WorldWideScience

Sample records for sodium-dependent myoinositol transporter

  1. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    Science.gov (United States)

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  2. Influence of ultraviolet A radiation on osmolytes transport in human retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Da-Yang Wu

    2014-04-01

    Full Text Available AIM: To demonstrate that ultraviolet A(UVAinduces osmolytes accumulation in retinal pigment epithelial(RPEcells.METHODS: Under different experimental conditions such as UVA exposure, hyperosmotic stress condition and hypoosmotic stress condition, RPE cells were cultured for different time periods. The betaine /γ-amino- n-butyric acid(GABAtransporter, the sodium-dependent myoinositol transporter and the taurine transporter(TAUTmRNA were measured by quantitative PCR. The radioactive labeled osmolytes were measured to evaluate the level of osmolytes transportation. RESULTS: This study demonstrated that RPE expressed mRNA specific for the betaine/GABA transporter, for the sodium-dependent myoinositol transporter and for the TAUT. In comparison to norm osmotic(300mosmol/Lcontrols, a 3-5-fold induction of mRNA expression for the betaine/GABA transporter, the sodium-dependent myoinositol transporter and the TAUT was observed within 6-24h after hyperosmotic exposure(400mosmol/L. Expression of osmolyte transporters was associated with an increased uptake of radioactive labeled osmolytes. Conversely, hypoosmotic(200mosmol/Lstimulation induced significant efflux of these osmolytes. UVA significantly stimulated osmolyte uptake. Increased osmolyte uptake was associated with upregulation of mRNA steady-state levels for osmolyte transporters in irradiated cells.CONCLUSION: UVA induces osmolyte uptake in RPE. It is similar reaction to hyperosmotic stress. This suggests that osmolyte uptake response by UVA may be important to maintain homeostasis.

  3. A cold-induced myo-inositol transporter-like gene confers tolerance to multiple abiotic stresses in transgenic tobacco plants.

    Science.gov (United States)

    Sambe, Mame Abdou Nahr; He, Xueying; Tu, Qinghua; Guo, Zhenfei

    2015-03-01

    A full length cDNA encoding a myo-inositol transporter-like protein, named as MfINT-like, was cloned from Medicago sativa subsp. falcata (herein falcata), a species with greater cold tolerance than alfalfa (M. sativa subsp. sativa). MfINT-like is located on plasma membranes. MfINT-like transcript was induced 2-4 h after exogenous myo-inositol treatment, 24-96 h with cold, and 96 h by salinity. Given that myo-inositol accumulates higher in falcata after 24 h of cold treatment, myo-inositol is proposed to be involved in cold-induced expression of MfINT-like. Higher levels of myo-inositol was observed in leaves of transgenic tobacco plants overexpressing MfINT-like than the wild-type but not in the roots of plants grown on myo-inositol containing medium, suggesting that transgenic plants had higher myo-inositol transport activity than the wild-type. Transgenic plants survived better to freezing temperature, and had lower ion leakage and higher maximal photochemical efficiency of photosystem II (Fv /Fm ) after chilling treatment. In addition, greater plant fresh weight was observed in transgenic plants as compared with the wild-type when plants were grown under drought or salinity stress. The results suggest that MfINT-like mediated transport of myo-inositol is associated with plant tolerance to abiotic stresses. © 2014 Scandinavian Plant Physiology Society.

  4. Variation in the Sodium-Dependent Vitamin C Transporter 2 Gene Is Associated with Risk of Acute Coronary Syndrome among Women

    DEFF Research Database (Denmark)

    Dalgård, Christine; Christiansen, Lene; Vogel, Ulla

    2013-01-01

    Vitamin C is associated with a lower risk of coronary heart disease possibly due to its anti-oxidative effects, beneficial effects on endothelial function and importance in collagen synthesis. The sodium-dependent vitamin C transporter 2 is responsible for the transport of vitamin C into various...... cells and malfunction of this protein leads to reduced vitamin C in tissue, including the arterial wall. We tested the hypothesis that candidate variations rs6139591 and rs1776964 in the gene coding for sodium-dependent vitamin C transporter 2 are associated with development of acute coronary syndrome....

  5. Hypotonic activation of the myo-inositol transporter SLC5A3 in HEK293 cells probed by cell volumetry, confocal and super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Joseph Andronic

    Full Text Available Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol P ino [m/s] and expression/localization of SLC5A3. P ino values were determined by cell volumetry over a wide tonicity range (100-275 mOsm in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200-275 mOsm, P ino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼ 3 nm/s at 100-125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in P ino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM. dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200-2000 localizations/μm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80-800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells.

  6. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao

    2010-06-01

    myo-Inositol-1-phosphate synthase is a conserved enzyme that catalyzes the first committed and rate-limiting step in inositol biosynthesis. Despite its wide occurrence in all eukaryotes, the role of myo-inositol-1-phosphate synthase and de novo inositol biosynthesis in cell signaling and organism development has been unclear. In this study, we isolated loss-of-function mutants in the Arabidopsis MIPS1 gene from different ecotypes. It was found that all mips1 mutants are defective in embryogenesis, cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower rates of endocytosis. Treatment with brefeldin A induces slower PIN2 protein aggregation in mips1, indicating altered PIN2 trafficking. Our results demonstrate that MIPS1 is critical for maintaining phosphatidylinositol levels and affects pattern formation in plants likely through regulation of auxin distribution. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Myo-Inositol content determined by myo-inositol biosynthesis and oxidation in blueberry fruit.

    Science.gov (United States)

    Song, Fangyuan; Su, Hongyan; Yang, Nan; Zhu, Luying; Cheng, Jieshan; Wang, Lei; Cheng, Xianhao

    2016-11-01

    Myo-inositol metabolism in plant edible organs has become the focus of many recent studies because of its benefits to human health and unique functions in plant development. In this study, myo-inositol contents were analyzed during the development of two blueberry cultivars, cv 'Berkeley' and cv 'Bluecrop'. Furthermore, two VcMIPS 1/2 (Vaccinium corymbosum MIPS) genes, one VcIMP (Vaccinium corymbosum IMP) gene and one VcMIOX (Vaccinium corymbosum MIOX) gene were isolated for the first time from blueberry. The expression patterns of VcMIPS2, VcIMP and VcMIOX genes showed a relationship with the change profiles of myo-inositol content during fruit ripening. The results were further confirmed by the analyses of the enzyme activity. Results indicated that both myo-inositol biosynthesis and oxidation played important roles in determining of myo-inositol levels during the development of blueberry. To our knowledge, this report is the first to discuss myo-inositol levels in fruits in terms of biosynthesis and catabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Activity of Escherichia coli, Aspergillus niger, and Rye Phytase toward Partially Phosphorylated myo-Inositol Phosphates.

    Science.gov (United States)

    Greiner, Ralf

    2017-11-08

    Kinetic parameters for the dephosphorylation of sodium phytate and a series of partially phosphorylated myo-inositol phosphates were determined at pH 3.0 and pH 5.0 for three phytase preparations (Aspergillus niger, Escherichia coli, rye). The enzymes showed lower affinity and turnover numbers at pH 3 compared to pH 5 toward all myo-inositol phosphates included in the study. The number and distribution of phosphate groups on the myo-inositol ring affected the kinetic parameters. Representatives of the individual phytate dephosphorylation pathways were identified as the best substrates of the phytases. Within the individual phytate dephosphorylation pathways, the pentakisphosphates were better substrates compared to the tetrakisphosphates or phytate itself. E. coli and rye phytase showed comparable activities at both pH values toward the tetrakis- and trisphosphate, whereas A. niger phytase exhibited a higher activity toward the tetrakisphosphate. A myo-inositol phosphate with alternate phosphate groups was shown to be not significantly dephosphorylated by the phytases.

  9. Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery.

    Science.gov (United States)

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Mitra, Ashim K

    2012-06-01

    Sodium dependent multivitamin transporter (SMVT; product of the SLC5A6 gene) is an important transmembrane protein responsible for translocation of vitamins and other essential cofactors such as biotin, pantothenic acid and lipoic acid. Hydropathy plot (Kyte-Dolittle algorithm) revealed that human SMVT protein consists of 635 amino acids and 12 transmembrane domains with both amino and carboxyl termini oriented towards the cytoplasm. SMVT is expressed in various tissues such as placenta, intestine, brain, liver, lung, kidney, cornea, retina and heart. This transporter displays broad substrate specificity and excellent capacity for utilization in drug delivery. Drug absorption is often limited by the presence of physiological (epithelial tight junctions), biochemical (efflux transporters and enzymatic degradation) and chemical (size, lipophilicity, molecular weight, charge etc.) barriers. These barriers may cause many potential therapeutics to be dropped from the preliminary screening portfolio and subsequent entry into the market. Transporter targeted delivery has become a powerful approach to deliver drugs to target tissues because of the ability of the transporter to translocate the drug to intracellular organelles at a higher rate. This review highlights studies employing SMVT transporter as a target for drug delivery to improve bioavailability and investigate the feasibility of developing SMVT targeted drug delivery systems.

  10. [The myo-inositol is beneficial in the therapy of pregnancy with insulin-dependent type 2 diabetes and polycystic ovary syndrome].

    Science.gov (United States)

    Kun, Attila; Tornóczky, János

    2017-04-01

    Authors would like to demonstrate the beneficial effect of myo-inositol supplementation in a pregnant woman with insulin-dependent type 2 diabetes mellitus and polycystic ovary syndrome. Insulin and metformin treatment could not achieve normalization of glucose homeostasis for 3 years, and hypoglycemic episodes were frequent. Myo-inositol and folic acid supplementation added to the basic treatment resulted in improved glucose levels in 2 months. At this time she became pregnant. During pregnancy serum glucose levels still improved in the next 2 months. The amniotic membrane ruptured at the 19th gestational week, and pregnancy had to be finished. Developmental disturbances were excluded by the pathologist. She became pregnant again and gave birth to a premature male neonate at the 29th gestational week. The aim of the report was to demonstrate that myo-inositol supplementation may improve the efficacy of the therapy in type 2 diabetes mellitus. Orv. Hetil., 2017, 158(14), 541-545.

  11. Sodium transport through the cerebral sodium-glucose transporter exacerbates neuron damage during cerebral ischaemia.

    Science.gov (United States)

    Yamazaki, Yui; Harada, Shinichi; Wada, Tetsuyuki; Yoshida, Shigeru; Tokuyama, Shogo

    2016-07-01

    We recently demonstrated that the cerebral sodium-glucose transporter (SGLT) is involved in postischaemic hyperglycaemia-induced exacerbation of cerebral ischaemia. However, the associated SGLT-mediated mechanisms remain unclear. Thus, we examined the involvement of cerebral SGLT-induced excessive sodium ion influx in the development of cerebral ischaemic neuronal damage. [Na+]i was estimated according to sodium-binding benzofuran isophthalate fluorescence. In the in vitro study, primary cortical neurons were prepared from fetuses of ddY mice. Primary cortical neurons were cultured for 5 days before each treatment with reagents, and these survival rates were assessed using biochemical assays. In in vivo study, a mouse model of focal ischaemia was generated using middle cerebral artery occlusion (MCAO). In these experiments, treatment with high concentrations of glucose induced increment in [Na+]i, and this phenomenon was suppressed by the SGLT-specific inhibitor phlorizin. SGLT-specific sodium ion influx was induced using a-methyl-D-glucopyranoside (a-MG) treatments, which led to significant concentration-dependent declines in neuronal survival rates and exacerbated hydrogen peroxide-induced neuronal cell death. Moreover, phlorizin ameliorated these effects. Finally, intracerebroventricular administration of a-MG exacerbated the development of neuronal damage induced by MCAO, and these effects were ameliorated by the administration of phlorizin. Hence, excessive influx of sodium ions into neuronal cells through cerebral SGLT may exacerbate the development of cerebral ischaemic neuronal damage. © 2016 Royal Pharmaceutical Society.

  12. Variation in the sodium-dependent vitamin C transporter 2 gene is associated with risk of acute coronary syndrome among women.

    Directory of Open Access Journals (Sweden)

    Christine Dalgård

    Full Text Available BACKGROUND: Vitamin C is associated with a lower risk of coronary heart disease possibly due to its anti-oxidative effects, beneficial effects on endothelial function and importance in collagen synthesis. The sodium-dependent vitamin C transporter 2 is responsible for the transport of vitamin C into various cells and malfunction of this protein leads to reduced vitamin C in tissue, including the arterial wall. We tested the hypothesis that candidate variations rs6139591 and rs1776964 in the gene coding for sodium-dependent vitamin C transporter 2 are associated with development of acute coronary syndrome. DESIGN: In the Danish Diet, Cancer and Health cohort study, we performed a case-cohort study among 57,053 subjects aged 50-64 years. RESULTS: During a mean follow-up period of 6.4 years, we identified 936 cases and randomly selected a sub-cohort (n = 1,580 with full information on genotypes and covariates. Using Cox proportional hazard models, we found that women with the rs6139591 TT genotype and a lower than median dietary vitamin C intake had a higher risk of acute coronary syndrome compared with those with the CC genotype (adjusted HR 5.39, 95% confidence interval, 2.01-14.50. We also observed a not as strong but positive although inconsistent association for women at a higher than median intake of vitamin C rich food. For the rs1776964 polymorphism, we found a higher risk (adjusted HR 3.45, 95% CI, 1.16-10.28 among TT-homozygous women with higher than median vitamin C intake compared with the CC genotype and low vitamin C intake. Among men, weaker and non-significant associations were observed for both polymorphisms. CONCLUSION: Genetic variation in the sodium-dependent vitamin C transporter 2 is associated with risk of incident acute coronary syndrome in women. The genotype effects may not be fully compensated by a higher intake of vitamin C rich food.

  13. Na+-H+ exchange and Na+-dependent transport systems in streptozotocin diabetic rat kidneys

    International Nuclear Information System (INIS)

    El-Seifi, S.; Freiberg, J.M.; Kinsella, F.J.; Cheng, L.; Sacktor, B.

    1987-01-01

    The streptozotocin-induced diabetic rat was used to test the hypothesis that Na + -H + exchange activity in the proximal tubule luminal membrane would be increased in association with renal hypertrophy, altered glomerular hemodynamics, enhanced filtered load and tubular reabsorption of 22 Na + , and stimulated 22 Na= pump activity in the basolateral membrane, previously reported characteristics of this experimental animal model. Amiloride-sensitive H + gradient-dependent Na + uptake and Na + gradient-dependent H + flux were increased in brush-border membrane vesicles from the streptozotocin-treated animals. Na + gradient-dependent uptakes of phosphate, D-glucose, L-proline, and myoinositol were decreased in the drug-induced diabetic animals. These membrane transport alterations were not found when the streptozotocin-diabetic animals were treated with insulin

  14. Myoinositol: The Bridge (PONTI to Reach a Healthy Pregnancy

    Directory of Open Access Journals (Sweden)

    Pietro Cavalli

    2017-01-01

    Full Text Available The use of folic acid in the periconceptional period can prevent about 70% of neural tube defects (NTDs. In the remaining cases, no medical prevention is available, and those conditions should be defined as folate-resistant NTDs. Rodent models suggest that some folate-resistant NTDs can be prevented by inositol (myoinositol and chiroinositol supplementation prior to pregnancy. Should folic acid be combined with myoinositol periconceptional supplementation to reduce the overall risk of NTDs even in humans? Hereafter, we discuss the results from the PONTI study that strongly support both the effectiveness and safety of myoinositol periconceptional supplementation in preventing human NTDs. We further report on the largest case series of pregnancies treated with myoinositol and folic acid. At our institution, a sequential study during 12 years involved mothers at risk of fetal NTDs, and 29 babies from 27 pregnancies were born after periconceptional combined myoinositol and folic acid supplementation. No case of NTDs was observed, despite the high recurrence risk in the mothers. Taken together, those data suggest that periconceptional folic acid plus myoinositol can reduce both the occurrence and recurrence risks of NTDs in a greater number of cases than folic acid alone.

  15. Tilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis

    Science.gov (United States)

    Gardell, Alison M.; Yang, Jun; Sacchi, Romina; Fangue, Nann A.; Hammock, Bruce D.; Kültz, Dietmar

    2013-01-01

    SUMMARY This study aimed to determine the regulation of the de novo myo-inositol biosynthetic (MIB) pathway in Mozambique tilapia (Oreochromis mossambicus) brain following acute (25 ppt) and chronic (30, 60 and 90 ppt) salinity acclimations. The MIB pathway plays an important role in accumulating the compatible osmolyte, myo-inositol, in cells in response to hyperosmotic challenge and consists of two enzymes, myo-inositol phosphate synthase and inositol monophosphatase. In tilapia brain, MIB enzyme transcriptional regulation was found to robustly increase in a time (acute acclimation) or dose (chronic acclimation) dependent manner. Blood plasma osmolality and Na+ and Cl− concentrations were also measured and significantly increased in response to both acute and chronic salinity challenges. Interestingly, highly significant positive correlations were found between MIB enzyme mRNA and blood plasma osmolality in both acute and chronic salinity acclimations. Additionally, a mass spectrometry assay was established and used to quantify total myo-inositol concentration in tilapia brain, which closely mirrored the hyperosmotic MIB pathway induction. Thus, myo-inositol is a major compatible osmolyte that is accumulated in brain cells when exposed to acute and chronic hyperosmotic challenge. These data show that the MIB pathway is highly induced in response to environmental salinity challenge in tilapia brain and that this induction is likely prompted by increases in blood plasma osmolality. Because the MIB pathway uses glucose-6-phosphate as a substrate and large amounts of myo-inositol are being synthesized, our data also illustrate that the MIB pathway likely contributes to the high energetic demand posed by salinity challenge. PMID:24072790

  16. Transperitoneal transport of sodium during hypertonic peritoneal dialysis

    DEFF Research Database (Denmark)

    Graff, J; Fugleberg, S; Brahm, J

    1996-01-01

    The mechanisms of transperitoneal sodium transport during hypertonic peritoneal dialysis were evaluated by kinetic modelling. A total of six nested mathematical models were designed to elucidate the presence or absence of diffusive, non-lymphatic convective and lymphatic convective solute transport....... Experimental results were obtained from 26 non-diabetic patients undergoing peritoneal dialysis. The model validation procedure demonstrated that only diffusive and non-lymphatic convective transport mechanisms were identifiable in the transperitoneal transport of sodium. Non-lymphatic convective sodium...

  17. Comparative cation dependency of sugar transport by crustacean hepatopancreas and intestine

    Directory of Open Access Journals (Sweden)

    Ada Duka

    2014-06-01

    Full Text Available Glucose is transported in crustacean hepatopancreas and intestine by Na+-dependent co-transport, while Na+-dependent D-fructose influx has only been described for the hepatopancreas. It is still unclear if the two sugars are independently transported by two distinct cation-dependent co-transporter carrier systems. In this study, lobster (Homarus americanus hepatopancreas brush border membrane vesicles (BBMV were used to characterize, in detail, the cation-dependency of both D-[3H]-glucose and D-[3H]-fructose influxes, while in vitro perfused intestines were employed to determine the nature of cation-dependent sugar transport across this organ. Over the sodium concentration range of 0–100 mM, both [3H]-glucose and [3H]-fructose influxes (0.1 mM; 1 min uptakes by hepatopancreatic BBMV were hyperbolic functions of [Na+]. [3H]-glucose and [3H]-fructose influxes by hepatopancreatic BBMV over a potassium concentration range of 15–100 mM were hyperbolic functions of [K+]. Both sugars displayed significant (p<0.01 Na+/K+-dependent and cation-independent uptake processes. Transepithelial 25 µM [3H]-glucose and [3H]-fructose fluxes across lobster intestine over luminal sodium and potassium concentration ranges of 0–50 mM and 5–100 mM, respectively, were hyperbolic functions of luminal [Na+] and [K+]. As with hepatopancreatic sugar transport, transepithelial intestinal sugar transport exhibited both significant (p<0.01 Na+/K+-dependent and cation-independent processes. Results suggest that both D-glucose and D-fructose are transported by a single SGLT-type carrier in each organ with sodium being the “preferred”, high affinity, cation for both sugars in the hepatopancreas, and potassium being the “preferred”, high affinity, cation for both sugars in the intestine.

  18. Modulation of hemodynamic and vascular filtration changes in diabetic rats by dietary myo-inositol

    International Nuclear Information System (INIS)

    Pugliese, G.; Tilton, R.G.; Speedy, A.; Santarelli, E.; Eades, D.M.; Province, M.A.; Kilo, C.; Sherman, W.R.; Williamson, J.R.

    1990-01-01

    To assess the potential of myo-inositol-supplemented diets to prevent diabetes-induced vascular functional changes, we examined the effects of diets supplemented with 0.5, 1, or 2% myo-inositol on blood flow and vascular filtration function in nondiabetic control rats and rats with streptozocin-induced diabetes (STZ-D). After 1 mo of diabetes and dietary myo-inositol supplementation, (1) 131I-labeled bovine serum albumin (BSA) permeation of vessels was assessed in multiple tissues, (2) glomerular filtration rate (GFR) was estimated as renal plasma clearance of 57Co-labeled EDTA, (3) regional blood flows were measured with 15-microns 85Sr-labeled microspheres, and (4) endogenous albumin and IgG urinary excretion rates were quantified by radial immunodiffusion assay. In STZ-D rats, 131I-BSA tissue clearance increased significantly (2- to 4-fold) in the anterior uvea, choroid-sclera, retina, sciatic nerve, aorta, new granulation tissue, diaphragm, and kidney but was unchanged in skin, forelimb muscle, and heart. myo-Inositol-supplemented diets reduced diabetes-induced increases in 131I-BSA clearance (in a dose-dependent manner) in all tissues; however, only in new granulation tissue and diaphragm did the 2% myo-inositol diet completely normalize vascular albumin permeation. Diabetes-induced increases in GFR and in urinary albumin and IgG excretion were also substantially reduced or normalized by dietary myo-inositol supplements. Increased blood flow in anterior uvea, choroid-sclera, kidney, new granulation tissue, and skeletal muscle in STZ-D rats also was substantially reduced or normalized by the 2% myo-inositol diet. myo-Inositol had minimal if any effects on the above parameters in control rats

  19. Sodium bicarbonate cotransporter NBCe2 gene variants increase sodium and bicarbonate transport in human renal proximal tubule cells.

    Science.gov (United States)

    Gildea, John J; Xu, Peng; Kemp, Brandon A; Carlson, Julia M; Tran, Hanh T; Bigler Wang, Dora; Langouët-Astrié, Christophe J; McGrath, Helen E; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2018-01-01

    Salt sensitivity of blood pressure affects >30% of the hypertensive and >15% of the normotensive population. Variants of the electrogenic sodium bicarbonate cotransporter NBCe2 gene, SLC4A5, are associated with increased blood pressure in several ethnic groups. SLC4A5 variants are also highly associated with salt sensitivity, independent of hypertension. However, little is known about how NBCe2 contributes to salt sensitivity, although NBCe2 regulates renal tubular sodium bicarbonate transport. We hypothesized that SLC4A5 rs10177833 and rs7571842 increase NBCe2 expression and human renal proximal tubule cell (hRPTC) sodium transport and may be a cause of salt sensitivity of blood pressure. To characterize the hRPTC ion transport of wild-type (WT) and homozygous variants (HV) of SLC4A5. The expressions of NBCe2 mRNA and protein were not different between hRPTCs carrying WT or HV SLC4A5 before or after dopaminergic or angiotensin (II and III) stimulation. However, luminal to basolateral sodium transport, NHE3 protein, and Cl-/HCO3- exchanger activity in hRPTCs were higher in HV than WT SLC4A5. Increasing intracellular sodium enhanced the apical location of NBCe2 in HV hRPTCs (4.24±0.35% to 11.06±1.72% (P<0.05, N = 3, 2-way ANOVA, Holm-Sidak test)) as determined by Total Internal Reflection Fluorescence Microscopy (TIRFM). In hRPTCs isolated from kidney tissue, increasing intracellular sodium enhanced bicarbonate-dependent pH recovery rate and increased NBCe2 mRNA and protein expressions to a greater extent in HV than WT SLC4A5 (+38.00±6.23% vs HV normal salt (P<0.01, N = 4, 2-way ANOVA, Holm-Sidak test)). In hRPTCs isolated from freshly voided urine, bicarbonate-dependent pH recovery was also faster in those from salt-sensitive and carriers of HV SLC4A5 than from salt-resistant and carriers of WT SLC4A5. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was normalized by SLC4A5- but not SLC4A4-shRNA. The binding of purified hepatocyte

  20. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport.

    Science.gov (United States)

    Castaneda, Francisco; Kinne, Rolf K-H

    2005-12-01

    The sodium-dependent D-glucose transporter (SGLT) family is involved in glucose uptake via intestinal absorption (SGLT1) or renal reabsorption (SGLT1 and SGLT2). Current methods for the screening of inhibitors of SGLT transporters are complex, expensive and very labor intensive, and have not been applied to human SGLT transporters. The purpose of the present study was to develop an alternative 96-well automated method to study the activity of human SGLT1 and SGLT2. Chinese hamster ovary (CHO) Flp-In cells were stably transfected with pcDNA5-SGLT1 or pcDNA5-SGLT2 plasmid and maintained in hygromycin-selection Ham's F12 culture medium until hygromycin-resistant clones were developed. SGLT1 and SGLT2 gene expression was evaluated by relative real-time reverse transcription-polymerase chain reaction (RT-PCR) quantification, Western blotting, and immunocytochemical analysis. The clones with higher expression of SGLT1 and SGLT2 were used for transport studies using [14C]-methyl-alpha-D-glucopyranoside ([14C]AMG). The advantage of using the 96-well format is the low amount of radioactive compounds and inhibitory substances required, and its ability to establish reproducibility because repetition into the assay. This method represents an initial approach in the development of transport-based high-throughput screening in the search for inhibitors of glucose transport. The proposed method can easily be performed to yield quantitative data regarding key aspects of glucose membrane transport and kinetic studies of potential inhibitors of human SGLT1 and SGLT2.

  1. The second sodium site in the dopamine transporter controls cation permeability and is regulated by chloride

    DEFF Research Database (Denmark)

    Borre, Lars; Andreassen, Thorvald F; Shi, Lei

    2014-01-01

    The dopamine transporter (DAT) belongs to the family of neurotransmitter:sodium symporters (NSSs) and controls dopamine (DA) homeostasis by mediating Na(+)- and Cl(-)-dependent reuptake of DA. Here we used two-electrode voltage clamp measurements in Xenopus oocytes together with targeted mutagene......The dopamine transporter (DAT) belongs to the family of neurotransmitter:sodium symporters (NSSs) and controls dopamine (DA) homeostasis by mediating Na(+)- and Cl(-)-dependent reuptake of DA. Here we used two-electrode voltage clamp measurements in Xenopus oocytes together with targeted...

  2. Temperature dependence on sodium-water chemical reaction

    International Nuclear Information System (INIS)

    Tamura, Kenta; Deguchi, Yoshihiro; Suzuki, Koichi; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2012-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using laser diagnostics. A quasi one-dimensional flame model is also applied to a sodium-water counter-flow reaction field. Temperature, H 2 , H 2 O, OH, Na and Particulate matter were measured using laser induced fluorescence and CARS in the counter-flow reaction field. The temperature of the reaction field was also modified to reduce the condensation of Na in the reaction zone. (author)

  3. Myo-inositol-14C, phytic acid-14C and ferric phytate-14C metabolism through microbian action in an andosol soil

    International Nuclear Information System (INIS)

    Gonzalez I, J.

    1977-01-01

    The myo-inositol- 14 C, phytic acid- 14 C and ferric phytate- 14 C compounds were incubated in an andosol soil at 70% of the field capacity and at 36.5 deg C during twelve days. These compounds suffered a microbian oxidation at 14 CO 2 of 61.0, 1.9 and 0% respectively. The fixation of the phytic acid- 14 C was observed through the fast decrease in the metabolism, due to the formation of complexes with the Fe and Al (phytates). The myo-inositol- 14 C metabolism was reduced by a factor of nine at the second incubation day. The following mechanisms were observed in the myo-inositol metabolism: (i) adsorption of the inositol by the soil minerals, (ii) adsorption by humic acids, (iii) myo-inositol phosphorylation and (iv) epimerization of myo-inositol to chiro-inositol. It was found that the (i) and (ii) formation depends on the soil microbian activity. The (i), (ii) and (iii) interactions were considered as possible mechanisms for the inhibition of the myo-inositol microbian oxidation. The inhibition of the myo-inositol oxidation through adsorption or phosphorylation is considered as a chemical blockade for the hydroaxial group, avoiding this way a microbian oxidation stereospecific of this hydroxil group. (author)

  4. Phytases Improve Myo-Inositol Bioaccessibility in Rye Bread: A Study Using an In Vitro Method of Digestion and a Caco-2 Cell Culture Model

    Directory of Open Access Journals (Sweden)

    Emilia Katarzyna Cielecka

    2015-01-01

    Full Text Available Preparations of 6-phytase A (EC 3.1.3.26 and phytase B (acid phosphatase, EC 3.1.3.2 were applied alone and combined in the preparation of dough to estimate their catalytic potential for myo-inositol liberation from rye flour in the breadmaking technology. The experimental bread samples were ground after baking and subjected to determination of myo-inositol bioavailability by an in vitro method that simulated digestion in a human alimentary tract, followed by measurements of myo-inositol transport through enterocyte-like differentiated Caco-2 cells to determine its bioaccessibility. Myo-inositol content was measured by a high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD technique. The concentration of myo-inositol in the dialysates of control bread was 25.3 μg/mL, whereas in the dialysates of bread sample baked with 6-phytase A, the concentration increased to 35.4 μg/mL, and in the bread baked with phytase B to 64.98 μg/mL. Simultaneous application of both enzymes resulted in myo-inositol release of 64.04 μg/mL. The highest bioaccessibility of myo-inositol, assessed by the measurement of the passage through the Caco-2 monolayer was determined in the bread baked with the addition of 6-phytase A. Enzymatically modifi ed rye bread, particularly by the addition of 6-phytase A, may be therefore a rich source of a highly bioaccessible myo-inositol.

  5. Metabolic evidence that serosal sodium does not recycle through the active transepithelial transport pathway of toad bladder.

    Science.gov (United States)

    Canessa, M; Labarca, P; Leaf, A

    1976-12-25

    The possibility that sodium from the serosal bathing medium "back diffuses" into the active sodium transport pool within the mucosal epithelial cell of the isolated toad bladder was examined by determining the effect on the metabolism of the tissue of removing sodium from the serosal medium. It was expected that if recycling of serosal sodium did occur through the active transepithelial transport pathway of the isolated toad bladder, removal of sodium from the serosal medium would reduce the rate of CO2 production by the tissue and enhance of stoichiometric ratio of sodium ions transported across the bladder per molecula of sodium transport dependent CO2 produced simultaneously by the bladder (JNa/JCO2). The data revealed no significant change in this ratio (17.19 with serosal sodium and 16.13 after replacing serosal sodium with choline). Further, when transepithelial sodium transport was inhibited (a) by adding amiloride to the mucosal medium, or (b) by removing sodium from the mucosal medium, subsequent removal of sodium from the serosal medium, or (c) addition of ouabain failed to depress the basal rate of CO2 production by the bladder [(a)rate of basal, nontransport related, CO2 production (JbCO2) equals 1.54 +/- 0.52 with serosal sodium and 1.54 +/- 0.37 without serosal sodium; (b) Jb CO2 equals 2.18 +/- 0.21 with serosal sodium and 2.09 +/- 0.21 without serosal sodium; (c) 1.14 +/- 0.26 without ouabain and 1.13 +/- 0.25 with ouabain; unite of JbCO2 are nmoles mg d.w.-1 min-1]. The results support the hypothesis that little, if any, recycling of serosal sodium occurs in the total bladder.

  6. Endocrine control of active sodium transport across frog skin

    International Nuclear Information System (INIS)

    Maetz, J.

    1959-01-01

    I. Action of the neurohypophyseal peptides on sodium transport. 1) On Rana Esculenta, oxytocin alone is active on the sodium transport (not vaso pressin). 2) The post hypophysis of R.e. contains an hormonal factor even more specific on Na transport (12 times more active than oxytocin). 3) This new factor must be closely related to oxytocin. II. Action of the adrenal corticoids. 1) The skin of frogs adapted to a salt-rich external medium, shows a considerable diminution in sodium uptake. 2) This decreased sodium uptake is brought back to normal by the injections of aldosterone. 3) This suggests that salt loading of amphibians (as well as mammals) inhibits the mineralocorticoid activity of the adrenals. (author) [fr

  7. Phytases Improve Myo-Inositol Bioaccessibility in Rye Bread: A Study Using an In Vitro Method of Digestion and a Caco-2 Cell Culture Model

    Science.gov (United States)

    Cielecka, Emilia Katarzyna; Pierzchalska, Małgorzata; Żyła, Krzysztof

    2015-01-01

    Summary Preparations of 6-phytase A (EC 3.1.3.26) and phytase B (acid phosphatase, EC 3.1.3.2) were applied alone and combined in the preparation of dough to estimate their catalytic potential for myo-inositol liberation from rye flour in the breadmaking technology. The experimental bread samples were ground after baking and subjected to determination of myo-inositol bioavailability by an in vitro method that simulated digestion in a human alimentary tract, followed by measurements of myo-inositol transport through enterocyte- -like differentiated Caco-2 cells to determine its bioaccessibility. Myo-inositol content was measured by a high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) technique. The concentration of myo-inositol in the dialysates of control bread was 25.3 µg/mL, whereas in the dialysates of bread sample baked with 6-phytase A, the concentration increased to 35.4 µg/mL, and in the bread baked with phytase B to 64.98 µg/mL. Simultaneous application of both enzymes resulted in myo-inositol release of 64.04 µg/mL. The highest bioaccessibility of myo-inositol, assessed by the measurement of the passage through the Caco-2 monolayer was determined in the bread baked with the addition of 6-phytase A. Enzymatically modified rye bread, particularly by the addition of 6-phytase A, may be therefore a rich source of a highly bioaccessible myo- -inositol. PMID:27904333

  8. Relationship between plasma growth hormone concentration and cellular sodium transport in acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Herlitz, H.; Jonsson, O.; Bengtsson, B.-Aa. (Departments of Nephrology, Urology and Endocrinology, University of Goeteborg, Goeteborg (Sweden))

    1992-01-01

    We investigated the relationship between mean plasma growth hormone (GH) concentration and cellular sodium transport in untreated and treated acromegaly. Seventeen patients (age 55 [+-] 3 years) with active acromegaly were studied with respect to plasma GH (mean of 24 h GH profile) and erythrocyte electrolyte content as well as transmembrane sodium transport. The patients were reinvestigated two weeks after successful surgery (N = 14) and again after one year (N = 13). Erythrocyte electrolytes were analyzed by flame photometry and sodium influx and efflux rate constant determined by in vitro incubation using a modified Keyne's formula. In patients with active acromegaly there was a significant positive correlation between IGF-1 and cellular sodium transport, while GH tended to show a negative relatonship to the same parameter. After successful treatment, both IGF-1 and GH disclosed a positive relationship to cellular sodium transport. After one year, a significant increase in erythrocyte sodium content was seen in the patients compared to the preoperative situation. In conclusion, if this is a generalized phenomonen the results are compatible with a sodium-retaining effect of GH via stimulation of transmembrane sodium transport. In active acromegaly this may be counteracted by a sodium transport inhibitor giving the reverse relationship between GH and cellular sodium transport. (au).

  9. Aldosterone induction of electrogenic sodium transport in the apical membrane vesicles of rat distal colon

    International Nuclear Information System (INIS)

    Rajendran, V.M.; Kashgarian, M.; Binder, H.J.

    1989-01-01

    Na-H exchange is present in apical membrane vesicles (AMV) isolated from distal colon of normal rats. Because in intact tissue aldosterone both induces amiloride-sensitive electrogenic sodium transport and inhibits electroneutral sodium absorption, these studies with AMV were designed to establish the effect of aldosterone on sodium transport. An outward-directed proton gradient stimulated 22Na uptake in AMV isolated from distal colon of normal and dietary sodium depleted (with elevated aldosterone levels) experimental rats. Unlike normal AMV, proton gradient-dependent 22Na uptake in experimental AMV was inhibited when uptake was measured under voltage-clamped conditions. 10 microM amiloride inhibited the initial rate of proton gradient-dependent 22Na uptake in AMV of normal and experimental rats by 30 and 75%, respectively. In contrast, 1 mM amiloride produced comparable inhibition (90 and 80%) of 22Na uptake in normal and experimental AMV. Intravesicular-negative potential stimulated 22Na uptake in experimental but not in normal AMV. This increase was inhibited by 90% by 10 microM amiloride. An analogue of amiloride, 5-(N-ethylisopropyl) amiloride (1 microM), a potent inhibitor of electroneutral Na-H exchange in AMV of normal rat distal colon, did not alter potassium diffusion potential-dependent 22Na uptake. Increasing sodium concentration saturated proton gradient-dependent 22Na uptake in normal AMV. However, in experimental AMV, 22Na uptake stimulated by both proton gradient and potassium diffusion potential did not saturate as a function of increasing sodium concentration. We conclude from these results that an electrically sensitive conductive channel, not electroneutral Na-H exchange, mediates 22Na uptake in AMV isolated from the distal colon of aldosterone rats

  10. Radiochemical measurement of mass transport in sodium

    International Nuclear Information System (INIS)

    Cooper, M.H.; Chiang, S.H.

    1976-01-01

    Mass transport processes in the sodium coolant of Liquid Metal Fast Breeder Reactors (LMFBRs) are significant in determining rates of corrosion and deposition of radioactive nuclides from the fuel cladding, deposition and cold trapping of fission products from defect or failed fuel, carbon and nitrogen redistribution in the containment materials, and removal of impurities by cold trapping or hot trapping. Mass transport between rotating, concentric cylinders in molten sodium has been investigated using a unique radiochemical method. Long-lived (33 year) cesium-137, dissolved in the sodium, decays radioactively emitting a beta to barium-137m, which decays with a short half-life (2.6 minutes) emitting a gamma. Cesium is weakly adsorbed and remains in solution, while the barium is strongly adsorbed on the stainless steel surfaces. Hence, by measuring the barium-137m activity on movable stainless steel surfaces, one can calculate the mass transport to that surface. Mass transfer coefficients in sodium measured by this method are in agreement with published heat transfer correlations when the effect of the volumetric mass source is taken into account. Hence, heat transfer correlations can be confidently utilized by analogy in estimating mass transfer in liquid-metal systems

  11. Ascorbic acid transported by sodium-dependent vitamin C transporter 2 stimulates steroidogenesis in human choriocarcinoma cells.

    Science.gov (United States)

    Wu, Ximei; Iguchi, Takuma; Itoh, Norio; Okamoto, Kousuke; Takagi, Tatsuya; Tanaka, Keiichi; Nakanishi, Tsuyoshi

    2008-01-01

    Reduced vitamin C [ascorbic acid (AA)], which is taken up into cells by sodium-dependent vitamin C transporter (SVCT) 1 and 2, is believed to be important for hormone synthesis, but its role in generating placental steroids needed to maintain pregnancy and fetal development is not clear. To determine the steroidogenic effect of AA and the role of SVCT2 in AA-induced steroidogenesis, we tested the effects of AA treatment and SVCT2 knockdown on steroidogenesis in human choriocarcinoma cell lines. AA treatment of JEG-3, BeWo, and JAR cells for 48-h dose dependently increased progesterone and estradiol levels. In JEG-3 cells, AA increased the mRNA expression of P450 cholesterol side-chain cleavage enzyme, 3beta-hydroxysteroid dehydrogenase type 1, and aromatase, key enzymes for steroidogenesis. Stable knockdown of SVCT2 in JEG-3 cells by retrovirally mediated RNA interference decreased the maximal velocity of AA uptake by approximately 50%, but apparent affinity values were not affected. SVCT2 knockdown in JEG-3 cells significantly suppressed the AA-induced mRNA expression of placental P450 cholesterol side-chain cleavage enzyme, 3beta-hydroxysteroid dehydrogenase type 1, and aromatase. This suppression of the AA-induced mRNA expression of steroidogenic enzymes subsequently decreased progesterone and estradiol production. In addition, inhibition of MAPK kinase-ERK signaling, which is a major pathway for AA-regulated gene expression, failed to affect AA-induced steroidogenesis. Our observations indicate that SVCT2-mediated AA uptake into cells is necessary for AA-induced steroidogenesis in human choriocarcinoma cell, but MAPK kinase-ERK signaling is not involved in AA-induced steroidogenesis.

  12. Effect of myo-inositol and melatonin versus myo-inositol, in a randomized controlled trial, for improving in vitro fertilization of patients with polycystic ovarian syndrome.

    Science.gov (United States)

    Pacchiarotti, Alessandro; Carlomagno, Gianfranco; Antonini, Gabriele; Pacchiarotti, Arianna

    2016-01-01

    Polycystic ovarian syndrome (PCOS) induces anovulation in women of reproductive age, and is one of the pathological factors involved in the failure of in vitro fertilization (IVF). Indeed, PCOS women are characterized by poor quality oocytes. Therefore, a treatment for enhancing oocyte quality becomes crucial for these patients. Myo-Inositol and melatonin proved to be efficient predictors for positive IVF outcomes, correlating with high oocyte quality. We tested the synergistic effect of myo-inositol and melatonin in IVF protocols with PCOS patients in a randomized, controlled, double-blind trial. Five-hundred twenty-six PCOS women were divided into three groups: Controls (only folic acid: 400 mcg), Group A (Inofolic® plus, a daily dose of myo-inositol: 4000 mg, folic acid: 400 mcg, and melatonin: 3 mg), and Group B (Inofolic®, a daily dose of myo-inositol: 4000 mg, and folic acid: 400 mcg). The main outcome measures were oocyte and embryo quality, clinical pregnancy and implantation rates. The treatment lasted from the first day of the cycle until 14 days after embryo transfer. Myo-inositol and melatonin have shown to enhance, synergistically, oocyte and embryo quality. In consideration of the beneficial effect observed in our trial and on the bases of previous studies, we decided to integrate routinely MI and M supplementation in the IVF protocols. The same treatment should be taken carefully in consideration in all procedures of this kind.

  13. Preliminary Investigation of Myo-Inositol Phosphates Produced by ASUIA279 Phytase on MCF-7 Cancer Cells

    Directory of Open Access Journals (Sweden)

    N. Mohd. Yusoff

    2011-12-01

    Full Text Available Phytate or myo-inositol hexakisphosphates (IP6 is widely distributed in plants like rice brans. The production of myo-inositol phosphate intermediates has received much attention due to the remarkable potential health benefits offered by the compounds. In this study, the cytotoxicity of the partially purified myo-inositol phosphate fractions and commercial IP1 and IP6 were investigated against MCF-7 breast cancer cell lines. The study showed that the commercial standard IP1 and IP6 showed good inhibition towards the MCF-7 cell line. The MCF-7 cells growth was inhibited in minimum concentration of myo-inositol phosphates (<1000 µg/ml. However, no inhibition observed on the MCF-7 cell line by the myo-inositol phosphates fractions partially purified from rice bran at concentration <1000 ?g/ml. The inhibition of MCF-7 was only observed at concentration more than 30 mg/ml with more than 40% cells were inhibited. This indicates that the partially purified rice bran myo-inositol phosphates degraded by ASUIA279 phytase on MCF-7 breast cancer cells exhibit positive results towards the inhibition of cancer cells growth at relatively high concentration..KEYWORDS: myo-inositol phosphates, phytase, MCF-7,  cancerABSTRAK: Fitat atau myo-inositol hexakisphosphate (IP6 dikenali umum teragih di dalam tumbuhan seperti dedak padi. Penghasilan perantaraan fosfat myo-inositol mendapat perhatian memandangkan ia berpotensi tinggi dalam kesihatan. Dalam kajian ini, kesitotoksikan sebahagian daripada fosfat myo-inositol separa tulen, IP1 komersil dan IP6 komersil dikaji terhadap produk yang berupa sel kekal (cell lines kanser payu dara MCF-7. Tumbesaran sel MCF-7 direncatkan dalam pekatan minima fosfat myo-inositol (<1000 μg/ml. Tetapi, tidak ada perencatan dilihat terhadap sel kekal MCF-7 oleh sebahagian fosfat myo-inositol separa tulen daripada dedak padi pada kepekatan <1000 mg/ml. Perencatan MCF-7 hanya dilihat pada kepekatan lebih daripada 30 mg/ml dengan lebih

  14. Control of sodium vapor transport in annuli

    International Nuclear Information System (INIS)

    Meadows, G.E.; Bohringer, A.P.

    1983-11-01

    The method used to control sodium vapor transport in the annuli of various components at the Fast Flux Test Facility (FFTF) is a downward purge of the annuli with high purity argon. The purge rates for the FFTF were selected by calculating the gas velocity required to overcome thermal convection transport in the annuli. To evaluate the effectiveness of the gas purge, laboratory apparatus was fabricated which simulated selected annuli in the FFTF In-Vessel Handling Machine (IVHM) and the Instrument Tree (IT) annuli. Tests were conducted at temperatures similar to FFTF conditions. Gas purge rates ranged from zero to 130% of FFTF flow rates. Test results show the effectiveness of a high purity gas purge in decreasing the accumulation of sodium vapor deposits in an annulus. The presence of water vapor and oxygen in the purge gas increased the sodium deposition rate by a factor of three over other tests usig high purity argon. The presence of a vapor control collar used in the IT annulus was shown to be beneficial for controlling vapor transport into the upper region of the annulus

  15. Electrolyte transport in distal colon of sodium-depleted rats: Effect of sodium repletion

    International Nuclear Information System (INIS)

    Turnamian, S.G.; Binder, H.J.

    1988-01-01

    Dietary sodium depletion increases plasma aldosterone level and, as a result, induces amiloride-sensitive electrogenic sodium absorption and electrogenic potassium secretion and stimulates Na + -K + -ATPase activity in rat distal colon, while inhibiting electroneutral sodium chloride absorption. To assess the events that occur as the aldosterone-stimulated colon reverts to normal, unidirectional 22 Na and 36 Cl fluxes were measured under voltage-clamp conditions across isolated distal colonic mucosa of rats that were initially dietary sodium depleted for 7 days and then sodium repleted for varying periods of time before the study. Within 8 h of dietary sodium repletion, plasma aldosterone level and Na + -K + -ATPase activity declined to normal, amiloride-sensitive electrogenic sodium absorption decreased by >90%, and active electrogenic potassium secretion also decreased markedly. In contrast, electroneutral sodium chloride absorption did not completely return to levels seen in normal animals until ∼64-68 h. These results demonstrate that maintenance of electrogenic sodium absorption and potassium secretion are directly dependent on elevated plasma aldosterone levels. The inhibition of electroneutral sodium absorption, although initiated by excess aldosterone, persists after normalization of the plasma aldosterone level, thereby implying that the inhibition is dependent on additional factor(s)

  16. Prenatal programming of rat cortical collecting tubule sodium transport.

    Science.gov (United States)

    Cheng, Chih-Jen; Lozano, German; Baum, Michel

    2012-03-15

    Prenatal insults have been shown to lead to elevated blood pressure in offspring when they are studied as adults. Prenatal administration of dexamethasone and dietary protein deprivation have demonstrated that there is an increase in transporter abundance for a number of nephron segments but not the subunits of the epithelial sodium channel (ENaC) in the cortical collecting duct. Recent studies have shown that aldosterone is elevated in offspring of protein-deprived mothers when studied as adults, but the physiological importance of the increase in serum aldosterone is unknown. As an indirect measure of ENaC activity, we compared the natriuretic response to benzamil in offspring of mothers who ate a low-protein diet (6%) with those who ate a normal diet (20%) for the last half of pregnancy. The natriuretic response to benzamil was greater in the 6% group (821.1 ± 161.0 μmol/24 h) compared with the 20% group (279.1 ± 137.0 μmol/24 h), consistent with greater ENaC activity in vivo (P sodium transport (-1.9 ± 3.1 pmol·mm(-1)·min(-1)), the offspring of rats that ate a 6% protein diet during the last half of pregnancy had a net sodium flux of 10.7 ± 2.6 pmol·mm(-1)·min(-1) (P = 0.01) in tubules perfused in vitro. Sodium transport was measured using ion-selective electrodes, a novel technique allowing measurement of sodium in nanoliter quantities of fluid. Thus we directly demonstrate that there is prenatal programming of cortical collecting duct sodium transport.

  17. Time-series responses of swine plasma metabolites to ingestion of diets containing myo-inositol or phytase.

    Science.gov (United States)

    Cowieson, Aaron J; Roos, Franz F; Ruckebusch, Jean-Paul; Wilson, Jonathan W; Guggenbuhl, Patrick; Lu, Hang; Ajuwon, Kolapo M; Adeola, Olayiwola

    2017-12-01

    The effect of the ingestion of diets containing either myo-inositol or exogenous phytase on plasma metabolites was examined using 29 kg barrows. The diets were: control (maize, soya, rapeseed, rice bran), control plus 2 g/kg myo-inositol, control plus 1000 phytase units (FYT)/kg or 3000 FYT/kg exogenous phytase. Pigs were housed in a PigTurn device and blood was collected, from jugular catheters, via an automated system at -30, (30 min before feeding), 0, 15, 30, 45, 60, 90, 120, 150, 180, 240, 300 and 360 min post-feeding. The addition of 2 g/kg myo-inositol to the basal diet resulted in an increase in plasma myo-inositol concentration that was evident 45-60 min after diet introduction and persisted to 360 min post-feeding. Similarly, supplementation of the basal diet with either 1000 or 3000 FYT/kg exogenous phytase resulted in an increase in plasma myo-inositol concentration that was still rising 360 min post-feeding. Plasma P concentration was increased over time by the addition of 1000 and 3000 FYT/kg phytase, but not by the addition of myo-inositol. Other plasma metabolites examined were not affected by dietary treatment. It can be concluded that oral delivery of myo-inositol results in rapid increase in plasma myo-inositol concentrations that peak approximately 45-60 min after feeding. Use of supplemental phytase achieves similar increases in myo-inositol concentration in plasma but the appearance is more gradual. Furthermore, supplementation of pig diets with exogenous phytase results in rapid appearance of P in plasma that may be sustained over time relative to diets with no added phytase.

  18. Endocrine control of active sodium transport across frog skin; Le controle endocrinien du transport actif de sodium a travers la peau de grenouille

    Energy Technology Data Exchange (ETDEWEB)

    Maetz, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    I. Action of the neurohypophyseal peptides on sodium transport. 1) On Rana Esculenta, oxytocin alone is active on the sodium transport (not vaso pressin). 2) The post hypophysis of R.e. contains an hormonal factor even more specific on Na transport (12 times more active than oxytocin). 3) This new factor must be closely related to oxytocin. II. Action of the adrenal corticoids. 1) The skin of frogs adapted to a salt-rich external medium, shows a considerable diminution in sodium uptake. 2) This decreased sodium uptake is brought back to normal by the injections of aldosterone. 3) This suggests that salt loading of amphibians (as well as mammals) inhibits the mineralocorticoid activity of the adrenals. (author) [French] I. Action des peptides neurohypophysaires chez Rana esculenta. 1) Le transport actif de Na est sensible a l'action de l'ocytocine mais non a l'hormone antidiuretique. 2) La posthypophyse de ces grenouilles contient un facteur plus specifique encore, puisque 12 fois plus actif que l'ocytocine. 3) Ce facteur est cependant tres voisin de l'ocytocine au point de vue chimique. lI. Action des corticoides surrenaliens chez Rana Esculenta. 1) L'adaptation des grenouilles a un milieu riche en sel a pour effet une diminution considerable du transport actif de sodium, visible in vivo et in vitro. 2) L'injection d'aldosterone a des grenouilles adaptees dans ces conditions restaure le transport actif a un niveau comparable a celui que l'on observe chez les animaux conserves dans de l'eau courante. 3) Ces faits suggerent que la surcharge en NaCI produirait chez les amphibiens, comme chez les mammiferes, une mise au repos de la fonction mineralotrope de la surrenale. (auteur)

  19. Endocrine control of active sodium transport across frog skin; Le controle endocrinien du transport actif de sodium a travers la peau de grenouille

    Energy Technology Data Exchange (ETDEWEB)

    Maetz, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    I. Action of the neurohypophyseal peptides on sodium transport. 1) On Rana Esculenta, oxytocin alone is active on the sodium transport (not vaso pressin). 2) The post hypophysis of R.e. contains an hormonal factor even more specific on Na transport (12 times more active than oxytocin). 3) This new factor must be closely related to oxytocin. II. Action of the adrenal corticoids. 1) The skin of frogs adapted to a salt-rich external medium, shows a considerable diminution in sodium uptake. 2) This decreased sodium uptake is brought back to normal by the injections of aldosterone. 3) This suggests that salt loading of amphibians (as well as mammals) inhibits the mineralocorticoid activity of the adrenals. (author) [French] I. Action des peptides neurohypophysaires chez Rana esculenta. 1) Le transport actif de Na est sensible a l'action de l'ocytocine mais non a l'hormone antidiuretique. 2) La posthypophyse de ces grenouilles contient un facteur plus specifique encore, puisque 12 fois plus actif que l'ocytocine. 3) Ce facteur est cependant tres voisin de l'ocytocine au point de vue chimique. lI. Action des corticoides surrenaliens chez Rana Esculenta. 1) L'adaptation des grenouilles a un milieu riche en sel a pour effet une diminution considerable du transport actif de sodium, visible in vivo et in vitro. 2) L'injection d'aldosterone a des grenouilles adaptees dans ces conditions restaure le transport actif a un niveau comparable a celui que l'on observe chez les animaux conserves dans de l'eau courante. 3) Ces faits suggerent que la surcharge en NaCI produirait chez les amphibiens, comme chez les mammiferes, une mise au repos de la fonction mineralotrope de la surrenale. (auteur)

  20. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 3, Transport of sodium-sulfur and sodium-metal-chloride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, C J

    1992-09-01

    This report examines the shipping regulations that govern the shipment of dangerous goods. Since the elemental sodium contained in both sodium-sulfur and sodium-metal-chloride batteries is classified as a dangerous good, and is listed on both the national and international hazardous materials listings, both national and international regulatory processes are considered in this report The interrelationships as well as the differences between the two processes are highlighted. It is important to note that the transport regulatory processes examined in this report are reviewed within the context of assessing the necessary steps needed to provide for the domestic and international transport of sodium-beta batteries. The need for such an assessment was determined by the Shipping Sub-Working Group (SSWG) of the EV Battery Readiness Working Group (Working Group), created in 1990. The Working Group was created to examine the regulatory issues pertaining to in-vehicle safety, shipping, and recycling of sodium-sulfur batteries, each of which is addressed by a sub-working group. The mission of the SSWG is to establish basic provisions that will ensure the safe and efficient transport of sodium-beta batteries. To support that end, a proposal to the UN Committee of Experts was prepared by the SSWG, with the goal of obtaining a proper shipping name and UN number for sodium-beta batteries and to establish the basic transport requirements for such batteries (see the appendix for the proposal as submitted). It is emphasized that because batteries are large articles containing elemental sodium and, in some cases, sulfur, there is no existing UN entry under which they can be classified and for which modal transport requirements, such as the use of packaging appropriate for such large articles, are provided for. It is for this reason that a specific UN entry for sodium-beta batteries is considered essential.

  1. Sodium-dependent vitamin C transporter 2 (SVCT2 expression and activity in brain capillary endothelial cells after transient ischemia in mice.

    Directory of Open Access Journals (Sweden)

    Burkhard Gess

    Full Text Available Expression and transport activity of Sodium-dependent Vitamin C Transporter 2 (SVCT2 was shown in various tissues and organs. Vitamin C was shown to be cerebroprotective in several animal models of stroke. Data on expression, localization and transport activity of SVCT2 after cerebral ischemia, however, has been scarce so far. Thus, we studied the expression of SVCT2 after middle cerebral artery occlusion (MCAO in mice by immunohistochemistry. We found an upregulation of SVCT2 after stroke. Co-stainings with Occludin, Von-Willebrand Factor and CD34 demonstrated localization of SVCT2 in brain capillary endothelial cells in the ischemic area after stroke. Time-course analyses of SVCT2 expression by immunohistochemistry and western blots showed upregulation in the subacute phase of 2-5 days. Radioactive uptake assays using (14C-labelled ascorbic acid showed a significant increase of ascorbic acid uptake into the brain after stroke. Taken together, these results provide evidence for the expression and transport activity of SVCT2 in brain capillary endothelial cells after transient ischemia in mice. These results may lead to the development of novel neuroprotective strategies in stroke therapy.

  2. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  3. Monju secondary heat transport system sodium leak

    International Nuclear Information System (INIS)

    Suzuki, Takeo; Hiroi, Hiroshi; Usami, Shin; Iwata, Koji.

    1996-01-01

    On December 8, 1995, the sodium leakage from the secondary heat transport system (SHTS) occurred in the piping room of the reactor auxiliary building in Monju. The secondary sodium leaked through a temperature sensor, due to the breakaway of the tip of the well tube of the sensor installed near the outlet of the intermediate heat exchanger (IHX) in the C loop of SHTS. The reactor core remained cooled and thus, from the viewpoint of radiological hazards, the safety of the reactor was secured. There were no adverse effects for operating personnel or the surrounding environment. The cause of the well tube failure is considered to result from high cycle fatigue due to flow induced vibrations. Delay in draining the sodium from the leaking loop increased the consequential effects from sodium combustion products. (author)

  4. Red blood cell sodium transport in patients with cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Lütken; Kiszka-Kanowitz, Marianne; Bendtsen, Flemming

    2016-01-01

    Patients with advanced cirrhosis have abnormal sodium homoeostasis. The study was undertaken to quantify the sodium transport across the plasma membrane of red blood cells (RBC) in patients with cirrhosis. RBC efflux and influx of sodium were studied in vitro with tracer (22) Na(+) according...... to linear kinetics in 24 patients with cirrhosis and 14 healthy controls. The sodium efflux was modified by ouabain (O), furosemide (F) and a combination of O and F (O + F). RBC sodium was significantly decreased (4·6 versus control 6·3 mmol l(-1) , Psodium (r = 0·57, P......sodium efflux was higher in patients with cirrhosis (+46%, Psodium buffers showed that the F-insensitive sodium efflux was twice as high in cirrhosis as in controls (P = 0...

  5. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC 50  = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU 50  = 2.68 ± 0.75 %) or without (GU 50  = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  6. Thermodynamic and transport properties of sodium liquid and vapor

    International Nuclear Information System (INIS)

    Fink, J.K.; Leibowitz, L.

    1995-01-01

    Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed

  7. Crystal Structure and Product Analysis of an Archaeal myo-Inositol Kinase Reveal Substrate Recognition Mode and 3-OH Phosphorylation.

    Science.gov (United States)

    Nagata, Ryuhei; Fujihashi, Masahiro; Sato, Takaaki; Atomi, Haruyuki; Miki, Kunio

    2015-06-09

    The TK2285 protein from Thermococcus kodakarensis was recently characterized as an enzyme catalyzing the phosphorylation of myo-inositol. Only two myo-inositol kinases have been identified so far, the TK2285 protein and Lpa3 from Zea mays, both of which belong to the ribokinase family. In either case, which of the six hydroxyl groups of myo-inositol is phosphorylated is still unknown. In addition, little is known about the myo-inositol binding mechanism of these enzymes. In this work, we determined two crystal structures: those of the TK2285 protein complexed with the substrates (ATP analogue and myo-inositol) or the reaction products formed by the enzyme. Analysis of the ternary substrates-complex structure and site-directed mutagenesis showed that five residues were involved in the interaction with myo-inositol. Structural comparison with other ribokinase family enzymes indicated that two of the five residues, Q136 and R140, are characteristic of myo-inositol kinase. The crystal structure of the ternary products-complex, which was prepared by incubating the TK2285 protein with myo-inositol and ATP, holds 1d-myo-inositol 3-phosphate (Ins(3)P) in the active site. NMR and HPLC analyses with a chiral column also indicated that the TK2285 reaction product was Ins(3)P. The results obtained here showed that the TK2285 protein specifically catalyzes the phosphorylation of the 3-OH of myo-inositol. We thus designated TK2285 as myo-inositol 3-kinase (MI3K). The precise identification of the reaction product should provide a sound basis to further explore inositol metabolism in Archaea.

  8. Hydrogen peroxide production and myo-inositol metabolism as important traits for virulence of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Ferrarini, M G; Mucha, S G; Parrot, D; Meiffren, G; Bachega, J F R; Comte, G; Zaha, A; Sagot, M F

    2018-04-06

    Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia. In our previous work, we reconstructed the metabolic models of this species along with two other mycoplasmas from the respiratory tract of swine: Mycoplasma hyorhinis, considered less pathogenic but which nonetheless causes disease and Mycoplasma flocculare, a commensal bacterium. We identified metabolic differences that partially explained their different levels of pathogenicity. One important trait was the production of hydrogen peroxide from the glycerol metabolism only in the pathogenic species. Another important feature was a pathway for the metabolism of myo-inositol in M. hyopneumoniae. Here, we tested these traits to understand their relation to the different levels of pathogenicity, comparing not only the species but also pathogenic and attenuated strains of M. hyopneumoniae. Regarding the myo-inositol metabolism, we show that only M. hyopneumoniae assimilated this carbohydrate and remained viable when myo-inositol was the primary energy source. Strikingly, only the two pathogenic strains of M. hyopneumoniae produced hydrogen peroxide in complex medium. We also show that this production was dependent on the presence of glycerol. Although further functional tests are needed, we present in this work two interesting metabolic traits of M. hyopneumoniae that might be directly related to its enhanced virulence. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.

  9. Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters.

    Science.gov (United States)

    Severi, Emmanuele; Hosie, Arthur H F; Hawkhead, Judith A; Thomas, Gavin H

    2010-03-01

    The function of sialic acids in the biology of bacterial pathogens is reflected by the diverse range of solute transporters that can recognize these sugar acids. Here, we use an Escherichia coliDeltananT strain to characterize the function of known and proposed bacterial sialic acid transporters. We discover that the STM1128 gene from Salmonella enterica serovar Typhimurium, which encodes a member of the sodium solute symporter family, is able to restore growth on sialic acid to the DeltananT strain and is able to transport [(14)C]-sialic acid. Using the DeltananT genetic background, we performed a direct in vivo comparison of the transport properties of the STM1128 protein with those of sialic acid transporters of the major facilitator superfamily and tripartite ATP-independent periplasmic families, E. coli NanT and Haemophilus influenzae SiaPQM, respectively. This revealed that both STM1128 and SiaPQM are sodium-dependent and, unlike SiaPQM, both STM1128 and NanT are reversible secondary carriers, demonstrating qualitative functional differences in the properties of sialic acid transporters used by bacteria that colonize humans.

  10. Dietary supplementation with myo-inositol in women during pregnancy for treating gestational diabetes.

    Science.gov (United States)

    Brown, Julie; Crawford, Tineke J; Alsweiler, Jane; Crowther, Caroline A

    2016-09-07

    Gestational diabetes mellitus (GDM) is any degree of glucose intolerance that first presents and is recognised during pregnancy and usually resolves after the birth of the baby. GDM is associated with increased short- and long-term morbidity for the mother and her baby. Treatment usually includes lifestyle modification and/or pharmacological therapy (oral antidiabetic agents or insulin) with the aim to maintain treatment targets for blood glucose concentrations. Finding novel treatment agents which are effective, acceptable and safe for the mother and her baby are important. One such emerging potential intervention is myo-inositol which is an isomer of inositol and occurs endogenously and is found in natural dietary sources such as fruits, vegetables, nuts and cereals. To assess if dietary supplementation with myo-inositol during pregnancy is safe and effective, for the mother and fetus, in treating gestational diabetes. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 April 2016), ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (7 April 2016), and reference lists of retrieved studies. All published and unpublished randomised controlled trials or cluster-randomised controlled trials reporting on the use of myo-inositol compared with placebo, no treatment or another intervention for the treatment of women with gestational diabetes. Quasi-randomised and cross-over studies are not eligible for inclusion. Women with pre-existing diabetes were excluded. Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. For key outcomes (where data were available), we assessed the quality of the evidence using the GRADE approach. We included two studies (142 women and infants), both were conducted in women in Italy and compared myo-inositol with a placebo control.None of the maternal primary outcomes pre-specified for this review were reported in

  11. myo-Inositol synthesis from [1-3H]glucose in Phaseolus vulgaris L. during early stages of germination

    International Nuclear Information System (INIS)

    Sasaki, K.; Taylor, I.E.P.

    1986-01-01

    Radiolabeled D-[1- 3 H]glucose was fed by imbibition under sterile conditions to bean (Phaseolus vulgaris L.) seeds. After 72 and 96 hours of feeding, the 3 H was located in uronic acid and pentose residues as well as hexose residues of cell wall polysaccharides in growing hypocotyl and root. Free myo-inositol present in cotyledons, hypocotyl, and root also contained 3 H, showing that de novo synthesis of myo-inositol from [1- 3 H]glucose did occur during the first 72 hours of germination. More than 90% of the labeled, free myo-inositol was present in the cotyledons. The 3 H percentage in trifluoroacetic acid-soluble arabinaose residues of cell wall polysaccharides from 72-hour-old bean hypocotyls was only half of their mole percentage. On the other hand, 3 H percentages in hexose residues were higher than their mole percentages. The results suggest that myo-inositol is synthesized from reserve sugars during the very early stages of germination, and that the newly synthesized myo-inositol, as well as that stored in cotyledons, can be used for the construction of new hypocotyl and root cell wall polysaccharides after conversion into uronic acids and pentoses via the myo-inositol oxidation pathway

  12. A specific pharmacophore model of sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors.

    Science.gov (United States)

    Tang, Chunlei; Zhu, Xiaoyun; Huang, Dandan; Zan, Xin; Yang, Baowei; Li, Ying; Du, Xiaoyong; Qian, Hai; Huang, Wenlong

    2012-06-01

    Sodium-dependent glucose co-transporter 2 (SGLT2) plays a pivotal role in maintaining glucose equilibrium in the human body, emerging as one of the most promising targets for the treatment of diabetes mellitus type 2. Pharmacophore models of SGLT2 inhibitors have been generated with a training set of 25 SGLT2 inhibitors using Discovery Studio V2.1. The best hypothesis (Hypo1(SGLT2)) contains one hydrogen bond donor, five excluded volumes, one ring aromatic and three hydrophobic features, and has a correlation coefficient of 0.955, cost difference of 68.76, RMSD of 0.85. This model was validated by test set, Fischer randomization test and decoy set methods. The specificity of Hypo1(SGLT2) was evaluated. The pharmacophore features of Hypo1(SGLT2) were different from the best pharmacophore model (Hypo1(SGLT1)) of SGLT1 inhibitors we developed. Moreover, Hypo1(SGLT2) could effectively distinguish selective inhibitors of SGLT2 from those of SGLT1. These results indicate that a highly predictive and specific pharmacophore model of SGLT2 inhibitors has been successfully obtained. Then Hypo1(SGLT2) was used as a 3D query to screen databases including NCI and Maybridge for identifying new inhibitors of SGLT2. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five. And several compounds selected from the top ranked hits have been suggested for further experimental assay studies.

  13. Myo-inositol vs. D-chiro inositol in PCOS treatment.

    Science.gov (United States)

    Formuso, C; Stracquadanio, M; Ciotta, L

    2015-08-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women in fertile age. It is an endocrine and metabolic disorder characterized by oligo-anovulation, hyperandrogenism and insulin-resistance. Various therapeutic approaches have been attempted in PCOS, including diet and the use of pharmacological agents such as oral contraceptives (OCs) or anti-androgens. Recently, the introduction of inositol in the treatment plan has proved to be as reasonable as useful in countering the endocrine-metabolic disorders of this syndrome. The aim of our study was to compare the clinical, endocrine and metabolic response after 6 months of therapy in 137 PCOS women characterized by oligomenorrhea and/or acne and/or mild hirsutism and insulin-resistance. The patients were treated with myo-inositol or with D-chiro-inositol or with placebo. Our study showed that both myo-inositol (MI-PG) and D-chiro inositol (DCI-PG) treatments are able to significantly improve the regularity of the menstrual cycle, the Acne Score, the endocrine and metabolic parameters and the insulin-resistence in young, overweight, PCOS patients. Definitely, we assumed that both treatments with myo-inositol and with D-chiro inositol could be proposed as a potential valid therapeutic approach for the treatment of patients with PCOS. Additionally, further examination and for a longer period of treatment are needed.

  14. Functional expression of sodium-glucose transporters in cancer

    Science.gov (United States)

    Scafoglio, Claudio; Hirayama, Bruce A.; Kepe, Vladimir; Liu, Jie; Ghezzi, Chiara; Satyamurthy, Nagichettiar; Moatamed, Neda A.; Huang, Jiaoti; Koepsell, Hermann; Barrio, Jorge R.; Wright, Ernest M.

    2015-01-01

    Glucose is a major metabolic substrate required for cancer cell survival and growth. It is mainly imported into cells by facilitated glucose transporters (GLUTs). Here we demonstrate the importance of another glucose import system, the sodium-dependent glucose transporters (SGLTs), in pancreatic and prostate adenocarcinomas, and investigate their role in cancer cell survival. Three experimental approaches were used: (i) immunohistochemical mapping of SGLT1 and SGLT2 distribution in tumors; (ii) measurement of glucose uptake in fresh isolated tumors using an SGLT-specific radioactive glucose analog, α-methyl-4-deoxy-4-[18F]fluoro-d-glucopyranoside (Me4FDG), which is not transported by GLUTs; and (iii) measurement of in vivo SGLT activity in mouse models of pancreatic and prostate cancer using Me4FDG-PET imaging. We found that SGLT2 is functionally expressed in pancreatic and prostate adenocarcinomas, and provide evidence that SGLT2 inhibitors block glucose uptake and reduce tumor growth and survival in a xenograft model of pancreatic cancer. We suggest that Me4FDG-PET imaging may be used to diagnose and stage pancreatic and prostate cancers, and that SGLT2 inhibitors, currently in use for treating diabetes, may be useful for cancer therapy. PMID:26170283

  15. A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter

    Science.gov (United States)

    Razavi, Asghar M.; Khelashvili, George; Weinstein, Harel

    2017-01-01

    The dopamine transporter (DAT) belongs to the neurotransmitter:sodium symporter (NSS) family of membrane proteins that are responsible for reuptake of neurotransmitters from the synaptic cleft to terminate a neuronal signal and enable subsequent neurotransmitter release from the presynaptic neuron. The release of one sodium ion from the crystallographically determined sodium binding site Na2 had been identified as an initial step in the transport cycle which prepares the transporter for substrate translocation by stabilizing an inward-open conformation. We have constructed Markov State Models (MSMs) from extensive molecular dynamics simulations of human DAT (hDAT) to explore the mechanism of this sodium release. Our results quantify the release process triggered by hydration of the Na2 site that occurs concomitantly with a conformational transition from an outward-facing to an inward-facing state of the transporter. The kinetics of the release process are computed from the MSM, and transition path theory is used to identify the most probable sodium release pathways. An intermediate state is discovered on the sodium release pathway, and the results reveal the importance of various modes of interaction of the N-terminus of hDAT in controlling the pathways of release.

  16. Inter-dependence not Over-dependence: Reducing Urban Transport Energy Dependence

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Michael James; Rodrigues da Silva, Antonio Nelson

    2007-07-01

    A major issue of concern in today's world is urban transport energy dependence and energy supply security. In an energy inter-dependent world, energy over-dependence brings risks to urban transport systems. Many urban areas are over-dependent on finite petroleum resources for transport. New technology and the development and integration of renewable resources into transport energy systems may reduce some of the current transport energy dependence of urban areas. However, the most effective means of reducing energy dependence is to first design urban areas for this condition. An urban policy framework is proposed that requires transport energy dependence to be measured and controlled in the urban development process. A new tool has been created for this purpose, the Transport Energy Specification (TES), which measures transport energy dependence of urban areas. This creates the possibility for cities to regulate urban development with respect to energy dependence. Trial assessments were performed in Germany, New Zealand and Brazil; initial analysis by transport and government professionals shows promise of this tool being included into urban policy. The TES combined with a regulatory framework has the potential to significantly reduce transport energy consumption and dependence in urban areas in the future. (auth)

  17. The molecular mechanism of ion-dependent gating in secondary transporters.

    Directory of Open Access Journals (Sweden)

    Chunfeng Zhao

    2013-10-01

    Full Text Available LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5. The Potential of Mean Force (PMF computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable

  18. Chronic vitamin C deficiency promotes redox imbalance in the brain but does not alter sodium-dependent vitamin C transporter 2 expression

    DEFF Research Database (Denmark)

    Paidi, Maya Devi; Schjoldager, Janne Gram; Lykkesfeldt, Jens

    2014-01-01

    Vitamin C (VitC) has several roles in the brain acting both as a specific and non-specific antioxidant. The brain upholds a very high VitC concentration and is able to preferentially retain VitC even during deficiency. The accumulation of brain VitC levels much higher than in blood is primarily...... achieved by the sodium dependent VitC transporter (SVCT2). This study investigated the effects of chronic pre-and postnatal VitC deficiency as well as the effects of postnatal VitC repletion, on brain SVCT2 expression and markers of oxidative stress in young guinea pigs. Biochemical analyses demonstrated...... significantly decreased total VitC and an increased percentage of dehydroascorbic acid, as well as increased lipid oxidation (malondialdehyde), in the brains of VitC deficient animals (p C repleted animals were not significantly different from controls. No significant changes...

  19. Amiloride-Sensitive Sodium Channels and Pulmonary Edema

    Directory of Open Access Journals (Sweden)

    Mike Althaus

    2011-01-01

    Full Text Available The development of pulmonary edema can be considered as a combination of alveolar flooding via increased fluid filtration, impaired alveolar-capillary barrier integrity, and disturbed resolution due to decreased alveolar fluid clearance. An important mechanism regulating alveolar fluid clearance is sodium transport across the alveolar epithelium. Transepithelial sodium transport is largely dependent on the activity of sodium channels in alveolar epithelial cells. This paper describes how sodium channels contribute to alveolar fluid clearance under physiological conditions and how deregulation of sodium channel activity might contribute to the pathogenesis of lung diseases associated with pulmonary edema. Furthermore, sodium channels as putative molecular targets for the treatment of pulmonary edema are discussed.

  20. Increased Urinary Extracellular Vesicle Sodium Transporters in Cushing's Syndrome with Hypertension.

    Science.gov (United States)

    Salih, Mahdi; Bovée, Dominique M; van der Lubbe, Nils; Danser, Alexander H J; Zietse, Robert; Feelders, Richard A; Hoorn, Ewout J

    2018-05-02

    Increased renal sodium reabsorption contributes to hypertension in Cushing's syndrome (CS). Renal sodium transporters can be analyzed non-invasively in urinary extracellular vesicles (uEVs). To analyze renal sodium transporters in uEVs of patients with CS and hypertension. Observational study. University hospital. uEVs were isolated by ultracentrifugation and analyzed by immunoblotting in 10 CS patients and 7 age-matched healthy subjects. In 7 CS patients uEVs were analyzed before and after treatment. uEV protein abundance. The 10 CS patients were divided in those with suppressed and non-suppressed renin-angiotensin-aldosterone system (RAAS, n = 5/group). CS patients with suppressed RAAS had similar blood pressure but significantly lower serum potassium than CS patients with non-suppressed RAAS. Compared to healthy subjects, only those with suppressed RAAS had higher phosphorylated Na+-K+-Cl- cotransporter type 2 (pNKCC2) and higher total and phosphorylated Na+-Cl- cotransporter (NCC) in uEVs. Serum potassium but not urinary free cortisol correlated with pNKCC2, pNCC, and NCC in uEVs. Treatment of CS reversed the increases in pNKCC2, NCC, and pNCC. CS increases renal sodium transporter abundance in uEVs especially in patients with hypertension and suppressed RAAS. As potassium has recently been identified as an important driver of NCC activity, low serum potassium may also contribute to increased renal sodium reabsorption and hypertension in CS. These results may also be relevant for hypertension induced by exogenous glucocorticoids.

  1. Development of computer code on sodium-water reaction products transport

    International Nuclear Information System (INIS)

    Arikawa, H.; Yoshioka, N.; Suemori, M.; Nishida, K.

    1988-01-01

    The LMFBR concept eliminating the secondary sodium system has been considered to be one of the most promissing concepts for offering cost reductions. In this reactor concept, the evaluation of effects on reactor core by the sodium-water reaction products (SWRPs) during sodium-water reaction at primary steam generator becomes one of the major safety issues. In this study, the calculation code was developed as the first step of the processes of establishing the evaluation method for SWRP effects. The calculation code, called SPROUT, simulates the SWRPs transport and distribution in primary sodium system using the system geometry, thermal hydraulic data and sodium-water reacting conditions as input. This code principally models SWRPs behavior. The paper contain the modelings for SWRPs behaviors, with solution, precipation, deposition and so on, and the results and discussions of the demonstration calculation for a typical FBR plant eliminating the secondary sodium system

  2. Thiazolidinediones enhance sodium-coupled bicarbonate absorption from renal proximal tubules via PPARγ-dependent nongenomic signaling.

    Science.gov (United States)

    Endo, Yoko; Suzuki, Masashi; Yamada, Hideomi; Horita, Shoko; Kunimi, Motoei; Yamazaki, Osamu; Shirai, Ayumi; Nakamura, Motonobu; Iso-O, Naoyuki; Li, Yuehong; Hara, Masumi; Tsukamoto, Kazuhisa; Moriyama, Nobuo; Kudo, Akihiko; Kawakami, Hayato; Yamauchi, Toshimasa; Kubota, Naoto; Kadowaki, Takashi; Kume, Haruki; Enomoto, Yutaka; Homma, Yukio; Seki, George; Fujita, Toshiro

    2011-05-04

    Thiazolidinediones (TZDs) improve insulin resistance by activating a nuclear hormone receptor, peroxisome proliferator-activated receptor γ (PPARγ). However, the use of TZDs is associated with plasma volume expansion through a mechanism that remains to be clarified. Here we showed that TZDs rapidly stimulate sodium-coupled bicarbonate absorption from the renal proximal tubule in vitro and in vivo. TZD-induced transport stimulation is dependent on PPARγ-Src-EGFR-ERK and observed in rat, rabbit and human, but not in mouse proximal tubules where Src-EGFR is constitutively activated. The existence of PPARγ-Src-dependent nongenomic signaling, which requires the ligand-binding ability, but not the transcriptional activity of PPARγ, is confirmed in mouse embryonic fibroblast cells. The enhancement of the association between PPARγ and Src by TZDs supports an indispensable role of Src in this signaling. These results suggest that the PPARγ-dependent nongenomic stimulation of renal proximal transport is also involved in TZD-induced volume expansion. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. How to Achieve High-Quality Oocytes? The Key Role of Myo-Inositol and Melatonin

    Directory of Open Access Journals (Sweden)

    Salvatore Giovanni Vitale

    2016-01-01

    Full Text Available Assisted reproductive technologies (ART have experienced growing interest from infertile patients seeking to become pregnant. The quality of oocytes plays a pivotal role in determining ART outcomes. Although many authors have studied how supplementation therapy may affect this important parameter for both in vivo and in vitro models, data are not yet robust enough to support firm conclusions. Regarding this last point, in this review our objective has been to evaluate the state of the art regarding supplementation with melatonin and myo-inositol in order to improve oocyte quality during ART. On the one hand, the antioxidant effect of melatonin is well known as being useful during ovulation and oocyte incubation, two occasions with a high level of oxidative stress. On the other hand, myo-inositol is important in cellular structure and in cellular signaling pathways. Our analysis suggests that the use of these two molecules may significantly improve the quality of oocytes and the quality of embryos: melatonin seems to raise the fertilization rate, and myo-inositol improves the pregnancy rate, although all published studies do not fully agree with these conclusions. However, previous studies have demonstrated that cotreatment improves these results compared with melatonin alone or myo-inositol alone. We recommend that further studies be performed in order to confirm these positive outcomes in routine ART treatment.

  4. Defective enamel and bone development in sodium-dependent citrate transporter (NaCT Slc13a5 deficient mice.

    Directory of Open Access Journals (Sweden)

    Armando R Irizarry

    Full Text Available There has been growing recognition of the essential roles of citrate in biomechanical properties of mineralized tissues, including teeth and bone. However, the sources of citrate in these tissues have not been well defined, and the contribution of citrate to the regulation of odontogenesis and osteogenesis has not been examined. Here, tooth and bone phenotypes were examined in sodium-dependent citrate transporter (NaCT Slc13a5 deficient C57BL/6 mice at 13 and 32 weeks of age. Slc13a5 deficiency led to defective tooth development, characterized by absence of mature enamel, formation of aberrant enamel matrix, and dysplasia and hyperplasia of the enamel organ epithelium that progressed with age. These abnormalities were associated with fragile teeth with a possible predisposition to tooth abscesses. The lack of mature enamel was consistent with amelogenesis imperfecta. Furthermore, Slc13a5 deficiency led to decreased bone mineral density and impaired bone formation in 13-week-old mice but not in older mice. The findings revealed the potentially important role of citrate and Slc13a5 in the development and function of teeth and bone.

  5. Ovulation induction with myo-inositol alone and in combination with clomiphene citrate in polycystic ovarian syndrome patients with insulin resistance.

    Science.gov (United States)

    Kamenov, Zdravko; Kolarov, Georgi; Gateva, Antoaneta; Carlomagno, Gianfranco; Genazzani, Alessandro D

    2015-02-01

    Insulin resistance plays a key role in the pathogenesis of polycystic ovarian syndrome (PCOS). One of the methods for correcting insulin resistance is using myo-inositol. The aim of the present study is to evaluate the effectiveness of myo-inositol alone or in combination with clomiphene citrate for (1) induction of ovulation and (2) pregnancy rate in anovulatory women with PCOS and proven insulin resistance. This study included 50 anovulatory PCOS patients with insulin resistance. All of them received myo-inositolduring three spontaneous cycles. If patients remained anovulatory and/or no pregnancy was achieved, combination of myo-inositol and clomiphene citrate was used in the next three cycles. Ovulation and pregnancy rate, changes in body mass index (BMI) and homeostatic model assessment (HOMA) index and the rate of adverse events were assessed. After myo-inositol treatment, ovulation was present in 29 women (61.7%) and 18 (38.3%) were resistant. Of the ovulatory women, 11 became pregnant (37.9%). Of the 18 myo-inositol resistant patients after clomiphene treatment, 13 (72.2%) ovulated. Of the 13 ovulatory women, 6 (42.6%) became pregnant. During follow-up, a reduction of body mass index and HOMA index was also observed. Myo-inositol treatment ameliorates insulin resistance and body weight, and improves ovarian activity in PCOS patients.

  6. Water permeation through the sodium-dependent galactose cotransporter vSGLT.

    Science.gov (United States)

    Choe, Seungho; Rosenberg, John M; Abramson, Jeff; Wright, Ernest M; Grabe, Michael

    2010-10-06

    It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70-80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Transport activity of the sodium bicarbonate cotransporter NBCe1 is enhanced by different isoforms of carbonic anhydrase.

    Directory of Open Access Journals (Sweden)

    Christina Schueler

    Full Text Available Transport metabolons have been discussed between carbonic anhydrase II (CAII and several membrane transporters. We have now studied different CA isoforms, expressed in Xenopus oocytes alone and together with the electrogenic sodium bicarbonate cotransporter 1 (NBCe1, to determine their catalytic activity and their ability to enhance NBCe1 transport activity. pH measurements in intact oocytes indicated similar activity of CAI, CAII and CAIII, while in vitro CAIII had no measurable activity and CAI only 30% of the activity of CAII. All three CA isoforms increased transport activity of NBCe1, as measured by the transport current and the rate of intracellular sodium rise in oocytes. Two CAII mutants, altered in their intramolecular proton pathway, CAII-H64A and CAII-Y7F, showed significant catalytic activity and also enhanced NBCe1 transport activity. The effect of CAI, CAII, and CAII mutants on NBCe1 activity could be reversed by blocking CA activity with ethoxyzolamide (EZA, 10 µM, while the effect of the less EZA-sensitive CAIII was not reversed. Our results indicate that different CA isoforms and mutants, even if they show little enzymatic activity in vitro, may display significant catalytic activity in intact cells, and that the ability of CA to enhance NBCe1 transport appears to depend primarily on its catalytic activity.

  8. Functional characterization of a recombinant sodium-dependent nucleoside transporter with selectivity for pyrimidine nucleosides (cNT1rat) by transient expression in cultured mammalian cells.

    OpenAIRE

    Fang, X; Parkinson, F E; Mowles, D A; Young, J D; Cass, C E

    1996-01-01

    We have demonstrated that monkey kidney (COS-1) cells have a single type of nucleoside transport process, which, because it was equilibrative, sodium-independent and could be inhibited by nitrobenzylthioinosine (NBMPR), was identified as the 'equilibrative sensitive' or 'es' transporter. Using NBMPR or dilazep to inhibit the endogenous nucleoside transport activity, we have transiently expressed a cDNA that encodes an inhibitor-insensitive, concentrative nucleoside transporter protein (cNT1ra...

  9. Sodium-glucose co-transporter type 2 inhibitors reduce evening home blood pressure in type 2 diabetes with nephropathy.

    Science.gov (United States)

    Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi

    2017-05-01

    The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.

  10. Prospective Randomized Study on the Influence of Myoinositol in PCOS Women Undergoing IVF in the Improvement of Oocyte Quality, Fertilization Rate, and Embryo Quality

    Directory of Open Access Journals (Sweden)

    Bernd Lesoine

    2016-01-01

    Full Text Available Polycystic ovarian syndrome (PCOS is one of the pathological factors involved in the failure of in vitro fertilization (IvF. The aim of the present study was to investigate if the combination of myoinositol + folic acid was able to improve the oocyte quality, the ratio between follicles and retrieved oocytes, the fertilization rate, and the embryo quality in PCOS patients undergoing IvF treatments. 29 patients with PCOS underwent IvF protocols for infertility treatment and were randomized prospectively into two groups. Group A (placebo with 15 patients and group B (4000 mg myoinositol + 400 μg folic acid per day with 14 patients. The patients of group B used for two months myoinositol + folic acid before starting the IvF protocol and data were obtained concerning number of follicles, number of oocytes, quality of oocytes, fertilization rates, and embryo quality in both groups. The ratio follicle/retrieved oocyte was better in the myoinositol group (= group B. Out of the 233 oocytes collected in the myoinositol group 136 were fertilized, whereas only 128 out of 300 oocytes in the placebo group were fertilized. More metaphase II and I oocytes were retrieved in relation to the total amount of oocytes in the myoinositol. More embryos of grade I quality were obtained in the myoinositol. The duration of stimulation was 9,7 days (±3,3 in the myoinositol group and 11,2 (±1,8 days in the placebo group and the number of used FSH units was lower in the myoinositol group: 1750 FSH units (mean versus 1850 units (mean. Our evidence suggests that myoinositol therapy in women with PCOS results in better fertilization rates and a clear trend to a better embryo quality. As the number of retrieved oocytes was smaller in the myoinositol group, the risk of hyper stimulation syndrome can be reduced in these patients.

  11. Structure and ionic transport studies of sodium borophosphate glassy system

    International Nuclear Information System (INIS)

    Anantha, P.S.; Hariharan, K.

    2005-01-01

    Sodium borophosphate glasses of composition (mol%) 50Na 2 O-50[xB 2 O 3 -(1-x)P 2 O 5 ], 0 ≤ x ≤ 0.8 have been prepared by melt quenching method and characterized through XRD, DSC, FTIR and impedance spectroscopy techniques. The glass transition temperature increases with the substitution of B 2 O 3 due to the cross-linking of the network and the FTIR study shows the presence of different structural units in the network. The ionic conductivity study as a function of composition of B 2 O 3 shows increment in conductivity with two conductivity maxima at 10 and 30 mol% of B 2 O 3 and conductivity variations with temperature follow an Arrhenius type behaviour. Transport numbers evaluated for ions and electrons show that Na + ions are the mobile species in the investigated systems. The frequency dependence of the electric conductivity follows a simple power law feature. The analysis of various electrical parameters as a function of temperature in different complex planes shows that the charge transport occurs by the hopping mechanism

  12. Isolation and Identification of Myo-Inositol Crystals from Dragon Fruit (Hylocereus polyrhizus

    Directory of Open Access Journals (Sweden)

    Chandran Somasundram

    2012-04-01

    Full Text Available Crystals isolated from Hylocereus polyrhizus were analyzed using four different approaches—X-ray Crystallography, High Performance Liquid Chromatography (HPLC, Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS and Nuclear Magnetic Resonance (NMR and identified as myo-inositol. The X-ray crystallography analysis showed that the unit-cell parameters were: a = 6.6226 (3 Å, b = 12.0462 (5 Å, c = 18.8942 (8 Å, α = 90.00, β = 93.98, δ = 90.00. The purity of the crystals were checked using HPLC, whereupon a clean single peak was obtained at 4.8 min with a peak area of 41232 μV*s. The LC-MS/MS technique, which is highly sensitive and selective, was used to provide a comparison of the isolated crystals with a myo-inositol standard where the results gave an identical match for both precursor and product ions. NMR was employed to confirm the molecular structure and conformation of the crystals, and the results were in agreement with the earlier results in this study. The discovery of myo-inositol crystals in substantial amount in H. polyrhizus has thus far not been reported and this is an important finding which will increase the marketability and importance of H. polyrhizus as a crop with a wide array of health properties.

  13. Antenatal dietary supplementation with myo-inositol in women during pregnancy for preventing gestational diabetes.

    Science.gov (United States)

    Crawford, Tineke J; Crowther, Caroline A; Alsweiler, Jane; Brown, Julie

    2015-12-17

    Gestational diabetes, glucose intolerance with onset or first recognition during pregnancy, is a rising problem worldwide. Both non-pharmacological and pharmacological approaches to the prevention of gestational diabetes have been, and continue to be explored. Myo-inositol, an isomer of inositol, is a naturally occurring sugar commonly found in cereals, corn, legumes and meat. It is one of the intracellular mediators of the insulin signal and correlated with insulin sensitivity in type 2 diabetes. The potential beneficial effect on improving insulin sensitivity suggests that myo-inositol may be useful for women in preventing gestational diabetes. To assess if antenatal dietary supplementation with myo-inositol is safe and effective, for the mother and fetus, in preventing gestational diabetes. We searched the Pregnancy and Childbirth Group's Trials Register, ClinicalTrials.gov, WHO ICTRP (2 November 2015) and reference lists of retrieved studies. We sought published and unpublished randomised controlled trials, including conference abstracts, assessing the effects of myo-inositol for the prevention of gestational diabetes mellitus (GDM). Quasi-randomised and cross-over trials were not eligible for inclusion, but cluster designs were eligible. Participants in the trials were pregnant women. Women with pre-existing type 1 or type 2 diabetes were excluded. Trials that compared the administration of any dose of myo-inositol, alone or in a combination preparation were eligible for inclusion. Trials that used no treatment, placebo or another intervention as the comparator were eligible for inclusion. Two review authors independently assessed trials for inclusion, risk of bias and extracted the data. Data were checked for accuracy. We included four randomised controlled trials (all conducted in Italy) reporting on 567 women who were less than 11 weeks' to 24 weeks' pregnant at the start of the trials. The trials had small sample sizes and one trial only reported an

  14. Oral peptide specific egg antibody to intestinal sodium-dependent phosphate co-transporter-2b is effective at altering phosphate transport in vitro and in vivo.

    Science.gov (United States)

    Bobeck, Elizabeth A; Hellestad, Erica M; Sand, Jordan M; Piccione, Michelle L; Bishop, Jeff W; Helvig, Christian; Petkovich, Martin; Cook, Mark E

    2015-06-01

    Hyperimmunized hens are an effective means of generating large quantities of antigen specific egg antibodies that have use as oral supplements. In this study, we attempted to create a peptide specific antibody that produced outcomes similar to those of the human pharmaceutical, sevelamer HCl, used in the treatment of hyperphosphatemia (a sequela of chronic renal disease). Egg antibodies were generated against 8 different human intestinal sodium-dependent phosphate cotransporter 2b (NaPi2b) peptides, and hNaPi2b peptide egg antibodies were screened for their ability to inhibit phosphate transport in human intestinal Caco-2 cell line. Antibody produced against human peptide sequence TSPSLCWT (anti-h16) was specific for its peptide sequence, and significantly reduced phosphate transport in human Caco-2 cells to 25.3±11.5% of control nonspecific antibody, when compared to nicotinamide, a known inhibitor of phosphate transport (P≤0.05). Antibody was then produced against the mouse-specific peptide h16 counterpart (mouse sequence TSPSYCWT, anti-m16) for further analysis in a murine model. When anti-m16 was fed to mice (1% of diet as dried egg yolk powder), egg yolk immunoglobulin (IgY) was detected using immunohistochemical staining in mouse ileum, and egg anti-m16 IgY colocalized with a commercial goat anti-NaPi2b antibody. The effectiveness of anti-m16 egg antibody in reducing serum phosphate, when compared to sevelamer HCl, was determined in a mouse feeding study. Serum phosphate was reduced 18% (Pegg yolk powder) and 30% (Pegg immunoglobulin. The methods described and the findings reported show that oral egg antibodies are useful and easy to prepare reagents for the study and possible treatment of select diseases. © 2015 Poultry Science Association Inc.

  15. 49 CFR 173.189 - Batteries containing sodium or cells containing sodium.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Batteries containing sodium or cells containing sodium. 173.189 Section 173.189 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.189 Batteries containing sodium or cells containing sodium. (a...

  16. Diuretics and salt transport along the nephron.

    Science.gov (United States)

    Bernstein, Paul L; Ellison, David H

    2011-11-01

    The clinical use of diuretics almost uniformly predated the localization of their site of action. The consequence of diuretic specificity predicts clinical application and side effect, and the proximity of the sodium transporters, one to the next, often dictates potency or diuretic efficiency. All diuretics function by inhibiting the normal transport of sodium from the filtrate into the renal tubular cells. This movement of sodium into the renal epithelial cells on the apical side is facilitated by a series of transporters whose function is, in turn, dependent on the adenosine triphosphate (ATP)-dependent Na-K cotransporter on the basolateral side of the cell. Our growing understanding of the physiology of sodium transport has spawned new possibilities for diuretic development. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate.

    Science.gov (United States)

    Luo, Yangchao; Teng, Zi; Wang, Thomas T Y; Wang, Qin

    2013-08-07

    Cellular evaluation of zein nanoparticles has not been studied systematically due to their poor redispersibility. Caseinate (CAS)-stabilized zein nanoparticles have been recently developed with better redispersibility in salt solutions. In this study, zein-CAS nanoparticles were prepared with different zein/CAS mass ratios. The prepared nanoparticles demonstrated good stabilities to maintain particle size (120-140 nm) in cell culture medium and HBSS buffer at 37 °C. The nanoparticles showed no cytotoxicity for Caco-2 cells for 72 h. CAS not only significantly enhanced cell uptake of zein nanoparticles in a concentration- and time-dependent manner but also remarkably improved epithelial transport through Caco-2 cell monolayer. The cell uptake of zein-CAS nanoparticles indicated an energy-dependent endocytosis process as evidenced by cell uptake under blocking conditions, that is, 4 °C, sodium azide, and colchicine. Fluorescent microscopy clearly showed the internalization of zein-CAS nanoparticles. This study may shed some light on the cellular evaluations of hydrophobic protein nanoparticles.

  18. Control of radioactive material transport in sodium-cooled reactors

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1980-03-01

    The Radioactivity Control Technology (RCT) program was established by the Department of Energy to develop and demonstrate methods to control radionuclide transport to ex-core regions of sodium-cooled reactors. This radioactive material is contained within the reactor heat transport system with any release to the environment well below limits established by regulations. However, maintenance, repair, decontamination, and disposal operations potentially expose plant workers to radiation fields arising from radionuclides transported to primary system components. This paper deals with radioactive material generated and transported during steady-state operation, which remains after 24 Na decay. Potential release of radioactivity during postulated accident conditions is not discussed. The control methods for radionuclide transport, with emphasis on new information obtained since the last Environmental Control Symposium, are described. Development of control methods is an achievable goal

  19. L-myo-inosose-1 as a probable intermediate in the reaction catalyzed by myo-inositol oxygenase

    International Nuclear Information System (INIS)

    Naber, N.I.; Swan, J.S.; Hamilton, G.A.

    1986-01-01

    In previous investigations, it was necessary to have Fe(II) and cysteine present in order to assay the catalytic activity of purified hog kidney myo-inositol oxygenase. In the present study it was found that, if this purified nonheme iron enzyme is slowly frozen in solution with glutathione and stored at -20 degrees C, it is fully active in the absence of activators if catalase is present to remove adventitious H 2 O 2 . With this simpler assay system it was possible to clarify the effects of several variables on the enzymic reaction. Thus, the maximum velocity is pH-dependent with a maximum around pH 9.5, but the apparent Km for myo-inositol (air atmosphere) remains constant at 5.0 mM throughout a broad pH range. The enzyme is quite specific for its substrate myo-inositol, is very sensitive to oxidants and reductants, but is not affected by a variety of complexing agents, nucleotides, sulfhydryl reagents, etc. In other experiments it was found that L-myo-inosose-1, a potential intermediate in the enzymic reaction, is a potent competitive inhibitor (Ki = 62 microM), while other inososes and a solution thought to contain D-glucodialdehyde, another potential intermediate, are weak inhibitors. Also, both a kinetic deuterium isotope effect (kH/kD = 2.1) and a tritium isotope effect (kH/kT = 7.5) are observed for the enzymic reaction when [1-2H]- and [1-3H]-myo-inositol are used as reactants. These latter results are considered strong evidence that the oxygenase reaction proceeds by a pathway involving L-myo-inosose-1 as an intermediate rather than by an alternative pathway that would have D-glucodialdehyde as the intermediate

  20. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    Science.gov (United States)

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  1. Changes in urinary excretion of water and sodium transporters during amiloride and bendroflumethiazide treatment

    DEFF Research Database (Denmark)

    Jensen, Janni M; Mose, Frank H; Kulik, Anna-Ewa O

    2015-01-01

    AIM: To quantify changes in urinary excretion of aquaporin2 water channels (u-AQP2), the sodium-potassium-chloride co-transporter (u-NKCC2) and the epithelial sodium channels (u-ENaC) during treatment with bendroflumethiazide (BFTZ), amiloride and placebo. METHODS: In a randomized, double....... General linear model with repeated measures or related samples Friedman's two-way analysis was used to compare differences. Post hoc Bonferroni correction was used for multiple comparisons of post infusion periods to baseline within each treatment group. RESULTS: At baseline there were no differences in u...... by the constant infusion clearance technique with (51)Cr-EDTA as reference substance. To estimate the changes in water transport via AQP2 and sodium transport via NKCC2 and ENaC, u-NKCC2, the gamma fraction of ENaC (u-ENaCγ), and u-AQP2 were measured at baseline and after infusion with 3% hypertonic saline. U...

  2. Inhibitin: a specific inhibitor of sodium/sodium exchange in erythrocytes.

    OpenAIRE

    Morgan, K; Brown, R C; Spurlock, G; Southgate, K; Mir, M A

    1986-01-01

    An inhibitor of ouabain-insensitive sodium/sodium exchange in erythrocytes has been isolated from leukemic promyelocytes. To explore the specific effects of this inhibitor, named inhibitin, sodium transport experiments were carried out in human erythrocytes. Inhibitin reduced ouabain-insensitive bidirectional sodium transport. It did not change net sodium fluxes, had no significant effect on rubidium influx, and did not inhibit sodium-potassium-ATPase activity. The inhibitory effect of inhibi...

  3. An Uncharacterized Member of the Ribokinase Family in Thermococcus kodakarensis Exhibits myo-Inositol Kinase Activity*

    Science.gov (United States)

    Sato, Takaaki; Fujihashi, Masahiro; Miyamoto, Yukika; Kuwata, Keiko; Kusaka, Eriko; Fujita, Haruo; Miki, Kunio; Atomi, Haruyuki

    2013-01-01

    Here we performed structural and biochemical analyses on the TK2285 gene product, an uncharacterized protein annotated as a member of the ribokinase family, from the hyperthermophilic archaeon Thermococcus kodakarensis. The three-dimensional structure of the TK2285 protein resembled those of previously characterized members of the ribokinase family including ribokinase, adenosine kinase, and phosphofructokinase. Conserved residues characteristic of this protein family were located in a cleft of the TK2285 protein as in other members whose structures have been determined. We thus examined the kinase activity of the TK2285 protein toward various sugars recognized by well characterized ribokinase family members. Although activity with sugar phosphates and nucleosides was not detected, kinase activity was observed toward d-allose, d-lyxose, d-tagatose, d-talose, d-xylose, and d-xylulose. Kinetic analyses with the six sugar substrates revealed high Km values, suggesting that they were not the true physiological substrates. By examining activity toward amino sugars, sugar alcohols, and disaccharides, we found that the TK2285 protein exhibited prominent kinase activity toward myo-inositol. Kinetic analyses with myo-inositol revealed a greater kcat and much lower Km value than those obtained with the monosaccharides, resulting in over a 2,000-fold increase in kcat/Km values. TK2285 homologs are distributed among members of Thermococcales, and in most species, the gene is positioned close to a myo-inositol monophosphate synthase gene. Our results suggest the presence of a novel subfamily of the ribokinase family whose members are present in Archaea and recognize myo-inositol as a substrate. PMID:23737529

  4. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions

    International Nuclear Information System (INIS)

    Broeer, A.; Broeer, S.; Setiawan, I.; Lang, F.

    2001-01-01

    Full text: SN1 has recently been identified as one of the major glutamine transporters in hepatocytes and brain astrocytes. It appears to be the molecular correlate of the system N amino acid transporter. Two different transport mechanisms have been proposed for this transporter. Either an electroneutral mechanism, in which glutamine uptake is coupled to an exchange of 1Na + and 1H + , or an electrogenic mechanism coupled to the exchange of 2Na + against 1H + . This study was performed to solve the discrepancies and to investigate the reversibility of the transporter. When expressed in Xenopus laevis oocytes glutamine uptake activity increased strongly with increasing pH. In agreement with the pH-dependence we found that uptake of glutamine was accompanied by an alkalization of the cytosol, indicating that SN1 mediates Glutamine/H + -Antiport. Uptake of glutamine into oocytes was Na + -dependent. Analysis of the Na + -dependence of glutamine transport and Flux studies using 22 Na + indicated that two or more sodium ions were cotransported together with glutamine. However, at the same time intracellular Na + was exchanged against extracellular Na + . Taken together with the results of the pH-dependence it is proposed that SN1 mediates a Na + /Na + -exchange and a Na + /H + -exchange, both being coupled to the transport of glutamine. In agreement with this mechanism we found that acidic pH caused a reversal of the transporter. To investigate the source of the glutamine-induced inward currents, we compared inward currents generated by the 1Na + /glutamine cotransporter ATA1 with those generated by SN1. Currents induced by glutamine uptake in SN1 expressing oocytes were only a fraction of the currents induced by glutamine in ATA1 expressing oocytes, indicating that they were not generated by a stoichiometric uptake of ions. It is concluded that SN1 is tightly regulated by pH and intracellular Na + -ions and is capable of mediating glutamine uptake and release

  5. Characterization of Gene Candidates for Vacuolar Sodium Transport from Hordeum Vulgare

    KAUST Repository

    Scheu, Arne Hagen August

    2017-05-01

    Soil salinity is a major abiotic stress for land plants, and multiple mechanisms of salt tolerance have evolved. Tissue tolerance is one of these mechanisms, which involves the sequestration of sodium into the vacuole to retain low cytosolic sodium concentrations. This enables the plant to maintain cellular functions, and ultimately maintain growth and yield. However, the molecular components involved in tissue tolerance remain elusive. Several candidate genes for vacuolar sodium sequestration have recently been identified by proteome analysis of vacuolar membranes purified from the salt-tolerant cereal Hordeum vulgare (barley). In this study, I aimed to characterize these candidates in more detail. I successfully cloned coding sequences for the majority of candidate genes with primers designed based on the barley reference genome sequence. During the course of this study a newer genome sequence with improved annotations was published, to which I also compared my observations. To study the candidate genes, I used the heterologous expression system Saccharomyces cerevisiae (yeast). I used several salt sensitive yeast strains (deficient in intrinsic sodium transporters) to test whether the candidate genes would affect their salt tolerance by mediating the sequestration of sodium into the yeast vacuole. I observed a reduction in growth upon expression for several of the gene candidate under salt-stress conditions. However, confocal microscopy suggests that most gene products are subject to degradation, and did not localize to the vacuolar membrane (tonoplast). Therefore, growth effects cannot be linked to protein function without further evidence. Various potential causes are discussed, including inaccuracies in the genome resource used as reference for primer design and issues inherent to the model system. Finally, I make suggestions on how to proceed to further characterize the candidate genes and hopefully identify novel sodium transporters from barley.

  6. Effect of the treatment with myo-inositol plus folic acid plus melatonin in comparison with a treatment with myo-inositol plus folic acid on oocyte quality and pregnancy outcome in IVF cycles. A prospective, clinical trial.

    Science.gov (United States)

    Rizzo, P; Raffone, E; Benedetto, V

    2010-06-01

    The aim of the study was to evaluate the efficacy of a treatment with myo-inositol plus folic acid plus melatonin compared with myo-inositol plus folic acid alone on oocyte quality in women underwent in vitro fertilization (IVF) cycles. A prospective, clinical trial. Starting on the day of GnRH administration, 65 women undergoing IVF cycles were randomized in two groups to receive myo-inositol plus folic acid plus melatonin (32 women, group A), and myo-inositol plus folic acid (33 women, group B), administered continuously. Primary endpoints were number of morphologically mature oocytes retrieved (MII oocytes), embryo quality, and pregnancy rate. Secondary endpoints were the total number of oocytes retrieved (immature and mature oocytes), fertilization rate per number of retrieved oocytes and embryo cleavage rate. The mean number of oocytes retrieved did not differ between the two groups (7.88 +/- 1.76 vs 7.67 +/- 1.88; P=0.65). Whereas the group cotreated with melatonin reported a significantly greater mean number of mature oocytes (6.56 +/- 1.64 vs 5.76 +/- 1.56; P=0.047) and a lower mean number of immature oocytes (1.31 +/- 0.74 vs. 1.91 +/- 0.68; P=0.001). The mean number of embyos of top-quality (class 1 and 2) resulted higher in the group A (1.69 +/- 0.64 vs 1.24 +/- 0.75; P=0.01). Fertilization rate did not differ between the two groups. A total of 22 pregnancies were obtained (13 in group A and 9 in group B; P=0.26). Clinical pregnancy rate and implantation rate were in tendency higher in the group cotreated with melatonin, although the differences did not reach statistical significance. Biochemical pregnancy rate and abortion rate were similar in both groups. melatonin ameliorates the activity of myo-inositol and folic acid by improving oocyte quality and pregnancy outcome in women with low oocyte quality history.

  7. Cation gating and selectivity in a purified, reconstituted, voltage-dependent sodium channel

    International Nuclear Information System (INIS)

    Barchi, R.L.; Tanaka, J.C.

    1984-01-01

    In excitable membranes, the voltage-dependent sodium channel controls the primary membrane conductance change necessary for the generation of an action potential. Over the past four decades, the time- and voltage-dependent sodium currents gated by this channel have been thoroughly documented with increasingly sophisticated voltage-clamp techniques. Recent advances in the biochemistry of membrane proteins have led to the solubilization and purification of this channel protein from nerve (6) and from muscle (4) or muscle-derived (1) membranes, and have provided an approach to the correlation of the channel's molecular structure with its functional properties. Each of these sodium channel preparations appears to contain a large glycoprotein either as its sole component (2) or in association with several small subunits (6, 3). Evidence that these purified proteins represent the excitable membrane sodium channel is presented. 8 refs., 1 fig., 1 tab

  8. Analysis of the Sodium Recirculation Theory of Solute Coupled Water Transport in Small Intestine

    DEFF Research Database (Denmark)

    Larsen, E. H.; Sørensen, Jens Nørkær; Sørensen, J. B.

    2002-01-01

    Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral......, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions....... The computed sodium recirculation flux that is required for isotonic transport corresponds to that estimated in experiments on toad small intestine. This result is shown to be robust and independent of whether the apical entrance mechanism for the sodium ion is a channel, a SGLT1 transporter driving inward...

  9. Management of women with PCOS using myo-inositol and folic acid. New clinical data and review of the literature.

    Science.gov (United States)

    Regidor, Pedro-Antonio; Schindler, Adolf Eduard; Lesoine, Bernd; Druckman, Rene

    2018-03-02

    Introduction The use of 2 × 2000 mg myo-inositol +2 × 200 μg folic acid per day is a safe and promising tool in the effective improvement of symptoms and infertility for patients with polycystic ovary syndrome (PCOS). In addition, PCOS is one of the pathological factors involved in the failure of in vitro fertilization (IVF). Typically, PCOS patients suffer of poor quality oocytes. Patients and methods In an open, prospective, non-blinded, non-comparative observational study, 3602 infertile women used myo-inositol and folic acid between 2 and 3 months in a dosage of 2 × 2000 mg myo-inositol +2 × 200 μg folic acid per day. In a subgroup of 32 patients, hormonal values for testosterone, free testosterone and progesterone were analyzed before and after 12 weeks of treatment. The mean time of use was 10.2 weeks. In the second part of this trial it was investigated if the combination of myo-inositol + folic acid was able to improve the oocyte quality, the ratio between follicles and retrieved oocytes, the fertilization rate and the embryo quality in PCOS patients undergoing IVF treatments. Twenty-nine patients with PCOS, underwent IVF protocols for infertility treatment and were randomized prospectively into two groups. Group A (placebo) with 15 patients and group B (4000 mg myo-inositol +400 μg folic acid per day) with 14 patients were evaluated. The patients of group B used 2 months' myo-inositol + folic acid before starting the IVF protocol. For statistically analyses Student's t-test was performed. Results Seventy percent of the women had a restored ovulation, and 545 pregnancies were observed. This means a pregnancy rate of 15.1% of all the myo-inositol and folic acid users. In 19 cases a concomitant medication with clomiphene or dexamethasone was used. One twin pregnancy was documented. Testosterone levels changed from 96.6 ng/mL to 43.3 ng/mL and progesterone from 2.1 ng/mL to 12.3 ng/mL in the mean after 12 weeks of treatment (p

  10. A pilot study of gestational diabetes mellitus not controlled by diet alone: First-line medical treatment with myoinositol may limit the need for insulin.

    Science.gov (United States)

    Lubin, V; Shojai, R; Darmon, P; Cosson, E

    2016-06-01

    This study assessed whether myoinositol might be a first-line medical treatment for gestational diabetes mellitus (GDM). For 12 months, women with GDM not controlled by diet (n=32) were prospectively treated with myoinositol 1200mg and folic acid 400μg/day, while consecutive women (n=28) with insulin-requiring GDM treated during the previous year at our centre constituted the control group. Baseline characteristics and care were similar in both groups. Insulin was required in eight women (25%) in the myoinositol group who, compared with the 24 who did not need insulin, were older (37±5 vs. 32±5 years, respectively; P=0.018) and had a larger percentage of high self-monitored glucose values (45±8% vs. 32±14%; P<0.0001) during the week prior to the introduction of myoinositol treatment. All of the women had similar pregnancy outcomes regardless of their GDM management, although less labour induction was required in the myoinositol group (OR: 0.22 [0.07-0.65]), which had no side effects. This pilot study suggests that myoinositol may be a safe first-line medical treatment for uncontrolled GDM. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Natriuretic Hormones, Endogenous Ouabain, and Related Sodium Transport Inhibitors

    Directory of Open Access Journals (Sweden)

    John eHamlyn

    2014-12-01

    Full Text Available The work of deWardener and colleagues stimulated longstanding interest in natriuretic hormones (NH. In addition to the atrial peptides (APs, the circulation contains unidentified physiologically-relevant NHs. One NH is controlled by the central nervous system (CNS and likely secreted by the pituitary. Its circulating activity is modulated by salt intake and the prevailing sodium concentration of the blood and intracerebroventricular fluid, and contributes to postprandial and dehydration natriuresis. The other NH, mobilized by atrial stretch, promotes natriuresis by increasing the production of intrarenal dopamine and/or nitric oxide. Both NHs have short (<35 minutes circulating half lives, depress renotubular sodium transport, and neither requires the renal nerves. The search for NHs led to endogenous cardiotonic steroids (CTS including ouabain-, digoxin-, and bufadienolide-like materials. These CTS, given acutely in high nanomole to micromole amounts into the general or renal circulations, inhibit sodium pumps and are natriuretic. Among these CTS, only bufalin is cleared sufficiently rapidly to qualify for an NH-like role. Ouabain-like CTS are cleared slowly, and when given chronically in low daily nanomole amounts, promote sodium retention, augment arterial myogenic tone, reduce renal blood flow and glomerular filtration, suppress nitric oxide in the renal vasa recta, and increase sympathetic nerve activity and blood pressure. Moreover, lowering total body sodium raises circulating endogenous ouabain. Thus, ouabain-like CTS have physiological actions that, like aldosterone, support renal sodium retention and blood pressure. In conclusion, the mammalian circulation contains two non-AP NHs. Identification of the CNS NH should be a priority.

  12. The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1

    International Nuclear Information System (INIS)

    Weyand, Simone; Shimamura, Tatsuro; Beckstein, Oliver; Sansom, Mark S. P.; Iwata, So; Henderson, Peter J. F.; Cameron, Alexander D.

    2011-01-01

    Crystal structures of a membrane protein transporter in three different conformational states provide insights into the transport mechanism. Secondary active transporters move molecules across cell membranes by coupling this process to the energetically favourable downhill movement of ions or protons along an electrochemical gradient. They function by the alternating access model of transport in which, through conformational changes, the substrate binding site alternately faces either side of the membrane. Owing to the difficulties in obtaining the crystal structure of a single transporter in different conformational states, relatively little structural information is known to explain how this process occurs. Here, the structure of the sodium-benzylhydantoin transporter, Mhp1, from Microbacterium liquefaciens, has been determined in three conformational states; from this a mechanism is proposed for switching from the outward-facing open conformation through an occluded structure to the inward-facing open state

  13. Evolutionary primacy of sodium bioenergetics

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2008-04-01

    Full Text Available Abstract Background The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts and V-type (found in archaea, some bacteria, and eukaryotic vacuoles ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments. Results We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree. Conclusion Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions. Reviewers This article was reviewed by J. Peter Gogarten, Martijn A. Huynen, and Igor B. Zhulin. For the full reviews, please go to the Reviewers' comments section.

  14. Influence of the dialyzer membrane material on sodium transport in hemodialysis.

    Science.gov (United States)

    Lopot, F; Kotyk, P; Bláha, J; Válek, A

    1995-11-01

    Traditionally Gibbs-Donnan coefficients based on the mean charge of plasma proteins are used as the only correction factor in equations describing sodium transport across the dialyzer membrane. This ignores the possible impact of the membrane material. Correction coefficients (CC) of the whole dialyzer were measured during in vivo dialysis as a quotient of dialysate to plasma sodium in an equilibrated state for different membrane materials used in commercially available dialyzers. Their mean value and correlation with total plasma protein content (TPP) were evaluated. CC for the six materials evaluated differed both in the intercept and slope of the regression line CC versus TPP: Cuprophan 1: CC = 1.0253 - 0.00017 x TPP; Hemophan 1: CC = 1.119 - 0.00175 x TPP; Hemophan 2: CC = 1.095 - 0.00111 x TPP; PMMA: CC = 1.0353 - 0.00044 x TPP; SCE:CC = 1.114 - 0.00145 x TPP; and Cuprophan 1:CC = 1.0562 - 0.00065 x TPP. The observed differences are attributed to the different charge densities of the membrane materials and suggest that for a precise description of sodium transport, the role of the membrane material needs to be considered.

  15. ATP-dependent calcium transport across basal plasma membranes of human placental trophoblast

    International Nuclear Information System (INIS)

    Fisher, G.J.; Kelley, L.K.; Smith, C.H.

    1987-01-01

    As a first step in understanding the cellular basis of maternal-fetal calcium transfer, the authors examined the characteristics of calcium uptake by a highly purified preparation of the syncytiotrophoblast basal (fetal facing) plasma membrane. In the presence of nanomolar concentrations of free calcium, basal membranes demonstrated substantial ATP-dependent calcium uptake. This uptake required magnesium, was not significantly affected by Na + or K + (50 mM), or sodium azide (10 mM). Intravesicular calcium was rapidly and completely released by the calcium ionophore rapidly and completely released by the calcium ionophore A23187. Calcium transport was significantly stimulated by the calcium-dependent regulatory protein calmodulin. Placental membrane fractions enriched in endoplasmic reticulum (ER) and mitochondria also demonstrated ATP-dependent calcium uptake. In contrast to basal membrane, mitochondrial calcium uptake was completely inhibited by azide. The rate of calcium uptake was completely inhibited by azide. The rate of calcium uptake by the ER was only 20% of that of basal membranes. They conclude that the placental basal plasma membrane possesses a high-affinity calcium transport system similar to that found in plasma membranes of a variety of cell types. This transporter is situated to permit it to function in vivo in maternal-fetal calcium transfer

  16. Sodium sieving in children

    NARCIS (Netherlands)

    Rusthoven, Esther; Krediet, Raymond T.; Willems, Hans L.; Monnens, Leo A.; Schröder, Cornelis H.

    2005-01-01

    Sodium sieving is a consequence of dissociation between the amount of water and sodium transported over the peritoneal membrane. This dissociation occurs in the presence of aquaporin-mediated water transport. Sieving of sodium can be used as a rough measure for aquaporin-mediated water transport.

  17. Mechanisms of Sodium Transport in Plants—Progresses and Challenges

    Directory of Open Access Journals (Sweden)

    Monika Keisham

    2018-02-01

    Full Text Available Understanding the mechanisms of sodium (Na+ influx, effective compartmentalization, and efflux in higher plants is crucial to manipulate Na+ accumulation and assure the maintenance of low Na+ concentration in the cytosol and, hence, plant tolerance to salt stress. Na+ influx across the plasma membrane in the roots occur mainly via nonselective cation channels (NSCCs. Na+ is compartmentalized into vacuoles by Na+/H+ exchangers (NHXs. Na+ efflux from the plant roots is mediated by the activity of Na+/H+ antiporters catalyzed by the salt overly sensitive 1 (SOS1 protein. In animals, ouabain (OU-sensitive Na+, K+-ATPase (a P-type ATPase mediates sodium efflux. The evolution of P-type ATPases in higher plants does not exclude the possibility of sodium efflux mechanisms similar to the Na+, K+-ATPase-dependent mechanisms characteristic of animal cells. Using novel fluorescence imaging and spectrofluorometric methodologies, an OU-sensitive sodium efflux system has recently been reported to be physiologically active in roots. This review summarizes and analyzes the current knowledge on Na+ influx, compartmentalization, and efflux in higher plants in response to salt stress.

  18. Characterization of Gene Candidates for Vacuolar Sodium Transport from Hordeum Vulgare

    KAUST Repository

    Scheu, Arne Hagen August

    2017-01-01

    Various potential causes are discussed, including inaccuracies in the genome resource used as reference for primer design and issues inherent to the model system. Finally, I make suggestions on how to proceed to further characterize the candidate genes and hopefully identify novel sodium transporters from barley.

  19. Altered regulation of renal sodium transporters in salt-sensitive hypertensive rats induced by uninephrectomy.

    Science.gov (United States)

    Jung, Ji Yong; Lee, Jay Wook; Kim, Sejoong; Jung, Eun Sook; Jang, Hye Ryoun; Han, Jin Suk; Joo, Kwon Wook

    2009-12-01

    Uninephrectomy (uNx) in young rats causes salt-sensitive hypertension (SSH). Alterations of sodium handling in residual nephrons may play a role in the pathogenesis. Therefore, we evaluated the adaptive alterations of renal sodium transporters according to salt intake in uNx-SSH rats. uNx or sham operations were performed in male Sprague-Dawley rats, and normal-salt diet was fed for 4 weeks. Four experimental groups were used: sham-operated rats raised on a high-salt diet for 2 weeks (CHH) or on a low-salt diet for 1 week after 1 week's high-salt diet (CHL) and uNx rats fed on the same diet (NHH, NHL) as the sham-operated rats were fed. Expression of major renal sodium transporters were determined by semiquantitative immunoblotting. Systolic blood pressure was increased in NHH and NHL groups, compared with CHH and CHL, respectively. Protein abundances of Na(+)/K(+)/2Cl(-) cotransporter (NKCC2) and Na(+)/Cl(-) cotransporter (NCC) in the CHH group were lower than the CHL group. Expression of epithelial sodium channel (ENaC)-γ increased in the CHH group. In contrast, expressions of NKCC2 and NCC in the NHH group didn't show any significant alterations, compared to the NHL group. Expressions of ENaC-α and ENaC-β in the NHH group were higher than the CHH group. Adaptive alterations of NKCC2 and NCC to changes of salt intake were different in the uNx group, and changes in ENaC-α and ENaC-β were also different. These altered regulations of sodium transporters may be involved in the pathogenesis of SSH in the uNx rat model.

  20. Carbon transport in sodium systems

    International Nuclear Information System (INIS)

    Martin Espigares, M.; Lapena, J.; La Torre, M. de

    1983-01-01

    Carbon activities in dynamic non isothermal sodium system are determined using an equilibratium method. Foils of Fe-18 w% Cr-8 W% Ni alloy with low carbon content (in the as received condition) are exposed to dynamic liquid sodium in the temperature range between 450 0 C and 700 0 C. The analysis was used to evaluate the carburization-decarburization behaviour of type 304 stainless steel exposed to sodium. (author)

  1. Transport of sodium through the cover gas of a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Clement, C.F.; Hawtin, P.

    1977-01-01

    Idealised models are presented for sodium vapour transport through argon or helium and the subsequent roof condensation. For both gases the dominant heat transfer mechanism from the pool is radiation but the mass transport process is convection for argon and diffusion for helium. For argon a theory based on work of Hills and Szekely is presented which predicts a heat transfer rate independent of the actual amount of condensation occurring in the cavity, and which suggests a mass transfer rate close to that calculated in the absence of condensation. Experimental determination of the temperature and velocity flow characteristics are desirable to examine and improve on the suspect basic assumption of the theory that the velocity flow pattern is unaffected by condensation. For helium diffusion theory predicts a mass transfer rate an order of magnitude smaller than for argon, but only a slightly smaller overall heat transfer rate because of the dominance of radiation. (author)

  2. Myo-inositol soft gel capsules may prevent the risk of coffee-induced neural tube defects.

    Science.gov (United States)

    De Grazia, Sara; Carlomagno, Gianfranco; Unfer, Vittorio; Cavalli, Pietro

    2012-09-01

    Neural tube defects (NTDs) are classified as folate sensitive (about 70%) and folate resistant (about 30%); although folic acid is able to prevent the former, several data have shown that inositol may prevent the latter. It has recently been proposed that coffee intake might represent a risk factor for NTD, likely by interfering with the inositol signaling. In the present study, we tested the hypothesis that, beside affecting the inositol signaling pathway, coffee also interferes with inositol absorption. In order to evaluate coffee possible negative effects on inositol gastrointestinal absorption, a single-dose bioavailability trial was conducted. Pharmacokinetics (PK) parameters of myo-inositol (MI) powder and MI soft gelatin capsules swallowed with water and with a single 'espresso' were compared. PK profiles were obtained by analysis of MI plasma concentration, and the respective MI bioavailability was compared. Myo-inositol powder administration was negatively affected by coffee intake, thus suggesting an additional explanation to the interference between inositol deficiency and coffee consumption. On the contrary, the concomitant single 'espresso' consumption did not affect MI absorption following MI soft gelatin capsules administration. Furthermore, it was observed that MI soft gelatin capsule administration resulted in improved bioavailability compared to the MI powder form. Myo-inositol soft gelatin capsules should be considered for the preventive treatment of NTDs in folate-resistant subjects due to their higher bioavailability and to the capability to reduce espresso interference.

  3. Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase

    DEFF Research Database (Denmark)

    Kerovuo, J.; Rouvinen, J.; Hatzack, Frank-Andreas

    2000-01-01

    Phytic acid (myo-inositol hexakisphosphate, InsP(6)) hydrolysis by Bacillus phytase (PhyC) was studied. The enzyme hydrolyses only three phosphates from phytic acid. Moreover, the enzyme seems to prefer the hydrolysis of every second phosphate over that of adjacent ones. Furthermore, it is very...... a reaction mechanism different from that of other phytases. By combining the data presented in this study with (1) structural information obtained from the crystal structure of Bacillus amyloliquefaciens phytase [Ha, Oh, Shin, Kim, Oh, Kim, Choi and Oh (2000) Nat. Struct. Biol. 7, 147-153], and (2) computer...

  4. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium

    Science.gov (United States)

    Sacchi, Romina; Li, Johnathon; Villarreal, Fernando; Gardell, Alison M.; Kültz, Dietmar

    2013-01-01

    SUMMARY The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish. PMID:24072791

  5. Mutational scanning of the human serotonin transporter reveals fast translocating serotonin transporter mutants

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Larsen, Mads B; Johnsen, Laust B

    2004-01-01

    The serotonin transporter (SERT) belongs to a family of sodium-chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from the extracellular space. SERT represents a major pharmacological target in the treatment of several clinical conditions, including depressi...

  6. The early and late effects of digoxin treatment on the sodium transport, sodium content and Na+K+- ATPase or erythrocytes.

    Science.gov (United States)

    Cumberbatch, M; Zareian, K; Davidson, C; Morgan, D B; Swaminathan, R

    1981-01-01

    1 Erythrocyte sodium content, sodium transport (ouabain sensitive sodium flux Eos, and ouabain sensitive efflux rate constant ERCos) sodium, potassium activated ouabain sensitive adenosine triphosphatase (Na+K+ATPase) and plasma digoxin were measured in patients during acute digitalisation and in patients who were on long-term digoxin treatment. 2 In the six patients who were studied during digitalisation, the ERCos and Na+K+ATPase activity decreased and erythrocyte sodium content increased during days 2-4 treatment, but there was no change in Eos. 3 In 39 patients on long term digoxin therapy (2-119 months) the erythrocyte sodium content was normal, but the erythrocyte Na+K+ATPase activity was higher than the control group. When the results from these 39 patients were divided according to the duration of treatment it was found that the erythrocyte sodium content was higher in patients treated for 2-4 months than in patients treated for longer periods and the erythrocyte Na+K+ATPase activity increased with duration of treatment. In eight patients (duration of treatment greater than 29 months) in whom ERCos and Eos were measured, ERCos and Eos were higher than the control group. 4 The results suggest that the effects of digoxin on erythrocytes which occur during acute digoxin treatment do not persist in the long term. 5 The possible explanation for the higher ERCos, Eos and Na+K+ATPase activity in patients treated with digoxin for more than 2 months is discussed. PMID:6268133

  7. Gas Chromatographic Mass Spectrometric Determination of Myo-inositol in Humans Utilizing a Deuterated Internal Standard

    DEFF Research Database (Denmark)

    Andersen, Jan Rud; Larsen, Elfinn; Harbo, Helge

    1982-01-01

    The isotopic dilution technique was used for determining the content of myo-inositol in human urine, plasma and haemolysed erythrocyte samples. A deuterated myo-inositol, synthesized from inosose-2 by base-catalysed exchange of hydrogens by deuterium, followed by reduction of the inosose with 2H2......, was added as internal standard to the samples at an early stage in the analytical procedure. After separation and derivatization to the hexa-acetate, the gas chromatographic mass spectrometric analysis was carried out. A 25 m fused silica capillary column coated with methyl silicone was used, and the ions...... selected for monitoring were m/z 210 and m/z 214, which are characteristic and abundant fragment ions from unlabelled and hexadeuterated myo-inositolhexa-acetate, respectively. Calibration curves from water, urine, plasma and haemolysed erythrocytes show parallel, linear responses in the ratio between...

  8. Myoinositol as a Safe and Alternative Approach in the Treatment of Infertile PCOS Women: A German Observational Study

    Directory of Open Access Journals (Sweden)

    Pedro-Antonio Regidor

    2016-01-01

    Full Text Available The use of 2×2000 mg myoinositol + 2×200 μg folic acid per day is a safe and promising tool in the effective improvement of symptoms and infertility for patients with a polycystic ovary syndrome (PCOS. Using a questionnaire an observational study was performed under German gynecologists to collect data on ovulation and pregnancy rates in PCOS patients with infertility. In this observational study, 3602 infertile women used myoinositol and folic acid between 2 and 3 months in a dosage of 2×2000 mg myoinositol + 2×200 μg folic acid per day. In a subgroup of 32 patients, hormonal values for testosterone, free testosterone, and progesterone were analyzed before and after 12 weeks of treatment. The mean time of use was 10.2 weeks. During this time 70% of these women had a restored ovulation, and 545 pregnancies were obtained. This means a pregnancy rate of 15.1% of all the myoinositol and folic acid users. In 19 cases a concomitant medication with clomiphene or dexamethasone was used. One twin pregnancy was documented. Testosterone levels changed from 96.6 ng/ml to 43.3 ng/ml and progesterone from 2.1 ng/ml to 12.3 ng/ml (p<0.05 after 12 weeks of treatment. No relevant side effects were present among the patients. This study could show that a new treatment option for patients with a PCOS and infertility is available. The achieved pregnancy rates are at least in an equivalent or even superior range than those reported by the use of metformin.

  9. Etude du potentiel insulino-sensibilisant du myo-inositol chez la souris : Evaluation de l’intérêt nutritionnel d’une supplémentation en myo-inositol

    OpenAIRE

    Croze , Marine

    2013-01-01

    Insulin resistance is the first step in the development of type 2 diabetes so finding insulin-sensitizing strategies is challenging for scientists. Some inositol isomers or derivatives have been reported to exert insulin-mimetic activity. myo-Inositol being the most abundant stereoisomeric form of inositol in foodstuffs, we tested its insulin-mimetic potential in the long term and as a nutritional strategy for insulin resistance prevention and/or treatment. This study demonstrates that chroni...

  10. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  11. Evaluation of water transport behavior in sodium fire experiment-II

    Energy Technology Data Exchange (ETDEWEB)

    Nakagiri, Toshio [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-02-01

    Evaluation of water transport behavior in Sodium Fire-II (Run-D4) was performed. Results of other experiments performed in Oarai-Engineering Center were considered in the evaluation, and the results of the evaluation were compared with the calculated results of ASSCOPS code. The main conclusions are described below. (1) It was estimated that aerosol hydrates were not formed in the test cell in the experiment, because of high gas temperatures (200degC - 300degC), but water vapor absorption by the formation of aerosol hydrates and water vapor condensation were occurred in humility measure line, because of low gas temperature (20degC - 40degC). Therefore, it was considered appropriate that measured water vapor concentration in the humidity measure line was different from the real concentration in the test cell. (2) Water vapor concentration in the test cell was assumed to be about 35,000 ppm during sodium leak, and reached to about 70,000 ppm because of water release from heated concrete (over 100degC) walls after 190 min from sodium leak started. The assumed value of about 35,000 ppm during sodium leak almost agree with assumed value from the quantity of aerosol in the humidity measure line, but no support for the value of about 70,000 ppm after 190 min could be found. Therefore, water release rate from heated concrete walls can change with their temperature history. (author)

  12. Astrocyte Sodium Signalling and Panglial Spread of Sodium Signals in Brain White Matter.

    Science.gov (United States)

    Moshrefi-Ravasdjani, Behrouz; Hammel, Evelyn L; Kafitz, Karl W; Rose, Christine R

    2017-09-01

    In brain grey matter, excitatory synaptic transmission activates glutamate uptake into astrocytes, inducing sodium signals which propagate into neighboring astrocytes through gap junctions. These sodium signals have been suggested to serve an important role in neuro-metabolic coupling. So far, it is unknown if astrocytes in white matter-that is in brain regions devoid of synapses-are also able to undergo such intra- and intercellular sodium signalling. In the present study, we have addressed this question by performing quantitative sodium imaging in acute tissue slices of mouse corpus callosum. Focal application of glutamate induced sodium transients in SR101-positive astrocytes. These were largely unaltered in the presence of ionotropic glutamate receptors blockers, but strongly dampened upon pharmacological inhibition of glutamate uptake. Sodium signals induced in individual astrocytes readily spread into neighboring SR101-positive cells with peak amplitudes decaying monoexponentially with distance from the stimulated cell. In addition, spread of sodium was largely unaltered during pharmacological inhibition of purinergic and glutamate receptors, indicating gap junction-mediated, passive diffusion of sodium between astrocytes. Using cell-type-specific, transgenic reporter mice, we found that sodium signals also propagated, albeit less effectively, from astrocytes to neighboring oligodendrocytes and NG2 cells. Again, panglial spread was unaltered with purinergic and glutamate receptors blocked. Taken together, our results demonstrate that activation of sodium-dependent glutamate transporters induces sodium signals in white matter astrocytes, which spread within the astrocyte syncytium. In addition, we found a panglial passage of sodium signals from astrocytes to NG2 cells and oligodendrocytes, indicating functional coupling between these macroglial cells in white matter.

  13. SLC6 Neurotransmitter Transporters: Structure, Function, and Regulation

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Andersen, Jacob; Jørgensen, Trine N

    2011-01-01

    The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters...... for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake...... of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy...

  14. Direct assessment of substrate binding to the Neurotransmitter:Sodium Symporter LeuT by solid state NMR

    DEFF Research Database (Denmark)

    Erlendsson, Simon; Gotfryd, Kamil; Larsen, Flemming Hofmann

    2017-01-01

    The Neurotransmitter:Sodium Symporters (NSSs) represent an important class of proteins mediating sodium-dependent uptake of neurotransmitters from the extracellular space. The substrate binding stoichiometry of the bacterial NSS protein, LeuT, and thus the principal transport mechanism, has been...

  15. Zn2+ modulation of neurotransmitter transporters

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, K.; Gether, U.

    2006-01-01

    of neurotransmitter transporters have been identified based on sequence homology: (1) the neurotransmitter sodium symporter family (NSS), which includes the Na+/C1(-)-dependent transporters for dopamine, norepinephrine, and serotonin; and (2) the dicarboxylate/amino acid cation symporter family (DAACS), which...

  16. Myo-inositol, glucose and zinc concentrations determined in the preconceptional period, during and after pregnancy.

    NARCIS (Netherlands)

    Groenen, P.M.; Roes, E.M.; Peer, P.G.M.; Merkus, H.M.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M.

    2006-01-01

    OBJECTIVE: To determine the blood concentrations of myo-inositol, glucose and zinc before, during and after normal pregnancy. STUDY DESIGN: Preconceptionally, at 6, 10, 20, 30 and 37 weeks amenorrhea, and 6 weeks after delivery, blood samples of 18 nulliparae and 19 multiparae were obtained and

  17. Sodium fluxes in sweet pepper exposed to varying sodium concentrations

    NARCIS (Netherlands)

    Blom-Zandstra, M.; Vogelzang, S.A.; Veen, B.W.

    1998-01-01

    The sodium transport and distribution of sweet pepper (Capsicum annuum L.) under saline conditions were studied after transferring the plants to a sodium-free nutrient solution. Sodium stress up to 60 mM did not affect the growth of sweet pepper, as it appears able to counteract the unfavourable

  18. Sodium glucose transporter 2 (SGLT2 inhibition and ketogenesis

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2015-01-01

    Full Text Available Sodium glucose transporter 2 (SGLT2 inhibitors are a recently developed class of drug that have been approved for use in type 2 diabetes. Their unique extra-pancreatic glucuretic mode of action has encouraged their usage in type 1 diabetes as well. At the same time, reports of pseudo ketoacidosis and ketoacidosis related to their use have been published. No clear mechanism for this phenomenon has been demonstrated so far. This communication delves into the biochemical effects of SGLT2 inhibition, discusses the utility of these drugs and proposes steps to maximize safe usage of the molecules.

  19. Sodium vapour aerosol formation and sodium deposition current work within the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Hawtin, P [Chemical Engineering Division, Atomic Energy Research Establishment, Harwell, Didcot, Oxon (United Kingdom); Seed, G [Nuclear Power Company (Risley) Ltd, Risley, Warrington, Cheshire (United Kingdom)

    1977-01-01

    The significance to reactor operation of sodium transport through the cover gas of a sodium-cooled fast reactor and its subsequent deposition on cooled reactor surfaces is fully appreciated in the UK. A programme of work is therefore underway designed to understand the mechanism of sodium transport under these conditions. This paper described the work which has so far been completed, discussed the work presently in progress, and outlines future plans. (author)

  20. Cellular ATP synthesis mediated by type III sodium-dependent phosphate transporter Pit-1 is critical to chondrogenesis.

    Science.gov (United States)

    Sugita, Atsushi; Kawai, Shinji; Hayashibara, Tetsuyuki; Amano, Atsuo; Ooshima, Takashi; Michigami, Toshimi; Yoshikawa, Hideki; Yoneda, Toshiyuki

    2011-01-28

    Disturbed endochondral ossification in X-linked hypophosphatemia indicates an involvement of P(i) in chondrogenesis. We studied the role of the sodium-dependent P(i) cotransporters (NPT), which are a widely recognized regulator of cellular P(i) homeostasis, and the downstream events in chondrogenesis using Hyp mice, the murine homolog of human X-linked hypophosphatemia. Hyp mice showed reduced apoptosis and mineralization in hypertrophic cartilage. Hyp chondrocytes in culture displayed decreased apoptosis and mineralization compared with WT chondrocytes, whereas glycosaminoglycan synthesis, an early event in chondrogenesis, was not altered. Expression of the type III NPT Pit-1 and P(i) uptake were diminished, and intracellular ATP levels were also reduced in parallel with decreased caspase-9 and caspase-3 activity in Hyp chondrocytes. The competitive NPT inhibitor phosphonoformic acid and ATP synthesis inhibitor 3-bromopyruvate disturbed endochondral ossification with reduced apoptosis in vivo and suppressed apoptosis and mineralization in conjunction with reduced P(i) uptake and ATP synthesis in WT chondrocytes. Overexpression of Pit-1 in Hyp chondrocytes reversed P(i) uptake and ATP synthesis and restored apoptosis and mineralization. Our results suggest that cellular ATP synthesis consequent to P(i) uptake via Pit-1 plays an important role in chondrocyte apoptosis and mineralization, and that chondrogenesis is ATP-dependent.

  1. Interaction of antidepressants with the serotonin and norepinephrine transporters

    DEFF Research Database (Denmark)

    Sørensen, Lena; Andersen, Jacob; Thomsen, Mette

    2012-01-01

    The serotonin transporter (SERT) and the norepinephrine transporter (NET) are sodium-dependent neurotransmitter transporters responsible for reuptake of released serotonin and norepinephrine, respectively, into nerve terminals in the brain. A wide range of inhibitors of SERT and NET are used...

  2. Corrosion of steels in liquid sodium

    International Nuclear Information System (INIS)

    Clement, C.F.; Hawtin, P.

    1976-01-01

    Proposed expressions for the corrosion and deposition rates and other relevant data are examined theoretically using models which treat both particle and molecular transport and the coupling between particle and molecular concentrations. It is difficult to reconcile some properties of the observed rates, including sodium velocity dependence, with currently accepted best values for the equilibrium iron concentration in sodium. To overcome this difficulty a new model is proposed which contains two iron solubilities, one with and one without association with oxygen, which can also explain some existing anomalies in solubility measurements. The models also give a qualitative understanding of some properties of particles in circuits including the observed size distribution

  3. The Sodium Glucose Cotransporter SGLT1 Is an Extremely Efficient Facilitator of Passive Water Transport.

    Science.gov (United States)

    Erokhova, Liudmila; Horner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter

    2016-04-29

    The small intestine is void of aquaporins adept at facilitating vectorial water transport, and yet it reabsorbs ∼8 liters of fluid daily. Implications of the sodium glucose cotransporter SGLT1 in either pumping water or passively channeling water contrast with its reported water transporting capacity, which lags behind that of aquaporin-1 by 3 orders of magnitude. Here we overexpressed SGLT1 in MDCK cell monolayers and reconstituted the purified transporter into proteoliposomes. We observed the rate of osmotic proteoliposome deflation by light scattering. Fluorescence correlation spectroscopy served to assess (i) SGLT1 abundance in both vesicles and plasma membranes and (ii) flow-mediated dilution of an aqueous dye adjacent to the cell monolayer. Calculation of the unitary water channel permeability, pf, yielded similar values for cell and proteoliposome experiments. Neither the absence of glucose or Na(+), nor the lack of membrane voltage in vesicles, nor the directionality of water flow grossly altered pf Such weak dependence on protein conformation indicates that a water-impermeable occluded state (glucose and Na(+) in their binding pockets) lasts for only a minor fraction of the transport cycle or, alternatively, that occlusion of the substrate does not render the transporter water-impermeable as was suggested by computational studies of the bacterial homologue vSGLT. Although the similarity between the pf values of SGLT1 and aquaporin-1 makes a transcellular pathway plausible, it renders water pumping physiologically negligible because the passive flux would be orders of magnitude larger. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Time-dependent 2-stream particle transport

    International Nuclear Information System (INIS)

    Corngold, Noel

    2015-01-01

    Highlights: • We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. • After reviewing some classical problems in homogeneous media we discuss transport in materials with whose density may vary. • There we achieve a significant contraction of the underlying Telegrapher’s equation. • We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.” - Abstract: We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. After reviewing some classical problems in homogeneous media we discuss transport in materials whose density may vary. There we achieve a significant contraction of the underlying Telegrapher’s equation. We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.”

  5. Myo-inositol based nano-PCM for solar thermal energy storage

    International Nuclear Information System (INIS)

    Singh, D.K.; Suresh, S.; Singh, H.; Rose, B.A.J.; Tassou, S.; Anantharaman, N.

    2017-01-01

    Highlights: • Properties of Myo-Inositol laden with Al_2O_3 and CuO nanoparticles was studied. • The melting point was found to increase for MI-A and decrease for MI-C. • MI interacted only physically on addition of NPs. • Mass changes were <3% after thermal cycling of MI-A and MI-C. • MI-A is more suited for thermal energy storage than MI-C. - Abstract: The thermo-physical behavior of Myo-Inositol (MI), (a sugar alcohol), was investigated as a potential material for developing more compact solar thermal energy storage systems than those currently available. This latent heat storage medium could be utilized for commercial and industrial applications using solar thermal energy storage in the temperature range of 160–260 °C, if its thermal performance was modified. The objective of this investigation was to determine via experimentation, if Al_2O_3 and CuO nanoparticles dispersed in pure MI for mixtures of 1, 2 and 3% (by weight) improved the thermal performance of MI for solar thermal energy systems. Nanoparticles only physically interacted with MI, and not chemically, even after 50 thermal cycles. The distribution of CuO nanoparticles in the nano-PCM was found to be more uniform than alumina nanoparticles. After cycling, nano-MIs studied here suffered a lower decrease in heat of fusion than pure MI, which makes nano-MIs more suitable for solar thermal storage applications at 160–260 °C. Between CuO and Al_2O_3 nanoparticles, latter was found to be more suitable for compact solar thermal energy storage owing to an increase in melting point observed.

  6. Stimulation of apical sodium-dependent bile acid transporter expands the bile acid pool and generates bile acids with positive feedback properties.

    Science.gov (United States)

    Rudling, Mats; Bonde, Ylva

    2015-01-01

    Bile acid synthesis has been considered a prototype for how a physiological process is controlled by end product feedback inhibition. By this feedback inhibition, bile acid concentrations are kept within safe ranges. However, careful examination of published rodent data strongly suggests that bile acid synthesis is also under potent positive feedback control by hydrophilic bile acids. Current concepts on the regulation of bile acid synthesis are derived from mouse models. Recent data have shown that mice have farnesoid X receptor (FXR) antagonistic bile acids capable of quenching responses elicited by FXR agonistic bile acids. This is important to recognize to understand the regulation of bile acid synthesis in the mouse, and in particular to clarify if mouse model findings are valid also in the human situation. In addition to classic end product feedback inhibition, regulation of bile acid synthesis in the mouse largely appears also to be driven by changes in hepatic levels of murine bile acids such as α- and β-muricholic acids. This has not been previously recognized. Stimulated bile acid synthesis or induction of the apical sodium-dependent bile acid transporter in the intestine, increase the availability of chenodeoxycholic acid in the liver, thereby promoting hepatic conversion of this bile acid into muricholic acids. Recognition of these mechanisms is essential for understanding the regulation of bile acid synthesis in the mouse, and for our awareness of important species differences in the regulation of bile acid synthesis in mice and humans. 2015 S. Karger AG, Basel.

  7. ATP-Binding Cassette Transporter VcaM from Vibrio cholerae is Dependent on the Outer Membrane Factor Family for Its Function

    Directory of Open Access Journals (Sweden)

    Wen-Jung Lu

    2018-03-01

    Full Text Available Vibrio cholerae ATP-binding cassette transporter VcaM (V. cholerae ABC multidrug resistance pump has previously been shown to confer resistance to a variety of medically important drugs. In this study, we set to analyse its properties both in vitro in detergent-solubilised state and in vivo to differentiate its dependency on auxiliary proteins for its function. We report the first detailed kinetic parameters of purified VcaM and the rate of phosphate (Pi production. To determine the possible functional dependencies of VcaM on the tripartite efflux pumps we then utilized different E. coli strains lacking the principal secondary transporter AcrB (Acriflavine resistance protein, as well as cells lacking the outer membrane factor (OMF TolC (Tolerance to colicins. Consistent with the ATPase function of VcaM we found it to be susceptible to sodium orthovanadate (NaOV, however, we also found a clear dependency of VcaM function on TolC. Inhibitors targeting secondary active transporters had no effects on either VcaM-conferred resistance or Hoechst 33342 accumulation, suggesting that VcaM might be capable of engaging with the TolC-channel without periplasmic mediation by additional transporters. Our findings are indicative of VcaM being capable of a one-step substrate translocation from cytosol to extracellular space utilising the TolC-channel, making it the only multidrug ABC-transporter outside of the MacB-family with demonstrable TolC-dependency.

  8. Designing solid-liquid interphases for sodium batteries

    KAUST Repository

    Choudhury, Snehashis

    2017-10-06

    Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid–electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport, comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.

  9. Analysis of carbon transport in the EBR-II and FFTF primary sodium systems

    International Nuclear Information System (INIS)

    Snyder, R.B.; Natesan, K.; Kassner, T.F.

    1976-01-01

    An analysis of the carburization-decarburization behavior of austenitic stainless steels in the primary heat-transport systems of the EBR-II and FFTF has been made that is based upon a kinetic model for the diffusion process and the surface area of steel in contact with flowing sodium at various temperatures in the two systems. The analysis was performed for operating conditions that result in sodium outlet temperatures of 474 and 566 0 C in the FFTF and 470 0 C in the EBR-II. If there was no external source of carbon to the system, i.e., other than the carbon initially present in the steel and the sodium, the dynamic-equilibrium carbon concentrations calculated for the FFTF primary sodium were approximately 0.025 and approximately 0.065 ppm for the 474 and 566 0 C outlet temperatures, respectively, and approximately 0.018 ppm for the EBR-II primary system. The analysis indicated that a carbon-source rate of approximately 250 g/y would be required to increase the carbon concentration of the EBR-II sodium to the measured range of approximately 0.16--0.19 ppm. An evaluation of possible carbon sources and the amount of carbonaceous material introduced into the reactor cover gas and sodium suggests that the magnitude of the calculated contamination rate is reasonable. For a 566 0 C outlet temperature, carbonaceous material would have to be introduced into the FFTF primary system at a rate approximately 4--6 times higher than in EBR-II to achieve the same carbon concentration in the sodium in the two systems. Since contamination rates of approximately 1500 g/y are unlikely, high-temperature fuel cladding in the FFTF should exhibit decarburization similar to that observed in laboratory loop systems, in contrast to the minimal compositional changes that result after exposure of Type 316 stainless steel to EBR-II sodium at temperatures between approximately 625 and 650 0 C

  10. Effects of chlorpromazine on Na+-K+-ATPase pumping and solute transport in rat hepatocytes

    International Nuclear Information System (INIS)

    Van Dyke, R.W.; Scharschmidt, B.F.

    1987-01-01

    Inhibition of Na+-K+-ATPase and sodium-dependent bile acid transport has been suggested as a mechanism for the cholestasis produced by certain drugs such as chlorpromazine. We examined the effects of chlorpromazine (and in selected studies, two of its metabolites) on Na+-K+-ATPase cation pumping (ouabain-suppressible 86 Rb uptake), exchangeable intracellular sodium content, membrane potential (assessed by 36 Cl- distribution), and sodium-dependent transport of taurocholate and alanine in primary cultures of rat hepatocytes. Chlorpromazine (10-300 microM), 7,8-dihydroxychlorpromazine (10-300 microM), and ouabain (0.1-2 mM), but not chlorpromazine sulfoxide, produced a concentration-dependent decrease in Na+-K+-ATPase cation pumping and an increase in intracellular sodium content. Chlorpromazine (100 microM) and ouabain (0.75 mM) also modestly decreased hepatocyte membrane potential. In further studies, chlorpromazine (75 and 100 microM) and ouabain (0.1, 0.5, and 0.75 mM) decreased initial sodium-dependent uptake rates of taurocholate and alanine by 18-63%. Although the steady-state intracellular content of alanine was decreased 25-53% by both agents, chlorpromazine increased the steady-state content of taurocholate by 171% and decreased taurocholate efflux, apparently related to partitioning of taurocholate into a large, slowly turning over intracellular pool. These studies provide direct evidence that chlorpromazine inhibits Na+-K+-ATPase cation pumping in intact cells and that partial inhibition of Na+-K+-ATPase cation pumping is associated with a reduction of both the electrochemical sodium gradient and sodium-dependent solute transport. These effects of chlorpromazine may contribute to chlorpromazine-induced cholestasis in animals and humans

  11. Effects of chlorpromazine on Na+-K+-ATPase pumping and solute transport in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyke, R.W.; Scharschmidt, B.F.

    1987-11-01

    Inhibition of Na+-K+-ATPase and sodium-dependent bile acid transport has been suggested as a mechanism for the cholestasis produced by certain drugs such as chlorpromazine. We examined the effects of chlorpromazine (and in selected studies, two of its metabolites) on Na+-K+-ATPase cation pumping (ouabain-suppressible /sup 86/Rb uptake), exchangeable intracellular sodium content, membrane potential (assessed by /sup 36/Cl- distribution), and sodium-dependent transport of taurocholate and alanine in primary cultures of rat hepatocytes. Chlorpromazine (10-300 microM), 7,8-dihydroxychlorpromazine (10-300 microM), and ouabain (0.1-2 mM), but not chlorpromazine sulfoxide, produced a concentration-dependent decrease in Na+-K+-ATPase cation pumping and an increase in intracellular sodium content. Chlorpromazine (100 microM) and ouabain (0.75 mM) also modestly decreased hepatocyte membrane potential. In further studies, chlorpromazine (75 and 100 microM) and ouabain (0.1, 0.5, and 0.75 mM) decreased initial sodium-dependent uptake rates of taurocholate and alanine by 18-63%. Although the steady-state intracellular content of alanine was decreased 25-53% by both agents, chlorpromazine increased the steady-state content of taurocholate by 171% and decreased taurocholate efflux, apparently related to partitioning of taurocholate into a large, slowly turning over intracellular pool. These studies provide direct evidence that chlorpromazine inhibits Na+-K+-ATPase cation pumping in intact cells and that partial inhibition of Na+-K+-ATPase cation pumping is associated with a reduction of both the electrochemical sodium gradient and sodium-dependent solute transport. These effects of chlorpromazine may contribute to chlorpromazine-induced cholestasis in animals and humans.

  12. Temperature and pressure dependent osmotic pressure in liquid sodium-cesium alloys

    International Nuclear Information System (INIS)

    Rashid, R.I.M.A.

    1987-01-01

    The evaluation of the osmotic pressure in terms of the concentration fluctuations of mixtures and the equations of state of the pure liquids is considered. The temperature and pressure dependent experimentally measured concentration-concentration correlations in the long wavelength limit of liquid sodium-cesium alloys are used to demonstrate the appreciable dependence of the temperature and pressure on the osmotic pressure as a function of concentration. Introducing interchange energies as functions of temperature and pressure, our analysis is consistent with the Flory model. Thus, a formalism for evaluating the state dependent osmotic pressure is developed and our numerical work is considered to be an extension of the calculations of Rashid and March in the sense that a temperature and pressure dependent interchange energy parameter that more closely parameterizes the state dependent concentration fluctuations in the liquid alloys, is used. (author)

  13. Maternal myo-inositol, glucose, and zinc status is associated with the risk of offspring with spina bifida.

    NARCIS (Netherlands)

    Groenen, P.; Peer, P.G.M.; Wevers, R.A.; Swinkels, D.W.; Franke, B.; Mariman, E.C.M.; Steegers-Theunissen, R.P.M.

    2003-01-01

    OBJECTIVE: The purpose of this study was to investigate the maternal and children's myo-inositol, glucose, and zinc status in association with spina bifida risk. STUDY DESIGN: Sixty-three mothers and 70 children with spina bifida and 102 control mothers and 85 control children were investigated. The

  14. Calcium-Mediated Regulation of Proton-Coupled Sodium Transport - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schumaker, Karen S [Professor

    2013-10-24

    The long-term goal of our experiments was to understand mechanisms that regulate energy coupling by ion currents in plants. Activities of living organisms require chemical, mechanical, osmotic or electrical work, the energy for which is supplied by metabolism. Adenosine triphosphate (ATP) has long been recognized as the universal energy currency, with metabolism supporting the synthesis of ATP and the hydrolysis of ATP being used for the subsequent work. However, ATP is not the only energy currency in living organisms. A second and very different energy currency links metabolism to work by the movement of ions passing from one side of a membrane to the other. These ion currents play a major role in energy capture and they support a range of physiological processes from the active transport of nutrients to the spatial control of growth and development. In Arabidopsis thaliana (Arabidopsis), the activity of a plasma membrane Na+/H+ exchanger, SALT OVERLY SENSITIVE1 (SOS1), is essential for regulation of sodium ion homeostasis during plant growth in saline conditions. Mutations in SOS1 result in severely reduced seedling growth in the presence of salt compared to the growth of wild type. SOS1 is a secondary active transporter coupling movement of sodium ions out of the cell using energy stored in the transplasma membrane proton gradient, thereby preventing the build-up of toxic levels of sodium in the cytosol. SOS1 is regulated by complexes containing the SOS2 and CALCINEURIN B-LIKE10 (CBL10) or SOS3 proteins. CBL10 and SOS3 (also identified as CBL4) encode EF-hand calcium sensors that interact physically with and activate SOS2, a serine/threonine protein kinase. The CBL10/SOS2 or SOS3/SOS2 complexes then activate SOS1 Na+/H+ exchange activity. We completed our studies to understand how SOS1 activity is regulated. Specifically, we asked: (1) how does CBL10 regulate SOS1 activity? (2) What role do two putative CBL10-interacting proteins play in SOS1 regulation? (3) Are

  15. Soluble polysaccharide composition and myo-inositol content help differentiate the antioxidative and hypolipidemic capacity of peeled apples.

    Science.gov (United States)

    Ker, Yaw-Bee; Peng, Chiung-Huei; Chyau, Charng-Cherng; Peng, Robert Y

    2010-04-28

    Many people prefer to eat peeled apples. The present study investigated the composition of soluble polysaccharides (SP) in peeled apples and its antioxidative and hypolipidemic activity. The yield of SP ranged 0.43-0.88%, having MW ranging 223-848 kDa. All belonged to peptidoglycans. Among the fourteen amino acids found, seven were essential amino acids. In addition, sugar analysis indicated that 50% of apple samples consisted of glucoarabinan, 37.5% comprising taloarabinan and the remaining 12.5% containing alloglucan. Moreover, SP consisted of a huge amount of myo-inositol (>5.61%) and uronic acid (>11.7%), which may play a synergistic role in the hypolipidemic effect. Worth noting, we are the first who reported the presence of talose, allose and fucose in the apple SP. Conclusively, the biological value of SP is attributable to the differential effect of SP and the synergistic effect exerted by its unique SP pattern, high myo-inositol and uronic acid contents.

  16. Transition metal ion FRET uncovers K(+) regulation of a neurotransmitter/sodium symporter

    DEFF Research Database (Denmark)

    Billesbølle, Christian B; Mortensen, Jonas S; Sohail, Azmat

    2016-01-01

    Neurotransmitter/sodium symporters (NSSs) are responsible for Na(+)-dependent reuptake of neurotransmitters and represent key targets for antidepressants and psychostimulants. LeuT, a prokaryotic NSS protein, constitutes a primary structural model for these transporters. Here we show that K...

  17. Frequency dependent magneto-transport in charge transfer Co(II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Bikash Kumar; Saha, Shyamal K., E-mail: cnssks@iacs.res.in

    2014-09-01

    A charge transfer chelated system containing ferromagnetic metal centers is the ideal system to investigate the magneto-transport and magneto-dielectric effects due to the presence of both electronic as well as magnetic properties and their coupling. Magneto-transport properties in materials are usually studied through dc charge transport under magnetic field. As frequency dependent conductivity is an essential tool to understand the nature of carrier wave, its spatial extension and their mutual interaction, in the present work, we have investigated frequency dependent magneto-transport along with magnetization behavior in [Co{sub 2}(II)-(5-(4-PhMe)-1,3,4-oxadiazole-H{sup +}-2-thiolate){sub 5}](OAc){sub 4} metal complex to elucidate the nature of above quantities and their response under magnetic field in the transport property. We have used the existing model for ac conduction incorporating the field dependence to explain the frequency dependent magneto-transport. It is seen that the frequency dependent magneto-transport could be well explained using the existing model for ac conduction. -Highlights: • Chelated Co(II) complex is synthesized for magneto-transport applications. • Frequency dependent magneto-transport and magnetization behavior are studied. • Nature of carrier wave, its spatial extension is investigated under magnetic field. • Existing model for ac conduction is used with magnetic field dependence.

  18. Dissipative time-dependent quantum transport theory.

    Science.gov (United States)

    Zhang, Yu; Yam, Chi Yung; Chen, GuanHua

    2013-04-28

    A dissipative time-dependent quantum transport theory is developed to treat the transient current through molecular or nanoscopic devices in presence of electron-phonon interaction. The dissipation via phonon is taken into account by introducing a self-energy for the electron-phonon coupling in addition to the self-energy caused by the electrodes. Based on this, a numerical method is proposed. For practical implementation, the lowest order expansion is employed for the weak electron-phonon coupling case and the wide-band limit approximation is adopted for device and electrodes coupling. The corresponding hierarchical equation of motion is derived, which leads to an efficient and accurate time-dependent treatment of inelastic effect on transport for the weak electron-phonon interaction. The resulting method is applied to a one-level model system and a gold wire described by tight-binding model to demonstrate its validity and the importance of electron-phonon interaction for the quantum transport. As it is based on the effective single-electron model, the method can be readily extended to time-dependent density functional theory.

  19. Myo-inositol uptake by cultured calf retinal pigment epithelial cells: regulation by glucose

    International Nuclear Information System (INIS)

    Khatami, M.; Rockey, J.H.

    1986-01-01

    Confluent primary (P-1) or subcultured passage 2 or 3 (P-2, P-3) calf retinal pigment epithelial cells (RPE) were incubated with [ 3 H]-myo-inositol (MI, 100-200 μM) in balanced salt solution (BSS), for 5 to 60 min at 37 0 C. MI uptake into RPE (P-2, 5 days old) was saturable with K/sub m/ of 147 μM and V/sub max/ of 5.5 pmole/min/μg DNA. P-1 or P-2 incubated with 10 μM MI for 40 min accumulated MI against a concentration gradient ([MI]in/[MI]out > 20). Replacement of 150 mM NaCl in BSS by 150 mM choline-Cl reduced the uptake of MI by 87%. MI uptake was inhibited (39%) when cells were incubated in BSS in the absence of Ca Cl 2 . Transport of MI into RPE incubated in the presence of phloridzin, ouabain or 2,4-dinitrophenol (1 mM each) for 10 min was inhibited by 65, 37 and 21%, respectively. α-D-Glucose (20 mM) in the incubation media inhibited MI uptake into primary (or P-2) cultured RPE by 30 or 43% when cells were incubated for 10 or 60 min, respectively. The ability of RPE cells, grown in the presence of 50 mM glucose for 15-25 days, to concentrate MI (40 μM) was reduced up to 41%. Cultured RPE cells accumulated myo-inositol by an active transport system, sensitive to ouabain, DNP and phloridzin. High glucose in the incubation media or in the growth media inhibited the uptake of MI into calf RPE cells

  20. Structural insights into the elevator-like mechanism of the sodium/citrate symporter CitS.

    Science.gov (United States)

    Kim, Ji Won; Kim, Subin; Kim, Songwon; Lee, Haerim; Lee, Jie-Oh; Jin, Mi Sun

    2017-05-31

    The sodium-dependent citrate transporter of Klebsiella pneumoniae (KpCitS) belongs to the 2-hydroxycarboxylate transporter (2-HCT) family and allows the cell to use citrate as sole carbon and energy source in anaerobic conditions. Here we present crystal structures of KpCitS in citrate-bound outward-facing, citrate-bound asymmetric, and citrate-free inward-facing state. The structures reveal that the KpCitS dimerization domain remains stationary throughout the transport cycle due to a hydrogen bond network as well as extensive hydrophobic interactions. In contrast, its transport domain undergoes a ~35° rigid-body rotation and a ~17 Å translocation perpendicular to the membrane to expose the substrate-binding site alternately to either side of the membrane. Furthermore, homology models of two other 2-HCT proteins based on the KpCitS structure offer structural insights into their differences in substrate specificity at a molecular level. On the basis of our results and previous biochemical data, we propose that the activity of the 2-HCT CitS involves an elevator-like movement in which the transport domain itself traverses the lipid bilayer, carrying the substrate into the cell in a sodium-dependent manner.

  1. Structural requirements of the human sodium-dependent bile acid transporter (hASBT): Role of 3- and 7-OH moieties on binding and translocation of bile acids

    Science.gov (United States)

    González, Pablo M.; Lagos, Carlos F.; Ward, Weslyn C.; Polli, James E.

    2014-01-01

    Bile acids (BAs) are the end products of cholesterol metabolism. One of the critical steps in their biosynthesis involves the isomerization of the 3β-hydroxyl (-OH) group on the cholestane ring to the common 3α-configuration on BAs. BAs are actively recaptured from the small intestine by the human Apical Sodium-dependent Bile Acid Transporter (hASBT) with high affinity and capacity. Previous studies have suggested that no particular hydroxyl group on BAs is critical for binding or transport by hASBT, even though 3β-hydroxylated BAs were not examined. The aim of this study was to elucidate the role of the 3α-OH group on BAs binding and translocation by hASBT. Ten 3β-hydroxylated BAs (Iso-bile acids, iBAs) were synthesized, characterized, and subjected to hASBT inhibition and uptake studies. hASBT inhibition and uptake kinetics of iBAs were compared to that of native 3α-OH BAs. Glycine conjugates of native and isomeric BAs were subjected to molecular dynamics simulations in order to identify topological descriptors related to binding and translocation by hASBT. Iso-BAs bound to hASBT with lower affinity and exhibited reduced translocation than their respective 3α-epimers. Kinetic data suggests that, in contrast to native BAs where hASBT binding is the rate-limiting step, iBAs transport was rate-limited by translocation and not binding. Remarkably, 7-dehydroxylated iBAs were not hASBT substrates, highlighting the critical role of 7-OH group on BA translocation by hASBT, especially for iBAs. Conformational analysis of gly-iBAs and native BAs identified topological features for optimal binding as: concave steroidal nucleus, 3-OH “on-” or below-steroidal plane, 7-OH below-plane, and 12-OH moiety towards-plane. Our results emphasize the relevance of the 3α-OH group on BAs for proper hASBT binding and transport and revealed the critical role of 7-OH group on BA translocation, particularly in the absence of a 3α-OH group. Results have implications for BA

  2. The Combined therapy myo-inositol plus D-Chiro-inositol, in a physiological ratio, reduces the cardiovascular risk by improving the lipid profile in PCOS patients.

    Science.gov (United States)

    Minozzi, M; Nordio, M; Pajalich, R

    2013-02-01

    Women with Polycystic Ovarian Syndrome (PCOS) present several factors that increase the cardiovascular risk, such as insulin resistance and dyslipidemia. Myo-inositol and D-chiro-inositol have been shown to improve insulin resistance, hyperandrogenism and to induce ovulation in PCOS women. However, their effects on dyslipidemia are less clear. The aim of the present study was to evaluate whether the combined therapy myo-inositol plus D-chiro-inositol (in a in a physiological ratio of 40:1) improve the metabolic profile, therefore, reducing cardiovascular risk in PCOS patients. Twenty obese PCOS patients [BMI 33.7 ± 6 kg/m2 (mean ± SD)] were recruited. The lipid profile was assessed by measuring total cholesterol, LDL, HDL and triglycerides before and after 6 months treatment with the combined therapy. Secondary end points included changes in BMI, waist-hip ratio, percentage of body fat, HOMA-IR and blood pressure. The combined therapy myo-inositol and D-chiro-inositol improved LDL levels (3.50 ± 0.8 mmol/L versus, 3 ± 1.2 mmol/L p PCOS women, therefore, reducing the cardiovascular risk.

  3. Comparative Genomics of Pneumocystis Species Suggests the Absence of Genes for myo-Inositol Synthesis and Reliance on Inositol Transport and Metabolism

    Science.gov (United States)

    Sesterhenn, Thomas M.; Collins, Margaret S.; Welge, Jeffrey A.

    2014-01-01

    ABSTRACT In the context of deciphering the metabolic strategies of the obligate pathogenic fungi in the genus Pneumocystis, the genomes of three species (P. carinii, P. murina, and P. jirovecii) were compared among themselves and with the free-living, phylogenetically related fission yeast (Schizosaccharomyces pombe). The underrepresentation of amino acid metabolism pathways compared to those in S. pombe, as well as the incomplete steroid biosynthesis pathway, were confirmed for P. carinii and P. jirovecii and extended to P. murina. All three Pneumocystis species showed overrepresentation of the inositol phosphate metabolism pathway compared to that in the fission yeast. In addition to those known in S. pombe, four genes, encoding inositol-polyphosphate multikinase (EC 2.7.1.151), inositol-pentakisphosphate 2-kinase (EC 2.7.1.158), phosphoinositide 5-phosphatase (EC 3.1.3.36), and inositol-1,4-bisphosphate 1-phosphatase (EC 3.1.3.57), were identified in the two rodent Pneumocystis genomes, P. carinii and P. murina. The P. jirovecii genome appeared to contain three of these genes but lacked phosphoinositide 5-phosphatase. Notably, two genes encoding enzymes essential for myo-inositol synthesis, inositol-1-phosphate synthase (INO1) and inositol monophosphatase (INM1), were absent from all three genomes, suggesting that Pneumocystis species are inositol auxotrophs. In keeping with the need to acquire exogenous inositol, two genes with products homologous to fungal inositol transporters, ITR1 and ITR2, were identified in P. carinii and P. murina, while P. jirovecii contained only the ITR1 homolog. The ITR and inositol metabolism genes in P. murina and P. carinii were expressed during fulminant infection as determined by reverse transcriptase real-time PCR of cDNA from infected lung tissue. Supplementation of in vitro culture with inositol yielded significant improvement of the viability of P. carinii for days 7 through 14. PMID:25370490

  4. Characterization of sodium transport in Acholeplasma laidlawii B cells and in lipid vesicles containing purified A. laidlawii (Na+-Mg2+)-ATPase by using nuclear magnetic resonance spectroscopy and 22Na tracer techniques

    International Nuclear Information System (INIS)

    Mahajan, S.; Lewis, R.N.; George, R.; Sykes, B.D.; McElhaney, R.N.

    1988-01-01

    The active transport of sodium ions in live Acholeplasma laidlawii B cells and in lipid vesicles containing the (Na+-Mg2+)-ATPase from the plasma membrane of this microorganism was studied by 23Na nuclear magnetic resonance spectroscopic and 22 Na tracer techniques, respectively. In live A. laidlawii B cells, the transport of sodium was an active process in which metabolic energy was harnessed for the extrusion of sodium ions against a concentration gradient. The process was inhibited by low temperatures and by the formation of gel state lipid in the plasma membrane of this organism. In reconstituted proteoliposomes containing the purified (Na+-Mg2+)-ATPase, the hydrolysis of ATP was accompanied by the transport of sodium ions into the lipid vesicles, and the transport process was impaired by reagents known to inhibit ATPase activity. At the normal growth temperature (37 degrees C), this transport process required a maximum of 1 mol of ATP per mol of sodium ion transported. Together, these results provide direct experimental evidence that the (Na+-Mg2+)-ATPase of the Acholeplasma laidlawii B membrane is the cation pump which maintains the low levels of intracellular sodium characteristic of this microorganism

  5. Effect of lithium and sodium ion adsorption on the electronic transport properties of Ti3C2 MXene

    International Nuclear Information System (INIS)

    Berdiyorov, G.R.

    2015-01-01

    Highlights: • Effect of Li and Na ion adsorption on the electronic transport in Ti 3 C 2 MXene is studied. • Fluorinated, oxidized and hydroxylated surfaces are considered. • Enhanced charge transport is obtained for fluorinated and hydroxylated samples. • Electronic transmission is reduced in the oxidized sample. • The pristine and oxidized MXene samples are found to be sensitive to the ions adsorption. - Abstract: MXenes are found to be promising electrode materials for energy storage applications. Recent theoretical and experimental studies indicate the possibility of using these novel low dimensional materials for metal-ion batteries. Herein, we use density-functional theory in combination with the nonequilibrium Green's function formalism to study the effect of lithium and sodium ion adsorption on the electronic transport properties of the MXene, Ti 3 C 2 . Oxygen, hydroxyl and fluorine terminated species are considered and the obtained results are compared with the ones for the pristine MXene. We found that the ion adsorption results in reduced electronic transport in the pristine MXene: depending on the type of the ions and the bias voltage, the current in the system can be reduced by more than 30%. On the other hand, transport properties of the oxygen terminated sample can be improved by the ion adsorption: for both types of ions the current in the system can be increased by more than a factor of 4. However, the electronic transport is less affected by the ions in fluorinated and hydroxylated samples. These two samples show enhanced electronic transport as compared to the pristine MXene. The obtained results are explained in terms of electron localization in the system.

  6. Recombinant expression of a functional myo-inositol-1-phosphate synthase (MIPS) in Mycobacterium smegmatis.

    Science.gov (United States)

    Huang, Xinyi; Hernick, Marcy

    2015-10-01

    Myo-inositol-1-phosphate synthase (MIPS, E.C. 5.5.1.4) catalyzes the first step in inositol production-the conversion of glucose-6-phosphate (Glc-6P) to myo-inositol-1-phosphate. While the three dimensional structure of MIPS from Mycobacterium tuberculosis has been solved, biochemical studies examining the in vitro activity have not been reported to date. Herein we report the in vitro activity of mycobacterial MIPS expressed in E. coli and Mycobacterium smegmatis. Recombinant expression in E. coli yields a soluble protein capable of binding the NAD(+) cofactor; however, it has no significant activity with the Glc-6P substrate. In contrast, recombinant expression in M. smegmatis mc(2)4517 yields a functionally active protein. Examination of structural data suggests that MtMIPS expressed in E. coli adopts a fold that is missing a key helix containing two critical (conserved) Lys side chains, which likely explains the inability of the E. coli expressed protein to bind and turnover the Glc-6P substrate. Recombinant expression in M. smegmatis may yield a protein that adopts a fold in which this key helix is formed enabling proper positioning of important side chains, thereby allowing for Glc-6P substrate binding and turnover. Detailed mechanistic studies may be feasible following optimization of the recombinant MIPS expression protocol in M. smegmatis.

  7. Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective.

    Science.gov (United States)

    Madaan, Tushar; Akhtar, Mohd; Najmi, Abul Kalam

    2016-10-10

    Diabetes mellitus is a disease that affects millions of people worldwide and its prevalence is estimated to rise in the future. Billions of dollars are spent each year around the world in health expenditure related to diabetes. There are several anti-diabetic drugs in the market for the treatment of non-insulin dependent diabetes mellitus. In this article, we will be talking about a relatively new class of anti-diabetic drugs called sodium glucose co-transporter 2 (SGLT2) inhibitors. This class of drugs has a unique mechanism of action focusing on inhibition of glucose reabsorption that separates it from other classes. This article covers the mechanism of glucose reabsorption in the kidneys, the mechanism of action of SGLT2 inhibitors, several SGLT2 inhibitors currently available in the market as well as those in various phases of development, their individual pharmacokinetics as well as the discussion about the future role of SGLT2 inhibitors, not only for the treatment of diabetes, but also for various other diseases like obesity, hepatic steatosis, and cardiovascular disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mechanism of pH-dependent activation of the sodium-proton antiporter NhaA

    Science.gov (United States)

    Huang, Yandong; Chen, Wei; Dotson, David L.; Beckstein, Oliver; Shen, Jana

    2016-10-01

    Escherichia coli NhaA is a prototype sodium-proton antiporter, which has been extensively characterized by X-ray crystallography, biochemical and biophysical experiments. However, the identities of proton carriers and details of pH-regulated mechanism remain controversial. Here we report constant pH molecular dynamics data, which reveal that NhaA activation involves a net charge switch of a pH sensor at the entrance of the cytoplasmic funnel and opening of a hydrophobic gate at the end of the funnel. The latter is triggered by charging of Asp164, the first proton carrier. The second proton carrier Lys300 forms a salt bridge with Asp163 in the inactive state, and releases a proton when a sodium ion binds Asp163. These data reconcile current models and illustrate the power of state-of-the-art molecular dynamics simulations in providing atomic details of proton-coupled transport across membrane which is challenging to elucidate by experimental techniques.

  9. In vivo mapping of brain myo-inositol.

    Science.gov (United States)

    Haris, Mohammad; Cai, Kejia; Singh, Anup; Hariharan, Hari; Reddy, Ravinder

    2011-02-01

    Myo-Inositol (MI) is one of the most abundant metabolites in the human brain located mainly in glial cells and functions as an osmolyte. The concentration of MI is altered in many brain disorders including Alzheimer's disease and brain tumors. Currently available magnetic resonance spectroscopy (MRS) methods for measuring MI are limited to low spatial resolution. Here, we demonstrate that the hydroxyl protons on MI exhibit chemical exchange with bulk water and saturation of these protons leads to reduction in bulk water signal through a mechanism known as chemical exchange saturation transfer (CEST). The hydroxyl proton exchange rate (k=600 s(-1)) is determined to be in the slow to intermediate exchange regime on the NMR time scale (chemical shift (∆ω)>k), suggesting that the CEST effect of MI (MICEST) can be imaged at high fields such as 7 T (∆ω=1.2×10(3)rad/s) and 9.4 T (∆ω=1.6×10(3) rad/s). Using optimized imaging parameters, concentration dependent broad CEST asymmetry between ~0.2 and 1.5 ppm with a peak at ~0.6 ppm from bulk water was observed. Further, it is demonstrated that MICEST detection is feasible in the human brain at ultra high fields (7 T) without exceeding the allowed limits on radiofrequency specific absorption rate. Results from healthy human volunteers (N=5) showed significantly higher (p=0.03) MICEST effect from white matter (5.2±0.5%) compared to gray matter (4.3±0.5%). The mean coefficient of variations for intra-subject MICEST contrast in WM and GM were 0.49 and 0.58 respectively. Potential overlap of CEST signals from other brain metabolites with the observed MICEST map is discussed. This noninvasive approach potentially opens the way to image MI in vivo and to monitor its alteration in many disease conditions. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS that is required for inhibition of inositol synthesis by the mood stabilizer valproate.

    Directory of Open Access Journals (Sweden)

    Wenxi Yu

    Full Text Available Myo-inositol, the precursor of all inositol compounds, is essential for the viability of eukaryotes. Identifying the factors that regulate inositol homeostasis is of obvious importance to understanding cell function and the pathologies underlying neurological and metabolic resulting from perturbation of inositol metabolism. The current study identifies Mck1, a GSK3 homolog, as a novel positive regulator of inositol de novo synthesis in yeast. Mck1 was required for normal activity of myo-inositol phosphate synthase (MIPS, which catalyzes the rate-limiting step of inositol synthesis. mck1Δ cells exhibited a 50% decrease in MIPS activity and a decreased rate of incorporation of [13C6]glucose into [13C6]-inositol-3-phosphate and [13C6]-inositol compared to WT cells. mck1Δ cells also exhibited decreased growth in the presence of the inositol depleting drug valproate (VPA, which was rescued by supplementation of inositol. However, in contrast to wild type cells, which exhibited more than a 40% decrease in MIPS activity in the presence of VPA, the drug did not significantly decrease MIPS activity in mck1Δ cells. These findings indicate that VPA-induced MIPS inhibition is Mck1-dependent, and suggest a model that unifies two current hypotheses of the mechanism of action of VPA-inositol depletion and GSK3 inhibition.

  11. MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS) that is required for inhibition of inositol synthesis by the mood stabilizer valproate.

    Science.gov (United States)

    Yu, Wenxi; Daniel, Joshua; Mehta, Dhara; Maddipati, Krishna Rao; Greenberg, Miriam L

    2017-01-01

    Myo-inositol, the precursor of all inositol compounds, is essential for the viability of eukaryotes. Identifying the factors that regulate inositol homeostasis is of obvious importance to understanding cell function and the pathologies underlying neurological and metabolic resulting from perturbation of inositol metabolism. The current study identifies Mck1, a GSK3 homolog, as a novel positive regulator of inositol de novo synthesis in yeast. Mck1 was required for normal activity of myo-inositol phosphate synthase (MIPS), which catalyzes the rate-limiting step of inositol synthesis. mck1Δ cells exhibited a 50% decrease in MIPS activity and a decreased rate of incorporation of [13C6]glucose into [13C6]-inositol-3-phosphate and [13C6]-inositol compared to WT cells. mck1Δ cells also exhibited decreased growth in the presence of the inositol depleting drug valproate (VPA), which was rescued by supplementation of inositol. However, in contrast to wild type cells, which exhibited more than a 40% decrease in MIPS activity in the presence of VPA, the drug did not significantly decrease MIPS activity in mck1Δ cells. These findings indicate that VPA-induced MIPS inhibition is Mck1-dependent, and suggest a model that unifies two current hypotheses of the mechanism of action of VPA-inositol depletion and GSK3 inhibition.

  12. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family.

    Science.gov (United States)

    Mackenzie, Bryan; Erickson, Jeffrey D

    2004-02-01

    The sodium-coupled neutral amino acid transporters (SNAT) of the SLC38 gene family resemble the classically-described System A and System N transport activities in terms of their functional properties and patterns of regulation. Transport of small, aliphatic amino acids by System A subtypes (SNAT1, SNAT2, and SNAT4) is rheogenic and pH sensitive. The System N subtypes SNAT3 and SNAT5 also countertransport H(+), which may be key to their operation in reverse, and have narrower substrate profiles than do the System A subtypes. Glutamine emerges as a favored substrate throughout the family, except for SNAT4. The SLC38 transporters undoubtedly play many physiological roles including the transfer of glutamine from astrocyte to neuron in the CNS, ammonia detoxification and gluconeogenesis in the liver, and the renal response to acidosis. Probing their regulation has revealed additional roles, and recent work has considered SLC38 transporters as therapeutic targets in neoplasia.

  13. Time dependent plasma viscosity and relation between neoclassical transport and turbulent transport

    International Nuclear Information System (INIS)

    Shaing, K.C.

    2005-01-01

    Time dependent plasma viscosities for asymmetric toroidal plasmas in various collisionality regimes are calculated. It is known that in the symmetric limit the time dependent plasma viscosities accurately describe plasma flow damping rate. Thus, time dependent plasma viscosities are important in modeling the radial electric field of the zonal flow. From the momentum balance equation, it is shown that, at the steady state, the balance of the viscosity force and the momentum source determines the radial electric field of the zonal flow. Thus, for a fixed source, the smaller the viscous force is, the larger the value of the radial electric field is, which in turn suppresses the turbulence fluctuations more and improves turbulence transport. However, the smaller the viscous force also implies the smaller the neoclassical transport fluxes based on the neoclassical flux-force relationship. We thus show that when neoclassical transport fluxes are improved so are the turbulent fluxes in toroidal plasmas. (author)

  14. Sodium-concrete reaction model development

    International Nuclear Information System (INIS)

    Nguyen, D.H.; Muhlestein, L.D.; Postma, A.K.

    1982-07-01

    Major observations have been formulated after reviewing test results for over 100 sodium-concrete reaction tests. The observations form the basis for developing a mechanistic model to predict the transient behavior of sodium-concrete reactions. The major observations are listed. Mechanisms associated with sodium and water transport to the reaction zone are identified, and represented by appropriate mathematical expressions. The model attempts to explain large-scale, long-term (100 h) test results were sodium-concrete reactions terminated even in the presence of unreacted sodium and concrete

  15. Assessment of flow induced vibration in a sodium-sodium heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)], E-mail: prakash@igcar.gov.in; Thirumalai, M.; Prabhakar, R.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)

    2009-01-15

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under construction at Kalpakkam. It is a liquid metal sodium cooled pool type fast reactor with all primary components located inside a sodium pool. The heat produced due to fission in the core is transported by primary sodium to the secondary sodium in a sodium to sodium Intermediate Heat Exchanger (IHX), which in turn is transferred to water in the steam generator. PFBR IHX is a shell and tube type heat exchanger with primary sodium on shell side and secondary sodium in the tube side. Since IHX is one of the critical components placed inside the radioactive primary sodium, trouble-free operation of the IHX is very much essential for power plant availability. To validate the design and the adequacy of the support system provided for the IHX, flow induced vibration (FIV) experiments were carried out in a water test loop on a 60 deg. sector model. This paper discusses the flow induced vibration measurements carried out in 60 deg. sector model of IHX, the modeling criteria, the results and conclusion.

  16. The effects of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Gluud, Lise Lotte; Christensen, Mikkel

    2014-01-01

    INTRODUCTION: Sodium-glucose co-transporter 2 inhibitors (SGLT-2i) increase urinary glucose excretion through a reduced renal glucose reabsorption. We plan to perform a systematic review of SGLT-2i for treatment of type 2 diabetes. METHODS AND ANALYSIS: A systematic review with meta-analyses of r......INTRODUCTION: Sodium-glucose co-transporter 2 inhibitors (SGLT-2i) increase urinary glucose excretion through a reduced renal glucose reabsorption. We plan to perform a systematic review of SGLT-2i for treatment of type 2 diabetes. METHODS AND ANALYSIS: A systematic review with meta......-analyses of randomised clinical trials on SGLT-2i versus placebo, other oral glucose lowering drugs or insulin for patients with type 2 diabetes will be performed. The primary end point will be the glycated haemoglobin. Secondary end points will include changes in body weight, body mass index, fasting plasma glucose......, plasma cholesterol, kidney and liver blood tests, blood pressure and adverse events. Electronic (the Cochrane Library, MEDLINE, EMBASE and the Science Citation Index) and manual searches will be performed. Meta-analyses will be performed and the results presented as mean differences for continuous...

  17. X-Linked Creatine Transporter Deficiency Presenting as a Mitochondrial Disorder

    NARCIS (Netherlands)

    Hathaway, S.C.; Friez, M.; Limbo, K.; Parker, C.; Salomons, G.S.; Vockley, J.; Wood, T.; Abdul-Rahman, O.A.

    2010-01-01

    X-linked creatine transporter defect is caused by mutations in SLC6A8 at Xq28, which encodes the sodium-dependent creatine transporter. Reduction in creatine uptake results in elevated urine creatine and CSF creatine deficiency, which can be detected on magnetic resonance spectroscopy. We report a

  18. Inhibition of insulin-stimulated hydrogen peroxide production prevents stimulation of sodium transport in A6 cell monolayers.

    NARCIS (Netherlands)

    Markadieu, N.Y.G.; Crutzen, R.; Boom, A.; Erneux, C.; Beauwens, R.

    2009-01-01

    Insulin-stimulated sodium transport across A6 cell (derived from amphibian distal nephron) monolayers involves the activation of a phosphatidylinositol (PI) 3-kinase. We previously demonstrated that exogenous addition of H2O2 to the incubation medium of A6 cell monolayers provokes an increase in PI

  19. Time-dependent Perpendicular Transport of Energetic Particles for Different Turbulence Configurations and Parallel Transport Models

    Energy Technology Data Exchange (ETDEWEB)

    Lasuik, J.; Shalchi, A., E-mail: andreasm4@yahoo.com [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada)

    2017-09-20

    Recently, a new theory for the transport of energetic particles across a mean magnetic field was presented. Compared to other nonlinear theories the new approach has the advantage that it provides a full time-dependent description of the transport. Furthermore, a diffusion approximation is no longer part of that theory. The purpose of this paper is to combine this new approach with a time-dependent model for parallel transport and different turbulence configurations in order to explore the parameter regimes for which we get ballistic transport, compound subdiffusion, and normal Markovian diffusion.

  20. Effect of a supplementation with myo-inositol plus melatonin on oocyte quality in women who failed to conceive in previous in vitro fertilization cycles for poor oocyte quality: a prospective, longitudinal, cohort study.

    Science.gov (United States)

    Unfer, Vittorio; Raffone, Emanuela; Rizzo, Piero; Buffo, Silvia

    2011-11-01

    Several factors can affect oocyte quality and therefore pregnancy outcome in assisted reproductive technology (ART) cycles. Recently, a number of studies have shown that the presence of several compounds in the follicular fluid positively correlates with oocyte quality and maturation (i.e., myo-inositol and melatonin). In the present study, we aim to evaluate the pregnancy outcomes after the administration of myo-inositol combined with melatonin in women who failed to conceive in previous in vitro fertilization (IVF) cycles due to poor oocyte quality. Forty-six women were treated with 4 g/day myo-inositol and 3 mg/day melatonin (inofolic® and inofolic® Plus, Lo.Lipharma, Rome) for 3 months and then underwent a new IVF cycle. After treatment, the number of mature oocytes, the fertilization rate, the number of both, total and top-quality embryos transferred were statistically higher compared to the previous IVF cycle, while there was no difference in the number of retrieved oocyte. After treatment, a total of 13 pregnancies occurred, 9 of them were confirmed echographically; four evolved in spontaneous abortion. The treatment with myo-inositol and melatonin improves ovarian stimulation protocols and pregnancy outcomes in infertile women with poor oocyte quality.

  1. Sulfate transport kinetics and toxicity are modulated by sodium in aquatic insects.

    Science.gov (United States)

    Scheibener, Shane; Conley, Justin M; Buchwalter, David

    2017-09-01

    The salinization of freshwater ecosystems is emerging as a major ecological issue. Several anthropogenic causes of salinization (e.g. surface coal mining, hydro-fracking, road de-icing, irrigation of arid lands, etc.) are associated with biodiversity losses in freshwater ecosystems. Because insects tend to dominate freshwater ecology, it is important that we develop a better understanding of how and why different species respond to salinity matrices dominated by different major ions. This study builds upon previous work demonstrating that major ion toxicity to the mayfly Neocloeon triangulifer was apparently due to the ionic composition of water rather than specific conductance. Synthetic waters with low Ca:Mg ratios and high SO 4 :Na ratios produced toxicity, whereas waters with higher Ca:Mg ratios and lower SO 4 :Na ratios were not toxic to mayflies at comparable conductivities. Here we used a radiotracer approach to show that Mg did not competitively exclude Ca uptake at environmentally realistic ratios in 4 aquatic insect species. We characterized SO 4 uptake kinetics in 5 mayflies and assessed the influence of different ions on SO 4 uptake. Dual label experiments show an inverse relationship between SO 4 and Na transport rates as SO 4 was held constant and Na was increased, suggesting that Na (and not Cl or HCO 3 ) is antagonistic to SO 4 transport. Based on this observation, we tested the hypothesis that increasing Na would protect against SO 4 induced toxicity in a Na-dependent manner. Increasing Na from 0.7 to 10.9mM improved 96-h survivorship associated with 20.8mM SO 4 from 44% to 73% in a concentration dependent manner. However, when Na reached 21.8mM, survivorship decreased to 16%, suggesting that other interactive effects of major ions caused toxicity under those conditions. Thus, the combination of elevated sulfate and low sodium commonly observed in streams affected by mountaintop coal mining has the potential to cause toxicity in sensitive aquatic

  2. Toxicology of plutonium-sodium

    International Nuclear Information System (INIS)

    Hackett, P.L.

    1982-01-01

    Scenarios for liquid-metal fast breeder reactor (LMFBR) accidents predict the loss of sodium coolant, with subsequent core melt-down and release of mixed sodium-fuel aerosols [Na-(PuU)O 2 ] into the environment. Studies in other laboratories demonstrated that mixed aerosols of Na 2 O-PuO 2 were more readily transported from the lung than PuO 2 aerosols. We therefore devised a continuous aerosol-generating system for animal exposures in which laser-generated fuel aerosols were swept through sodium vapor to form sodium-fuel aerosols. These fuel and sodium-fuel aerosols were compared with regard to their physicochemical properties and their biological behavior following inhalation studies in rats and dogs

  3. Downregulation of surface sodium pumps by endocytosis during meiotic maturation of Xenopus laevis oocytes

    International Nuclear Information System (INIS)

    Schmalzing, G.; Eckard, P.; Kroener, S.P.; Passow, H.

    1990-01-01

    During meiotic maturation, plasma membranes of Xenopus laevis oocytes completely lose the capacity to transport Na and K and to bind ouabain. To explore whether the downregulation might be due to an internalization of the sodium pump molecules, the intracellular binding of ouabain was determined. Selective permeabilization of the plasma membrane of mature oocytes (eggs) by digitonin almost failed to disclose ouabain binding sites. However, when the eggs were additionally treated with 0.02% sodium dodecyl sulfate (SDS) to permeabilize inner membranes, all sodium pumps present before maturation were recovered. Phosphorylation by [gamma-32P]ATP combined with SDS-polyacrylamide gel electrophoresis (PAGE) and autoradiography showed that sodium pumps were greatly reduced in isolated plasma membranes of eggs. According to sucrose gradient fractionation, maturation induced a shift of sodium pumps from the plasma membrane fraction to membranes of lower buoyant density with a protein composition different from that of the plasma membrane. Endocytosed sodium pumps identified on the sucrose gradient from [3H]ouabain bound to the cell surface before maturation could be phosphorylated with inorganic [32P]phosphate. The findings suggest that downregulation of sodium pumps during maturation is brought about by translocation of surface sodium pumps to an intracellular compartment, presumably endosomes. This contrasts the mechanism of downregulation of Na-dependent cotransport systems, the activities of which are reduced as a consequence of a maturation-induced depolarization of the membrane without a removal of the corresponding transporter from the plasma membrane

  4. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations

    DEFF Research Database (Denmark)

    Camargo, Simone M R; Singer, Dustin; Makrides, Victoria

    2008-01-01

    BACKGROUND & AIMS: Hartnup amino acid transporter B(0)AT1 (SLC6A19) is the major luminal sodium-dependent neutral amino acid transporter of small intestine and kidney proximal tubule. The expression of B(0)AT1 in kidney was recently shown to depend on its association with collectrin (Tmem27...

  5. Aroma barrier properties of sodium caseinate-based films.

    Science.gov (United States)

    Fabra, Maria José; Hambleton, Alicia; Talens, Pau; Debeaufort, Fréderic; Chiralt, Amparo; Voilley, Andrée

    2008-05-01

    The mass transport of six different aroma compounds (ethyl acetate, ethyl butyrate, ethyl hexanoate, 2-hexanone, 1-hexanol, and cis-3-hexenol) through sodium caseinate-based films with different oleic acid (OA)/beeswax (BW) ratio has been studied. OA is less efficient than BW in reducing aroma permeability, which can be attributed to its greater polarity. Control film (without lipid) and films prepared with 0:100 OA/BW ratio show the lowest permeability. OA involves a decrease in aroma barrier properties of the sodium caseinate-based films due to its plasticization ability. Preferential sorption and diffusion occurs through OA instead of caseinate matrix and/or BW. The efficiency of sodium caseinate-based films to retain or limit aroma compound transfers depend on the affinity of the volatile compound to the films, which relates physicochemical interaction between volatile compound and film. Specific interactions (aroma compound-hydrocolloid and aroma compound-lipid) induce structural changes during mass transfer.

  6. Membrane topology of rat sodium-coupled neutral amino acid transporter 2 (SNAT2).

    Science.gov (United States)

    Ge, Yudan; Gu, Yanting; Wang, Jiahong; Zhang, Zhou

    2018-07-01

    Sodium-coupled neutral amino acid transporter 2 (SNAT2) is a subtype of the amino acid transport system A that is widely expressed in mammalian tissues. It plays critical roles in glutamic acid-glutamine circulation, liver gluconeogenesis and other biological pathway. However, the topology of the SNAT2 amino acid transporter is unknown. Here we identified the topological structure of SNAT2 using bioinformatics analysis, Methoxy-polyethylene glycol maleimide (mPEG-Mal) chemical modification, protease cleavage assays, immunofluorescence and examination of glycosylation. Our results show that SNAT2 contains 11 transmembrane domains (TMDs) with an intracellular N terminus and an extracellular C terminus. Three N-glycosylation sites were verified at the largest extracellular loop. This model is consistent with the previous model of SNAT2 with the exception of a difference in number of glycosylation sites. This is the first time to confirm the SNAT2 membrane topology using experimental methods. Our study on SNAT2 topology provides valuable structural information of one of the solute carrier family 38 (SLC38) members. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Semi-interpenetrating network of acrylamide-grafted-sodium alginate microspheres for controlled release of diclofenac sodium, preparation and characterization.

    Science.gov (United States)

    Al-Kahtani, Ahmed A; Sherigara, B S

    2014-03-01

    The semi-interpenetrating networks (semi-IPNs) of acrylamide grafted sodium alginate (AAm-g-NaAlg) microspheres (MPs) were prepared by emulsion-crosslinking method using glutaraldehyde (GA) as a crosslinking agent. The grafting of acrylamide onto sodium alginate was prepared by free-radical graft polymerization using ceric ammonium nitrate (CAN) as initiator at three acrylamide concentrations with monomer to polymer ratio of 1:1, 2:1 and 3:1, respectively. The grafting efficiency was found to be 91%. The produced MPs are almost spherical in nature with smooth surfaces. Diclofenac sodium (DS), an anti-inflammatory drug was successfully encapsulated into the MPs. The encapsulation efficiency was found to vary between 83% and 95%. The MPs were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The diffusion coefficient (D) was dependent upon the amount of crosslinking agent (GA) and amount of grafting ratio in the matrix. The rate of release was found to be dependent on the amount of GA, AAm:NaAlg grafting ratio and % drug loading in the MPs. The release data have been fitted to an empirical equation to investigate the diffusional exponent (n), which indicated that the release mechanism from MPs follows the super Case II transport. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Investigations of transport properties of molten sodium fluoride using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Chattaraj, D.; Dash, Smruti

    2013-01-01

    The thermal conductivity and coefficient of shear viscosity of molten sodium fluoride were calculated using Green-Kubo equilibrium molecular dynamics (EMD) simulation. The Green-Kubo method is an equilibrium technique based on the fluctuation-dissipation theorem of statistical thermodynamics. The canonical ensemble (N, V, T) was used in the MD simulation to obtain the transport properties of molten NaF. In this simulation, several state points were investigated using the Born-Meyer-Huggins-Tosi-Fumi interionic potential model. The electrostatic interactions present in this ionic fluid were calculated through the Ewald method. The results obtained in this study were found to be in good agreement with the reported experimental data. (author)

  9. Carbon in sodium - A status review of the U.S.A. R and D work

    International Nuclear Information System (INIS)

    McCown, J.J.; Bagnall, C.

    1980-01-01

    Liquid Metal Fast Breeder Reactors contain several types of steel in primary and secondary sodium systems. Austenitic stainless steels are used for in-core components, valves, heat exchangers, tanks and fuel cladding in primary systems. In power generating plants, the secondary or intermediate heat transport system may contain both austenitic and ferritic steel such as 2-1/4 Cr-l Mo type. Sodium circulating throughout the plant contains a number of impurities, metallic and non-metallic, with the steel interstitial elements carbon, hydrogen and oxygen being of prime importance. These elements can affect corrosion rates and mechanical behavior of materials. In the case of carbon, the sodium provides a transport medium with carburization and decarburization occurring in several parts of a system at rates depending upon temperature and types of steel. The US Sodium Technology R and D programs have investigated the behavior, transport, measurement and control of carbon in sodium. Measurement and control methods for carbon-containing materials which might contaminate the plant systems during reactor operation have also been studied. During the early 1970's, several US laboratories were active in studying carbon solubility, activity in sodium and interstitial transfer using both theoretical and experimental approaches. Modelling studies were done and models were used to predict FFTF and CRBRP materials requirements, component design and plant operating conditions. Over the past several years, carbon work has not been heavily emphasized. Most of the R and D studies have centered on improving chemical analysis methods for measuring active carbon, both by on-line monitors and by metal foil equilibration procedures; and on studies of pump oil-sodium reactions, reaction products, temperature effects and oil leak detection methods. One program at General Electric is investigating carburization-decarburization in a ferritic-austenitic system simulating conditions expected in

  10. Carbon in sodium - A status review of the U.S.A. R and D work

    Energy Technology Data Exchange (ETDEWEB)

    McCown, J J; Bagnall, C [HEDL, Richland, WA (United States)

    1980-05-01

    Liquid Metal Fast Breeder Reactors contain several types of steel in primary and secondary sodium systems. Austenitic stainless steels are used for in-core components, valves, heat exchangers, tanks and fuel cladding in primary systems. In power generating plants, the secondary or intermediate heat transport system may contain both austenitic and ferritic steel such as 2-1/4 Cr-l Mo type. Sodium circulating throughout the plant contains a number of impurities, metallic and non-metallic, with the steel interstitial elements carbon, hydrogen and oxygen being of prime importance. These elements can affect corrosion rates and mechanical behavior of materials. In the case of carbon, the sodium provides a transport medium with carburization and decarburization occurring in several parts of a system at rates depending upon temperature and types of steel. The US Sodium Technology R and D programs have investigated the behavior, transport, measurement and control of carbon in sodium. Measurement and control methods for carbon-containing materials which might contaminate the plant systems during reactor operation have also been studied. During the early 1970's, several US laboratories were active in studying carbon solubility, activity in sodium and interstitial transfer using both theoretical and experimental approaches. Modelling studies were done and models were used to predict FFTF and CRBRP materials requirements, component design and plant operating conditions. Over the past several years, carbon work has not been heavily emphasized. Most of the R and D studies have centered on improving chemical analysis methods for measuring active carbon, both by on-line monitors and by metal foil equilibration procedures; and on studies of pump oil-sodium reactions, reaction products, temperature effects and oil leak detection methods. One program at General Electric is investigating carburization-decarburization in a ferritic-austenitic system simulating conditions expected in

  11. Transport Modeling of Modified Magnetite Nanoparticles with Sodium Dodecyl Sulfate in a Saturated Sandy Soil

    Directory of Open Access Journals (Sweden)

    Ahmad Farrokhian Firouzi

    2017-02-01

    Full Text Available Introduction: Nanoparticles due to their large specific area and reactivity recently have been used in several environmental remediation applications such as degradation of organic compounds and pesticides and adsorption of heavy metals and inorganic anions. Because of concern over potential threats of nanoparticle releases into the soil–water environment, a number of studies have been carried out to investigate the transport, retention and deposition of nanoparticles in saturated porous media. Many of these studies are based on measurements of transport in columns packed with idealized porous media consisting of spherical glass beads or sand. The nanoparticles are usually introduced into the column and breakthrough curve concentrations are measured at the column outlet. To examine the effect of various parameters on the transport of nanoparticles in porous medium, for convenience, all the parameters considered the same in the experiments, and only one parameter in the experiments is changed and investigated. Materials and Methods: The objective of this research is quantitative study of modified magnetite nanoparticles transport in saturated sand-repacked columns. The modified magnetite nanoparticles with Sodium dodecyl sulfate were synthesized following the protocol described by Si et al. (2004. The experimental setup included a suspension reservoir, Teflon tubing, a HPLC pump, and a glass column (2.5 cm i.d. and 20 cm height. Therefore, breakthrough curves of modified magnetite nanoparticles with Sodium dodecyl sulfate and chloride were determined under saturated conditions and influence of nanoparticles concentration (0.1 and 0.5 g.L-1 and pore velocity (pressure head of 2 and 10 cm on nanoparticles transport were investigated. For each medium bed, the background solution were first pumped through the column in the up-flow mode to obtain a steady flow state. Then, a tracer test was conducted by introducing CaCl2 solution into the column

  12. Monte Carlo transport correction of sodium reactivity worth spatial distribution in perspective Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Raskach, K.F.; Blyskavka, V; Kislitsyna, T.S.

    2011-01-01

    In this paper we apply Monte Carlo for calculating spatial distribution of sodium reactivity worth in the perspective Russian sodium-cooled fast reactor BN-1200. A special Monte Carlo technique applicable for calculating perturbations and derivatives of the effective multiplication factor is used. The numerical results obtained show that Monte Carlo has a good perspective to deal with such problems and to be used as a reference solution for engineering codes based on the diffusion approximation. They also allow to conclude that in the sodium blanket and in the neighboring region of the core the diffusion code used likely overestimates sodium reactivity worth. This conclusion has to be verified in future work. (author)

  13. Reversible effects of acute hypertension on proximal tubule sodium transporters

    DEFF Research Database (Denmark)

    Zhang, Y; Magyar, C E; Norian, J M

    1998-01-01

    Acute hypertension provokes a rapid decrease in proximal tubule sodium reabsorption with a decrease in basolateral membrane sodium-potassium-ATPase activity and an increase in the density of membranes containing apical membrane sodium/hydrogen exchangers (NHE3) [Y. Zhang, A. K. Mircheff, C. B....... Renal cortex lysate was fractionated on sorbitol gradients. Basolateral membrane sodium-potassium-ATPase activity (but not subunit immunoreactivity) decreased one-third to one-half after BP was elevated and recovered after BP was normalized. After BP was elevated, 55% of the apical NHE3 immunoreactivity......, smaller fractions of sodium-phosphate cotransporter immunoreactivity, and apical alkaline phosphatase and dipeptidyl-peptidase redistributed to membranes of higher density enriched in markers of the intermicrovillar cleft (megalin) and endosomes (Rab 4 and Rab 5), whereas density distributions...

  14. Transport Pathways and Enhancement Mechanisms within Localized and Non-Localized Transport Regions in Skin Treated with Low-Frequency Sonophoresis and Sodium Lauryl Sulfate

    OpenAIRE

    Polat, Baris E.; Figueroa, Pedro L.; Blankschtein, Daniel; Langer, Robert

    2010-01-01

    Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyz...

  15. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Meihui Wang.

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  16. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    Science.gov (United States)

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  17. Length dependence of staircase potentiation: interactions with caffeine and dantrolene sodium.

    Science.gov (United States)

    Rassier, D E; MacIntosh, B R

    2000-04-01

    In skeletal muscle, there is a length dependence of staircase potentiation for which the mechanism is unclear. In this study we tested the hypothesis that abolition of this length dependence by caffeine is effected by a mechanism independent of enhanced Ca2+ release. To test this hypothesis we have used caffeine, which abolishes length dependence of potentiation, and dantrolene sodium, which inhibits Ca2+ release. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 20 s of repetitive stimulation at 5 Hz were analyzed at optimal length (Lo), Lo - 10%, and Lo + 10%. Potentiation was observed to be length dependent, with an increase in developed tension (DT) of 78 +/- 12, 51 +/- 5, and 34 +/- 9% (mean +/- SEM), at Lo - 10%, Lo, and Lo + 10%, respectively. Caffeine diminished the length dependence of activation and suppressed the length dependence of staircase potentiation, giving increases in DT of 65+/-13, 53 +/- 11, and 45 +/- 12% for Lo - 10%, Lo, and Lo + 10%, respectively. Dantrolene administered after caffeine did not reverse this effect. Dantrolene alone depressed the potentiation response, but did not affect the length dependence of staircase potentiation, with increases in DT of 58 +/- 17, 26 +/- 8, and 18 +/- 7%, respectively. This study confirms that there is a length dependence of staircase potentiation in mammalian skeletal muscle which is suppressed by caffeine. Since dantrolene did not alter this suppression of the length dependence of potentiation by caffeine, it is apparently not directly modulated by Ca2+ availability in the myoplasm.

  18. Sodium-NaK engineering handbook. Volume III. Sodium systems, safety, handling, and instrumentation. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Foust, O J [ed.

    1978-01-01

    The handbook is intended for use by present and future designers in the Liquid Metals Fast Breeder Reactor (LMFBR) Program and by the engineering and scientific community performing other type investigation and exprimentation requiring high-temperature sodium and NaK technology. The arrangement of subject matter progresses from a technological discussion of sodium and sodium--potassium alloy (NaK) to discussions of varius categories and uses of hardware in sodium and NaK systems. Emphasis is placed on sodium and NaK as heat-transport media. Sufficient detail is included for basic understanding of sodium and NaK technology and of technical aspects of sodium and NaK components and instrument systems. Information presented is considered adequate for use in feasibility studies and conceptual design, sizing components and systems, developing preliminary component and system descriptions, identifying technological limitations and problem areas, and defining basic constraints and parameters.

  19. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions.

    Science.gov (United States)

    Álvarez-Aragón, Rocío; Rodríguez-Navarro, Alonso

    2017-07-01

    Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation was biologically feasible, current knowledge about Na + effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na + uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate-dependent transport systems in series that take up and load Na + into the xylem constitute the major pathway for the accumulation of Na + in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na + accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate-dependent Na + transport. Arabidopsis plants exposed to an osmotic potential of -1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na + could not be accumulated. In contrast, in NaCl the plants that accumulated Na + lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na + uptake and tissue accumulation fulfil the primary function of osmotic adjustment, even if these processes lead to long-term toxicity. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. Flozins, inhibitors of type 2 renal sodium-glucose co-transporter – not only antihyperglycemic drugs

    Directory of Open Access Journals (Sweden)

    Mizerski Grzegorz

    2015-09-01

    Full Text Available The kidneys play a crucial role in the regulation of the carbohydrate metabolism. In normal physiological conditions, the glucose that filters through the renal glomeruli is subsequently nearly totally reabsorbed in the proximal renal tubules. Two transporters are engaged in this process: sodium-glucose co-transporter type 1 (SGLT1, and sodium-glucose co-transporter type type 2 (SGLT2 - this being located in the luminal membrane of the renal tubular epithelial cells. It was found that the administration of dapagliflozin, a selective SGLT2 inhibitor, in patients with type 2 diabetes, is associated with the reduction of HbA1c concentration by 0.45-1.11%. Additional benefits from the treatment with dapagliflozin are the reduction of arterial blood pressure and a permanent reduction of body weight. This outcome is related to the effect of osmotic diuresis and to the considerable loss of the glucose load by way of urine excretion. Dapagliflozin may be successfully applied in type 2 diabetes monotherapy, as well as in combined therapy (including insulin, where it is equally effective as other oral anti-diabetic drugs. Of note: serious adverse effects of dapagliflozin administration are rarely observed. What is more, episodes of severe hypoglycaemia related with the treatment occur only sporadically, most often in the course of diabetes polytherapy. The most frequent effects of the SGLT2 inhibitors are inseparably associated with the mechanism of their action (the glucuretic effect, and cover urogenital infections with a mild clinical course. At present, clinical trials are being continued of the administration of several subsequent drugs from this group, the most advanced of these being the use of canagliflozin and empagliflozin.

  1. The effect of variations in carbon activity on the carburization of austenitic steels in sodium

    International Nuclear Information System (INIS)

    Gwyther, J.R.; Hobdell, M.R.; Hooper, A.J.

    1978-07-01

    Experience has shown that the liquid sodium coolant of fast breeder reactors is an effective carbon-transport medium; the resulting carburization of thin austenitic stainless steel components (eg IHX and fuel cladding) could adversely affect their mechanical integrity. The degree and nature of steel carburization depend, inter alia, on the carbon activity of the sodium environment. Exploratory tests are described in which specimens of austenitic stainless steel were carburized in sodium, the carbon activity of which was continuously monitored by a BNL electrochemical carbon meter. The sodium carbon activity was initially high, but decreased with time, simulating conditions equivalent to plant start-up or coolant clean-up following accidental oil ingress. The extent and nature of steel carburization was identified by metallography, electron microscopy, X-ray crystallography and chemical analysis. (author)

  2. Space-Time Dependent Transport, Activation, and Dose Rates for Radioactivated Fluids.

    Science.gov (United States)

    Gavazza, Sergio

    Two methods are developed to calculate the space - and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates generated from the radioactivated fluids flowing through pipes. The work couples space- and time-dependent phenomena, treated as only space- or time-dependent in the open literature. The transport and activation methodology (TAM) is used to numerically calculate space- and time-dependent transport and activation of radionuclides in fluids flowing through pipes exposed to radiation fields, and volumetric radioactive sources created by radionuclide motions. The computer program Radionuclide Activation and Transport in Pipe (RNATPA1) performs the numerical calculations required in TAM. The gamma ray dose methodology (GAM) is used to numerically calculate space- and time-dependent gamma ray dose equivalent rates from the volumetric radioactive sources determined by TAM. The computer program Gamma Ray Dose Equivalent Rate (GRDOSER) performs the numerical calculations required in GAM. The scope of conditions considered by TAM and GAM herein include (a) laminar flow in straight pipe, (b)recirculating flow schemes, (c) time-independent fluid velocity distributions, (d) space-dependent monoenergetic neutron flux distribution, (e) space- and time-dependent activation process of a single parent nuclide and transport and decay of a single daughter radionuclide, and (f) assessment of space- and time-dependent gamma ray dose rates, outside the pipe, generated by the space- and time-dependent source term distributions inside of it. The methodologies, however, can be easily extended to include all the situations of interest for solving the phenomena addressed in this dissertation. A comparison is made from results obtained by the described calculational procedures with analytical expressions. The physics of the problems addressed by the new technique and the increased accuracy versus non -space and time-dependent methods

  3. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meihui [Univ. of California, Berkeley, CA (United States)

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na2S4 and Na2S5 were measured as a function of temperature (range: 300 to 360°C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  4. Studies on generation and transport of sodium aerosols in some test facilities

    International Nuclear Information System (INIS)

    Sano, T.; Shimomura, T.; Hattori, N.

    1986-01-01

    Technical experiences that have been obtained during the course of the experiments to determine the sodium aerosol concentration, to study the deposition of sodium aerosol, and to predict mechanical properties of sodium vapor deposits are presented. In the first study, the sodium aerosol concentrations in an inert cover gas space over a sodium pool and those following a sodium spray injection into an inert atmosphere were determined. The results from the two different experiments were compared with each other and were discussed in comparison with those from the literature. In the second study, deposition of sodium aerosol following a sodium spray injection into an inert atmosphere was examined. The deposition rates on the walls and the floor of a closed concrete cell were measured, and the results obtained were discussed. The third study relates to the sodium vapor deposition within a narrow annulus. In the experiments, a downward argon gas flow that passes the annulus was fed to prevent sodium vapor deposition. Average sodium vapor deposition rates on the walls of the annulus were determined, then the effect of the downward feed gas was discussed. The last study relates to one of the mechanical properties and the deformation rate of solid sodium being compressed. The purpose of the experiments were to obtain data to predict deformation rate of the sodium deposits. (author)

  5. Molecular enzymology of carnitine transfer and transport

    NARCIS (Netherlands)

    Ramsay, RR; Gandour, RD; van der Leij, FR

    2001-01-01

    Carnitine (L-3-hydroxy-4-N-trimethylaminobutyric acid) forms esters with a wide range of acyl groups and functions to transport and excrete these groups. It is found in most cells at millimolar levels after uptake via the sodium-dependent carrier, OCTN2. The acylation state of the mobile carnitine

  6. Solute transport modelling with the variable temporally dependent ...

    Indian Academy of Sciences (India)

    Pintu Das

    2018-02-07

    Feb 7, 2018 ... in a finite domain with time-dependent sources and dis- tance-dependent dispersivities. Also, existing ... solute transport in multi-layered porous media using gen- eralized integral transform technique with .... methods for solving the fractional reaction-–sub-diffusion equation. To solve numerically the Eqs.

  7. Mining Protein Evolution for Insights into Mechanisms of Voltage-Dependent Sodium Channel Auxiliary Subunits.

    Science.gov (United States)

    Molinarolo, Steven; Granata, Daniele; Carnevale, Vincenzo; Ahern, Christopher A

    2018-02-21

    Voltage-gated sodium channel (VGSC) beta (β) subunits have been called the "overachieving" auxiliary ion channel subunit. Indeed, these subunits regulate the trafficking of the sodium channel complex at the plasma membrane and simultaneously tune the voltage-dependent properties of the pore-forming alpha-subunit. It is now known that VGSC β-subunits are capable of similar modulation of multiple isoforms of related voltage-gated potassium channels, suggesting that their abilities extend into the broader voltage-gated channels. The gene family for these single transmembrane immunoglobulin beta-fold proteins extends well beyond the traditional VGSC β1-β4 subunit designation, with deep roots into the cell adhesion protein family and myelin-related proteins - where inherited mutations result in a myriad of electrical signaling disorders. Yet, very little is known about how VGSC β-subunits support protein trafficking pathways, the basis for their modulation of voltage-dependent gating, and, ultimately, their role in shaping neuronal excitability. An evolutionary approach can be useful in yielding new clues to such functions as it provides an unbiased assessment of protein residues, folds, and functions. An approach is described here which indicates the greater emergence of the modern β-subunits roughly 400 million years ago in the early neurons of Bilateria and bony fish, and the unexpected presence of distant homologues in bacteriophages. Recent structural breakthroughs containing α and β eukaryotic sodium channels containing subunits suggest a novel role for a highly conserved polar contact that occurs within the transmembrane segments. Overall, a mixture of approaches will ultimately advance our understanding of the mechanism for β-subunit interactions with voltage-sensor containing ion channels and membrane proteins.

  8. The Leucine transporter from Aquifex aeolicus as a model for the Neurotransmitter Sodium Symporters – insights into function and ligand binding

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova

    In her PhD studies, Adriana K. Kantcheva looked into the structural perspective of a bacterial transporter – the leucine transporter from Aquifex aeolicus (LeuT) – which is a homologue to neurotransmitter sodium symporters (NSS) found in humans, such as the serotonin transporter. Two crystal...... structures of LeuT elucidated new insights regarding ion and substrate binding to this transporter. Studying members of the NSS family is important as these proteins are found in the central nervous system of humans at the synaptic cleft and are implicated in serious conditions such as Parkinson’s disease...

  9. Temperature dependent charge transport in poly(3-hexylthiophene) diodes

    Science.gov (United States)

    Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya

    2018-04-01

    In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.

  10. In vivo vitamin C deficiency in guinea pigs increases ascorbate transporters in liver but not kidney and brain.

    Science.gov (United States)

    Søgaard, Ditte; Lindblad, Maiken M; Paidi, Maya D; Hasselholt, Stine; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2014-07-01

    Moderate vitamin C (vitC) deficiency (plasma concentrations less than 23 μmol/L) affects as much as 10% of adults in the Western World and has been associated with an increased mortality in disease complexes such as cardiovascular disease and the metabolic syndrome. The distribution of vitC within the body is subjected to complex and nonlinear pharmacokinetics and largely depends on the sodium-dependent vitC-specific transporters, sodium-dependent vitamin C transporter 1 (SVCT1) and sodium-dependent vitamin C transporter 2 (SVCT2). Although currently not established, it is likely to expect that a state of deficiency may affect the expression of these transporters to preserve vitC concentrations in specific target tissues. We hypothesized that diet-induced states of vitC deficiency lead to alterations in the messenger RNA (mRNA) and/or protein expression of vitC transporters, thereby regulating vitC tissue distribution. Using guinea pigs as a validated model, this study investigated the effects of a diet-induced vitC deficiency (100 mg vitC/kg feed) or depletion (0 mg vitC/kg feed) on the expression of transporters SVCT1 and SVCT2 in selected tissues and the transport from plasma to cerebrospinal fluid (CSF). In deficient animals, SVCT1 was increased in the liver, whereas a decreased SVCT1 expression but increased SVCT2 mRNA in livers of depleted animals suggests a shift in transporter expression as response to the diet. In CSF, a constant plasma:CSF ratio shows unaltered vitC transport irrespective of dietary regime. The study adds novel information to the complex regulation maintaining vitC homeostasis in vivo during states of deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport

    Science.gov (United States)

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-01-01

    The importance of endosome-to–trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51–VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport. PMID:26157166

  12. The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter

    NARCIS (Netherlands)

    Mulligan, Christopher; Geertsma, Eric R.; Severi, Emmanuele; Kelly, David J.; Poolman, Bert; Thomas, Gavin H.

    2009-01-01

    Substrate-binding protein-dependent secondary transporters are widespread in prokaryotes and are represented most frequently by members of the tripartite ATP-independent periplasmic (TRAP) transporter family. Here, we report the membrane reconstitution of a TRAP transporter, the sialic acid-specific

  13. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects.

    Science.gov (United States)

    Norton, Luke; Shannon, Christopher E; Fourcaudot, Marcel; Hu, Cheng; Wang, Niansong; Ren, Wei; Song, Jun; Abdul-Ghani, Muhammad; DeFronzo, Ralph A; Ren, Jimmy; Jia, Weiping

    2017-09-01

    The sodium-glucose co-transporters (SGLTs) are responsible for the tubular reabsorption of filtered glucose from the kidney into the bloodstream. The inhibition of SGLT2-mediated glucose reabsorption is a novel and highly effective strategy to alleviate hyperglycaemia in patients with type 2 diabetes mellitus (T2DM). However, the effectiveness of SGLT2 inhibitor therapy is diminished due, in part, to a compensatory increase in the maximum reabsorptive capacity (Tm) for glucose in patients with T2DM. We hypothesized that this increase in Tm could be explained by an increase in the tubular expression of SGLT and glucose transporters (GLUT) in these patients. To examine this, we obtained human kidney biopsy specimens from patients with or without T2DM and examined the mRNA expression of SGLTs and GLUTs. The expression of SGLT1 is markedly increased in the kidney of patients with T2DM, and SGLT1 mRNA is highly and significantly correlated with fasting and postprandial plasma glucose and HbA1c. In contrast, our data demonstrate that the levels of SGLT2 and GLUT2 mRNA are downregulated in diabetic patients, but not to a statistically significant level. These important findings are clinically significant and may have implications for the treatment of T2DM using strategies that target SGLT transporters in the kidney. © 2017 John Wiley & Sons Ltd.

  14. A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT

    International Nuclear Information System (INIS)

    Abdikamalov, Ernazar; Ott, Christian D.; O'Connor, Evan; Burrows, Adam; Dolence, Joshua C.; Löffler, Frank; Schnetter, Erik

    2012-01-01

    Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.

  15. A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Abdikamalov, Ernazar; Ott, Christian D.; O' Connor, Evan [TAPIR, California Institute of Technology, MC 350-17, 1200 E California Blvd., Pasadena, CA 91125 (United States); Burrows, Adam; Dolence, Joshua C. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Loeffler, Frank; Schnetter, Erik, E-mail: abdik@tapir.caltech.edu [Center for Computation and Technology, Louisiana State University, 216 Johnston Hall, Baton Rouge, LA 70803 (United States)

    2012-08-20

    Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.

  16. Sodium retention and insulin treatment in insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Nørgaard, K; Feldt-Rasmussen, B

    1994-01-01

    subcutaneously, contributes to the increased ENa. Three studies were performed. Study 1 was a cross-sectional study comprising 28 type 1 diabetic men (aged 18-35 years) with short-duration diabetes (diabetic complications, and 22 control subjects. Study 2 was a prospective study of 17...... subcutaneous insulin infusion for improvement of glycaemic control or to remain on conventional insulin treatment. In study 1, ENa was higher in short-duration type 1 diabetic men than in controls (3003 +/- 325 vs 2849 +/- 207 mEq/1.73 m2, P ...The hypothesis that total body exchangeable sodium (ENa) is elevated in type 1 (insulin-dependent) diabetic patients with short-duration diabetes and no signs of microangiopathy was tested. Also tested was whether peripheral hyperinsulinaemia, in terms of the amounts of insulin injected...

  17. Characterization of an allosteric citalopram-binding site at the serotonin transporter

    DEFF Research Database (Denmark)

    Chen, Fenghua; Breum Larsen, Mads; Neubauer, Henrik Amtoft

    2005-01-01

    The serotonin transporter (SERT), which belongs to a family of       sodium/chloride-dependent transporters, is the major pharmacological       target in the treatment of several clinical disorders, including       depression and anxiety. In the present study we show that the dissociation       r...

  18. SOCON: a computer model for analyzing the behavior of sodium-concrete reactions

    International Nuclear Information System (INIS)

    Nguyen, D.G.; Muhlestein, L.D.

    1985-03-01

    Guided by experimental evidence available to date, ranging from basic laboratory studies to large scale tests, a mechanistic computer model (the SOCON model) has been developed to analyze the behavior of SOdium-CONcrete reactions. The model accounts for the thermal, chemical and mechanical phenomena which interact to determine the consequences of the reactions. Reaction limiting mechanisms could be any process which reduces water release and sodium transport to fresh concrete; the buildup of the inert reaction product layer would increase the resistance to sodium transport; water dry-out would decrease the bubble agitation transport mechanism. However, stress-induced failure of concrete, such as spalling, crushing and cracking, and a massive release of gaseous products (hydrogen, water vapor and CO 2 ) would increase the transport of sodium to the reaction zone. The results of SOCON calculations are in excellent agreement with measurements obtained from large-scale sodium-limestone concrete reaction tests of duration up to 100 hours conducted at the Hanford Engineering Development Laboratory. 8 refs., 7 figs

  19. CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1.

    Science.gov (United States)

    Huynh, Kevin W; Jiang, Jiansen; Abuladze, Natalia; Tsirulnikov, Kirill; Kao, Liyo; Shao, Xuesi; Newman, Debra; Azimov, Rustam; Pushkin, Alexander; Zhou, Z Hong; Kurtz, Ira

    2018-03-02

    Na + -coupled acid-base transporters play essential roles in human biology. Their dysfunction has been linked to cancer, heart, and brain disease. High-resolution structures of mammalian Na + -coupled acid-base transporters are not available. The sodium-bicarbonate cotransporter NBCe1 functions in multiple organs and its mutations cause blindness, abnormal growth and blood chemistry, migraines, and impaired cognitive function. Here, we have determined the structure of the membrane domain dimer of human NBCe1 at 3.9 Å resolution by cryo electron microscopy. Our atomic model and functional mutagenesis revealed the ion accessibility pathway and the ion coordination site, the latter containing residues involved in human disease-causing mutations. We identified a small number of residues within the ion coordination site whose modification transformed NBCe1 into an anion exchanger. Our data suggest that symporters and exchangers utilize comparable transport machinery and that subtle differences in their substrate-binding regions have very significant effects on their transport mode.

  20. Impaired sodium-dependent adaptation of arterial stiffness in formerly preeclamptic women: the RETAP-vascular study.

    Science.gov (United States)

    van der Graaf, Anne Marijn; Paauw, Nina D; Toering, Tsjitske J; Feelisch, Martin; Faas, Marijke M; Sutton, Thomas R; Minnion, Magdalena; Lefrandt, Joop D; Scherjon, Sicco A; Franx, Arie; Navis, Gerjan; Lely, A Titia

    2016-06-01

    Women with a history of preeclampsia have an increased risk for cardiovascular diseases later in life. Persistent vascular alterations in the postpartum period might contribute to this increased risk. The current study assessed arterial stiffness under low sodium (LS) and high sodium (HS) conditions in a well-characterized group of formerly early-onset preeclamptic (fPE) women and formerly pregnant (fHP) women. Eighteen fHP and 18 fPE women were studied at an average of 5 yr after pregnancy on 1 wk of LS (50 mmol Na(+)/day) and 1 wk of HS (200 mmol Na(+)/day) intake. Arterial stiffness was measured by pulse-wave analysis (aortic augmentation index, AIx) and carotid-femoral pulse-wave velocity (PWV). Circulating markers of the renin-angiotensin aldosterone system (RAAS), extracellular volume (ECV), nitric oxide (NO), and hydrogen sulfide (H2S) were measured in an effort to identify potential mechanistic elements underlying adaptation of arterial stiffness. AIx was significantly lower in fHP women on LS compared with HS while no difference in AIx was apparent in fPE women. PWV remained unchanged upon different sodium loads in either group. Comparable sodium-dependent changes in RAAS, ECV, and NO/H2S were observed in fHP and fPE women. fPE women have an impaired ability to adapt their arterial stiffness in response to changes in sodium intake, independently of blood pressure, RAAS, ECV, and NO/H2S status. The pathways involved in impaired adaptation of arterial stiffness, and its possible contribution to the increased long-term risk for cardiovascular diseases in fPE women, remain to be investigated. Copyright © 2016 the American Physiological Society.

  1. Local transport of vertically- and horizontally-emitted sodium oxide aerosols

    International Nuclear Information System (INIS)

    Fields, D.E.; Miller, C.W.; Cooper, A.C.

    1986-01-01

    Liquid-metal cooled breeder reactors are expected to use large quantities of sodium or sodium-potassium alloy, and evaluation of the possible consequences of a liquid-metal fire, henceforth referred to as a sodium fire, is an important consideration. Of particular interest is the sodium aerosol concentration at the air intake ports that are used for reactor cooling, and which might suffer restricted flow under high aerosol concentrations. We have devised and applied a methodology for estimating the concentration of aerosols released vertically and horizontally from building surfaces and monitored at other building surface points. We have used this methodology to make calculations that indicate the time-development of aerosol build-up, and the maximum aerosol concentrations, at air intake ports. Building wake effects, momentum-driven plume rise, and density-driven plume rise are considered

  2. Local transport of vertically and horizontally emitted sodium oxide aerosols

    International Nuclear Information System (INIS)

    Fields, D.E.; Miller, C.W.; Cooper, A.C.

    1986-01-01

    Liquid-metal-cooled breeder reactors are expected to use large quantities of sodium or sodium-potassium alloy, and evaluation of the possible consequences of a liquid-metal fire, henceforth referred to as a sodium fire, is an important consideration. Of particular interest is the sodium aerosol concentration at the air intake ports that are used for reactor cooling, and which might suffer restricted flow under high aerosol concentrations. The authors have devised and applied a methodology for estimating the concentration of aerosols released vertically and horizontally from building surfaces and monitored at other building surface points. This methodology has been used to make calculations that indicate the time development of aerosol buildup, and the maximum aerosol concentration, at air intake ports. Building wake effects, momentum-driven plume rise, and density-driven plume rise are considered

  3. Characterization of inorganic phosphate transport in the triple-negative breast cancer cell line, MDA-MB-231.

    Science.gov (United States)

    Russo-Abrahão, Thais; Lacerda-Abreu, Marco Antônio; Gomes, Tainá; Cosentino-Gomes, Daniela; Carvalho-de-Araújo, Ayra Diandra; Rodrigues, Mariana Figueiredo; Oliveira, Ana Carolina Leal de; Rumjanek, Franklin David; Monteiro, Robson de Queiroz; Meyer-Fernandes, José Roberto

    2018-01-01

    Recent studies demonstrate that interstitial inorganic phosphate is significantly elevated in the breast cancer microenvironment as compared to normal tissue. In addition it has been shown that breast cancer cells express high levels of the NaPi-IIb carrier (SLC34A2), suggesting that this carrier may play a role in breast cancer progression. However, the biochemical behavior of inorganic phosphate (Pi) transporter in this cancer type remains elusive. In this work, we characterize the kinetic parameters of Pi transport in the aggressive human breast cancer cell line, MDA-MB-231, and correlated Pi transport with cell migration and adhesion. We determined the influence of sodium concentration, pH, metabolic inhibitors, as well as the affinity for inorganic phosphate in Pi transport. We observed that the inorganic phosphate is dependent on sodium transport (K0,5 value = 21.98 mM for NaCl). Furthermore, the transport is modulated by different pH values and increasing concentrations of Pi, following the Michaelis-Menten kinetics (K0,5 = 0.08 mM Pi). PFA, monensin, furosemide and ouabain inhibited Pi transport, cell migration and adhesion. Taken together, these results showed that the uptake of Pi in MDA-MB-231 cells is modulated by sodium and by regulatory mechanisms of intracellular sodium gradient. General Significance: Pi transport might be regarded as a potential target for therapy against tumor progression.

  4. Spin-dependent electrical transport in Fe-MgO-Fe heterostructures

    Directory of Open Access Journals (Sweden)

    A A Shokri

    2016-09-01

    Full Text Available In this paper, spin-dependent electrical transport properties are investigated in a single-crystal magnetic tunnel junction (MTJ which consists of two ferromagnetic Fe electrodes separated by an MgO insulating barrier. These properties contain electric current, spin polarization and tunnel magnetoresistance (TMR. For this purpose, spin-dependent Hamiltonian is described for Δ1 and Δ5 bands in the transport direction. The transmission is calculated by Green's function formalism based on a single-band tight-binding approximation. The transport properties are investigated as a function of the barrier thickness in the limit of coherent tunneling. We have demonstrated that dependence of the TMR on the applied voltage and barrier thickness. Our numerical results may be useful for designing of spintronic devices. The numerical results may be useful in designing of spintronic devices.

  5. Oxygen, water, and sodium chloride transport in soft contact lenses materials.

    Science.gov (United States)

    Gavara, Rafael; Compañ, Vicente

    2017-11-01

    Oxygen permeability, diffusion coefficient of the sodium ions and water flux and permeability in different conventional hydrogel (Hy) and silicone-hydrogel (Si-Hy) contact lenses have been measured experimentally. The results showed that oxygen permeability and transmissibility requirements of the lens have been addressed through the use of siloxane containing hydrogels. In general, oxygen and sodium chloride permeability values increased with the water content of the lens but there was a percolation phenomenon from a given value of water uptake mainly in the Si-Hy lenses which appeared to be related with the differences between free water and bound water contents. The increase of ion permeability with water content did not follow a unique trend indicating a possible dependence of the chemical structure of the polymer and character ionic and non-ionic of the lens. Indeed, the salt permeability values for silicone hydrogel contact lenses were one order of magnitude below those of conventional hydrogel contact lenses, which can be explained by a diffusion of sodium ions occurring only through the hydrophilic channels. The increase of the ionic permeability in Si-Hy materials may be due to the confinement of ions in nanoscale water channels involving possible decreased degrees of freedom for diffusion of both water and ions. In general, ionic lenses presented values of ionic permeability and diffusivity higher than most non-ionic lenses. The tortuosity of the ionic lenses is lower than the non-ionic Si-Hy lenses. Frequency 55 and PureVision exhibited the highest water permeability and flux values and, these parameters were greater for ionic Si-Hy lenses than for ionic conventional hydrogel lenses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2218-2231, 2017. © 2016 Wiley Periodicals, Inc.

  6. Morphology dependent electrical transport behavior in gold nanostructures

    International Nuclear Information System (INIS)

    Alkhatib, A.; Souier, T.; Chiesa, M.

    2011-01-01

    The mechanism of electron transport in ultra-thin gold films is investigated and its dependence on the gold islands size is reported. For gold films of thickness below 38 nm, the electrical transport occurs by tunneling within electrically discontinuous islands of gold. Simmons model for metal-insulator-metal junction describes the non-ohmic experimental current-voltage curves obtained by means of conductive atomic force microscopy. Field emission is the predominant transport for thicknesses below 23 nm while direct tunneling occurs in thicker films. The transition between the two regimes is controlled by the gold islands size and their inter-distance.

  7. Multiphysics Modelling of Sodium Sulfur Battery

    Science.gov (United States)

    Mason, Jerry Hunter

    Due to global climate change and the desire to decrease greenhouse gas emissions, large scale energy storage has become a critical issue. Renewable energy sources such as wind and solar will not be a viable energy source unless the storage problem is solved. One of the practical and cost effective solutions for this problem is sodium sulfur batteries. These batteries are comprised of liquid electrode materials suspended in porous media and operate at relatively high temperatures (>300°C). The sodium anode and the sulfur/sodium-polysulfide cathode are separated by a solid electrolyte made of beta-alumina or NASICON material. Due to the use of porous materials in the electrodes, capillary pressure and the combination of capillary action and gravity become important. Capillary pressure has a strong dependence on the wetting phase (liquid electrode material) saturation; therefore sharp concentration gradients can occur between the inert gas and the electrode liquid, especially within the cathode. These concentration gradients can have direct impacts on the electrodynamics of the battery as they may produce areas of high electrical potential variation, which can decrease efficiency and even cause failures. Then, thermal management also becomes vital since the electrochemistry and material properties are sensitive to temperature gradients. To investigate these phenomena in detail and to attempt to improve upon battery design a multi-dimensional, multi-phase code has been developed and validated in this study. Then a porous media flow model is implemented. Transport equations for charge, mass and heat are solved in a time marching fashion using finite volume method. Material properties are calculated and updated as a function of time. The porous media model is coupled with the continuity equation and a separate diffusion equation for the liquid sodium in the melt. The total mass transport model is coupled with charge transport via Faraday's law. Results show that

  8. Development of industrial utilization of metallic sodium

    International Nuclear Information System (INIS)

    Yuhara, Shunichi

    1995-01-01

    Sodium exists in large quantity, being ranked to 6th in the existence proportion of elements, and takes 2.83% of the matters composing earth crust. Sodium is an alkali metal which is light weight, chemically very active and a strong reducing substance. It is excellent in the compatibility with iron and steel materials, and it possesses good heat conduction and flow characteristics and stable nuclear characteristics. Since the industrial production of sodium became practical, its utilization was developed as the reducing agent and catalyst in chemical industry, the core coolant and heat transport medium for nuclear reactors, the material composing the secondary batteries for storing electric power, and the auxiliaries for metal refining and so on. The industrial production of metallic sodium is carried out by the electrolysis of melted salt, namely Downs process. The production of metallic sodium in Japan is 3000-6000 t yearly, and its import is 300-350 t. Its main use is for organic chemical industry including dye production. The grades of metallic sodium products and their uses are shown. The utilization of sodium for large fast reactors, the utilization of NaK as the heat transport and cooling medium for space use nuclear reactors and deep sea fast reactor system, and the utilization of sodium as the catalyst in dye production, for silicon carbide fiber production and for agricultural and medical chemical production are reported. (K.I.)

  9. Toward a Mechanistic Source Term in Advanced Reactors: Characterization of Radionuclide Transport and Retention in a Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Brunett, Acacia J.; Bucknor, Matthew; Grabaskas, David

    2016-04-17

    A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooled fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide release, the

  10. An intracellular interaction network regulates conformational transitions in the dopamine transporter

    DEFF Research Database (Denmark)

    Kniazeff, Julie; Shi, Lei; Løland, Claus Juul

    2008-01-01

    Neurotransmitter:sodium symporters (NSS)(1) mediate sodium-dependent reuptake of neurotransmitters from the synaptic cleft and are targets for many psychoactive drugs. The crystal structure of the prokaryotic NSS protein, LeuT, was recently solved at high resolution; however, the mechanistic...... and the intracellular milieu. The mechanism that emerges from these findings may be unique to the NSS family, where the local disruption of ionic interactions modulates the transition of the transporter between the outward- and inward-facing conformations....

  11. Solid-State Fermentation Reduces Phytic Acid Level, Improves the Profile of Myo-Inositol Phosphates and Enhances the Availability of Selected Minerals in Flaxseed Oil Cake

    Science.gov (United States)

    2017-01-01

    Summary Flaxseed oil cake was subjected to fermentation with Rhizopus oligosporus (DSM 1964 and ATCC 64063), and the phytate (InsP6) content, myo-inositol phosphate profile and in vitro bioavailability of essential minerals were studied. Flaxseed oil cake had a phytate mass fraction of 13.9 mg/g. A 96-hour fermentation of flaxseed oil cake by R. oligosporus DSM 1964 and R. oligosporus ATCC 64063 decreased the InsP6 content by 48 and 33%, respectively. The strains had different phytate-degrading activities: fermentation of flaxseed oil cake with R. oligosporus DSM 1964 was more advantageous, yielding InsP3-5 as a predominating myo-inositol compound, while fermentation with R. oligosporus ATCC 64603 produced predominantly InsP5-6. Solid-state fermentation of flaxseed oil cake enhanced in vitro bioavailability of calcium by 14, magnesium by 3.3 and phosphorus by 2–4%. PMID:29089855

  12. Prostaglandin E2 release from dermis regulates sodium permeability of frog skin epithelium

    DEFF Research Database (Denmark)

    Rytved, Klaus A.; Brodin, Birger; Nielsen, Robert

    1995-01-01

    Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium.......Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium....

  13. Genome-Wide Identification and Analysis of Arabidopsis Sodium Proton Antiporter (NHX and Human Sodium Proton Exchanger (NHE Homologs in Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    P. Hima Kumari

    2018-05-01

    Full Text Available Na+ transporters play an important role during salt stress and development. The present study is aimed at genome-wide identification, in silico analysis of sodium-proton antiporter (NHX and sodium-proton exchanger (NHE-type transporters in Sorghum bicolor and their expression patterns under varied abiotic stress conditions. In Sorghum, seven NHX and nine NHE homologs were identified. Amiloride (a known inhibitor of Na+/H+ exchanger activity binding motif was noticed in both types of the transporters. Chromosome 2 was found to be a hotspot region with five sodium transporters. Phylogenetic analysis inferred six ortholog and three paralog groups. To gain an insight into functional divergence of SbNHX/NHE transporters, real-time gene expression was performed under salt, drought, heat, and cold stresses in embryo, root, stem, and leaf tissues. Expression patterns revealed that both SbNHXs and SbNHEs are responsive either to single or multiple abiotic stresses. The predicted protein–protein interaction networks revealed that only SbNHX7 is involved in the calcineurin B-like proteins (CBL- CBL interacting protein kinases (CIPK pathway. The study provides insights into the functional divergence of SbNHX/NHE transporter genes with tissue specific expressions in Sorghum under different abiotic stress conditions.

  14. Gate-dependent asymmetric transport characteristics in pentacene barristors with graphene electrodes.

    Science.gov (United States)

    Hwang, Wang-Taek; Min, Misook; Jeong, Hyunhak; Kim, Dongku; Jang, Jingon; Yoo, Daekyung; Jang, Yeonsik; Kim, Jun-Woo; Yoon, Jiyoung; Chung, Seungjun; Yi, Gyu-Chul; Lee, Hyoyoung; Wang, Gunuk; Lee, Takhee

    2016-11-25

    We investigated the electrical characteristics and the charge transport mechanism of pentacene vertical hetero-structures with graphene electrodes. The devices are composed of vertical stacks of silicon, silicon dioxide, graphene, pentacene, and gold. These vertical heterojunctions exhibited distinct transport characteristics depending on the applied bias direction, which originates from different electrode contacts (graphene and gold contacts) to the pentacene layer. These asymmetric contacts cause a current rectification and current modulation induced by the gate field-dependent bias direction. We observed a change in the charge injection barrier during variable-temperature current-voltage characterization, and we also observed that two distinct charge transport channels (thermionic emission and Poole-Frenkel effect) worked in the junctions, which was dependent on the bias magnitude.

  15. Spin-Dependent Transport through Chiral Molecules Studied by Spin-Dependent Electrochemistry

    Science.gov (United States)

    2016-01-01

    Conspectus Molecular spintronics (spin + electronics), which aims to exploit both the spin degree of freedom and the electron charge in molecular devices, has recently received massive attention. Our recent experiments on molecular spintronics employ chiral molecules which have the unexpected property of acting as spin filters, by way of an effect we call “chiral-induced spin selectivity” (CISS). In this Account, we discuss new types of spin-dependent electrochemistry measurements and their use to probe the spin-dependent charge transport properties of nonmagnetic chiral conductive polymers and biomolecules, such as oligopeptides, L/D cysteine, cytochrome c, bacteriorhodopsin (bR), and oligopeptide-CdSe nanoparticles (NPs) hybrid structures. Spin-dependent electrochemical measurements were carried out by employing ferromagnetic electrodes modified with chiral molecules used as the working electrode. Redox probes were used either in solution or when directly attached to the ferromagnetic electrodes. During the electrochemical measurements, the ferromagnetic electrode was magnetized either with its magnetic moment pointing “UP” or “DOWN” using a permanent magnet (H = 0.5 T), placed underneath the chemically modified ferromagnetic electrodes. The spin polarization of the current was found to be in the range of 5–30%, even in the case of small chiral molecules. Chiral films of the l- and d-cysteine tethered with a redox-active dye, toludin blue O, show spin polarizarion that depends on the chirality. Because the nickel electrodes are susceptible to corrosion, we explored the effect of coating them with a thin gold overlayer. The effect of the gold layer on the spin polarization of the electrons ejected from the electrode was investigated. In addition, the role of the structure of the protein on the spin selective transport was also studied as a function of bias voltage and the effect of protein denaturation was revealed. In addition to

  16. Porters and neurotransmitter transporters.

    Science.gov (United States)

    Nelson, N; Lill, H

    1994-11-01

    Uptake of neurotransmitters involves multiple transporters acting in different brain locations under different physiological conditions. The vesicular transporters are driven by a proton-motive force generated by a V-ATPase and their substrates are taken up via proton/substrate exchange. The plasma membrane transporters are driven by an electrochemical gradient of sodium generated by a Na+/K(+)-ATPase. Two distinct families of transporters were identified in this group. One cotransports sodium with glutamate and other amino acids and requires additionally an outwardly directed potassium gradient. The second cotransports sodium, chloride and a variety of neurotransmitters, including gamma-aminobutyric acid (GABA), glycine and monoamines. Genes and cDNA encoding several members of the latter family have been cloned and studied in detail. The structure and function as well as the evolutionary relationships among these neurotransmitter transporters are discussed.

  17. Total-body sodium and sodium excess

    International Nuclear Information System (INIS)

    Aloia, J.F.; Cohn, S.H.; Abesamis, C.; Babu, T.; Zanzi, I.; Ellis, K.

    1980-01-01

    Total-body levels of sodium (TBNa), chlorine (TBCI), calcium (TBCa), and potassium (TBK) were measured by neutron activation and analysis of results by whole body counting in 66 postmenopausal women. The relationship between TBNa, and TBCl, TBK, and TBCa on the one hand, and height and weight on the other, were found to compare with those previously reported. The hypothesis that TBNa and TBCl are distributed normally could not be rejected. The sodium excess (Na/sub es/) is defined as the sodium that is present in excess of that associated with the extracellular fluid (chlorine) space; the Na/sub es/ approximates nonexchangeable bone sodium. In these 66 postmenopausal women, and in patients with different endocrinopathies previously described, the values on Na/sub es/ did not differ from the normal values except in the thyrotoxicosis patients, where they were decreased. A close relationship between Na/sub es/ and TBCa was maintained in the endocrinopathies studied. This relationship was found in conditions accompanied by either an increment or a loss of skeletal mass. It appears that the NA/sub es/ value is primarily dependent upon the calcium content of bone

  18. Construction of bioartificial renal tubule assist device in vitro and its function of transporting sodium and glucose.

    Science.gov (United States)

    Dong, Xinggang; Chen, Jianghua; He, Qiang; Yang, Yi; Zhang, Wei

    2009-08-01

    To explore a new way of constructing bioartificial renal tubule assist device (RAD) in vitro and its function of transporting sodium (Na(+)) and glucose and to evaluate the application of atomic force microscope in the RAD construction, rat renal tubular epithelial cell line NRK-52E was cultured in vitro, seeded onto the outer surfaces of hollow fibers in a bioreactor, and then cultured for two weeks to construct RAD. Bioreactor hollow fibers without NRK-52E cells were used as control. The morphologies of attached cells were observed with scanning electron microscope, and the junctions of cells and polysulfone membrane were observed with atomic force microscope. Transportation of Na(+) and glucose was measured. Oubaine and phlorizin were used to inhibit the transporting property. The results showed that NRK-52E cells and polysulfone membrane were closely linked, as observed under atomic force microscope. After exposure to oubaine and phlorizin, transporting rates of Na(+) and glucose were decreased significantly in the RAD group as compared with that in the control group (Pconstructed successfully in vitro, and it is able to selectively transport Na(+) and glucose.

  19. Removal of sodium from the component of the sodium purification loop

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Kyung Chai; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun

    2005-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Several types of failures due to improper cleaning procedures have been defined in the past. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either the intergranular penetration characteristic of a high-oxygen sodium or an accelerated corrosion due to oxygen. The methods used for cleaning sodium equipment depend on the condition and types of equipment to be cleaned and whether the equipment is to be reused. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, chemical, physical, or mechanical damage, and external effects. This paper discusses a steam-nitrogen gas cleaning method for the routine applications that permits the reuse of the cold trap in sodium

  20. Role of aquaporin and sodium channel in pleural water movement.

    Science.gov (United States)

    Jiang, Jinjun; Hu, Jie; Bai, Chunxue

    2003-12-16

    The role of the ENaC sodium channel and aquaporin-1 (AQP1) water channel on pleural fluid dynamics in mice was investigated. 0.25 ml of hypertonic or isosmolar fluid was infused into the pleural space in anesthetized wildtype and AQP1 null mice. Pleural fluid was sampled at specified times to quantify the osmolality and volume. The sodium channel activator terbutaline increased isosmolar fluid clearance by 90% while the sodium channel inhibitor amiloride decreased it by 15%, but had no effect on osmotically driven water transport. AQP1 deletion significantly decreased osmotic water transport in pleural space by twofold, but it had no effect on isosmolar fluid clearance. Pretreatment with dexamethasone increased pleural osmotic fluid entry by 25%, while intravenous injection of HgCl2 decreased osmotic pleural water movement by 43%. These results provided evidence for a role of a sodium channel in pleural fluid absorption; AQP1 plays a major role in osmotic liquid transport but it does not affect isosmolar fluid clearance.

  1. Field dependent spin transport of anisotropic Heisenberg chain

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, H., E-mail: rezania.hamed@gmail.com

    2016-04-01

    We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters. - Highlights: • Theoretical calculation of spin conductivity of spin chain Heisenberg model. • The investigation of the effects of anisotropy and magnetic field on the temperature dependence of spin conductivity. • The study of the effect of temperature on the spin Drude weight.

  2. Molecular cloning, expression and characterization of a bovine serotonin transporter

    DEFF Research Database (Denmark)

    Mortensen, O V; Kristensen, A S; Rudnick, G

    1999-01-01

    The serotonin transporter (SERT) is a member of a highly homologous family of sodium/chloride dependent neurotransmitter transporters responsible for reuptake of biogenic amines from the extracellular fluid. SERT constitutes the pharmacological target of several clinically important antidepressan......-methylenedioxymethamphetamine (MDMA) was mainly unchanged. RT-PCR amplification of RNA from different tissues demonstrated expression of SERT in placenta, brain stem, bone marrow, kidney, lung, heart, adrenal gland, liver, parathyroid gland, thyroid gland, small intestine and pancreas....

  3. Structural Dependence of Physical Properties in Sodium Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, Marcel; Mauro, John C.

    Boroaluminosilicate glasses have found applications in many fields. The extent and nature of the mixing of network formers like SiO2, B2O3, and Al2O3 play an important role in controlling the macroscopic properties. To understand the structure-property correlations in these glasses, we study...... a series of sodium boroaluminosilicate glasses with various [Al2O3]/[SiO2] ratios to access different regimes of sodium behavior. We determine dynamic properties, elastic moduli, and hardness of these glasses. The results reveal an existence of local minimum for density, fragility index, Young’s and shear...

  4. Thermophysical properties of sodium

    International Nuclear Information System (INIS)

    Harant, M.

    1978-01-01

    Substitution, inverse and substitution inverse relations in form of regression polynomials were used in calculating saturation pressure and density for thermodynamic and transport properties determination of sodium. Program UNISOAUT/A3 was used in calculating regression polynomials coefficients. (J.P.)

  5. Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT

    Science.gov (United States)

    Hu, Nien-Jen; Iwata, So; Cameron, Alexander D.; Drew, David

    2011-01-01

    High cholesterol levels greatly increase the risk of cardiovascular disease. By its conversion into bile acids, about 50% of cholesterol is eliminated from the body. However bile acids released from the bile duct are constantly recycled, being reabsorbed in the intestine via the Apical Sodium dependent Bile acid Transporter (ASBT). It has been shown in animal models that plasma cholesterol levels are significantly lowered by specific inhibitors of ASBT1,2, thus ASBT is a target for hypercholesterolemia drugs. Here, we describe the crystal structure of a bacterial homologue of ASBT from Neisseria meningitidis (ASBTNM) at 2.2Å. ASBTNM contains two inverted structural repeats of five transmembrane helices. A Core domain of six helices harbours two sodium ions while the remaining helices form a Panel-like domain. Overall the architecture of the protein is remarkably similar to the sodium-proton antiporter NhaA3 despite no detectable sequence homology. A bile acid molecule is situated between the Core and Panel domains in a large hydrophobic cavity. Residues near to this cavity have been shown to affect the binding of specific inhibitors of human ASBT4. The position of the bile acid together with the molecular architecture suggests the rudiments of a possible transport mechanism. PMID:21976025

  6. Some problems of leaks in sodium-water steam generator

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Sergeev, G.V.; Sednev, A.R.; Makarov, V.M.

    1976-01-01

    The paper contains data on wastage of steam generator structural materials and high-nickel alloys in the zone of water leakage into sodium as well as investigation results for self-enlargement of water leaks into sodium through defects in these materials. It is shown that the rate of material damage in the zone of sodium-water reaction and in the channel with water leaking-out decreases with increasing nickel content in steels and strongly depends on sodium temperature. The paper presents experimentally obtained dependences of leakage self-enlargement rates on sodium temperature and leakage size

  7. Functional interaction between CFTR and the sodium-phosphate co-transport type 2a in Xenopus laevis oocytes.

    Directory of Open Access Journals (Sweden)

    Naziha Bakouh

    Full Text Available A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR. CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes.NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression.We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in phosphate homeostasis.

  8. Calculation of thermophysical properties of sodium

    International Nuclear Information System (INIS)

    Fink, J.K.; Leibowitz, L.

    1981-01-01

    The thermodynamic properties of sodium previously recommended by Padilla have been updated. As much as possible, the approach described by Padilla has been used. For sodium in the states of saturated liquid and vapor, subcooled liquid and superheated vapor, the following thermodynamic properties were determined: enthalpy, heat capacity (constant pressure and constant volume), pressure, density, thermal-expansion coefficient, and compressibility (adiabatic and isothermal). In addition to the above properties, thermodynamic properties including heat of fusion, heat of vaporization, surface tension, speed of sound and transport properties of themal conductivity, thermal diffusivity, emissivity, and viscosity were determined for saturated sodium

  9. Gram-scale solution-phase synthesis of selective sodium bicarbonate Co-transport Inhibitor S0859

    DEFF Research Database (Denmark)

    Larsen, Ann Møller; Krogsgaard-Larsen, Niels; Lauritzen, Gitte

    2012-01-01

    Na+-coupled HCO3- transporters (NBCs) mediate the transport of bicarbonate ions across cell membranes and are thus ubiquitous regulators of intracellular pH. NBC dysregulation is associated with a range of diseases; for instance, NBCn1 is strongly up-regulated in a model of ErbB2-dependent breast...

  10. Mapping of sodium void worth and doppler effect for sodium-cooled fast reactor - 15458

    International Nuclear Information System (INIS)

    Krepel, J.; Pelloni, S.; Bortot, S.; Panadero, A.L.; Mikityuk, K.

    2015-01-01

    The sodium-cooled fast reactor (SFR) represents the reference and the most technologically mastered system among the Generation-IV reactors. Nevertheless, the sodium void worth in the fuel regions of SFR is usually positive. To overcome this safety drawback, low-void sodium-cooled fast spectrum core (CFV) was proposed by CEA. Such a CFV core is used in the frame of WP6 'Core safety' of the FP7 Euratom ESNII+ project as a reference SFR design. The overall sodium void effect is negative for the CFV core. Nevertheless, locally it is positive in the fuel region and negative in the sodium plenum. Similarly, also the Doppler effect is spatially dependent and it varies between the inner and outer fuel regions and between the middle and lower blankets. Accordingly, knowledge of the local distributions or actually mappings of the two safety-related parameters will be necessary, before safety assessment and transient analysis can be done. In this study these maps have been produced using the deterministic code ERANOS. The obtained mapping shows strong local dependency of both safety-related effects. A sensitivity of the void effect to the sodium plenum modeling was also demonstrated. The results may serve as an input for the transient analysis of the CFV core or as a cross-check for the Monte Carlo method based maps. (authors)

  11. Aldosterone-induced signalling and cation transport in the distal nephron.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2008-10-01

    Aldosterone is an important regulator of Na(+) and K(+) transport in the distal nephron modulating the surface expression of transporters through the action of the mineralocorticoid receptor as a ligand-dependent transcription factor. Aldosterone stimulates the rapid activation of protein kinase-based signalling cascades that modulate the genomic effects of the hormone. Evidence is accumulating about the multi-factorial regulation of the epithelial sodium channel (ENaC) by aldosterone. Recent published data suggests that the activation of a novel PKC\\/PKD signalling pathway through the c-Src-dependent trans-activation of epidermal growth factor receptor contributes to early ENaC trafficking in response to aldosterone.

  12. Selective Ionic Transport Pathways in Phosphorene.

    Science.gov (United States)

    Nie, Anmin; Cheng, Yingchun; Ning, Shoucong; Foroozan, Tara; Yasaei, Poya; Li, Wen; Song, Boao; Yuan, Yifei; Chen, Lin; Salehi-Khojin, Amin; Mashayek, Farzad; Shahbazian-Yassar, Reza

    2016-04-13

    Despite many theoretical predictions indicating exceptionally low energy barriers of ionic transport in phosphorene, the ionic transport pathways in this two-dimensional (2D) material has not been experimentally demonstrated. Here, using in situ aberration-corrected transmission electron microscopy (TEM) and density functional theory, we studied sodium ion transport in phosphorene. Our high-resolution TEM imaging complemented by electron energy loss spectroscopy demonstrates a precise description of anisotropic sodium ions migration along the [100] direction in phosphorene. This work also provides new insight into the effect of surface and the edge sites on the transport properties of phosphorene. According to our observation, the sodium ion transport is preferred in zigzag edge rather than the armchair edge. The use of this highly selective ionic transport property may endow phosphorene with new functionalities for novel chemical device applications.

  13. Transport pathways and enhancement mechanisms within localized and non-localized transport regions in skin treated with low-frequency sonophoresis and sodium lauryl sulfate.

    Science.gov (United States)

    Polat, Baris E; Figueroa, Pedro L; Blankschtein, Daniel; Langer, Robert

    2011-02-01

    Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyzing LTR, non-LTR, and total skin samples treated at multiple LFS frequencies, we found that the pore radii (r(pore)) within non-LTRs are frequency-independent, ranging from 18.2 to 18.5 Å, but significantly larger than r(pore) of native skin samples (13.6 Å). Conversely, r(pore) within LTRs increase significantly with decreasing frequency from 161 to 276 Å and to ∞ (>300 Å) for LFS/SLS-treated skin at 60, 40, and 20 kHz, respectively. Our findings suggest that different mechanisms contribute to skin permeability enhancement within each skin region. We propose that the enhancement mechanism within LTRs is the frequency-dependent process of cavitation-induced microjet collapse at the skin surface, whereas the increased r(pore) values in non-LTRs are likely due to SLS perturbation, with enhanced penetration of SLS into the skin resulting from the frequency-independent process of microstreaming. Copyright © 2010 Wiley-Liss, Inc.

  14. Transport Pathways and Enhancement Mechanisms within Localized and Non-Localized Transport Regions in Skin Treated with Low-Frequency Sonophoresis and Sodium Lauryl Sulfate

    Science.gov (United States)

    Polat, Baris E.; Figueroa, Pedro L.; Blankschtein, Daniel; Langer, Robert

    2011-01-01

    Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyzing LTR, non-LTR, and total skin samples treated at multiple LFS frequencies, we found that the pore radii (rpore) within non-LTRs are frequency-independent, ranging from 18.2 – 18.5 Å, but significantly larger than rpore of native skin samples (13.6 Å). Conversely, rpore within LTRs increases significantly with decreasing frequency from 161 Å, to 276 Å, and to ∞ (>300Å) for LFS/SLS-treated skin at 60 kHz, 40 kHz, and 20 kHz, respectively. Our findings suggest that different mechanisms contribute to skin permeability enhancement within each skin region. We propose that the enhancement mechanism within LTRs is the frequency-dependent process of cavitation-induced microjet collapse at the skin surface, while the increased rpore values in non-LTRs are likely due to SLS perturbation, with enhanced penetration of SLS into the skin resulting from the frequency-independent process of microstreaming. PMID:20740667

  15. Metaflumizone is a novel sodium channel blocker insecticide.

    Science.gov (United States)

    Salgado, V L; Hayashi, J H

    2007-12-15

    Metaflumizone is a novel semicarbazone insecticide, derived chemically from the pyrazoline sodium channel blocker insecticides (SCBIs) discovered at Philips-Duphar in the early 1970s, but with greatly improved mammalian safety. This paper describes studies confirming that the insecticidal action of metaflumizone is due to the state-dependent blockage of sodium channels. Larvae of the moth Spodoptera eridania injected with metaflumizone became paralyzed, concomitant with blockage of all nerve activity. Furthermore, tonic firing of abdominal stretch receptor organs from Spodoptera frugiperda was blocked by metaflumizone applied in the bath, consistent with the block of voltage-dependent sodium channels. Studies on native sodium channels, in primary-cultured neurons isolated from the CNS of the larvae of the moth Manduca sexta and on Para/TipE sodium channels heterologously expressed in Xenopus (African clawed frog) oocytes, confirmed that metaflumizone blocks sodium channels by binding selectively to the slow-inactivated state, which is characteristic of the SCBIs. The results confirm that metaflumizone is a novel sodium channel blocker insecticide.

  16. Circadian Regulation of Glutamate Transporters

    Directory of Open Access Journals (Sweden)

    Donají Chi-Castañeda

    2018-06-01

    Full Text Available L-glutamate is the major excitatory amino acid in the mammalian central nervous system (CNS. This neurotransmitter is essential for higher brain functions such as learning, cognition and memory. A tight regulation of extra-synaptic glutamate levels is needed to prevent a neurotoxic insult. Glutamate removal from the synaptic cleft is carried out by a family of sodium-dependent high-affinity transporters, collectively known as excitatory amino acid transporters. Dysfunction of glutamate transporters is generally involved in acute neuronal injury and neurodegenerative diseases, so characterizing and understanding the mechanisms that lead to the development of these disorders is an important goal in the design of novel treatments for the neurodegenerative diseases. Increasing evidence indicates glutamate transporters are controlled by the circadian system in direct and indirect manners, so in this contribution we focus on the mechanisms of circadian regulation (transcriptional, translational, post-translational and post-transcriptional regulation of glutamate transport in neuronal and glial cells, and their consequence in brain function.

  17. The accuracy of time dependent transport equation ergodic approximation

    International Nuclear Information System (INIS)

    Stancic, V.

    1995-01-01

    In order to predict the accuracy of the ergodic approximation for solving the time dependent transport equation, a comparison with respect to multiple collision and time finite difference methods, has been considered. (author)

  18. Sodium-Glucose linked transporter 2 (SGLT2) inhibitors--fighting diabetes from a new perspective.

    Science.gov (United States)

    Angelopoulos, Theodoros P; Doupis, John

    2014-06-01

    Sodium-Glucose linked transporter 2 (SGLT2) inhibitors are a new family of antidiabetic pharmaceutical agents whose action is based on the inhibition of the glucose reabsorption pathway, resulting in glucosuria and a consequent reduction of the blood glucose levels, in patients with type 2 diabetes mellitus. Apart from lowering both fasting and postprandial blood glucose levels, without causing hypoglycemia, SGLT2 inhibitors have also shown a reduction in body weight and the systolic blood pressure. This review paper explores the renal involvement in glucose homeostasis providing also the latest safety and efficacy data for the European Medicines Agency and U.S. Food and Drug Administration approved SGLT2 inhibitors, looking, finally, into the future of this novel antidiabetic category of pharmaceutical agents.

  19. Polymorphisms in sodium-dependent vitamin C transporter genes and plasma, aqueous humor and lens nucleus ascorbate concentrations in an ascorbate depleted setting.

    Science.gov (United States)

    Senthilkumari, Srinivasan; Talwar, Badri; Dharmalingam, Kuppamuthu; Ravindran, Ravilla D; Jayanthi, Ramamurthy; Sundaresan, Periasamy; Saravanan, Charu; Young, Ian S; Dangour, Alan D; Fletcher, Astrid E

    2014-07-01

    We have previously reported low concentrations of plasma ascorbate and low dietary vitamin C intake in the older Indian population and a strong inverse association of these with cataract. Little is known about ascorbate levels in aqueous humor and lens in populations habitually depleted of ascorbate and no studies in any setting have investigated whether genetic polymorphisms influence ascorbate levels in ocular tissues. Our objectives were to investigate relationships between ascorbate concentrations in plasma, aqueous humor and lens and whether these relationships are influenced by Single Nucleotide Polymorphisms (SNPs) in sodium-dependent vitamin C transporter genes (SLC23A1 and SLC23A2). We enrolled sixty patients (equal numbers of men and women, mean age 63 years) undergoing small incision cataract surgery in southern India. We measured ascorbate concentrations in plasma, aqueous humor and lens nucleus using high performance liquid chromatography. SLC23A1 SNPs (rs4257763, rs6596473) and SLC23A2 SNPs (rs1279683 and rs12479919) were genotyped using a TaqMan assay. Patients were interviewed for lifestyle factors which might influence ascorbate. Plasma vitamin C was normalized by a log10 transformation. Statistical analysis used linear regression with the slope of the within-subject associations estimated using beta (β) coefficients. The ascorbate concentrations (μmol/L) were: plasma ascorbate, median and inter-quartile range (IQR), 15.2 (7.8, 34.5), mean (SD) of aqueous humor ascorbate, 1074 (545) and lens nucleus ascorbate, 0.42 (0.16) (μmol/g lens nucleus wet weight). Minimum allele frequencies were: rs1279683 (0.28), rs12479919 (0.30), rs659647 (0.48). Decreasing concentrations of ocular ascorbate from the common to the rare genotype were observed for rs6596473 and rs12479919. The per allele difference in aqueous humor ascorbate for rs6596473 was -217 μmol/L, p humor ascorbate were higher for the GG genotype of rs6596473: GG, β = 1460 compared to

  20. Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3

    Science.gov (United States)

    Rosas-Santiago, Paul; Lagunas-Gómez, Daniel; Barkla, Bronwyn J.; Vera-Estrella, Rosario; Lalonde, Sylvie; Jones, Alexander; Frommer, Wolf B.; Zimmermannova, Olga; Sychrová, Hana; Pantoja, Omar

    2015-01-01

    Membrane proteins are synthesized and folded in the endoplasmic reticulum (ER), and continue their path to their site of residence along the secretory pathway. The COPII system has been identified as a key player for selecting and directing the fate of membrane and secretory cargo proteins. Selection of cargo proteins within the COPII vesicles is achieved by cargo receptors. The cornichon cargo receptor belongs to a conserved protein family found in eukaryotes that has been demonstrated to participate in the selection of integral membrane proteins as cargo for their correct targeting. Here it is demonstrated at the cellular level that rice cornichon OsCNIH1 interacts with OsHKT1;3 and, in yeast cells, enables the expression of the sodium transporter to the Golgi apparatus. Physical and functional HKT–cornichon interactions are confirmed by the mating-based split ubiquitin system, bimolecular fluorescence complementation, and Xenopus oocyte and yeast expression systems. The interaction between the two proteins occurs in the ER of plant cells and their co-expression in oocytes leads to the sequestration of the transporter in the ER. In the yeast cornichon mutant erv14, OsHKT1;3 is mistargeted, preventing the toxic effects of sodium transport in the cell observed in wild-type cells or in the erv14 mutant that co-expressed OsHKT1;3 with either OsCNIH1 or Erv14p. Identification and characterization of rice cornichon as a possible cargo receptor opens up the opportunity to improve our knowledge on membrane protein targeting in plant cells. PMID:25750424

  1. Mechanical Design Features of the KALIMER-600 Sodium-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Park, Chang Gyu; Kim, Jong Bum [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    KALIMER-600 is a sodium cooled reactor with a fast spectrum neutron reactor core. The NSSS design has three heat transport systems of a PHTS (Primary Heat Transport System), a IHTS (Intermediate Heat Transport System) and a SGS (Steam Generation System). PHTS is a pool type and has a large amount of sodium in the pool. The mechanical design targets are maintaining the enough structural integrity for a seismic load of SSE 0.3g and the thermal and mechanical loads by the high temperature environments and an economical competitiveness when compared with other reactor types.

  2. Mechanical Design Features of the KALIMER-600 Sodium-Cooled Reactor

    International Nuclear Information System (INIS)

    Lee, Jae Han; Park, Chang Gyu; Kim, Jong Bum

    2005-01-01

    KALIMER-600 is a sodium cooled reactor with a fast spectrum neutron reactor core. The NSSS design has three heat transport systems of a PHTS (Primary Heat Transport System), a IHTS (Intermediate Heat Transport System) and a SGS (Steam Generation System). PHTS is a pool type and has a large amount of sodium in the pool. The mechanical design targets are maintaining the enough structural integrity for a seismic load of SSE 0.3g and the thermal and mechanical loads by the high temperature environments and an economical competitiveness when compared with other reactor types

  3. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin

    Science.gov (United States)

    Chia, Pei Zhi Cheryl; Gasnereau, Isabelle; Lieu, Zi Zhao; Gleeson, Paul A.

    2011-01-01

    The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin–TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail. PMID:21693586

  4. Effects of sodium hypochlorite associated with EDTA and etidronate on apical root transportation.

    Science.gov (United States)

    Silva e Souza, P A R; das Dores, R S E; Tartari, T; Pinheiro, T P S; Tuji, F M; Silva e Souza, M H

    2014-01-01

    To evaluate the influence of sodium hypochlorite associated with EDTA and etidronate on apical root transportation. Forty-five roots of human mandibular molars with curvatures of 15-25° were embedded in acrylic resin to allow standardized angulation of the initial and final radiographs. The pre-instrumentation radiographs of the mesiobuccal canal of each root were taken using a radiograph digital sensor with a size 15 K-file in the canal. The canals were prepared with the ProTaper Universal system (Dentsply Maillefer, Ballaigues, Switzerland), using one of the following irrigation regimens during the instrumentation (n = 15): G1 - irrigation with 20 mL of saline solution (control); G2 - alternating irrigation with 2.5% hypochlorite solution (NaOCl) (15 mL); and 17% ethylenediaminetetraacetic acid (EDTA) (5 mL). During instrumentation, the canal was filled with NaOCl and then between each exchange of instrument filled with EDTA for 1 min, and G3 - irrigation with 20 mL of 5% NaOCl and 18% etidronate solution (HEBP) mixed in equal parts. The postinstrumentation radiographs were made with a F3 instrument in the canal. The images were magnified and superposed with Adobe Photoshop software (Adobe Systems, Mountain View, CA, USA). Apical transportation was determined with AutoCAD 2012 software (Autodesk Inc., San Rafael, CA, USA) by measuring the distance in millimetres between the tips of the instruments. The results were subjected to the nonparametric statistical Kruskal-Wallis test (α < 0.05). The median transportation and interquartile range values were 0.00 ± 0.05 for G1, 0.08 ± 0.23 for G2 and 0.13 ± 0.14 for G3. Comparison between groups showed that apical transportation in G3 was significantly greater than in G1 (P < 0.05). The use of NaOCl associated with etidronate increased apical transportation in the canals of extracted teeth. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Analytical study of sodium combustion phenomena under sodium leak accidents

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, J. Y.; Jeong, K. C.; Kim, T. J.; Choi, J. H.

    2001-12-01

    The rise of temperature and pressure, the release of aerosol in the buildings as a result of sodium fire must be considered for the safety measures of LMR. Therefore for the safety of the LMR, it is necessary to understand the characteristics of sodium fire, resulting from the various type of leakage. ASSCOPS(Analysis of Simultaneous Sodium Combustion in Pool and Spray) is the computer code for the analysis of the thermal consequence of sodium leak and fire in LMR that has been developed by Japan Nuclear Cycle Development Institute(JNC) in Japan. In this study, a preliminary analysis of sodium leak and fire accidents in S/G building of KALIMER is made by using ASSCOPS code. Various phenomena of interest are spray and pool burning, peak pressure, temperature change, local structure temperature, aerosol behavior, drain system into smothering tank, ventilation characteristics at each cell with the safety venting system and nitrogen injection system. In this calculation, the dimension of the S/G building was chosen in accordance with the selected options of LMR name KALIMER(Korea). As a result of this study, it was shown that subsequent effect of sodium fire depended upon whether the sodium continued to leak from the pipe or not, whether the ventilation system was running, whether the inert gas injection system was provided, whether the sodium on floor was drained into the smothering tank or not, whether the building was sealed or not, etc. Specially the excessive rise of pressure into each cell was prevented by installing the pressure release plates on wall of the building

  6. Radiological transportation risk assessment of the shipment of sodium-bonded fuel from the Fast Flux Test Facility to the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Green, J.R.

    1995-01-01

    This document was written in support of Environmental Assessment: Shutdown of the Fast Flux Test Facility (FFTF), Hanford Site, Richland, Washington. It analyzes the potential radiological risks associated with the transportation of sodium-bonded metal alloy and mixed carbide fuel from the FFTF on the Hanford Site in Washington State to the Idaho Engineering Laboratory in Idaho in the T-3 Cask. RADTRAN 4 is used for the analysis which addresses potential risk from normal transportation and hypothetical accident scenarios

  7. Radiological transportation risk assessment of the shipment of sodium-bonded fuel from the Fast Flux Test Facility to the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.R.

    1995-01-31

    This document was written in support of Environmental Assessment: Shutdown of the Fast Flux Test Facility (FFTF), Hanford Site, Richland, Washington. It analyzes the potential radiological risks associated with the transportation of sodium-bonded metal alloy and mixed carbide fuel from the FFTF on the Hanford Site in Washington State to the Idaho Engineering Laboratory in Idaho in the T-3 Cask. RADTRAN 4 is used for the analysis which addresses potential risk from normal transportation and hypothetical accident scenarios.

  8. FFTF sodium and cover gas characterization and purification

    International Nuclear Information System (INIS)

    McCown, J.J.; Bloom, G.R.; Meadows, G.E.; Mettler, G.W.

    1980-02-01

    The FFTF Primary and Secondary Heat Transport System (HTS) sodium is purified with cold traps which have packed crystallizers and external economizers. The Primary HTS cold trap is NaK cooled and the Secondary HTS cold traps are air cooled. The FFTF cold traps have maintained high purity in the sodium since sodium fill. Plant operational procedures during fill and initial sodium heatup to 800 0 F were controlled to assure low release rates of impurities to the sodium. The FFTF sodium systems are monitored by plugging temperature indicators and by several sampling methods. During reactor fill and non-fueled operations at 400 to 800 0 F, impurity changes in the sodium were followed by continuous plugging indicator coverage, by exposing wires and foils to measure carbon, hydrogen and oxygen, and by bulk sample analysis of all other trace constituents. The sampling and analysis methods and data are presented, impurity excursions in the cover gas and sodium are described, and impurity trends are discussed

  9. The sea anemone Bunodosoma caissarum toxin BcIII modulates the sodium current kinetics of rat dorsal root ganglia neurons and is displaced in a voltage-dependent manner.

    Science.gov (United States)

    Salceda, Emilio; López, Omar; Zaharenko, André J; Garateix, Anoland; Soto, Enrique

    2010-03-01

    Sea anemone toxins bind to site 3 of the sodium channels, which is partially formed by the extracellular linker connecting S3 and S4 segments of domain IV, slowing down the inactivation process. In this work we have characterized the actions of BcIII, a sea anemone polypeptide toxin isolated from Bunodosoma caissarum, on neuronal sodium currents using the patch clamp technique. Neurons of the dorsal root ganglia of Wistar rats (P5-9) in primary culture were used for this study (n=65). The main effects of BcIII were a concentration-dependent increase in the sodium current inactivation time course (IC(50)=2.8 microM) as well as an increase in the current peak amplitude. BcIII did not modify the voltage at which 50% of the channels are activated or inactivated, nor the reversal potential of sodium current. BcIII shows a voltage-dependent action. A progressive acceleration of sodium current fast inactivation with longer conditioning pulses was observed, which was steeper as more depolarizing were the prepulses. The same was observed for other two anemone toxins (CgNa, from Condylactis gigantea and ATX-II, from Anemonia viridis). These results suggest that the binding affinity of sea anemone toxins may be reduced in a voltage-dependent manner, as has been described for alpha-scorpion toxins. (c) 2009 Elsevier Inc. All rights reserved.

  10. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  11. Quantification of plasma myo-inositol using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Guo, Jin; Shi, Yingfei; Xu, Chengbao; Zhong, Rugang; Zhang, Feng; Zhang, Ting; Niu, Bo; Wang, Jianhua

    2016-09-01

    Myo-inositol (MI) deficiency is associated with an increased risk for neural tube defects (NTDs), mental disorders and metabolic diseases. We developed a gas chromatography-mass spectrometry (GC-MS) method to detect MI in human plasma, which was accurate, relatively efficient and convenient for clinical application. An external standard method was used for determination of plasma MI. Samples were analyzed by GC-MS after derivatization. The stable-isotope labeled internal standard approach was used to validate the method's accuracy. Alpha fetal protein (AFP) was detected by chemiluminescence immunoassay. The method was validated by determining the linearity, sensitivity and recovery rate. There was a good agreement between the internal standard approach and the present method. The NTD-affected pregnancies showed lower plasma MI (P=0.024) and higher AFP levels (P=0.001) than control. Maternal MI level showed a better discrimination in spina bifida subgroup, while AFP level showed a better discrimination in anencephaly subgroup after stratification analysis. We developed a sensitive and reliable method for the detection of clinical plasma MI, which might be a marker for NTDs screening, and established fundamental knowledge for clinical diagnosis and prevention for the diseases related to disturbed MI metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Evidence of independent action of neurohypophyseal peptides on osmotic water flow and active sodium transport in the same target organ: studies on RANA esculenta skin and bladder (1961)

    International Nuclear Information System (INIS)

    Bourguet, J.; Maetz, J.

    1961-01-01

    Neurohypophyseal peptides produce on the skin and bladder of certain amphibia simultaneous increases of the passive osmotic permeability to water and active transport of sodium. The present work shows that oxytocin and two of its analogues arginine-8-oxytocin (arginine vasotocin) and lysine-8-oxytocin (lysine vasotocin) may produce the same increase of water permeability, while stimulating in quite different ways the sodium transport. This is the case for both skin and bladder. In other words, there is no correlation between natriferic and hydro-osmotic activities. The results are interpreted as evidence that neurohypophyseal hormones act on not one, as previously assumed, but two targets, inside the same epithelial cell. (author) [fr

  13. Expression of the Sodium/Calcium/Potassium Exchanger, NCKX4, in Ameloblasts

    Science.gov (United States)

    Hu, Ping; Lacruz, Rodrigo S.; Smith, Charles E.; Smith, Susan M.; Kurtz, Ira; Paine, Michael L.

    2012-01-01

    Transcellular calcium transport is an essential activity in mineralized tissue formation, including dental hard tissues. In many organ systems, this activity is regulated by membrane-bound sodium/calcium (Na+/Ca2+) exchangers, which include the NCX and NCKX [sodium/calcium-potassium (Na+/Ca2+-K+ ) exchanger] proteins. During enamel maturation, when crystals expand in thickness, Ca2+ requirements vastly increase but exactly how Ca2+ traffics through ameloblasts remains uncertain. Previous studies have shown that several NCX proteins are expressed in ameloblasts, although no significant shifts in expression were observed during maturation which pointed to the possible identification of other Ca2+ membrane transporters. NCKX proteins are encoded by members of the solute carrier gene family, Slc24a, which include 6 different proteins (NCKX1–6). NCKX are bidirectional electrogenic transporters regulating Ca2+ transport in and out of cells dependent on the transmembrane ion gradient. In this study we show that all NCKX mRNAs are expressed in dental tissues. Real-time PCR indicates that of all the members of the NCKX group, NCKX4 is the most highly expressed gene transcript during the late stages of amelogenesis. In situ hybridization and immunolocalization analyses clearly establish that in the enamel organ, NCKX4 is expressed primarily by ameloblasts during the maturation stage. Further, during the mid-late maturation stages of amelogenesis, the expression of NCKX4 in ameloblasts is most prominent at the apical poles and at the lateral membranes proximal to the apical ends. These data suggest that NCKX4 might be an important regulator of Ca2+ transport during amelogenesis. PMID:22677781

  14. Effect of changes in dietary sodium on active electrolyte transport by erythrocytes at different stages of human pregnancy.

    Science.gov (United States)

    Gallery, E D; Rowe, J; Brown, M A; Ross, M

    1988-02-01

    1. Active electrolyte transport was examined in erythrocytes from women in the second and third trimesters of pregnancy and post partum, and compared with that in ovulating women. 2. There was a significant reduction in intracellular sodium ([Na]i) and increase in intracellular potassium ([K]i) in pregnancy with a return towards normal values in the post-partum period. 3. Maximum specific ouabain binding [number of Na+,K+-adenosine triphosphatase (Na+, K+-ATPase) units] was increased by 70% in pregnancy and returned slowly towards normal values post partum. 4. Na+,K+-ATPase activity as determined by ouabain-sensitive 86Rb influx in artificial media was also increased in pregnancy by 13%. It returned towards normal post partum. 5. The increases in Na+,K+-ATPase in pregnancy were not closely related to the concomitant increases in aldosterone or cholesterol nor to reticulocytosis and were not affected by 7 days of high (greater than 250 mmol/day) or low (less than 50 mmol/day) sodium intake.

  15. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones as Selective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation.

    Science.gov (United States)

    Jesus, Ana R; Vila-Viçosa, Diogo; Machuqueiro, Miguel; Marques, Ana P; Dore, Timothy M; Rauter, Amélia P

    2017-01-26

    Inhibiting glucose reabsorption by sodium glucose co-transporter proteins (SGLTs) in the kidneys is a relatively new strategy for treating type 2 diabetes. Selective inhibition of SGLT2 over SGLT1 is critical for minimizing adverse side effects associated with SGLT1 inhibition. A library of C-glucosyl dihydrochalcones and their dihydrochalcone and chalcone precursors was synthesized and tested as SGLT1/SGLT2 inhibitors using a cell-based fluorescence assay of glucose uptake. The most potent inhibitors of SGLT2 (IC 50 = 9-23 nM) were considerably weaker inhibitors of SGLT1 (IC 50 = 10-19 μM). They showed no effect on the sodium independent GLUT family of glucose transporters, and the most potent ones were not acutely toxic to cultured cells. The interaction of a C-glucosyl dihydrochalcone with a POPC membrane was modeled computationally, providing evidence that it is not a pan-assay interference compound. These results point toward the discovery of structures that are potent and highly selective inhibitors of SGLT2.

  16. A model system using confocal fluorescence microscopy for examining real-time intracellular sodium ion regulation.

    Science.gov (United States)

    Lee, Jacqueline A; Collings, David A; Glover, Chris N

    2016-08-15

    The gills of euryhaline fish are the ultimate ionoregulatory tissue, achieving ion homeostasis despite rapid and significant changes in external salinity. Cellular handling of sodium is not only critical for salt and water balance but is also directly linked to other essential functions such as acid-base homeostasis and nitrogen excretion. However, although measurement of intracellular sodium ([Na(+)]i) is important for an understanding of gill transport function, it is challenging and subject to methodological artifacts. Using gill filaments from a model euryhaline fish, inanga (Galaxias maculatus), the suitability of the fluorescent dye CoroNa Green as a probe for measuring [Na(+)]i in intact ionocytes was confirmed via confocal microscopy. Cell viability was verified, optimal dye loading parameters were determined, and the dye-ion dissociation constant was measured. Application of the technique to freshwater- and 100% seawater-acclimated inanga showed salinity-dependent changes in branchial [Na(+)]i, whereas no significant differences in branchial [Na(+)]i were determined in 50% seawater-acclimated fish. This technique facilitates the examination of real-time changes in gill [Na(+)]i in response to environmental factors and may offer significant insight into key homeostatic functions associated with the fish gill and the principles of sodium ion transport in other tissues and organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Development of a sodium ionization detector for sodium-to-gas leaks

    International Nuclear Information System (INIS)

    Swaminathan, K.; Elumalai, G.

    1984-01-01

    A sensitive sodium-to-gas leak detector has been indigenously developed for use in liquid metal cooled fast breeder reactor. The detector relies on the relative ease with which sodium vapour or its aerosols including its oxides and hydroxides can be thermally ionized compared with other possible constituents such as nitrogen, oxygen, water vapour etc. in a carrier gas and is therefore called sodium ionization detector (SID). The ionization current is a measure of sodium concentration in the carrier gas sampled through the detector. Different sensor designs using platinum and rhodium as filament materials in varying sizes were constructed and their responses to different sodium aerosol concentrations in the carrier gas were investigated. Nitrogen was used as the carrier gas. Both the background current and speed of response were found to depend on the diameter of the filament. There was also a particular collector voltage which yielded maximum sensitivity of the detector. The sensor was therefore optimised considering influence of above factors and a detector has been built which demonstrates a sensitivity better than 0.3 nanogram of sodium per cubic centimetre of carrier gas for a signal to background ratio of 1:1. Its usefulness in detecting sodium fires in experimental area was also demonstrated. Currently efforts are under way to improve the life time of the filament used in the above detector. (author)

  18. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao; Xiong, Liming

    2010-01-01

    , cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower

  19. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes

    Directory of Open Access Journals (Sweden)

    Brendan S Whitelaw

    2013-09-01

    Full Text Available We recently found evidence for anatomic and physical linkages between the astroglial Na+-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1 and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH inhibitor, epigallocatechin-monogallate (EGCG, inhibits both glutamate oxidation and Na+-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na+-dependent L-[3H]-glutamate (Glu uptake in crude membranes (P2 prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited L-[3H]-Glu uptake in cortical membranes with an IC50 value of 230 µM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP and bithionol (BTH. Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the Vmax for glutamate uptake without changing the Km, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na+-dependent transport of D-[3H]-aspartate (Asp, a non-metabolizable substrate, and [3H]-γ-aminobutyric acid (GABA. In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2 is likely mediated by GLAST (EAAT1. Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either L-[3H]-Glu or D-[3H]-Asp, but they all inhibited [3H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.

  20. Effect of radiation on sodium and water transport in rat erythrocytes and possible repair using olive oil

    International Nuclear Information System (INIS)

    Othman, A.I.; El-Missiry, M.A.

    1991-01-01

    Gamma radiation dose 4 Gy was administered to whole rats, and sodium, water transport and sulfhydryl groups (-SH) contents of the erythrocytes were evaluated in vivo at postirradiation times 1, 3 and 7 days. The present results showed increased sodium and water gain associated with loss of sulfhydryl contents of the erythrocytes. These results are attributed to inhibition of Na pump activity and increased Na leakage into cells which increased the intracellular osmotic elements that lead to influx of water. These changes were secondary to the destruction of erythrocyte -SH groups which was investigated as a change in tertiary structure of the membrane proteins. Olive oil administered intraperitoneally resulted in restoration of the status of the studied parameters. We also noticed an increase in the amount of plasma unsaturated fatty acids including phospholipids. The relation between the reappearance of erythrocyte -SH groups and increased plasma phospholipids suggested a repair role for olive oil. This is through reconstitution of the Na-pump activity in erythrocytes by reactivation of (Na-K) ATPase stimulated by negatively charged plasma phospholipids.4 fig.,1 tab. i

  1. Glu-311 in External Loop 4 of the Sodium/Proline Transporter PutP Is Crucial for External Gate Closure*

    Science.gov (United States)

    Bracher, Susanne; Guérin, Kamila; Polyhach, Yevhen; Jeschke, Gunnar; Dittmer, Sophie; Frey, Sabine; Böhm, Maret; Jung, Heinrich

    2016-01-01

    The available structural information on LeuT and structurally related transporters suggests that external loop 4 (eL4) and the outer end of transmembrane domain (TM) 10′ participate in the reversible occlusion of the outer pathway to the solute binding sites. Here, the functional significance of eL4 and the outer region of TM10′ are explored using the sodium/proline symporter PutP as a model. Glu-311 at the tip of eL4, and various amino acids around the outer end of TM10′ are identified as particularly crucial for function. Substitutions at these sites inhibit the transport cycle, and affect in part ligand binding. In addition, changes at selected sites induce a global structural alteration in the direction of an outward-open conformation. It is suggested that interactions between the tip of eL4 and the peptide backbone at the end of TM10′ participate in coordinating conformational alterations underlying the alternating access mechanism of transport. Together with the structural information on LeuT-like transporters, the results further specify the idea that common design and functional principles are maintained across different transport families. PMID:26728461

  2. The challenges of automobile-dependent urban transport strategy

    Directory of Open Access Journals (Sweden)

    Jovanović Miomir

    2015-01-01

    Full Text Available The fundamental aims of sustainable urban development and the pro-automobile oriented economic development are on a collision course. It is obvious that automobile-dependent urban development is under heavy/powerful influence of the automobile lobby (automobile and oil industries, along with construction. In this domain famous land-use-transportation studies (or ‘grand transportation studies’ are, unfortunately, still prevailing - a vicious circle of self-fulfilling prophecy of congestion, road building, sprawl, congestion and more road building. Until recently, it was commonly thought that investment in public transport was not economically sustainable and that focusing on the development of the automobile industry and financing the construction of roadways stimulated economic growth. In this paper we clearly show that automobile industry is now overcapitalized, less profitable than many other industries (and may become even less profitable in the future, that transport market is characterized with huge distortions (more than a third of motor-vehicle use can be explained by underpriced driving, while new road investment does not have a major impact on economic growth (especially in a region with an already well-developed infrastructure, and that pro-automobile transport strategy inexorably incurs harmful global, regional and local ecological consequences. [Projekat Ministarstva nauke Republike Srbije, br. 37010

  3. Determination of mannitol sorbitol and myo-inositol in olive tree roots and rhizospheric soil by gas chromatography and effect of severe drought conditions on their profiles.

    Science.gov (United States)

    Mechri, Beligh; Tekaya, Meriem; Cheheb, Hechmi; Hammami, Mohamed

    2015-01-01

    This study reports a method for the analysis of mannitol, sorbitol and myo-inositol in olive tree roots and rhizospheric soil with gas chromatography. The analytical method consists of extraction with a mixture of dichloromethane:methanol (2:1, v/v) for soil samples and a mixture of ethanol:water (80:20) for root samples, silylation using pyridine, hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS). The recovery of mannitol sorbitol and myo-inositol (for extraction and analysis in dichloromethane:methanol and ethanol:water) was acceptable and ranged from 100.3 to 114.7%. The time of analysis was <24 min. Among identified polyols extracted from rhizosphere and roots of olive plants, mannitol was the major compound. A marked increase in mannitol content occurred in rhizosphere and roots of water-stressed plants, suggesting a much broader role of mannitol in stress response based on its ability to act as a compatible solute. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3.

    Science.gov (United States)

    Rosas-Santiago, Paul; Lagunas-Gómez, Daniel; Barkla, Bronwyn J; Vera-Estrella, Rosario; Lalonde, Sylvie; Jones, Alexander; Frommer, Wolf B; Zimmermannova, Olga; Sychrová, Hana; Pantoja, Omar

    2015-05-01

    Membrane proteins are synthesized and folded in the endoplasmic reticulum (ER), and continue their path to their site of residence along the secretory pathway. The COPII system has been identified as a key player for selecting and directing the fate of membrane and secretory cargo proteins. Selection of cargo proteins within the COPII vesicles is achieved by cargo receptors. The cornichon cargo receptor belongs to a conserved protein family found in eukaryotes that has been demonstrated to participate in the selection of integral membrane proteins as cargo for their correct targeting. Here it is demonstrated at the cellular level that rice cornichon OsCNIH1 interacts with OsHKT1;3 and, in yeast cells, enables the expression of the sodium transporter to the Golgi apparatus. Physical and functional HKT-cornichon interactions are confirmed by the mating-based split ubiquitin system, bimolecular fluorescence complementation, and Xenopus oocyte and yeast expression systems. The interaction between the two proteins occurs in the ER of plant cells and their co-expression in oocytes leads to the sequestration of the transporter in the ER. In the yeast cornichon mutant erv14, OsHKT1;3 is mistargeted, preventing the toxic effects of sodium transport in the cell observed in wild-type cells or in the erv14 mutant that co-expressed OsHKT1;3 with either OsCNIH1 or Erv14p. Identification and characterization of rice cornichon as a possible cargo receptor opens up the opportunity to improve our knowledge on membrane protein targeting in plant cells. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Effects of sodium arsenite on the survival of UV-irradiated Escherichia coli: inhibition of a recA-dependent function

    Energy Technology Data Exchange (ETDEWEB)

    Rossman, T; Meyn, M S; Troll, W [New York Univ., N.Y. (USA). Dept. of Environmental Medicine

    1975-11-01

    Epidemiological studies and clinical observations suggesting potential hazards of arsenic compounds in increasing the incidence of cancer have been in complete contradiction with experimental findings in animals. Because of the predominance of skin cancers in the epidemiological reports, it was decided to investigate the possibility that arsenic compounds might interfere with DNA repair. Using Escherichia coli as a test system, it is shown that this is indeed the case. Sodium arsenite, at concentrations of 0.1mM and higher, decreases the survival of ultraviolet-irradiated E.coli WP2, a strain which possesses the full complement of repair genes. The effect of the arsenite increases with increasing ultraviolet dose. Similar results were obtained with the excision repair deficient strains WWP2 (uvrA) and WP6(polA). Sodium arsenite had no effect on the survival of recA mutant, WP10. Survival of ultraviolet-irradiated WP5(exrA) was enhanced by sodium arsenite, the effect being greatest at low ultraviolet doses. It is postulated that arsenite inhibits a recA-dependent step in DNA repair. To account for the increased survival of the exrA mutant, it is suggested that in the absence of the exr/sup +/ gene, the arsenite-sensitive recA-dependent function is deleterious. The ability of arsenite to inhibit DNA repair may account for the clinical and epidemiological reports linking arsenicals with an increased incidence of cancer.

  6. Position-dependent Effects of Polylysine on Sec Protein Transport*

    Science.gov (United States)

    Liang, Fu-Cheng; Bageshwar, Umesh K.; Musser, Siegfried M.

    2012-01-01

    The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or “pause sites,” were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport. PMID:22367204

  7. Position-dependent effects of polylysine on Sec protein transport.

    Science.gov (United States)

    Liang, Fu-Cheng; Bageshwar, Umesh K; Musser, Siegfried M

    2012-04-13

    The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or "pause sites," were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport.

  8. Temperature dependent transport of two dimensional electrons in the integral quantum Hall regime

    International Nuclear Information System (INIS)

    Wi, H.P.

    1986-01-01

    This thesis is concerned with the temperature dependent electronic transport properties of a two dimensional electron gas subject to background potential fluctuations and a perpendicular magnetic field. The author carried out an extensive temperature dependent study of the transport coefficients, in the region of an integral quantum plateau, in an In/sub x/Ga/sub 1-x/As/InP heterostructure for 4.2K 10 cm -2 meV -1 ) even at the middle between two Landau levels, which is unexpected from model calculations based on short ranged randomness. In addition, the different T dependent behavior of rho/sub xx/ between the states in the tails and those near the center of a Landau level, indicates the existence of different electron states in a Landau level. Additionally, the author reports T-dependent transport measurements in the transition region between two quantum plateaus in several different materials

  9. Sodium diffusion in boroaluminosilicate glasses

    DEFF Research Database (Denmark)

    Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.

    2011-01-01

    of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O......Understanding the fundamentals of alkali diffusion in boroaluminosilicate (BAS) glasses is of critical importance for advanced glass applications, e.g., the production of chemically strengthened glass covers for personal electronic devices. Here, we investigate the composition dependence...

  10. Temperature dependent transport characteristics of graphene/n-Si diodes

    NARCIS (Netherlands)

    Parui, S.; Ruiter, R.; Zomer, P. J.; Wojtaszek, M.; van Wees, B. J.; Banerjee, T.

    2014-01-01

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and

  11. Sodium transport and distribution in sweet pepper during and after salt stress

    NARCIS (Netherlands)

    Blom-Zandstra, M.

    2000-01-01

    In hydroponic systems often saline water is used in nutrient solutions. Transpiration leads to a steady increase of the salt concentration. To avoid unfavourable salt conditions, solutions are renewed, regularly. So, plants are exposed to varying sodium concentrations. In this paper, the sodium

  12. Transport of the Glucosamine-Derived Browning Product Fructosazine (Polyhydroxyalkylpyrazine) Across the Human Intestinal Caco-2 Cell Monolayer: Role of the Hexose Transporters.

    Science.gov (United States)

    Bhattacherjee, Abhishek; Hrynets, Yuliya; Betti, Mirko

    2017-06-14

    The transport mechanism of fructosazine, a glucosamine self-condensation product, was investigated using a Caco-2 cell model. Fructosazine transport was assessed by measuring the bidirectional permeability coefficient across Caco-2 cells. The mechanism of transport was evaluated using phlorizin, an inhibitor of sodium-dependent glucose cotransporters (SGLT) 1 and 2, phloretin and quercetin, inhibitors of glucose transporters (GLUT) 1 and 2, transcytosis inhibitor wortmannin, and gap junction disruptor cytochalasin D. The role of hexose transporters was further studied using downregulated or overexpressed cell lines. The apparent permeability (P a,b ) of fructosazine was 1.30 ± 0.02 × 10 -6 cm/s. No significant (p > 0.05) effect was observed in fructosazine transport by adding wortmannin and cytochalasin D. The presence of phlorizin, phloretin, and quercetin decreased fructosazine transport. The downregulated GLUT cells line was unable to transport fructosazine. In human intestinal epithelial Caco-2 cells, GLUT1 or GLUT2 and SGLT are mainly responsible for fructosazine transport.

  13. Sodium glucose co-transporter 2 (SGLT2) inhibitors: novel antidiabetic agents.

    Science.gov (United States)

    Washburn, William N

    2012-05-01

    Maintenance of glucose homeostasis in healthy individuals involves SGLT2 (sodium glucose co-transporter 2)-mediated recovery of glucose from the glomerular filtrate which otherwise would be excreted in urine. Clinical studies indicate that SGLT2 inhibitors provide an insulin-independent means to reduce the hyperglycemia that is the hallmark of type 2 diabetes mellitus (T2DM) with minimal risk of hypoglycemia. The pharmacophore common to the SGLT2 inhibitors currently in development is a diarylmethane C-glucoside which is discussed in this review. The focus is how this pharmacophore was further modified as inferred from the patents publishing from 2009 to 2011. The emphasis is on the strategy that each group employed to circumvent the constraints imposed by prior art and how the resulting SGLT2 potency and selectivity versus SGLT1 compared with that of the lead clinical compound dapagliflozin. SGLT2 inhibitors offer a new fundamentally different approach for treatment of diabetes. To date, the clinical results suggest that for non-renally impaired patients this class of inhibitors could be safely used at any stage of T2DM either alone or in combination with other marketed antidiabetic medications.

  14. Crosstalks between myo-inositol metabolism, programmed cell death and basal immunity in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ping Hong Meng

    Full Text Available BACKGROUND: Although it is a crucial cellular process required for both normal development and to face stress conditions, the control of programmed cell death in plants is not fully understood. We previously reported the isolation of ATXR5 and ATXR6, two PCNA-binding proteins that could be involved in the regulation of cell cycle or cell death. A yeast two-hybrid screen using ATXR5 as bait captured AtIPS1, an enzyme which catalyses the committed step of myo-inositol (MI biosynthesis. atips1 mutants form spontaneous lesions on leaves, raising the possibility that MI metabolism may play a role in the control of PCD in plants. In this work, we have characterised atips1 mutants to gain insight regarding the role of MI in PCD regulation. METHODOLOGY/PRINCIPAL FINDINGS: - lesion formation in atips1 mutants depends of light intensity, is due to PCD as evidenced by TUNEL labelling of nuclei, and is regulated by phytohormones such as salicylic acid - MI and galactinol are the only metabolites whose accumulation is significantly reduced in the mutant, and supplementation of the mutant with these compounds is sufficient to prevent PCD - the transcriptome profile of the mutant is extremely similar to that of lesion mimic mutants such as cpr5, or wild-type plants infected with pathogens. CONCLUSION/SIGNIFICANCE: Taken together, our results provide strong evidence for the role of MI or MI derivatives in the regulation of PCD. Interestingly, there are three isoforms of IPS in Arabidopsis, but AtIPS1 is the only one harbouring a nuclear localisation sequence, suggesting that nuclear pools of MI may play a specific role in PCD regulation and opening new research prospects regarding the role of MI in the prevention of tumorigenesis. Nevertheless, the significance of the interaction between AtIPS1 and ATXR5 remains to be established.

  15. Development of sodium droplet combustion analysis methodology using direct numerical simulation in 3-dimensional coordinate (COMET)

    International Nuclear Information System (INIS)

    Okano, Yasushi; Ohira, Hiroaki

    1998-08-01

    In the early stage of sodium leak event of liquid metal fast breeder reactor, LMFBR, liquid sodium flows out from a piping, and ignition and combustion of liquid sodium droplet might occur under certain environmental condition. Compressible forced air flow, diffusion of chemical species, liquid sodium droplet behavior, chemical reactions and thermodynamic properties should be evaluated with considering physical dependence and numerical connection among them for analyzing combustion of sodium liquid droplet. A direct numerical simulation code was developed for numerical analysis of sodium liquid droplet in forced convection air flow. The numerical code named COMET, 'Sodium Droplet COmbustion Analysis METhodology using Direct Numerical Simulation in 3-Dimensional Coordinate'. The extended MAC method was used to calculate compressible forced air flow. Counter diffusion among chemical species is also calculated. Transport models of mass and energy between droplet and surrounding atmospheric air were developed. Equation-solving methods were used for computing multiphase equilibrium between sodium and air. Thermodynamic properties of chemical species were evaluated using dynamic theory of gases. Combustion of single sphere liquid sodium droplet in forced convection, constant velocity, uniform air flow was numerically simulated using COMET. Change of droplet diameter with time was closely agree with d 2 -law of droplet combustion theory. Spatial distributions of combustion rate and heat generation and formation, decomposition and movement of chemical species were analyzed. Quantitative calculations of heat generation and chemical species formation in spray combustion are enabled for various kinds of environmental condition by simulating liquid sodium droplet combustion using COMET. (author)

  16. Experimental and numerical reaction analysis on sodium-water chemical reaction field

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2015-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using an elementary reaction analysis. A quasi one-dimensional flame model is applied to a sodium-water counter-flow reaction field. The analysis contains 25 elementary reactions, which consist of 17 H_2-O_2 and 8 Na-H_2O reactions. Temperature and species concentrations in the counter-flow reaction field were measured using laser diagnostics such as LIF and CARS. The main reaction in the experimental conditions is Na+H_2O → NaOH+H and OH is produced by H_2O+H → H_2+OH. It is demonstrated that the reaction model in this study well explains the structure of the sodium-water counter-flow diffusion flame. (author)

  17. Size effects on the transport coefficient of liquid lithium, sodium and potassium using a soft sphere potential

    International Nuclear Information System (INIS)

    Adebayo, G.A.; Anusionwu, B.C.

    2004-08-01

    The dependence of the self diffusion coefficient of atoms in liquid Lithium, Sodium and Potassium, interacting through a soft sphere potential, on the number of atoms have been investigated using Molecular Dynamics Simulation at various temperatures. Our calculations predict non-linear relationship between the diffusion coefficient and the number of particles at high densities and medium or low temperatures. The radial distribution function obtained agrees well with experiment. (author)

  18. Evidence of independent action of neurohypophyseal peptides on osmotic water flow and active sodium transport in the same target organ: studies on RANA esculenta skin and bladder (1961); Arguments en faveur de l'independance des mecanismes d'action de divers peptides neurohypophysaires sur le flux osmotique d'eau et sur le transport actif de sodium au sein d'un meme recepteur: etudes sur la vessie et la peau de RANA esculanta L (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Bourguet, J; Maetz, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Neurohypophyseal peptides produce on the skin and bladder of certain amphibia simultaneous increases of the passive osmotic permeability to water and active transport of sodium. The present work shows that oxytocin and two of its analogues arginine-8-oxytocin (arginine vasotocin) and lysine-8-oxytocin (lysine vasotocin) may produce the same increase of water permeability, while stimulating in quite different ways the sodium transport. This is the case for both skin and bladder. In other words, there is no correlation between natriferic and hydro-osmotic activities. The results are interpreted as evidence that neurohypophyseal hormones act on not one, as previously assumed, but two targets, inside the same epithelial cell. (author) [French] Les peptides neurohypophysaires produisent simultanement une augmentation de la permeabilite osmotique passive a l'eau, et une stimulation du transport actif de sodium sur la peau et sur la vessie de certains amphibiens. Ce travail montre que l'ocytocine et deux de ses analogues, l'arginine 8-ocytocine (arginine vasotocine) et la lysine-8-ocytocine (lysine vasotocine ) entrainent un accroissement identique de la permeabilite a l'eau, mais stimulent de facon differente le transport de sodium. Ceci est vrai aussi bien pour la peau que pour la vessie. Autrement dit, il n'existe pas de correlation entre les activites natriferique et hydrosmotique. Les resultats suggerent que les hormones neurohypophysaires agissent non sur une seule cible comme on l'avait cru, mais sur deux cibles se trouvant dans la meme cellule. (auteur)

  19. Peculiarities of the diffusion of silver and sodium ions in phosphate glasses with a high content of sodium oxide

    International Nuclear Information System (INIS)

    Syutkin, V.M.; Tolkatchev, V.A.

    1996-01-01

    The phosphate glasses with a high content of alkali metal ions are good ionic conductors. Despite active studies, the mechanism of ion diffusion is not so far clear. The present work discusses the characteristics of ion diffusion in phosphate glasses with a high content of sodium oxide. An effective method to study ion transport is the investigation of relaxation processes the kinetics of which depends on ion diffusion. We use the data for two types of relaxation processes the kinetics of which is determined by ion diffusion. This is the conductivity relaxation due to sodium (host) ions and the decay of radiation-induced centers controlled by silver (guest) ion diffusion. Both of the processes being actually the first-order processes display a nonexponential kinetic behavior. The relaxation law can be interpreted either as the inherently nonexponential function or as the weighted sum of exponential decay functions with a distribution of relaxation times. It has been demonstrated that on the molecular level the relaxation function should be interpreted in the frame of the scheme of parallel first-order processes. This fact allows one to formulate a number of features of ion diffusion: (i) the mean square displacement of ions does not exceed several angstrom when transport becomes non-dispersive; (ii) the diffusion coefficient of ions is the function of coordinates. In this case, a characteristic distance at which D(r) noticeably varies is no less than a hundred of angstrom; (iii) the instantaneous concentration of mobile ions is well below the overall concentration ions

  20. Asymptotic time dependent neutron transport in multidimensional systems

    International Nuclear Information System (INIS)

    Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.

    1983-01-01

    A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated

  1. Sodium-glucose co-transporter-2 inhibitors and euglycemic ketoacidosis: Wisdom of hindsight

    Directory of Open Access Journals (Sweden)

    Awadhesh Kumar Singh

    2015-01-01

    Full Text Available Sodium-glucose co-transporter-2 inhibitors (SGLT-2i are newly approved class of oral anti-diabetic drugs, in the treatment of type 2 diabetes, which reduces blood glucose through glucouresis via the kidney, independent, and irrespective of available pancreatic beta-cells. Studies conducted across their clinical development program found, a modest reduction in glycated hemoglobin ranging from −0.5 to −0.8%, without any significant hypoglycemia. Moreover, head-to-head studies versus active comparators yielded comparable efficacy. Interestingly, weight and blood pressure reduction were additionally observed, which was not only consistent but significantly superior to active comparators, including metformin, sulfonylureas, and dipeptydylpeptide-4 inhibitors. Indeed, these additional properties makes this class a promising oral anti-diabetic drug. Surprisingly, a potentially fatal unwanted side effect of diabetic ketoacidosis has been noted with its widespread use, albeit rarely. Nevertheless, this has created a passé among the clinicians. This review is an attempt to pool those ketosis data emerging with SGLT-2i, and put a perspective on its implicated mechanism.

  2. Time-dependent deterministic transport on parallel architectures using PARTISN

    International Nuclear Information System (INIS)

    Alcouffe, R.E.; Baker, R.S.

    1998-01-01

    In addition to the ability to solve the static transport equation, the authors have also incorporated time dependence into the parallel S N code PARTISN. Using a semi-implicit scheme, PARTISN is capable of performing time-dependent calculations for both fissioning and pure source driven problems. They have applied this to various types of problems such as shielding and prompt fission experiments. This paper describes the form of the time-dependent equations implemented, their solution strategies in PARTISN including iteration acceleration, and the strategies used for time-step control. Results are presented for a iron-water shielding calculation and a criticality excursion in a uranium solution configuration

  3. Spin-dependent tunneling transport in a lateral magnetic diode

    International Nuclear Information System (INIS)

    Wang, Yu; Shi, Ying

    2012-01-01

    Based on the gate-tunable two-dimensional electron gas, we have constructed laterally a double-barrier resonant tunneling structure by employing a peculiar triple-gate configuration, namely a ferromagnetic gate sandwiched closely by a pair of Schottky gates. Because of the in-plane stray field of ferromagnetic gate, the resulting bound spin state in well gives rise to the remarkable resonant spin polarization following the spin-dependent resonant tunneling regime. Importantly, by aligning the bound spin state through surface gate-voltage configuration, this resonant spin polarization can be externally manipulated, showing the desirable features for the spin-logic device applications. -- Highlights: ► A lateral spin-RTD was proposed by applying triple-gate modulated 2DEG. ► Spin-dependent resonant tunneling transport and large resonant spin polarization has been clarified from the systematic simulation. ► Both electric and/or magnetic strategies can be employed to modulate the system spin transport, providing the essential features for the spin-logic application.

  4. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited.

    Science.gov (United States)

    Rossier, Bernard C; Baker, Michael E; Studer, Romain A

    2015-01-01

    Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  5. Glu-311 in External Loop 4 of the Sodium/Proline Transporter PutP Is Crucial for External Gate Closure.

    Science.gov (United States)

    Bracher, Susanne; Guérin, Kamila; Polyhach, Yevhen; Jeschke, Gunnar; Dittmer, Sophie; Frey, Sabine; Böhm, Maret; Jung, Heinrich

    2016-03-04

    The available structural information on LeuT and structurally related transporters suggests that external loop 4 (eL4) and the outer end of transmembrane domain (TM) 10' participate in the reversible occlusion of the outer pathway to the solute binding sites. Here, the functional significance of eL4 and the outer region of TM10' are explored using the sodium/proline symporter PutP as a model. Glu-311 at the tip of eL4, and various amino acids around the outer end of TM10' are identified as particularly crucial for function. Substitutions at these sites inhibit the transport cycle, and affect in part ligand binding. In addition, changes at selected sites induce a global structural alteration in the direction of an outward-open conformation. It is suggested that interactions between the tip of eL4 and the peptide backbone at the end of TM10' participate in coordinating conformational alterations underlying the alternating access mechanism of transport. Together with the structural information on LeuT-like transporters, the results further specify the idea that common design and functional principles are maintained across different transport families. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Glucose transport in brain - effect of inflammation.

    Science.gov (United States)

    Jurcovicova, J

    2014-01-01

    Glucose is transported across the cell membrane by specific saturable transport system, which includes two types of glucose transporters: 1) sodium dependent glucose transporters (SGLTs) which transport glucose against its concentration gradient and 2) sodium independent glucose transporters (GLUTs), which transport glucose by facilitative diffusion in its concentration gradient. In the brain, both types of transporters are present with different function, affinity, capacity, and tissue distribution. GLUT1 occurs in brain in two isoforms. The more glycosylated GLUT1 is produced in brain microvasculature and ensures glucose transport across the blood brain barrier (BBB). The less glycosylated form is localized in astrocytic end-feet and cell bodies and is not present in axons, neuronal synapses or microglia. Glucose transported to astrocytes by GLUT1 is metabolized to lactate serving to neurons as energy source. Proinflammatory cytokine interleukin (IL)-1β upregulates GLUT1 in endothelial cells and astrocytes, whereas it induces neuronal death in neuronal cell culture. GLUT2 is present in hypothalamic neurons and serves as a glucose sensor in regulation of food intake. In neurons of the hippocampus, GLUT2 is supposed to regulate synaptic activity and neurotransmitter release. GLUT3 is the most abundant glucose transporter in the brain having five times higher transport capacity than GLUT1. It is present in neuropil, mostly in axons and dendrites. Its density and distribution correlate well with the local cerebral glucose demands. GLUT5 is predominantly fructose transporter. In brain, GLUT5 is the only hexose transporter in microglia, whose regulation is not yet clear. It is not present in neurons. GLUT4 and GLUT8 are insulin-regulated glucose transporters in neuronal cell bodies in the cortex and cerebellum, but mainly in the hippocampus and amygdala, where they maintain hippocampus-dependent cognitive functions. Insulin translocates GLUT4 from cytosol to plasma

  7. Effects of a New Flavonoid and Myo-Inositol Supplement on Some Biomarkers of Cardiovascular Risk in Postmenopausal Women: A Randomized Trial

    Directory of Open Access Journals (Sweden)

    Rosario D’Anna

    2014-01-01

    Full Text Available Background and Aim. Cardiovascular risk is increased in women with menopause and metabolic syndrome. Aim of this study was to test the effect of a new supplement formula, combining cocoa polyphenols, myo-inositol, and soy isoflavones, on some biomarkers of cardiovascular risk in postmenopausal women with metabolic syndrome. Methods and Results. A total of 60 women were enrolled and randomly assigned (n=30 per group to receive the supplement (NRT: 30 mg of cocoa polyphenols, 80 mg of soy isoflavones, and 2 gr of myo-inositol, or placebo for 6 months. The study protocol included three visits (baseline, 6, and 12 months for the evaluation of glucose, triglycerides, and HDL-cholesterol (HDL-C, adiponectin, visfatin, resistin, and bone-specific alkaline phosphatase (bone-ALP. At 6 months, a significant difference between NRT and placebo was found for glucose (96±7 versus 108±10 mg/dL, triglycerides (145±14 versus 165±18 mg/dL, visfatin (2.8±0.8 versus 3.7±1.1 ng/mL, resistin (27±7 versus 32±8 µg/L, and b-ALP (19±7 versus 15±5 µg/mL. No difference in HDL-C concentrations nor in adiponectin levels between groups was reported at 6 months. Conclusions. The supplement used in this study improves most of the biomarkers linked to metabolic syndrome. This Trial is registered with NCT01400724.

  8. Time-dependent angularly averaged inverse transport

    International Nuclear Information System (INIS)

    Bal, Guillaume; Jollivet, Alexandre

    2009-01-01

    This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. Such measurement settings find applications in medical and geophysical imaging. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain

  9. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence

    Science.gov (United States)

    Danylovych, H V

    2016-01-01

    We prove the feasibility of evaluation of mitochondrial electron transport chain function in isolated mitochondria of smooth muscle cells of rats from uterus using fluorescence of NADH and FAD coenzymes. We found the inversely directed changes in FAD and NADH fluorescence intensity under normal functioning of mitochondrial electron transport chain. The targeted effect of inhibitors of complex I, III and IV changed fluorescence of adenine nucleotides. Rotenone (5 μM) induced rapid increase in NADH fluorescence due to inhibition of complex I, without changing in dynamics of FAD fluorescence increase. Antimycin A, a complex III inhibitor, in concentration of 1 μg/ml caused sharp increase in NADH fluorescence and moderate increase in FAD fluorescence in comparison to control. NaN3 (5 mM), a complex IV inhibitor, and CCCP (10 μM), a protonophore, caused decrease in NADH and FAD fluorescence. Moreover, all the inhibitors caused mitochondria swelling. NO donors, e.g. 0.1 mM sodium nitroprusside and sodium nitrite similarly to the effects of sodium azide. Energy-dependent Ca2+ accumulation in mitochondrial matrix (in presence of oxidation substrates and Mg-ATP2- complex) is associated with pronounced drop in NADH and FAD fluorescence followed by increased fluorescence of adenine nucleotides, which may be primarily due to Ca2+- dependent activation of dehydrogenases of citric acid cycle. Therefore, the fluorescent signal of FAD and NADH indicates changes in oxidation state of these nucleotides in isolated mitochondria, which may be used to assay the potential of effectors of electron transport chain.

  10. Corrosion behaviors of ceramics against liquid sodium. Sodium corrosion characteristics of sintering additives

    International Nuclear Information System (INIS)

    Tachi, Yoshiaki; Kano, Shigeki; Hirakawa, Yasushi; Yoshida, Eiichi

    1998-01-01

    It has been progressed as the Frontier Materials Research to research and develop ceramics to apply for several components of fast breeder reactor using liquid sodium as coolant instead of metallic materials. Grain boundary of ceramics has peculiar properties compared with matrix because most of ceramics are produced by hardening and firing their raw powders. Some previous researchers indicated that ceramics were mainly corroded at grain boundaries by liquid sodium, and ceramics could not be used under corrosive environment. Thus, it is the most important for the usage of ceramics in liquid sodium to improve corrosion resistance of grain boundaries. In order to develop the advanced ceramics having good sodium corrosion resistance among fine ceramics, which have recently been progressed in quality and characteristics remarkably, sodium corrosion behaviors of typical sintering additives such as MgO, Y 2 O 3 and AlN etc. have been examined and evaluated. As a result, the followings have been clarified and some useful knowledge about developing advanced ceramics having good corrosion resistance against liquid sodium has been obtained. (1) Sodium corrosion behavior of MgO depended on Si content. Samples containing large amount of Si were corroded severely by liquid sodium, whereas others with low Si contents showed good corrosion resistance. (2) Both Y 2 O 3 and AlN, which contained little Si, showed good sodium corrosion resistance. (3) MgO, Y 2 O 3 and AlN are thought to be corroded by liquid sodium, if they contain some SiO 2 . Therefore, in order to improve sodium corrosion resistance, it is very important for these ceramics to prevent the contamination of matrix with SiO 2 through purity control of their raw powders. (author)

  11. Serum sodium and mortality in a national peritoneal dialysis cohort.

    Science.gov (United States)

    Ravel, Vanessa A; Streja, Elani; Mehrotra, Rajnish; Sim, John J; Harley, Kevin; Ayus, Juan Carlos; Amin, Alpesh N; Brunelli, Steven M; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar; Rhee, Connie M

    2017-07-01

    Sodium disarrays are common in peritoneal dialysis (PD) patients, and may be associated with adverse outcomes in this population. However, few studies of limited sample size have examined the association of serum sodium with mortality in PD patients, with inconsistent results. We hypothesized that both hypo- and hypernatremia are associated with higher death risk in a nationally representative cohort of US PD patients. We sought to examine the association of serum sodium over time and mortality among 4687 adult incident PD patients from a large US dialysis organization who underwent one or more serum sodium measurements within the first 3 months of dialysis over January 2007 to December 2011. We examined the association of time-dependent and baseline sodium with all-cause mortality as a proxy of short- and long-term sodium-mortality associations, respectively. Hazard ratios were estimated using Cox models with three adjustment levels: minimally adjusted, case-mix adjusted, and case-mix + laboratory adjusted. In time-dependent analyses, sodium levels mortality remained significant for levels mortality risk across all models (ref: 140 to <142 mEq/L). In PD patients, lower time-dependent and baseline sodium levels were independently associated with higher death risk. Further studies are needed to determine whether correction of dysnatremia improves longevity in this population. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  12. Sodium glucose co-transporter 2 inhibitors: blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes.

    Science.gov (United States)

    Jabbour, S A; Goldstein, B J

    2008-08-01

    The kidney plays a central role in the regulation of plasma glucose levels, although until recently this has not been widely appreciated or considered a target for therapeutic intervention. The sodium glucose co-transporter type 2 (SGLT2) located in the plasma membrane of cells lining the proximal tubule mediates the majority of renal glucose reabsorption from the tubular fluid, which normally prevents the loss of glucose in the urine. Competitive inhibitors of SGLT2 that provoke the renal excretion of glucose have been discovered, thereby providing a unique mechanism to potentially lower the elevated blood glucose levels in patients with diabetes. To explore the physiology of SGLT2 action and discuss several SGLT2 inhibitors that have entered early clinical development. All publicly available data were identified by searching the internet for 'SGLT2' and 'SGLT2 inhibitor' through 1 November 2007. Published articles, press releases and abstracts presented at national and international meetings were considered. Sodium glucose co-transporter type 2 inhibition is a novel treatment option for diabetes, which has been studied in preclinical models and a few potent and selective SGLT2 inhibitors have been reported and are currently in clinical development. These agents appear to be safe and generally well tolerated, and will potentially be a beneficial addition to the growing battery of oral antihyperglycaemic agents.

  13. Studies of Lanthanide Transport in Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo; Taylor, Christopher

    2018-04-02

    metallic fuels. Experimentally, the project investigated the interaction between the lanthanides and cesium and sodium, with a focus on the solubility of the lanthanides in these liquid alkali metals. First, a prediction of the solubility was calculated using the Miedema model. This prediction was then compared to the inversion crucible solubility experiment performed in this study. The solubility experiment studied the temperature and liquid-composition dependence of the lanthanides in liquid sodium, cesium and sodium-cesium mixtures. In addition, the solubility in mixtures shows the various alkali metals concentration effect on the solubility. With the results of differential scanning calorimetry (DSC) experiments, updated phase diagrams for sodium-neodymium and cesium-neodymium were obtained from the experimental data. The temperature dependence of the solubility of neodymium in liquid cesium and the solubility differences in liquid sodium and liquid cesium provide key experimental data towards the theory of ‘liquid-like’ transfer. Numerically and theoretically, the project established the “liquid-like” mechanism based MOOSE/BISON model to describe Ln transport behaviors both in pore-scale and macroscopic porous media. The project also conducted theoretically analysis on the Soret effects on Ln transport based on the liquid-like mechanism. Fundamental properties of three abundant Ln during FCCI (Ce, Pr, Nd) such as solubility and diffusivity in liquid Na, Cs and Na-Cs mixture have been obtained via different simulation methods. By applying the corresponding material properties into models, it turns out “liquid-like” transport mechanism can account for the Ln migration down the temperature from the fuel center to the surface. The Na or Cs filled pores can provide a path for Ln to move through at fast speed due to the large Ln diffusion coefficients in these alkali metal solutions and Soret effects. With the temperature driving force considered by the

  14. Recent advances on uric acid transporters

    Science.gov (United States)

    Xu, Liuqing; Shi, Yingfeng; Zhuang, Shougang; Liu, Na

    2017-01-01

    Uric acid is the product of purine metabolism and its increased levels result in hyperuricemia. A number of epidemiological reports link hyperuricemia with multiple disorders, such as kidney diseases, cardiovascular diseases and diabetes. Recent studies also showed that expression and functional changes of urate transporters are associated with hyperuricemia. Uric acid transporters are divided into two categories: urate reabsorption transporters, including urate anion transporter 1 (URAT1), organic anion transporter 4 (OAT4) and glucose transporter 9 (GLUT9), and urate excretion transporetrs, including OAT1, OAT3, urate transporter (UAT), multidrug resistance protein 4 (MRP4/ABCC4), ABCG-2 and sodium-dependent phosphate transport protein. In the kidney, uric acid transporters decrease the reabsorption of urate and increase its secretion. These transporters’ dysfunction would lead to hyperuricemia. As the function of urate transporters is important to control the level of serum uric acid, studies on the functional role of uric acid transporter may provide a new strategy to treat hyperuricemia associated diseases, such as gout, chronic kidney disease, hyperlipidemia, hypertension, coronary heart disease, diabetes and other disorders. This review article summarizes the physiology of urate reabsorption and excretion transporters and highlights the recent advances on their roles in hyperuricemia and various diseases. PMID:29246027

  15. Transportation behaviours of older adults: an investigation into car dependency in urban Australia.

    Science.gov (United States)

    Buys, Laurie; Snow, Stephen; van Megen, Kimberley; Miller, Evonne

    2012-09-01

    Increased car dependency among Australia's ageing population may result in increased social isolation and other health impacts associated with the cessation of driving. While public transport represents an alternative to car usage, patronage remains low among older cohorts. This study investigates the facilitators and barriers to public transport patronage and the nature of car dependence among older Australians. Data were gathered from a sample of 24 adults (mean age = 70 years) through a combination of quantitative (remote behavioural observation) and qualitative (interviews) investigation. Findings suggest that relative convenience, affordability and health/mobility may dictate transport mode choices. The car is considered more convenient for the majority of suburban trips irrespective of the availability of public transport. Policy attention should focus on providing better education and information regarding driving cessation and addressing older age specific social aspects of public transport including health and mobility issues. © 2012 The Authors. Australasian Journal on Ageing © 2012 ACOTA.

  16. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    KAUST Repository

    Yu, Jing-Xin; Cheng, Yan; Sanvito, Stefano; Chen, Xiang-Rong

    2012-01-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green's function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients. © 2012 American Institute of Physics.

  17. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    KAUST Repository

    Yu, Jing-Xin

    2012-01-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green\\'s function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients. © 2012 American Institute of Physics.

  18. Investigations of grain size dependent sediment transport phenomena on multiple scales

    Science.gov (United States)

    Thaxton, Christopher S.

    Sediment transport processes in coastal and fluvial environments resulting from disturbances such as urbanization, mining, agriculture, military operations, and climatic change have significant impact on local, regional, and global environments. Primarily, these impacts include the erosion and deposition of sediment, channel network modification, reduction in downstream water quality, and the delivery of chemical contaminants. The scale and spatial distribution of these effects are largely attributable to the size distribution of the sediment grains that become eligible for transport. An improved understanding of advective and diffusive grain-size dependent sediment transport phenomena will lead to the development of more accurate predictive models and more effective control measures. To this end, three studies were performed that investigated grain-size dependent sediment transport on three different scales. Discrete particle computer simulations of sheet flow bedload transport on the scale of 0.1--100 millimeters were performed on a heterogeneous population of grains of various grain sizes. The relative transport rates and diffusivities of grains under both oscillatory and uniform, steady flow conditions were quantified. These findings suggest that boundary layer formalisms should describe surface roughness through a representative grain size that is functionally dependent on the applied flow parameters. On the scale of 1--10m, experiments were performed to quantify the hydrodynamics and sediment capture efficiency of various baffles installed in a sediment retention pond, a commonly used sedimentation control measure in watershed applications. Analysis indicates that an optimum sediment capture effectiveness may be achieved based on baffle permeability, pond geometry and flow rate. Finally, on the scale of 10--1,000m, a distributed, bivariate watershed terain evolution module was developed within GRASS GIS. Simulation results for variable grain sizes and for

  19. Degradation behavior of limestone concrete under limited time sodium exposure

    International Nuclear Information System (INIS)

    Das, S.K.; Sharma, A.K.; Ramesh, S.S.; Parida, F.C.; Kasinathan, N.; Chellapandi, P.

    2009-01-01

    Adequate safety measures are taken during design, fabrication, construction and operation of liquid sodium cooled fast breeder reactor (FBR). However, possibility of sodium leak from secondary heat transport circuits of FBR has not been completely ruled out. In the areas housing sodium pipelines such as Steam Generator Building (SGB), spilled liquid sodium not only reacts with air causing fire but also interacts with structural concrete resulting in its degradation. The structural concrete can be protected from sodium attack using sodium resistant sacrificial concrete layer or steel/refractory liners. Moreover, design and construction of sloping floor with sodium collection pit helps in minimizing the mass of sodium accumulated on the floor and exposure period. Sacrificial concrete layer on the structural concrete should meet key factors like economy, castability, easy removal of affected concrete in the event of a sodium fire and disposability of debris apart from its good resistance against hot burning sodium. Present study is directed towards testing of limestone concrete blocks (made out of 13% ordinary portland cement, 8% water, 48% coarse limestone and 31 % fine limestone aggregates)

  20. Restaurant menu labelling: Is it worth adding sodium to the label?

    Science.gov (United States)

    Scourboutakos, Mary J; Corey, Paul N; Mendoza, Julio; Henson, Spencer J; L'Abbe, Mary R

    2014-07-31

    Several provincial and federal bills have recommended various forms of menu labelling that would require information beyond just calories; however, the additional benefit of including sodium information is unknown. The objective of this study was to determine whether sodium information on menus helps consumers make lower-sodium choices and to understand what other factors influence the effect of menu labelling on consumers' meal choices. A total of 3,080 Canadian consumers completed an online survey that included a repeated measures experiment in which consumers were asked to select what they would typically order from four mock-restaurant menus. Subsequently, consumers were randomly allocated to see one of three menu-labelling treatments (calories; calories and sodium; or calories, sodium and serving size) and were given the option to change their order. There was a significant difference in the proportion of consumers who changed their order, varying from 17% to 30%, depending on the restaurant type. After participants had seen menu labelling, sodium levels decreased in all treatments (p<0.0001). However, in three of the four restaurant types, consumers who saw calorie and sodium information ordered meals with significantly less sodium than consumers who saw only calorie information (p<0.01). Consumers who saw sodium labelling decreased the sodium level of their meal by an average of 171-384 mg, depending on the restaurant. In the subset of consumers who saw sodium information and chose to change their order, sodium levels decreased by an average of 681-1,360 mg, depending on the restaurant. Sex, intent to lose weight and the amount of calories ordered at baseline were the most important predictors of who used menu labelling. Eighty percent of survey panelists wanted to see nutrition information when dining out. Including sodium information alongside calorie information may result in a larger decrease in the amount of sodium ordered by restaurant-goers.

  1. Carbon in sodium - A review of work in the UK

    International Nuclear Information System (INIS)

    Thorley, A.W.; Hobdell, M.R.

    1980-01-01

    It has been shown experimentally that when a difference in carbon potential exists between two points in a sodium circuit, carbon will move from regions of high carbon potential to regions of low carbon potential. Instrumental in this transport process is the liquid sodium which provides an efficient. means of transport between sources and sinks. In terms of operation of LMFBRs the point of concern is that impairment of mechanical properties may occur if significant amounts of carbon are gained or lost from structures exposed to sodium. In the UK the behaviour of carbon in liquid sodium is being studied at AERE Harwell, Berkeley Nuclear Laboratories (BNL), the Dounreay Nuclear Establishment (DNE), and the Risley Nuclear Laboratories (RNL). The scope of this review reflects the type of work being carried out at various establishments and presents our current views on certain topics. A survey of the UK position and an indication of where more work is required is also included in the paper. Specialist material is provided in the form of appendices

  2. Carbon in sodium - A review of work in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Thorley, A W; Hobdell, M R [CEGB, Berkeley Nuclear Laboratories, Berkely, Gloucestershire (United Kingdom)

    1980-05-01

    It has been shown experimentally that when a difference in carbon potential exists between two points in a sodium circuit, carbon will move from regions of high carbon potential to regions of low carbon potential. Instrumental in this transport process is the liquid sodium which provides an efficient. means of transport between sources and sinks. In terms of operation of LMFBRs the point of concern is that impairment of mechanical properties may occur if significant amounts of carbon are gained or lost from structures exposed to sodium. In the UK the behaviour of carbon in liquid sodium is being studied at AERE Harwell, Berkeley Nuclear Laboratories (BNL), the Dounreay Nuclear Establishment (DNE), and the Risley Nuclear Laboratories (RNL). The scope of this review reflects the type of work being carried out at various establishments and presents our current views on certain topics. A survey of the UK position and an indication of where more work is required is also included in the paper. Specialist material is provided in the form of appendices.

  3. Ancient Systems of Sodium/Potassium Homeostasis as Predecessors of Membrane Bioenergetics.

    Science.gov (United States)

    Dibrova, D V; Galperin, M Y; Koonin, E V; Mulkidjanian, A Y

    2015-05-01

    Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes.

  4. Paracellular transport and energy utilization in the renal tubule.

    Science.gov (United States)

    Yu, Alan S L

    2017-09-01

    Paracellular transport across the tight junction is a general mechanism for transepithelial transport of solutes in epithelia, including the renal tubule. However, why paracellular transport evolved, given the existence of a highly versatile system for transcellular transport, is unknown. Recent studies have identified the paracellular channel, claudin-2, that is responsible for paracellular reabsorption of sodium in the proximal renal tubule. Knockout of claudin-2 in mice impairs proximal sodium and fluid reabsorption but is compensated by upregulation of sodium reabsorption in the loop of Henle. This occurs at the expense of increased renal oxygen consumption, hypoxia of the outer medulla and increased susceptibility to ischemic kidney injury. Paracellular transport can be viewed as a mechanism to exploit the potential energy in existing electrochemical gradients to drive passive transepithelial transport without consuming additional energy. In this way, it enhances the efficiency of energy utilization by transporting epithelia.

  5. Na+-Dependent High-Affinity Nitrate, Phosphate and Amino Acids Transport in Leaf Cells of the Seagrass Posidonia oceanica (L. Delile

    Directory of Open Access Journals (Sweden)

    Lourdes Rubio

    2018-05-01

    Full Text Available Posidonia oceanica (L. Delile is a seagrass, the only group of vascular plants to colonize the marine environment. Seawater is an extreme yet stable environment characterized by high salinity, alkaline pH and low availability of essential nutrients, such as nitrate and phosphate. Classical depletion experiments, membrane potential and cytosolic sodium measurements were used to characterize the high-affinity NO3−, Pi and amino acids uptake mechanisms in this species. Net uptake rates of both NO3− and Pi were reduced by more than 70% in the absence of Na+. Micromolar concentrations of NO3− depolarized mesophyll leaf cells plasma membrane. Depolarizations showed saturation kinetics (Km = 8.7 ± 1 μM NO3−, which were not observed in the absence of Na+. NO3− induced depolarizations at increasing Na+ also showed saturation kinetics (Km = 7.2 ± 2 mM Na+. Cytosolic Na+ measured in P. oceanica leaf cells (17 ± 2 mM Na+ increased by 0.4 ± 0.2 mM Na+ upon the addition of 100 μM NO3−. Na+-dependence was also observed for high-affinity l-ala and l-cys uptake and high-affinity Pi transport. All together, these results strongly suggest that NO3−, amino acids and Pi uptake in P. oceanica leaf cells are mediated by high-affinity Na+-dependent transport systems. This mechanism seems to be a key step in the process of adaptation of seagrasses to the marine environment.

  6. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, M.J.

    1998-12-07

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variable on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB.

  7. Corrosion performance of advanced structural materials in sodium.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L. (Nuclear Engineering Division)

    2012-05-16

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux

  8. Corrosion performance of advanced structural materials in sodium

    International Nuclear Information System (INIS)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L.

    2012-01-01

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and

  9. Intracellular loop 5 is important for the transport mechanism and molecular pharmacology of the human serotonin transporter

    DEFF Research Database (Denmark)

    Said, Saida; Neubauer, Henrik Amtoft; Müller, Heidi Kaastrup

    2015-01-01

    The serotonin transporter (SERT) belongs to a family of transport proteins called the neurotransmitter:sodium symporters. The specialized members of this family transport different neurotransmitters across the cell membrane, thereby regulating signaling between neurons. Most of these transporters...

  10. Basolateral glycylsarcosine (Gly-Sar) transport in Caco-2 cell monolayers is pH dependent

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Nielsen, Carsten Uhd; Brodin, Birger

    2013-01-01

    Transepithelial di/tripeptide transport in enterocytes occurs via the apical proton-coupled peptide transporter, hPEPT1 (SLC15A1) and a basolateral peptide transporter, which has only been characterized functionally. In this study we examined the pH dependency, substrate uptake kinetics and subst...

  11. The role of Rashba spin-orbit coupling in valley-dependent transport of Dirac fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hasanirok, Kobra; Mohammadpour, Hakimeh

    2017-01-01

    At this work, spin- and valley-dependent electron transport through graphene and silicene layers are studied in the presence of Rashba spin- orbit coupling. We find that the transport properties of the related ferromagnetic/normal/ferromagnetic structure depend on the relevant parameters. A fully valley- and spin- polarized current is obtained. As another result, Rashba spin-orbit interaction plays important role in controlling the transmission characteristics.

  12. Chemical and physical changes at sodium-stainless steel interfaces in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, C K [Bhabha Atomic Research Centre, Bombay (India). Radiochemistry Div.

    1977-01-01

    In the sodium loops of a fast reactor, mass transfer occurs due to the interaction of flowing sodium on stainless steel surfaces. Under the non-isothermal conditions prevailing in the loop some elements are preferentially leached from the surface layers of the hot zone and transported by sodium to the cooled zone where deposition may take place. The available information on the mass transport in non-isothermal sodium loops has been summarised, and an attempt has been made to understand the mechanisms involved, of which the chemical reactions at the sodium-stainless steel interface are especially important. The rate of diffusion towards the solid/liquid interface may be the rate-determining step in some of these reactions. When a ferritic surface layer is formed by the selective removal of austenitic stabilizing elements, diffusion of alloying constituents through the ferritic layer limits the growth of this layer. Only when the surface film is adherent, the diffusion across this layer becomes important. NaCrO/sub 2/, for instance, has poor adherence, and a surface film of this compound may not inhibit further corrosion.

  13. austenitic steel corrosion by oxygen-containing liquid sodium

    International Nuclear Information System (INIS)

    Rivollier, Matthieu

    2017-01-01

    France is planning to construct the 4. generation of nuclear reactors. They will use liquid sodium as heat transfer fluid and will be made of 316L(N) austenitic steel as structural materials. To guarantee optimal operation on the long term, the behavior of this steel must be verified. This is why corrosion phenomena of 316L(N) steel by liquid sodium have to be well-understood. Literature points out that several corrosion phenomena are possible. Dissolved oxygen in sodium definitely influences each of the corrosion phenomenon. Therefore, the austenitic steel corrosion in oxygen-containing sodium is proposed in this study. Thermodynamics data point out that sodium chromite formation on 316L(N) steel is possible in sodium containing roughly 10 μg.g -1 of oxygen for temperature lower than 650 C (reactor operating conditions).The experimental study shows that sodium chromite is formed at 650 C in the sodium containing 200 μg.g -1 of oxygen. At the same concentration and at 550 C, sodium chromite is clearly observed only for long immersion time (≥ 5000 h). Results at 450 C are more difficult to interpret. Furthermore, the steel is depleted in chromium in all cases.The results suggest the sodium chromite is dissolved in the sodium at the same time it is formed. Modelling of sodium chromite formation - approached by chromium diffusion in steel (in grain and grain boundaries -, and dissolution - assessed by transport in liquid metal - show that simultaneous formation and dissolution of sodium chromite is a possible mechanism able to explain our results. (author) [fr

  14. Sodium appetite elicited by low-sodium diet is dependent on p44/42 mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) activation in the brain.

    Science.gov (United States)

    Monteiro, L R N; Marangon, P B; Elias, L L K; Reis, L C; Antunes-Rodrigues, J; Mecawi, A S

    2017-09-01

    Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen-activated protein kinase (MAPK) pathway, which has previously been linked to Ang II-induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low-sodium diet consumption. An increase in extracellular signal-regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low-sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low-sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low-sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low-sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low-sodium diet groups. These data indicate that low-sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low-sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low-sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low-sodium

  15. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    Science.gov (United States)

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  16. Sodium intake in US ethnic subgroups and potential impact of a new sodium reduction technology: NHANES Dietary Modeling.

    Science.gov (United States)

    Fulgoni, Victor L; Agarwal, Sanjiv; Spence, Lisa; Samuel, Priscilla

    2014-12-18

    Because excessive dietary sodium intake is a major contributor to hypertension, a reduction in dietary sodium has been recommended for the US population. Using the National Health and Nutrition Examination Survey (NHANES) 2007-2010 data, we estimated current sodium intake in US population ethnic subgroups and modeled the potential impact of a new sodium reduction technology on sodium intake. NHANES 2007-2010 data were analyzed using The National Cancer Institute method to estimate usual intake in population subgroups. Potential impact of SODA-LO® Salt Microspheres sodium reduction technology on sodium intake was modeled using suggested sodium reductions of 20-30% in 953 foods and assuming various market penetrations. SAS 9.2, SUDAAN 11, and NHANES survey weights were used in all calculations with assessment across age, gender and ethnic groups. Current sodium intake across all population subgroups exceeds the Dietary Guidelines 2010 recommendations and has not changed during the last decade. However, sodium intake measured as a function of food intake has decreased significantly during the last decade for all ethnicities. "Grain Products" and "Meat, Poultry, Fish, & Mixtures" contribute about 2/3rd of total sodium intake. Sodium reduction, using SODA-LO® Salt Microspheres sodium reduction technology (with 100% market penetration) was estimated to be 185-323 mg/day or 6.3-8.4% of intake depending upon age, gender and ethnic group. Current sodium intake in US ethnic subgroups exceeds the recommendations and sodium reduction technologies could potentially help reduce dietary sodium intake among those groups.

  17. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Clare, Jeffrey J. [Eaton Pharma Consulting, Eaton Socon, Cambridgeshire PE19 8EF (United Kingdom); Debanne, Dominique [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Alcaraz, Gisele, E-mail: gisele.alcaraz@univmed.fr [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France)

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  18. Inhibition of Glucose Transport by Tomatoside A, a Tomato Seed Steroidal Saponin, through the Suppression of GLUT2 Expression in Caco-2 Cells.

    Science.gov (United States)

    Li, Baorui; Terazono, Yusuke; Hirasaki, Naoto; Tatemichi, Yuki; Kinoshita, Emiko; Obata, Akio; Matsui, Toshiro

    2018-02-14

    We investigated whether tomatoside A (5α-furostane-3β,22,26-triol-3-[O-β-d-glucopyranosyl (1→2)-β-d-glucopyranosyl (1→4)-β-d-galactopyranoside] 26-O-β-d-glucopyranoside), a tomato seed saponin, may play a role in the regulation of intestinal glucose transport in human intestinal Caco-2 cells. Tomatoside A could not penetrate through Caco-2 cell monolayers, as observed in the transport experiments using liquid chromatography-mass spectrometry. The treatment of cells with 10 μM tomatoside A for 3 h resulted in a 46.0% reduction in glucose transport as compared to untreated cells. Western blotting analyses revealed that tomatoside A significantly (p transporter 2 (GLUT2) in Caco-2 cells, while no change in the expression of sodium-dependent glucose transporter 1 was observed. In glucose transport experiments, the reduced glucose transport by tomatoside A was ameliorated by a protein kinase C (PKC) inhibitor and a multidrug resistance-associated protein 2 (MRP2) inhibitor. The tomatoside A-induced reduction in glucose transport was restored in cells treated with apical sodium-dependent bile acid transporter (ASBT) siRNA or an ASBT antagonist. These findings demonstrated for the first time that the nontransportable tomato seed steroidal saponin, tomatoside A, suppressed GLUT2 expression via PKC signaling pathway during the ASBT-influx/MRP2-efflux process in Caco-2 cells.

  19. Transient fluctuation relations for time-dependent particle transport

    Science.gov (United States)

    Altland, Alexander; de Martino, Alessandro; Egger, Reinhold; Narozhny, Boris

    2010-09-01

    We consider particle transport under the influence of time-varying driving forces, where fluctuation relations connect the statistics of pairs of time-reversed evolutions of physical observables. In many “mesoscopic” transport processes, the effective many-particle dynamics is dominantly classical while the microscopic rates governing particle motion are of quantum-mechanical origin. We here employ the stochastic path-integral approach as an optimal tool to probe the fluctuation statistics in such applications. Describing the classical limit of the Keldysh quantum nonequilibrium field theory, the stochastic path integral encapsulates the quantum origin of microscopic particle exchange rates. Dynamically, it is equivalent to a transport master equation which is a formalism general enough to describe many applications of practical interest. We apply the stochastic path integral to derive general functional fluctuation relations for current flow induced by time-varying forces. We show that the successive measurement processes implied by this setup do not put the derivation of quantum fluctuation relations in jeopardy. While in many cases the fluctuation relation for a full time-dependent current profile may contain excessive information, we formulate a number of reduced relations, and demonstrate their application to mesoscopic transport. Examples include the distribution of transmitted charge, where we show that the derivation of a fluctuation relation requires the combined monitoring of the statistics of charge and work.

  20. Na--dependent transport of basic, zwitterionic, and bicyclic amino acids by a broad-scope system in mouse blastocysts

    International Nuclear Information System (INIS)

    Van Winkle, L.J.; Christensen, H.N.; Campione, A.L.

    1985-01-01

    Mouse blastocysts which had been activated from diapause in utero appeared to take up amino acids via a Na - -dependent transport system with novel characteristics. In contrast to other cell types, uptake of 3-aminoendobicyclo [3,2,1]octane-3-carboxylic acid (BCO) by blastocysts was largely Na - dependent. Moreover, L-alanine and BCO met standard criteria for mutual competitive inhibition of the Na - -dependent transport of each other. The Ki for each of these amino acids as an inhibitor of transport of the other had a value similar to the value of its Km for transport. In addition, both 2-aminoendobicyclo [2,2,1]heptane-2-carboxylic acid and L-valine appeared to inhibit Na - -dependent transport of alanine and BCO competitively. Finally, alanine and L-lysine appeared to compete for the same Na+-dependent transport sites in blastocysts. For these reasons, the authors conclude that lysine, alanine, and BCO are transported by a common Na+-dependent system in blastocysts. In addition, the apparent interaction of the system with other basic amino acids, such as 1-dimethylpiperidine-4-amino-4-carboxylic acid, which has a nondissociable positive charge on its side chain, and L-arginine and L-homoarginine, whose cationic forms are highly predominant at neutral pH, suggests that the cationic forms of basic amino acids are transported by the wide-scope system

  1. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  2. Radioactive material transport in sodium-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Brehm, W.F.; McGuire, J.C.; Colburn, R.P.; Maffei, H.P.; Olson, W.H.

    1980-03-01

    Trapping devices which remove nuclides from the sodium stream in pre-selected locations away from maintenance areas have been developed and proven successful in in-reactor testing. The release of corrosion product radionuclides as a function of system temperature and oxygen content has been quantitatively evaluated. Ongoing work concentrates on further in-reactor testing of radionuclide removal devices, and characterization of fission product release and deposition from fuel pins with breached-cladding

  3. Dependence of enhanced asymmetry-induced transport on collision frequency

    Science.gov (United States)

    Eggleston, D. L.

    2014-07-01

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ1(r) cos(kz) cos(ωt-lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ωR, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ vr/ωT, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.

  4. Dependence of enhanced asymmetry-induced transport on collision frequency

    International Nuclear Information System (INIS)

    Eggleston, D. L.

    2014-01-01

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ 1 (r) cos(kz) cos(ωt−lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ω R , is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ v r /ω T , so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles

  5. The crystal structure of the regulatory domain of the human sodium-driven chloride/bicarbonate exchanger.

    Science.gov (United States)

    Alvadia, Carolina M; Sommer, Theis; Bjerregaard-Andersen, Kaare; Damkier, Helle Hasager; Montrasio, Michele; Aalkjaer, Christian; Morth, J Preben

    2017-09-21

    The sodium-driven chloride/bicarbonate exchanger (NDCBE) is essential for maintaining homeostatic pH in neurons. The crystal structure at 2.8 Å resolution of the regulatory N-terminal domain of human NDCBE represents the first crystal structure of an electroneutral sodium-bicarbonate cotransporter. The crystal structure forms an equivalent dimeric interface as observed for the cytoplasmic domain of Band 3, and thus establishes that the consensus motif VTVLP is the key minimal dimerization motif. The VTVLP motif is highly conserved and likely to be the physiologically relevant interface for all other members of the SLC4 family. A novel conserved Zn 2+ -binding motif present in the N-terminal domain of NDCBE is identified and characterized in vitro. Cellular studies confirm the Zn 2+ dependent transport of two electroneutral bicarbonate transporters, NCBE and NBCn1. The Zn 2+ site is mapped to a cluster of histidines close to the conserved ETARWLKFEE motif and likely plays a role in the regulation of this important motif. The combined structural and bioinformatics analysis provides a model that predicts with additional confidence the physiologically relevant interface between the cytoplasmic domain and the transmembrane domain.

  6. Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio)

    DEFF Research Database (Denmark)

    Boisen, A M Z; Amstrup, J; Novak, I

    2003-01-01

    pump activity, changes in abundance and possibly localization of this protein did not appear to contribute to soft water acclimation. Active Cl(-) uptake was strongly dependent on branchial carbonic anhydrase (CA) activity regardless of water type, while the response of Na(+) transport to a CA...

  7. Sea-anemone toxin ATX-II elicits A-fiber-dependent pain and enhances resurgent and persistent sodium currents in large sensory neurons

    Directory of Open Access Journals (Sweden)

    Klinger Alexandra B

    2012-09-01

    Full Text Available Abstract Background Gain-of-function mutations of the nociceptive voltage-gated sodium channel Nav1.7 lead to inherited pain syndromes, such as paroxysmal extreme pain disorder (PEPD. One characteristic of these mutations is slowed fast-inactivation kinetics, which may give rise to resurgent sodium currents. It is long known that toxins from Anemonia sulcata, such as ATX-II, slow fast inactivation and skin contact for example during diving leads to various symptoms such as pain and itch. Here, we investigated if ATX-II induces resurgent currents in sensory neurons of the dorsal root ganglion (DRGs and how this may translate into human sensations. Results In large A-fiber related DRGs ATX-II (5 nM enhances persistent and resurgent sodium currents, but failed to do so in small C-fiber linked DRGs when investigated using the whole-cell patch-clamp technique. Resurgent currents are thought to depend on the presence of the sodium channel β4-subunit. Using RT-qPCR experiments, we show that small DRGs express significantly less β4 mRNA than large sensory neurons. With the β4-C-terminus peptide in the pipette solution, it was possible to evoke resurgent currents in small DRGs and in Nav1.7 or Nav1.6 expressing HEK293/N1E115 cells, which were enhanced by the presence of extracellular ATX-II. When injected into the skin of healthy volunteers, ATX-II induces painful and itch-like sensations which were abolished by mechanical nerve block. Increase in superficial blood flow of the skin, measured by Laser doppler imaging is limited to the injection site, so no axon reflex erythema as a correlate for C-fiber activation was detected. Conclusion ATX-II enhances persistent and resurgent sodium currents in large diameter DRGs, whereas small DRGs depend on the addition of β4-peptide to the pipette recording solution for ATX-II to affect resurgent currents. Mechanical A-fiber blockade abolishes all ATX-II effects in human skin (e.g. painful and itch

  8. Application of Trotter approximation for solving time dependent neutron transport equation

    International Nuclear Information System (INIS)

    Stancic, V.

    1987-01-01

    A method is proposed to solve multigroup time dependent neutron transport equation with arbitrary scattering anisotropy. The recurrence relation thus obtained is simple, numerically stable and especially suitable for treatment of complicated geometries. (author)

  9. Linking loss of sodium-iodide symporter expression to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Lyckesvärd, Madeleine Nordén [Sahlgrenska Cancer Center, University of Gothenburg, Göteborg (Sweden); Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg (Sweden); Kapoor, Nirmal [Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg (Sweden); Ingeson-Carlsson, Camilla; Carlsson, Therese [Sahlgrenska Cancer Center, University of Gothenburg, Göteborg (Sweden); Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg (Sweden); Karlsson, Jan-Olof [Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg (Sweden); Postgård, Per; Himmelman, Jakob; Forssell-Aronsson, Eva [Department of Radiation Physics, University of Gothenburg, Göteborg (Sweden); Hammarsten, Ola [Department of Clinical Chemistry, University of Gothenburg, Göteborg (Sweden); Nilsson, Mikael, E-mail: mikael.nilsson@gu.se [Sahlgrenska Cancer Center, University of Gothenburg, Göteborg (Sweden); Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg (Sweden)

    2016-05-15

    Radiotherapy of thyroid cancer with I-131 is abrogated by inherent loss of radioiodine uptake due to loss of sodium iodide symporter (NIS) expression in poorly differentiated tumor cells. It is also known that ionizing radiation per se down-regulates NIS (the stunning effect), but the mechanism is unknown. Here we investigated whether loss of NIS-mediated iodide transport may be elicited by DNA damage. Calicheamicin, a fungal toxin that specifically cleaves double-stranded DNA, induced a full scale DNA damage response mediated by the ataxia-telangiectasia mutated (ATM) kinase in quiescent normal thyrocytes. At sublethal concentrations (<1 nM) calicheamicin blocked NIS mRNA expression and transepithelial iodide transport as stimulated by thyrotropin; loss of function occurred at a much faster rate than after I-131 irradiation. KU-55933, a selective ATM kinase inhibitor, partly rescued NIS expression and iodide transport in DNA-damaged cells. Prolonged ATM inhibition in healthy cells also repressed NIS-mediated iodide transport. ATM-dependent loss of iodide transport was counteracted by IGF-1. Together, these findings indicate that NIS, the major iodide transporter of the thyroid gland, is susceptible to DNA damage involving ATM-mediated mechanisms. This uncovers novel means of poor radioiodine uptake in thyroid cells subjected to extrinsic or intrinsic genotoxic stress. - Highlights: • DNA damage inhibits polarized iodide transport in normal thyroid cells. • Down-regulation of NIS expression is mediated by activation of the ATM kinase. • Long-term ATM inhibition also represses NIS-mediated iodide transport. • IGF-1 rescues NIS expression and iodide transport in DNA-damaged cells.

  10. Linking loss of sodium-iodide symporter expression to DNA damage

    International Nuclear Information System (INIS)

    Lyckesvärd, Madeleine Nordén; Kapoor, Nirmal; Ingeson-Carlsson, Camilla; Carlsson, Therese; Karlsson, Jan-Olof; Postgård, Per; Himmelman, Jakob; Forssell-Aronsson, Eva; Hammarsten, Ola; Nilsson, Mikael

    2016-01-01

    Radiotherapy of thyroid cancer with I-131 is abrogated by inherent loss of radioiodine uptake due to loss of sodium iodide symporter (NIS) expression in poorly differentiated tumor cells. It is also known that ionizing radiation per se down-regulates NIS (the stunning effect), but the mechanism is unknown. Here we investigated whether loss of NIS-mediated iodide transport may be elicited by DNA damage. Calicheamicin, a fungal toxin that specifically cleaves double-stranded DNA, induced a full scale DNA damage response mediated by the ataxia-telangiectasia mutated (ATM) kinase in quiescent normal thyrocytes. At sublethal concentrations (<1 nM) calicheamicin blocked NIS mRNA expression and transepithelial iodide transport as stimulated by thyrotropin; loss of function occurred at a much faster rate than after I-131 irradiation. KU-55933, a selective ATM kinase inhibitor, partly rescued NIS expression and iodide transport in DNA-damaged cells. Prolonged ATM inhibition in healthy cells also repressed NIS-mediated iodide transport. ATM-dependent loss of iodide transport was counteracted by IGF-1. Together, these findings indicate that NIS, the major iodide transporter of the thyroid gland, is susceptible to DNA damage involving ATM-mediated mechanisms. This uncovers novel means of poor radioiodine uptake in thyroid cells subjected to extrinsic or intrinsic genotoxic stress. - Highlights: • DNA damage inhibits polarized iodide transport in normal thyroid cells. • Down-regulation of NIS expression is mediated by activation of the ATM kinase. • Long-term ATM inhibition also represses NIS-mediated iodide transport. • IGF-1 rescues NIS expression and iodide transport in DNA-damaged cells.

  11. Constitutive endocytosis and turnover of the neuronal glycine transporter GlyT2 is dependent on ubiquitination of a C-terminal lysine cluster.

    Directory of Open Access Journals (Sweden)

    Jaime de Juan-Sanz

    Full Text Available Inhibitory glycinergic neurotransmission is terminated by sodium and chloride-dependent plasma membrane glycine transporters (GlyTs. The mainly glial glycine transporter GlyT1 is primarily responsible for the completion of inhibitory neurotransmission and the neuronal glycine transporter GlyT2 mediates the reuptake of the neurotransmitter that is used to refill synaptic vesicles in the terminal, a fundamental role in the physiology and pathology of glycinergic neurotransmission. Indeed, inhibitory glycinergic neurotransmission is modulated by the exocytosis and endocytosis of GlyT2. We previously reported that constitutive and Protein Kinase C (PKC-regulated endocytosis of GlyT2 is mediated by clathrin and that PKC accelerates GlyT2 endocytosis by increasing its ubiquitination. However, the role of ubiquitination in the constitutive endocytosis and turnover of this protein remains unexplored. Here, we show that ubiquitination of a C-terminus four lysine cluster of GlyT2 is required for constitutive endocytosis, sorting into the slow recycling pathway and turnover of the transporter. Ubiquitination negatively modulates the turnover of GlyT2, such that increased ubiquitination driven by PKC activation accelerates transporter degradation rate shortening its half-life while decreased ubiquitination increases transporter stability. Finally, ubiquitination of GlyT2 in neurons is highly responsive to the free pool of ubiquitin, suggesting that the deubiquitinating enzyme (DUB ubiquitin C-terminal hydrolase-L1 (UCHL1, as the major regulator of neuronal ubiquitin homeostasis, indirectly modulates the turnover of GlyT2. Our results contribute to the elucidation of the mechanisms underlying the dynamic trafficking of this important neuronal protein which has pathological relevance since mutations in the GlyT2 gene (SLC6A5 are the second most common cause of human hyperekplexia.

  12. Intracellular sodium concentration and transport in red cells in essential hypertension, hyperthyroidism, pregnancy and hypokalemia.

    Science.gov (United States)

    Gless, K H; Sütterlin, U; Schaz, K; Schütz, V; Hunstein, W

    1986-01-01

    Intracellular sodium content ([Nai]), ouabain-sensitive ('Na-K ATPase') and ouabain-insensitive ('passive permeability') sodium efflux, Na-K cotransport and Na-Li ('Na-Na') countertransport were estimated in erythrocytes in 39 control subjects, 20 patients with essential hypertension, 14 patients with hypokalemia of renal or unknown etiology, 13 hyperthyroid patients and 19 pregnant women. In normokalemic essential hypertension there was only a moderate, but significant elevation of the activity of the Na-Li countertransport system. In the group of patients with hypokalemia, there was a significant increase of [Nai], ouabain-insensitive sodium efflux and Na-Li countertransport. In hyperthyroidism, a marked decrease of Na-Li countertransport was associated with a marked elevation of [Nai], in pregnancy an elevation of the Na-Li countertransport with a [Nai] 43% lower than the control values. The ouabain-sensitive sodium efflux was elevated in hyperthyroidism and hypokalemia, in which [Nai] was increased. In the control subjects there was a positive linear correlation between ouabain-sensitive sodium efflux and [Nai]. The sodium component of the Na-K cotransport was decreased to about one third of the unchanged furosemide-sensitive potassium component during pregnancy. The changes of cellular sodium metabolism in essential hypertension are of minor degree as compared to those in the other conditions studied. Cellular sodium metabolism in blood cells is influenced by thyroid hormones and metabolic disorders. Na-Li countertransport, i.e. Na-Na countertransport, seems to be involved in the regulation of [Nai]: an increase of its activity diminishes [Nai] (pregnancy); a decrease elevates [Nai] (hyperthyroidism). Ouabain-sensitive sodium efflux, i.e. 'Na-K ATPase', is mainly regulated by its substrate, [Nai].

  13. A Global Model of Meteoric Sodium

    Science.gov (United States)

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-01-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  14. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    Science.gov (United States)

    Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a β″-Al 2O 3 solid electrolyte at elevated temperatures (typically 300-350 °C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement.

  15. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    International Nuclear Information System (INIS)

    Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

    2010-01-01

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a β''-Al 2 O 3 solid electrolyte at elevated temperatures (typically 300-350 C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement. (author)

  16. Intestinal transport and metabolism of acrylamide

    International Nuclear Information System (INIS)

    Zoedl, Bettina; Schmid, Diethart; Wassler, Georg; Gundacker, Claudia; Leibetseder, Valentin; Thalhammer, Theresia; Ekmekcioglu, Cem

    2007-01-01

    There has been an intensive debate whether dietary exposure to acrylamide could increase the risk of human cancer since the first description of the presence of acrylamide in food in 2002. As the intestinal mechanisms of acrylamide absorption are poorly investigated we studied the transport of acrylamide in differentiated Caco-2 cells and its effects on biotransformation enzymes (CYP2E1 and glutathione S-transferase) and glutathione levels. We found that the apparent permeability of [1- 14 C] acrylamide from the basal to the apical compartment was approximately 20% higher compared to that in the opposite direction. No differences were detected for apical-basal transport against a basal gradient. Transport rates from the apical to the basal chamber at 4 deg. C were about 50% lower than at 37 deg. C. Concentration dependent transport from apical to basal was linear. Predominantly, basal to apical transport was decreased when energy metabolism of the cells was inhibited by application of sodium azide and 2-deoxy-D-glucose. Finally, more acrylamide was transported at luminal pH 6 compared to pH 7.4 from basal to the apical direction. Increasing levels of acrylamide showed no effects on the activity of glutathione S-transferase but resulted in a depletion of total glutathione concentrations. In conclusion transport of acrylamide in the intestine is mediated primarily by passive processes possibly combined with a modest energy- and pH-dependent active secretory component. Depletion of cellular glutathione levels may be one potential mechanism for acrylamide (geno)toxicity

  17. Effect of borax on the wetting properties and crystallization behavior of sodium sulfate

    NARCIS (Netherlands)

    Granneman, S.J.C.; Shahidzadeh, N.; Lubelli, B.A.; Hees, R.P.J. van

    2017-01-01

    Borax has been identified as a possible crystallization modifier for sodium sulfate. Understanding the effect of borax on factors influencing transport and crystallization kinetics of sodium sulfate helps to clarify how this modifier might limit crystallization damage. It has been observed that the

  18. Leishmania resistant to sodium stibogluconate: drug-associated macrophage-dependent killing

    DEFF Research Database (Denmark)

    Ibrahim, M E; Hag-Ali, M; el-Hassan, A M

    1994-01-01

    A total of 17 Leishmania isolates, 6 of them isolated from antimony-resistant patients, were collected in the Sudan and tested for their sensitivity to sodium stibogluconate (Pentostam) as promastigotes. Six of those isolates were tested as amastigotes infecting a murine macrophage cell line...

  19. On Perturbation Components Correspondence between Diffusion and Transport

    Energy Technology Data Exchange (ETDEWEB)

    G. Palmiotti

    2012-11-01

    We have established a correspondence between perturbation components in diffusion and transport theory. In particular we have established the correspondence between the leakage perturbation component of the diffusion theory to that of the group self scattering in transport theory. This has been confirmed by practical applications on sodium void reactivity calculations of fast reactors. Why this is important for current investigations? Recently, there has been a renewed interest in designing fast reactors where the sodium void reactivity coefficient is minimized. In particular the ASTRID8,9 reactor concept has been optimized with this goal in mind. The correspondence on the leakage term that has been established here has a twofold implication for the design of this kind of reactors. First, this type of reactor has a radial reflector; therefore, as shown before, the sodium void reactivity coefficient calculation requires the use of transport theory. The minimization of the sodium reactivity coefficient is normally done by increasing the leakage component that has a negative sign. The correspondence established in this paper allows to directly look at this component in transport theory. The second implication is related to the uncertainty evaluation on sodium void reactivity. As it has shown before, the total sodium void reactivity effect is the result of a large compensation (opposite sign) between the scattering (called often spectral) component and the leakage one. Consequently, one has to evaluate separately the uncertainty on each separate component and then combine them statistically. If one wants to compute the cross section sensitivity coefficients of the two different components, the formulation established in this paper allows to achieve this goal by playing on the contribution to the sodium void reactivity coming from the group self scattering of the sodium cross section.

  20. Modification of sodium and potassium channel kinetics by diethyl ether and studies on sodium channel inactivation in the crayfish giant axon membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Bruce Palmer [Univ. of Rochester, NY (United States)

    1979-01-01

    The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in the hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.

  1. Evaluation of the effect of Retrograde Intrarenal Surgery with Myo-Inositol Oxygenase

    Science.gov (United States)

    Mertoglu, Cuma; Bozkurt, Aliseydi; Keskin, Ercüment; Gunay, Murat

    2018-01-01

    Objective: To investigate the effect of retrograde intra-renal surgery (RIRS) on kidneys using the myo-inositol oxygenase (MIOX) enzyme. MIOX is a renal tubular-specific novel marker for the early diagnosis of acute kidney injury. Methods: A total of twenty seven individuals that had undergone RIRS to treat kidney stones were included in the study. Biochemical tests were performed on serum samples collected immediately before RIRS (hour 0) and at the 6th and 24th hours after the surgery. Results: The creatinine value at hour 6 was lower than the baseline (hour 0) value (p = 0.0305). Cystatin C at hour 6 was lower than the value measured at hour 24 (p = 0.0142). Similarly, MIOX was lower at hour 6 compared to hour 24 (p = 0.0214). MIOX/creatinine at hour 6 was lower than the value calculated at hour 24 (p = 0.0348). The basal values of MIOX and creatinine were found to have a positive correlation (correlation coefficient r = 0.5946, p = 0.0035). Conclusions: Similar to the serum creatinine, the serum MIOX level provides information about kidney functions. RIRS was confirmed to be a safe procedure for the treatment of acute kidney injury with no negative effects on the kidneys. PMID:29643901

  2. Social isolation stress and chronic glutathione deficiency have a common effect on the glutamine-to-glutamate ratio and myo-inositol concentration in the mouse frontal cortex.

    Science.gov (United States)

    Corcoba, Alberto; Gruetter, Rolf; Do, Kim Q; Duarte, João M N

    2017-09-01

    Environmental stress can interact with genetic predisposition to increase the risk of developing psychopathology. In this work, we tested the hypothesis that social isolation stress interacts with impaired glutathione synthesis and have cumulative effects on the neurochemical profile of the frontal cortex. A mouse model with chronic glutathione deficit induced by knockout (-/-) of the glutamate-cysteine ligase modulatory subunit (Gclm) was exposed to social isolation stress from weaning to post-natal day 65. Using magnetic resonance methods at high-field (14.1 T), we analysed the neurochemical profile in the frontal cortex, brain size and ventricular volume of adult animals. Glutathione deficit was accompanied by elevated concentrations of N-acetylaspartate, alanine, and glutamine, as well as the ratio of glutamine-to-glutamate (Gln/Glu), and by a reduction in levels of myo-inositol and choline-containing compounds in the frontal cortex of -/- animals with respect to wild-type littermates. Although there was no significant interaction between social isolation stress and glutathione deficiency, mice reared in isolation displayed lower myo-inositol concentration (-8.4%, p social isolation had no effect on these parameters. We conclude that social isolation caused neurochemical alterations that may add to those associated to impaired glutathione synthesis. © 2017 International Society for Neurochemistry.

  3. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  4. Radiostatine and radioiodine uptake characterization in sodium iodine symporter-expressing cell lines

    International Nuclear Information System (INIS)

    Petrich, T.; Helmeke, H.J.; Meyer, G.J.; Knapp, W.H.; Poetter, E.

    2002-01-01

    Full text: The sodium iodide symporter (NIS) has been recognized as an attractive target for cancer gene therapy. Here we investigated NIS-mediated transport of the high LET α-emitter astatine, 211 At, in comparison to radioiodine. A constitutive expression vector harbouring the human NIS cDNA was used in combination with reporter gene vectors for transient transfection of 13 different human cancer cell lines. Radioiodine uptake was measured as well as transfection efficiencies. Six stable NIS-expressing cell lines (3 derived from thyroid carcinomas, 2 colon carcinoma, 1 glioblastoma) were generated by antibiotic selection. NIS expression was monitored by immunohistochemistry and RT-PCR. Subsequently the radioastatine and radioiodine uptake characteristics of genetically modified cells were studied in comparison to the respective control cells. After xenotransplantation in nude mice in vivo tumor imaging by scintigraphy and biodistribution studies following organ removal were performed. Transient transfection of NIS cDNA led to high specific sodium perchlorate-sensitive radioiodine uptake in NIS-expressing cells that roughly correlates to transfection efficiencies. Similarly, stable NIS-expressing cell lines were able to concentrate high levels of radioiodine and in addition showed comparable transport capacity for radioastatine. Accumulation of 211 At was inhibited by sodium perchlorate like iodide uptake and displayed dependency an extracellular Na + - and I - -ions as well. Compared to wash-out experiments in cell culture the effective half life of radioiodine and radioastatine in vivo was significantly prolonged. Preliminary dose calculations by MIRD concepts indicated higher tumor radiation doses for 211 At compared to 131 I. Tumor cells of different origins transfected with the NIS-expression vector specifically and significantly take-up radioiodine and radioastatine in vitro and in vivo. The data provide direct evidence that the NIS efficiently transports

  5. Spin-dependent transport through interacting graphene armchair nanoribbons

    International Nuclear Information System (INIS)

    Koller, Sonja; Mayrhofer, Leonhard; Grifoni, Milena

    2010-01-01

    We investigate spin effects in transport across fully interacting, finite-size graphene armchair nanoribbons (ACNs) contacted to collinearly spin-polarized leads. In such systems, the presence of short-range Coulomb interaction between bulk states and states localized at the ribbon ends leads to novel spin-dependent phenomena. Specifically, the total spin of the low-energy many-body states is conserved during tunneling but that of the bulk and end states is not. As a consequence, in the single-electron regime, dominated by Coulomb blockade phenomena, we find pronounced negative differential conductance features for ACNs contacted to parallel polarized leads. These features are, however, absent in an anti-parallel contact configuration, which in turn leads, within a certain gate and bias voltage region, to a negative tunneling magneto-resistance. Moreover, we analyze the changes in the transport characteristics under the influence of an external magnetic field.

  6. Treating Woman with Myo-Inositol Vaginal Suppositories Improves Partner’s Sperm Motility and Fertility

    Directory of Open Access Journals (Sweden)

    Mario Montanino Oliva

    2016-01-01

    Full Text Available Motility is the feature that allows spermatozoa to actively reach and penetrate the female gamete during fertilization. When this function is altered, and especially decreased, troubles in conceiving may occur. In this study, we demonstrated that treating fertile women with myo-inositol (MI vaginal suppositories ameliorated their partners’ sperm motility and also positively affected their conceiving capacity, without changes in cervical mucus structural and biochemical characteristics. Indeed, by means of the postcoital test on female cervical mucus, a significant improvement especially in progressive sperm motility was recorded after MI suppository use. Concomitantly, after MI treatment, a reduction of immotile spermatozoa percentage was observed. Importantly, MI vaginal supplementation positively correlated with a pregnancy for 5 of the 50 couples enrolled in the study, leading us to speculate that this substance may substantially contribute to create in the cervical mucus an ideal milieu that makes spermatozoa more motile and functionally able to fertilize. Even though the detailed mechanism is still unclear, these results should encourage MI vaginal use for the clinical improvement of male infertility, through their partners.

  7. Salt craving: the psychobiology of pathogenic sodium intake.

    Science.gov (United States)

    Morris, Michael J; Na, Elisa S; Johnson, Alan Kim

    2008-08-06

    Ionic sodium, obtained from dietary sources usually in the form of sodium chloride (NaCl, common table salt) is essential to physiological function, and in humans salt is generally regarded as highly palatable. This marriage of pleasant taste and physiological utility might appear fortunate--an appealing taste helps to ensure that such a vital substance is ingested. However, the powerful mechanisms governing sodium retention and sodium balance are unfortunately best adapted for an environment in which few humans still exist. Our physiological and behavioral means for maintaining body sodium and fluid homeostasis evolved in hot climates where sources of dietary sodium were scarce. For many reasons, contemporary diets are high in salt and daily sodium intakes are excessive. High sodium consumption can have pathological consequences. Although there are a number of obstacles to limiting salt ingestion, high sodium intake, like smoking, is a modifiable behavioral risk factor for many cardiovascular diseases. This review discusses the psychobiological mechanisms that promote and maintain excessive dietary sodium intake. Of particular importance are experience-dependent processes including the sensitization of the neural systems underlying sodium appetite and the effects of sodium balance on hedonic state and mood. Accumulating evidence suggests that plasticity within the central nervous system as a result of experience with high salt intake, sodium depletion, or a chronic unresolved sodium appetite fosters enduring changes in sodium related appetitive and consummatory behaviors.

  8. Mechanistic approach to the sodium leakage and fire analysis

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Muramatsu, Toshiharu; Ohira, Hiroaki; Ida, Masao

    1997-04-01

    In December 1995, a thermocouple well was broken and liquid sodium leaked out of the intermediate heat transport system of the prototype fast breeder reactor Monju. In the initiating process of the incident, liquid sodium flowed out through the hollow thermocouple well, nipple and connector. As a result, liquid sodium, following ignition and combustion, was dropping from the connector to colide with the duct and grating placed below. The collision may cause fragmentation and scattering of the sodium droplet that finally was piled up on the floor. This report deals with the development of computer programs for the phenomena based on mechanistics approach. Numerical analyses are also made for fundamental sodium leakage and combustion phenomenon, sodium combustion experiment, and Monju incident condition. The contents of this report is listed below: (1) Analysis of chemical reaction process based on molecular orbital method, (2) Thermalhy draulic analysis of the sodium combustion experiment II performed in 1996 at O-arai Engineering Center, PNC, (3) Thermalhy draulic analysis of room A-446 of Monju reactor when the sodium leakage took place, (4) Direct numerical simulation of sodium droplet, (5) Sodium leakage and scattering analysis using three dimensional particle method, (6) Multi-dimensional combustion analysis and multi-point approximation combustion analysis code. Subsequent to the development work of the programs, they are to be applied to the safety analysis of the Fast Breeder Reactor. (author)

  9. AcEST: BP913708 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ial protein cyt-4 OS=Neurospora c... 32 1.3 sp|P23975|SC6A2_HUMAN Sodium-dependent nora...drenaline transporter... 30 4.9 sp|O55192|SC6A2_MOUSE Sodium-dependent noradrenaline transporter... 29...+ Sbjct: 237 LLLCLMVVVIVLYFSLWKGVKTSGKVVWITATLPYFV 273 >sp|O55192|SC6A2_MOUSE Sodium-dependent nora...RERHA-------KTLANI 982 Query: 183 N--NKALFQALV 212 + N+ + QALV Sbjct: 983 DGRNELILQALV 994 >sp|P23975|SC6A2_...HUMAN Sodium-dependent noradrenaline transporter OS=Homo sapiens GN=SLC6A2 PE=1 S

  10. Monoenergetic time-dependent neutron transport in an infinite medium with time-varying cross sections

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1987-01-01

    For almost 20 yr, the main thrust of the author's research has been the generation of as many benchmark solutions to the time-dependent monoenergetic neutron transport equation as possible. The major motivation behind this effort has been to provide code developers with highly accurate numerical solutions to serve as standards in the assessment of numerical transport algorithms. In addition, these solutions provide excellent educational tools since the important physical features of neutron transport are still present even though the problems solved are idealized. A secondary motivation, though of equal importance, is the intellectual stimulation and understanding provided by the combination of the analytical, numerical, and computational techniques required to obtain these solutions. Therefore, to further the benchmark development, the added complication of time-dependent cross sections in the one-group transport equation is considered here

  11. The effects of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Gluud, Lise Lotte; Christensen, Mikkel

    2014-01-01

    INTRODUCTION: Sodium-glucose co-transporter 2 inhibitors (SGLT-2i) increase urinary glucose excretion through a reduced renal glucose reabsorption. We plan to perform a systematic review of SGLT-2i for treatment of type 2 diabetes. METHODS AND ANALYSIS: A systematic review with meta......-analyses of randomised clinical trials on SGLT-2i versus placebo, other oral glucose lowering drugs or insulin for patients with type 2 diabetes will be performed. The primary end point will be the glycated haemoglobin. Secondary end points will include changes in body weight, body mass index, fasting plasma glucose...... to the knowledge regarding the beneficial and harmful effects of SGLT-2i in patients with type 2 diabetes. We plan to publish the study irrespective of the results. RESULTS: The study will be disseminated by peer-review publication and conference presentation. TRIAL REGISTRATION NUMBER: PROSPERO CRD42014008960...

  12. AcEST: BP921832 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 3975|SC6A2_HUMAN Sodium-dependent noradrenaline transporter OS=Homo sapiens Align...lue sp|P23975|SC6A2_HUMAN Sodium-dependent noradrenaline transporter... 31 2.1 sp...|Q6DEL1|S38A7_DANRE Putative sodium-coupled neutral amino acid... 30 4.7 >sp|P23975|SC6A2_HUMAN Sodium-dependent noradrenaline

  13. Dialysate sodium and sodium gradient in maintenance hemodialysis: a neglected sodium restriction approach?

    OpenAIRE

    Munoz Mendoza, Jair; Sun, Sumi; Chertow, Glenn M.; Moran, John; Doss, Sheila; Schiller, Brigitte

    2011-01-01

    Background. A higher sodium gradient (dialysate sodium minus pre-dialysis plasma sodium) during hemodialysis (HD) has been associated with sodium loading; however, its role is not well studied. We hypothesized that a sodium dialysate prescription resulting in a higher sodium gradient is associated with increases in interdialytic weight gain (IDWG), blood pressure (BP) and thirst.

  14. CD, MCD and VTVH MCD Studies of Biferrous and Mixed-Valent myo-Inositol Oxygenase: Insights into Substrate Activation of O2 Reactivity

    Science.gov (United States)

    Snyder, Rae Ana; Bell, Caleb B.; Diao, Yinghui; Krebs, Carsten; Bollinger, J. Martin; Solomon, Edward I.

    2013-01-01

    Myo-inositol oxygenase (MIOX) catalyzes the 4e− oxidation of myo-inositol (MI) to D-glucuronate using a substrate activated Fe(II)Fe(III) site. The biferrous and Fe(II)Fe(III) forms of MIOX were studied with circular dichroism (CD), magnetic circular dichroism (MCD), and variable temperature variable field (VTVH) MCD spectroscopies. The MCD spectrum of biferrous MIOX shows two ligand field (LF) transitions near 10,000 cm−1, split by ~2,000 cm−1, characteristic of 6 coordinate (6C) Fe(II) sites, indicating that the modest reactivity of the biferrous form toward O2 can be attributed to the saturated coordination of both irons. Upon oxidation to the Fe(II)Fe(III) state, MIOX shows two LF transitions in the ~10,000 cm−1 region, again implying a coordinatively saturated Fe(II) site. Upon MI binding, these split in energy to 5,200 cm−1 and 11,200 cm−1, showing that MI binding causes the Fe(II) to become coordinately unsaturated. VTVH MCD magnetization curves of unbound and MI-bound Fe(II)Fe(III) forms show that upon substrate binding, the isotherms become more nested, requiring that the exchange coupling and ferrous zero field splitting (ZFS) both decrease in magnitude. These results imply that MI binds to the ferric site, weakening the Fe(III)-μ-OH bond and strengthening the Fe(II)-μ-OH bond. This perturbation results in the release of a coordinated water from the Fe(II) that enables its O2 activation. PMID:24066857

  15. Direct visualization of glutamate transporter elevator mechanism by high-speed AFM.

    Science.gov (United States)

    Ruan, Yi; Miyagi, Atsushi; Wang, Xiaoyu; Chami, Mohamed; Boudker, Olga; Scheuring, Simon

    2017-02-14

    Glutamate transporters are essential for recovery of the neurotransmitter glutamate from the synaptic cleft. Crystal structures in the outward- and inward-facing conformations of a glutamate transporter homolog from archaebacterium Pyrococcus horikoshii , sodium/aspartate symporter Glt Ph , suggested the molecular basis of the transporter cycle. However, dynamic studies of the transport mechanism have been sparse and indirect. Here we present high-speed atomic force microscopy (HS-AFM) observations of membrane-reconstituted Glt Ph at work. HS-AFM movies provide unprecedented real-space and real-time visualization of the transport dynamics. Our results show transport mediated by large amplitude 1.85-nm "elevator" movements of the transport domains consistent with previous crystallographic and spectroscopic studies. Elevator dynamics occur in the absence and presence of sodium ions and aspartate, but stall in sodium alone, providing a direct visualization of the ion and substrate symport mechanism. We show unambiguously that individual protomers within the trimeric transporter function fully independently.

  16. Application of laser diagnostics to sodium-water chemical reaction field

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Tamura, Kenta; Muranaka, Ryota; Kusano, Koji; Kikuchi, Shin; Kurihara, Akikazu

    2013-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes in a steam generator. Therefore the study on sodium-water chemical reactions is of paramount importance for safety reasons. This study aims to clarify the sodium-water reaction mechanisms using laser diagnostics. The sodium-water counter-flow reactions were measured using laser diagnostics such as laser induced fluorescence, CARS, Raman scattering and photo-fragmentation. The measurement results show that the sodium-water reaction proceeds mainly by the reaction Na + H 2 O → NaOH + H and the main product is NaOH in this reaction. Its forward and backward reaction rates tend to balance with each other and the whole reaction rate reduces as temperature increases. (author)

  17. The corrosion of steels by hot sodium melts

    International Nuclear Information System (INIS)

    Currie, R.

    1996-01-01

    Considerable research has been performed by AEA Technology on the corrosion of steels by hot sodium melts containing sodium hydroxide and sodium oxide. This research has principally been in support of understanding the effects of sodium-water reactions on the internals of fast reactor steam generators. The results however have relevance to sodium fires. It has been determined that the rate of corrosion of steels by melts of pure NaOH can be significantly increased by the addition of Na 2 O. In the case of a sodium-water reaction jet created by a leak of steam into sodium, the composition of the jet varies from 100% sodium through to 100% steam, with a full range of concentrations of NaOH and Na 2 O, depending on axial and radial position. The temperature in the jet also varies with position, ranging from bulk sodium temperature on one boundary to expanded steam temperature on the other boundary, with internal temperatures ranging up to 1300 deg. C, depending on the local pre-reaction mole ratio of steam to sodium. In the case of sodium-water reaction jets, it has been possible to develop a model which predicts the composition of the reaction jet and then, using the data generated on the corrosivity of sodium melts, predict the rate of corrosion of a steel target in the path of the jet. In the case of a spray sodium fire, the sodium will initially contain a concentration of NaOH and the combustion process will generate Na 2 O. If there is sufficient humidity, conversion of some of the Na 2 O to NaOH will also occur. There is therefore the potential for aggressive mixtures of NaOH and Na 2 O to exist on the surface of the sodium droplets. It is therefore possible that the rate of corrosion of steels in the path of the spray may be higher than expected on the basis of assuming that only Na and Na 2 O were present. In the case of a pool sodium fire, potentially corrosive mixtures of NaOH and Na 2 O may be formed at some locations on the surface. This could lead to

  18. Generation IV SFR Nuclear Reactors: Under-Sodium Repair for ASTRID

    International Nuclear Information System (INIS)

    Baque, F.; Chagnot, C.; Bruguiere, L.; Augem, J.M.; Delalande, V.; Sibilo, J.

    2013-06-01

    For non-removable components of the future ASTRID prototype, repair operations will be performed in a gas environment. If the faulty area is located under the sodium free level, the gas-tight system will have to contain the inspection and repair tools and to protect them from the surrounding liquid sodium. Concerning repair tools, the unique laser tool has been selected for future SFRs: the repair scenario for in-sodium structures will first involve removing the sodium (after bulk draining), then machining and finally welding. Concerning conventional tools (brush or gas blower for sodium removal, milling machine for machining and TIG for welding for which its feasibility was demonstrated in the 1990's) are still considered as a back-up solution. In-pile examination or repair requires robotic carriers. These carriers have to be compatible with the sodium environment: either in the cover-gas plenum or in gas after sodium draining, or even under liquid sodium. This R and D programme has been divided into nine parts in order to provide an overall design of the required robotic carriers and to develop technological solutions for their components: detailed definition for SFR carrier needs (access to internal structures, possible defects to be detected/repaired), definition and specifications of carrier architecture (depending on inspection and repair scenarios), in-sodium leak-tightness of carrier components, carrier material compatibility with sodium, temperature resistance (200 deg. C), irradiation resistance (depending on the location of the main vessel), gas-tight bell for operations under liquid sodium, carrier positioning control in liquid sodium, development, validation and qualification of technological solutions, for future SFRs, and worldwide benchmark regarding the previous areas of investigation. (authors)

  19. Anisotropic bias dependent transport property of defective phosphorene layer

    Science.gov (United States)

    Umar Farooq, M.; Hashmi, Arqum; Hong, Jisang

    2015-01-01

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, no systematic studies on the transport properties modified due to defects have been performed. Here, we present the electronic band structure, defect formation energy and bias dependent transport property of various defective systems. We found that the defect formation energy is much less than that in graphene. The defect configuration strongly affects the electronic structure. The band gap vanishes in single vacancy layers, but the band gap reappears in divacancy layers. Interestingly, a single vacancy defect behaves like a p-type impurity for transport property. Unlike the common belief, we observe that the vacancy defect can contribute to greatly increasing the current. Along the zigzag direction, the current in the most stable single vacancy structure was significantly increased as compared with that found in the pristine layer. In addition, the current along the armchair direction was always greater than along the zigzag direction and we observed a strong anisotropic current ratio of armchair to zigzag direction. PMID:26198318

  20. Cleaning of Sodium in the Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun

    2005-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Several types of failures due to improper cleaning procedures have been defined in the past. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either the intergranular penetration characteristic of a high- oxygen sodium or an accelerated corrosion due to oxygen. The methods used for cleaning sodium equipment depend on the condition and types of equipment to be cleaned and whether the equipment is to be reused. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, chemical, physical, or mechanical damage, and external effects. This paper discusses a steam-nitrogen gas cleaning method for the routine applications that permits the reuse of the cold trap in sodium

  1. Sodium leak at Monju (I): Cause and consequences

    International Nuclear Information System (INIS)

    Mikami, H.; Shono, A.; Hiroi, H.

    1996-01-01

    On December 8, 1995, a sodium leak from the Secondary Heat Transport System (SHTS) occurred in a piping room of the reactor auxiliary building at Monju. The sodium leaked through a thermocouple temperature sensor due to the breakage of the well tube of the sensor installed near the outlet of the Intermediate Heat Exchanger (IHX) in SHTS Loop C. There were no adverse effects for operating personnel or the surrounding environment. The reactor core remained cooled and thus, from the viewpoint of radiological hazards, the safety of the reactor was secured. On the basis of the investigations, it was concluded that the breakage of the thermocouple well was caused by high cycle fatigue due to flow induced vibration in the direction of sodium flow. (author)

  2. 1H MR spectroscopy of the basal ganglia in childhood: a semiquantitative analysis

    International Nuclear Information System (INIS)

    Lam, W.W.M.; Zhao, H.; Berry, G.T.; Kaplan, P.; Gibson, J.; Kaplan, B.S.

    1998-01-01

    Proton MR spectra of the basal ganglia were obtained from 28 patients, 24 male and 14 female, median age 16.3 months (5 weeks to 31 years). They included 17 patients with normal MRI of the basal ganglia without metabolic disturbance (control group) and 11 patients with various metabolic diseases: one case each of high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease, Galloway-Mowat syndrome, Pelizaeus-Merzbacher disease, hemolytic-uremic syndrome and Wilson disease and two cases of Alagille syndrome and methylmalonic acidemia with abnormal MRI of the basal ganglia or blood or urine analysis (abnormal group). The MR spectrum was measured by using STEAM. The MR-visible water content of the region of interest was obtained. Levels of myoinositol, choline, creatine and N -acetylaspartate were measured using a semiquantitative approach, with absolute reference calibration. In the control group, there was a gradual drop of water content over the first year of life; N -acetylaspartate, creatine and myoinositol levels showed no significant change with age, in contrast to the occipital, parietal and cerebellar regions. Choline showed a gradual decrease for the first 2 years of life and then remained fairly constant. In the abnormal group the water content was not significantly different. N -Acetylaspartate was decreased in patients with high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease and one case of methylmalonic acidemia. Decreased creatine was also found in Leigh disease, and decreased choline in Galloway-Mowat syndrome and Wilson disease. Myoinositol was elevated in the patient with abnormally high serum sodium, and decreased in the hemolytic-uremic syndrome. (orig.)

  3. SGLT1-mediated transport in Caco-2 cells is highly dependent on cell bank origin

    DEFF Research Database (Denmark)

    Steffansen, B; Pedersen, Maria; Laghmoch, A M

    2017-01-01

    The Caco-2 cell line is a well-established in vitro model for studying transport phenomena for prediction of intestinal nutrient and drug absorption. However, for substances depending on transporters such predictions are complicated due to variable transporter expression and limited knowledge about...... transporter function during multiple cell passaging and cell thawings. In the case of SGLT1, a key transporter of oral absorption of D-glucose, one reason for compromised prediction could be inadequate expression of SGLT1 in Caco-2 cells and thereby limited sensitivity in the determination of SGLT1-mediated...... permeability (PSGLT1). Here, the objective was to characterize and compare SGLT1-mediated uptake in Caco-2 cells obtained from different cell banks. SGLT1-mediated uptake of the standard SGLT1 substrate, α-MDG, in Caco-2 cells was shown to be highly dependent on cell bank origin. The most robust and reliable...

  4. Flow in sodium loop surge tank

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1977-01-01

    The alternate liquid flow, the condition of vortex formation, gas entrainment in the discharge and the liquid level characteristics are studied using the models of the vertical and horizontal surge tanks of a sodium circuit with pump and heat exchangers. The conditions for vortex formation are more favourable in the vertical cylindrical tank than in the horizontal tank. The size of the vortex produced in the tank is affected by the initial speed circulation, due as a rule to an unsuitable inlet design. The proposed design considers an inlet below the sodium level using capped perforated pipes. Vortex formation, gas transport to the discharge pipe and turbulences of the liquid in the tank may be prevented by dividing the tank to the discharge and the inlet areas using perforated partitions, and by inserting the discharge cylinder above the discharge pipe outflow. The liquid level in the tank may be calmed by screens or by perforated plates. The adaptation of the surge tank of the sodium circuit will probably eliminate vortex formation and the entrainment of cover gas into the discharge piping and the sodium circuit under nominal conditions. (J.B.)

  5. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  6. Effects of the presence of core debris on the behavior of sodium-concrete reactions

    International Nuclear Information System (INIS)

    Nguyen, D.H.; Muhlestein, L.D.

    1984-01-01

    Calculations using the SOCON model indicated the following: the temperature was increased throughout the concrete and the reaction product layer. Temperature could be raised to above sodium bp. Rate of release and accumulation of water and CO 2 gas were increased. The sodium mass transport to the reaction surface was also increased. As a consequence, more hydrogen and chemical heat were produced. The probability of concrete mechanical failure was higher. Sodium boiling inside the reaction product layer would not significantly alter the course of the reaction, unless it could reduce the rate of sodium transport. Although the chemical heat dominated during the early period, the decay heat could become the main source later. The reactions were driven by three main heat sources: the chemical heat, core debris heat and conduction heat from the hot sodium pool. The latter could become a heat sink. Even with the presence of core debris, the chemical reaction penetration was self-limiting and eventually, the reaction penetration rate decreased to a small value

  7. The Renal Sodium Bicarbonate Cotransporter NBCe2: Is It a Major Contributor to Sodium and pH Homeostasis?

    Science.gov (United States)

    Felder, Robin A; Jose, Pedro A; Xu, Peng; Gildea, John J

    2016-09-01

    The sodium bicarbonate cotransporter (NBCe2, aka NBC4) was originally isolated from the human testis and heart (Pushkin et al. IUBMB Life 50:13-19, 2000). Subsequently, NBCe2 was found in diverse locations where it plays a role in regulating sodium and bicarbonate transport, influencing intracellular, extracellular, interstitial, and ultimately plasma pH (Boron et al. J Exp Biol. 212:1697-1706, 2009; Parker and Boron, Physiol Rev. 93:803-959, 2013; Romero et al. Mol Asp Med. 34:159-182, 2013). NBCe2 is located in human and rodent renal-collecting duct and proximal tubule. While much is known about the two electrogenic sodium bicarbonate cotransporters, NBCe1 and NBCe2, in the regulation of sodium homeostasis and pH balance in the rodent kidney, little is known about their roles in human renal physiology. NBCe2 is located in the proximal tubule Golgi apparatus under basal conditions and then disperses throughout the cell, but particularly into the apical membrane microvilli, during various maneuvers that increase intracellular sodium. This review will summarize our current understanding of the distribution and function of NBCe2 in the human kidney and how genetic variants of its gene, SLC4A5, contribute to salt sensitivity of blood pressure.

  8. Spin dependent transport of hot electrons through ultrathin epitaxial metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Heindl, Emanuel

    2010-06-23

    In this work relaxation and transport of hot electrons in thin single crystalline metallic films is investigated by Ballistic Electron Emission Microscopy. The electron mean free paths are determined in an energy interval of 1 to 2 eV above the Fermi level. While fcc Au-films appear to be quite transmissive for hot electrons, the scattering lengths are much shorter for the ferromagnetic alloy FeCo revealing, furthermore, a strong spin asymmetry in hot electron transport. Additional information is gained from temperature dependent studies in combination with golden rule approaches in order to disentangle the impact of several relaxation and transport properties. It is found that bcc Fe-films are much less effective in spin filtering than films made of the FeCo-alloy. (orig.)

  9. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  10. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder. Studies using a fast-reaction apparatus

    International Nuclear Information System (INIS)

    Chase, H.S. Jr.; Al-Awqati, Q.

    1983-01-01

    Regulation of the sodium permeability of the luminal membrane is the major mechanism by which the net rate of sodium transport across tight epithelia is varied. Previous evidence has suggested that the permeability of the luminal membrane might be regulated by changes in intracellular sodium or calcium activities. To test this directly, we isolated a fraction of the plasma membrane from the toad urinary bladder, which contains a fast, amiloride-sensitive sodium flux with characteristics similar to those of the native luminal membrane. Using a flow-quench apparatus to measure the initial rate of sodium efflux from these vesicles in the millisecond time range, we have demonstrated that the isotope exchange permeability of these vesicles is very sensitive to calcium. Calcium reduces the sodium permeability, and the half-maximal inhibitory concentration is 0.5 microM, well within the range of calcium activity found in cells. Also, the permeability of the luminal membrane vesicles is little affected by the ambient sodium concentration. These results, when taken together with studies on whole tissue, suggest that cell calcium may be an important regulator of transepithelial sodium transport by its effect on luminal sodium permeability. The effect of cell sodium on permeability may be mediated by calcium rather than by sodium itself

  11. Stakeholder discussion to reduce population-wide sodium intake and decrease sodium in the food supply: a conference report from the American Heart Association Sodium Conference 2013 Planning Group.

    Science.gov (United States)

    Antman, Elliott M; Appel, Lawrence J; Balentine, Douglas; Johnson, Rachel K; Steffen, Lyn M; Miller, Emily Ann; Pappas, Antigoni; Stitzel, Kimberly F; Vafiadis, Dorothea K; Whitsel, Laurie

    2014-06-24

    A 2-day interactive forum was convened to discuss the current status and future implications of reducing sodium in the food supply and to identify opportunities for stakeholder collaboration. Participants included 128 stakeholders engaged in food research and development, food manufacturing and retail, restaurant and food service operations, regulatory and legislative activities, public health initiatives, healthcare, academia and scientific research, and data monitoring and surveillance. Presentation topics included scientific evidence for sodium reduction and public health policy recommendations; consumer sodium intakes, attitudes, and behaviors; food technologies and solutions for sodium reduction and sensory implications; experiences of the food and dining industries; and translation and implementation of sodium intake recommendations. Facilitated breakout sessions were conducted to allow for sharing of current practices, insights, and expertise. A well-established body of scientific research shows that there is a strong relationship between excess sodium intake and high blood pressure and other adverse health outcomes. With Americans getting >75% of their sodium from processed and restaurant food, this evidence creates mounting pressure for less sodium in the food supply. The reduction of sodium in the food supply is a complex issue that involves multiple stakeholders. The success of new technological approaches for reducing sodium will depend on product availability, health effects (both intended and unintended), research and development investments, quality and taste of reformulated foods, supply chain management, operational modifications, consumer acceptance, and cost. The conference facilitated an exchange of ideas and set the stage for potential collaboration opportunities among stakeholders with mutual interest in reducing sodium in the food supply and in Americans' diets. Population-wide sodium reduction remains a critically important component of

  12. Validation of red cell sodium-lithium countertransport measurement--influence of different loading conditions

    DEFF Research Database (Denmark)

    Besch, W; Schläger, D; Brahm, J

    1995-01-01

    Increased sodium-lithium countertransport in erythrocytes from patients with long-standing type I (insulin-dependent) diabetes mellitus has been considered as an early marker of nephropathy. Since the activity and kinetics of the sodium-lithium countertransport may critically depend on loading co...

  13. State-dependent compound inhibition of Nav1.2 sodium channels using the FLIPR Vm dye: on-target and off-target effects of diverse pharmacological agents.

    Science.gov (United States)

    Benjamin, Elfrida R; Pruthi, Farhana; Olanrewaju, Shakira; Ilyin, Victor I; Crumley, Gregg; Kutlina, Elena; Valenzano, Kenneth J; Woodward, Richard M

    2006-02-01

    Voltage-gated sodium channels (NaChs) are relevant targets for pain, epilepsy, and a variety of neurological and cardiac disorders. Traditionally, it has been difficult to develop structure-activity relationships for NaCh inhibitors due to rapid channel kinetics and state-dependent compound interactions. Membrane potential (Vm) dyes in conjunction with a high-throughput fluorescence imaging plate reader (FLIPR) offer a satisfactory 1st-tier solution. Thus, the authors have developed a FLIPR Vm assay of rat Nav1.2 NaCh. Channels were opened by addition of veratridine, and Vm dye responses were measured. The IC50 values from various structural classes of compounds were compared to the resting state binding constant (Kr)and inactivated state binding constant (Ki)obtained using patch-clamp electrophysiology (EP). The FLIPR values correlated with Ki but not Kr. FLIPRIC50 values fell within 0.1-to 1.5-fold of EP Ki values, indicating that the assay generally reports use-dependent inhibition rather than resting state block. The Library of Pharmacologically Active Compounds (LOPAC, Sigma) was screened. Confirmed hits arose from diverse classes such as dopamine receptor antagonists, serotonin transport inhibitors, and kinase inhibitors. These data suggest that NaCh inhibition is inherent in a diverse set of biologically active molecules and may warrant counterscreening NaChs to avoid unwanted secondary pharmacology.

  14. Parametric dependences of impurity transport in the Tore Supra tokamak

    International Nuclear Information System (INIS)

    Parisot, Th.

    2007-09-01

    During this Ph.D. work, a full setup of tools for an experimental investigation of impurity transport has been developed on the Tore Supra tokamak. It includes a laser blow-off system for metallic impurity injections and developments for ITC (Impurity Transport Code), a transport code which allows the extraction of the experimental impurity transport coefficients (diffusion and convection velocity). This tool has been used to perform and analyse several experiments, to evidence parametric dependences of impurity transport. In a first experiment, a confinement time law for nickel in Tore Supra has been obtained as a function of collisionality ν * and normalized Larmor radius ρ * . Then the impurity charge Z role has been investigated in various conditions: ohmic regime with or without sawteeth, and sawtooth less L-mode with LH power. No Z effect is observed, consistently with theoretical predictions, whether neoclassical (NCLASS) or for turbulent transport with both non linear gyro-fluid (TRB) and quasilinear gyrokinetic (QuaLiKiz) simulations. An exception is found for LH heated plasmas where the confinement time seems to decrease for the heaviest impurities. This is not explained by any model available. The observed transport is close to neoclassical between sawtooth relaxations, in the centre (r q-1 ) of ohmic plasmas, turbulent outside. Without sawteeth, it is turbulent in the whole plasma, for ohmic or L mode discharges. The profile shape of the diffusion coefficient is here qualitatively different, with a stronger and deeper transition between the low diffusion central region and a more turbulent peripheral region for LH heated plasmas. (author)

  15. Spin-dependent tunneling transport into CrO2 nanorod devices with nonmagnetic contacts.

    Science.gov (United States)

    Song, Yipu; Schmitt, Andrew L; Jin, Song

    2008-08-01

    Single-crystal nanorods of half-metallic chromium dioxide (CrO2) were synthesized and structurally characterized. Spin-dependent electrical transport was investigated in individual CrO2 nanorod devices contacted with nonmagnetic metallic electrodes. Negative magnetoresistance (MR) was observed at low temperatures due to the spin-dependent direct tunneling through the contact barrier and the high spin polarization in the half-metallic nanorods. The magnitude of this negative magnetoresistance decreases with increasing bias voltage and temperature due to spin-independent inelastic hopping through the barrier, and a small positive magnetoresistance was found at room temperature. It is believed that the contact barrier and the surface state of the nanorods have great influence on the spin-dependent transport limiting the magnitude of MR effect in this first attempt at spin filter devices of CrO2 nanorods with nonmagnetic contacts.

  16. Iodide transport and breast cancer.

    Science.gov (United States)

    Poole, Vikki L; McCabe, Christopher J

    2015-10-01

    Breast cancer is the second most common cancer worldwide and the leading cause of cancer death in women, with incidence rates that continue to rise. The heterogeneity of the disease makes breast cancer exceptionally difficult to treat, particularly for those patients with triple-negative disease. To address the therapeutic complexity of these tumours, new strategies for diagnosis and treatment are urgently required. The ability of lactating and malignant breast cells to uptake and transport iodide has led to the hypothesis that radioiodide therapy could be a potentially viable treatment for many breast cancer patients. Understanding how iodide is transported, and the factors regulating the expression and function of the proteins responsible for iodide transport, is critical for translating this hypothesis into reality. This review covers the three known iodide transporters - the sodium iodide symporter, pendrin and the sodium-coupled monocarboxylate transporter - and their role in iodide transport in breast cells, along with efforts to manipulate them to increase the potential for radioiodide therapy as a treatment for breast cancer. © 2015 Society for Endocrinology.

  17. Combustion of sodium in the open atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Morewith, H A; Johnson, R P; Nelson, C T; Otter, J M [Energy System Group, Rockwell International, Rockwell (United States)

    1979-03-01

    A series of sodium fire tests has been conducted in ambient air at a meteorological test site. This test series was designed to simulate hypothetical accidents which might occur in the heat transport system of an LMFBR. Measurements of concentration, agglomeration, fallout, and chemical species of the sodium combustion products were made as a function of downwind distance. In each of the first two tests, {approx}23 kg of 540 deg. C sodium was sprayed as a fan of 250-{mu}m sodium drops across the wind, from heights of 5 or 6 m. Each release took a few minutes. A dense sodium combustion product aerosol was formed, and quickly agglomerated to large (100 to 660 {mu}m) diameter particles. More than 50% of the aerosol mass fell out within several hundred meters of the release point. Two additional tests were performed by releasing sodium through 9.5-mm diameter jets at a height of 30 m. In each test, the sodium jet was aimed horizontally across the wind, and followed a downward parabolic trajectory, releasing burning sodium drops along its track. Again, close-in fallout due to large agglomerates was observed. A substantial amount of unburned sodium fell 30 m to the ground, where it burned. In a third type of test, sodium was burned for 60 min as pool in a 1.5m{sup 2} burn pan at 9 m/s wind velocity. Approximately 30% of the combustion products became airborne. Large agglomerates fell out as they moved downwind, depositing 1 kg/m{sup 2} at 1 m downwind from the edge of the pan. Chemical analysis of the samples indicated that the sodium fires produced mainly Na{sub 2}O, and that the conversion of NaOH was slow. Comparison were made with COMRADEX-IV code models, which are appropriate for calculating deposition and concentrations for downwind distances between 10{sup 2} and 10{sup 4} m. (author)

  18. Combustion of sodium in the open atmosphere

    International Nuclear Information System (INIS)

    Morewith, H.A.; Johnson, R.P.; Nelson, C.T.; Otter, J.M.

    1979-01-01

    A series of sodium fire tests has been conducted in ambient air at a meteorological test site. This test series was designed to simulate hypothetical accidents which might occur in the heat transport system of an LMFBR. Measurements of concentration, agglomeration, fallout, and chemical species of the sodium combustion products were made as a function of downwind distance. In each of the first two tests, ∼23 kg of 540 deg. C sodium was sprayed as a fan of 250-μm sodium drops across the wind, from heights of 5 or 6 m. Each release took a few minutes. A dense sodium combustion product aerosol was formed, and quickly agglomerated to large (100 to 660 μm) diameter particles. More than 50% of the aerosol mass fell out within several hundred meters of the release point. Two additional tests were performed by releasing sodium through 9.5-mm diameter jets at a height of 30 m. In each test, the sodium jet was aimed horizontally across the wind, and followed a downward parabolic trajectory, releasing burning sodium drops along its track. Again, close-in fallout due to large agglomerates was observed. A substantial amount of unburned sodium fell 30 m to the ground, where it burned. In a third type of test, sodium was burned for 60 min as pool in a 1.5m 2 burn pan at 9 m/s wind velocity. Approximately 30% of the combustion products became airborne. Large agglomerates fell out as they moved downwind, depositing 1 kg/m 2 at 1 m downwind from the edge of the pan. Chemical analysis of the samples indicated that the sodium fires produced mainly Na 2 O, and that the conversion of NaOH was slow. Comparison were made with COMRADEX-IV code models, which are appropriate for calculating deposition and concentrations for downwind distances between 10 2 and 10 4 m. (author)

  19. Changes in ion transport in inflammatory disease

    Directory of Open Access Journals (Sweden)

    Eisenhut Michael

    2006-03-01

    Full Text Available Abstract Ion transport is essential for maintenance of transmembranous and transcellular electric potential, fluid transport and cellular volume. Disturbance of ion transport has been associated with cellular dysfunction, intra and extracellular edema and abnormalities of epithelial surface liquid volume. There is increasing evidence that conditions characterized by an intense local or systemic inflammatory response are associated with abnormal ion transport. This abnormal ion transport has been involved in the pathogenesis of conditions like hypovolemia due to fluid losses, hyponatremia and hypokalemia in diarrhoeal diseases, electrolyte abnormalites in pyelonephritis of early infancy, septicemia induced pulmonary edema, and in hypersecretion and edema induced by inflammatory reactions of the mucosa of the upper respiratory tract. Components of membranous ion transport systems, which have been shown to undergo a change in function during an inflammatory response include the sodium potassium ATPase, the epithelial sodium channel, the Cystic Fibrosis Transmembrane Conductance Regulator and calcium activated chloride channels and the sodium potassium chloride co-transporter. Inflammatory mediators, which influence ion transport are tumor necrosis factor, gamma interferon, interleukins, transforming growth factor, leukotrienes and bradykinin. They trigger the release of specific messengers like prostaglandins, nitric oxide and histamine which alter ion transport system function through specific receptors, intracellular second messengers and protein kinases. This review summarizes data on in vivo measurements of changes in ion transport in acute inflammatory conditions and in vitro studies, which have explored the underlying mechanisms. Potential interventions directed at a correction of the observed abnormalities are discussed.

  20. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Metasilicate, and Sodium Silicate ranged from negligible to severe, depending on the species tested and the molar ratio and concentration tested. Sodium Metasilicate was negative in the local lymph node assay (LLNA), but a delayed-type hypersensitivity response was observed in mice. Potassium Silicate was nonirritating in two acute eye irritation studies in rabbits. Sodium Metasilicate (42.4% H2O) was corrosive to the rabbit eye. Sodium Silicate was a severe eye irritant in some eye irritation studies, but was irritating or nonirritating in others. A skin freshener containing Sodium Silicate was nonirritating. Sodium Metasilicate was nonmutagenic in bacterial cells. Rats given Sodium Silicate (600 and 1200 ppm of added silica) in the drinking water in reproductive studies produced a reduced number of offspring: to 67% of controls at 600 ppm and to 80% of controls at 1200 ppm. Three adult rats injected intratesticularly and subcutaneously with 0.8 mM/kg of Sodium Silicate showed no morphological changes in the testes and no effect on the residual spermatozoa in the ductus deferens. Sodium Metasilicate (37% in a detergent) mixed with water was a severe skin irritant when tested on intact and abraded human skin, but 6%, 7%, and 13% Sodium Silicate were negligible skin irritants to intact and abraded human skin. Sodium Silicate (10% of a 40% aqueous solution) was negative in a repeat-insult predictive patch test in humans. The same aqueous solution of Sodium Silicate was considered a mild irritant under normal use conditions in a study of cumulative irritant properties. The Cosmetic Ingredient Review (CIR) Expert Panel recognized the irritation potential of these ingredients, especially in leave-on products. However, because these ingredients have limited dermal absorption and Sodium Metasilicate is a GRAS direct food substance, the Panel deemed the ingredients safe for use in cosmetic products in the practices of use and concentration described in this safety assessment, when

  1. Study of thermophysical and thermohydraulic properties of sodium for fast sodium cooled reactors

    International Nuclear Information System (INIS)

    Vega R, A. K.; Espinosa P, G.; Gomez T, A. M.

    2016-09-01

    The importance of liquid sodium lies in its use as a coolant for fast reactors, but why should liquid metal be used as a coolant instead of water? Water is difficult to use as a coolant for a fast nuclear reactor because its acts as a neutron moderator, that is, stop the fast neutrons and converts them to thermal neutrons. Nuclear reactors such as the Pressurized Water Reactor or the Boiling Water Reactor are thermal reactors, which mean they need thermal neutrons for their operation. However, is necessary for fast reactors to conserve as much fast neutrons, so that the liquid metal coolants that do have this capability are implemented. Sodium does not need to be pressurized, its low melting point and its high boiling point, higher than the operating temperature of the reactor, make it an adequate coolant, also has a high thermal conductivity, which is necessary to transfer thermal energy and its viscosity is close to that of the water, which indicates that is an easily transportable liquid and does not corrode the steel parts of the reactor. This paper presents a brief state of the art of the rapid nuclear reactors that operated and currently operate, as well as projects in the door in some countries; types of nuclear reactors which are cooled by liquid sodium and their operation; the mathematical models for obtaining the properties of liquid sodium in a range of 393 to 1673 Kelvin degrees and a pressure atmosphere. Finally a program is presented in FORTRAN named Thermo-Sodium for the calculation of the properties, which requires as input data the Kelvin temperature in which the liquid sodium is found and provides at the user the thermo-physical and thermo-hydraulic properties for that data temperature. Additional to this the user is asked the Reynolds number and the hydraulic diameter in case of knowing them, and in this way the program will provide the value of the convective coefficient and that of the dimensionless numbers: Nusselt, Prandtl and Peclet. (Author)

  2. Transport of protons and lactate in cultured human fetal retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Hamann, Steffen; Cour, Morten la; Ming Lui, Ge

    2000-01-01

    Electron microscopy, intracellular pH, monocarboxylate transport, pigment epithelium of eye, proton-lactate cotransport, retinal metabolism, sodium/proton exchange......Electron microscopy, intracellular pH, monocarboxylate transport, pigment epithelium of eye, proton-lactate cotransport, retinal metabolism, sodium/proton exchange...

  3. An evaluation of the fluid-elastic instability for Intermediate Heat Exchanger of Prototype Sodium-cooled fast Reactor

    International Nuclear Information System (INIS)

    Cho, Jaehun; Kim, Sungkyun; Koo, Gyeonghoi

    2014-01-01

    The sodium-cooled fast reactor (SFR) module consists of the vessel, containment vessel, head, rotating plug (RP), upper internal structure (UIS), intermediate heat exchanger (IHX), decay heat exchanger (DHX), primary pump, internal structure, internal components and reactor core. The IHXs transfer heat from the radioactive sodium coolant (primary sodium) in the primary heat transport system to the nonradioactive sodium coolant (secondary sodium) in the intermediate heat transport system. Each sodium flows like Fig. 1. Primary sodium flows inside of tube and secondary sodium flows outside. During transferring heat two sodium to sodium, the fluid-elastic instability is occurred among tube bundle by cross flow. Large amplitude vibration occurred by the fluid-elastic instability is caused such as crack and wear of tube. Thus it is important to decrease the fluid-elastic instability in terms of a safety. The purpose of this paper is to evaluate the fluid-elastic instability for tube bundle in the IHX following ASME code. This paper evaluated the fluid-elastic instability of tube bundle in the SFR IHX. According evaluation results, the fluid-elastic instability of IHX tube bundle is occurred. A installing an additional TSP under the upper tubesheet can decrease a probability of fluid-elastic instability. If a location of an additional TSP does not exceed tube length to become a 750 mm, tube bundle of IHX is safety from the fluid-elastic instability

  4. A time-dependent neutron transport model and its coupling to thermal-hydraulics

    International Nuclear Information System (INIS)

    Pautz, A.

    2001-01-01

    A new neutron transport code for time-dependent analyses of nuclear systems has been developed. The code system is based on the well-known Discrete Ordinates code DORT, which solves the steady-state neutron/photon transport equation in two dimensions for an arbitrary number of energy groups and the most common regular geometries. For the implementation of time-dependence a fully implicit first-order scheme was employed to minimize errors due to temporal discretization. This requires various modifications to the transport equation as well as the extensive use of elaborated acceleration mechanisms. The convergence criteria for fluxes, fission rates etc. had to be strongly tightened to ensure the reliability of results. To perform coupled analyses, an interface to the GRS system code ATHLET has been developed. The nodal power densities from the neutron transport code are passed to ATHLET to calculate thermal-hydraulic system parameters, e.g. fuel and coolant temperatures. These are in turn used to generate appropriate nuclear cross sections by interpolation of pre-calculated data sets for each time step. Finally, to demonstrate the transient capabilities of the coupled code system, the research reactor FRM-II has been analysed. Several design basis accidents were modelled, like the loss of off site power, loss of secondary heat sink and unintended control rod withdrawal. (author)

  5. Differential state-dependent modification of rat Na{sub v}1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingjun [College of Life Sciences, Nankai University, Tianjin 300071 (China); Soderlund, David M., E-mail: dms6@cornell.edu [Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 (United States)

    2011-12-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltage dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels

  6. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  7. Impaired sodium-dependent adaptation of arterial stiffness in formerly preeclamptic women : the RETAP-vascular study

    NARCIS (Netherlands)

    van der Graaf, Anne Marijn; Paauw, Nina D.; Toering, Tsjitske J.; Feelisch, Martin; Faas, Marijke M.; Sutton, Thomas R.; Minnion, Magdalena; Lefrandt, Joop. D.; Scherjon, Sicco A.; Franx, Arie; Navis, Gerjan; Lely, A. Titia

    2016-01-01

    Women with a history of preeclampsia have an increased risk for cardiovascular diseases later in life. Persistent vascular alterations in the postpartum period might contribute to this increased risk. The current study assessed arterial stiffness under low sodium (LS) and high sodium (HS) conditions

  8. Fast Water Transport in CNTs: length dependence and entrane/exit effects

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Koumoutsakos, Petros

    Superfast water transport in carbon nanotube (CNT) membranes has been reported in experimental studies. We use Molecular Dynamics simulations to elucidate the mechanisms of water entry, exit and transport in 2nm-diameter hydrophobic CNTs embedded in a hydrophilic membrane matrix. We demonstrate......, for the first time, that under imposed pressures of the order of 1 bar, water entry into the CNT cavity and exit from the CNT end, can occur only on pre-wetted membranes. We conduct large scale simulations for up to 500nm long CNTs and observe a previously unseen dependence of the flow enhancement rates...

  9. Effect of Myoinositol and Antioxidants on Sperm Quality in Men with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Mario Montanino Oliva

    2016-01-01

    Full Text Available This prospective longitudinal study investigated the effects of a dietary supplement in patients affected by reduced sperm motility (asthenospermic males with metabolic syndrome. The product tested was Andrositol®, which contains myoinositol (MI as principal compound, in association with other molecules, and the parameters evaluated were semen characteristics as well as hormone and metabolic profiles. The inclusion criteria were subjects aged over 18 years, with asthenospermia and metabolic syndrome. The exclusion criteria were presence of cryptorchidism, varicocele, and prostatitis. For this study, 45 males who had such features were enrolled. Their selection was made according to the 2010 World Health Organization (WHO criteria (5th Edition for the Evaluation of Human Semen. Hormone and metabolic profiles and semen parameters were assessed at the beginning of the study and after three months of treatment with Andrositol. The differences between the values before and after the supplementation were found statistically significant. Andrositol normalized the metabolic profile of these patients, improving their insulin sensitivity. Moreover, testosterone levels were increased and the semen characteristics, such as sperm concentration, motility, and morphology, highly improved. In conclusion, the association of MI with other molecules (micronutrients and vitamins could be an effective therapy for metabolic disorders, as well as hormonal and spermatic changes responsible for male infertility.

  10. A maximum principle for time dependent transport in systems with voids

    International Nuclear Information System (INIS)

    Schofield, S.L.; Ackroyd, R.T.

    1996-01-01

    A maximum principle is developed for the first-order time dependent Boltzmann equation. The maximum principle is a generalization of Schofield's κ(θ) principle for the first-order steady state Boltzmann equation, and provides a treatment of time dependent transport in systems with void regions. The formulation comprises a direct least-squares minimization allied with a suitable choice of bilinear functional, and gives rise to a maximum principle whose functional is free of terms that have previously led to difficulties in treating void regions. (Author)

  11. Exciplex and excimer molecular probes: detection of conformational flip in a myo-inositol chair.

    Science.gov (United States)

    Kadirvel, Manikandan; Arsic, Biljana; Freeman, Sally; Bichenkova, Elena V

    2008-06-07

    2-O-tert-Butyldimethylsilyl-4,6-bis-O-pyrenoyl-myo-inositol-1,3,5-orthoformate (6) and 2-O-tert-butyldimethylsilyl-4-O-[4-(dimethylamino)benzoyl]-6-O-pyrenoyl-myo-inositol-1,3,5-orthoacetate (10) adopt conformationally restricted unstable chairs with five axial substituents. In the symmetrical diester 6, the two pi-stacked pyrenoyl groups are electron acceptor-donor partners, giving a strong intramolecular excimer emission. In the mixed ester 10, the pyrenoyl group is the electron acceptor and the 4-(dimethylamino)benzoyl ester is the electron donor, giving a strong intramolecular exciplex emission. The conformation of the mixed ester 10 was assessed using 1H NMR spectroscopy (1H-NOESY) and computational studies. which showed the minimum inter-centroid distance between the two aromatic systems to be approximately 3.9 A. Upon addition of acid, the orthoformate/orthoacetate trigger in 6 and 10 was cleaved, which caused a switch of the conformation of the myo-inositol ring to the more stable penta-equatorial chair, leading to separation of the aromatic ester groups and loss of excimer and exciplex fluorescence, respectively. This study provides proof of principle for the development of novel fluorescent molecular probes.

  12. Criticality problems for slabs and spheres in energy dependent neutron transport theory

    International Nuclear Information System (INIS)

    Victory, H.D. Jr.

    1980-01-01

    The steady-state equation for energy-dependent neutron transport in isotropically scattering slabs and spheres is formulated as an integral equation. The Perron-Frobenius-Jentzsch theory of positive operators is used to analyze criticality problems for transport in slab and spherical media consisting of core and reflector. In addition, with an adroit selection of diffusion-like solutions, this theory is used to obtain an expression relating the critical radius of a homogeneous sphere to a parameter characterizing fission production. 21 refs

  13. Intestinal ion transport in rats with spontaneous arterial hypertension.

    Science.gov (United States)

    Lübcke, R; Barbezat, G O

    1988-08-01

    1. Ion balance, intestinal ion transport in vivo with luminal Ringer, and direct voltage clamping in vivo with luminal Ringer and sodium-free choline-Ringer were studied in young (40 days old) and adult (120 days old) spontaneously hypertensive rats (SHR) and age-matched normotensive controls (Wistar-Kyoto rats, WKY). 2. Faecal sodium output was significantly higher in SHR compared with WKY in both young (+67%) and adult (+43%) rats. 3. Small-intestinal sodium absorption was equal in young SHR and WKY, but significantly greater net sodium absorption was found in the ileum of adult SHR. In contrast, net sodium absorption was reduced from the colon of both young and adult SHR. 4. In adult SHR, the colonic transepithelial short-circuit current (Isc) and the transepithelial potential difference (PD) were significantly higher, whereas the transepithelial membrane resistance (Rm) was significantly lower than in WKY. There was an identical drop in Isc in both strains when luminal sodium was replaced by choline. These data cannot be explained by increased electrogenic cation (sodium) absorption in the SHR, but would favour chloride secretion. 5. It is suggested that in SHR membrane electrolyte transport abnormalities may also be present in the epithelial cells of the small and large intestine, as have been demonstrated already in blood cells by several investigators. The SHR may become an interesting experimental animal model for the study of generalized ion transport disorders.

  14. Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo

    Directory of Open Access Journals (Sweden)

    Hongbin Tu

    2017-09-01

    Full Text Available Despite its transport by glucose transporters (GLUTs in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo−/− unable to synthesize ascorbate (vitamin C were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo.

  15. Criticality problems in energy dependent neutron transport theory

    International Nuclear Information System (INIS)

    Victory, H.D. Jr.

    1979-01-01

    The criticality problem is considered for energy dependent neutron transport in an isotropically scattering, homogeneous slab. Under a positivity assumption on the scattering kernel, an expression can be found relating the thickness of the slab to a parameter characterizing production by fission. This is accomplished by exploiting the Perron-Frobenius-Jentsch characterization of positive operators (i.e. those leaving invariant a normal, reproducing cone in a Banach space). It is pointed out that those techniques work for classes of multigroup problems were the Case singular eigenfunction approach is not as feasible as in the one-group theory, which is also analyzed

  16. Alteration of sodium, potassium-adenosine triphosphatase activity in rabbit ciliary processes by cyclic adenosine monophosphate-dependent protein kinase

    International Nuclear Information System (INIS)

    Delamere, N.A.; Socci, R.R.; King, K.L.

    1990-01-01

    The response of sodium, potassium-adenosine triphosphatase (Na,K-ATPase) to cyclic adenosine monophosphate (cAMP)-dependent protein kinase was examined in membranes obtained from rabbit iris-ciliary body. In the presence of the protein kinase together with 10(-5) M cAMP, Na,K-ATPase activity was reduced. No change in Na,K-ATPase activity was detected in response to the protein kinase without added cAMP. Likewise cAMP alone did not alter Na,K-ATPase activity. Reduction of Na,K-ATPase activity was also observed in the presence of the cAMP-dependent protein kinase catalytic subunit. The response of the enzyme to the kinase catalytic subunit was also examined in membranes obtained from rabbit ciliary processes. In the presence of 8 micrograms/ml of the catalytic subunit, ciliary process Na,K-ATPase activity was reduced by more than 50%. To examine whether other ATPases were suppressed by the protein kinase, calcium-stimulated ATPase activity was examined; its activity was stimulated by the catalytic subunit. To test whether the response of the ciliary process Na,K-ATPase is unique, experiments were also performed using membrane preparations from rabbit lens epithelium or rabbit kidney; the catalytic subunit significantly reduced the activity of Na,K-ATPase from the kidney but not the lens. These Na,K-ATPase studies suggest that in the iris-ciliary body, cAMP may alter sodium pump activity. In parallel 86Rb uptake studies, we observed that ouabain-inhibitable potassium uptake by intact pieces of iris-ciliary body was reduced by exogenous dibutryl cAMP or by forskolin

  17. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    International Nuclear Information System (INIS)

    Singh, S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 (angstrom) above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  18. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the

  19. Identification of myo-inositol hexakisphosphate (IP6) as a β-secretase 1 (BACE1) inhibitory molecule in rice grain extract and digest.

    Science.gov (United States)

    Abe, Takako K; Taniguchi, Masayuki

    2014-01-01

    Alzheimer's disease (AD) is widely considered to be caused by amyloid-β peptide (Aβ) accumulation in the brain. Aβ is excised from amyloid-β precursor protein through sequential cleavage by β-secretase 1 (BACE1) and γ-secretase. Thus, BACE1 inhibition could prevent Aβ accumulation. Here, we identified myo-inositol hexakisphosphate (IP6) as a BACE1 inhibitory molecule in rice grain extract and digest. The rice digest and IP6 significantly inhibited Aβ production in neuroblastoma cells without cytotoxicity. These results suggested that rice components, including IP6, may be promising starting materials for the development of potent and safe drugs and/or food to prevent AD.

  20. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  1. The Effects of Altered Membrane Cholesterol Levels on Sodium Pump Activity in Subclinical Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Suparna Roy

    2017-02-01

    Full Text Available BackgroundMetabolic dysfunctions characteristic of overt hypothyroidism (OH start at the early stage of subclinical hypothyroidism (SCH. Na+/K+-ATPase (the sodium pump is a transmembrane enzyme that plays a vital role in cellular activities in combination with membrane lipids. We evaluated the effects of early changes in thyroid hormone and membrane cholesterol on sodium pump activity in SCH and OH patients.MethodsIn 32 SCH patients, 35 OH patients, and 34 euthyroid patients, sodium pump activity and cholesterol levels in red blood cell membranes were measured. Serum thyroxine (T4 and thyroid stimulating hormone (TSH levels were measured using enzyme-linked immunosorbent assays. Differences in their mean values were analysed using post hoc analysis of variance. We assessed the dependence of the sodium pump on other metabolites by multiple regression analysis.ResultsSodium pump activity and membrane cholesterol were lower in both hypothyroid groups than in control group, OH group exhibiting lower values than SCH group. In SCH group, sodium pump activity showed a significant direct dependence on membrane cholesterol with an inverse relationship with serum TSH levels. In OH group, sodium pump activity depended directly on membrane cholesterol and serum T4 levels. No dependence on serum cholesterol was observed in either case.ConclusionDespite the presence of elevated serum cholesterol in hypothyroidism, membrane cholesterol contributed significantly to maintain sodium pump activity in the cells. A critical reduction in membrane cholesterol levels heralds compromised enzyme activity, even in the early stage of hypothyroidism, and this can be predicted by elevated TSH levels alone, without any evident clinical manifestations.

  2. Carbon and nitrogen transport in sodium systems

    International Nuclear Information System (INIS)

    Schrock, S.L.; Shiels, S.A.; Bagnall, C.

    1976-01-01

    Materials for the liquid metal cooled fast breeder reactor will be exposed to high temperature sodium for time periods up to 30 years. One consequence of this exposure will be changes in the interstitial element concentrations of the alloys and concomitant alterations in their mechanical behavior characteristics. Several ongoing technology programs have as their objective a quantitative definition of the rate and extent of this interstitial movement. The paper summarizes the status of these programs and reports in detail on the results of a recently completed, USERDA funded program at the Advanced Reactors Division of Westinghouse. These results, while substantiating earlier reported trends on interstitial movement, indicate the problem is not as severe as initially estimated. Moreover, the present wastage allowance for most reactor components contains sufficient conservatism to compensate for changes in mechanical strength resulting from this change in interstitial concentration

  3. Identification of the endogenous key substrates of the human organic cation transporter OCT2 and their implication in function of dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Dirk Taubert

    Full Text Available BACKGROUND: The etiology of neurodegenerative disorders, such as the accelerated loss of dopaminergic neurons in Parkinson's disease, is unclear. Current hypotheses suggest an abnormal function of the neuronal sodium-dependent dopamine transporter DAT to contribute to cell death in the dopaminergic system, but it has not been investigated whether sodium-independent amine transporters are implicated in the pathogenesis of Parkinson's disease. METHODOLOGY/PRINCIPAL FINDINGS: By the use of a novel tandem-mass spectrometry-based substrate search technique, we have shown that the dopaminergic neuromodulators histidyl-proline diketopiperazine (cyclo(his-pro and salsolinol were the endogenous key substrates of the sodium-independent organic cation transporter OCT2. Quantitative real-time mRNA expression analysis revealed that OCT2 in contrast to its related transporters was preferentially expressed in the dopaminergic regions of the substantia nigra where it colocalized with DAT and tyrosine hydroxylase. By assessing cell viability with the MTT reduction assay, we found that salsolinol exhibited a selective toxicity toward OCT2-expressing cells that was prevented by cyclo(his-pro. A frequent genetic variant of OCT2 with the amino acid substitution R400C reduced the transport efficiency for the cytoprotective cyclo(his-pro and thereby increased the susceptibility to salsolinol-induced cell death. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that the OCT2-regulated interplay between cyclo(his-pro and salsolinol is crucial for nigral cell integrity and that a shift in transport efficiency may impact the risk of Parkinson's disease.

  4. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery.

    Science.gov (United States)

    Patching, Simon G

    2017-03-01

    Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.

  5. Activation of thiazide-sensitive co-transport by angiotensin II in the cyp1a1-Ren2 hypertensive rat.

    Directory of Open Access Journals (Sweden)

    Ali Ashek

    Full Text Available Transgenic rats with inducible expression of the mouse Ren2 gene were used to elucidate mechanisms leading to the development of hypertension and renal injury. Ren2 transgene activation was induced by administration of a naturally occurring aryl hydrocarbon, indole-3-carbinol (100 mg/kg/day by gastric gavage. Blood pressure and renal parameters were recorded in both conscious and anesthetized (butabarbital sodium; 120 mg/kg IP rats at selected time-points during the development of hypertension. Hypertension was evident by the second day of treatment, being preceded by reduced renal sodium excretion due to activation of the thiazide-sensitive sodium-chloride co-transporter. Renal injury was evident after the first day of transgene induction, being initially limited to the pre-glomerular vasculature. Mircoalbuminuria and tubuloinsterstitial injury developed once hypertension was established. Chronic treatment with either hydrochlorothiazide or an AT1 receptor antagonist normalized sodium reabsorption, significantly blunted hypertension and prevented renal injury. Urinary aldosterone excretion was increased ≈ 20 fold, but chronic mineralocorticoid receptor antagonism with spironolactone neither restored natriuretic capacity nor prevented hypertension. Spironolactone nevertheless ameliorated vascular damage and prevented albuminuria. This study finds activation of sodium-chloride co-transport to be a key mechanism in angiotensin II-dependent hypertension. Furthermore, renal vascular injury in this setting reflects both barotrauma and pressure-independent pathways associated with direct detrimental effects of angiotensin II and aldosterone.

  6. Physical models of mass transport of iron and nickel in liquid sodium systems

    International Nuclear Information System (INIS)

    Davies, B.S.J.; Polley, M.V.; Skyrme, G.

    1975-12-01

    Experimental observations on corrosion of pure iron and nickel specimens in non-isothermal loops containing flowing sodium have been used to derive values of the concentration of dissolved material at the entrance to the test section and diffusion coefficients of the test material in sodium. The former values differ from the saturation value by only 10 -3 ppm, which is small compared to currently recommended solubility values. The phenomenon cannot be explained in terms of circulating particles. Two other possible explanations are also dismissed. The diffusion coefficient values are consistent with the corroding species being atoms, or molecules containing a few atoms. It is also shown that the observations are better explained in terms of boundary layer controlled mass transfer, rather than a surface controlled process. A computer model based on an alternative solubility relationship is shown to produce results which describe well the observed variation of corrosion rate with oxygen concentration, sodium velocity and downstream position. (author)

  7. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms.

    Science.gov (United States)

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela; Said, Hamid M

    2015-07-15

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.

  8. Fast Flux Test Facility sodium pump operating experience - mechanical

    International Nuclear Information System (INIS)

    Buonamici, R.

    1987-11-01

    The Heat Transport System (HTS) pumps were designed, fabricated, tested, and installed in the Fast Flux Test Facility (FFTF) Plant during the period from September 1970 through July 1977. Since completion of the installation and sodium fill in December 1978, the FFTF Plant pumps have undergone extensive testing and operation with HTS testing and reactor operation. Steady-state hydraulic and mechanical performances have been and are excellent. In all, FFTF primary and secondary pumps have operated in sodium for approximately 75,000 hours and 79,000 hours, respectively, to August 24, 1987

  9. Anomalous transport in fluid field with random waiting time depending on the preceding jump length

    International Nuclear Information System (INIS)

    Zhang Hong; Li Guo-Hua

    2016-01-01

    Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier–Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. (paper)

  10. Positive solution of a time and energy dependent neutron transport problem

    International Nuclear Information System (INIS)

    Pao, C.V.

    1975-01-01

    A constructive method is given for the determination of a solution and an existence--uniqueness theorem for some nonlinear time and energy dependent neutron transport problems, including the linear transport system. The geometry of the medium under consideration is allowed to be either bounded or unbounded which includes the geometry of a finite or infinite cylinder, a half-space and the whole space R/subm/ (m=1,2,center-dotcenter-dotcenter-dot). Our approach to the problem is by successive approximation which leads to various recursion formulas for the approximations in terms of explicit integrations. It is shown under some Lipschitz conditions on the nonlinear functions, which describe the process of neutrons absorption, fission, and scattering, that the sequence of approximations converges to a unique positive solution. Since these conditions are satisfied by the linear transport equation, all the results for the nonlinear system are valid for the linear transport problem. In the general nonlinear problem, the existence of both local and global solutions are discussed, and an iterative process for the construction of the solution is given

  11. Topological studies of hSVCT1, the human sodium-dependent vitamin C transporter and the influence of N-glycosylation on its intracellular targeting

    Energy Technology Data Exchange (ETDEWEB)

    Velho, Albertina M. [Department of Biosciences University of Kent, CT2 7NJ (United Kingdom); Jarvis, Simon M., E-mail: S.M.Jarvis@westminster.ac.uk [Department of Biosciences University of Kent, CT2 7NJ (United Kingdom); University of Westminster, School of Biosciences, London W1W 6UW (United Kingdom)

    2009-08-01

    The Na{sup +}-dependent transporters, hSVCT1 and hSVCT2, were assessed in COS-1 cells for their membrane topology. Antibodies to N- and C-termini of hSVCT1 and C-terminus of hSVCT2 identified positive immunofluorescence only after permeabilisation, suggesting these regions are intracellular. PNGase F treatment confirmed that WT hSVCT1 ({approx} 70-100 kDa) is glycosylated and site-directed mutagenesis of the three putative N-glycosylation sites, Asn138, Asn144, Asn230, demonstrated that mutants N138Q and N144Q were glycosylated ({approx} 68-90 kDa) with only 31-65% of WT L-ascorbic acid (AA) uptake while the glycosylation profile of N230Q remained unaltered ({approx} 98% of WT activity). However, the N138Q/N144Q double mutant displayed barely detectable membrane expression at {approx} 65 kDa, no apparent glycosylation and minimal AA uptake (< 10%) with no discernible improvement in expression or activity when cultured at 28 {sup o}C or 37 {sup o}C. Marker protein immunocytochemistry with N138Q/N144Q identified intracellular aggregates with hSVCT1 localised at the nuclear membrane but absent at the plasma membrane thus implicating its role as a possible intracellular transporter and suggesting N-glycosylation is required for hSVCT1 membrane targeting. Also, Lys242 on the same putative hydrophilic loop as Asn230 after biotinylation was inaccessible from the extracellular side when analysed by MALDI-TOF MS. A new hSVCT1 secondary structure model supporting these findings is proposed.

  12. Experimental evaluation of sodium to air heat exchanger performance

    International Nuclear Information System (INIS)

    Vinod, V.; Pathak, S.P.; Paunikar, V.D.; Suresh Kumar, V.A.; Noushad, I.B.; Rajan, K.K.

    2013-01-01

    Highlights: ► Sodium to air heat exchangers are used to remove the decay heat produced in fast breeder reactor after shutdown. ► Finned tube sodium to air heat exchanger with sodium on tube side was tested for its heat transfer performance. ► A one dimensional computer code was validated by the experimental data obtained. ► Non uniform sodium and air flow distribution was present in the heat exchanger. - Abstract: Sodium to air heat exchangers (AHXs) is used in Prototype Fast Breeder Reactor (PFBR) circuits to reject the decay heat produced by the radioactive decay of the fission products after reactor shutdown, to the atmospheric air. The heat removal through sodium to air heat exchanger maintains the temperature of reactor components in the pool within safe limits in case of non availability of normal heat transport path. The performance of sodium to air heat exchanger is very critical to ensure high reliability of the decay heat removal systems in sodium cooled fast breeder reactors. Hence experimental evaluation of the adequacy of the heat transfer capability gives confidence to the designers. A finned tube cross flow sodium to air heat exchanger of 2 MW heat transfer capacity with sodium on tube side and air on shell side was tested in the Steam Generator Test Facility at Indira Gandhi Center for Atomic Research, India. Heat transfer experiments were carried out with forced circulation of sodium and air, which confirmed the adequacy of heat removal capacity of the heat exchanger. The testing showed that 2.34 MW of heat power is transferred from sodium to air at nominal flow and temperature conditions. A one dimensional computer code developed for design and analysis of the sodium to air heat exchanger was validated by the experimental data obtained. An equivalent Nusselt number, Nu eq is derived by approximating that the resistance of heat transfer from sodium to air is contributed only by the film resistance of air. The variation of Nu eq with respect

  13. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    International Nuclear Information System (INIS)

    Nguyen Ngoc, Tam Dan; Son, Young-Ok; Lim, Shin-Saeng; Shi, Xianglin; Kim, Jong-Ghee; Heo, Jung Sun; Choe, Youngji; Jeon, Young-Mi; Lee, Jeong-Chae

    2012-01-01

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G 2 /M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.

  14. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Ngoc, Tam Dan [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Son, Young-Ok [Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Lim, Shin-Saeng [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin [Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Kim, Jong-Ghee [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Heo, Jung Sun [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Choe, Youngji [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Jeon, Young-Mi, E-mail: young@jbnu.ac.kr [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Jeong-Chae, E-mail: leejc88@jbnu.ac.kr [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-03-15

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G{sub 2}/M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.

  15. Effect of the Putative Lithium Mimetic Ebselen on Brain Myo-Inositol, Sleep, and Emotional Processing in Humans.

    Science.gov (United States)

    Singh, Nisha; Sharpley, Ann L; Emir, Uzay E; Masaki, Charles; Herzallah, Mohammad M; Gluck, Mark A; Sharp, Trevor; Harmer, Catherine J; Vasudevan, Sridhar R; Cowen, Philip J; Churchill, Grant C

    2016-06-01

    Lithium remains the gold standard in treating bipolar disorder but has unwanted toxicity and side effects. We previously reported that ebselen inhibits inositol monophosphatase (IMPase) and exhibits lithium-like effects in animal models through lowering of inositol. Ebselen has been tested in clinical trials for other disorders, enabling us to determine for the first time the effect of a blood-brain barrier-penetrant IMPase inhibitor on human central nervous system (CNS) function. We now report that in a double-blind, placebo-controlled trial with healthy participants, acute oral ebselen reduced brain myo-inositol in the anterior cingulate cortex, consistent with CNS target engagement. Ebselen decreased slow-wave sleep and affected emotional processing by increasing recognition of some emotions, decreasing latency time in the acoustic startle paradigm, and decreasing the reinforcement of rewarding stimuli. In summary, ebselen affects the phosphoinositide cycle and has CNS effects on surrogate markers that may be relevant to the treatment of bipolar disorder that can be tested in future clinical trials.

  16. Nanoscale spin-dependent transport of electrons and holes in Si-ferromagnet structures

    NARCIS (Netherlands)

    Ul Haq, E.

    Given the rapid development of magnetic data storage and spin-electronics into the realm of nanotechnology, the understanding of the spin-dependent electronic transport and switching behavior of magnetic structures at the nanoscale is an important issue. We have developed spin-sensitive techniques

  17. MINARET: Towards a time-dependent neutron transport parallel solver

    International Nuclear Information System (INIS)

    Baudron, A.M.; Lautard, J.J.; Maday, Y.; Mula, O.

    2013-01-01

    We present the newly developed time-dependent 3D multigroup discrete ordinates neutron transport solver that has recently been implemented in the MINARET code. The solver is the support for a study about computing acceleration techniques that involve parallel architectures. In this work, we will focus on the parallelization of two of the variables involved in our equation: the angular directions and the time. This last variable has been parallelized by a (time) domain decomposition method called the para-real in time algorithm. (authors)

  18. Spin-dependent quantum transport in nanoscaled geometries

    Science.gov (United States)

    Heremans, Jean J.

    2011-10-01

    We discuss experiments where the spin degree of freedom leads to quantum interference phenomena in the solid-state. Under spin-orbit interactions (SOI), spin rotation modifies weak-localization to weak anti-localization (WAL). WAL's sensitivity to spin- and phase coherence leads to its use in determining the spin coherence lengths Ls in materials, of importance moreover in spintronics. Using WAL we measure the dependence of Ls on the wire width w in narrow nanolithographic ballistic InSb wires, ballistic InAs wires, and diffusive Bi wires with surface states with Rashba-like SOI. In all three systems we find that Ls increases with decreasing w. While theory predicts the increase for diffusive wires with linear (Rashba) SOI, we experimentally conclude that the increase in Ls under dimensional confinement may be more universal, with consequences for various applications. Further, in mesoscopic ring geometries on an InAs/AlGaSb 2D electron system (2DES) we observe both Aharonov-Bohm oscillations due to spatial quantum interference, and Altshuler-Aronov-Spivak oscillations due to time-reversed paths. A transport formalism describing quantum coherent networks including ballistic transport and SOI allows a comparison of spin- and phase coherence lengths extracted for such spatial- and temporal-loop quantum interference phenomena. We further applied WAL to study the magnetic interactions between a 2DES at the surface of InAs and local magnetic moments on the surface from rare earth (RE) ions (Gd3+, Ho3+, and Sm3+). The magnetic spin-flip rate carries information about magnetic interactions. Results indicate that the heavy RE ions increase the SOI scattering rate and the spin-flip rate, the latter indicating magnetic interactions. Moreover Ho3+ on InAs yields a spin-flip rate with an unusual power 1/2 temperature dependence, possibly characteristic of a Kondo system. We acknowledge funding from DOE (DE-FG02-08ER46532).

  19. Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Gluud, Lise L; Bennett, Cathy

    2016-01-01

    OBJECTIVE: Sodium-glucose co-transporter 2 inhibitors (SGLT2-i) are a novel drug class for the treatment of diabetes. We aimed at describing the maximal benefits and risks associated with SGLT2-i for patients with type 2 diabetes. DESIGN: Systematic review and meta-analysis. DATA SOURCES AND STUDY......, ketoacidosis and CVD. Secondary outcomes were fasting plasma glucose, body weight, blood pressure, heart rate, lipids, liver function tests, creatinine and adverse events including infections. The quality of the evidence was assessed using GRADE. RESULTS: Meta-analysis of 34 RCTs with 9,154 patients showed...... to low quality evidence). Analysis of 12 RCTs found a beneficial effect of SGLT2-i on HbA1c compared with OAD (-0.20%, -0.28 to -0.13%; moderate quality evidence). CONCLUSION: This review includes a large number of patients with type 2 diabetes and found that SGLT2-i reduces HbA1c with a notable...

  20. Transport coefficients of multi-particle collision algorithms with velocity-dependent collision rules

    International Nuclear Information System (INIS)

    Ihle, Thomas

    2008-01-01

    Detailed calculations of the transport coefficients of a recently introduced particle-based model for fluid dynamics with a non-ideal equation of state are presented. Excluded volume interactions are modeled by means of biased stochastic multi-particle collisions which depend on the local velocities and densities. Momentum and energy are exactly conserved locally. A general scheme to derive transport coefficients for such biased, velocity-dependent collision rules is developed. Analytic expressions for the self-diffusion coefficient and the shear viscosity are obtained, and very good agreement is found with numerical results at small and large mean free paths. The viscosity turns out to be proportional to the square root of temperature, as in a real gas. In addition, the theoretical framework is applied to a two-component version of the model, and expressions for the viscosity and the difference in diffusion of the two species are given

  1. Performance Tests of a Mechanical Pump in Sodium Environment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Kim, Byeongyeon; Cho, Youngil; Jung, Min-Hwan; Gam, Da-Young; Lee, Yong Bum; Jeong, Ji-Young; Kim, Jong-Bum [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Water is often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Nevertheless, to ensure the performance, safety, and operability of major components before its installation in the SFR, a series of demonstration experiments of some components in sodium environment should be positively necessary. So, SFR NSSS System Design Division of Korea Atomic Energy Research Institute (KAERI) built various sodium experimental facilities, especially STELLA-1 in 2012. STELLA-1 (Sodium inTegral Effect test Loop for safety simuLation and Assessment) is a large-scale separated effect test facility for demonstrating the thermal-hydraulic performances of major components such as a Sodium-to-Sodium heat exchanger (DHX), Sodium-to-Air heat exchanger (AHX) of the decay heat removal system, and mechanical sodium pump of the primary heat transport system (PHTS). The mechanical pump in-sodium performance test was successfully performed with good reproducibility of the experiment and data to compare hydraulic characteristic of a mechanical pump in-water was collected. In effect of temperature variation on the pump pressure head, reduction of pump pressure head at 250℃ by 0.57% of that of 300℃ maybe the result of an increase in sodium viscosity by 13.6% according to operating temperature decrease by 50℃. Also, we confirmed that the more flywheel weight, the longer halving time and the more initial flow rate when the pump seized, the shorter halving time. The results of the mechanical pump performance test data in sodium environment will be used to compare with that of the in water environment after the evaluation of measurement uncertainty for tests.

  2. Challenges in Upscaling Geomorphic Transport Laws: Scale-dependence of Local vs. Non-local Formalisms and Derivation of Closures (Invited)

    Science.gov (United States)

    Foufoula-Georgiou, E.; Ganti, V. K.; Passalacqua, P.

    2010-12-01

    Nonlinear geomorphic transport laws are often derived from mechanistic considerations at a point, and yet they are implemented on 90m or 30 m DEMs, presenting a mismatch in the scales of derivation and application of the flux laws. Since estimates of local slopes and curvatures are known to depend on the scale of the DEM used in their computation, two questions arise: (1) how to meaningfully compensate for the scale dependence, if any, of local transport laws? and (2) how to formally derive, via upscaling, constitutive laws that are applicable at larger scales? Recently, non-local geomorphic transport laws for sediment transport on hillslopes have been introduced using the concept of an integral flux that depends on topographic attributes in the vicinity of a point of interest. In this paper, we demonstrate the scale dependence of local nonlinear hillslope sediment transport laws and derive a closure term via upscaling (Reynolds averaging). We also show that the non-local hillslope transport laws are inherently scale independent owing to their non-local, scale-free nature. These concepts are demonstrated via an application to a small subbasin of the Oregon Coast Range using 2m LiDAR topographic data.

  3. Approximate method for solving the velocity dependent transport equation in a slab lattice

    International Nuclear Information System (INIS)

    Ferrari, A.

    1966-01-01

    A method is described that is intended to provide an approximate solution of the transport equation in a medium simulating a water-moderated plate filled reactor core. This medium is constituted by a periodic array of water channels and absorbing plates. The velocity dependent transport equation in slab geometry is included. The computation is performed in a water channel: the absorbing plates are accounted for by the boundary conditions. The scattering of neutrons in water is assumed isotropic, which allows the use of a double Pn approximation to deal with the angular dependence. This method is able to represent the discontinuity of the angular distribution at the channel boundary. The set of equations thus obtained is dependent only on x and v and the coefficients are independent on x. This solution suggests to try solutions involving Legendre polynomials. This scheme leads to a set of equations v dependent only. To obtain an explicit solution, a thermalization model must now be chosen. Using the secondary model of Cadilhac a solution of this set is easy to get. The numerical computations were performed with a particular secondary model, the well-known model of Wigner and Wilkins. (author) [fr

  4. Calcium transport in turtle bladder

    International Nuclear Information System (INIS)

    Sabatini, S.; Kurtzman, N.A.

    1987-01-01

    Unidirectional 45 Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (J net Ca ) was secretory (serosa to mucosa). Ouabain reversed J net Ca to an absorptive flux. Amiloride reduced both fluxes such that J net Ca was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, J net Ca decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, J net Ca was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue 45 Ca content was ≅30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca 2+ -ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na + -K + -ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa

  5. Sodium Carbonate is Saltier Than Sodium Chloride to Sodium-Depleted Rats.

    Science.gov (United States)

    St John, Steven J; McBrayer, Anya M; Krauskopf, Erin E

    2017-10-01

    In a series of behavioral experiments in the 1960s, G.R. Morrison identified several unique features of the taste of Na2CO3 to rats; namely, it is 1) considerably more intense than NaCl at isomolar concentrations, 2) avoided at 10 times lower concentrations than NaCl to thirsty rats, 3) preferred at 10 times lower concentrations than NaCl in sodium-depleted rats. He also demonstrated its qualitatively similarity to NaCl. In Experiment 1, we confirmed and extended many of Morrison's observations. Rats were injected with furosemide on 3 occasions to stimulate a sodium appetite. After each depletion, rats were given a brief-access taste test in a lickometer presenting, in random order, water and 7 concentrations of salt. One test used NaCl (0.028-0.89 M, quarter log steps), another used Na2CO3, and the third used Na2CO3, but at a tenfold lower concentration range (0.0028-0.089 M). Rats licked NaCl in an inverted-U shaped concentration-response function peaking at 0.158-0.281 M. As Morrison's results predicted, rats licked Na2CO3 in nearly identical fashion, but at a tenfold lower concentration range (peak at 0.0158-0.028 M). In a second experiment, furosemide-treated rats were repeatedly tested with the lower Na2CO3 range but mixed in the epithelial sodium channel blocker amiloride at various concentrations (3-300 μM, half log steps). Amiloride reduced licking for Na2CO3 and shifted the peak response rightward up to about half a log unit. Thus, this "super-saltiness" of Na2CO3 to rats is at least partly amiloride-dependent. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Strong dopant dependence of electric transport in ion-gated MoS2

    NARCIS (Netherlands)

    Piatti, Erik; Chen, Qihong; Ye, Jianting

    2017-01-01

    We report modifications of the temperature-dependent transport properties of MoS2 thin flakes via field-driven ion intercalation in an electric double layer transistor. We find that intercalation with Li+ ions induces the onset of an inhomogeneous superconducting state. Intercalation with K+ leads

  7. Analysis of nuclide transport under natural convection and time dependent boundary condition using TOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Javeri, V. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany)

    1995-03-01

    After implementation of TOUGH2 at GRS in summer 91, it was first used to analyse the gas transport in a repository for the nuclear waste with negligible heat generation and to verify the results obtained with ECLIPSE/JAV 92/. Since the original version of TOUGH2 does not directly simulate the decay of radionuclide and the time dependent boundary conditions, it is not a appropriate tool to study the nuclide transport in a porous medium/PRU 87, PRU 91/. Hence, in this paper some modifications are proposed to study the nuclide transport under combined influence of natural convection diffusion, dispersion and time dependent boundary condition. Here, a single phase fluid with two liquid components is considered as in equation of state model for water and brine/PRU 91A/.

  8. Motivation for Using Generalized Geometry in the Time Dependent Transport Code TDKENO

    Energy Technology Data Exchange (ETDEWEB)

    Dustin Popp; Zander Mausolff; Sedat Goluoglu

    2016-04-01

    We are proposing to use the code, TDKENO, to model TREAT. TDKENO solves the time dependent, three dimensional Boltzmann transport equation with explicit representation of delayed neutrons. Instead of directly integrating this equation, the neutron flux is factored into two components – a rapidly varying amplitude equation and a slowly varying shape equation and each is solved separately on different time scales. The shape equation is solved using the 3D Monte Carlo transport code KENO, from Oak Ridge National Laboratory’s SCALE code package. Using the Monte Carlo method to solve the shape equation is still computationally intensive, but the operation is only performed when needed. The amplitude equation is solved deterministically and frequently, so the solution gives an accurate time-dependent solution without having to repeatedly We have modified TDKENO to incorporate KENO-VI so that we may accurately represent the geometries within TREAT. This paper explains the motivation behind using generalized geometry, and provides the results of our modifications. TDKENO uses the Improved Quasi-Static method to accomplish this. In this method, the neutron flux is factored into two components. One component is a purely time-dependent and rapidly varying amplitude function, which is solved deterministically and very frequently (small time steps). The other is a slowly varying flux shape function that weakly depends on time and is only solved when needed (significantly larger time steps).

  9. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jason, E-mail: jason.hou@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ivanov, Kostadin N. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Boyarinov, Victor F.; Fomichenko, Peter A. [National Research Centre “Kurchatov Institute”, Kurchatov Sq. 1, Moscow (Russian Federation)

    2017-06-15

    Highlights: • A time-dependent homogenization-free neutron transport benchmark was created. • The first phase, known as the kinetics phase, was described in this work. • Preliminary results for selected 2-D transient exercises were presented. - Abstract: A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for the time-dependent neutron transport calculations without spatial homogenization has been established in order to facilitate the development and assessment of numerical methods for solving the space-time neutron kinetics equations. The benchmark has been named the OECD/NEA C5G7-TD benchmark, and later extended with three consecutive phases each corresponding to one modelling stage of the multi-physics transient analysis of the nuclear reactor core. This paper provides a detailed introduction of the benchmark specification of Phase I, known as the “kinetics phase”, including the geometry description, supporting neutron transport data, transient scenarios in both two-dimensional (2-D) and three-dimensional (3-D) configurations, as well as the expected output parameters from the participants. Also presented are the preliminary results for the initial state 2-D core and selected transient exercises that have been obtained using the Monte Carlo method and the Surface Harmonic Method (SHM), respectively.

  10. Antiepileptic drugs targeting sodium channels: subunit and neuron-type specific interactions

    NARCIS (Netherlands)

    Qiao, X.

    2013-01-01

    Certain antiepileptic drugs (e.g. carbamazepine and lamotrigine) block sodium channels in an use-dependent manner and this mechanism contributes to the anti-convulsant properties of these drugs. There are, however, subtle differences in sodium current blocking properties of the antiepileptic drugs

  11. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations

    Science.gov (United States)

    Busschaert, Nathalie; Park, Seong-Hyun; Baek, Kyung-Hwa; Choi, Yoon Pyo; Park, Jinhong; Howe, Ethan N. W.; Hiscock, Jennifer R.; Karagiannidis, Louise E.; Marques, Igor; Félix, Vítor; Namkung, Wan; Sessler, Jonathan L.; Gale, Philip A.; Shin, Injae

    2017-07-01

    Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.

  12. Sodium

    Science.gov (United States)

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  13. Plasmin in Nephrotic Urine Activates the Epithelial Sodium Channel

    DEFF Research Database (Denmark)

    Svenningsen, Per; Bistrup, Claus; Friis, Ulla G

    2009-01-01

    stimulated amiloride-sensitive transepithelial sodium transport in M-1 cells and increased amiloride-sensitive whole-cell currents in Xenopus laevis oocytes heterologously expressing ENaC. Activation of ENaC by plasmin involved cleavage and release of an inhibitory peptide from the ENaC gamma subunit...

  14. Methodology for Extraction of Remaining Sodium of Used Sodium Containers

    International Nuclear Information System (INIS)

    Jung, Minhwan; Kim, Jongman; Cho, Youngil; Jeong, Jiyoung

    2014-01-01

    Sodium used as a coolant in the SFR (Sodium-cooled Fast Reactor) reacts easily with most elements due to its high reactivity. If sodium at high temperature leaks outside of a system boundary and makes contact with oxygen, it starts to burn and toxic aerosols are produced. In addition, it generates flammable hydrogen gas through a reaction with water. Hydrogen gas can be explosive within the range of 4.75 vol%. Therefore, the sodium should be handled carefully in accordance with standard procedures even though there is a small amount of target sodium remainings inside the containers and drums used for experiment. After the experiment, all sodium experimental apparatuses should be dismantled carefully through a series of draining, residual sodium extraction, and cleaning if they are no longer reused. In this work, a system for the extraction of the remaining sodium of used sodium drums has been developed and an operation procedure for the system has been established. In this work, a methodology for the extraction of remaining sodium out of the used sodium container has been developed as one of the sodium facility maintenance works. The sodium extraction system for remaining sodium of the used drums was designed and tested successfully. This work will contribute to an establishment of sodium handling technology for PGSFR. (Prototype Gen-IV Sodium-cooled Fast Reactor)

  15. Investigation of steel--sodium--iron shields

    International Nuclear Information System (INIS)

    Oblow, E.M.; Maerker, R.E.

    1978-01-01

    An analysis of experimental data from 21 fast reactor shield configurations containing steel, sodium, and iron were made as part of a study of the upper axial shielding needs of the Clinch River Breeder Reactor. The measured data were analyzed using both one- and two-dimensional discrete ordinates transport codes and several cross section libraries based on ENDF/B-IV data with group structures of 51 and 171 neutron groups. One-dimensional sensitivity studies using the 171 group library and ENDF/B-IV covariance files for sodium and iron data were used to determine the sensitivities of the measured data to multigroup cross sections and to estimate uncertainties in the calculated results. Results indicate that the standard 51-group design cross section library could be expected to predict the measurements to within 30% over 12 decades of attenuation although a few of the deepest penetration configurations showed disagreements as large as a factor of three. The sensitivity results revealed very high sensitivity of the measurements to total cross section minima and cross sections from 5 to 10 MeV in sodium and iron in the deep penetration configurations. As a result, large uncertainties in the calculated results arose from small uncertainties in the cross section data. These results indicate the need for better measurements of the total cross section minima in sodium, especially around 300 keV

  16. Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent

    Directory of Open Access Journals (Sweden)

    Pascale Crissey L

    2011-07-01

    Full Text Available Abstract Background Age is the major risk factor for many neurodegenerative diseases, including Alzheimer's disease (AD. There is an accumulation of amyloid-beta peptides (Aβ in both the AD brain and the normal aging brain. Clearance of Aβ from the brain occurs via active transport at the blood-brain barrier (BBB and blood-cerebrospinal fluid barrier (BCSFB. With increasing age, the expression of the Aβ efflux transporters is decreased and the Aβ influx transporter expression is increased at the BBB, adding to the amyloid burden in the brain. Expression of the Aβ transporters at the choroid plexus (CP epithelium as a function of aging was the subject of this study. Methods This project investigated the changes in expression of the Aβ transporters, the low density lipoprotein receptor-related protein-1 (LRP-1, P-glycoprotein (P-gp, LRP-2 (megalin and the receptor for advanced glycation end-products (RAGE at the BCSFB in Brown-Norway/Fischer rats at ages 3, 6, 9, 12, 20, 30 and 36 months, using real time RT-PCR to measure transporter mRNA expression, and immunohistochemistry (IHC to measure transporter protein in isolated rat CP. Results There was an increase in the transcription of the Aβ efflux transporters, LRP-1 and P-gp, no change in RAGE expression and a decrease in LRP-2, the CP epithelium influx transporter, at the BCSFB with aging. Decreased Aβ42 concentration in the CP, as measured by quantitative IHC, was associated with these Aβ transporter alterations. Conclusions Age-dependent alterations in the CP Aβ transporters are associated with a decrease in Aβ42 accumulation in the CP, and are reciprocal to the changes seen in these transporters at the BBB, suggesting a possible compensatory role for the BCSFB in Aβ clearance in aging.

  17. Solubility of xenon in liquid sodium

    International Nuclear Information System (INIS)

    Veleckis, E.; Cafasso, F.A.; Feder, H.M.

    1976-01-01

    The solubility of xenon in liquid sodium was measured as a function of pressure (2-8 atm) and temperature (350-600 0 C). Henry's law was obeyed with the value of the Henry's law constant, K/sub H/ = N/sub Xe//P, ranging from 1.38 x 10 -10 atm -1 at 350C, to 1.59 x 10 -8 atm -1 at 600 0 C where N/sub Xe/ and P are the atom fraction and the partial pressure of xenon, respectively. The temperature dependence of solubility may be represented by log 10 lambda = (0.663 +- 0.01) - (4500 +- 73) T -1 , where lambda is the Ostwald coefficient (the volume of xenon dissolved per unit volume of sodium at the temperature of the experiment). The heat of solution of xenon in sodium was 20.6 +- 0.7 kcal/mole, where the standard state of xenon is defined as that of 1 mole of an ideal gas, confined to a volume equal to the molar volume of sodium

  18. Numerical study of the underexpanded nitrogen jets submerged into liquid sodium in the frame of Sodium-cooled Fast Reactor (SFRs)

    International Nuclear Information System (INIS)

    Chen, F.; Allou, A.; Parisse, J.D.

    2017-01-01

    The study of the consequences of a gas leakage in the secondary/ tertiary heat exchangers is one of the essential points in the safety analysis of Sodium-cooled Fast nuclear Reactors (SFRs). This work is in the frame of the technology of the Compact plates Sodium-Gas heat Exchangers (ECSG) which is an alternative to conventional steam Rankine cycles. The overpressure of the tertiary nitrogen loop causes the formation of underexpanded gas jets submerged in the liquid sodium. In order to establish a safety evaluation, it would be an asset to be able to estimate the leakage. The gas leak detection by the acoustic method based on the bubbles field has been proposed. It requires then a delicate knowledge of the bubble field. This work contributes to development a numerical tool and its validation to model the transport and the production of bubbles in the downstream of underexpanded gas jets. The code CANOP modeling bi-phasic compressible flow is investigated under the actual condition of the underexpanded nitrogen jets submerged in the liquid sodium in an ECSG channel. Expensive computational cost is limited by using an Adaptive Mesh Refinement. (author)

  19. Proton gradients and proton-dependent transport processes in the chloroplast

    Directory of Open Access Journals (Sweden)

    Ricarda eHöhner

    2016-02-01

    Full Text Available Proton gradients are fundamental to chloroplast function. Across thylakoid membranes, the light induced proton gradient is essential for ATP synthesis. As a result of proton pumping into the thylakoid lumen, an alkaline stromal pH develops, which is required for full activation of pH-dependent Calvin Benson cycle enzymes. This implies that a pH gradient between the cytosol (pH 7 and the stroma (pH 8 is established upon illumination. To maintain this pH gradient chloroplasts actively extrude protons. More than 30 years ago it was already established that these proton fluxes are electrically counterbalanced by Mg2+, K+ or Cl- fluxes, but only recently the first transport systems that regulate the pH gradient were identified. Notably several (Na+,K+/H+ antiporter systems where identified, that play a role in pH gradient regulation, ion homeostasis, osmoregulation, or coupling of secondary active transport. The established pH gradients are important to drive uptake of essential ions and solutes, but not many transporters involved have been identified to date. In this mini review we summarize the current status in the field and the open questions that need to be addressed in order to understand how pH gradients are maintained, how this is interconnected with other transport processes and what this means for chloroplast function.

  20. Operational experience on sodium deposits in KNK reactor and RSB test facility

    Energy Technology Data Exchange (ETDEWEB)

    Jansing, W; Kirchner, G; Menck, J [INTERATOM, Bergisch Gladbach (Germany)

    1977-01-01

    A specific problem of sodium-cooled reactor plants is the formation of sodium aerosols which deposit at cold sections of the plant. Formation and behaviour of sodium aerosols depend on various factors. These may show extreme different effects under conditions which first seem to be identical. Thus, it is very difficult to set up general valid rules on sodium aerosols. By operational experience gained in different plants under divers operating conditions, knowledge is drawn which corresponds well with theoretical considerations. (author)

  1. Bicarbonate-dependent transport of acetate and butyrate across the basolateral membrane of sheep rumen epithelium.

    Science.gov (United States)

    Dengler, F; Rackwitz, R; Benesch, F; Pfannkuche, H; Gäbel, G

    2014-02-01

    This study aimed to assess the role of HCO₃⁻ in the transport of acetate and butyrate across the basolateral membrane of rumen epithelium and to identify transport proteins involved. The effects of basolateral variation in HCO₃⁻ concentrations on acetate and butyrate efflux out of the epithelium and the transepithelial flux of these short-chain fatty acids were tested in Ussing chamber experiments using (14)C-labelled substrates. HCO₃⁻-dependent transport mechanisms were characterized by adding specific inhibitors of candidate proteins to the serosal side. Effluxes of acetate and butyrate out of the epithelium were higher to the serosal side than to the mucosal side. Acetate and butyrate effluxes to both sides of rumen epithelium consisted of HCO₃⁻-independent and -dependent parts. HCO₃⁻-dependent transport across the basolateral membrane was confirmed in studies of transepithelial fluxes. Mucosal to serosal fluxes of acetate and butyrate decreased with lowering serosal HCO₃⁻ concentrations. In the presence of 25 mm HCO₃⁻, transepithelial flux of acetate was inhibited effectively by p-hydroxymercuribenzoic acid or α-cyano-4-hydroxycinnamic acid, while butyrate flux was unaffected by the blockers. Fluxes of both acetate and butyrate from the serosal to the mucosal side were diminished largely by the addition of NO₃⁻ to the serosal side, with this effect being more pronounced for acetate. Our results indicate the existence of a basolateral short-chain fatty acid/HCO₃⁻ exchanger, with monocarboxylate transporter 1 as a primary candidate for acetate transfer. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  2. Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels.

    Science.gov (United States)

    Lara-Valderrábano, Leonardo; Rocha, Luisa; Galván, Emilio J

    2016-12-01

    Propylparaben (PPB) is an antimicrobial preservative widely used in food, cosmetics, and pharmaceutics. Virtual screening methodologies predicted anticonvulsant activity of PPB that was confirmed in vivo. Thus, we explored the effects of PPB on the excitability of hippocampal neurons by using standard patch clamp techniques. Bath perfusion of PPB reduced the fast-inactivating sodium current (I Na ) amplitude, causing a hyperpolarizing shift in the inactivation curve of the I Na, and markedly delayed the sodium channel recovery from the inactivation state. Also, PPB effectively suppressed the riluzole-sensitive, persistent sodium current (I NaP ). PPB perfusion also modified the action potential kinetics, and higher concentrations of PPB suppressed the spike activity. Nevertheless, the modulatory effects of PPB did not occur when PPB was internally applied by whole-cell dialysis. These results indicate that PPB reduces the excitability of CA1 pyramidal neurons by modulating voltage-dependent sodium channels. The mechanistic basis of this effect is a marked delay in the recovery from inactivation state of the voltage-sensitive sodium channels. Our results indicate that similar to local anesthetics and anticonvulsant drugs that act on sodium channels, PPB acts in a use-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    International Nuclear Information System (INIS)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-01-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  4. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David [Argonne National Lab. (ANL), Argonne, IL (United States); Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  5. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport

    Directory of Open Access Journals (Sweden)

    Nobuhiko Satoh

    2015-01-01

    Full Text Available A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2 and stimulates sodium-bicarbonate cotransporter (NBCe1, resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC and epithelial sodium channel (ENaC activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1 mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK. Moreover, sodium-proton exchanger 3 (NHE3 in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport.

  6. Finite moments approach to the time-dependent neutron transport equation

    International Nuclear Information System (INIS)

    Kim, Sang Hyun

    1994-02-01

    Currently, nodal techniques are widely used in solving the multidimensional diffusion equation because of savings in computing time and storage. Thanks to the development of computer technology, one can now solve the transport equation instead of the diffusion equation to obtain more accurate solution. The finite moments method, one of the nodal methods, attempts to represent the fluxes in the cell and on cell surfaces more rigorously by retaining additional spatial moments. Generally, there are two finite moments schemes to solve the time-dependent transport equation. In one, the time variable is treated implicitly with finite moments method in space variable (implicit finite moments method), the other method uses finite moments method in both space and time (space-time finite moments method). In this study, these two schemes are applied to two types of time-dependent neutron transport problems. One is a fixed source problem, the other a heterogeneous fast reactor problem with delayed neutrons. From the results, it is observed that the two finite moments methods give almost the same solutions in both benchmark problems. However, the space-time finite moments method requires a little longer computing time than that of the implicit finite moments method. In order to reduce the longer computing time in the space-time finite moments method, a new iteration strategy is exploited, where a few time-stepwise calculation, in which original time steps are grouped into several coarse time divisions, is performed sequentially instead of performing iterations over the entire time steps. This strategy results in significant reduction of the computing time and we observe that 2-or 3-stepwise calculation is preferable. In addition, we propose a new finite moments method which is called mixed finite moments method in this thesis. Asymptotic analysis for the finite moments method shows that accuracy of the solution in a heterogeneous problem mainly depends on the accuracy of the

  7. Parabrachial and hypothalamic interaction in sodium appetite

    Science.gov (United States)

    Dayawansa, S.; Peckins, S.; Ruch, S.

    2011-01-01

    Rats with bilateral lesions of the lateral hypothalamus (LH) fail to exhibit sodium appetite. Lesions of the parabrachial nuclei (PBN) also block salt appetite. The PBN projection to the LH is largely ipsilateral. If these deficits are functionally dependent, damaging the PBN on one side and the LH on the other should also block Na appetite. First, bilateral ibotenic acid lesions of the LH were needed because the electrolytic damage used previously destroyed both cells and axons. The ibotenic LH lesions produced substantial weight loss and eliminated Na appetite. Controls with ipsilateral PBN and LH lesions gained weight and displayed robust sodium appetite. The rats with asymmetric PBN-LH lesions also gained weight, but after sodium depletion consistently failed to increase intake of 0.5 M NaCl. These results dissociate loss of sodium appetite from the classic weight loss after LH damage and prove that Na appetite requires communication between neurons in the LH and the PBN. PMID:21270347

  8. Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.

    2009-05-21

    We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.

  9. Sodium fire tests for investigating the sodium leak in Monju

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi

    1996-01-01

    As a part of the work for investigating the sodium leak accident which occurred in Monju on December 8, 1995, three tests, (1) sodium leak test, (2) sodium fire test-I, and (3) sodium fire test-II, were carried out at OEC/PNC. Main objectives of these tests are to confirm leak and burning behavior of sodium from the damaged thermometer, and effects of the sodium fire on integrity of the surrounding structure, etc. The main conclusions obtained from the tests are shown as below. 1) Average sodium leak rate obtained from the sodium leak test was about 50 g/sec. This was equivalent to the value estimated from level change in the sodium overflow tank in the Monju accident. 2) Observation from video cameras in the sodium fire tests revealed that in early stages of sodium leak, sodium dropped down out of the flexible tube of thermometer in drips. This dripping and burning were expanded in range as sodium splashed on the duct. 3) Though, in the sodium fire test-I, there was a decrease of about 1 mm at a thickness of the burning pan in the vicinity in just under in the leak point, there were completely no crack and failure. In the meantime, in the sodium fire test-II the six open holes were found in the floor liner. By this liner failure, the reaction between sodium and concrete might take place. At present, while the detailed evaluation on the sodium fire test-II has been mainly carried out, the investigation for clarifying the cause of the liner failure has been also carried out. (author)

  10. Correlation for predicting aerosol concentration in sodium spray fires

    International Nuclear Information System (INIS)

    Marimuthu, K.

    2001-01-01

    Aerosol behaviour computer codes are reported for the study of time-dependent airborne aerosol concentration in a containment. The use of available computer codes requires a thorough knowledge of the various rate processes employed to describe the aerosol behaviour. The present work describes a simple empirical equation to calculate sodium fire aerosol concentration with respect to time in a containment and is applicable to sodium spray fire conditions. Sodium spray fire aerosol concentration values obtained using this simplified approach agree reasonably well with experimental results. The empirical equation described in the present work is incorporated in the spray fire code NACOM and the code calculated values of aerosol concentration agreement with the sodium spray fire experimental results is reasonably good. (author)

  11. Exercise-based transportation reduces oil dependence, carbon emissions and obesity

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, P.A.T.

    2005-09-15

    Societal dependence on oil leads to increasingly negative social consequences throughout the world, including climate change, air pollution, political and economic instability, and habitat degradation. Reliance on the automobile for transportation also contributes to a sedentary lifestyle, an obesity epidemic and poor health. These problems are particularly pronounced in the USA, which currently consumes c. 27% of global oil production and produces c. 25% of global carbon emissions, and where c. 65% of adults are overweight or obese. Other countries throughout the world that replicate or hope to replicate the automobile-based lifestyle of the USA face similar problems now or in the near future. This paper develops and applies calculations relating the distances that could be travelled through recommended daily walking or cycling with weight loss, oil consumption and carbon emissions. These straightforward calculations demonstrate that widespread substitution of driving with distances travelled during recommended daily exercise could reduce the USA's oil consumption by up to 38%. This saving far exceeds the amount of oil recoverable from the Arctic National Wildlife Refuge, suggesting that exercise can reduce foreign oil dependence and provide an alternative to oil extraction from environmentally sensitive habitat. At the same time, an average individual who substitutes this amount of exercise for transportation would burn respectively c. 12.2 and 26.0 kg of fat per year for walking and cycling. This is sufficient to eliminate obese and overweight conditions in a few years without dangerous or draconian diet plans. Furthermore, a reduction in carbon dioxide emissions of c. 35% is possible if the revenue saved through decreased health care spending on obesity is redirected toward carbon abatement. As a result, exercise-based transportation may constitute a favourable alternative to the energy and diet plans that are currently being implemented in the USA and may

  12. Biophysical and Pharmacological Characterization of Nav1.9 Voltage Dependent Sodium Channels Stably Expressed in HEK-293 Cells.

    Directory of Open Access Journals (Sweden)

    Zhixin Lin

    Full Text Available The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with β1/β2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799 which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies.

  13. Membrane potential and ion transport in lung epithelial type II cells

    International Nuclear Information System (INIS)

    Gallo, R.L.

    1986-01-01

    The alveolar type II pneumocyte is critically important to the function and maintenance of pulmonary epithelium. To investigate the nature of the response of type II cells to membrane injury, and describe a possible mechanism by which these cells regulate surfactant secretion, the membrane potential of isolated rabbit type II cells was characterized. This evaluation was accomplished by measurements of the accumulation of the membrane potential probes: [ 3 H]triphenylmethylphosphonium ([ 3 H]TPMP + ), rubidium 86, and the fluorescent dye DiOC 5 . A compartmental analysis of probe uptake into mitochondrial, cytoplasmic, and non-membrane potential dependent stores was made through the use of selective membrane depolarizations with carbonycyanide M-chlorophenylhydrazone (CCCP), and lysophosphatidylcholine (LPC). These techniques and population analysis with flow cytometry, permitted the accurate evaluation of type II cell membrane potential under control conditions and under conditions which stimulated cell activity. Further analysis of ion transport by cells exposed to radiation or adrenergic stimulation revealed a common increase in Na + /K + ATPase activity, and an increase in sodium influx across the plasma membrane. This sodium influx was found to be a critical step in the initiation of surfactant secretion. It is concluded that radiation exposure as well as other pulmonary toxicants can directly affect the membrane potential and ionic regulation of type II cells. Ion transport, particularly of sodium, plays an important role in the regulation of type II cell function

  14. Action of neuro-hypophysis hormones on sodium exchanges of Carassius auratus L; Action des hormones neurohypophysaires sur les echanges de sodium de Carassius auratus L.

    Energy Technology Data Exchange (ETDEWEB)

    Julien, Monique

    1960-06-25

    This academic work reports the use of radio-sodium as indicator of sodium exchanges to simultaneously measure the gill input flow and the output gill and urinary flows. This technique has been applied in the case of a common soft water fish (Carassius auratus L.) to study the possible action of neuro-hypophysis extracts on these flows, and the action of these hormones on urinary excretion [French] Nous avons mesure les echanges de sodium de Carassius auratus a l'aide de radiosodium 24. L'action d'extraits neuro-hypophysaires d'origine diverse a ete comparee a celle d'injection temoin de chlorure de sodium isotonique, aussi bien sur les flux d'entree et de sortie de sodium que sur l'excretion urinaire. De ces experiences faites in vivo, nous pouvons tirer les conclusions suivantes: 1 - L'extrait neurohypophysaire de Carassius auratus provoque une augmentation du flux d'entree de sodium au niveau de la branchie de cet animal alors que le flux de sortie reste inchange. Cet extrait semble plus actif qu'une dose d'ocytocine egale a son activite ocytocique propre. Parmi les hormones neurohypophysaires de mammiferes, seule l'ocytocine (a forte dose) produit une action analogue a celle decrite ci-dessus. L'extrait de Rana esculenta reste sans action. Nous en avons conclu a l'existence dans la neurohypophyse de Carassius auratus d'un facteur hormonal agissant au niveau de la branchie pour controler l'osmoregulation de ce poisson. 2 - Les extraits neurohypophysaires de Carassius auratus entrainent chez l'animal une augmentation de la diurese et de la concentration de sodium de l'urine. Cependant cette action reste discrete et fugace. Les hormones de mammiferes, et les extraits neurohypophysaires d'amphibiens restent sans action. 3 - D'autres auteurs ont montre que chez les amphibiens, l'action des hormones neurohypophysaires se traduit a la fois par une augmentation du transport actif de sodium a travers la peau et par un desequilibre de la balance hydrique (augmentation du

  15. Modeling and dynamics of the inward-facing state of a Na+/Cl- dependent neurotransmitter transporter homologue.

    Directory of Open Access Journals (Sweden)

    Saher Afshan Shaikh

    2010-08-01

    Full Text Available The leucine transporter (LeuT has recently commanded exceptional attention due mainly to two distinctions; it provides the only crystal structures available for a protein homologous to the pharmacologically relevant neurotransmitter: sodium symporters (NSS, and, it exhibits a hallmark 5-TM inverted repeat ("LeuT-fold", a fold recently discovered to also exist in several secondary transporter families, underscoring its general role in transporter function. Constructing the transport cycle of "LeuT-fold" transporters requires detailed structural and dynamic descriptions of the outward-facing (OF and inward-facing (IF states, as well as the intermediate states. To this end, we have modeled the structurally unknown IF state of LeuT, based on the known crystal structures of the OF state of LeuT and the IF state of vSGLT, a "LeuT-fold" transporter. The detailed methodology developed for the study combines structure-based alignment, threading, targeted MD and equilibrium MD, and can be applied to other proteins. The resulting IF-state models maintain the secondary structural features of LeuT. Water penetration and solvent accessibility calculations show that TM1, TM3, TM6 and TM8 line the substrate binding/unbinding pathway with TM10 and its pseudosymmetric partner, TM5, participating in the extracellular and intracellular halves of the lumen, respectively. We report conformational hotspots where notable changes in interactions occur between the IF and OF states. We observe Na2 exiting the LeuT-substrate- complex in the IF state, mainly due to TM1 bending. Inducing a transition in only one of the two pseudosymmetric domains, while allowing the second to respond dynamically, is found to be sufficient to induce the formation of the IF state. We also propose that TM2 and TM7 may be facilitators of TM1 and TM6 motion. Thus, this study not only presents a novel modeling methodology applied to obtain the IF state of LeuT, but also describes structural

  16. Sodium technology handbook

    International Nuclear Information System (INIS)

    2005-09-01

    This document was published as a textbook for the education and training of personnel working for operations and maintenances of sodium facilities including FBR plants and those engaged in R and D activities related to sodium technology. This handbook covers the following technical areas. Properties of sodium. Compatibilities of sodium with materials. Thermalhydraulics and structural integrity. Sodium systems and components. Sodium instrumentations. Sodium handling technology. Sodium related accident evaluation and countermeasures for FBRs. Operation, maintenance and repair technology of sodium facilities. Safety measures related to sodium. Laws, regulations and internal rules related to sodium. The plannings and discussions of the handbook were made in the Sodium Technology Education Committee organized in O-arai Engineering Center consisting of the representatives of the related departments including Tsuruga headquarters. Experts in various departments participated in writing individual technical subjects. (author)

  17. Ouabain enhancement of compound 48/80 induced histamine secretion from rat peritoneal mast cells: dependence on extracellular sodium

    DEFF Research Database (Denmark)

    Knudsen, T; Bertelsen, Niels Haldor; Johansen, Torben

    1992-01-01

    Purified populations of rat peritoneal mast cells were used to study the effect of ouabain on compound 48/80-induced histamine secretion and on 86Rb+ uptake. 86Rb+ was used as a tracer for extracellular K+. The calculated value of the ouabain-sensitive uptake of K+ and 86Rb+ was considered...... on the secretion occurs in the presence of sodium but not when sodium was replaced by lithium. Preservation by ouabain of a high intracellular sodium content in sodium-loaded cells was associated with preservation of the secretory response in a calcium-free medium. In the presence of lanthanum in a calcium...

  18. Symmetry-Dependent Spin Transport Properties and Spin-Filter Effects in Zigzag-Edged Germanene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Can Cao

    2015-01-01

    Full Text Available We performed the first-principles calculations to investigate the spin-dependent electronic transport properties of zigzag-edged germanium nanoribbons (ZGeNRs. We choose of ZGeNRs with odd and even widths of 5 and 6, and the symmetry-dependent transport properties have been found, although the σ mirror plane is absent in ZGeNRs. Furthermore, even-N and odd-N ZGeNRs have very different current-voltage relationships. We find that the even 6-ZGeNR shows a dual spin-filter effect in antiparallel (AP magnetism configuration, but the odd 5-ZGeNR behaves as conventional conductors with linear current-voltage dependence. It is found that when the two electrodes are in parallel configuration, the 6-ZGeNR system is in a low resistance state, while it can switch to a much higher resistance state when the electrodes are in AP configuration, and the magnetoresistance of 270% can be observed.

  19. Experimental determination of the phase diagram of the system sodium-sodium hydride up to 9000C and hydrogen pressures up to 800 bar

    International Nuclear Information System (INIS)

    Klostermeier, W.

    1978-01-01

    In the present work part of the sodium-sodium hydride system phase diagram has been studied at high temperatures (up to 900 0 C) and high hydrogen pressures (up to 1000 bar). The absorption isothermal curves recorded at temperatures between 650 0 C and 900 0 C show an increase in hydride solubility in sodium from 5.5 mol% at 650 0 to 19 mol% at 900 0 C. The melting point of sodium hydride has been measured giving the value 632 0 C with a hydrogen equilibrium pressure of 106 bar. In the mixing gap region the plateau equilibrium pressure, which is independent of composition, and his temperature dependence have been obtained. The enthalpy and entropy of melting are determined. (GSCH) [de

  20. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis.

    Science.gov (United States)

    Packer, Milton

    2018-06-01

    Sodium-glucose co-transporter-2 (SGLT2) inhibitors reduce the risk of serious heart failure events in patients with type 2 diabetes, but little is known about mechanisms that might mediate this benefit. The most common heart failure phenotype in type 2 diabetes is obesity-related heart failure with a preserved ejection fraction (HFpEF). It has been hypothesized that the synthesis of leptin in this disorder leads to sodium retention and plasma volume expansion as well as to cardiac and renal inflammation and fibrosis. Interestingly, leptin-mediated neurohormonal activation appears to enhance the expression of SGLT2 in the renal tubules, and SGLT2 inhibitors exert natriuretic actions at multiple renal tubular sites in a manner that can oppose the sodium retention produced by leptin. In addition, SGLT2 inhibitors reduce the accumulation and inflammation of perivisceral adipose tissue, thus minimizing the secretion of leptin and its paracrine actions on the heart and kidneys to promote fibrosis. Such fibrosis probably contributes to the impairment of cardiac distensibility and glomerular function that characterizes obesity-related HFpEF. Ongoing clinical trials with SGLT2 inhibitors in heart failure are positioned to confirm or refute the hypothesis that these drugs may favourably influence the course of obesity-related HFpEF by their ability to attenuate the secretion and actions of leptin. © 2018 John Wiley & Sons Ltd.

  1. Reactive wetting by liquid sodium on thin Au platin

    International Nuclear Information System (INIS)

    Kawaguchi, Munemichi; Hamada, Hirotsugu

    2014-01-01

    For practical use of an under-sodium viewer, the behavior of sodium wetting is investigated by modeling the reactive and non-reactive wetting of metallic-plated steels by liquid sodium to simulate sodium wetting. The non-reactive wetting simulation results showed good agreement with Tanner's law, in which the time dependencies of the droplet radius and contact angle are expressed as R N ∝ t 1/10 and θ∝ t -3/10 , respectively; therefore, the model was considered suitable for the simulation. To simulate reactive wetting, the model of fluid flow induced by the interfacial reaction was incorporated into the simulation of non-reactive wetting. The reactive wetting simulation results, such as the behavior of the precursor liquid film and central droplet, showed good agreement with sodium wetting experiments using thin Au plating at 250°C. An important result of the reactive wetting simulation is that the gradient of the reaction energy at the interface appeared on the new interface around the triple line, and that fluid flow was induced. This interfacial reactivity during sodium wetting of thin Au plating was enhanced by the reaction of sodium and nickel oxide through pinholes in the plating. (author)

  2. The target-specific transporter and current status of diuretics as antihypertensive.

    Science.gov (United States)

    Ali, Syed Salman; Sharma, Pramod Kumar; Garg, Vipin Kumar; Singh, Avnesh Kumar; Mondal, Sambhu Charan

    2012-04-01

    The currently available diuretics increase the urinary excretion of sodium chloride by selective inhibition of specific sodium transporters in the loop of Henle and distal nephron. In recent years, the molecular cloning of the diuretic-sensitive sodium transporters at distal convoluted tubule has improved our understanding of the cellular mechanisms of action of each class of diuretics. Diuretics are tools of considerable therapeutic importance. First, they effectively reduce blood pressure. Loop and thiazide diuretics are secreted from the proximal tubule via the organic anion transporter-1 and exert their diuretic action by binding to the Na(+)-K(+)-2Cl(-) co-transporter type 2 in the thick ascending limb and the Na(+)-Cl(-) co-transporter in the distal convoluted tubule, respectively. Recent studies in animal models suggest that abundance of these ion transporters is affected by long-term diuretic administration. The WHO/ISH guidelines point out that diuretics enhance the efficacy of antihypertensive drugs and will most often be a component of combination therapy. © 2011 The Authors Fundamental and Clinical Pharmacology © 2011 Société Française de Pharmacologie et de Thérapeutique.

  3. Assessing the survival of MRC5 and a549 cell lines upon exposure to pyruvic Acid, sodium citrate and sodium bicarbonate - biomed 2013.

    Science.gov (United States)

    Farah, Ibrahim O; Lewis, Veshell L; Ayensu, Wellington K; Cameron, Joseph A

    2013-01-01

    Lung cancer is among the most prevalent and deadly cancers in United States. In general, cancer cells are known to exhibit higher rates of glycolysis in comparison to normal cells. In attempting to exploit this unique cancer-dependent ATP generation phenomenon, it was our hypothesis that upon exposure to organic inhibitors of glycolysis, cancer cells would not survive normally and that their growth and viability would be vastly decreased; essential glycolytic ATP production will be exhausted to the point of collapsing energy utilization. Furthermore, we hypothesize that no negative effect would be seen with exposures to organic inhibitors for normal lung cells. The human lung fibroblast MRC-5 and the human A549 alveolar epithelial cell lines were used as in vitro models of normal lung and lung cancers respectively. Using standard methods, both cell lines were maintained and exposed to pyruvic acid, sodium citrate and sodium bicarbonate reagents at concentration levels ranging from 31.3-2,000 µg/ml in 96 well plates in quadruplets and experiments repeated at least three times using MTT, and cell counting (T4 Cellometer) assays as well as phase-contrast photo-imaging for parallel morphological displays of any changes in the course of their vitality and metabolic activities. Our results indicate that exposure of both cell lines to these organics resulted in concentration dependent cell destruction/cell survival depending on the cell line exposed. Pyruvic acid, sodium citrate and sodium bicarbonate showed statistically significant (pcancer biotherapeutics.

  4. Temperature dependence of electronic transport property in ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.L.; Wang, J.L., E-mail: jlwang@mail.sitp.ac.cn; Tian, B.B.; Liu, B.L.; Zou, Y.H.; Wang, X.D.; Sun, S.; Sun, J.L., E-mail: jlsun@mail.sitp.ac.cn; Meng, X.J.; Chu, J.H.

    2014-10-15

    Highlights: • The ferroelectric polymer was fabricated by Langmuir–Blodgett method. • The electrons as the dominant injected carrier were conformed in the ferroelectric polymer films. • The leakage current conduction mechanisms in ferroelectric polymer were investigated. - Abstract: The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir–Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel–Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  5. Alcohol and the calcium-dependent potassium transport of human erythrocytes

    International Nuclear Information System (INIS)

    Harris, R.A.; Caldwell, K.K.

    1985-01-01

    In vitro exposure of human red blood cells to ethanol (100 and 400 mM) was found to increase the initial rate of calcium-dependent potassium efflux through the red cell membrane. This effect of ethanol was apparently not due to an elevation of the intracellular free calcium but rather to a direct action of the drug on the transport process as, (1) intracellular calcium concentrations were tightly buffered with EGTA, (2) ethanol did not alter the efflux of 45 Ca from the cells, and (3) dantrolene, which has been proposed to counteract the effect of ethanol on intracellular calcium levels in the erythrocyte, did not inhibit the stimulatory action of ethanol. The efflux of potassium from erythrocytes obtained from chronic alcoholics was not different from that of erythrocytes from non-alcoholic individuals. The relationship of these findings to neuronal potassium transport is discussed

  6. Temperature dependent transport characteristics of graphene/n-Si diodes

    International Nuclear Information System (INIS)

    Parui, S.; Ruiter, R.; Zomer, P. J.; Wojtaszek, M.; Wees, B. J. van; Banerjee, T.

    2014-01-01

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<10 −10  A) and rectification of more than 10 6 . We extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83 eV for the CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and Güttler

  7. Solution to the monoenergetic time-dependent neutron transport equation with a time-varying source

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1986-01-01

    Even though fundamental time-dependent neutron transport problems have existed since the inception of neutron transport theory, it has only been recently that a reliable numerical solution to one of the basic problems has been obtained. Experience in generating numerical solutions to time-dependent transport equations has indicated that the multiple collision formulation is the most versatile numerical technique for model problems. The formulation coupled with a moment reconstruction of each collided flux component has led to benchmark-quality (four- to five-digit accuracy) numerical evaluation of the neutron flux in plane infinite geometry for any degree of scattering anisotropy and for both pulsed isotropic and beam sources. As will be shown in this presentation, this solution can serve as a Green's function, thus extending the previous results to more complicated source situations. Here we will be concerned with a time-varying source at the center of an infinite medium. If accurate, such solutions have both pedagogical and practical uses as benchmarks against which other more approximate solutions designed for a wider class of problems can be compared

  8. Effect of amides on sodium tetraborate solubility

    International Nuclear Information System (INIS)

    Tsekhanskij, R.S.; Skvortsov, V.G.; Molodkin, A.K.; Sadetdinov, Sh.V.

    1986-01-01

    Methods of solubility and refractometry at 25 deg C were applied to investigate sodium tetraborate - formamide (dimethylformamide) - water systems. It is stated that they are of simple eutonic type as well as the earlier described sodium tetraborate-acetamide-water system. Amides reduce solubility of the salt. The effect of contact interaction between dissolved substances on salt cation hydration and thus on the value of liotropic amide effect is confirmed. This value is found to be also depend on the number of molecules of coordination water in the initial crystalline hydrate

  9. Effect of amides on sodium tetraborate solubility

    Energy Technology Data Exchange (ETDEWEB)

    Tsekhanskij, R S; Skvortsov, V G; Molodkin, A K; Sadetdinov, Sh V

    1986-11-01

    Methods of solubility and refractometry at 25 deg C were applied to investigate sodium tetraborate - formamide (dimethylformamide) - water systems. It is stated that they are of simple eutonic type as well as the earlier described sodium tetraborate-acetamide-water system. Amides reduce solubility of the salt. The effect of contact interaction between dissolved substances on salt cation hydration and thus on the value of liotropic amide effect is confirmed. This value is found to be also depend on the number of molecules of coordination water in the initial crystalline hydrate.

  10. Sodium ions as substitutes for protons in the gastric H,K-ATPase

    International Nuclear Information System (INIS)

    Polvani, C.; Sachs, G.; Blostein, R.

    1989-01-01

    In view of the striking homology among various ion-translocating ATPases including Na,K-ATPase, Ca-ATPase, and H,K-ATPase, and the recent evidence that protons can replace cytoplasmic sodium as well as potassium in the reaction mechanism of the Na,K-ATPase (Polvani, C., and Blostein, R. (1988) J. Biol. Chem. 263, 16757-16763), we studied the role of sodium as a substitute for protons in the H,K-ATPase reaction. Using hog gastric H,K-ATPase-rich inside-out membrane vesicles we observed 22Na+ influx which was stimulated by intravesicular potassium ions (K+i) at pH 8.5 but not at pH 7.1. This sodium influx was observed in medium containing ATP and was inhibited by vanadate and SCH28080, a selective inhibitor of the gastric H,K-ATPase. At least 2-fold accumulation of sodium was observed at pH 8.5. Experiments aimed to determine the sidedness of the alkaline pH requirement for K+i-dependent sodium influx showed that K+i-activated sodium influx depends on pHout and is unaffected by changes in pHin. These results support the conclusion that sodium ions substitute for protons in the H,K-ATPase reaction mechanism and provide evidence for a similarity in ion selectivity and/or binding domains of the Na,K-ATPase and the gastric H,K-ATPase enzymes

  11. Effect of dietary sodium on the Na-K ATPase inhibitor in patients with essential hypertension