high initial void ratio, high compressibility index, high liquid limit, and low density. Some of these features are counterintuitive from a classical soil mechanics viewpoint. To understand the geotechnical properties of the diatomaceous soil, a comprehensive experimental plan consisting of more than 2400 tests was performed, including physical tests such as grain size distribution, Atterberg limits, density of solid particles, and organic matter content; and mechanical tests such as oedometric compression tests, unconfined compression tests, and triaxial tests. Laboratory tests were complemented with scanning electron microscope (SEM observations to evaluate the microstructure of the soil. The test results show that there is an increase in liquid limit with increasing diatomaceous content, and the friction angle also increases with increasing diatomaceous content. In addition, several practical correlations were proposed for this soil type for shear strength mobilization and intrinsic compression line. Finally, useful correlations were presented, such as the relationship between the state consistency and the undrained shear strength, the friction angle and the liquid limit, the void ratio at 100 kPa and the liquid limit, the plasticity index and the diatomaceous content, among others. Keywords: Diatomaceous soil, Soft soils, Compressibility, Friction angle, Natural soil

  7. Musculoskeletal Application of Ultrasound Elastography: Soft Tissue Lipoma

    International Nuclear Information System (INIS)

    Choi, Ja Young; Hong, Sung Hwan; Yoo, Hye Jin; Kim, Su Jin

    2010-01-01

    Real-time freehand elastography. Conventional ultrasonography (US) and real-time freehand US elastography were performed in nine patients (M:F = 4:5: mean age, 53 years: 29-64 years) with soft-tissue lipoma confirmed by surgical resection. The elastogram was color-coded by 256 scales according to the degree of strain induced by light compression. The relative strains for lipoma and surrounding soft tissue were measured and mean strains were examined by using a Wilcoxon signed rank test. The elastograms showed red to sky-blue color in all lipomas and predominantly black in surrounding soft tissue. The mean relative strain (±standard deviation) was 67.9±28.5, 77.1±25.3, 63.3±31.2, and 15.7±18.3 for total, intramuscular, and subcutaneous lipoma, and surrounding soft tissue, respectively. The mean strain of the lipoma was significantly higher than one of surrounding soft tissue (p = .008, Wilcoxon signed rank test). Real-time elastography yields characteristic elastographic features of soft tissue lipoma distinguishing from those of adjacent soft tissues

  8. Assessing the environmental availability of sulfamethoxazole and its acetylated metabolite in agricultural soils amended with compost and manure: an experimental and modeling study

    Science.gov (United States)

    Goulas, Anaïs; Sertillange, Nicolas; Garnier, Patricia; Dumény, Valérie; Bergheaud, Valérie; Benoit, Pierre; Haudin, Claire-Sophie

    2017-04-01

    The recycling of sludge compost and farmyard manure in agriculture can lead to the introduction of sulfonamide antibiotics and their acetylated metabolites into soils. The quality and the biodegradability of the exogenous organic matter (EOM) containing antibiotic residues is determinant for their environmental availability and fate in soils (Goulas et al., 2016). This study combined experimental and modeling approaches in order to: 1) assess the fraction of sulfamethoxazole (SMX) and N-acetyl-sulfamethoxazole (AcSMX) available in EOM-amended soils by using soft extractions (CaCl2, EDTA or cyclodextrin solutions) during a 28-day incubation; and 2) better understand the dynamics of sulfonamide residues in amended soils in connection with their availability and the mineralization of EOM organic matter thanks to the COP-Soil model (Geng et al. 2015). This model proposes several options to couple the biotransformation of organic pollutants (OP) with the decomposition of EOM in soil. The microbial degradation can be simulated by co-metabolism and specific-metabolism. The model also accounts for the formation of non-extractable residues (NER) via both physicochemical and microbial routes. The available fraction in both soil/EOM mixtures decreased from 56-96% and 31-63% initial 14C-activity for AcSMX and SMX, respectively, to reach 7-33% after 28 days. This high decrease in the first seven days was mainly due to the formation of NER that were more abundant in soil/manure mixtures than in the soil/compost ones. The three aqueous solutions differently extracted the available 14C-residues according to the incubation time, the EOM and the molecule. The mineralized fractions for both 14C-molecules were only 2-3% with a little more mineralization in the soil/manure mixtures than in the soil/compost. By using the COP-Soil model, the dynamics of EOM and OP were well described using parameter values specific to the organic matter mineralization, and this for the three soft

  9. A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties.

    Science.gov (United States)

    Shaheen, Sabry M; Tsadilas, Christos D; Rinklebe, Jörg

    2013-12-01

    Knowledge about the behavior and reactions of separate soil components with trace elements (TEs) and their distribution coefficients (Kds) in soils is a key issue in assessing the mobility and retention of TEs. Thus, the fate of TEs and the toxic risk they pose depend crucially on their Kd in soil. This article reviews the Kd of TEs in soils as affected by the sorption system, element characteristics, and soil colloidal properties. The sorption mechanism, determining factors, favorable conditions, and competitive ions on the sorption and Kd of TEs are also discussed here. This review demonstrates that the Kd value of TEs does not only depend on inorganic and organic soil constituents, but also on the nature and characteristics of the elements involved as well as on their competition for sorption sites. The Kd value of TEs is mainly affected by individual or competitive sorption systems. Generally, the sorption in competitive systems is lower than in mono-metal sorption systems. More strongly sorbed elements, such as Pb and Cu, are less affected by competition than mobile elements, such as Cd, Ni, and Zn. The sorption preference exhibited by soils for elements over others may be due to: (i) the hydrolysis constant, (ii) the atomic weight, (iii) the ionic radius, and subsequently the hydrated radius, and (iv) its Misono softness value. Moreover, element concentrations in the test solution mainly affect the Kd values. Mostly, values of Kd decrease as the concentration of the included cation increases in the test solution. Additionally, the Kd of TEs is controlled by the sorption characteristics of soils, such as pH, clay minerals, soil organic matter, Fe and Mn oxides, and calcium carbonate. However, more research is required to verify the practical utilization of studying Kd of TEs in soils as a reliable indicator for assessing the remediation process of toxic metals in soils and waters. © 2013 Elsevier B.V. All rights reserved.

  10. Data Analysis Report

    DEFF Research Database (Denmark)

    Ullidtz, Per; Zhang, Wei; Baltzer, Susanne

    1997-01-01

    . For this reason the cells were not used in the RTM experiment. The volumetric moisture content recorded by the VITEL moisture probes did not appear to be reliable. 3) Linear elastic theory did not give a satisfactory agreement with measured stresses and strains. The measured vertical strains could be several......) The subgrade showed thixotropyc behavior with strains increasing with the number of load repetitions and decreasing after a rest period. This behavior was only observed under the wheel load, not under the FWD. 7) Existing design criteria for subgrades appear to be reasonable when used with strains calculated...... using linear elastic theory and moduli determined from FWD tests, but ar much too conservative if used with measured strains. 8) Plastic strain in the subgrade, surface rutting and roughness could all be related to the measured resilient strain at the top of the subgrade, with damage being proportional...

  11. The decline of soft power?

    Directory of Open Access Journals (Sweden)

    Elena Vladimirovna Pimenova

    2017-01-01

    Full Text Available The article deals with the origins and stages of the evolution of the concept of “soft power” in the political practice of the key countries in the world. This concept is both theoretical and practical product since it synthesizes and represents the direction of the application by a state its of social and political resources. It is significant to trace the transformation of the views of the author of the term J. Nye on the essential elements and mechanisms of “soft power”. The author examines the concept of “soft power” as an element of the US strategy to maintain its leadership in the world. In this regard, for other countries the use of “soft power” may be less effective for their own political purposes, because the concept is tuned to the specific characteristics of US policy. Moreover, with change in the international environment, Wash-ington modernizes the concept, of “smart power”. The author draws attention to the fact that the conditions for the use of turning it in “soft power” are likely to have been changed for the other states. The author concludes that there is a need to revise the existing theoretical approaches to the image of the state in the international arena and to develop new tools that can take into account the complex cultural, tourism, educational opportunities and achievements of every state.

  12. Performance of soft clay stabilized with sand columns treated by silica fume

    Directory of Open Access Journals (Sweden)

    Samueel Zeena

    2018-01-01

    Full Text Available In many road construction projects, if weak soil exists, then uncontrollable settlement and critical load carrying capacity are major difficult problems to the safety and serviceability of roads in these areas. Thus ground improvement is essential to achieve the required level of performance. The paper presents results of the tests of four categories. First category was performed on saturated soft bed of clay without any treatment, the second category shed light on the improvement achieved in loading carrying capacity and settlement as a result of reinforcing with conventional sand columns at area replacement ratio = 0.196. The third set investigates the bed reinforced by sand columns stabilized with dry silica fume at different percentages (3, 5 and 7% and the fourth set investigates the behavior of sand columns treated with slurry silica fume at two percentages (10 and 12%. All sand columns models were constructed at (R.D= 60%. Model tests were performed on bed of saturated soil prepared at undrained shear strength between 16-20 kPa for all models. For all cases, the model test was loaded gradually by stress increments up to failure. Stress deformation measurements are recorded and analyzed in terms of bearing improvement ratio and settlement reduction ratio. Optimum results were indicated from soil treated with sand columns stabilized with 7% dry silica fume at medium state reflecting the highest bearing improvement ratio (3.04 and the settlement reduction ratio (0.09 after 7 days curing. While soil treated with sand columns stabilized with 10% slurry silica fume provided higher bearing improvement ratio 3.13 with lower settlement reduction ratio of 0.57 after 7-days curing.

  13. 3D printing for soft robotics – a review

    Science.gov (United States)

    Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun

    2018-01-01

    Abstract Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose. PMID:29707065

  14. A Recipe for Soft Fluidic Elastomer Robots.

    Science.gov (United States)

    Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela

    2015-03-01

    This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.

  15. Building China’s soft power for a peaceful rise

    OpenAIRE

    Li, Xin; Worm, Verner

    2009-01-01

    With China’s rapid economic progress and steady increase in its international influence, China has gradually embarked on the soft power idea and has made developing its soft power as its national strategy. We argue that China’s soft power strategy is in accordance to Chinese Confucian culture and political value and fits well with its grand strategy of peaceful rise. Based on existing conceptualizations of soft power, we expanded the sources of soft power to six pillars: cul...

  16. States reducing solar's soft costs

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, Chris

    2012-07-01

    In 2012 the costs of modules will drop below the balance of system costs or 'soft costs' of solar in the US. Federal policy that nationalizes permitting processes could reduce some of the soft costs, but is unlikely. That's why states like California, Colorado, Connecticut and Vermont passed own laws to reduce soft costs by speeding solar permitting and reducing fees. (orig.)

  17. Small scale tests on the progressive retreat of soil slopes

    Science.gov (United States)

    Voulgari, Chrysoula; Utili, Stefano; Castellanza, Riccardo

    2015-04-01

    In this paper, the influence due to the presence of cracks on the morphologic evolution of natural cliffs subject to progressive retreat induced by weathering is investigated through small scale laboratory tests. Weathering turns hard rocks into soft rocks that maintain the structure of the intact rocks, but are characterised by higher void ratios and reduced bond strengths; soft rocks are transformed into granular soils generally called residual soils. A number of landslides develop in slopes due to weathering which results in the progressive retrogression of the slope face and the further degradation within the weathering zone. Cracks, that are widely present, can be a result of weathering and they can cause a significant decrease in their stability, as they provide preferential flow channels which increase the soil permeability and decrease the soil strength. The geological models employed until now are mainly empirical. Several researchers have tried to study the stability of slopes through experimental procedures. Centrifuge modelling is widely used to investigate the failure of slopes. Small scale tests are also an important approach, in order to study the behaviour of a slope under certain conditions, such as the existence of water, as they allow the observation of the infiltration processes, the movement of the weathering front, deformation and failure. However, the deformation response of a slope subject to weathering is not yet thoroughly clarified. In this work, a set of experiments were conducted to investigate weathering induced successive landslides. Weathering was applied to the slope model by wetting the slope crest through a rainfall simulator device. The moisture content of the soil during the tests was monitored by soil moisture sensors that were buried inside the slope model. High resolution cameras were recording the behaviour of the slope model. GeoPIV was used to analyse the frames and obtain the deformations of the slope model during the

  18. Bioinspired Soft Actuation System Using Shape Memory Alloys

    OpenAIRE

    Cianchetti, Matteo; Licofonte, Alessia; Follador, Maurizio; Rogai, Francesco; Laschi, Cecilia

    2014-01-01

    Soft robotics requires technologies that are capable of generating forces even though the bodies are composed of very light, flexible and soft elements. A soft actuation mechanism was developed in this work, taking inspiration from the arm of the Octopus vulgaris, specifically from the muscular hydrostat which represents its constitutive muscular structure. On the basis of the authors’ previous works on shape memory alloy (SMA) springs used as soft actuators, a specific arrangement of such SM...

  19. Histopathologic and immunohistochemical features of soft palate muscles and nerves in dogs with an elongated soft palate.

    Science.gov (United States)

    Arai, Kiyotaka; Kobayashi, Masanori; Harada, Yasuji; Hara, Yasushi; Michishita, Masaki; Ohkusu-Tsukada, Kozo; Takahashi, Kimimasa

    2016-01-01

    To histologically evaluate and compare features of myofibers within the elongated soft palate (ESP) of brachycephalic and mesocephalic dogs with those in the soft palate of healthy dogs and to assess whether denervation or muscular dystrophy is associated with soft palate elongation. Soft palate specimens from 24 dogs with ESPs (obtained during surgical intervention) and from 14 healthy Beagles (control group). All the soft palate specimens underwent histologic examination to assess myofiber atrophy, hypertrophy, hyalinization, and regeneration. The degrees of atrophy and hypertrophy were quantified on the basis of the coefficient of variation and the number of myofibers with hyalinization and regeneration. The specimens also underwent immunohistochemical analysis with anti-neurofilament or anti-dystrophin antibody to confirm the distribution of peripheral nerve branches innervating the palatine myofibers and myofiber dystrophin expression, respectively. Myofiber atrophy, hypertrophy, hyalinization, and regeneration were identified in almost all the ESP specimens. Degrees of atrophy and hypertrophy were significantly greater in the ESP specimens, compared with the control specimens. There were fewer palatine peripheral nerve branches in the ESP specimens than in the control specimens. Almost all the myofibers in the ESP and control specimens were dystrophin positive. These results suggested that palatine myopathy in dogs may be caused, at least in part, by denervation of the palatine muscles and not by Duchenne- or Becker-type muscular dystrophy. These soft palate changes may contribute to upper airway collapse and the progression of brachycephalic airway obstructive syndrome.

  20. Resilient behavior characterization of geomaterials for pavement design

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2010-08-01

    Full Text Available in the laboratory on the subgrade samples to obtain MR and CBR data to develop the empirical models. The results suggest that constitutive models obtained directly from laboratory test data would be more appropriate to characterize the resilient behavior of subgrade...

  1. Modelling and mitigation of soft-errors in CMOS processors

    NARCIS (Netherlands)

    Rohani, A.

    2014-01-01

    The topic of this thesis is about soft-errors in digital systems. Different aspects of soft-errors have been addressed here, including an accurate simulation model to emulate soft-errors in a gate-level net list, a simulation framework to study the impact of soft-errors in a VHDL design and an

  2. Levitation properties of maglev systems using soft ferromagnets

    Science.gov (United States)

    Huang, Chen-Guang; Zhou, You-He

    2015-03-01

    Soft ferromagnets are widely used as flux-concentration materials in the design of guideways for superconducting magnetic levitation transport systems. In order to fully understand the influence of soft ferromagnets on the levitation performance, in this work we apply a numerical model based on the functional minimization method and the Bean’s critical state model to study the levitation properties of an infinitely long superconductor immersed in the magnetic field created by a guideway of different sets of infinitely long parallel permanent magnets with soft ferromagnets between them. The levitation force, guidance force, magnetic stiffness and magnetic pole density are calculated considering the coupling between the superconductor and soft ferromagnets. The results show that the levitation performance is closely associated with the permanent magnet configuration and with the location and dimension of the soft ferromagnets. Introducing the soft ferromagnet with a certain width in a few configurations always decreases the levitation force. However, for most configurations, the soft ferromagnets contribute to improve the levitation performance only when they have particular locations and dimensions in which the optimized location and thickness exist to increase the levitation force the most. Moreover, if the superconductor is laterally disturbed, the presence of soft ferromagnets can effectively improve the lateral stability for small lateral displacement and reduce the degradation of levitation force.

  3. Positive Implicative Ideals of BCK-Algebras Based on Intersectional Soft Sets

    Directory of Open Access Journals (Sweden)

    Eun Hwan Roh

    2013-01-01

    Full Text Available The aim of this paper is to lay a foundation for providing a soft algebraic tool in considering many problems that contain uncertainties. In order to provide these soft algebraic structures, the notion of int-soft positive implicative ideals is introduced, and related properties are investigated. Relations between an int-soft ideal and an int-soft positive implicative ideal are established. Characterizations of an int-soft positive implicative ideal are obtained. Extension property for an int-soft positive implicative ideal is constructed. The ∧-product and ∨-product of int-soft positive implicative ideals are considered, and the soft intersection (resp., union of int-soft positive implicative ideals is discussed.

  4. On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets

    Science.gov (United States)

    2014-01-01

    Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets. PMID:25143964

  5. On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets

    Directory of Open Access Journals (Sweden)

    Xiaoyan Liu

    2014-01-01

    Full Text Available Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov’s soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.

  6. On some nonclassical algebraic properties of interval-valued fuzzy soft sets.

    Science.gov (United States)

    Liu, Xiaoyan; Feng, Feng; Zhang, Hui

    2014-01-01

    Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation = L . We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.

  7. Nonlinear Properties of Soft Glass Waveguides

    DEFF Research Database (Denmark)

    Steffensen, Henrik

    -infrared applications and the THz applications. In the mid-infrared, it is investigated whether soft glasses are a suitable candidate for supercontinuum generation (SCG). A few commercially available fluoride fibers are tested for their zero dispersion wavelength (ZDW), a key property when determining the possibility......This thesis builds around the investigation into using soft glass materials for midinfrared and THz applications. Soft glasses is a term that cov ers a wide range of chemical compositions where many are yet to be fully investigated. The work in this thesis is separated in two parts, the mid...... of SCG in a fiber. A group of soft glasses, namely the chalcogenides, are known to display two photon absorption (TPA) which could potentially limit the SCG when this is initiated within the frequency range where this nonlinear process occur. An analytic model is presented to estimate the soliton self...

  8. A Simulation-Based Soft Error Estimation Methodology for Computer Systems

    OpenAIRE

    Sugihara, Makoto; Ishihara, Tohru; Hashimoto, Koji; Muroyama, Masanori

    2006-01-01

    This paper proposes a simulation-based soft error estimation methodology for computer systems. Accumulating soft error rates (SERs) of all memories in a computer system results in pessimistic soft error estimation. This is because memory cells are used spatially and temporally and not all soft errors in them make the computer system faulty. Our soft-error estimation methodology considers the locations and the timings of soft errors occurring at every level of memory hierarchy and estimates th...

  9. Strain-accelerated dynamics of soft colloidal glasses

    KAUST Repository

    Agarwal, Praveen

    2011-04-11

    We have investigated strain-accelerated dynamics of soft glasses theoretically and experimentally. Mechanical rheology measurements performed on a variety of systems reveal evidence for the speeding-up of relaxation at modest shear strains in both step and oscillatory shear flows. Using the soft glassy rheology (SGR) model framework, we show that the observed behavior is a fundamental, but heretofore unexplored attribute of soft glasses. © 2011 American Physical Society.

  10. Time Dilation and Homogeneous, Soft-Spectrum GRBs

    Science.gov (United States)

    Norris, J. P.; Bonnell, J. T.; Nemiroff, R. J.; Scargle, J. D.; Pendleton, G. N.; Kouveliotou, C.; Pizzichini, G.

    1996-12-01

    Recently, BATSE gamma-ray bursts selected for soft average spectra have been shown to follow more nearly a -3/2 power law in their number-intensity relation, indicative of a spatially homogeneous population, unlike the whole BATSE burst sample which deviates significantly from a -3/2 signature. The softer bursts might therefore be closer, and the reported time dilation as a function of peak flux in the whole burst sample (Bonnell et al., ApJ submitted) might be expected to be different for soft bursts. We have investigated this possibility with a sample of 500 long bursts (T_90 > 2 s) from the BATSE 3B catalog, defining soft bursts ( ~ 20% of total) using the three hardness ratios derived from fluences in BATSE's four energy channels (25--55, 55--110, 110--320, > 320 keV). The relative time-dilation factors (TDFs) were calculated using a brightness-independent algorithm for duration. The expected effect is observed: The average log[duration] of soft bursts is significantly lower (factor of ~ 2) than that for harder bursts, or for the whole set, to much dimmer peak fluxes -- consistent with unity TDF (compared to bright bursts in the whole sample) down to peak flux of ~ 1.0 photon cm(-2) s(-1) . Using a Kolmogorov-Smirnov test, we find that T_90 and T_50 duration distributions of soft and hard bursts above this peak flux value are different, with a confidence level > 99%. This result is qualitatively consistent with a GRB luminosity function implied by the apparent homogeneity of the bright-to-intermediate peak-flux soft bursts. However, dimmer soft bursts are time-dilated relative to bright bursts in the whole sample, suggesting that spectral redshift compounds the definition of the soft burst class.

  11. A compact scanning soft X-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.

    1989-01-01

    Soft x-ray microscopes operating at wavelengths between 2.3 nm and 4.4 nm are capable of imaging wet biological cells with a resolution many times that of a visible light microscope. Several such soft x-ray microscopes have been constructed. However, with the exception of contact microscopes, all use synchrotrons as the source of soft x-ray radiation and Fresnel zone plates as the focusing optics. These synchrotron based microscopes are very successful but have the disadvantage of limited access. This dissertation reviews the construction and performance of a compact scanning soft x-ray microscope whose size and accessibility is comparable to that of an electron microscope. The microscope uses a high-brightness laser-produced plasma as the soft x-ray source and normal incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 -10 5 s -1 when operated with only 170 mW of average laser power. The complete system, including the laser, fits on a single 4' x 8' optical table. The significant components of the compact microscope are the laser-produced plasma (LPP) source, the multilayer coatings, and the Schwarzschild objective. These components are reviewed, both with regard to their particular use in the current microscope and with regard to extending the microscope performance to higher resolution, higher speed, and operation at shorter wavelengths. Measurements of soft x-ray emission and debris emission from our present LPP source are presented and considerations given for an optimal LPP source. The LPP source was also used as a broadband soft x-ray source for measurement of normal incidence multilayer mirror reflectance in the 10-25 nm spectral region

  12. "Soft Skills": A Phrase in Search of Meaning

    Science.gov (United States)

    Matteson, Miriam L.; Anderson, Lorien; Boyden, Cynthia

    2016-01-01

    Soft skills are a collection of people management skills, important to many professions and job positions, including academic librarianship. Yet the concept of soft skills lacks definition, scope, instrumentation, and systematic education and training. This literature review explores the definition of "soft skills"; contrasts skills with…

  13. Hardware for soft computing and soft computing for hardware

    CERN Document Server

    Nedjah, Nadia

    2014-01-01

    Single and Multi-Objective Evolutionary Computation (MOEA),  Genetic Algorithms (GAs), Artificial Neural Networks (ANNs), Fuzzy Controllers (FCs), Particle Swarm Optimization (PSO) and Ant colony Optimization (ACO) are becoming omnipresent in almost every intelligent system design. Unfortunately, the application of the majority of these techniques is complex and so requires a huge computational effort to yield useful and practical results. Therefore, dedicated hardware for evolutionary, neural and fuzzy computation is a key issue for designers. With the spread of reconfigurable hardware such as FPGAs, digital as well as analog hardware implementations of such computation become cost-effective. The idea behind this book is to offer a variety of hardware designs for soft computing techniques that can be embedded in any final product. Also, to introduce the successful application of soft computing technique to solve many hard problem encountered during the design of embedded hardware designs. Reconfigurable em...

  14. Soft physics with a supercollider

    International Nuclear Information System (INIS)

    Andersson, B.

    1984-01-01

    I discuss a set of possible, more or less adventurous, physics scenarios for the soft physics of a supercollider of 10-20 TeV cms energy. I also present extrapolations of the sizes of different quantities to these immense energies. One should always note that whether we like it or not, some 95-99% of the cross-section is soft physics at all energies. (orig.)

  15. Mechanics of soft materials

    CERN Document Server

    Volokh, Konstantin

    2016-01-01

    This book provides a concise introduction to soft matter modelling. It offers an up-to-date review of continuum mechanical description of soft and biological materials from the basics to the latest scientific materials. It includes multi-physics descriptions, such as chemo-, thermo-, electro- mechanical coupling. It derives from a graduate course at Technion that has been established in recent years. It presents original explanations for some standard materials and features elaborated examples on all topics throughout the text. PowerPoint lecture notes can be provided to instructors. .

  16. Soft Pneumatic Actuators for Rehabilitation

    Directory of Open Access Journals (Sweden)

    Guido Belforte

    2014-05-01

    Full Text Available Pneumatic artificial muscles are pneumatic devices with practical and various applications as common actuators. They, as human muscles, work in agonistic-antagonistic way, giving a traction force only when supplied by compressed air. The state of the art of soft pneumatic actuators is here analyzed: different models of pneumatic muscles are considered and evolution lines are presented. Then, the use of Pneumatic Muscles (PAM in rehabilitation apparatus is described and the general characteristics required in different applications are considered, analyzing the use of proper soft actuators with various technical properties. Therefore, research activity carried out in the Department of Mechanical and Aerospace Engineering in the field of soft and textile actuators is presented here. In particular, pneumatic textile muscles useful for active suits design are described. These components are made of a tubular structure, with an inner layer of latex coated with a deformable outer fabric sewn along the edge. In order to increase pneumatic muscles forces and contractions Braided Pneumatic Muscles are studied. In this paper, new prototypes are presented, based on a fabric construction and various kinds of geometry. Pressure-force-deformation tests results are carried out and analyzed. These actuators are useful for rehabilitation applications. In order to reproduce the whole upper limb movements, new kind of soft actuators are studied, based on the same principle of planar membranes deformation. As an example, the bellows muscle model and worm muscle model are developed and described. In both cases, wide deformations are expected. Another issue for soft actuators is the pressure therapy. Some textile sleeve prototypes developed for massage therapy on patients suffering of lymph edema are analyzed. Different types of fabric and assembly techniques have been tested. In general, these Pressure Soft Actuators are useful for upper/lower limbs treatments

  17. Experimental investigation of halogen-bond hard-soft acid-base complementarity.

    Science.gov (United States)

    Riel, Asia Marie S; Jessop, Morly J; Decato, Daniel A; Massena, Casey J; Nascimento, Vinicius R; Berryman, Orion B

    2017-04-01

    The halogen bond (XB) is a topical noncovalent interaction of rapidly increasing importance. The XB employs a `soft' donor atom in comparison to the `hard' proton of the hydrogen bond (HB). This difference has led to the hypothesis that XBs can form more favorable interactions with `soft' bases than HBs. While computational studies have supported this suggestion, solution and solid-state data are lacking. Here, XB soft-soft complementarity is investigated with a bidentate receptor that shows similar associations with neutral carbonyls and heavy chalcogen analogs. The solution speciation and XB soft-soft complementarity is supported by four crystal structures containing neutral and anionic soft Lewis bases.

  18. Probabilistic soft sets and dual probabilistic soft sets in decision making with positive and negative parameters

    Science.gov (United States)

    Fatimah, F.; Rosadi, D.; Hakim, R. B. F.

    2018-03-01

    In this paper, we motivate and introduce probabilistic soft sets and dual probabilistic soft sets for handling decision making problem in the presence of positive and negative parameters. We propose several types of algorithms related to this problem. Our procedures are flexible and adaptable. An example on real data is also given.

  19. A study on generalized hesitant intuitionistic Fuzzy soft sets

    Science.gov (United States)

    Nazra, A.; Syafruddin; Wicaksono, G. C.; Syafwan, M.

    2018-03-01

    By combining the concept of hesitant intuitionistic fuzzy sets, fuzzy soft sets and fuzzy sets, we extend hesitant intuitionistic fuzzy soft sets to a generalized hesitant intuitionistic fuzzy soft sets. Some operations on generalized hesitant intuitionistic fuzzy soft sets, such as union, complement, operations “AND” and “OR”, and intersection are defined. From such operations the authors obtain related properties such as commutative, associative and De Morgan's laws. The authors also get an algebraic structure of the collection of all generalized hesitant intuitionistic fuzzy soft sets over a set.

  20. ON SOFT D2-ALGEBRA AND SOFT D2-IDEALS

    OpenAIRE

    S. Subramanian; S. Seethalaksmi

    2018-01-01

    In this paper, we have studied some characterization of soft D2-algebra, kernel, intersection, image, quotient D2-algebra’s and relations ship between D2-algebra and D2-ideals with suitable examples.

  1. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  2. SOFT SKILLS COMPETENCE DEVELOPMENT OF VOCATIONAL TEACHER CANDIDATES

    Directory of Open Access Journals (Sweden)

    I Made Sudana

    2015-02-01

    Full Text Available Vocational education curriculum 2013 that applied nationally in the academic year 2014/2015 mandated that religious subject added character educational in which contactwith aspects of soft skills. This needs to be addressed by LPTK as producer vocational teacher candidate, so that future graduates are able to fulfill the mandate of the curriculum. Curriculum vocational teacher candidates who applied seems also still focused on providing hard skills competencies, so that graduates do not have adequate soft skills competence. On the other hand in the world of work has been going on trend shift in terms of hard skills to soft skills.Research and development is designed to go through stages and multiyear to produce soft skills development strategy for prospective teachers of vocational school. Development strategy departs from theoretical studies and mapping needs soft skills aspects of relevant research, analysis and LPTK vocational curriculum, soft skills needs and job requirements of future trends, soft skills required by vocational teachers, teaching soft skills already there, done to map the needs and later for further development until the hypothetical model generated Late models. Subjects were LPTK lecturers, teachers of vocational productive industrials. Data were obtained by observation and interviews, review of documents that the results were analyzed with descriptive qualitative and quantitative techniques. There are several aspects of the soft skills required candidates vocational school teachers, among others: (1 self-discipline, (2 responsibility, (3 the spirit of the work, (4 problem solving, (5 collaboration, (6 the ability of communication, (7 personality, (8 social attitudes, (9 critical thinking, (10 creative thinking and innovative, (11 confidence and (12 self-motivation. Soft skills development strategy skills prospective teachers through extra-curricular with gradual pattern through four stages, namely: (1 the development of

  3. Overview of the NEES-Soft Experimental Program for Seismic Risk Reduction of Soft-Story Woodframe Buildings

    Science.gov (United States)

    John W. van de Lindt; Pouria Bahmani; Steven E. Pryor; Gary Mochizuki; Mikhail Gershfeld; Weichiang Pang; Ershad Ziaei; Elaina N. Jennings; Michael D. Symans; Xiaoyun Shao; Jingjing Tian; Doug Rammer

    2014-01-01

    The existence of thousands of soft-story woodframe buildings in California has been recognized as a disaster preparedness problem resulting in mitigation efforts throughout the state. The considerable presence of these large multi-family buildings in San Francisco prompted the city to mandate their retrofitting over the next seven years. The NEES-Soft project, whose...

  4. MR Histoanatomical Distribution of 290 Soft-tissue Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Yong; Lee, In Sook; Lee, Gee Won; Kim, Jeung Il; Choi, Kyung Un; Kim, Won Taek [Pusan National University Hospital, Busan (Korea, Republic of)

    2008-12-15

    This study was designed too identify the MR histoanatomical distribution of soft-tissue tumors. A total of 290 soft-tissue tumors of 281 patients were analyzed by the use of MR imaging and were pathologically confirmed after surgical resection or a biopsy. There were 120 malignant soft-tissue tumors including tumors of an intermediate malignancy and 170 benign tumors. The histoanatomical locations were divided into three types: 'type I' with superficial layer tumors that involved the cutaneous and subcutaneous tissue, 'type II' with deep layer tumors that involved the muscle or tendon and 'type III' with soft tissue tumors that involved both the superficial and deep layers. Soft-tissue tumors with more than three cases with a frequency of more than 75% included dermatofibrosarcoma protuberans, glomus tumor, angiolipoma, leiomyosarcoma and lymphoma as 'type I' tumors. 'Type II' tumors with more than three cases with a frequency of more than 75% included liposarcoma, fibromatosis, papillary endothelial hyperplasia and rhabdomyosarcoma. 'Type III' tumors with more than three cases with a frequency of more than 50% included neurofibromatosis. The MR histoanatomical distributions of soft tissue tumors are useful in the differential pathological diagnosis when a soft-tissue tumor has a nonspecific MR appearance.

  5. Ultimate capacity of piles penetrating in weak soil layers

    Directory of Open Access Journals (Sweden)

    Al-Obaidi Ahmed

    2018-01-01

    Full Text Available A pile foundation is one of the most popular forms of deep foundations. They are routinely employed to transfer axial structure loads through the soft soil to stronger bearing strata. Piles generally used to increase the load carrying capacity of the foundation and reduce the settlement of the foundation. On the other hand, many cases in practice where piles pass through different layers of soil that contain weak layers located at different depths and extension, also some time cavities with a different shape, size, and depth are found. In this study, a total of 96 cases is considered and simulated in PLAXIS 2D program aiming to understand the influence of weak soil on the ultimate pile capacity. The piles embedded in the dense sand with a layer of weak soil at different extension and location. The cross section of the geometry used in this study was designed as an axisymmetric model with the 15-node element; the boundary condition recommended at least 5D in the horizontal direction, and (L+5D in the vertical direction where D and L are the diameter and length of pile, respectively. The soil is modeled as Mohr-Coulomb, with five input parameters and the behavior of pile material represented by the linear elastic model. The results of the above cases are compared with the results found in a pile embedded in dense soil without weak layers or cavities. The results indicated that the existence of weak soil layer within the surrounding soil around the pile decreases the ultimate capacity. Furthermore, it has been found that increase in the weak soil width (extension leads to reduction in the ultimate capacity of the pile. This phenomenon is applicable to all depth of weak soil. The influence of weak layer extension on the ultimate capacity is less when it is presentin the upper soil layers.

  6. Alveolar Soft Part Sarcoma.

    Science.gov (United States)

    Jaber, Omar I; Kirby, Patricia A

    2015-11-01

    Alveolar soft part sarcoma is a rare neoplasm usually arising in the soft tissues of the lower limbs in adults and in the head and neck region in children. It presents primarily as a slowly growing mass or as metastatic disease. It is characterized by a specific chromosomal alteration, der(17)t(X:17)(p11:q25), resulting in fusion of the transcription factor E3 (TFE3) with alveolar soft part sarcoma critical region 1 (ASPSCR1) at 17q25. This translocation is diagnostically useful because the tumor nuclei are positive for TFE3 by immunohistochemistry. Real-time polymerase chain reaction to detect the ASPSCR1-TFE3 fusion transcript on paraffin-embedded tissue blocks has been shown to be more sensitive and specific than detection of TFE3 by immunohistochemical stain. Cathepsin K is a relatively recent immunohistochemical stain that can aid in the diagnosis. The recent discovery of the role of the ASPSCR1-TFE3 fusion protein in the MET proto-oncogene signaling pathway promoting angiogenesis and cell proliferation offers a promising targeted molecular therapy.

  7. Soft-Tissue Chondroma of Anterior Gingiva: A Rare Entity

    Directory of Open Access Journals (Sweden)

    Dhana Lakshmi Jeyasivanesan

    2018-01-01

    Full Text Available Soft-tissue chondroma is a rare, benign, slow-growing tumor made up of heterotopic cartilaginous tissue. It occurs most commonly in the third and fourth decades in the hands and feet. Oral soft-tissue chondromas are uncommon and soft-tissue chondroma of gingiva is extremely uncommon. Here, we report an unusual case of soft-tissue chondroma of gingiva in a 50-year-old woman.

  8. Revised Soil Classification System for Coarse-Fine Mixtures

    KAUST Repository

    Park, Junghee; Santamarina, Carlos

    2017-01-01

    Soil classification systems worldwide capture great physical insight and enable geotechnical engineers to anticipate the properties and behavior of soils by grouping them into similar response categories based on their index properties. Yet gravimetric analysis and data trends summarized from published papers reveal critical limitations in soil group boundaries adopted in current systems. In particular, current classification systems fail to capture the dominant role of fines on the mechanical and hydraulic properties of soils. A revised soil classification system (RSCS) for coarse-fine mixtures is proposed herein. Definitions of classification boundaries use low and high void ratios that gravel, sand, and fines may attain. This research adopts emax and emin for gravels and sands, and three distinctive void ratio values for fines: soft eF|10  kPa and stiff eF|1  MPa for mechanical response (at effective stress 10 kPa and 1 MPa, respectively), and viscous λ⋅eF|LL for fluid flow control, where λ=2log(LL−25) and eF|LL is the void ratio at the liquid limit. For classification purposes, these void ratios can be estimated from index properties such as particle shape, the coefficient of uniformity, and the liquid limit. Analytically computed and data-adjusted boundaries are soil-specific, in contrast with the Unified Soil Classification System (USCS). Threshold fractions for mechanical control and for flow control are quite distinct in the proposed system. Therefore, the RSCS uses a two-name nomenclature whereby the first letters identify the component(s) that controls mechanical properties, followed by a letter (shown in parenthesis) that identifies the component that controls fluid flow. Sample charts in this paper and a Microsoft Excel facilitate the implementation of this revised classification system.

  9. Revised Soil Classification System for Coarse-Fine Mixtures

    KAUST Repository

    Park, Junghee

    2017-04-17

    Soil classification systems worldwide capture great physical insight and enable geotechnical engineers to anticipate the properties and behavior of soils by grouping them into similar response categories based on their index properties. Yet gravimetric analysis and data trends summarized from published papers reveal critical limitations in soil group boundaries adopted in current systems. In particular, current classification systems fail to capture the dominant role of fines on the mechanical and hydraulic properties of soils. A revised soil classification system (RSCS) for coarse-fine mixtures is proposed herein. Definitions of classification boundaries use low and high void ratios that gravel, sand, and fines may attain. This research adopts emax and emin for gravels and sands, and three distinctive void ratio values for fines: soft eF|10  kPa and stiff eF|1  MPa for mechanical response (at effective stress 10 kPa and 1 MPa, respectively), and viscous λ⋅eF|LL for fluid flow control, where λ=2log(LL−25) and eF|LL is the void ratio at the liquid limit. For classification purposes, these void ratios can be estimated from index properties such as particle shape, the coefficient of uniformity, and the liquid limit. Analytically computed and data-adjusted boundaries are soil-specific, in contrast with the Unified Soil Classification System (USCS). Threshold fractions for mechanical control and for flow control are quite distinct in the proposed system. Therefore, the RSCS uses a two-name nomenclature whereby the first letters identify the component(s) that controls mechanical properties, followed by a letter (shown in parenthesis) that identifies the component that controls fluid flow. Sample charts in this paper and a Microsoft Excel facilitate the implementation of this revised classification system.

  10. The Beauty Trap: Chinese Theories of “Soft Power”

    Directory of Open Access Journals (Sweden)

    Evgenia Vladimirovna Zhuravleva

    2016-12-01

    Full Text Available Currently there are a lot of definitions and conceptions of “soft power” in the world’s scientific literature. The English-language works mainly adopted the term “soft power”, terminology is also varied in Chinese historiography: “ruan shili”, “ruan liliang” and “ruan quanli” (软实力, 软力量and 软权力. A variety of terms is reflected in the variety of interpretations of the system or mechanismof “soft power”, that allows us to conclude that at the moment there is noformed unified vision and approach to its study. The subject of this study is the Russian and foreign theories of “soft power” in relation to China's foreign policy. The author raised a number of tasks, among which are: to determine the place a policy of “soft power” in the foreign policy of China, to analyze the existing interpretation of the concept of “soft power with Chinese characteristics”, as well as trace the development of theories of “soft power”. As a result of the research the author comes to the conclusion that despite the difference in interpretations, there are a lot of common aspects, including the idea of the majority of researchers that the concept is directly related to the influence of the subject to the object, and that the main instruments of “soft power” are humanitarian cooperation, investment, dialogue at the highest level, and others. But the combination of numerous non-military elements within the same term “soft power” doesn’t form a unified, approved concept. Different countries have their own unique system of soft power, and its instruments, key elements and basic principles are not the same. For example, talking about “attractiveness” applied to Chinese soft power, we can conclude, that it is only the tip of the iceberg. This study allows not only to form an idea of the “soft power” through the prism of various scientific researches, but also to identify the key elements of the system

  11. Mechanical transduction via a single soft polymer

    Science.gov (United States)

    Hou, Ruizheng; Wang, Nan; Bao, Weizhu; Wang, Zhisong

    2018-04-01

    Molecular machines from biology and nanotechnology often depend on soft structures to perform mechanical functions, but the underlying mechanisms and advantages or disadvantages over rigid structures are not fully understood. We report here a rigorous study of mechanical transduction along a single soft polymer based on exact solutions to the realistic three-dimensional wormlike-chain model and augmented with analytical relations derived from simpler polymer models. The results reveal surprisingly that a soft polymer with vanishingly small persistence length below a single chemical bond still transduces biased displacement and mechanical work up to practically significant amounts. This "soft" approach possesses unique advantages over the conventional wisdom of rigidity-based transduction, and potentially leads to a unified mechanism for effective allosterylike transduction and relay of mechanical actions, information, control, and molecules from one position to another in molecular devices and motors. This study also identifies an entropy limit unique to the soft transduction, and thereby suggests a possibility of detecting higher efficiency for kinesin motor and mutants in future experiments.

  12. Parental attitudes towards soft drink vending machines in high schools.

    Science.gov (United States)

    Hendel-Paterson, Maia; French, Simone A; Story, Mary

    2004-10-01

    Soft drink vending machines are available in 98% of US high schools. However, few data are available about parents' opinions regarding the availability of soft drink vending machines in schools. Six focus groups with 33 parents at three suburban high schools were conducted to describe the perspectives of parents regarding soft drink vending machines in their children's high school. Parents viewed the issue of soft drink vending machines as a matter of their children's personal choice more than as an issue of a healthful school environment. However, parents were unaware of many important details about the soft drink vending machines in their children's school, such as the number and location of machines, hours of operation, types of beverages available, or whether the school had contracts with soft drink companies. Parents need more information about the number of soft drink vending machines at their children's school, the beverages available, the revenue generated by soft drink vending machine sales, and the terms of any contracts between the school and soft drink companies.

  13. Embedment Effect test on soil-structure interaction

    International Nuclear Information System (INIS)

    Nasuda, Toshiaki; Akino, Kinji; Izumi, Masanori.

    1991-01-01

    A project consisting of laboratory test and field test has been conducted to clarify the embedment effect on soil-structure interaction. The objective of this project is to obtain the data for improving and preparing seismic analysis codes regarding the behavior of embedded reactor buildings during earthquakes. This project was planned to study the effect of soil-structure interaction using small size soil-structure models as well as the large scale models. The project was started in April, 1986, and is scheduled to end in March, 1994. The laboratory test models and field test models, and the measurement with accelerometers and others are described. As the interim results, the natural frequency and damping factor increased, and the amplitude decreased by the embedment of the test models. Some earthquakes were recorded in a soft rock site. The epicenters of the earthquakes occurred in 1989 are shown. The field tests were carried out in three sites. Two sites were used for the dynamic test with four test models having 8 m x 8 m plane size and 10 m height. One site was used for the static test with one concrete block as a specimen. Two models represent BWR type reactor buildings, and two models represent PWR type buildings. (K.I.)

  14. BMS symmetry, soft particles and memory

    Science.gov (United States)

    Chatterjee, Atreya; Lowe, David A.

    2018-05-01

    In this work, we revisit unitary irreducible representations of the Bondi–Metzner–Sachs (BMS) group discovered by McCarthy. Representations are labelled by an infinite number of supermomenta in addition to 4-momentum. Tensor products of these irreducible representations lead to particle-like states dressed by soft gravitational modes. Conservation of 4-momentum and supermomentum in the scattering of such states leads to a memory effect encoded in the outgoing soft modes. We note there exist irreducible representations corresponding to soft states with strictly vanishing 4-momentum, which may nevertheless be produced by scattering of particle-like states. This fact has interesting implications for the S-matrix in gravitational theories.

  15. Soft-contact-lenses-induced complications

    Directory of Open Access Journals (Sweden)

    Suvajac Gordana

    2008-01-01

    Full Text Available Background/Aim. Soft contact lenses occupy significant place in ophthalmology, both in the correction of refraction anomalies and in the treatment of many eye diseases. The number of patients that wear soft contact lenses for the purpose of correcting ametropia is constantly increasing. Due to the increasing number of wearers, the percentage of complications that can lead to serious eye damage and serious vision loss is also increasing. The aim of this study was to point out the most common complications related to soft contact lens use. Methods. In the period from 1995−2004 this prospective study included 510 patients wearing soft contact lenses for correcting ametropia. None of the patients wore contact lenses before and none suffered from any system or local diseases that could affected the development of eventual complications. The study took seven years with the patients who wore conventional lenses and three years with those who wore replacement contact lenses. All the necessary ophthalmologic examinations were done (visual acuity, refractokeratometry, the quantity of tear film, biomicroscopic examination of anterior eye segment. All the complications were filmed by video camera. Results. Of all the patients, 19 had blepharitis, 73 suffered from “dry eye”, 57 had conjunctival hyperemia, 12 had conjunctivitis, 34 had gigantopapillary conjunctivitis (GPC, 93 had punctiform epitheliopathy, 20 had corneal infiltration, one patient had keratitis, 91 had corneal vascularisation, and 95 patients had corneal deposits. Conclusion. Both the type and frequency of complications related to soft contact lens use in our group of patients, proved to be significant. Some of this complications (keratitis can significantly damage vision and lead to loss of vision and sometimes can require operative treatment.

  16. An Opinion on Soft Power

    Directory of Open Access Journals (Sweden)

    Evgeny Mikhailovitch Astakhov

    2014-01-01

    Full Text Available The article analyzes different aspects of the "soft power" of Russia. The author affirms that in this field the country doesn't have well defined strategies policy. To Russia has the excellent potential for the promotion of its positive image. This potential is primarily due to the famous Russian science, literature, music and art. But this "natural"potential has to be used in the national interests abroad. In recent years the Russian government has made some important steps in cultural diplomacy, in particular for the promotion of Russian language and supporting Russian Diaspora. However, much more has to be done not only in these directions, but also in propaganda and counterpropaganda to meet information pressure against Russia. In this connection, to form properly all directions of the policy of "soft power", is desirable to use the experience of other countries. The states who pretend to have an important place in the world, consider "soft power" as a strategic policy aiming to strengthen their geopolitical positions. In this context the author offers some suggestions concerning different organizational aspects. Special attention is given to the coordination of the activities of all structures involved in the policy of "soft power ".

  17. Exploratory Practice and Soft Systems Methodology

    Science.gov (United States)

    Tajino, Akira; Smith, Craig

    2005-01-01

    This paper aims to demonstrate that Soft Systems Methodology (SSM), a soft systems approach developed in management studies (see Checkland, 1981), can be usefully linked with Exploratory Practice (EP), a form of practitioner research for language classrooms. Some compatible SSM and EP characteristics, in tandem, could enhance continual efforts to…

  18. On seasonal fluctuations of available Olsen P in soils

    Directory of Open Access Journals (Sweden)

    Vincenzo Tabaglio

    Full Text Available The likelihood of a strong seasonal effect on the analytical results of soil chemical tests has been substantiated by several findings. The occurrence of such a trouble would heavily affect the routine work of chemical laboratories dealing with hundreds or thousands of soil samples every year and would possibly interfere even with current timing of soil sampling and testing in agronomical research. Soils from four different experimental fields were sampled and analyzed for Olsen P test through the growing season of both spring-summer crops (maize and autumn-spring crops (soft wheat. To avoid the cross effect of recent P applications, samples were collected only from the control plots, with no P applied. In a first long-time experiment the level of Olsen P was followed in three soils during two years, while in a second experiment the study considered two different soils for a couple of years each. The amount of extractable (available Olsen P showed significant fluctuations-with-time in four years out of six. The observed variations seems entirely due to P absorption by crops, as they appeared in the final samplings during the cropping season. The amount of decrease was nearly always small, less than 1-1.5 mg kg-1 soil, and consistent with the reduction of the available pool which is to be expected as crops gradually take up nutrients. As far as Olsen P is concerned, no evidence was found for the occurrence of erratic seasonal variations such as those previously reported. As soil samples for advisory purposes are usually taken at different times of the year, it seems reassuring that no complications are to be expected about information needed to interpret the results of chemical tests.

  19. “Doing the Wrong Things Right” Site Investigations in Soft Soil

    Science.gov (United States)

    Jamilus, M. H.; Lim, A. J. M. S.; Azhar, A. T. S.; Azmi, M. A. M.

    2016-11-01

    Site investigation is a very important process by which geotechnical, geological and other relevant information which might affect the construction or performance of a civil engineering or building project is acquired. However, common practice in site investigations is not always in accordance to the standard that has been defined. Reliability on the information obtained depends upon several factors that involves correct procedures and competent workers and also supervision. Several examples on site investigation methods are discussed in this paper. Explanation on the difference between the site investigation methods used for real practices in the field and how it should be done are discussed in detail. Therefore, it is hoped that site investigation should always be uniquely planned and should be an interactive and flexible process of discovery and changes according to the condition of the soil.

  20. Scalable fabric tactile sensor arrays for soft bodies

    Science.gov (United States)

    Day, Nathan; Penaloza, Jimmy; Santos, Veronica J.; Killpack, Marc D.

    2018-06-01

    Soft robots have the potential to transform the way robots interact with their environment. This is due to their low inertia and inherent ability to more safely interact with the world without damaging themselves or the people around them. However, existing sensing for soft robots has at least partially limited their ability to control interactions with their environment. Tactile sensors could enable soft robots to sense interaction, but most tactile sensors are made from rigid substrates and are not well suited to applications for soft robots which can deform. In addition, the benefit of being able to cheaply manufacture soft robots may be lost if the tactile sensors that cover them are expensive and their resolution does not scale well for manufacturability. This paper discusses the development of a method to make affordable, high-resolution, tactile sensor arrays (manufactured in rows and columns) that can be used for sensorizing soft robots and other soft bodies. However, the construction results in a sensor array that exhibits significant amounts of cross-talk when two taxels in the same row are compressed. Using the same fabric-based tactile sensor array construction design, two different methods for cross-talk compensation are presented. The first uses a mathematical model to calculate a change in resistance of each taxel directly. The second method introduces additional simple circuit components that enable us to isolate each taxel electrically and relate voltage to force directly. Fabric sensor arrays are demonstrated for two different soft-bodied applications: an inflatable single link robot and a human wrist.