WorldWideScience

Sample records for sodium silicate melts

  1. Transition metal ions in silicate melts. I. Manganese in sodium silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C; White, W B

    1980-01-01

    Optical absorption spectra obtained on glasses quenched from sodium silicate melts show Mn/sup 3 +/ to be the dominant species for melts heated in air and Mn/sup 2 +/ to be the dominant species for melts heated at P/sub O/sub 2// = 10/sup -17/ bar. The absorption spectrum of Mn/sup 3 +/ consists of an intense band at 20,000 cm/sup -1/ with a 15,000 cm/sup -1/ satellite possibly arising from the Jahn-Teller effect. The independence of the spectrum from melt composition and the high band intensity is offered as evidence for a distinct Mn/sup 3 +/ complex in the melt. The spectrum of Mn/sup 2 +/ is weak and many expected bands are not observed. A two-band luminescence spectrum from Mn/sup 2 +/ has been tentatively interpreted as due to Mn/sup 2 +/ in interstitial sites in the network and Mn/sup 2 +/ coordiated by non-bridging oxygens.

  2. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    Science.gov (United States)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  3. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  4. Redox kinetics and mechanism in silicate melts

    International Nuclear Information System (INIS)

    Cochain, B.

    2009-12-01

    This work contributes to better understand iron redox reactions and mechanisms in silicate melts. It was conducted on compositions in both Na 2 O-B 2 O 3 -SiO 2 -FeO and Na 2 O-Al 2 O 3 -SiO 2 -FeO systems. The influence of boron-sodium and aluminum-sodium substitutions and iron content on properties and structure of glasses and on the iron redox kinetics has been studied by Raman, Moessbauer and XANES spectroscopies at the B and Fe K-edges. In borosilicate glasses, an increase in iron content or in the Fe 3+ /ΣFe redox state implies a structural rearrangement of the BO 4 species in the glass network whereas the BO 3 and BO 4 relative proportions remain nearly constant. In all studied glasses and melts, Fe 3+ is a network former in tetrahedral coordination, unless for aluminosilicates of ratio Al/Na≥1 where Fe 3+ is a network modifier in five-fold coordination. Near Tg, diffusion of network modifying cations controls the iron redox kinetics along with a flux of electron holes. At liquidus temperatures, oxygen diffusion is considered to be the mechanism that governs redox reactions. This study shows the role played by the silicate network polymerization on the redox kinetics. In borosilicate melts, iron redox kinetics depends on the boron speciation between BO 3 and BO 4 that depends itself on the sodium content. Furthermore, an increase in the network-former/network-modifier ratio implies a decrease in oxygen diffusion that results in a slowing down of the redox kinetics. The obtained results allow a description of the iron redox kinetics for more complex compositions as natural lavas or nuclear waste model glasses. (author)

  5. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato

    2005-06-01

    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  6. Activity of NaOH buffered by silicate solids in molten sodium acetate-water at 3170C

    International Nuclear Information System (INIS)

    Weres, O.; Tsao, L.

    1988-01-01

    Silica and sodium acetate are present in the steam generator tube sheet crevices of many nuclear power plants. Trace solutes in the condensate are tremendously concentrated in the crevices by boiling. Sparingly soluble sodium silicates and other solids precipitate from the crevice liquid leaving an extremely concentrated molten mixture of water, sodium acetate and other salts. The precipitates buffer the activity of sodium hydroxide in the superheated liquid that remains. The activity of NaOH corresponding to the buffers quartz/sodium disilicate and sodium disilicate/sodium metasilicate at 317 0 C has been determined experimentally. The sodium hydroxide content of a sodium acetate-water melt buffered by these reactions was determined by chemical analysis, and the corresponding activity of NaOH at temperature was calculated using the recently published Pitzer-Simonson Model of molten salt-water mixtures. The molten mixture of sodium acetate and water plays the role solvent in these experiments and calculations. The free energies of formation of solid sodium silicates at 317 0 C were also determined. The activity of NaOH corresponding to other silicate and phosphate buffers was calculated using published thermodynamic data and estimated from phase diagrams

  7. Effect of silicate module of water glass on rheological parameters of poly(sodium acrylate)/sodium silicate hydrogels

    Science.gov (United States)

    Mastalska-Popiawska, J.; Izak, P.

    2017-01-01

    The poly(sodium acrylate)/sodium silicate hydrogels were synthesized in the presence of sodium thiosulphate and potassium persulphate as the redox initiators and N,N’-methylene-bisacrylamide as the cross-linking monomer. 20 wt% aqueous solution of sodium acrylate was polymerized together with water glass with different silicate modules (M) from 1.74 to 2.29, in three mass ratio of the monomer solution to the water glass 2:1, 1:1 and 1:2. Such obtained hybrid composites were rheologically tested using the oscillation method. It allowed to designate the crossover point during polymerization, as well as to define the viscoelastic properties of the casted hydrogel samples one week after the reaction. The obtained results of the oscillation measurements showed that cross-linking reaction proceeds very quickly and the lower the silicate module is, the process starts faster. After the completion of the reaction the silicate-polymer hydrogels are strongly elastic materials and the highest elasticity characterizes systems with the mass ratio 1:2, i.e. with the highest water glass content.

  8. The kinetic fragility of natural silicate melts

    International Nuclear Information System (INIS)

    Giordano, Daniele; Dingwell, Donald B

    2003-01-01

    Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts

  9. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Sodium silicate was dissolved in water in either a monomer form or polymer form; the effects of both forms of sodium silicate aqueous solution on rose powdery mildew and root rot diseases of miniature rose were examined. Both forms of sodium silicate aqueous solution were applied to the roots of the miniature rose.

  10. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model

    Science.gov (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing

    2017-12-01

    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  11. Conversion of rice hull ash into soluble sodium silicate

    Directory of Open Access Journals (Sweden)

    Edson Luiz Foletto

    2006-09-01

    Full Text Available Sodium silicate is used as raw material for several purposes: silica gel production, preparation of catalysts, inks, load for medicines, concrete hardening accelerator, component of detergents and soaps, refractory constituent and deflocculant in clay slurries. In this work sodium silicate was produced by reacting rice hull ash (RHA and aqueous sodium hydroxide, in open and closed reaction systems. The studied process variables were time, temperature of reaction and composition of the reaction mixture (expressed in terms of molar ratios NaOH/SiO2 and H2O/SiO2. About 90% silica conversion contained in the RHA into sodium silicate was achieved in closed system at 200 °C. The results showed that sodium silicate production from RHA can generate aggregate value to this residue.

  12. The thermodynamic activity of ZnO in silicate melts

    Science.gov (United States)

    Reyes, R. A.; Gaskell, D. R.

    1983-12-01

    The activity of ZnO in ZnO-SiO2 and CaO-ZnO-SiO2 melts has been measured at 1560 °C using a transpiration technique with CO-CO2 mixtures as the carrier gas. The activities of ZnO in dilute solution in 42 wt pct SiO2-38 wt pct CaO-20 wt pct A12O3 in the range 1400° to 1550 °C and in 62 wt pct SiO2-23.3 wt pct CaO-14.7 wt pct A12O3 at 1550 °C have also been measured. The measured free energies of formation of ZnO-SiO2 melts are significantly more negative than published estimated values and this, together with the behavior observed in the system CaO-Al2O3-SiO2, indicate that ZnO is a relatively basic oxide. The results are discussed in terms of the polymerization model of binary silicate melts and ideal silicate mixing in ternary silicate melts. The behavior of ZnO in dilute solution in CaO-Al2O3-SiO2 melts is discussed in terms of the possibility of the fluxing of ZnO by iron blast furnace slags.

  13. Application of Sodium Silicate Enhances Cucumber Resistance to Fusarium Wilt and Alters Soil Microbial Communities

    Directory of Open Access Journals (Sweden)

    Xingang Zhou

    2018-05-01

    Full Text Available Exogenous silicates can enhance plant resistance to pathogens and change soil microbial communities. However, the relationship between changes in soil microbial communities and enhanced plant resistance remains unclear. Here, effects of exogenous sodium silicate on cucumber (Cucumis sativus L. seedling resistance to Fusarium wilt caused by the soil-borne pathogen Fusarium oxysporum f.sp. cucumerinum Owen (FOC were investigated by drenching soil with 2 mM sodium silicate. Soil bacterial and fungal community abundances and compositions were estimated by real-time PCR and high-throughput amplicon sequencing; then, feedback effects of changes in soil biota on cucumber seedling resistance to FOC were assessed. Moreover, effects of sodium silicate on the growth of FOC and Streptomyces DHV3-2, an antagonistic bacterium to FOC, were investigated both in vitro and in the soil environment. Results showed that exogenous sodium silicate enhanced cucumber seedling growth and resistance to FOC. In bare soil, sodium silicate increased bacterial and fungal community abundances and diversities. In cucumber-cultivated soil, sodium silicate increased bacterial community abundances, but decreased fungal community abundances and diversities. Sodium silicate also changed soil bacterial and fungal communality compositions, and especially, decreased the relative abundances of microbial taxa containing plant pathogens but increased these with plant-beneficial potentials. Moreover, sodium silicate increased the abundance of Streptomyces DHV3-2 in soil. Soil biota from cucumber-cultivated soil treated with sodium silicate decreased cucumber seedling Fusarium wilt disease index, and enhanced cucumber seedling growth and defense-related enzyme activities in roots. Sodium silicate at pH 9.85 inhibited FOC abundance in vitro, but did not affect FOC abundance in soil. Overall, our results suggested that, in cucumber-cultivated soil, sodium silicate increased cucumber seedling

  14. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland

    Science.gov (United States)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna

    2014-05-01

    The xenoliths of peridotites representing the subcontinental lithospheric mantle (SCLM) beneath SW Poland and adjacent parts of Germany occur in the Cenozoic alkaline volcanic rocks. Our study is based on detailed characterization of xenoliths occurring in 7 locations (Steinberg in Upper Lusatia, Księginki, Pilchowice, Krzeniów, Wilcza Góra, Winna Góra and Lutynia in Lower Silesia). One of the two major lithologies occurring in the xenoliths, which we call the "B" lithology, comprises peridotites (typically harzburgites) with olivine containing from 90.5 to 84.0 mole % of forsterite. The harzburgites contain no clinopyroxene or are poor in that mineral (eg. in Krzeniów the group "B" harzburgites contain pfu in ortho-, and pfu in clinopyroxene). The exception are xenoliths from Księginki, which contain pyroxenes characterised by negative correlation between mg# and Al. The REE patterns of both ortho- and clinopyroxene in the group "B" peridotites suggest equilibration with silicate melt. The rocks of "B" lithology were formed due to alkaline silicate melt percolation in the depleted peridotitic protolith. The basaltic melts formed at high pressure are usually undersaturated in both ortho- and clinopyroxene at lower pressures (Kelemen et al. 1992). Because of cooling and dissolution of ortho- and clinopyroxene the melts change their composition and become saturated in one or both of those phases. Experimental results (e.g. Tursack & Liang 2012 and references therein) show that the same refers to alkaline basaltic silicate melts and that its reactive percolation in the peridotitic host leads to decrease of Mg/(Mg+Fe) ratios of olivine and pyroxenes. Thus, the variation of relative volumes of olivine and orthopyroxene as well as the decrease of mg# of rock-forming silicates is well explained by reactive melt percolation in the peridotitic protolith consisting of high mg# olivine and pyroxenes (in the area studied by us that protolith was characterised by olivine

  15. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Mohsen

    2015-10-21

    Oct 21, 2015 ... suppressive effects of sodium silicate in the polymer form were confirmed against powdery mildew and ... crops (such as rice) controls diseases and could reduce ... negative charge and sodium ions with a positive charge.

  16. Wastewater reuse in liquid sodium silicate manufacturing in alexandria, egypt.

    Science.gov (United States)

    Ismail, Gaber A; Abd El-Salam, Magda M; Arafa, Anwar K

    2009-01-01

    Soluble sodium silicates (waterglass) are liquids containing dissolved glass which have some water like properties. They are widely used in industry as sealants, binders, deflocculants, emulsifiers and buffers. Their most common applications in Egypt are in the pulp and paper industry (where they improve the brightness and efficiency of peroxide bleaching) and the detergent industry, in which they improve the action of the detergent and lower the viscosity of liquid soaps. The survey results showed that the production was carried out batch-wise, in an autoclave (dissolver). Sodium silicate in the state of crushed glass was charged in an autoclave (dissolver) with sodium hydroxide and water. The product is filtered through a press. The left over sludge (mud and silicates impurities) is emptied into the local sewer system. Also, sludge (silica gel) was discharged from the neutralization process of the generated alkaline wastewater and consequently clogging the sewerage system. So this study was carried out to modify the current wastewater management system which eliminates sludge formation, the discharge of higher pH wastewater to the sewer system, and to assess its environmental and economic benefits. To assess the characteristics of wastewater to be reused, physico-chemical parameters of 12 samples were tested using standard methods. The survey results showed that a total capacity of the selected enterprise was 540 tons of liquid sodium silicates monthly. The total amount of wastewater being discharged was 335 m3/month. Reusing of wastewater as feed autoclave water reduced water consumption of 32.1% and reduced wastewater discharge/month that constitutes 89.6% as well as saving in final product of 6 ton/month. It was concluded that reusing of wastewater generated from liquid sodium silicate manufacturing process resulted in cheaper and environmental-friendly product.

  17. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    Science.gov (United States)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  18. Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill − Part 1

    Directory of Open Access Journals (Sweden)

    M. Kermani

    2015-06-01

    Full Text Available In this paper, the mechanical properties of sodium silicate-fortified backfill, called Gelfill, were investigated by conducting a series of laboratory experiments. Two configurations were tested, i.e. Gelfill and cemented hydraulic fill (CHF. The Gelfill has an alkali activator such as sodium silicate in its materials in addition to primary materials of mine backfill which are tailings, water and binders. Large numbers of samples of Gelfill and CHF with various mixture designs were cast and cured for over 28 d. The mechanical properties of samples were investigated using uniaxial compression test, and the results were compared with those of reference samples made without sodium silicate. The test results indicated that the addition of an appropriate amount of an alkali activator such as sodium silicate can enhance the mechanical (uniaxial compressive strength and physical (water retention properties of backfill. The microstructure analysis conducted by mercury intrusion porosimetry (MIP revealed that the addition of sodium silicate can modify the pore size distribution and total porosity of Gelfill, which can contribute to the better mechanical properties of Gelfill. It was also shown that the time and rate of drainage in the Gelfill specimens are less than those in CHF specimens made without sodium silicate. Finally, the study showed that the addition of sodium silicate can reduce the required setting time of mine backfill, which can contribute to increase mine production in accordance with the mine safety.

  19. Origin of silicic magmas along the Central American volcanic front: Genetic relationship to mafic melts

    Science.gov (United States)

    Vogel, Thomas A.; Patino, Lina C.; Eaton, Jonathon K.; Valley, John W.; Rose, William I.; Alvarado, Guillermo E.; Viray, Ela L.

    2006-09-01

    Silicic pyroclastic flows and related deposits are abundant along the Central American volcanic front. These silicic magmas erupted through both the non-continental Chorotega block to the southeast and the Paleozoic continental Chortis block to the northwest. The along-arc variations of the silicic deposits with respect to diagnostic trace element ratios (Ba/La, U/Th, Ce/Pb), oxygen isotopes, Nd and Sr isotope ratios mimic the along-arc variation in the basaltic and andesitic lavas. This variation in the lavas has been interpreted to indicate relative contributions from the slab and asthenosphere to the basaltic magmas [Carr, M.J., Feigenson, M.D., Bennett, E.A., 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contributions to Mineralogy and Petrology, 105, 369-380.; Patino, L.C., Carr, M.J. and Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138 (3), 265-283.]. With respect to along-arc trends in basaltic lavas the largest contribution of slab fluids is in Nicaragua and the smallest input from the slab is in central Costa Rica — similar trends are observed in the silicic pyroclastic deposits. Data from melting experiments of primitive basalts and basaltic andesites demonstrate that it is difficult to produce high K 2O/Na 2O silicic magmas by fractional crystallization or partial melting of low-K 2O/Na 2O sources. However fractional crystallization or partial melting of medium- to high-K basalts can produce these silicic magmas. We interpret that the high-silica magmas associated Central America volcanic front are partial melts of penecontemporaneous, mantle-derived, evolved magmas that have ponded and crystallized in the mid-crust — or are melts extracted from these nearly completely crystallized magmas.

  20. Sulfur Concentration at Sulfide Saturation in Anhydrous Silicate Melts at Crustal Conditions

    Science.gov (United States)

    Liu, Y.; Samaha, N.; Baker, D. R.

    2006-05-01

    The sulfur concentration in silicate melts at sulfide saturation (SCSS) was experimentally investigated in a temperature range from 1250°C to 1450°C and a pressure range from 500 MPa to 1 GPa in a piston-cylinder apparatus. The investigated melt compositions varied from rhyolitic to basaltic. All experiments were saturated with a FeS melt. Temperature was confirmed to have a positive effect on the SCSS and no measurable pressure effect was observed. Oxygen fugacity was controlled to be either near the carbon-carbon monoxide buffer or one log unit above the nickel-nickel oxide buffer, and found to positively affect the SCSS. A series of models were constructed to predict the SCSS as a function of temperature, pressure, melt composition, oxygen fugacity and sulfur fugacity of the system. The coefficients were obtained by the regression of experimental data from this study and from data in the literature. The best model found for the prediction of the SCSS is: ln S (ppm) = 996/T + 9.875 + 0.997 ln MFM + 0.1901 ln fO2 - 0.0722 (P/T) -0.115 ln f S2, where P is in bar, T is in K, and MFM is a compositional parameter describing the melt based upon cation mole fractions: MFM = [Na + K + 2 (Ca + Mg+ Fe2+)]/[Si × (Al + Fe3+)]. This model predicts the SCSS in anhydrous silicate melts from rhyolitic to basaltic compositions at crustal conditions from 1 bar to 1.25 GPa, temperatures from ~1200 to 1400 C, and oxygen fugacities between approximately two log units below the fayalite-quartz-magnetite buffer and one log unit above the nickel-nickel oxide buffer. For cases where the oxygen and sulfur fugacities can not be adequately estimated a simpler model also works acceptably: ln S (ppm) = -5328/T + 8.431 + 1.244 ln MFM - 0.01704(P/T) + ln aFeS, where aFeS is the activity of FeS in the sulfide melt and is well approximated by a value of 1. Additional experiments were performed on other basalts in a temperature range from 1250 C to 1450 C at 1 GPa to test the models. The model

  1. Preparation and properties of isotropic Nd-Fe-B bonded magnets with sodium silicate binder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q.; Hu, R.J.; Yue, M., E-mail: yueming@bjut.edu.cn; Yin, Y.X.; Zhang, D.T.

    2017-08-01

    Graphical abstract: To improve the working temperature of bonded Nd-Fe-B magnets, the heat-resistant binder, sodium silicate, was used to prepare new type bonded Nd-Fe-B magnets. The three-dimensional Si-O-Si structure formed in the curing process has excellent strength; it can ensure that the bonded magnets have a certain shape and usable magnetic properties when working at 200 °C. - Highlights: • Sodium silicate enables bonded Nd-Fe-B magnets to be used for higher operation temperatures. • The sodium silicate bonded magnets exhibit usable maximum energy product of 4.057 MGOe at 200 °C. • The compressive strength of sodium silicate bonded magnets is twice bigger than that of epoxy resin bonded magnets. - Abstract: In present study, sodium silicate, a kind of heat-resistant binder, was used to prepare bonded Nd-Fe-B magnets with improved thermal stability and mechanical strength. Effect of curing temperature and curing time of the new binder to the magnetic properties, microstructure, and mechanical strength of the magnets was systematically investigated. Fracture surface morphology observation show that sodium silicate in bonded magnets could completely be cured at 175 °C for 40 min, and the magnets prepared under this condition exhibit optimal properties. They exhibit usable magnetic properties of B{sub r} of 4.66 kGs, H{sub cj} of 4.84 kOe, and (BH){sub max} of 4.06 MGOe at 200 °C. Moreover, the magnets possess high compressive strength of 63 MPa.

  2. Influence of the type of aqueous sodium silicate on the stabilization and rheology of kaolin clay suspensions

    Science.gov (United States)

    Izak, Piotr; Ogłaza, Longin; Mozgawa, Włodzimierz; Mastalska-Popławska, Joanna; Stempkowska, Agata

    2018-05-01

    To avoid agglomeration and sedimentation of grains, ceramic slurries should be modified by stabilizers in order to increase the electrostatic interactions between the dispersed particles. In this study we present the spectral analysis of aqueous sodium silicates obtained by different synthesis methods and their influence on the rheological properties of kaolin based slurries. Infrared and Raman spectra can be used to describe the structure of silicate structural units present in aqueous sodium silicates. It was confirmed that the best stabilization results possess aqueous sodium silicates of the silicate moduli of about 2 and the optimal concentration of the used fluidizer is 0.3 wt% to the kaolin clay dry mass. One of the most important conclusions is that the synthesis method of the fluidizer has no significant effect on its stabilization properties but used medium does create adequate stabilization mechanism depending on the silicate structures present in the sodium silicate solution.

  3. The Impact of Microwave Penetration Depth on the Process of Heating the Moulding Sand with Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Nowak D.

    2017-12-01

    Full Text Available This paper presents the impact of microwave penetration depth on the process of heating the moulding sand with sodium silicate. For each material it is affected by: the wavelength in vacuum and the real and imaginary components of the relative complex electrical permittivity εr for a selected measurement frequency. Since the components are not constant values and they change depending on the electrical parameters of materials and the frequency of the electromagnetic wave, it is indispensable to carry out laboratory measurements to determine them. Moreover, the electrical parameters of materials are also affected by: temperature, packing degree, humidity and conductivity. The measurements of the dielectric properties of moulding sand with sodium silicate was carried out using the perturbation method on a stand of waveguide resonance cavity. The real and imaginary components of the relative complex electrical permittivity was determined for moulding sand at various contents of sodium silicate and at various packing degrees of the samples. On the basis of the results the microwave penetration depth of moulding sand with sodium silicate was established. Relative literature contains no such data that would be essential to predicting an effective process of microwave heating of moulding sand with sodium silicate. Both the packing degree and the amount of sodium silicate in moulding sand turned out to affect the penetration depth, which directly translates into microwave power density distribution in the process of microwave heating of moulding sand with sodium silicate.

  4. Calcined clay lightweight ceramics made with wood sawdust and sodium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Santis, Bruno Carlos de; Rossignolo, Joao Adriano, E-mail: desantis.bruno@gmail.com [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil); Morelli, Marcio Raymundo [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2016-11-15

    This paper aims to study the influence of including wood sawdust and sodium silicate in the production process of calcined clay lightweight ceramics. In the production process first, a sample used by a company that produces ceramic products in Brazil was collected. The sample was analysed by techniques of liquidity (LL) and plasticity (LP) limits, particle size analysis, specific mass, X-ray diffraction (XRD) and X ray fluorescence spectrometry (XRF). From the clay, specimens of pure clay and mixtures with wood sawdust (10%, 20% and 30% by mass) and sodium silicate were produced and fired at a temperature of 900 deg C. These specimens were submitted to tests of water absorption, porosity, specific mass and compressive strength. Results of this research indicate that the incorporation of wood sawdust and sodium silicate in the ceramic paste specimens can be useful to make calcined clay lightweight ceramics with special characteristics (low values of water absorption and specific mass and high values of compressive strength), which could be used to produce calcined clay lightweight aggregates to be used in structural concrete. (author)

  5. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle

    Science.gov (United States)

    Sanchez-Valle, Carmen; Malfait, Wim J.

    2016-04-01

    Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement

  6. The corrosion of steels by hot sodium melts

    International Nuclear Information System (INIS)

    Currie, R.

    1996-01-01

    Considerable research has been performed by AEA Technology on the corrosion of steels by hot sodium melts containing sodium hydroxide and sodium oxide. This research has principally been in support of understanding the effects of sodium-water reactions on the internals of fast reactor steam generators. The results however have relevance to sodium fires. It has been determined that the rate of corrosion of steels by melts of pure NaOH can be significantly increased by the addition of Na 2 O. In the case of a sodium-water reaction jet created by a leak of steam into sodium, the composition of the jet varies from 100% sodium through to 100% steam, with a full range of concentrations of NaOH and Na 2 O, depending on axial and radial position. The temperature in the jet also varies with position, ranging from bulk sodium temperature on one boundary to expanded steam temperature on the other boundary, with internal temperatures ranging up to 1300 deg. C, depending on the local pre-reaction mole ratio of steam to sodium. In the case of sodium-water reaction jets, it has been possible to develop a model which predicts the composition of the reaction jet and then, using the data generated on the corrosivity of sodium melts, predict the rate of corrosion of a steel target in the path of the jet. In the case of a spray sodium fire, the sodium will initially contain a concentration of NaOH and the combustion process will generate Na 2 O. If there is sufficient humidity, conversion of some of the Na 2 O to NaOH will also occur. There is therefore the potential for aggressive mixtures of NaOH and Na 2 O to exist on the surface of the sodium droplets. It is therefore possible that the rate of corrosion of steels in the path of the spray may be higher than expected on the basis of assuming that only Na and Na 2 O were present. In the case of a pool sodium fire, potentially corrosive mixtures of NaOH and Na 2 O may be formed at some locations on the surface. This could lead to

  7. Characterization of ion distributions near the surface of sodium-containing and sodium-depleted calcium aluminosilicate glass melts

    International Nuclear Information System (INIS)

    Corrales, Louis R.; Du, Jincheng

    2006-01-01

    The distribution of cation and anion components of sodium containing calcium aluminosilicate glass was studied by classical molecular dynamics simulations in a high temperature melt in the bulk and at the vacuum-melt interface. A significant redistribution of the sodium and non-bridging oxygen ions was observed. Subsequently, a sodium depleted calcium aluminosilicate glass melt was simulated to determine the sensitivity of the redistribution of ions near the vacuum-melt interface to the presence of sodium ions. It is found that the thermodynamic equilibrium condition near a surface favors the enrichment of non-bridging oxygen ions that is closely associated with enrichment of the sodium ions

  8. In-situ, high pressure and temperature experimental determination of hydrogen isotope fractionation between coexisting hydrous melt and silicate-saturated aqueous fluid

    Science.gov (United States)

    Mysen, B. O.

    2012-12-01

    Hydrogen isotope fractionation between water-saturated silicate melt and silicate-saturated aqueous fluid has been determined experimentally, in-situ with the samples in the 450-800C and 101-1567 MPa temperature and pressure range, respectively. The temperatures are, therefore higher than those where hydrogen bonding in fluids and melts is important [1]. The experiments were conducted with a hydrothermal diamond anvil cell (HDAC) as the high-temperature/-pressure tool and vibrational spectroscopy to determine D/H fractionation. Compositions were along the haploandesite join, Na2Si4O9 - Na2(NaAl)4O9 [Al/(Al+Si)=0-0.1], and a 50:50 (by volume) H2O:D2O fluid mixture as starting material. Platinum metal was used to enhance equilibration rate. Isotopic equilibrium was ascertained by using variable experimental duration at given temperature and pressure. In the Al-free Na-silicate system, the enthalpy change of the (D/H) equilibrium of fluid is 3.1±0.7 kJ/mol, whereas for coexisting melt, ΔH=0 kJ/mol within error. With Al/(Al+Si)=0.1, ΔH=5.2±0.9 kJ/mol for fluid and near 0 within error for coexisting melt melt. For the exchange equilibrium between melt and fluid, H2O(melt)+D2O(fluid)=H2O(fluid)+D2O(melt), the ΔH=4.6±0.7 and 6.5±0.7 kJ/mol for the two Al-free and Al-bearing compositions, respectively, respectively. The D/H equilibration within fluids and melts and, therefore, D/H partitioning between coexisting fluid and melt reflect the influence of dissolved H2O(D2O) in melts and dissolved silicate components in H2O(D2O) fluid on their structure. The positive temperature- and pressure-dependence of silicate solubility and on silicate structure in silicate-saturated aqueous fluid governs the D/H fractionation in the fluid because increasing silicate solute concentration in fluid results in silicate polymerization [2]. These structural effects may be analogous to observed solute-dependent oxygen isotope fractionation between brine and CO2 [3]. In the temperature

  9. VOLATILECALC: A silicate melt-H2O-CO2 solution model written in Visual Basic for excel

    Science.gov (United States)

    Newman, S.; Lowenstern, J. B.

    2002-01-01

    We present solution models for the rhyolite-H2O-CO2 and basalt-H2O-CO2 systems at magmatic temperatures and pressures below ~ 5000 bar. The models are coded as macros written in Visual Basic for Applications, for use within MicrosoftR Excel (Office'98 and 2000). The series of macros, entitled VOLATILECALC, can calculate the following: (1) Saturation pressures for silicate melt of known dissolved H2O and CO2 concentrations and the corresponding equilibrium vapor composition; (2) open- and closed-system degassing paths (melt and vapor composition) for depressurizing rhyolitic and basaltic melts; (3) isobaric solubility curves for rhyolitic and basaltic melts; (4) isoplethic solubility curves (constant vapor composition) for rhyolitic and basaltic melts; (5) polybaric solubility curves for the two end members and (6) end member fugacities of H2O and CO2 vapors at magmatic temperatures. The basalt-H2O-CO2 macros in VOLATILECALC are capable of calculating melt-vapor solubility over a range of silicate-melt compositions by using the relationships provided by Dixon (American Mineralogist 82 (1997) 368). The output agrees well with the published solution models and experimental data for silicate melt-vapor systems for pressures below 5000 bar. ?? 2002 Elsevier Science Ltd. All rights reserved.

  10. Thermogravimetric analysis of phase transitions in cement compositions mixed by sodium silicate solution

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey Viktorovich

    2014-01-01

    Full Text Available This paper presents a study of the capability to modify cement by mechanical activation of sodium silicate water solution. Admixtures or blends of binding agents were employed for modifying concrete properties. The liquid glass is applied to protect from chemically or physically unfavorable environmental impacts, such as acidic medium and high temperature. The sodium silicate is a high-capacity setting accelerator. The increasing of the liquid glass proportion in the mix leads to the degradation of the cement paste plasticity and for this reason it is necessary to reduce the amount of liquid glass in the cement paste. The activation of dilute water solution of sodium silicate into rotary pulsating apparatus directly before tempering of the cement paste is an effective way to decrease mass fraction of liquid glass in the cement paste. The results of the combined influence of liquid glass and mechanical activation on physicochemical processes taking place in cement stone are represented in this research. Thermogravimetric analysis was used in order to study cement blends. Thermogravimetric analysis of modified cement stone assays was performed by thermo analyzer SETARAM TGA 92-24. The results of the analysis of phase transition taking place under high-temperature heating of cement stone modified by the mechanical activation of the water solution of the sodium silicate were introduced. Thermograms of cement stone assays were obtained at different hardening age. The comparison of these thermograms allows us to come to a conclusion on the formation and the retention during long time of a more dense structure of the composite matrix mixed by the mechanical activation of sodium silicate water solution. The relation between the concrete composition and its strength properties was stated. Perhaps, the capability of modified concrete to keep calcium ions in sparingly soluble hydrosilicates leads to the increase in its durability and corrosion resistance.

  11. High-temperature apparatus for chaotic mixing of natural silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Morgavi, D.; Petrelli, M.; Vetere, F. P.; González-García, D.; Perugini, D., E-mail: diego.perugini@unipg.it [Department of Physics and Geology, Petro-Volcanology Research Group (PVRG), University of Perugia, Piazza Università, Perugia 06100 (Italy)

    2015-10-15

    A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10{sup 6} Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment.

  12. High-temperature apparatus for chaotic mixing of natural silicate melts

    International Nuclear Information System (INIS)

    Morgavi, D.; Petrelli, M.; Vetere, F. P.; González-García, D.; Perugini, D.

    2015-01-01

    A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10 6 Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment

  13. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Meihui Wang.

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  14. Effect of antimony-oxide on the shielding properties of some sodium-boro-silicate glasses.

    Science.gov (United States)

    Zoulfakar, A M; Abdel-Ghany, A M; Abou-Elnasr, T Z; Mostafa, A G; Salem, S M; El-Bahnaswy, H H

    2017-09-01

    Some sodium-silicate-boro-antimonate glasses having the molecular composition [(20) Na 2 O - (20) SiO 2 - (60-x) B 2 O 3 - (x) Sb 2 O 3 (where x takes the values 0, 5 … or 20)] have been prepared by the melt quenching method. The melting and annealing temperatures were 1500 and 650K respectively. The amorphous nature of the prepared samples was confirmed by using X-ray diffraction analysis. Both the experimental and empirical density and molar volume values showed gradual increase with increasing Sb 2 O 3 content. The empirical densities showed higher values than those obtained experimentally, while the empirical molar volume values appeared lower than those obtained experimentally, which confirm the amorphous nature and randomness character of the studied samples. The experimentally obtained shielding parameters were approximately coincident with those obtained theoretically by applying WinXCom program. At low gamma-ray energies (0.356 and 0.662MeV) Sb 2 O 3 has approximately no effect on the total Mass Attenuation Coefficient, while at high energies it acts to increase the total Mass Attenuation Coefficient gradually. The obtained Half Value Layer and Mean Free Path values showed gradual decrease as Sb 2 O 3 was gradually increased. Also, the Total Mass Attenuation Coefficient values obtained between about 0.8 and 3.0MeV gamma-ray energy showed a slight decrease, as gamma-ray photon energy increased. This may be due to the differences between the Attenuation Coefficients of both antimony and boron oxides at various gamma-ray photon energies. However, it can be stated that the addition of Sb 2 O 3 into sodium-boro-silicate glasses increases the gamma-ray Attenuation Coefficient and the best sample is that contains 20 mol% of Sb 2 O 3 , which is operating well at 0.356 and 0.662MeV gamma-ray. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meihui [Univ. of California, Berkeley, CA (United States)

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na2S4 and Na2S5 were measured as a function of temperature (range: 300 to 360°C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  16. Phosphorus Elimination at Sodium Silicate from Quartz Sand Roasted with Complexation using Chitosan-EDTA

    Science.gov (United States)

    Wahyuningsih, S.; Ramelan, A. H.; Suharty, N. S.; Handayani, M.; Firdiyono, F.; Sulistiyono, E.; Munawaroh, H.; Sari, P. P.; Kristiawan, Y. R.

    2018-03-01

    A phosphorus elimination from sodium silicate solution has been studied. Phosphorus elimination was performed by adding chitosan-EDTA to remove cation phosphorus. Characterization of chitosan-EDTA material was performed using FT-IR, while the decreasing level of phosphorus content was analyzed by quantitative analysis using spectrophotometer UV-Vis refers to SNI 06-6989-2004. The results showed that the content of the sodium silicate can be reduced up to 67.1% through Chitosan-EDTA complexation with phosphorus.

  17. The effect of melt composition on metal-silicate partitioning of siderophile elements and constraints on core formation in the angrite parent body

    Science.gov (United States)

    Steenstra, E. S.; Sitabi, A. B.; Lin, Y. H.; Rai, N.; Knibbe, J. S.; Berndt, J.; Matveev, S.; van Westrenen, W.

    2017-09-01

    We present 275 new metal-silicate partition coefficients for P, S, V, Cr, Mn, Co, Ni, Ge, Mo, and W obtained at moderate P (1.5 GPa) and high T (1683-1883 K). We investigate the effect of silicate melt composition using four end member silicate melt compositions. We identify possible silicate melt dependencies of the metal-silicate partitioning of lower valence elements Ni, Ge and V, elements that are usually assumed to remain unaffected by changes in silicate melt composition. Results for the other elements are consistent with the dependence of their metal-silicate partition coefficients on the individual major oxide components of the silicate melt composition suggested by recently reported parameterizations and theoretical considerations. Using multiple linear regression, we parameterize compiled metal-silicate partitioning results including our new data and report revised expressions that predict their metal-silicate partitioning behavior as a function of P-T-X-fO2. We apply these results to constrain the conditions that prevailed during core formation in the angrite parent body (APB). Our results suggest the siderophile element depletions in angrite meteorites are consistent with a CV bulk composition and constrain APB core formation to have occurred at mildly reducing conditions of 1.4 ± 0.5 log units below the iron-wüstite buffer (ΔIW), corresponding to a APB core mass of 18 ± 11%. The core mass range is constrained to 21 ± 8 mass% if light elements (S and/or C) are assumed to reside in the APB core. Incorporation of light elements in the APB core does not yield significantly different redox states for APB core-mantle differentiation. The inferred redox state is in excellent agreement with independent fO2 estimates recorded by pyroxene and olivine in angrites.

  18. A study of redox kinetic in silicate melt

    International Nuclear Information System (INIS)

    Magnien, V.

    2005-12-01

    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  19. Scientific Opinion on the safety evaluation of the active substances, sodium carbonate peroxyhydrate coated with sodium carbonate and sodium silicate, bentonite, sodium chloride, sodium carbonate for use in active food contact materials

    OpenAIRE

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF)

    2013-01-01

    This scientific opinion of the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the powder mixture of the active substances sodium carbonate peroxyhydrate coated with sodium carbonate and sodium silicate (FCM substance No 1009), bentonite (CAS No 1302-78-9, FCM No 393), sodium chloride (CAS No 7647-14-5, FCM No 985), sodium carbonate (CAS No 497-19-8, FCM No 1008) which are intended to be used as combined oxygen generator and carbon...

  20. A rheological model for glassforming silicate melts in the systems CAS, MAS, MCAS

    International Nuclear Information System (INIS)

    Giordano, Daniele; Russell, J K

    2007-01-01

    Viscosity is the single most important property governing the efficacy, rates, and nature of melt transport. Viscosity is intimately related to the structure and thermodynamics properties of the melts and is a reflection of the mechanisms of single atoms slipping over potential energy barriers. The ability to predict melt viscosity accurately is, therefore, of critical importance for gaining new insights into the structure of silicate melts. Simple composition melts, having a reduced number of components, offer an advantage for understanding the relationships between the chemical composition, structural organization and the rheological properties of a melt. Here we have compiled a large database of ∼970 experimental measurements of melt viscosity for the simple chemical systems MAS, CAS and MCAS. These data are used to create a single chemical model for predicting the non-Arrhenian viscosity as a function of temperature (T) and composition (X) across the entire MCAS system. The T-dependence of viscosity is accounted for by the three parameters in each of the model functions: (i) Vogel-Fulcher-Tamman (VFT); (ii) Adam-Gibbs (AG); and (iii) Avramov (AV). The literature shows that, in these systems, viscosity converges to a common value of the pre-exponential factors (A) that can be assumed to be independent of composition. The other two adjustable parameters in each equation are expanded to capture the effects of composition. The resulting models are continuous across T-X space. The values and implications of the optimal parameters returned for each model are compared and discussed. A similar approach is likely to be applicable to a variety of non-silicate multicomponent glassforming systems

  1. Reuse of waste foundry sand through interaction with sodium silicate binder

    International Nuclear Information System (INIS)

    Souza, J.C.; Chinelatto, A.S.A.; Chinelatto, A.L.; Oliveira, I.L.

    2012-01-01

    Green sand molds are used in metal casting process. However, after heating, activated bentonite present in green sand lose the binding properties, and part of the foundry sand has to be discarded from the process. The ABNT NBR 15.984/2011 establishes the management of waste foundry sand (WFS) avoiding disposal in landfills. The objective of this work was to investigate the possibility of reusing the WFS from the study of their interaction with sodium silicate binder. Studies with silica sand and new green sand was performed to compare the results obtained with the WFS. The characterizations of the samples were performed by measures the compressive strength, X-ray diffraction, optical microscopy and scanning electron microscopy. The results showed that there is interaction of the sodium silicate with the WFS as well as with the silica sand and green sand. (author)

  2. New Silica Magnetite Sorbent: The Influence of Variations of Sodium Silicate Concentrations on Silica Magnetite Character

    Science.gov (United States)

    Azmiyawati, C.; Pratiwi, P. I.; Darmawan, A.

    2018-04-01

    The adsorption capacity of an adsorbent is determined by the adsorbent and the adsorbate properties. The character of the adsorbent will play a major role in its ability to adsorb the corresponding adsorbate. Therefore, in this study we looked at the effects of variations of sodium silicate concentrations on the resulting magnetite silica adsorbent properties. The application of silica coating on the magnetite was carried out through a sol-gel process with sodium silicate and HCl precursors. Based on the characterization data obtained, it was found that the silica coating on magnetite can increase the resistance to acid leaching, increase the particle size, but decrease the magnetic properties of the magnetite. Based on Gas Sorption Analyzer (GSA) and X-ray Difraction (XRD) data it can successively be determined that increase in concentration of sodium silicate will increase the surface area and amorphous structure of the Silica Magnetie.

  3. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    Science.gov (United States)

    Thongpin, C.; Srimuk, J.; hipkam, N.; Wachirapong, P.

    2015-07-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H2SO4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat.

  4. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    International Nuclear Information System (INIS)

    Thongpin, C; Srimuk, J; Hipkam, N; Wachirapong, P

    2015-01-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H 2 SO 4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat. (paper)

  5. Theoretical and practical aspects of aqueous solution sodium silicate modifying

    Directory of Open Access Journals (Sweden)

    Mizuryaev Sergey

    2016-01-01

    Full Text Available This research deals with the use of liquid glass in industry particularly for porous filler production. The aim of this paper is to show the necessity liquid glass modification for the purpose of its rheological characteristics change for raw granules formation and providing given structure after porization. Data on chemical liquid glass modification are provided by adding sodium chloride. Moreover, inert mineral additives influence on porous filler properties are shown in this paper. The basic principles of light concrete composition selection are specified. Test results of light concrete on the developed porous sodium silicate filler are given.

  6. Influence of sodium silicate concentration on structural and tribological properties of microarc oxidation coatings on 2017A aluminum alloy substrate

    International Nuclear Information System (INIS)

    Polat, Aytekin; Makaraci, Murat; Usta, Metin

    2010-01-01

    In this paper, thick and hard oxide coatings resistant to wear were produced on 2017A-T6 Al alloy by the microarc oxidation (MAO) technique in an alkali electrolyte consisting of different sodium silicate concentrations (0-8 g/l). The coatings were characterized by means of optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and surface profilometry. Microhardness, scratch adhesion and pin-on-disk sliding wear tests were also performed to evaluate the tribological properties of the coatings. The influence of sodium silicate concentration on the structural and tribological properties of the MAO coatings was discussed. Results reveal that increasing sodium silicate concentration from 0 to 8 g/l in the electrolyte caused an increase in the electrolyte conductivity (from 7.71 to 18.1 mS/cm) and a decrease in positive final voltage (from 627 to 590 V) in the MAO process. In response to the increase in sodium silicate concentration, the thickness, surface roughness (R a ) and critical load (L c ) corresponding to adhesive failure of the coatings were increased simultaneously from 74 to 144 μm, and 4.4 to 6.58 μm, and 127.76 to 198.54 N, respectively. At the same time, the phase structure and composition of the coatings also varied by the participation of silicate ions in the reactions and their incorporation into the coating structure. Moreover, it was observed that the coating formed in the low sodium silicate concentration (4 g/l) had higher surface hardness (2020 HV) and improved wear resistance than the one (1800 HV) formed in the high sodium silicate concentration (8 g/l). The coatings produced in three different electrolytic solutions provided an excellent wear resistance and a load carrying capacity compared to the uncoated aluminum alloy.

  7. The effect of melt composition on the partitioning of trace elements between titanite and silicate melt

    Science.gov (United States)

    Prowatke, S.; Klemme, S.

    2003-04-01

    The aim of this study is to systematically investigate the influence of melt composition on the partitioning of trace elements between titanite and different silicate melts. Titanite was chosen because of its important role as an accessory mineral, particularly with regard to intermediate to silicic alkaline and calc-alkaline magmas [e.g. 1] and of its relative constant mineral composition over a wide range of bulk compositions. Experiments at atmospheric pressure were performed at temperatures between 1150°C and 1050°C. Bulk compositions were chosen to represent a basaltic andesite (SH3 - 53% SiO2), a dacite (SH2 - 65 SiO2) and a rhyolite (SH1 - 71% SiO2). Furthermore, two additional experimental series were conducted to investigate the effect of Al-Na and the Na-K ratio of melts on partitioning. Starting materials consisted of glasses that were doped with 23 trace elements including some selected rare earth elements (La, Ce, Pr, Sm, Gd, Lu), high field strength elements (Zr, Hf, Nb, Ta) and large ion lithophile elements (Cs, Rb, Ba) and Th and U. The experimental run products were analysed for trace elements using secondary ion mass spectrometry at Heidelberg University. Preliminary results indicate a strong effect of melt composition on trace element partition coefficients. Partition coefficients for rare-earth elements uniformly show a convex-upward shape [2, 3], since titanite accommodates the middle rare-earth elements more readily than the light rare-earth elements or the heavy rare-earth elements. Partition coefficients for the rare-earth elements follow a parabolic trend when plotted against ionic radius. The shape of the parabola is very similar for all studied bulk compositions, the position of the parabola, however, is strongly dependent on bulk composition. For example, isothermal rare-earth element partition coefficients (such as La) are incompatible (D>1) in alkali-poor melt compositions. From our experimental data we present an model that combines

  8. Steam based conversion coating on AA6060 alloy: Effect of sodium silicate chemistry and corrosion performance

    Science.gov (United States)

    Din, Rameez Ud; Bordo, Kirill; Tabrizian, Naja; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-11-01

    Surface treatment of aluminium alloy AA6060 using an industrially applicable pilot steam jet system with and without silicate chemistry has been investigated. Treatment using steam alone and steam with silicate, resulted in an oxide layer formation with thickness ∼425 nm and ∼160 nm, respectively. Moreover, the use of sodium silicate resulted in the formation of distinct microstructure and incorporation of silicate into the oxide film. These oxide films reduced the anodic activity 4 times, while the corrosion protection by silicate containing oxide was the function of its concentration. Further, in acid salt spray and filiform corrosion tests, oxide layer containing silicate exhibited two times higher corrosion resistance.

  9. Olivine/melt transition metal partitioning, melt composition, and melt structure—Melt polymerization and Qn-speciation in alkaline earth silicate systems

    Science.gov (United States)

    Mysen, Bjorn O.

    2008-10-01

    govern their solubility behavior in silicate melts.

  10. Sodium Silicate Behavior in Porous Media Applied for In-Depth Profile Modifications

    Directory of Open Access Journals (Sweden)

    Hossein A. Akhlaghi Amiri

    2014-03-01

    Full Text Available This paper addresses alkaline sodium silicate (Na-silicate behavior in porous media. One of the advantages of the Na-silicate system is its water-like injectivity during the placement stage. Mixing Na-silicate with saline water results in metal silicate precipitation as well as immediate gelation. This work demonstrated that low salinity water (LSW, sea water diluted 25 times could be used as a pre-flush in flooding operations. A water override phenomenon was observed during gel formation which is caused by gravity segregation. Dynamic adsorption tests in the sand-packed tubes showed inconsiderable adsorbed silicon density (about 8.5 × 10−10 kg/cm3 for a solution with 33 mg/L silicon content, which is less than the estimated mono-layer adsorption density of 1.4 × 10−8 kg/cm3. Na-silicate enhanced water sweep efficiency after application in a dual-permeability sand-pack system, without leak off into the oil-bearing low permeability (LP zone. Field-scale numerical sensitivity studies in a layered reservoir demonstrated that higher permeability and viscosity contrasts and lower vertical/horizontal permeability ratio result in lower Na-silicate leakoff into the matrix. The length of the mixing zone between reservoir water and the injected Na-silicate solution, which is formed by low salinity pre-flush, acts as a buffer zone.

  11. Steam based conversion coating on AA6060 alloy: Effect of sodium silicate chemistry and corrosion performance

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Bordo, Kirill; Tabrizian, Naja

    2017-01-01

    . Moreover, the use of sodium silicate resulted in the formation of distinct microstructure and incorporation of silicate into the oxide film. These oxide films reduced the anodic activity 4 times, while the corrosion protection by silicate containing oxide was the function of its concentration. Further......Surface treatment of aluminium alloy AA6060 using an industrially applicable pilot steam jet system with and without silicate chemistry has been investigated. Treatment using steam alone and steam with silicate, resulted in an oxide layer formation with thickness ∼425 nm and ∼160 nm, respectively......, in acid salt spray and filiform corrosion tests, oxide layer containing silicate exhibited two times higher corrosion resistance....

  12. Long-term Effects of Relative Humidity on Properties of Microwave Hardened Moulding Sand with Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Stachowicz M.

    2017-09-01

    Full Text Available Moulding sands containing sodium silicate (water-glass belong to the group of porous mixture with low resistance to increased humidity. Thanks to hydrophilic properties of hardened or even overheated binder, possible is application of effective methods of hydrous reclamation consisting in its secondary hydration. For the same reason (hydrophilia of the binder, moulds and foundry cores made of high-silica moulding sands with sodium silicate are susceptible to the action of components of atmospheric air, including the contained steam. This paper presents results of a research on the effect of (relative humidity on mechanical and technological properties of microwave-hardened moulding mixtures. Specimens of the moulding sand containing 1.5 wt% of sodium water-glass with module 2.5 were subjected, in a laboratory climatic chamber, to long-term action of steam contained in the chamber atmosphere. Concentration of water in atmospheric air was stabilized for 28 days (672 h according to the relative humidity parameter that was ca. 40%, 60% and 80% at constant temperature 20 °C. In three cycles of the examinations, the specimens were taken out from the chamber every 7 days (168 h and their mechanical and technological parameters were determined. It was found on the grounds of laboratory measurements that moulds and cores hardened with microwaves are susceptible to action of atmospheric air and presence of water (as steam intensifies action of the air components on glassy film of sodium silicate. Microwave-hardened moulding sands containing sodium silicate may be stored on a long-term basis in strictly determined atmospheric conditions only, at reduced humidity. In spite of a negative effect of steam contained in the air, the examined moulding mixtures maintain a part of their mechanical and technological properties, so the moulds and foundry cores stored in specified, controlled conditions could be still used in manufacture.

  13. Redox equilibria and the structural role of iron in alumino-silicate melts

    Science.gov (United States)

    Dickenson, M. P.; Hess, P. C.

    1982-01-01

    The relationship between the redox ratio Fe+2/(Fe+2+Fe+3) and the K2O/(K2O + Al2O3) ratio (K2O*) were experimentally investigated in silicate melts with 78 mol% SiO2 in the system SiO2-Al2O3-K2O-FeO-Fe2O3, in air at 1,400° C. Quenched glass compositions were analyzed by electron microprobe and wet chemical microtitration techniques. Minimum values of the redox ratio were obtained at K2O*≈0.5. The redox ratio in peralkaline melts (K2O*>0.5) increases slightly with K2O* whereas this ratio increases dramatically in peraluminous melts (K2O*<0.5) as K2O is replaced by Al2O3. These data indicate that all Fe+3 (and Al+3) occur as tetrahedral species charge balanced with K+ in peralkaline melts. In peraluminous melts, Fe+3 (and Al+3) probably occur as both tetrahedral species using Fe+2 as a charge-balancing cation and as network-modifying cations associated with non-bridging oxygen.

  14. A micro-scale investigation of melt production and extraction in the upper mantle based on silicate melt pockets in ultramafic xenoliths from the Bakony-Balaton Highland Volcanic Field (Western Hungary)

    DEFF Research Database (Denmark)

    Bali, Eniko; Zanetti, A.; Szabo, C.

    2008-01-01

    Mantle xenoliths in Neogene alkali basalts of the Bakony-Balaton Highland Volcanic Field (Western Hungary) frequently have melt pockets that contain silicate minerals, glass, and often carbonate globules. Textural, geochemical and thermobarometric data indicate that the melt pockets formed at rel...

  15. Medium-scale melt-sodium fragmentation experiments

    International Nuclear Information System (INIS)

    Chu, T.Y.; Beattie, A.G.; Drotning, W.D.; Powers, D.A.

    1979-01-01

    The results of a series of fragmentation experiments involving up to 20 Kg of thermitically produced high temperature melts and 23 Kg of sodium are presented. Except for one experiment where some centimeter size particles are observed, the fragment distributions seem to be in the range of previous data. Spatial distribution of the fragments in the debris bed appears to be stratified. Scanning electron micrographs of fragments indicate fragmentation to be occurring in the molten state for the more intense interactions observed. Interaction data obtained show quiescent periods of 0.5 to 1.5 second between pressure pulses. The force impulse values per unit mass of melt seems to be in the same range as previous experiments

  16. Planetesimal core formation with partial silicate melting using in-situ high P, high T, deformation x-ray microtomography

    Science.gov (United States)

    Anzures, B. A.; Watson, H. C.; Yu, T.; Wang, Y.

    2017-12-01

    Differentiation is a defining moment in formation of terrestrial planets and asteroids. Smaller planetesimals likely didn't reach high enough temperatures for widescale melting. However, we infer that core formation must have occurred within a few million years from Hf-W dating. In lieu of a global magma ocean, planetesimals likely formed through inefficient percolation. Here, we used in-situ high temperature, high pressure, x-ray microtomography to track the 3-D evolution of the sample at mantle conditions as it underwent shear deformation. Lattice-Boltzmann simulations for permeability were used to characterize the efficiency of melt percolation. Mixtures of KLB1 peridotite plus 6.0 to 12.0 vol% FeS were pre-sintered to achieve an initial equilibrium microstructure, and then imaged through several consecutive cycles of heating and deformation. The maximum calculated melt segregation velocity was found to be 0.37 cm/yr for 6 vol.% FeS and 0.61 cm/year for 12 vol.% FeS, both below the minimum velocity of 3.3 cm/year required for a 100km planetesimal to fully differentiate within 3 million years. However, permeability is also a function of grain size and thus the samples having smaller grains than predicted for small planetesimals could have contributed to low permeability and also low migration velocity. The two-phase (sulfide melt and silicate melt) flow at higher melt fractions (6 vol.% and 12 vol.% FeS) was an extension of a similar study1 containing only sulfide melt at lower melt fraction (4.5 vol.% FeS). Contrary to the previous study, deformation did result in increased permeability until the sample was sheared by twisting the opposing Drickamer anvils by 360 degrees. Also, the presence of silicate melt caused the FeS melt to coalesce into less connected pathways as the experiment with 6 vol.% FeS was found to be less permeable than the one with 4.5 vol.% FeS but without any partial melt. The preliminary data from this study suggests that impacts as well as

  17. Study the Properties of Sodium Silicate Composite as a Barrier Separating Between the Internal Oil Distillation Towers and Chemical Fumes of Crude Oil

    Directory of Open Access Journals (Sweden)

    سلام حسين علي

    2016-07-01

    Full Text Available The study of surface hardness, wear resistance, adhesion strength, electrochemical corrosion resistance and thermal conductivity of coatings composed from sodium silicate was prepared using graphite micro-size particles and carbon nano particles as fillers respectively of concentration of (1-5%, for the purpose of covering and protecting the oil distillation towers. The results showed that the sodium silicate coating reinforced with carbon nano-powder has higher resistance to stitches, mechanical wear, adhesive and thermal conductivity than graphite/sodium silicate composite especially when the ratio 5% and 1%, the electrochemical corrosion test confirmed that the coating process of stainless steel 304 lead to increasing the corrosion resistance, where the reinforcing of sodium silicate lead to a significant improvement in the corrosion resistance, the corrosion resistance behavior change depending on the type of reinforcement material, this is consistent with the field test results.

  18. A study of redox kinetic in silicate melt; Etude cinetique des reactions d'oxydoreduction dans les silicates

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V

    2005-12-15

    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  19. Experimental Partitioning of Chalcophile Elements between Mantle Silicate Minerals and Basaltic Melt at High Pressures and Temperatures - Implications for Sulfur Geochemistry of Mantle and Crust

    Science.gov (United States)

    Dasgupta, R.; Jego, S.; Ding, S.; Li, Y.; Lee, C. T.

    2015-12-01

    The behavior of chalcophile elements during mantle melting, melt extraction, and basalt differentiation is critical for formation of ore deposits and geochemical model and evolution of crust-mantle system. While chalcophile elements are strongly partitioned into sulfides, their behavior with different extent of melting, in particular, in the absence of sulfides, can only be modeled with complete knowledge of the partitioning behavior of these elements between dominant mantle minerals and basaltic melt with or without dissolved sulfide (S2-). However, experimental data on mineral-melt partitioning are lacking for many chalcophile elements. Crystallization experiments were conducted at 3 GPa and 1450-1600 °C using a piston cylinder and synthetic silicate melt compositions similar to low-degree partial melt of peridotite. Starting silicate mixes doped with 100-300 ppm of each of various chalcophile elements were loaded into Pt/graphite double capsules. To test the effect of dissolved sulfur in silicate melt on mineral-melt partitioning of chalcophile elements, experiments were conducted on both sulfur-free and sulfur-bearing (1100-1400 ppm S in melt) systems. Experimental phases were analyzed by EPMA (for major elements and S) and LA-ICP-MS (for trace elements). All experiments produced an assemblage of cpx + melt ± garnet ± olivine ± spinel and yielded new partition coefficients (D) for Sn, Zn, Mo, Sb, Bi, Pb, and Se for cpx/melt, olivine/melt, and garnet/melt pairs. Derived Ds (mineral/basalt) reveal little effect of S2- in the melt on mineral-melt partition coefficients of the measured chalcophile elements, with Ds for Zn, Mo, Bi, Pb decreasing by less than a factor of 2 from S-free to S-bearing melt systems or remaining similar, within error, between S-free and S-bearing melt systems. By combining our data with existing partitioning data between sulfide phases and silicate melt we model the fractionation of these elements during mantle melting and basalt

  20. Rice husk-derived sodium silicate as a highly efficient and low-cost basic heterogeneous catalyst for biodiesel production

    International Nuclear Information System (INIS)

    Roschat, Wuttichai; Siritanon, Theeranun; Yoosuk, Boonyawan; Promarak, Vinich

    2016-01-01

    Graphical abstract: Rice husk-derived sodium silicate exhibits high potential as a low-cost solid catalyst for industrial biodiesel production. - Highlights: • Rice husk-derived sodium silicate was employed as a high performance catalyst for biodiesel production. • 97% yield of FAME was achieved in 30 min at 65 °C. • The room-temperature transesterification gave 94% yield of FAME after only 150 min. - Abstract: In the present work, rice husk-derived sodium silicate was prepared and employed as a solid catalyst for simple conversion of oils to biodiesel via the transesterification reaction. The catalyst was characterized by TG–DTA, XRD, XRF, FT-IR, SEM, BET and Hammett indicator method. Under the optimal reaction conditions of catalyst loading amount of 2.5 wt.%, methanol/oil molar ratio of 12:1, the prepared catalysts gave 97% FAME yield in 30 min at 65 °C, and 94% FAME yield in 150 min at room temperature. The transesterification was proved to be pseudo-first order reaction with the activation energy (Ea) and the frequency factor (A) of 48.30 kJ/mol and 2.775 × 10"6 min"−"1 respectively. Purification with a cation-exchange resin efficiently removed all soluble ions providing high-quality biodiesel product that meets all the ASTM and EN standard specifications. Rice husk-derived sodium silicate showed high potential to be used as a low-cost, easy to prepare and high performance solid catalyst for biodiesel synthesis.

  1. Trace element partitioning between ilmenite, armalcolite and anhydrous silicate melt: Implications for the formation of lunar high-Ti mare basalts

    NARCIS (Netherlands)

    Kan Parker, M. van; Mason, P.R.D.; Westrenen, W. van

    2011-01-01

    We performed a series of experiments at high pressures and temperatures to determine the partitioning of a wide range of trace elements between ilmenite (Ilm), armalcolite (Arm) and anhydrous lunar silicate melt, to constrain geochemical models of the formation of titanium-rich melts in the Moon.

  2. Eclogite-associated potassic silicate melts and chloride-rich fluids in the mantle: a possible connection

    Science.gov (United States)

    Safonov, O.; Butvina, V.

    2009-04-01

    Relics of potassium-rich (4-14 wt. % of K2O and K2O/Na2O > 1.0) melts are a specific features of some partially molten diamondiferous eclogite xenoliths in kimberlites worldwide [1, 2]. In addition, potassic silicic melt inclusions with up to 16 wt. % of K2O are associated with eclogite phases in kimberlitic diamonds (O. Navon, pers. comm.). According to available experimental data, no such potassium contents can be reached by "dry" and hydrous melting of eclogite. These data point to close connection between infiltration of essentially potassic fluids, partial melting and diamond formation in mantle eclogites [2]. Among specific components of these fluids, alkali chlorides, apparently, play an important role. This conclusion follows from assemblages of the melt relics with chlorine-bearing phases in eclogite xenoliths [1], findings of KCl-rich inclusions in diamonds from the xenoliths [3], and concentration of Cl up to 0.5-1.5 wt. % in the melt inclusions in diamonds. In this presentation, we review our experimental data on reactions of KCl melts and KCl-bearing fluids with model and natural eclogite-related minerals and assemblages. Experiments in the model system jadeite(±diopside)-KCl(±H2O) at 4-7 GPa showed that, being immiscible, chloride liquids provoke a strong K-Na exchange with silicates (jadeite). As a result, low-temperature ultrapotassic chlorine-bearing (up to 3 wt. % of Cl) aluminosilicate melts form. These melts is able to produce sanidine, which is characteristic phase in some partially molten eclogites. In addition, in presence of water Si-rich Cl-bearing mica (Al-celadonite-phlogopite) crystallizes in equilibrium with sanidine and/or potassic melt and immiscible chloride liquid. This mica is similar to that observed in some eclogitic diamonds bearing chloride-rich fluid inclusions [4], as well as in diamonds in partially molten eclogites [2]. Interaction of KCl melt with pyrope garnet also produce potassic aluminosilicate melt because of high

  3. A study of redox kinetic in silicate melt; Etude cinetique des reactions d'oxydoreduction dans les silicates

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V

    2005-12-15

    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  4. Comparative study on the change in index of refraction in ion-exchange interdiffusion in alkali-silicate glasses containing calcium, strontium, barium and titanium oxides

    International Nuclear Information System (INIS)

    Livshits, V.Ya.; Marchuk, E.A.

    1993-01-01

    Different ability to ion exchange from the salts of lithium-sodium-silicate glass melt containing calcium (or strontium, or barium) and titanium oxides in addition has been shown. CaO, SrO and BaO have negative effect, but TiO 2 -positive one on the fullness of ion exchange of lithium-sodium and on the rate of interdiffusion in alkali-silicate glass. The value of change in index of refraction of glass with TiO 2 is twice higher than glass with calcium oxide (or strontium, or barium) as the fourth component

  5. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts

    Science.gov (United States)

    Liu, Yanan; Samaha, Naji-Tom; Baker, Don R.

    2007-04-01

    The sulfur concentration in silicate melts at sulfide saturation (SCSS) was experimentally investigated in a temperature range from 1150 to 1450 °C and a pressure range from 500 MPa to 1 GPa in a piston-cylinder apparatus. The investigated melt compositions varied from rhyolitic to basaltic and water concentrations varied from 0 to ˜9 wt%. All experiments were saturated with FeS melt or pyrrhotite crystals. Temperature was confirmed to have a positive effect on the SCSS. Experimental oxygen fugacities were either near the carbon-carbon monoxide buffer or one log unit above the nickel-nickel oxide buffer, and found to positively affect the SCSS. Combining our results with data from the literature we constructed a model to predict the SCSS in melts ranging in composition from komatiitic to rhyolitic, with water concentrations from 0 to 9 wt%, at pressures from 1 bar to 9 GPa and oxygen fugacities between ˜2 log units below the fayalite-magnetite-quartz buffer to ˜2 log units above it. The coefficients were obtained by multiple linear regression of experimental data and the best model found for the prediction of the SCSS is: ln(Sinppm)=11.35251-{4454.6}/{T}-0.03190{P}/{T}+0.71006ln(MFM)-1.98063[(MFM)(XO)]+0.21867ln(XO)+0.36192lnX where P is in bar, T is in K, MFM is a compositional parameter describing the melt based upon cation mole fractions: MFM={Na+K+2(Ca+Mg+Fe)}/{Si×(Al+Fe)}, XO is the mole fraction of water in the melt, and X is the mole fraction of FeO in the melt. This model was independently tested against experiments performed on anhydrous and hydrous melts in the temperature range from 800 to 1800 °C and 1-9 GPa. The model typically predicts the measured values of the natural log of the SCSS (in ppm) for komatiitic to rhyolitic (˜42 to ˜74 wt% SiO 2) melts to within 5% relative, but is less accurate for high-silica (>76 wt% SiO 2) rhyolites, especially those with molar ratios of iron to sulfur below 2. We demonstrate how this model can be used with

  6. Comparison of lead removal behaviors and generation of water-soluble sodium compounds in molten lead glass under a reductive atmosphere

    Science.gov (United States)

    Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu

    2018-06-01

    We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.

  7. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean.

    Science.gov (United States)

    Murakami, Motohiko; Bass, Jay D

    2011-10-18

    Ultralow velocity zones are the largest seismic anomalies in the mantle, with 10-30% seismic velocity reduction observed in thin layers less than 20-40 km thick, just above the Earth's core-mantle boundary (CMB). The presence of silicate melts, possibly a remnant of a deep magma ocean in the early Earth, have been proposed to explain ultralow velocity zones. It is, however, still an open question as to whether such silicate melts are gravitationally stable at the pressure conditions above the CMB. Fe enrichment is usually invoked to explain why melts would remain at the CMB, but this has not been substantiated experimentally. Here we report in situ high-pressure acoustic velocity measurements that suggest a new transformation to a denser structure of MgSiO(3) glass at pressures close to those of the CMB. The result suggests that MgSiO(3) melt is likely to become denser than crystalline MgSiO(3) above the CMB. The presence of negatively buoyant and gravitationally stable silicate melts at the bottom of the mantle, would provide a mechanism for observed ultralow seismic velocities above the CMB without enrichment of Fe in the melt. An ultradense melt phase and its geochemical inventory would be isolated from overlying convective flow over geologic time.

  8. Effect of Silver Nanoparticles and Sodium Silicate on Vase Life and Quality of Cut Chrysanthemum Dendranthema grandiflorum L. (Flower

    Directory of Open Access Journals (Sweden)

    S. Kazemipour

    2016-02-01

    Full Text Available Dendranthema grandiflorum L. is one of the widely cultivated flowers around the world for producing of cut flowers. Nanometer-sized silver particles are used in various applications as an anti-microbial compound. This experiment was carried out to study the effects of silver nanoparticles (0, 5, 10 and 20 mg/L and sodium silicate (0, 50, 100 and 150 mg/L on longevity and quality of cut chrysanthemum (Dendranthema grandiflorum L. flowers. A factorial experiment was conducted based on randomized complete block design with 16 treatments, 3 replications, 48 plots and 192 cut flowers. The cut flowers were pulsed for 24 h with pulse solutions and then transported to 300 mg L-1 8-hidroxy quinoline sulfate and 3% sucrose. The characteristics such as vase life, loss of fresh weight, number of bacterial colonies in stem, lipid peroxidation, and activity of superoxide dismutase (SOD were measured. Results showed that all treatments had positive effects on the vase life of flowers. Pulse solution with 10 mg/L silver nanoparticles and 100 mg/L sodium silicate and interaction between them, increased vase life compared to the control (3.21, 4.46 and 8.50 days, respectively. In addition, the flowers pulsed with silver nanoparticles and sodium silicate exhibited higher activity of SOD, compared to control. The present study showed that using proper concentrations of silver nanoparticles and sodium silicate can enhance the vase life of cut chrysanthemum flowers.

  9. Trace element partitioning between aqueous fluids and silicate melts measured with a proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J; Green, T H [Macquarie Univ., North Ryde, NSW (Australia). School of Earth Sciences; Sie, S H [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1997-12-31

    A series of experiments were performed to examine the capacity of H{sub 2}O-fluids to concentrate and transport incompatible elements through peridotitic mantle and metamorphosed (eclogitic) ocean crust. Two naturally occurring rock compositions, trondhjemitic and basanitic, were used in experiments. The proton microprobe was used to determine the trace element concentrations in the solutes from H{sub 2}O-fluids equilibrated at 900-1100 degree C, 2.0 GPa with water saturated melts of trondhjemitic and basanitic compositions. Partitioning data for H{sub 2}O-fluids and silicate melts show that H{sub 2}O-fluids equilibrated with mantle peridotites will not be strongly enriched in trace elements relative to their wallrocks, and thus they melts do not strongly concentrate alkaline earths Th and U, relative to high-field strength elements. 3 refs., 1 tab., 2 figs.

  10. Trace element partitioning between aqueous fluids and silicate melts measured with a proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia). School of Earth Sciences; Sie, S.H. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    A series of experiments were performed to examine the capacity of H{sub 2}O-fluids to concentrate and transport incompatible elements through peridotitic mantle and metamorphosed (eclogitic) ocean crust. Two naturally occurring rock compositions, trondhjemitic and basanitic, were used in experiments. The proton microprobe was used to determine the trace element concentrations in the solutes from H{sub 2}O-fluids equilibrated at 900-1100 degree C, 2.0 GPa with water saturated melts of trondhjemitic and basanitic compositions. Partitioning data for H{sub 2}O-fluids and silicate melts show that H{sub 2}O-fluids equilibrated with mantle peridotites will not be strongly enriched in trace elements relative to their wallrocks, and thus they melts do not strongly concentrate alkaline earths Th and U, relative to high-field strength elements. 3 refs., 1 tab., 2 figs.

  11. Redox Reaction in Silicate Melts Monitored by ''Static'' In-Situ Fe K-Edge XANES up to 1180 deg. C

    International Nuclear Information System (INIS)

    Wilke, Max; Partzsch, Georg M.; Welter, Edmund; Farges, Francois

    2007-01-01

    A new experimental setup to measure in-situ kinetics of redox reactions in silicate melts is presented. To study the progress of the Fe-redox reaction, the variation of the signal is recorded at an energy, where the difference between the spectra of the oxidized and reduced Fe in the melt is largest (''static XANES''). To control the redox conditions, the gas atmosphere could be changed between to types of gases using computer-controlled valves (N2:H2 and air, respectively). In this way, a number of reduction/oxidation cycles can be monitored in-situ and continuously. Applied at the Fe K-edge in molten silicates, we obtained a set of high quality data, which includes the very first steps of the redox reaction. An Avrami-type equation is used to investigate rate-controlling parameters for the iron oxidation/reduction kinetics for two melts (basaltic and Na trisilicate) for temperatures up to 1180 deg. C

  12. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    International Nuclear Information System (INIS)

    Demirkiran, Hande; Hu Yongfeng; Zuin, Lucia; Appathurai, Narayana; Aswath, Pranesh B.

    2011-01-01

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts ( 5 (PO 4 ) 2 SiO 4 and Na 3 Ca 6 (PO 4 ) 5 in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L 2,3 -edge and calcium (Ca) K-edge XANES. Si L 2,3 -edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L 2,3 -edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and β-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na 3 Ca 6 (PO 4 ) 5 in a silicate matrix indicating that it is more soluble compared to the other compositions.

  13. The partitioning of barium and lead between silicate melts and aqueous fluids at high pressures and temperatures

    International Nuclear Information System (INIS)

    Bureau, Helene; Menez, Benedicte; Khodja, Hicham; Daudin, Laurent; Gallien, Jean-Paul; Massare, Dominique; Shaw, Cliff; Metrich, Nicole

    2003-01-01

    The origin of subduction-related magmas is still a matter of debate in the Earth Sciences. These magmas are characterised by their distinctive trace element compositions compared to magmas from other tectonic settings, e.g. mid-ocean ridges or rifts. The distinct trace element composition of these magmas is generally attributed to alteration of the source region by a contaminating agent: either a silicate melt or a hydrous fluid, possibly chlorine-enriched. In this study, we have used μPIXE (proton induced X-ray emission) to analyse synthetic samples obtained from a micro-experimental petrology study that aims to determine the partitioning behaviour of two key elements, Ba and Pb, between silicate melt and both pure water and saline fluids. Our experiments were performed at high-pressure (>0.34-1.53 GPa) and high-temperature (697-1082 deg. C) in a hydrothermal diamond anvil cell, that was used as a transparent rapid quench autoclave. We observed that at high pressure and temperature, in the presence of pure water, Ba and Pb are not strongly fractionated into one phase or the other. The partition coefficient of Pb is ranging from 0.46 to 1.28. Results from one experiment performed at 0.83 GPa and 847 deg. C, in the presence of a saline fluid indicate that the presence of Cl induces strong fractionation of Pb and moderate fractionation of Ba both into the silicate melt. In addition, our data indicate that Cl is strongly partitioned into the fluid phase

  14. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  15. The same features of interaction of UO2 nuclear fuel with silicate melts

    International Nuclear Information System (INIS)

    Ipatov, A.P.; Bel'skaya, Eh.A.; Kerko, P.F.; Pavlyukovich, P.A.; Rytvinskaya, Eh.V.; Kopets, Z.V.

    1997-01-01

    Summarized results of the experimental investigations of interaction between uranium dioxide and silicate melts of multicomponent oxide systems SiO 2 -CaO-Al 2 O 3 -Na 2 O in a wide range of basicity (0,47-1,2) at constant mass content of Al 2 O 3 -Na 2 O in each experiment. Used form of combined data processing in non dimensional coordinates permitted to get generalized curve of the studied dependence with maximum at 0,6-0,7 basicity

  16. Coordinated Hard Sphere Mixture (CHaSM): A fast approximate model for oxide and silicate melts at extreme conditions

    Science.gov (United States)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2015-12-01

    Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, consuming classical MD calculations. This approach also sheds light on the universality

  17. Metal/sulfide-silicate intergrowth textures in EL3 meteorites: Origin by impact melting on the EL parent body

    Science.gov (United States)

    van Niekerk, Deon; Keil, Klaus

    2011-10-01

    We document the petrographic setting and textures of Fe,Ni metal, the mineralogy of metallic assemblages, and the modal mineral abundances in the EL3 meteorites Asuka (A-) 881314, A-882067, Allan Hills 85119, Elephant Moraine (EET) 90299/EET 90992, LaPaz Icefield 03930, MacAlpine Hills (MAC) 02635, MAC 02837/MAC 02839, MAC 88136, Northwest Africa (NWA) 3132, Pecora Escarpment 91020, Queen Alexandra Range (QUE) 93351/QUE 94321, QUE 94594, and higher petrologic type ELs Dar al Gani 1031 (EL4), Sayh al Uhaymir 188 (EL4), MAC 02747 (EL4), QUE 94368 (EL4), and NWA 1222 (EL5). Large metal assemblages (often containing schreibersite and graphite) only occur outside chondrules and are usually intergrown with silicate minerals (euhedral to subhedral enstatite, silica, and feldspar). Sulfides (troilite, daubréelite, and keilite) are also sometimes intergrown with silicates. Numerous authors have shown that metal in enstatite chondrites that are interpreted to have been impact melted contains euhedral crystals of enstatite. We argue that the metal/sulfide-silicate intergrowths in the ELs we studied were also formed during impact melting and that metal in EL3s thus does not retain primitive (i.e., nebular) textures. Likewise, the EL4s are also impact-melt breccias. Modal abundances of metal in the EL3s and EL4s range from approximately 7 to 30 wt%. These abundances overlap or exceed those of EL6s, and this is consistent either with pre-existing heterogeneity in the parent body or with redistribution of metal during impact processes.

  18. Microscopic Origins of the Anomalous Melting Behavior of Sodium under High Pressure

    Science.gov (United States)

    Eshet, Hagai; Khaliullin, Rustam Z.; Kühne, Thomas D.; Behler, Jörg; Parrinello, Michele

    2012-03-01

    X-ray diffraction experiments have shown that sodium exhibits a dramatic pressure-induced drop in melting temperature, which extends from 1000 K at ˜30GPa to as low as room temperature at ˜120GPa. Despite significant theoretical effort to understand the anomalous melting, its origins are still debated. In this work, we reconstruct the sodium phase diagram by using an ab initio quality neural-network potential. Furthermore, we demonstrate that the reentrant behavior results from the screening of interionic interactions by conduction electrons, which at high pressure induces a softening in the short-range repulsion.

  19. The solubility of Pd and Au in hydrous intermediate silicate melts: The effect of oxygen fugacity and the addition of Cl and S

    Science.gov (United States)

    Sullivan, Neal A.; Zajacz, Zoltan; Brenan, James M.

    2018-06-01

    The solubilities of Pd and Au in a hydrous trachyandesitic melt were experimentally determined at 1000 °C and 200 MPa at oxygen fugacity (ƒO2) from 0.45 log units below to 6.55 log units above the Ni-NiO buffer (NNO). The effect of adding metal-binding ligands (i.e. Cl and S) to the silicate melt was also studied. The solubility of Au increases from 0.15 ± 0.1 to 3.85 ± 1.48 ppm in Cl- and S-free melts with ƒO2 increasing from NNO-0.45 to NNO+6.55 with a slope that suggests that it is present in 1+ oxidation state over the entire studied ƒO2 range. On the other hand, Pd solubility, shows a more moderate increase with ƒO2, especially in the lower half of the studied range, increasing from 2.66 ± 0.25 ppm at NNO-0.45 to only 3.62 ± 0.38 ppm at NNO+1.72 in Cl- and S-free melts. Overall, the variation in Pd solubility as a function of ƒO2 indicates Pd being dissolved in the silicate melt in both zero and 1+ oxidation state, with the former being dominant below NNO+4.5. At NNO-0.45 to +3.48, the addition of 3170-4060 ppm Cl to the silicate melt increased the solubility of Au by an average factor of 1.5, in comparison to Cl-free melts. However, at NNO+6.55, Au solubility increased by a factor of 2.5. The addition of Cl had a negligible effect on the solubility of Pd except for a large increase (factor of 2.4) at NNO+6.55. At reducing conditions (NNO-0.45), the addition of 170 ppm S to the silicate melt increased the solubility of Au by a factor of ∼4 but did not change the solubility of Pd in comparison to S-free melts. The observation that Pd is dominantly present as Pd0 at NNO one may expect similar behavior in fluids degassing from magmas at depth, the lack of oxidized Pd species could be an important factor behind the scarcity of economically viable Pd-rich magmatic-hydrothermal deposits observed in nature.

  20. Chemical interactions and configurational disorder in silicate melts

    Directory of Open Access Journals (Sweden)

    G. Ottonello

    2005-06-01

    Full Text Available The Thermodynamics of quasi-chemical and polymeric models are briefly reviewed. It is shown that the two classes are mutually consistent, and that opportune conversion of the existing quasi-chemical parameterization of binary interactions in MO-SiO2 joins to polymeric models may be afforded without substantial loss of precision. It is then shown that polymeric models are extremely useful in deciphering the structural and reactive properties of silicate melts and glasses. They not only allow the Lux-Flood character of the dissolved oxides to be established, but also discriminate subordinate strain energy contributions to the Gibbs free energy of mixing from the dominant chemical interaction terms. This discrimination means that important information on the short-, medium- and long-range periodicity of this class of substances can be retrieved from thermodynamic analysis. Lastly, it is suggested that an important step forward in deciphering the complex topology of the inhomogeneity ranges observed at high SiO2 content can be performed by applying SCMF theory and, particularly, Matsen-Schick spectral analysis, hitherto applied only to rubberlike materials.

  1. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Demirkiran, Hande [Graduate Student, Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States); Hu Yongfeng; Zuin, Lucia [Beamline Scientist, Canadian Light Source, Saskatoon, SK (Canada); Appathurai, Narayana [Beamline Scientist, Synchrotron Radiation Center, Madison, WI (United States); Aswath, Pranesh B., E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States)

    2011-03-12

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts (< 5 wt.%) of Bioglass (registered) 45S5 was added it behaved as a sintering aid and also enhanced the decomposition of hydroxyapatite to {beta}-tricalcium phosphate. However when 10 wt.% and 25 wt.% Bioglass (registered) 45S5 was used it resulted in the formation of Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4} and Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L{sub 2,3}-edge and calcium (Ca) K-edge XANES. Si L{sub 2,3}-edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L{sub 2,3}-edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and {beta}-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in a silicate matrix indicating that it is more soluble compared to the other compositions.

  2. Development of an immobilization process for heavy metal containing galvanic solid wastes by use of sodium silicate and sodium tetraborate

    Energy Technology Data Exchange (ETDEWEB)

    Aydın, Ahmet Alper, E-mail: ahmetalperaydin@gmail.com [Chair of Urban Water Systems Engineering, Technische Universität München, Am Coulombwall, 85748 Garching (Germany); Aydın, Adnan [Istanbul Bilim University, School of Health, Esentepe, Istanbul, Sisli, 34394 (Turkey)

    2014-04-01

    Highlights: • A new physico-chemical process below 1000 °C for immobilization of galvanic sludges. • Sodium tetraborate and sodium silicate have been used as additives. • A strategy for adjustment of solid waste/additive mixture composition is presented. • Strategy is valid for wastes of hydrometallurgical and electro-plating processes. • Lower energy consumption and treated waste volume, shorter process time are provided. - Abstract: Heavy metal containing sludges from wastewater treatment plants of electroplating industries are designated as hazardous waste since their improper disposal pose high risks to environment. In this research, heavy metal containing sludges of electroplating industries in an organized industrial zone of Istanbul/Turkey were used as real-sample model for development of an immobilization process with sodium tetraborate and sodium silicate as additives. The washed sludges have been precalcined in a rotary furnace at 900 °C and fritted at three different temperatures of 850 °C, 900 °C and 950 °C. The amounts of additives were adjusted to provide different acidic and basic oxide ratios in the precalcined sludge-additive mixtures. Leaching tests were conducted according to the toxicity characteristic leaching procedure Method 1311 of US-EPA. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and flame atomic absorption spectroscopy (FAAS) have been used to determine the physical and chemical changes in the products. Calculated oxide molar ratios in the precalcined sludge-additive mixtures and their leaching results have been used to optimize the stabilization process and to determine the intervals of the required oxide ratios which provide end-products resistant to leaching procedure of US-EPA. The developed immobilization-process provides lower energy consumption than sintering-vitrification processes of glass–ceramics.

  3. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    Science.gov (United States)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  4. Experiments on the behaviour of thermite melt injected into sodium: Final report on the THINA test results

    International Nuclear Information System (INIS)

    Huber, F.; Kaiser, A.; Peppler, W.

    1994-01-01

    During hypothetical accidents of fast breeder reactors the core melts and part of the core material inventory is ejected into the upper coolant plenum. As a consequence, a fuel to coolant thermal interaction occurs between the melt and the sodium. A series of simulating experiments was carried out in KfK/IRS to improve the knowledge about the phenomenology of molten fuel/coolant interactions and to support theoretical work on the safety of fast breeder reactors. In the tests, a thermite melt of up to 3270 K is injected from below into a sodium pool the temperature of which is between 770 and 820 K. The masses of the melt and the sodium are about five and 150 kg, respectively. Thermal interactions have been observed to occur as a sequence of small local pressure events mainly during the melt injection. Large-scale vapour explosions have not been observed. Generally, the conversion ratios of thermal to mechanical energy have been low. (author)

  5. Immiscible silicate liquids at high pressure: the influence of melt structure on elemental partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Vicenzi, E [Princeton Materials Laboratory, Princeton, NJ (United States); Green, T H [Macquarie Univ., North Ryde, NSW (Australia); Sie, S H [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1994-12-31

    Micro-PIXE analyses have been applied to study partitioning of trace elements between immiscible silicate melts stabilised at 0.5 and 1.0 GPa over a temperature range of 1160-1240 deg C in the system SiO{sub 2}-FeO-Al{sub 2}0{sub 3}-K{sub 2}0 (+P{sub 2}0{sub 5}). The system was doped with a suite of trace elements of geochemical interest: Rb, Ba, Pb, Sr, La, Ce, Sm, Ho, Y, Lu, Th, U, Zr, Hf, Nb and Ta at approximately 200 ppm level for all elements except for the REE`s, Ba and Ta (600-1200 ppm). Trace element partitioning was found to be a complex function of cation field strength (charge/radius{sup 2}). Although field strength is important in determining the nature and degree of partitioning, the authors emphasised that it is only one component of the underlying mechanism for the way in which elements distribute themselves between two silicate liquids. 8 refs., 2 figs.

  6. Immiscible silicate liquids at high pressure: the influence of melt structure on elemental partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Vicenzi, E. [Princeton Materials Laboratory, Princeton, NJ (United States); Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia); Sie, S.H. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1993-12-31

    Micro-PIXE analyses have been applied to study partitioning of trace elements between immiscible silicate melts stabilised at 0.5 and 1.0 GPa over a temperature range of 1160-1240 deg C in the system SiO{sub 2}-FeO-Al{sub 2}0{sub 3}-K{sub 2}0 (+P{sub 2}0{sub 5}). The system was doped with a suite of trace elements of geochemical interest: Rb, Ba, Pb, Sr, La, Ce, Sm, Ho, Y, Lu, Th, U, Zr, Hf, Nb and Ta at approximately 200 ppm level for all elements except for the REE`s, Ba and Ta (600-1200 ppm). Trace element partitioning was found to be a complex function of cation field strength (charge/radius{sup 2}). Although field strength is important in determining the nature and degree of partitioning, the authors emphasised that it is only one component of the underlying mechanism for the way in which elements distribute themselves between two silicate liquids. 8 refs., 2 figs.

  7. EFFECT OF SODIUM SILICATE TO SODIUM HYDROXIDE RATIOS ON DURABILITY OF GEOPOLYMER MORTARS CONTAINING NATURAL AND ARTIFICIAL POZZOLANS

    Directory of Open Access Journals (Sweden)

    F. Nurhayat Degirmenci

    2017-09-01

    Full Text Available This study aims to provide the experimental data on the sulphate and acid performance of geopolymer mortar containing pozzolanic materials such as fly ash (FA, ground granulated blast furnace slag (GGBS and natural zeolite (NZ. The alkaline solution was the combination of sodium silicate and sodium hydroxide solution with the ratio (Na ₂SiO₃/NaOH of 1.0, 2.0 and 3.0. The molarity of sodium hydroxide was fixed as 10. The performances of geopolymer mortar were measured in terms of sodium and magnesium sulphate resistance and sulphuric and hydrochlorich acid resistance with 5% and 10 % concentration after 24 weeks. The evaluations were measured as visual observation, measurement of weight change and residual compressive strength. It has been observed that Na ₂SiO₃/NaOH ratio is effective on residual compressive strength of geopolymer mortar in both sulphate and acid exposure. The higher ratio of Na ₂SiO₃/NaOH results in a higher residual compressive strength. The GGBS based geopolymer mortar has a very good resistance in acid media in terms of weight loss and residual compressive strength. The inclusion of FA in the GGBS based geopolymer mixture was found to be a suitable base of geopolymer mortar under ambient curing conditions.

  8. The solvation radius of silicate melts based on the solubility of noble gases and scaled particle theory

    Energy Technology Data Exchange (ETDEWEB)

    Ottonello, Giulio, E-mail: giotto@dipteris.unige.it [DISTAV, Università di Genova, Corso Europa 26, 16132 Genova (Italy); Richet, Pascal [Institut de Physique du Globe, Rue Jussieu 2, 75005 Paris (France)

    2014-01-28

    The existing solubility data on noble gases in high-temperature silicate melts have been analyzed in terms of Scaling Particle Theory coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM). After a preliminary analysis of the role of the contracted Gaussian basis sets and theory level in reproducing appropriate static dipole polarizabilities in a vacuum, we have shown that the procedure returns Henry's law constants consistent with the values experimentally observed in water and benzene at T = 25 °C and P = 1 bar for the first four elements of the series. The static dielectric constant (ε) of the investigated silicate melts and its optical counterpart (ε{sup ∞}) were then resolved through the application of a modified form of the Clausius-Mossotti relation. Argon has been adopted as a probe to depict its high-T solubility in melts through an appropriate choice of the solvent diameter σ{sub s}, along the guidelines already used in the past for simple media such as water or benzene. The σ{sub s} obtained was consistent with a simple functional form based on the molecular volume of the solvent. The solubility calculations were then extended to He, Ne, and Kr, whose dispersive and repulsive coefficients are available from theory and we have shown that their ab initio Henry's constants at high T reproduce the observed increase with the static polarizability of the series element with reasonable accuracy. At room temperature (T = 25 °C) the calculated Henry's constants of He, Ne, Ar, and Kr in the various silicate media predict higher solubilities than simple extrapolations (i.e., Arrhenius plots) based on high-T experiments and give rise to smooth trends not appreciably affected by the static polarizabilities of the solutes. The present investigation opens new perspectives on a wider application of PCM theory which can be extended to materials of great

  9. The solvation radius of silicate melts based on the solubility of noble gases and scaled particle theory.

    Science.gov (United States)

    Ottonello, Giulio; Richet, Pascal

    2014-01-28

    The existing solubility data on noble gases in high-temperature silicate melts have been analyzed in terms of Scaling Particle Theory coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM). After a preliminary analysis of the role of the contracted Gaussian basis sets and theory level in reproducing appropriate static dipole polarizabilities in a vacuum, we have shown that the procedure returns Henry's law constants consistent with the values experimentally observed in water and benzene at T = 25 °C and P = 1 bar for the first four elements of the series. The static dielectric constant (ɛ) of the investigated silicate melts and its optical counterpart (ɛ(∞)) were then resolved through the application of a modified form of the Clausius-Mossotti relation. Argon has been adopted as a probe to depict its high-T solubility in melts through an appropriate choice of the solvent diameter σs, along the guidelines already used in the past for simple media such as water or benzene. The σs obtained was consistent with a simple functional form based on the molecular volume of the solvent. The solubility calculations were then extended to He, Ne, and Kr, whose dispersive and repulsive coefficients are available from theory and we have shown that their ab initio Henry's constants at high T reproduce the observed increase with the static polarizability of the series element with reasonable accuracy. At room temperature (T = 25 °C) the calculated Henry's constants of He, Ne, Ar, and Kr in the various silicate media predict higher solubilities than simple extrapolations (i.e., Arrhenius plots) based on high-T experiments and give rise to smooth trends not appreciably affected by the static polarizabilities of the solutes. The present investigation opens new perspectives on a wider application of PCM theory which can be extended to materials of great industrial interest at the core of

  10. The solvation radius of silicate melts based on the solubility of noble gases and scaled particle theory

    International Nuclear Information System (INIS)

    Ottonello, Giulio; Richet, Pascal

    2014-01-01

    The existing solubility data on noble gases in high-temperature silicate melts have been analyzed in terms of Scaling Particle Theory coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM). After a preliminary analysis of the role of the contracted Gaussian basis sets and theory level in reproducing appropriate static dipole polarizabilities in a vacuum, we have shown that the procedure returns Henry's law constants consistent with the values experimentally observed in water and benzene at T = 25 °C and P = 1 bar for the first four elements of the series. The static dielectric constant (ε) of the investigated silicate melts and its optical counterpart (ε ∞ ) were then resolved through the application of a modified form of the Clausius-Mossotti relation. Argon has been adopted as a probe to depict its high-T solubility in melts through an appropriate choice of the solvent diameter σ s , along the guidelines already used in the past for simple media such as water or benzene. The σ s obtained was consistent with a simple functional form based on the molecular volume of the solvent. The solubility calculations were then extended to He, Ne, and Kr, whose dispersive and repulsive coefficients are available from theory and we have shown that their ab initio Henry's constants at high T reproduce the observed increase with the static polarizability of the series element with reasonable accuracy. At room temperature (T = 25 °C) the calculated Henry's constants of He, Ne, Ar, and Kr in the various silicate media predict higher solubilities than simple extrapolations (i.e., Arrhenius plots) based on high-T experiments and give rise to smooth trends not appreciably affected by the static polarizabilities of the solutes. The present investigation opens new perspectives on a wider application of PCM theory which can be extended to materials of great industrial interest at the core of

  11. Structure and properties of alumino-boro-silicate glasses and melts

    Science.gov (United States)

    neuville, D. R.; Florian, P.; Cadars, S.; Massiot, D.

    2012-12-01

    The relationship between physical properties and structure of glasses and melts in the system MO-T2O3-SiO2 (with M= Na2, Ca and T= Al, B) are technologically and geologically important, in particular to understand the microscopic origin of the configurational thermodynamic properties. The connection of these network former is fundamental to understand the physical properties of magmatic liquids. The configurational properties of melts and glasses provide fundamental information needed to characterize magmatic processes. A principal difficulty, however is to link the "macroscopic" configurational entropy with the structure of melts. This has been done by combining viscometry with Raman and NMR spectroscopy studies. From the viscosity measurements at low and high temperatures, we have obtained the configurational entropy, Sconf (log η = Ae + Be/TSconf, were η is the viscosity, T the temperature and Ae, Be two constants). Silicon, aluminum, and boron are 3 network formers playing different role on the silicate network, whereas Si is the strongest network former in coordination 4, 5 or 6 as a function of T, P; Al can play different function as a network former in 4- or 5-fold coordination and probably as a network modifier in 6 fold coordination. Boron observed in 3 or 4 fold coordination is always a network former but for very "fragile" glasses. For the glass the Al/B substitution produce a small decrease of the molar volume while this substitution produced a strong decrease of viscosity and glass transition temperature while the fragility of the network is less affected by this chemical change. Raman spectra show significant change in the D1 and D2 bands. NMR spectroscopies show also significant change as a function of chemical change and temperature. All this observations will be discussed and interpreted in order to link microscopic versus macroscopic changes.

  12. Identification and Purification of Nyalo River Silica Sand as Raw Material for the Synthesis of Sodium Silicate

    Science.gov (United States)

    Aini, S.; Nizar, U. K.; NST, A. Amelia; Efendi, J.

    2018-04-01

    This research is on identification and purification of silica sand from Nyalo River. It will be used as a raw material for synthesis of sodium silicate. Silica sand was separated from clay by washing it with water, and then the existing alumina and iron oxide were removed by soaking the silica sand with 1 M HNO3 solution. Qualitative and quantitative analysis of the silica sand with X-ray diffraction and X-ray fluorescence revealed that, silica sand existed in quartz form and contained a small amount of impurity oxide such as Al2O3, K2O, MgO, CaO, Fe2O3 with percentage below the minimum threshold. The percentages of silica were 80.59% before purification. After three purificationsteps the silica percentage become 98.38%. It exceedsthe minimum threshold of silica percentage for industry.So, the silica sand from Nyalo River has high potency as a raw material for sodium silicate synthesizing.

  13. Generation of Silicic Melts in the Early Izu-Bonin Arc Recorded by Detrital Zircons in Proximal Arc Volcaniclastic Rocks From the Philippine Sea

    Science.gov (United States)

    Barth, A. P.; Tani, K.; Meffre, S.; Wooden, J. L.; Coble, M. A.; Arculus, R. J.; Ishizuka, O.; Shukle, J. T.

    2017-10-01

    A 1.2 km thick Paleogene volcaniclastic section at International Ocean Discovery Program Site 351-U1438 preserves the deep-marine, proximal record of Izu-Bonin oceanic arc initiation, and volcano evolution along the Kyushu-Palau Ridge (KPR). Pb/U ages and trace element compositions of zircons recovered from volcaniclastic sandstones preserve a remarkable temporal record of juvenile island arc evolution. Pb/U ages ranging from 43 to 27 Ma are compatible with provenance in one or more active arc edifices of the northern KPR. The abundances of selected trace elements with high concentrations provide insight into the genesis of U1438 detrital zircon host melts, and represent useful indicators of both short and long-term variations in melt compositions in arc settings. The Site U1438 zircons span the compositional range between zircons from mid-ocean ridge gabbros and zircons from relatively enriched continental arcs, as predicted for melts in a primitive oceanic arc setting derived from a highly depleted mantle source. Melt zircon saturation temperatures and Ti-in-zircon thermometry suggest a provenance in relatively cool and silicic melts that evolved toward more Th and U-rich compositions with time. Th, U, and light rare earth element enrichments beginning about 35 Ma are consistent with detrital zircons recording development of regional arc asymmetry and selective trace element-enriched rear arc silicic melts as the juvenile Izu-Bonin arc evolved.

  14. The Effect of fO2 on Partition Coefficients of U and Th between Garnet and Silicate Melt

    Science.gov (United States)

    Huang, F.; He, Z.; Schmidt, M. W.; Li, Q.

    2014-12-01

    Garnet is one of the most important minerals controlling partitioning of U and Th in the upper mantle. U is redox sensitive, while Th is tetra-valent at redox conditions of the silicate Earth. U-series disequilibria have provided a unique tool to constrain the time-scales and processes of magmatism at convergent margins. Variation of garnet/meltDU/Th with fO2 is critical to understand U-series disequilibria in arc lavas. However, there is still no systematic experimental study about the effect of fO2 on partitioning of U and Th between garnet and melt. Here we present experiments on partitioning of U, Th, Zr, Hf, Nb, Ta, and REE between garnet and silicate melts at various fO2. The starting material was hydrous haplo-basalt. The piston cylinder experiments were performed with Pt double capsules with C-CO, MnO-Mn3O4 (MM), and hematite-magnetite (HM) buffers at 3 GPa and 1185-1230 oC. The experiments produced garnets with diameters > 50μm and quenched melt. Major elements were measured by EMPA at ETH Zurich. Trace elements were determined using LA-ICP-MS at Northwestern University (Xi'an, China) and SIMS (Cameca1280 at the Institute of Geology and Geophysics, Beijing, China), producing consistent partition coefficient data for U and Th. With fO2 increasing from CCO to MM and HM, garnet/meltDU decreases from 0.041 to 0.005, while garnet/meltDTh ranges from 0.003 to 0.007 without correlation with fO2. Notably, garnet/meltDTh/U increases from 0.136 at CCO to 0.41 at HM. Our results indicate that U is still more compatible than Th in garnet even at the highest fO2 considered for the subarc mantle wedge (~NNO). Therefore, we predict that if garnet is the dominant phase controlling U-Th partitioning during melting of the mantle wedge, melts would still have 230Th excess over 238U. This explains why most young continental arc lavas have 230Th excess. If clinopyroxene is the dominant residual phase during mantle melting, U could be more incompatible than Th at high fO2

  15. OXYGEN BUBBLE DEVELOPMENT ON A PLATINUM ELECTRODE IN BOROSILICATE GLASS MELT BY THE EFFECT OF ALTERNATING CURRENT

    Directory of Open Access Journals (Sweden)

    Jiri Matej

    2014-10-01

    or on alternating reduction and re-forming of oxidic layer on the electrode in the transition range, has been suggested. Start of bubble evolution at low alternating current density has also been observed in simple sodium-calcium-silicate glass melt. A relation between bubble release and platinum corrosion caused by reduced silicon has been suggested

  16. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent

    Science.gov (United States)

    Kamenetsky, Vadim S.; Yaxley, Gregory M.

    2015-06-01

    Kimberlite is a rare volcanic rock renowned as the major host of diamonds and originated at the base of the subcontinental lithospheric mantle. Although kimberlite magmas are dense in crystals and deeply-derived rock fragments, they ascend to the surface extremely rapidly, enabling diamonds to survive. The unique physical properties of kimberlite magmas depend on the specific compositions of their parental melts that, in absence of historical eruptions and due to pervasive alteration of kimberlite rocks, remain highly debatable. We explain exceptionally rapid ascent of kimberlite magma from mantle depths by combining empirical data on the essentially carbonatite composition of the kimberlite primary melts and experimental evidence on interaction of the carbonate liquids with mantle minerals. Our experimental study shows that orthopyroxene is completely dissolved in a Na2CO3 melt at 2.0-5.0 GPa and 1000-1200 °C. The dissolution of orthopyroxene results in homogeneous silicate-carbonate melt at 5.0 GPa and 1200 °C, and is followed by unmixing of carbonate and carbonated silicate melts and formation of stable magmatic emulsion at lower pressures and temperatures. The dispersed silicate melt has a significant capacity for storing a carbonate component in the deep mantle (13 wt% CO2 at 2.0 GPa). We envisage that this component reaches saturation and is gradually released as CO2 bubbles, as the silicate melt globules are transported upwards through the lithosphere by the carbonatite magma. The globules of unmixed, CO2-rich silicate melt are continuously produced upon further reaction between the natrocarbonatite melt and mantle peridotite. On decompression the dispersed silicate melt phase ensures a continuous supply of CO2 bubbles that decrease density and increase buoyancy and promote rapid ascent of the magmatic emulsion.

  17. Effect of pressure on the short-range structure and speciation of carbon in alkali silicate and aluminosilicate glasses and melts at high pressure up to 8 GPa: 13C, 27Al, 17O and 29Si solid-state NMR study

    Science.gov (United States)

    Kim, Eun Jeong; Fei, Yingwei; Lee, Sung Keun

    2018-03-01

    Despite the pioneering efforts to explore the nature of carbon in carbon-bearing silicate melts under compression, experimental data for the speciation and the solubility of carbon in silicate melts above 4 GPa have not been reported. Here, we explore the speciation of carbon and pressure-induced changes in network structures of carbon-bearing silicate (Na2O-3SiO2, NS3) and sodium aluminosilicate (NaAlSi3O8, albite) glasses quenched from melts at high pressure up to 8 GPa using multi-nuclear solid-state NMR. The 27Al triple quantum (3Q) MAS NMR spectra for carbon-bearing albite melts revealed the pressure-induced increase in the topological disorder around 4 coordinated Al ([4]Al) without forming [5,6]Al. These structural changes are similar to those in volatile-free albite melts at high pressure, indicating that the addition of CO2 in silicate melts may not induce any additional increase in the topological disorder around Al at high pressure. 13C MAS NMR spectra for carbon-bearing albite melts show multiple carbonate species, including [4]Si(CO3)[4]Si, [4]Si(CO3)[4]Al, [4]Al(CO3)[4]Al, and free CO32-. The fraction of [4]Si(CO3)[4]Al increases with increasing pressure, while those of other bridging carbonate species decrease, indicating that the addition of CO2 may enhance mixing of Si and Al at high pressure. A noticeable change is not observed for 29Si NMR spectra for the carbon-bearing albite glasses with varying pressure at 1.5-6 GPa. These NMR results confirm that the densification mechanisms established for fluid-free, polymerized aluminosilicate melts can be applied to the carbon-bearing albite melts at high pressure. In contrast, the 29Si MAS NMR spectra for partially depolymerized, carbon-bearing NS3 glasses show that the fraction of [5,6]Si increases with increasing pressure at the expense of Q3 species ([4]Si species with one non-bridging oxygen as the nearest neighbor). The pressure-induced increase in topological disorder around Si is evident from an

  18. Summary report on microstructure and composition of silicate melts containing simulated Hanford waste

    International Nuclear Information System (INIS)

    Daniel, J.L.

    1975-04-01

    Specimens of silicate melt es containing simulated Hanford waste were studied by microscopy and microprobe methods to determine microstructural and compositional characteristics. The two glass specimens were representative of glasses prepared with Hanford basalt and with sea sand as the source of SiO 2 . Samples of both glasses were studied in detail at locations near the top, bottom, center, and sides of the melts. Both glasses were of a highly uniform microstructure and composition. The basalt glass contained metallic iron inclusions around the periphery near the glass/crucible interface, and small increases in Si content adjacent to the pores occurring throughout the glass. The sand glass contained no iron, its Si composition was uniform, and the average pore size was somewhat smaller (about 2 μm) than in the basalt glass. The Ca nominally added to the sand glass could not be detected. Both glasses contained a random scattering of a micron-sized ''bright'' phase whose composition was identical to the matrix or containing elements not detectable by microprobe methods. (U.S.)

  19. Wear and chemistry of zirconium-silicate, aluminium-silicate and zirconium-aluminium-silicate glasses in alkaline medium

    International Nuclear Information System (INIS)

    Rouse, C.G.; Lemos Guenaga, C.M. de

    1984-01-01

    A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA 2 CO 3 ) at 97 0 C. The results show that the presence of ZrO 2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO 2 . It was shown experimentally that for this series of glasses, the presence of both TiO 2 and ZrO 2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO 2 . (Author) [pt

  20. Silicate enamel for alloyed steel

    International Nuclear Information System (INIS)

    Ket'ko, K.K.

    1976-01-01

    The use of silicate enamels in the metallurgical industry is discussed. Presented are the composition and the physico-chemical properties of the silicate enamel developed at the factory 'Krasnyj Oktyabr'. This enamel can be used in the working conditions both in the liquid and the solid state. In so doing the enamel is melted at 1250 to 1300 deg C, granulated and then reduced to a fraction of 0.3 to 0.5 mm. The greatest homogeneity is afforded by a granulated enamel. The trials have shown that the conversion of the test ingots melted under a layer of enamel leads to the smaller number of the ingots rejected for surface defect reasons and the lower metal consumption for slab cleaning. The cost of the silicate enamel is somewhat higher than that of synthetic slags but its application to the melting of stainless steels is still economically beneficial and technologically reasonable. Preliminary calculations only for steel EhI4IEh have revealed that the use of this enamel saves annually over 360000 roubles [ru

  1. Synthesis of ammonia using sodium melt.

    Science.gov (United States)

    Kawamura, Fumio; Taniguchi, Takashi

    2017-09-14

    Research into inexpensive ammonia synthesis has increased recently because ammonia can be used as a hydrogen carrier or as a next generation fuel which does not emit CO 2 . Furthermore, improving the efficiency of ammonia synthesis is necessary, because current synthesis methods emit significant amounts of CO 2 . To achieve these goals, catalysts that can effectively reduce the synthesis temperature and pressure, relative to those required in the Haber-Bosch process, are required. Although several catalysts and novel ammonia synthesis methods have been developed previously, expensive materials or low conversion efficiency have prevented the displacement of the Haber-Bosch process. Herein, we present novel ammonia synthesis route using a Na-melt as a catalyst. Using this route, ammonia can be synthesized using a simple process in which H 2 -N 2 mixed gas passes through the Na-melt at 500-590 °C under atmospheric pressure. Nitrogen molecules dissociated by reaction with sodium then react with hydrogen, resulting in the formation of ammonia. Because of the high catalytic efficiency and low-cost of this molten-Na catalyst, it provides new opportunities for the inexpensive synthesis of ammonia and the utilization of ammonia as an energy carrier and next generation fuel.

  2. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    Energy Technology Data Exchange (ETDEWEB)

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P [Physique des Mineraux et Magmas, Geochimie-Cosmochimie, CNRS-IPGP, 4 place Jussieu, 75005 Paris (France); Ligny, D de [Universite Claude Bernard Lyon 1, LPCML, F-69622 Villeurbanne (France); Baudelet, F, E-mail: cochain@ipgp.jussieu.f [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin (France)

    2009-11-15

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe{sup 2+} and Fe{sup 3+}, but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  3. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    International Nuclear Information System (INIS)

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P; Ligny, D de; Baudelet, F

    2009-01-01

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe 2+ and Fe 3+ , but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  4. Corrosion of nickel in potassium and sodium chloride melts containing vanadium trichloride

    International Nuclear Information System (INIS)

    Kochergin, V.P.; Ponomarev, Yu.S.; Bezvoritnij, V.A.; Bajbakov, D.P.

    1976-01-01

    Corrosion of nickel has been studied by the method of the rotating disc in melts of potassium and sodium chlorides containing vanadium trichloride in the concentration 0-20.0 wt.% in the temperature range 1103-1328 K. Corrosion proceeds in the diffusion region, the corrosion rate being controlled by diffusion of either V 3+ or V 2+ depending on the concentration of VCl 3 in the melts. The apparent activation energy of nickel corrosion is 43,110-74660 joule/mol

  5. Corrosion of K-3 glass-contact refractory in sodium-rich aluminosilicate melts

    International Nuclear Information System (INIS)

    Lu, X.D.; Gan, H.; Buechele, A.C.; Pegg, I.L.

    1999-01-01

    The corrosion of the glass-contact refractory Monofrax K-3 in two sodium-rich aluminosilicate melts has been studied at 1,208 and 1,283 C using a modified ASTM procedure with constant agitation of the melt by air bubbling. The results for the monolithic refractory indicate a fast initial stage involving phase dissolution and transformation and a later passivated stage in which the surface of the refractory has been substantially modified. The composition of the stable spinel phase in the altered layer on monolithic coupons of K-3 is almost identical to the equilibrium composition bracketed by the dissolution of powdered K-3 into under-saturated melts on the other. The temperature and melt shear viscosity were found to have significant effects on the rates of K-3 dissolution and transformation

  6. Synthesis and characterization of silica gel from siliceous sands of southern Tunisia

    Directory of Open Access Journals (Sweden)

    Ali Sdiri

    2014-09-01

    Full Text Available The present work aimed to achieve valorization of Albian sands for the preparation of sodium silicates that are commonly used as a precursor to prepare silica gel. A siliceous sand sample was mixed with sodium carbonate and heated at a high temperature (1060 °C to prepare sodium silicates. The sodium silicates were dissolved in distilled water to obtain high quality sodium silicate solution. Hydrochloric acid was then slowly added to the hydrated sodium silicates to obtain silica gel. The collected raw siliceous sands, as well as the prepared silica gels, were characterized by different techniques, such as X-ray fluorescence (XRF, X-ray diffraction (XRD, scanning electron microscopy (SEM and thermal analysis (DSC. XRF confirmed that the detrital sand deposits of southern Tunisia contain high amounts of silica, with content ranging from 88.8% to 97.5%. The internal porosity varied between 17% and 22%, and the specific surface area was less than 5 m2/g. After the treatment described above, it was observed that the porosity of the obtained silica gel reached 57% and the specific surface area exceeded 340 m2/g. Nitrogen adsorption isotherms showed that the prepared silica gels are microporous and mesoporous materials with high adsorption capacities. These results suggest that the obtained silica gels are promising materials for numerous environmental applications.

  7. Electrical conductivity and viscosity of borosilicate glasses and melts

    DEFF Research Database (Denmark)

    Ehrt, Doris; Keding, Ralf

    2009-01-01

    , 0 to 62·5 mol% B2O3, and 25 to 85 mol% SiO2. The glass samples were characterised by different methods. Refractive indices, density and thermal expansion were measured. Phase separation effects were investigated by electron microscopy. The electrical conductivity of glasses and melts were determined......Simple sodium borosilicate and silicate glasses were melted on a very large scale (35 l Pt crucible) to prepare model glasses of optical quality in order to investigate various properties depending on their structure. The composition of the glass samples varied in a wide range: 3 to 33·3 mol% Na2O...... by impedance measurements in a wide temperature range (250 to 1450°C). The activation energies were calculated by Arrhenius plots in various temperature regions: below the glass transition temperature, Tg, above the melting point, Tl, and between Tg and Tl. Viscosity measurements were carried out...

  8. Melting of Dense Sodium

    International Nuclear Information System (INIS)

    Gregoryanz, Eugene; Degtyareva, Olga; Hemley, Russell J.; Mao, Ho-kwang; Somayazulu, Maddury

    2005-01-01

    High-pressure high-temperature synchrotron diffraction measurements reveal a maximum on the melting curve of Na in the bcc phase at ∼31 GPa and 1000 K and a steep decrease in melting temperature in its fcc phase. The results extend the melting curve by an order of magnitude up to 130 GPa. Above 103 GPa, Na crystallizes in a sequence of phases with complex structures with unusually low melting temperatures, reaching 300 K at 118 GPa, and an increased melting temperature is observed with further increases in pressure

  9. Core Formation on Asteroid 4 Vesta: Iron Rain in a Silicate Magma Ocean

    Science.gov (United States)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2017-01-01

    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft, suggest that Vesta resembles H chondrites in bulk chemical composition, possibly with about 25% of a CM-chondrite like composition added in. For this model, the core is 15% by mass (or 8 volume %) of the asteroid. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. Melting in the Fe-Ni-S system begins at a cotectic temperature of 940 deg. C. Only about 40% of the total metal phase, or 3-4 volume % of Vesta, melts prior to the onset of silicate melting. Liquid iron in solid silicate initially forms isolated pockets of melt; connected melt channels, which are necessary if the metal is to segregate from the silicate, are only possible when the metal phase exceeds about 5 volume %. Thus, metal segregation to form a core does not occur prior to the onset of silicate melting.

  10. Comparison of silicon nanoparticles and silicate treatments in fenugreek.

    Science.gov (United States)

    Nazaralian, Sanam; Majd, Ahmad; Irian, Saeed; Najafi, Farzaneh; Ghahremaninejad, Farrokh; Landberg, Tommy; Greger, Maria

    2017-06-01

    Silicon (Si) fertilization improves crop cultivation and is commonly added in the form of soluble silicates. However, most natural plant-available Si originates from plant formed amorphous SiO 2 particles, phytoliths, similar to SiO 2 -nanoparticles (SiNP). In this work we, therefore, compared the effect by sodium silicate and that of SiNP on Si accumulation, activity of antioxidative stress enzymes catalase, peroxidase, superoxide dismutase, lignification of xylem cell walls and activity of phenylalanine ammonia-lyase (PAL) as well as expression of genes for the putative silicon transporter (PST), defensive (Tfgd 1) and phosphoenolpyruvate carboxykinase (PEPCK) and protein in fenugreek (Trigonella foenum-graecum L.) grown in hydroponics. The results showed that Si was taken up from both silicate and SiNP treatments and increasing sodium silicate addition increased the translocation of Si to the shoot, while this was not shown with increasing SiNP addition. The silicon transporter PST was upregulated at a greater level when sodium silicate was added compared with SiNP addition. There were no differences in effects between sodium silicate and SiNP treatments on the other parameters measured. Both treatments increased the uptake and accumulation of Si, xylem cell wall lignification, cell wall thickness, PAL activity and protein concentration in seedlings, while there was no effect on antioxidative enzyme activity. Tfgd 1 expression was strongly downregulated in leaves at Si addition. The similarity in effects by silicate and SiNP would be due to that SiNP releases silicate, which may be taken up, shown by a decrease in SiNP particle size with time in the medium. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Iron metal production in silicate melts through the direct reduction of Fe/II/ by Ti/III/, Cr/II/, and Eu/II/. [in lunar basalts

    Science.gov (United States)

    Schreiber, H. D.; Balazs, G. B.; Shaffer, A. P.; Jamison, P. L.

    1982-01-01

    The production of metallic iron in silicate melts by chemical reactions of Ti(3+), Cr(2+), and Eu(2+) with Fe(2+) is demonstrated under experimental conditions in a simplified basaltic liquid. These reactions form a basis for interpreting the role of isochemical valency exchange models in explanations for the reduced nature of lunar basalts. The redox couples are individually investigated in the silicate melt to ascertain reference redox ratios that are independent of mutual interactions. These studies also provide calibrations of spectral absorptions of the Fe(2+) and Ti(2+) species in these glasses. Subsequent spectrophotometric analyses of Fe(2+) and Ti(2+) in glasses doped with both iron and titanium and of Fe(2+) in glasses doped with either iron and chromium or iron and europium ascertain the degree of mutual interactions in these dual-doped glasses.

  12. Microstructure and mechanical properties of stainless steel/calcium silicate composites manufactured by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zeng [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Shanghai Key Lab. of D& A for Metal-Functional Materials, Shanghai 201804 (China); Wang, Lianfeng [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Shanghai Aerospace Equipments Manufacturer, Shanghai 200240 (China); Jia, Min [Shanghai Aircraft Manufacturing Co., Ltd, Shanghai 200436 (China); Cheng, Lingyu [Shanghai Aerospace Equipments Manufacturer, Shanghai 200240 (China); Yan, Biao, E-mail: 84016@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Shanghai Key Lab. of D& A for Metal-Functional Materials, Shanghai 201804 (China)

    2017-02-01

    Selective laser melting (SLM) is raised as one kind of additive manufacturing (AM) which is based on the discrete-stacking concept. This technique can fabricate advanced composites with desirable properties directly from 3D CAD data. In this research, 316L stainless steel (316L SS) and different fractions of calcium silicate (CaSiO{sub 3}) composites (weight fractions of calcium silicate are 0%, 5%,10% and 15%, respectively) were prepared by SLM technique with a purpose to develop biomedical metallic materials. The relative density, tensile, microhardness and elastic modulus of the composites were tested, their microstructures and fracture morphologies were observed using optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the addition of CaSiO{sub 3} particles influenced the microstructure and mechanical properties of specimens significantly. The CaSiO{sub 3} precipitates from the overlap of adjacent tracks and became the origin of the defects. The tensile strength of specimens range 320–722 MPa. The microhardness and elastic modulus are around 250 HV and 215 GPa respectively. These composites were ductile materials and the fracture mode of the composites was mixed mode of ductile and brittle fracture. The 316L SS/CaSiO{sub 3} composites can be a potential biomedical metallic materials in the medical field. - Highlights: • 316L SS/CaSiO{sub 3} composites were fabricated by selective laser melting. • Microstructure, mechanical properties, corrosion resistance of samples was studied. • Composites is a ductile material and mixed mode of ductile and brittle fracture. • Composites is a potential biomedical metallic materials in the medical field.

  13. Structural relaxation dynamics and annealing effects of sodium silicate glass.

    Science.gov (United States)

    Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurélien; Vaills, Yann

    2013-05-09

    Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.

  14. The structural role and homogeneous redox equilibria of iron in peraluminous, metaluminous and peralkaline silicate melts

    Science.gov (United States)

    Dickenson, M. P.; Hess, P. C.

    1986-02-01

    The compositional dependence of the redox ratio (FeO/FeO1.5) has been experimentally determined in K2O-Al2O3-SiO2-Fe2O3-FeO (KASFF) and K2O-CaO-Al2O3-SiO2-Fe2O3-FeO (KCASFF) silicate melts. Compositions were equilibrated at 1,450° C in air, with 78 mol % SiO2. KASFF melts have from 1 to 5 mol % Fe2O3 and include both peraluminous (K2OAl2O3) compositions. KCASFF melts have 1 mol % Fe2O3 encompassing peraluminous, metaluminous (CaO+K2O>Al2O3) and peralkaline compositions. Peralkaline KASFF melts with 1 mol % Fe2O3 have low and constant values for the redox ratio, whereas in peraluminous melts the redox ratio increases with increasing (K2O/Al2O3). Increasing total iron concentration increases the redox ratio in peraluminous melts and slightly decreases the redox ratio in peralkaline melts. Substituting CaO for K2O at fixed total iron (1 mol %) increases the redox ratio in both peraluminous and metaluminous KCASFF melts; however, the redox ratio in peralkaline KCASFF melts is not affected by this exchange. These data indicate that Fe3+ is in four-fold coordination, with K+ or Ca2+ providing local charge balance. The tetrahedral ferric species is most stable in peralkaline melts and least stable in peraluminous melts, due to the competition between Al3+ and Fe3+ for charge balancing cations in the latter melt. Tetrahedral Fe3+ is also less stable when Ca2+ provides local charge balance. The data are consistent with a network modifying role for Fe2+ in the melt. The data are interpreted to reflect the effects of melt composition on the partitioning of K+ and Ca2+ and Fe3+ and Al3+ between various species in the melt. These relationships are discussed in terms of homogeneous equilibria between various iron-bearing and iron-free melt species. The results also reflect the effect of liquid composition on the exchange potentials μFe3+ Al-1 and μCa0.5K-1. The exchange potentials are relatively constant in peralkaline melts, but decrease in metaluminous and peraluminous

  15. Experimental Evaluation of Sodium Silicate-Based Nanosilica against Chloride Effects in Offshore Concrete

    Science.gov (United States)

    Kim, Kyoung-Min; Kim, Hak-Young; Heo, Young-Sun; Jung, Sang-Jin

    2014-01-01

    This study investigates the effect of a new pore filling material, named sodium silicate-based nanosilica (SS), on resisting the diffusion of the chloride ions. The proposed SS is chosen, mainly due to its smaller particle size, compared to the conventional ethyl silicate-based nanosilica. Each particle of SS is chemically treated to have the negative (−) charge on its surface. Four types of mixes with different amounts of partial replacement with fly ash and slag are prepared. Effect of water to binder ratios (0.35, 0.40, and 0.45) is also examined. Test results showed that the inclusion of SS was significantly beneficial for protecting the concrete from chloride attack. At a given strength, the SS inclusion in concrete was up to three times more effective than the control concrete without SS. It is believed that these excellent results are attributed to the small particle size and the chemical surface treatment of SS. In this study, experiments of compressive strength, hydration heat, accelerated neutralization, and sulfate erosion tests were also conducted to find the general effect of SS inclusion on the fundamental properties and durability of concrete. PMID:25574486

  16. Experimental Evaluation of Sodium Silicate-Based Nanosilica against Chloride Effects in Offshore Concrete

    Directory of Open Access Journals (Sweden)

    Kyoung-Min Kim

    2014-01-01

    Full Text Available This study investigates the effect of a new pore filling material, named sodium silicate-based nanosilica (SS, on resisting the diffusion of the chloride ions. The proposed SS is chosen, mainly due to its smaller particle size, compared to the conventional ethyl silicate-based nanosilica. Each particle of SS is chemically treated to have the negative (− charge on its surface. Four types of mixes with different amounts of partial replacement with fly ash and slag are prepared. Effect of water to binder ratios (0.35, 0.40, and 0.45 is also examined. Test results showed that the inclusion of SS was significantly beneficial for protecting the concrete from chloride attack. At a given strength, the SS inclusion in concrete was up to three times more effective than the control concrete without SS. It is believed that these excellent results are attributed to the small particle size and the chemical surface treatment of SS. In this study, experiments of compressive strength, hydration heat, accelerated neutralization, and sulfate erosion tests were also conducted to find the general effect of SS inclusion on the fundamental properties and durability of concrete.

  17. Melt fracturing and healing: A mechanism for degassing and origin of silicic obsidian

    Science.gov (United States)

    Cabrera, A.; Weinberg, R.F.; Wright, H.M.N.; Zlotnik, S.; Cas, Ray A.F.

    2011-01-01

    We present water content transects across a healed fault in pyroclastic obsidian from Lami pumice cone, Lipari, Italy, using synchrotron Fourier transform infrared spectroscopy. Results indicate that rhyolite melt degassed through the fault surface. Transects define a trough of low water content coincident with the fault trace, surrounded on either side by high-water-content plateaus. Plateaus indicate that obsidian on either side of the fault equilibrated at different pressure-temperature (P-T) conditions before being juxtaposed. The curves into the troughs indicate disequilibrium and water loss through diffusion. If we assume constant T, melt equilibrated at pressures differing by 0.74 MPa before juxtaposition, and the fault acted as a low-P permeable path for H2O that diffused from the glass within time scales of 10 and 30 min. Assuming constant P instead, melt on either side could have equilibrated at temperatures differing by as much as 100 ??C, before being brought together. Water content on the fault trace is particularly sensitive to post-healing diffusion. Its preserved value indicates either higher temperature or lower pressure than the surroundings, indicative of shear heating and dynamic decompression. Our results reveal that water contents of obsidian on either side of the faults equilibrated under different P-T conditions and were out of equilibrium with each other when they were juxtaposed due to faulting immediately before the system was quenched. Degassing due to faulting could be linked to cyclical seismic activity and general degassing during silicic volcanic activity, and could be an efficient mechanism of producing low-water-content obsidian. ?? 2011 Geological Society of America.

  18. Hydrothermal synthesis of meso porous silica MCM-41 using commercial sodium silicate

    International Nuclear Information System (INIS)

    Melendez O, H. I.; Mercado S, A.; Garcia C, L. A.; Castruita, G.; Perera M, Y A.

    2013-01-01

    In this work, ordered meso porous silica MCM-41 was prepared by hydrothermal synthesis using industrial-grade sodium silicate (Na 2 SiO 3 ) as silica source, hexadecyltrimethyl-ammonium bromide (CTAB) as template agent and ethyl acetate as ph regulator. The influence of CTAB/SiO 2 molar ratio, reaction time, aging temperature, and co-surfactant type on the structural and morphological properties of the obtained silica was studied. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. Ordered meso porous MCM-41 silica was obtained at 80 C by using a range of CTAB/SiO 2 molar ratio from 0.35 to 0.71 and reaction times up to 72 h and isopropanol (i-Pr OH) as co-surfactant. (Author)

  19. The study of thermal interaction and microstructure of sodium silicate/bentonite composite under microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Subannajui, Kittitat, E-mail: kittitat.sub@mahidol.ac.th [Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand); Center of Nanoscience and Nanotechnology Research Unit, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand)

    2016-12-01

    The commercial heating oven usually consumes the power around 2500–3000 Watt and the temperature inside the oven is still below 350 °C. If we need to increase a temperature above 500 °C, a special heating setup with a higher power furnace is required. However, in this work, we propose a composite material that interacts with 2.45 GHz 500 Watt microwave and rapidly redeems the thermal energy with the temperature around 600–900 °C. The composite amorphous material easily forms liquid ceramics phase with a high temperature output and responds to the microwave radiation better than that of the solid phase. During the heating process, phase transformation occurs. This method is very effective and can be used to drastically reduce the power consumption of any heating process. - Highlights: • Amorphous phase transforms to liquid phase by microwave radiation. • Pure sodium silicate and pure bentonite cannot show temperature overshoot. • Silicate-bentonite composite shows a high temperature overshoot above 700 °C. • A rapid heating crucible for the annealing application is fabricated.

  20. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    Energy Technology Data Exchange (ETDEWEB)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it [Dipartimento di Ingegneria " Enzo Ferrari" , Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy); Romagnoli, Marcello [Dipartimento di Ingegneria " Enzo Ferrari" , Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy); Pollastri, Simone; Gualtieri, Alessandro F. [Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Modena e Reggio Emilia, Via S. Eufemia 19I, I-41121 Modena (Italy)

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  1. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    International Nuclear Information System (INIS)

    Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" data-affiliation=" (Dipartimento di Ingegneria Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" >Lassinantti Gualtieri, Magdalena; Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" data-affiliation=" (Dipartimento di Ingegneria Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" >Romagnoli, Marcello; Pollastri, Simone; Gualtieri, Alessandro F.

    2015-01-01

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed

  2. Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements

    Science.gov (United States)

    Steenstra, E. S.; Seegers, A. X.; Eising, J.; Tomassen, B. G. J.; Webers, F. P. F.; Berndt, J.; Klemme, S.; Matveev, S.; van Westrenen, W.

    2018-06-01

    Sulfur concentrations at sulfide saturation (SCSS) were determined for a range of low- to high-Ti lunar melt compositions (synthetic equivalents of Apollo 14 black and yellow glass, Apollo 15 green glass, Apollo 17 orange glass and a late-stage lunar magma ocean melt, containing between 0.2 and 25 wt.% TiO2) as a function of pressure (1-2.5 GPa) and temperature (1683-1883 K). For the same experiments, sulfide-silicate partition coefficients were derived for elements V, Cr, Mn, Co, Cu, Zn, Ga, Ge, As, Se, Mo, Sn, Sb, Te, W and Pb. The SCSS is a strong function of silicate melt composition, most notably FeO content. An increase in temperature increases the SCSS and an increase in pressure decreases the SCSS, both in agreement with previous work on terrestrial, lunar and martian compositions. Previously reported SCSS values for high-FeO melts were combined with the experimental data reported here to obtain a new predictive equation to calculate the SCSS for high-FeO lunar melt compositions. Calculated SCSS values, combined with previously estimated S contents of lunar low-Ti basalts and primitive pyroclastic glasses, suggest their source regions were not sulfide saturated. Even when correcting for the currently inferred maximum extent of S degassing during or after eruption, sample S abundances are still > 700 ppm lower than the calculated SCSS values for these compositions. To achieve sulfide saturation in the source regions of low-Ti basalts and lunar pyroclastic glasses, the extent of degassing of S in lunar magma would have to be orders of magnitude higher than currently thought, inconsistent with S isotopic and core-to-rim S diffusion profile data. The only lunar samples that could have experienced sulfide saturation are some of the more evolved A17 high-Ti basalts, if sulfides are Ni- and/or Cu rich. Sulfide saturation in the source regions of lunar melts is also inconsistent with the sulfide-silicate partitioning systematics of Ni, Co and Cu. Segregation of

  3. Hydrothermal synthesis of meso porous silica MCM-41 using commercial sodium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Melendez O, H. I.; Mercado S, A.; Garcia C, L. A.; Castruita, G.; Perera M, Y A., E-mail: ivan_melendez380@hotmail.com [Centro de Investigacion en Quimica Aplicada, Bldv. Enrique Reyna Hermosillo No. 140, Saltillo 25294, Coahuila (Mexico)

    2013-08-01

    In this work, ordered meso porous silica MCM-41 was prepared by hydrothermal synthesis using industrial-grade sodium silicate (Na{sub 2}SiO{sub 3}) as silica source, hexadecyltrimethyl-ammonium bromide (CTAB) as template agent and ethyl acetate as ph regulator. The influence of CTAB/SiO{sub 2} molar ratio, reaction time, aging temperature, and co-surfactant type on the structural and morphological properties of the obtained silica was studied. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. Ordered meso porous MCM-41 silica was obtained at 80 C by using a range of CTAB/SiO{sub 2} molar ratio from 0.35 to 0.71 and reaction times up to 72 h and isopropanol (i-Pr OH) as co-surfactant. (Author)

  4. Noble gas solubility in silicate melts:a review of experimentation and theory, and implications regarding magma degassing processes

    Directory of Open Access Journals (Sweden)

    A. Paonita

    2005-06-01

    Full Text Available Noble gas solubility in silicate melts and glasses has gained a crucial role in Earth Sciences investigations and in the studies of non-crystalline materials on a micro to a macro-scale. Due to their special geochemical features, noble gases are in fact ideal tracers of magma degassing. Their inert nature also allows them to be used to probe the structure of silicate melts. Owing to the development of modern high pressure and temperature technologies, a large number of experimental investigations have been performed on this subject in recent times. This paper reviews the related literature, and tries to define our present state of knowledge, the problems encountered in the experimental procedures and the theoretical questions which remain unresolved. Throughout the manuscript I will also try to show how the thermodynamic and structural interpretations of the growing experimental dataset are greatly improving our understanding of the dissolution mechanisms, although there are still several points under discussion. Our improved capability of predicting noble gas solubilities in conditions closer to those found in magma has allowed scientists to develop quantitative models of magma degassing, which provide constraints on a number of questions of geological impact. Despite these recent improvements, noble gas solubility in more complex systems involving the main volatiles in magmas, is poorly known and a lot of work must be done. Expertise from other fields would be extremely valuable to upcoming research, thus focus should be placed on the structural aspects and the practical and commercial interests of the study of noble gas solubility.

  5. Micro-XANES measurements on experimental spinels and the oxidation state of vanadium in coexisting spinel and silicate melt

    International Nuclear Information System (INIS)

    Righter, K.; Sutton, S.R.; Newville, M.; Le, L.; Schwandt, C.S.

    2006-01-01

    We show that experimental spinels coexisting with silicate melt always have lower valence vanadium, and that spinels typically have 3+, whereas the coexisting melt has 4+ or 5+. Implications of these results for planetary basalts will be discussed. Spinel can be a significant host phase for V which has multiple oxidation states V 2+ , V 3+ , V 4+ or V 5+ at oxygen fugacities relevant to natural systems. The magnitude of D(V) spinel/melt is known to be a function of composition, temperature and fO 2 , but the uncertainty of the oxidation state under the range of natural conditions has made elusive a thorough understanding of D(V) spinel/melt. For example, V 3+ is likely to be stable in spinels, based on exchange with Al in experiments in the CaO-MgO-Al 2 O 3 -SiO 2 system. On the other hand, it has been argued that V 4+ will be stable across the range of natural oxygen fugacities in nature. In order to build on our previous work in more oxidized systems, we have carried out experiments at relatively reducing conditions from the FMQ buffer to 2 log fO 2 units below the IW buffer. These spinel-melt pairs, where V is present in the spinel at natural levels (∼300 ppm V), were analyzed using an electron microprobe at NASA-JSC and mi-cro-XANES at the Advanced Photon Source at Argonne National Laboratory. The new results will be used together with previous results to understand the valence of V in spinel-melt systems across 12 orders of magnitude of oxygen fugacity, and with application to natural systems.

  6. Silicic magma generation at Askja volcano, Iceland

    Science.gov (United States)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  7. Microstructure and mechanical properties of stainless steel/calcium silicate composites manufactured by selective laser melting.

    Science.gov (United States)

    Zheng, Zeng; Wang, Lianfeng; Jia, Min; Cheng, Lingyu; Yan, Biao

    2017-02-01

    Selective laser melting (SLM) is raised as one kind of additive manufacturing (AM) which is based on the discrete-stacking concept. This technique can fabricate advanced composites with desirable properties directly from 3D CAD data. In this research, 316L stainless steel (316L SS) and different fractions of calcium silicate (CaSiO 3 ) composites (weight fractions of calcium silicate are 0%, 5%,10% and 15%, respectively) were prepared by SLM technique with a purpose to develop biomedical metallic materials. The relative density, tensile, microhardness and elastic modulus of the composites were tested, their microstructures and fracture morphologies were observed using optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the addition of CaSiO 3 particles influenced the microstructure and mechanical properties of specimens significantly. The CaSiO 3 precipitates from the overlap of adjacent tracks and became the origin of the defects. The tensile strength of specimens range 320-722MPa. The microhardness and elastic modulus are around 250HV and 215GPa respectively. These composites were ductile materials and the fracture mode of the composites was mixed mode of ductile and brittle fracture. The 316L SS/CaSiO 3 composites can be a potential biomedical metallic materials in the medical field. Copyright © 2016. Published by Elsevier B.V.

  8. Oriented color centres being formed in anisotropic action of optical radiation on sodium-silicate glass

    International Nuclear Information System (INIS)

    Barinova, N.A.; Glebov, L.B.; Dokuchaev, V.G.; Savel'ev, V.L.

    1992-01-01

    A study was made of anisotropy of absorption of hole colour centres appearing in sodium-silicate glass due to anisotropic action of UV radiation. In case of such action in the field of long-wave edge of their fundamental absorption oriented hole colour centres occurs with maximum of absorption bands to 2.0, 2.8, 4.1 eV. Principal direction of hole colour centres orientation in this case coincides with orientation of ionized glass matrix centres. Orientation of such kind is connected with selective ionization of disorderedly oriented centres forming edge of fundamental absorption. Value of guided dichroism of colour centres absorption is determined by hole migration

  9. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus.

    Science.gov (United States)

    Shellnutt, J Gregory

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra.

  10. The Effect of Pressure on Iron Speciation in Silicate Melts at a Fixed Oxygen Fugacity: The Possibility of a Redox Profile Through a Terrestrial Magma Ocean

    Science.gov (United States)

    Armstrong, K.; Frost, D. J.; McCammon, C. A.; Rubie, D. C.; Boffa Ballaran, T.

    2017-12-01

    As terrestrial planets accreted, mantle silicates equilibrated with core-forming metallic iron, which would have imposed a mantle oxygen fugacity below the iron-wüstite oxygen buffer. Throughout Earth's history, however, the oxygen fugacity of at least the accessible portions of the upper mantle has been 4-5 orders of magnitude higher. The process that caused the rapid increase in the redox state of the mantle soon after core formation is unclear. Here we test the possibility that pressure stabilises ferric iron in silicate melts, as has been observed in silicate minerals. A deep magma ocean, which would have likely existed towards the end of accretion, could then develop a gradient in oxygen fugacity for a fixed ferric-ferrous ratio as a result of pressure. We have equilibrated an andesitic melt with a Ru-RuO2 buffer in a multianvil press between 5 and 24 GPa. Further experiments were performed on the same melt in equilibrium with iron metal. The recovered melts were then analysed using Mössbauer spectroscopy to determine the ferric/ferrous ratio. The results show that for the Ru-RuO2 buffer at lower pressures, the ferric iron content decreases with pressure, due to a positive volume change of the reaction FeO + 1/4O2 = FeO1.5. Ferric iron content also appears to be sensitive to water content at lower pressures. However, above 15 GPa this trend apparently reverses and the ferric iron content increases with pressure. This reversal in pressure dependence would drive the oxygen fugacity of a deep magma ocean with a fixed ferric/ferrous ratio down with increasing depth. This would create a redox gradient, where the magma ocean could potentially be in equilibrium with metallic iron at its base but more oxidised in its shallower regions. Crystallisation of this magma ocean could render an upper mantle oxygen fugacity similar to that in the Earth's accessible mantle today.

  11. Sodium Silicate Gel Effect on Cemented Tailing Backfill That Contains Lead-Zinc Smelting Slag at Early Ages

    OpenAIRE

    Guo, Lijie; Li, Wenchen; Yang, Xiaocong; Xu, Wenyuan

    2018-01-01

    This paper presents the results of an experimental study on the priming effect of sodium silicate gel (SS) on cemented tailing backfill (CTB) that contains lead-zinc smelting slag. CTB and cemented paste (CP) containing lead-zinc smelting slag samples with SS of 0 and 0.4% of the mass of the slag were prepared and cured at 20°C for 1, 3, 7, and 28 days. Mechanical test and pore structure analyses were performed on the studied CTB samples, microstructural analyses (X-ray diffraction analysis a...

  12. Energetics of silicate melts from thermal diffusion studies. Final report

    International Nuclear Information System (INIS)

    Walker, D.

    1997-01-01

    Initially this project was directed towards exploiting Soret diffusion of silicate liquids to learn about the internal energetics of the constituents of the liquids. During the course of this project this goal was realized at the same time a series of intellectual and technical developments expanded the scope of the undertaking. Briefly recapping some of the highlights, the project was initiated after the discovery that silicate liquids were strongly Soret-active. It was possible to observe the development of strong diffusive gradients in silicate liquid composition in response to laboratory-imposed thermal gradients. The character of the chemical separations was a direct window into the internal speciation of the liquids; the rise time of the separation was a useful entree to quantitatively measuring chemical diffusivity; and the steady state magnitude of the separation proved to be an excellent determinant of the constituents' mixing energies. A comprehensive program was initiated to measure the separations, rise times, and mixing energies of a range of geologically and technically interesting silicate liquids. An additional track of activities in the DOE project has run in parallel to the Soret investigation of single-phase liquids in a thermal gradient. This additional track is the study of liquid-plus-crystal systems in a thermal gradient. In these studies solubility-driven diffusion introduced many useful effects, some quite surprising. In partially molten silicate liquids the authors applied their experiments to understanding magmatic cumulate rocks. They have also applied their understanding of these systems to aspects of evaporite deposits in the geological record. They also undertook studies of this sort in systems with retrograde solubility in order to form the basis for understanding remediation for brine migration problems in evaporite-hosted nuclear waste repositories such as the WIPP

  13. Measurements of the Activity of dissolved H2O in an Andesite Melt

    Science.gov (United States)

    Moore, G. M.; Touran, J. P.; Pu, X.; Kelley, K. A.; Cottrell, E.; Ghiorso, M. S.

    2016-12-01

    The large effect of dissolved H2O on the physical and chemical nature of silicate melts, and its role in driving volcanism, is well known and underscores the importance of this volatile component. A complete understanding of the chemical behavior of dissolved H2O in silicate melts requires the quantification of its thermodynamic activity as a function of pressure, temperature, and melt composition, particularly at low H2O contents (i.e. at under-saturated conditions). Knowledge of the activity of H2O in silicate melts at H2O-undersaturated conditions will improve our understanding of hydrous phase equilibria, as well as our models of physical melt properties. Measurement of the activity of any silicate melt component, much less that of a volatile component such as H2O, is a difficult experimental task however. By using a modified double capsule design (Matjuschkin et al, 2015) to control oxygen fugacity in piston cylinder experiments, along with high precision X-ray absorption techniques (XANES) to measure iron oxidation state in silicate glasses (Cottrell et al, 2009), we are able to constrain the H2O activity in silicate melts at under-saturated conditions. Preliminary results on an andesite melt with low H2O content (3 wt%) have been shown (Moore et al, 2016) to match predicted H2O activity values calculated using the H2O equation of state of Duan and Zhang (1996) and the H2O solubility model of Ghiorso and Gualda (2015). More recent results on the same andesite melt containing approximately 5 wt% H2O however show a large negative deviation from the predicted values. Reversal experiments involving an oxidized starting material are ongoing, as well as further characterization of the samples to detect the presence of possible contaminants that would induce reduction of the melt beyond that related to the H2O activity (e.g. graphite contamination).

  14. Viscosity of melts in the sodium borosilicate system

    International Nuclear Information System (INIS)

    Tait, J.C.; Mandolesi, D.L.; Rummens, H.E.C.

    1984-01-01

    The viscosities of a series of glasses in the sodium borosilicate system (5-35Na 2 O, 5-35B 2 O 3 , 45-80SiO 2 mol%) have been determined between 950 and 1500 deg C, using a rotating bob viscometer. A simplex lattice experimental design was used to define a series of compositions suitable for numerical analysis of the data. The viscosity data were fitted using the Fulcher equation for each composition. Nonlinear regression analysis of the viscosities at constant temperatures gave expressions for the variation in viscosity as a function of composition. The results are displayed as isoviscosity contours on the Na 2 O-B 2 O 3 -SiO 2 composition diagram. The viscosity behaviour as a function of composition is discussed in terms of structural bonding in the melt. (author)

  15. The density, compressibility and seismic velocity of hydrous melts at crustal and upper mantle conditions

    Science.gov (United States)

    Ueki, K.; Iwamori, H.

    2015-12-01

    Various processes of subduction zone magmatism, such as upward migration of partial melts and fractional crystallization depend on the density of the hydrous silicate melt. The density and the compressibility of the hydrous melt are key factors for the thermodynamic calculation of phase relation of the hydrous melt, and the geophysical inversion to predict physicochemical conditions of the melting region based on the seismic velocity. This study presents a new model for the calculations of the density of the hydrous silicate melts as a function of T, P, H2O content and melt composition. The Birch-Murnaghan equation is used for the equation of state. We compile the experimentally determined densities of various hydrous melts, and optimize the partial molar volume, compressibility, thermal expansibility and its pressure derivative, and K' of the H2O component in the silicate melt. P-T ranges of the calibration database are 0.48-4.29 GPa and 1033-2073 K. As such, this model covers the P-T ranges of the entire melting region of the subduction zone. Parameter set provided by Lange and Carmichael [1990] is used for the partial molar volume and KT value of the anhydrous silicate melt. K' of anhydrous melt is newly parameterized as a function of SiO2 content. The new model accurately reproduces the experimentally determined density variations of various hydrous melts from basalt to rhyolite. Our result shows that the hydrous melt is more compressive and less dense than the anhydrous melt; with the 5 wt% of H2O in melt, density and KT decrease by ~10% and ~30% from those of the anhydrous melt, respectively. For the application of the model, we calculated the P-wave velocity of the hydrous melt. With the 5 wt% of H2O, P-wave velocity of the silicate melt decreases by >10%. Based on the melt P-wave velocity, we demonstrate the effect of the melt H2O content on the seismic velocity of the partially molten zone of the subduction zone.

  16. The Origin of Silicic Arc Crust - Insights from the Northern Pacific Volcanic Arcs through Space and Time

    Science.gov (United States)

    Straub, S. M.; Kelemen, P. B.

    2016-12-01

    The remarkable compositional similarities of andesitic crust at modern convergent margins and the continental crust has long evoked the hypothesis of similar origins. Key to understanding either genesis is understanding the mode of silica enrichment. Silicic crust cannot be directly extracted from the upper mantle. Hence, in modern arcs, numerous studies - observant of the pervasive and irrefutable evidence of melt mixing - proposed that arc andesites formed by mixing of mantle-derived basaltic melts and fusible silicic material from the overlying crust. Mass balance requires the amount of silicic crust in such hybrid andesites to be on the order to tens of percent, implying that their composition to be perceptibly influenced by the various crustal basements. In order to test this hypothesis, major and trace element compositions of mafic and silicic arc magmas with arc-typical low Ce/PbMexico) were combined with Pb isotope ratios. Pb isotope ratios are considered highly sensitive to crustal contamination, and hence should reflect the variable composition of the oceanic and continental basement on which these arcs are constructed. In particular, in thick-crust continental arcs where the basement is isotopically different from the mantle and crustal assimilation thought to be most prevalent, silicic magmas must be expected to be distinct from those of the associated mafic melts. However, in a given arc, the Pb isotope ratios are constant with increasing melt silica regardless of the nature of the basement. This observation argues against a melt origin of silicic melts from the crustal basement and suggest them to be controlled by the same slab flux as their co-eval mafic counterparts. This inference is validated by the spatial and temporal pattern of arc Pb isotope ratios along the Northern Pacific margins and throughout the 50 million years of Cenozoic evolution of the Izu Bonin Mariana arc/trench system that are can be related to with systematic, `real

  17. Ionic conductivity of sodium silicate glasses grown within confined volume of mesoporous silica template

    Science.gov (United States)

    Chatterjee, Soumi; Saha, Shyamal Kumar; Chakravorty, Dipankar

    2018-04-01

    Nanodimensional sodium silicate glasses of composition 30Na2O.70SiO2 has been prepared within the pores of 5.5 nm of mesoporous silica as a template using the surfactant P123. The nanocomposite was characterized by X-ray diffraction, transmission electron microscope, and X-ray photoelectron spectroscopy. Electrical conductivity of the sample was studied by ac impedance spectroscopy. The activation energy for ionic conduction was found to be 0.13 eV with dc conductivity at room temperature of 10-6 S-cm-1. This is attributed to the creation of oxygen ion vacancies at the interface of mesoporous silica and nanoglass arising out of the presence of Si2+ species in the system. These nanocomposites are expected to be useful for applications in sodiumion battery for storage of renewable energy.

  18. A thermodynamical model for the surface tension of silicate melts in contact with H2O gas

    Science.gov (United States)

    Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello

    2016-01-01

    Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.

  19. Partial reactive crystallization of variable CO2-bearing siliceous MORB-eclogite-derived melt in fertile peridotite and genesis of alkalic basalts with signatures of crustal recycling

    Science.gov (United States)

    Mallik, A.; Dasgupta, R.

    2013-12-01

    The presence of heterogeneity in the form of recycled altered oceanic crust (MORB-eclogite) has been proposed in the source of HIMU ocean island basalts (OIBs) [1]. Partial melts of recycled oceanic crust, however, are siliceous and Mg-poor and thus do not resemble the major element compositions of alkalic OIBs that are silica-poor and Mg-rich. In an upwelling heterogenous mantle, MORB-eclogite undergoes melting deeper than volatile-free peridotite, hence, andesitic partial melt derived from eclogite will react with subsolidus peridotite. We have examined the effect of such a melt-rock reaction under volatile-free conditions at 1375 °C, 3 GPa by varying the melt-rock ratio from 8 to 50 wt.% [2]. We concluded that the reacted melts reproduce certain major element characteristics of oceanic basanites, but not nephelinites. Also, the melt-rock reaction produces olivine and garnet-bearing websteritic residue. Because presence of CO2 has been invoked in the source of many HIMU ocean islands, the effect of CO2 on such a melt-rock reaction needs to be evaluated. Accordingly, we performed reaction experiments on mixtures of 25% and 33% CO2-bearing andesitic partial melt and peridotite at 1375 °C, 3 GPa by varying the dissolved CO2 content of the reacting melts from 1 to 5 wt.% (bulk CO2 from 0.25 to 1.6 wt.%) [3, this study]. Owing to melt-rock reaction, with increasing CO2 in the bulk mixture, (a) modes of olivine and cpx decrease while melt, opx and garnet increase, (b) reacted melts evolve to greater degree of Si-undersaturation (from andesite through basanite to nephelinite), (c) enhanced crystallization of garnet take place with higher CO2 in the melt, reducing alumina content of the reacted melts, and (d) CaO and MgO content of the reacted melts increase, without affecting FeO* and Na2O contents (indicating greater propensity of Ca2+ and Mg2+ over Fe2+ and Na+ to enter silicate melt as carbonate). For a given melt-MgO, the CO2-bearing reacted melts are a better

  20. Silicic melt evolution in the early Izu-Bonin arc recorded in detrital zircons: Zircon U-Pb geochronology and trace element geochemistry for Site U1438, Amami Sankaku Basin

    Science.gov (United States)

    Barth, A. P.; Tani, K.; Meffre, S.; Wooden, J. L.; Coble, M. A.

    2016-12-01

    Understanding the petrologic evolution of oceanic arc magmas through time is important because these arcs reveal the processes of formation and the early evolution of juvenile continental crust. The Izu-Bonin (IB) arc system has been targeted because it is one of several western Pacific intraoceanic arcs initiated at 50 Ma and because of its prominent spatial asymmetry, with widespread development of relatively enriched rear arc lavas. We examined Pb/U and trace element compositions in zircons recovered at IODP Site 351-U1438 and compared them to regional and global zircon suites. These new arc zircon data indicate that detrital zircons will yield new insights into the generation of IB silicic melts and form a set of useful geochemical proxies for interpreting ancient arc detrital zircon provenance. Project IBM drilling target IBM1 was explored by Expedition 351 at Site U1438, located in the proximal back-arc of the northern Kyushu-Palau Ridge (KPR) at 27.3°N. A 1.2 km thick section of Paleogene volcaniclastic rocks, increasingly lithified and hydrothermally altered with depth, constitutes a proximal rear arc sedimentary record of IB arc initiation and early arc evolution. The ages and compositions of U1438 zircons are compatible with provenance in one or more edifices of the northern KPR and are incompatible with drilling contamination. Melt zircon saturation temperatures and Ti-in-zircon thermometry suggest a provenance in relatively cool and silicic KPR melts. The abundances of selected trace elements with high native concentrations provide insight into the petrogenesis of U1438 detrital zircon host melts, and may be useful indicators of both short and long-term variations in melt compositions in arc settings. The U1438 zircons are slightly enriched in U and LREE and are depleted in Nb compared to zircons from mid-ocean ridges and the Parece-Vela Basin, as predicted for melts in a primitive oceanic arc setting with magmas derived from a highly depleted mantle

  1. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  2. REDOX BEHAVIOR AND DIFFUSIVITY OF ANTIMONY AND CERIUM ION IN ALKALI ALKALINE EARTH SILICATE GLASS MELTS

    Directory of Open Access Journals (Sweden)

    K. D. Kim

    2010-03-01

    Full Text Available Redox behavior and diffusivity of antimony and cerium ion in alkali alkaline earth silicate CRT (Cathode Ray Tube model glass melts were studied by means of square wave voltammetry under the frequency range of 5-1000 Hz and in the temperature range of 800-1400°C. According to voltammogram, peaks due to Sb³⁺/Sb⁰ were positioned in the negative potential region while peaks due to Sb⁵⁺/Sb³⁺ and Ce⁴⁺/Ce³⁺ were found in the positive potential region. By using some equations, correlation for peak potential versus temperature and peak current versus reciprocal frequency was examined, respectively. Their correlation showed a linear relation in the applied temperature and frequency range. Based on the linear relationship, thermodynamic and kinetic properties for each redox reaction were suggested.

  3. Hafnium in peralkaline and peraluminous boro-aluminosilicate glass, and glass subcomponents: a solubility study

    International Nuclear Information System (INIS)

    Davis, Linda L.; Darab, John G.; Qian, Maoxu; Zhao, Donggao; Palenik, Christopher S.; Li, Hong; Strachan, Denis M.; Li, Liyu

    2003-01-01

    A relationship between the solubility of hafnia (HfO2) and the host glass composition was explored by determining the solubility limits of HfO2 in peralkaline and peraluminous borosilicate glasses in the system SiO2-Al2O3-B2O3-Na2O, and in glasses in the system SiO2-Na2O-Al2O3 in air at 1450 C. The only Hf-bearing phase to crystallize in the peralkaline borosilicate melts is hafnia, while in the boron-free melts sodium-hafnium silicates crystallize. All peraluminous borosilicate melts crystallize hafnia, but the slightly peraluminous glasses also have sector-zoned hafnia crystals that contain Al and Si. The more peraluminous borosilicate glasses also crystallize a B-containing mullite. The general morphology of the hafnia crystals changes as peralkalinity (Na2O/(Na2O+Al2O3)) decreases, as expected in melts with increasing viscosity. In all of the glasses with Na2O > Al2O3, the solubility of hafnia is linearly and positively correlated with Na2O/(Na2O + Al2O3) or Na2O - Al2O3 (excess sodium), despite the presence of 5 to 16 mol% B2O3. The solubility of hafnia is higher in the sodium-aluminum borosilicate glasses than in the sodium-aluminosilicate glasses, suggesting that the boron is enhancing the effect that excess sodium has on the incorporation of Hf into the glass structure. The results of this solubility study are compared to other studies of high-valence cation solubility in B-free silicate melts. From this, for peralkaline B-bearing glasses, it is shown that, although the solubility limits are higher, the solution behavior of hafnia is the same as in B-free silicate melts previously studied. By comparison, also, it is shown that in peraluminous melts, there must be a different solution mechanism for hafnia: different than for peralkaline sodium-aluminum borosilicate glasses and different than for B-free silicate melts studied by others

  4. Comparison of Effect of Sodium Silicate Particle Size in Nutritional Solution on Physiological Growth Trials of Maize Seedlings under Cadmium Stress

    Directory of Open Access Journals (Sweden)

    B Saadatian

    2017-10-01

    completely randomized design with four replications the. Treatments were included cadmium (CdSO4 stress levels (Zero, 50 and 100 μmol l-1 and sodium silicate treatments (control (Zero, Nano and micro particles with 2 mM concentration. Results and Discussion The results showed that the effects of sodium silicate, cadmium and their interactions on membrane stability index, specific leaf area, stomatal conductance, Fv/Fm, height, stem diameter, leaf area, shoot dry weight, root dry weight and shoot to root weight ratio was significant. But interaction between cadmium and sodium silicate on relative water content and leaf chlorophyll index was not significant. By increasing of Cd concentration, membrane stability index, chlorophyll index, Fv/Fm, relative water content, specific leaf area, stomatal conductance, height, stem diameter, leaf area, shoot dry weight and root dry weight trials reduced compared to control significantly. In no cadmium condition, sodium silicate nano-particles application reduced height, stem diameter, leaf area and shoot dry weight 12.8, 9, 34.2 and 23.2% compared to control, respectively. In contrast, using of micro particles in non-stress condition, had a positive effect on above mentioned traits. But in 50 μmol l-1 Cd, nano-particles increased membrane stability index, specific leaf area, stomatal conductance, stem diameter and shoot dry weight trials, significantly. At highest concentration of cadmium, effect of micro particles on membrane stability index, stomatal conductance and shoot to root was higher than nano-particles. Also, using of nano particles had a positive effect on above mentioned traits in Cd stress condition. In general, application of nano particles in non-cadmium stress conditions had phytotoxicity effects on corn and only in cadmium stress condition, the effect of these particles showed their positive effect. Conclusions In general, silicon nanoparticles were only beneficial effect of cadmium stress. Hence, the use of sodium

  5. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tingting [Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024 (China); Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Vandeperre, Luc J. [Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cheeseman, Christopher R., E-mail: c.cheeseman@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2014-11-15

    Magnesium silicate hydrate (M-S-H) gel is formed by the reaction of brucite with amorphous silica during sulphate attack in concrete and M-S-H is therefore regarded as having limited cementing properties. The aim of this work was to form M-S-H pastes, characterise the hydration reactions and assess the resulting properties. It is shown that M-S-H pastes can be prepared by reacting magnesium oxide (MgO) and silica fume (SF) at low water to solid ratio using sodium hexametaphosphate (NaHMP) as a dispersant. Characterisation of the hydration reactions by x-ray diffraction and thermogravimetric analysis shows that brucite and M-S-H gel are formed and that for samples containing 60 wt.% SF and 40 wt.% MgO all of the brucites react with SF to form M-S-H gel. These M-S-H cement pastes were found to have compressive strengths in excess of 70 MPa.

  6. Studies on gelation of sodium silicate hydrosol for immobilization of high level liquid waste (HLLW).

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Raouf, M W [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt); Sharaf El-deen, A N; El-Dessouky, M M [Military Technical College, Kobry El-Kobbah, Cairo (Egypt)

    1995-10-01

    Immobilization of the simulated high-level liquid waste (HLLW) was performed via the gelation with sodium silicate hydrosol at room temperature. The simulated waste in this study, was represented by the electrolytes of Li, Na, K, Cs, Co and Sr at different concentrations. Specific loading of the liquid waste with 0.6 M Mg (NO{sub 3})2 and tailoring with Al salts were tried during most of the gelation processes. Mineral acid (HCl or {sub 3}) were added during the gelation processes to achieve the gel point, especially when lower concentrations of the simulated waste were used. The obtained hydrogel were dried to obtain the solid gel form. The gelation processes were investigated in terms of the different factors that affected them, namely: temperature, pH, changes in the concentration of the initial hydrosol and the used electrolytes. The efficiency of the gelation processes was investigated from the ratio of the amount of simulated waste reacted (m mole) to the initial silicate used (m mole), i.e. X value. Lower X values were observed when using multi valent cations (higher polarizing power). A special effect of increasing the sorption of metal cations in the silica matrix was observed when Al{sup 3+} replaced Si{sup 4+} in the three-dimensional network structure of the matrix. 3 figs., 7 tabs.

  7. Water-fluxed melting of the continental crust: A review

    Czech Academy of Sciences Publication Activity Database

    Weinberg, R. F.; Hasalová, Pavlína

    212-215, January (2015), s. 158-188 ISSN 0024-4937 Institutional support: RVO:67985530 Keywords : aqueous fluids * crustal anatexis * granites * silicate melts * water-fluxed melting Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.723, year: 2015

  8. Effect of antioxidants and silicates on peroxides in povidone.

    Science.gov (United States)

    Narang, Ajit S; Rao, Venkatramana M; Desai, Divyakant S

    2012-01-01

    Reactive peroxides in povidone often lead to degradation of oxidation-labile drugs. To reduce peroxide concentration in povidone, the roles of storage conditions, antioxidants, and silicates were investigated. Povidone alone and its physical mixtures with ascorbic acid, propyl gallate, sodium sulfite, butylated hydroxyanisole (BHA), or butylated hydroxytoluene (BHT) were stored at 25 °C and 40 °C, at 11%, 32%, and 50% relative humidity. In addition, povidone solution in methanol was equilibrated with silicates (silica gel and molecular sieves), followed by solvent evaporation to recover povidone powder. Peroxide concentrations in povidone were measured. The concentration of peroxides in povidone increased under very-low-humidity storage conditions. Among the antioxidants, ascorbic acid, propyl gallate, and sodium sulfite reduced the peroxide concentration in povidone, whereas BHA and BHT did not. Water solubility appeared to determine the effectiveness of antioxidants. Also, some silicates significantly reduced peroxide concentration in povidone without affecting its functionality as a tablet binder. Porosity of silicates was critical to their ability to reduce the peroxide concentration in povidone. A combination of these approaches can reduce the initial peroxide concentration in povidone and minimize peroxide growth under routine storage conditions. Copyright © 2011 Wiley-Liss, Inc.

  9. Apatite-Melt Partitioning at 1 Bar: An Assessment of Apatite-Melt Exchange Equilibria Resulting from Non-Ideal Mixing of F and Cl in Apatite

    Science.gov (United States)

    McCubbin, F. M.; Ustunisik, G.; Vander Kaaden, K. E.

    2016-01-01

    The mineral apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to precisely determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multi-component silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al. recently reported that the exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing. In the present study, we conducted apatite-melt partitioning experiments in evacuated, sealed silica-glass tubes at approximately 1 bar and 950-1050 degrees Centigrade on a synthetic Martian basalt composition equivalent to the basaltic shergottite Queen Alexandria Range (QUE) 94201. These experiments were conducted dry, at low pressure, to assess the effects of temperature and apatite composition on the partitioning behavior of F and Cl between apatite and basaltic melt along the F-Cl apatite binary join, where there is non-ideal mixing of F and Cl

  10. Evidence for the presence of carbonate melt during the formation of cumulates in the Colli Albani Volcanic District, Italy

    Science.gov (United States)

    Shaw, Cliff S. J.

    2018-06-01

    Fergusite and syenite xenoliths and mafic lapilli from two locations in the Villa Senni ignimbrite of the Colli Albani Volcanic District show evidence for fractionation of a silicate magma that led to exsolution of an immiscible carbonate melt. The fergusite xenoliths are divided into two groups on the basis of their clinopyroxene compositions. Group 1 clinopyroxene records the crystallisation of a silicate melt and enrichment of the melt in Al, Ti and Mn and depletion in Si as well as enrichment in incompatible trace elements. The second group of clinopyroxene compositions (group 2) comes mainly from Ba-F-phlogopite- and Ti-andradite-bearing fergusites. They have significantly higher Si and lower Al and Ti and, like the coexisting phlogopite and garnet are strongly enriched in Mn. The minerals in the fergusites containing group 2 clinopyroxene are enriched in Ba, Sr, Cs, V and Li all of which are expected to partition strongly into a carbonate melt phase relative to the coexisting silicate melt. The compositional data suggest that the group 1 fergusites record sidewall crystallisation of CO2-rich silicate melt and that once the melt reached a critical degree of fractionation, carbonate melt exsolved. The group 2 fergusites record continued crystallisation in this heterogeneous silicate - carbonate melt system. Composite xenoliths of fergusite and thermometamorphic skarn record contact times of hundreds to a few thousand years indicating that fractionation and assimilation was relatively rapid.

  11. I-Xe dating of silicate and troilite from IAB iron meteorites

    International Nuclear Information System (INIS)

    Niemeyer, S.

    1979-01-01

    Silicate and troilite (FeS) from IAB irons were analyzed by the I-Xe technique. Four IAB silicate samples gave well-defined I-Xe ages [in millions of years relative to Bjurbole: - 3.7 +- 0.3 for Woodbine, -0.7 +- 0.6 for Mundrabilla, + 1.4 +- 0.7 for Copiapo, and +2.6 +- 0.6 for Landes. The ( 129 Xe/ 132 Xe)sub(trapped) ratios are consistent with previous values for chondrites, with the exception of Landes which has an extraordinary trapped ratio of 3.5 +- 0.2. Both analyses of silicate from Pitts gave anomalous I-Xe patterns. Troilite samples were also analyzed: Pitts troilite gave a complex I-Xe pattern, which suggests an age of +17 Myr; Mundrabilla troilite defined a good I-Xe correlation, which after correction for neutron capture on 128 Te gave an age of -10.8 +- 0.7 Myr. Thus, low-melting troilite predates high-melting silicate in Mundrabilla. Abundances of Ga, Ge, and Ni in metal from these meteorites are correlated with I-Xe ages of the silicate; meteorites with older silicates have greater Ni contents. No model easily accounts for this result as well as other properties of IAB irons; nevertheless, these results, taken at face value, favour a nebular formation model. The great age of troilite from Mundrabilla suggests that this troilite formed in a different nebular region from the silicate and metal, and was later mechanically mixed with these other phases. The correlation between the trace elements in the metal and the I-Xe ages of the silicate provides one of the first known instances in which another well-defined meteoritic property correlates with I-Xe ages. In addition, almost all the 129 Xe in Mundrabilla silicate (etched in acid) was correlated with 128 Xe. These two results further support the validity of the I-Xe dating method. (author)

  12. Effect of Er{sub 2}O{sub 3} dopant on electrical and optical properties of potassium sodium niobate silicate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yongsiri, Ploypailin [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sirisoonthorn, Somnuk [National Metal and Materials Technology Center, Pathumthani 12120 (Thailand); Pengpat, Kamonpan, E-mail: kamonpan.p@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-09-15

    Highlights: • The KNN–SiO{sub 2} doped Er{sub 2}O{sub 3} glass-ceramics was prepared by incorporation method. • High dielectric constant (458.41 at 100 kHz) and low loss (0.0005) could be obtained. • TEM and SEM confirmed the existence of KNN crystals embedded in glass matrix. • The Er{sub 2}O{sub 3} dopant causes insignificant effect on modifying E{sub g} value. - Abstract: In this study, transparent glass-ceramics from potassium sodium niobate (KNN)-silicate glass system doped with erbium oxide (Er{sub 2}O{sub 3}) were successfully prepared by incorporation method. KNN was added in glass batches as heterogeneous nucleating agent. The KNN powder was mixed with SiO{sub 2} and Er{sub 2}O{sub 3} dopant with KNN and Er{sub 2}O{sub 3} content varied between 70–80 and 0.5–1.0 mol%, respectively. Each batch was subsequently melted at 1300 °C for 15 min in a platinum crucible using an electric furnace. The quenched glasses were then subjected to heat treatment at various temperatures for 4 h. XRD results showed that the prepared glass ceramics contained crystals of KNN solid solution. In contrary, dielectric constant (ϵ{sub r}) and dielectric loss (tan δ) were found to increase with increasing heat treatment temperature. Additionally, optical properties such as absorbance and energy band gap have been investigated.

  13. LABORATORY INVESTIGATIONS OF SILICATE MUD CONTAMINATION WITH CALCIUM

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2004-12-01

    Full Text Available The silicate-based drilling fluid is a low solids KCl/polymer system with the addition of soluble sodium or potassium silicate to enhance inhibition and wellbore stability. Silicate-based drilling fluids exhibit remarkable shale and chalk stabilizing properties, resulting in gauge hole and the formation of firm cuttings when drilling reactive shales and soft chalks. Silicates protect shales by in-situ gellation when exposed to the neutral pore fluid and precipitation, which occurs on contact with divalent ions present at the surface of the shale. Also, silicates prevent the dispersion and washouts when drilling soft chalk by reacting with the Ca2+ ions present on chalk surfaces of cutting and wellbore to form a protective film. The silicate-based drilling fluid can be used during drilling hole section through shale interbeded anhydrite formations because of its superior shale stabilizing characteristics. However, drilling through the anhydrite can decrease the silicate concentration and change rheological and filtration fluid properties. So, the critical concentration of calcium ions should be investigated by lab tests. This paper details the mechanism of shale inhibition using silicate-based drilling fluid, and presents results of lab tests conducted to ascertain the effect of Ca2+ ions on silicate level in the fluid and the fluid properties.

  14. Method of processing waste sodium

    International Nuclear Information System (INIS)

    Shimoyashiki, Shigehiro; Takahashi, Kazuo.

    1982-01-01

    Purpose: To enable safety store of waste sodium in the form of intermetallic compounds. Method: Waste sodium used in a reactor is mixed with molten metal under an inert gas atmosphere and resulted intermetallic compounds are stored in a closely sealed container to enable quasi-permanent safety store as inert compound. Used waste sodium particularly, waste sodium in the primary system containing radioactive substances is charged in a waste sodium melting tank having a heater on the side, the tank is evacuated by a vacuum pump and then sealed with gaseous argon supplied from a gaseous argon tank, and waste sodium is melted under heating. The temperature and the amount of the liquid are measured by a thermometer and a level meter respectively. While on the other hand, molten metal such as Sn, Pb and Zn having melting point above 300 0 C are charged in a metal melting tank and heated by a heater. The molten sodium and the molten metals are charged into a mixing tank and agitated to mix by an induction type agitator. Sodium vapors in the tank are collected by traps. The air in the tank is replaced with gaseous argon. The molten mixture is closely sealed in a drum can and cooled to solidify for safety storage. (Seki, T.)

  15. KINETICS OF A SILICATE COMPOSITION GELATION IN PRESENCE OF REACTION RATE REGULATING COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Olga Titova

    2013-12-01

    Full Text Available The influence of organic and inorganic additions on the formation rate of the silicate gels standard systems – sodium silicate solution in model fresh water was studied. As a result of the experiments were selected optimum concentrations of additives - gelation time regulators

  16. Diclofenac sodium sustained release hot melt extruded lipid matrices.

    Science.gov (United States)

    Vithani, K; Cuppok, Y; Mostafa, S; Slipper, I J; Snowden, M J; Douroumis, D

    2014-08-01

    Sustained release diclofenac sodium (Df-Na) solid lipid matrices with Compritol® 888 ATO were developed in this study. The drug/lipid powders were processed via cold and hot melt extrusion at various drug loadings. The influence of the processing temperatures, drug loading and the addition of excipients on the obtained dissolution rates was investigated. The physicochemical characterization of the extruded batches showed the existence of crystalline drug in the extrudates with a small amount being solubilized in the lipid matrix. The drug content and uniformity on the tablet surface were also investigated by using energy dispersive X-ray microanalysis. The dissolution rates were found to depend on the actual Df-Na loading and the nature of the added excipients, while the effect of the processing temperatures was negligible. The dissolution mechanism of all extruded formulations followed Peppas-Korsemeyer law, based on the estimated determination coefficients and the dissolution constant rates, indicating drug diffusion from the lipid matrices.

  17. Composition dependence of spontaneous crystallization of phosphosilicate glass melts during cooling

    DEFF Research Database (Denmark)

    Liu, S.J.; Zhu, C.F.; Zhang, Y.F.

    2012-01-01

    Crystallization behavior of alumino-phospho-silicate melts during cooling is studied by means of the differential scanning calorimetry, X-ray diffractometry and viscometry. The results show a pronounced impact of alkaline earth oxide, alkali oxide and fluoride on the crystal type and crystallizat......Crystallization behavior of alumino-phospho-silicate melts during cooling is studied by means of the differential scanning calorimetry, X-ray diffractometry and viscometry. The results show a pronounced impact of alkaline earth oxide, alkali oxide and fluoride on the crystal type...... and crystallization degree. It is found that adding NaF into the studied compositions slightly decreases melt fragility and improves both the glass-forming ability and melt workability. This effect is associated with the unique structural role of NaF compared to the other modifier oxides. It is also found...

  18. Method of melting solid waste

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Mizuno, Ryokichi; Kuwana, Katsumi; Sawada, Yoshihisa; Komatsu, Fumiaki.

    1982-01-01

    Purpose: To enable the volume reduction treatment of a HEPA filter containing various solid wastes, particularly acid digestion residue, or an asbestos separator at a relatively low temperature range. Method: Solid waste to be heated and molten is high melting point material treated by ''acid digestion treatment'' for treating solid waste, e.g. a HEPA filter or polyvinyl chloride, etc. of an atomic power facility treated with nitric acid or the like. When this material is heated and molten by an electric furnace, microwave melting furnace, etc., boron oxide, sodium boride, sodium carbonate, etc. is added as a melting point lowering agent. When it is molten in this state, its melting point is lowered, and it becomes remarkably fluid, and the melting treatment is facilitated. Solidified material thus obtained through the melting step has excellent denseness and further large volume reduction rate of the solidified material. (Yoshihara, H.)

  19. Sodium silicate solutions from dissolution of glasswastes. Statistical analysis

    Directory of Open Access Journals (Sweden)

    Torres-Carrasco, M.

    2014-05-01

    Full Text Available It has studied the solubility process of four different waste glasses (with different particle sizes, 125 µm in alkaline solutions (NaOH and NaOH/Na₂CO₃ and water as a reference and under different conditions of solubility (at room temperature, at 80°C and a mechano-chemical process. Have established the optimal conditions of solubility and generation of sodium silicates solutions, and these were: the smaller particle size (Se ha estudiado el proceso de solubilidad de cuatro diferentes residuos vítreos (con distintas granulometrías, 125 µm en disoluciones alcalinas de NaOH y NaOH/Na₂CO₃ y agua como medio de referencia y bajo distintas condiciones de solubilidad (a temperatura ambiente, a 80°C y con un proceso mecano-químico. Se han establecido las condiciones óptimas de solubilidad y generación de disoluciones de silicato sódico, y estas son: menor tamaño de partícula del residuo vítreo (inferior a 45 µm, con la disolución de NaOH/Na₂CO₃ y tratamiento térmico a 80°C durante 6 horas de agitación. El análisis estadístico realizado a los resultados obtenidos da importancia a las variables estudiadas y a las interacciones de las mismas. A través de ²⁹Si RMN MAS se ha confirmado la formación, tras los procesos de disolución, de un silicato monomérico, apto para su utilización como activador en la preparación de cementos y hormigones alcalinos.

  20. Structure of aluminosilicate melts produced from granite rocks for the manufacturing of petrurgical glass-ceramics construction materials

    Directory of Open Access Journals (Sweden)

    Simakin, A. G.

    2001-12-01

    Full Text Available The aluminosilicate melt is a partly ordered phase and is the origin of glass for producing glassceramics and petrurgical materials. They are well extended used as construction materials for pavings and coatings. Its structure can be described in the terms of the aluminosilica tetrahedras coordination so-called Q speciation. The proportions of tetrahedra with different degree of connectivity with others (from totally connected to free has been studied by NMR and IR methods for sodium-silicate melts. Medium range structure can be characterized by the sizes of irreducible rings composed of the aluminosilica tetrahedra. Systematic increase of the four member rings proportion in the sequence of the Ab-An glasses were observed. The water dissolution in sodium-silicate glass affects the Q speciation. Cations network-modifiers positions in the melt structure are important to know since these cations stabilize particular structure configurations. Modification of the distribution of Na coordination in the sodium-silicate glass at water dissolution was determined by NMR spectroscopy. The observed modification of the hydrous aluminosilicate melt structure resulted in the shift of the eutectic composition in the granite system with decreasing of the crystallization field of feldspars. The feldspar growth rates show practically no dependence on the water content in the concentration range 2-4 wt.%. Likewise, the solved water has a little influence on the crystal growth rate of the lithium silicate phase in lithium containing glasses in accordance with estimated enhancing of the diffusion transport.

    Los fundidos de alumino-silicato son una fase parcialmente ordenada. Su estructura puede ser descrita en términos de la coordinación de tetraedros de alúmina-sílice también denominados especies Q. La proporción de tetraedros con diferente grado de conectividad entre si se ha investigado por espectroscopias de RMN e IR en fundidos de silicatos

  1. Reduction-induced inward diffusion and crystal growth on the surfaces of iron-bearing silicate glasses

    DEFF Research Database (Denmark)

    Liu, S.J.; Tao, H.Z.; Zhang, Y.F.

    2015-01-01

    We investigate the sodium inward diffusion (i.e., sodium diffusion from surface toward interior) in iron containing alkaline earth silicate glasses under reducing conditions around Tg and the induced surface crystallization. The surface crystallization is caused by formation of a silicate-gel lay......+ ions have stronger bonds to oxygen and lower coordination number (4~5) than Ca2+, Sr2+ and Ba2+ ions. In contrast, a cristobalite layer forms in Ca-, Sr- and Ba-containing glasses....

  2. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    Directory of Open Access Journals (Sweden)

    Jurkić Lela Munjas

    2013-01-01

    Full Text Available Abstract Silicon (Si is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4, as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K, the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel, silica gel (amorphous silicon dioxide, and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4 in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  3. I-Xe dating of silicate and troilite from IAB iron meteorites

    International Nuclear Information System (INIS)

    Niemeyer, S.

    1978-01-01

    The IAB iron meteorites may be related to the chondrites; siderophile elements in the metal matrix have chondritic abundances, and the abundant silicate inclusions are chondritic both in mineralogy and in chemical composition. Silicate and troilite (FeS) and IAB irons were analyzed by the I-Xe technique. Four IAB silicate samples gave well-defined I-Xe ages [in millions of years relative to Bjurboele; the monitor error (+-2.5 m.y.) is not included]: -3.7 +- 0.3 for Woodbine, -0.7 +- 0.6 for Mundrabilla, +1.4 +- 0.7 for Copiapo, and +2.6 +- 0.6 for Landes. The ( 129 Xe/ 132 Xe)/sub trapped/ ratios are consistent with previous values for chondrites, with the exception of Landes which has an extraordinary trapped ratio of 3.5 +- 0.2. Both analyses of silicate from Pitts gave anomalous I-Xe patterns: intermediate-temperature points defined good correlations but higher-temperature (greater than or equal to 1400 0 C) points lay above (extra 129 Xe) these lines. The two correlations have different slopes, so it cannot be assigned a definite I-Xe age to Pitts silicate. Troilite samples from Mundrabilla and Pitts were also analyzed: Pitts troilite gave a complex I-Xe pattern, which suggests an age of +17 m.y.; Mundrabilla troilite defined a good I-Xe correlation, which after correction for neutron capture on 128 Te an age of -10.8 +- 0.7 m.y. Thus, surprisingly, low-melting troilite substantially predates high-melting silicate in Mundrabilla. Abundances of Ga, Ge, and Ni in metal from these meteorites are correlated with I-Xe ages of the silicate (referred to henceforth as the metal-silicate correlation). After exploring possible relationships between the I-Xe ages and other properties of the IAB group, it was concluded that the metal-silicate correlation, the old Mundrabilla troilite, and other results favor a nebular formation model (e.g. Wasson, 1970a)

  4. Melt inclusions: Chapter 6

    Science.gov (United States)

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  5. Potassium/sodium ion exchange of sodium aluminosilicate and soda-lime glasses with potassium nitrate melts

    International Nuclear Information System (INIS)

    Richter, E.

    1983-08-01

    The alkali self-diffusion coefficients, the concentration-dependent interdiffusion coefficients, and the actual equilibrium constants of the ion exchange process were determinated for model glasses of the Na 2 O-Al 2 O 3 -SiO 2 type and the Na 2 O-CaO-SiO 2 type by nuclear techniques. The measured self-diffusion data and interdiffusion coefficients were used to estimate the stress profiles initiated by the K/Na exchange below the transformation temperature in the surface region. The activation volume of the sodium and potassium ions for diffusion through the surface zone stressed by ion exchange was determined. The disturbing influence of small concentrations of determined divalent cations in KNO 3 (especially Ca 2+ ) was investigated and thermodynamically described. Possibilities were demonstrated to remove these disturbances by anionic admixtures to the KNO 3 melt. Conclusions were drawn for the technical process of the chemical strengthening of glass by K/Na ion exchange at lower temperatures. (author)

  6. Formation mechanisms of colloidal silica via sodium silicate

    International Nuclear Information System (INIS)

    Tsai, M.-S.; Huang, P.Y.; Yang, C.-H.

    2006-01-01

    Colloidal silica is formed by titrating active silicic acid into a heated KOH with seed solution. The colloidal silica formation mechanisms are investigated by sampling the heated solution during titration. In the initial stage, the added seeds were dissolved. This might due to the dilution of seed concentration, the addition of potassium hydroxide (KOH) and the heating at 100 deg. C. Homogenous nucleation and surface growth occur simultaneously in the second stage of colloidal silica formation. Homogenous nucleation is more important when the seed concentration is relatively low. On the other hand, surface growth plays an important role when the seed concentration is increased. In the middle seed concentration, the seed particles grow up and some new small particles are born by the homogenous nucleation process to form a bimodal size distribution product. As the titrating volume of active silicic acid exceeds a specific value in the last stage the particle size increases rapidly and the particle number decreases, which may be caused by the aggregation of particles. The intervals between each stage were varied with the seed concentration. Increasing the seed concentration led to the formation of uniform particle size colloidal silica

  7. Differentiation of Asteroid 4 Vesta: Core Formation by Iron Rain in a Silicate Magma Ocean

    Science.gov (United States)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2017-01-01

    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft while orbiting asteroid 4 Vesta, suggest that Vesta resembles H chondrites in bulk chemical composition, possible with about 25 percent of a CM-chondrite like composition added in. For this model, the core is 15 percent by mass (or 8 percent by volume) of the asteroid, with a composition of 73.7 percent by weight Fe, 16.0 percent by weight S, and 10.3 percent by weight Ni. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. The combination of the melting phase relationships for the silicate and metal phases, together with the moderately siderophile element concentrations together require that complete melting of the metal phase occurred (temperature is greater than1350 degrees Centigrade), along with substantial (greater than 40 percent) melting of the silicate material. Thus, core formation on Vesta occurs as iron rain sinking through a silicate magma ocean.

  8. Detection of structural heterogeneity of glass melts

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2004-01-01

    The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One is the hyp......The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One...... is the hyperquench-anneal-calorimetric scan approach, by which the structural information of a basaltic supercooled liquid and three binary silicate liquids is acquired. Another is the calorimetrically repeated up- and downscanning approach, by which the structural heterogeneity, the intermediate range order...... is discussed. The ordered structure of glass melts above the liquidus temperature is indirectly characterized by use of X-ray diffraction method. The new approaches are of importance for monitoring the glass melting and forming process and for improving the physical properties of glasses and glass fibers....

  9. Shock melting and vaporization of lunar rocks and minerals.

    Science.gov (United States)

    Ahrens, T. J.; O'Keefe, J. D.

    1972-01-01

    The entropy associated with the thermodynamic states produced by hypervelocity meteoroid impacts at various velocities are calculated for a series of lunar rocks and minerals and compared with the entropy values required for melting and vaporization. Taking into account shock-induced phase changes in the silicates, we calculate that iron meteorites impacting at speeds varying from 4 to 6 km/sec will produce shock melting in quartz, plagioclase, olivine, and pyroxene. Although calculated with less certainty, impact speeds required for incipient vaporization vary from 7 to 11 km/sec for the range of minerals going from quartz to periclase for aluminum (silicate-like) projectiles. The impact velocities, which are required to induce melting in a soil, are calculated to be in the range of 3 to 4 km/sec, provided thermal equilibrium is achieved in the shock state.

  10. Ar and K partitioning between clinopyroxene and silicate melt to 8 GPa

    Science.gov (United States)

    Chamorro, E. M.; Brooker, R. A.; Wartho, J.-A.; Wood, B. J.; Kelley, S. P.; Blundy, J. D.

    2002-02-01

    The relative incompatibility of Ar and K are fundamental parameters in understanding the degassing history of the mantle. Clinopyroxene is the main host for K in most of the upper mantle, playing an important role in controlling the K/Ar ratio of residual mantle and the subsequent time-integrated evolution of 40Ar/36Ar ratios. Clinopyroxene also contributes to the bulk Ar partition coefficient that controls the Ar degassing rate during mantle melting. The partitioning of Ar and K between clinopyroxene and quenched silicate melt has been experimentally determined from 1 to 8 GPa for the bulk compositions Ab80Di20 (80 mol% albite-20 mol% diopside) and Ab20Di80 with an ultraviolet laser ablation microprobe (UVLAMP) technique for Ar analysis and the ion microprobe for K. Data for Kr (UVLAMP) and Rb (ion probe) have also been determined to evaluate the role of crystal lattice sites in controlling partitioning. By excluding crystal analyses that show evidence of glass contamination, we find relatively constant Ar partition coefficients (DAr) of 2.6 × 10-4 to 3.9 × 10-4 for the Ab80Di20 system at pressures from 2 to 8 GPa. In the Ab20Di80 system, DAr shows similar low values of 7.0 × 10-5 and 3.0 × 10-4 at 1 to 3 GPa. All these values are several orders of magnitude lower than previous measurements on separated crystal-glass pairs. DK is 10 to 50 times greater than DRb for all experiments, and both elements follow parallel trends with increasing pressure, although these trends are significantly different in each system studied. The DK values for clinopyroxene are at least an order of magnitude greater than DAr under all conditions investigated here, but DAr appears to show more consistent behavior between the two systems than K or Rb. The partitioning behavior of K and Rb can be explained in terms of combined pressure, temperature, and crystal chemistry effects that result in changes for the size of the clinopyroxene M2 site. In the Ab20Di80 system, where

  11. Deinking of different furnishes of recycled MOW, ONP, and OMG pulps in silicate-free conditions using organic complex of PHASS

    Directory of Open Access Journals (Sweden)

    Iman Akbarpour

    2013-02-01

    Full Text Available Sodium silicate causes problems in papermaking such as deposit formation, decreased retention, and lower sheet strength. Due to these problems, chemical deinking of different recycled papers furnishes including 100% ONP, 80% ONP, and 20% OMG, and a combination of 70% ONP/ 20% OMG/ 10% MOW was accomplished using an organic complexing agent which included poly-hydroxyl acrylic acid and sodium salt (PHAAS in silicate-free conditions. PHAAS was utilized at four levels of 0.3, 0.5, 0.7, and 1% (based on oven-dry weight of recycled paper rather than sodium silicate. The optical and physical properties of deinked pulp were compared to control pulp (conventional deinking containing 2% sodium silicate. The results showed that the paper brightness was improved and the yellowness, dirt count, and dirt area were decreased significantly by increasing PHAAS charge up to 0.9%. Also, in different recycled paper furnishes above mentioned, using different charges of PHAAS had different effects on paper opacity. Using different charges of PHAAS (especially 0.7 to 0.9% decreased paper caliper, increased paper air resistance, increased freeness, and gave similar or slightly better paper tear indices. Differences of tear indices were not significant at confidence level of 99%. Based on the present research, the use of 0.7 to 0.9% PHAAS in place of sodium silicate is advisable because of the better quality of final papers compared to conventional deinking process.

  12. Modifying Silicates for Better Dispersion in Nanocomposites

    Science.gov (United States)

    Campbell, Sandi

    2005-01-01

    , the co-ion exchange strengthens the polymer/silicate interface and ensures irreversible separation of the silicate layers. One way in which it does this is to essentially tether one amine of each diamine molecule to a silicate surface, leaving the second amine free for reaction with monomers during the synthesis of a polymer. In addition, the incorporation of alkyl ammonium ions into the galleries at low concentration helps to keep low the melt viscosity of the oligomer formed during synthesis of the polymer and associated processing - a consideration that is particularly important in the case of a highly cross-linked, thermosetting polymer. Because of the chemical bonding between the surface-modifying amines and the monomers, even when the alkyl ammonium ions become degraded at high processing temperature, the silicate layers do not aggregate and, hence, nanometer-level dispersion is maintained.

  13. UTILIZATION OF RICE HUSK AS RAW MATERIAL IN SYNTHESIS OF MESOPOROUS SILICATES MCM-41

    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta

    2011-12-01

    Full Text Available The research about synthesis and characterization of MCM-41 from rice husk has been done. Silica (SiO2 was extracted from rice husk by refluxing with 3M hydrochloric solution at 80 °C for 3 h. The acid-leached rice husk was filtered, washed, dried and calcined at 650 °C for 6 h lead the rough powder of rice husk silica with light brown in color. Characterization was carried out by X-ray diffraction (XRD and FTIR spectroscopy method. Rice husk silica was dissolved into the sodium hydroxide solution leading to the solution of sodium silicate, and used as silica source for the synthesis of MCM-41. MCM-41 was synthesized by hydrothermal process to the mixture prepared from 29 g of distilled water, 8.67 g of cetyltrimethyl ammonium bromide (CTMAB, 9.31 g of sodium silicate solution, and amount mL of 1 M H2SO4. Hydrothermal process was carried out at 100 °C in a teflon-lined stainless steel autoclave heated in the oven for 36 h. The solid phase was filtered, then washed with deionised water, and dried in the oven at 100 °C for 2 h. The surfactant CTMAB was removed by calcination at 550 °C for 10 h with heating rate 2 °C/min. The as-synthesized and calcined crystals were characterized by using FTIR spectroscopy, X-ray diffraction and N2 physisorption methods. In order to investigate the effect of silica source, the same procedure was carried out by using pure sodium silicate as silica source. It was concluded that silica extracted from rice husk can be used as raw materials in the synthesis of MCM-41, there is no significant difference in crystallinity and pore properties when was compared to material produced from commercial sodium silicate.

  14. Development of Silicate Extraction Method for Detection of Irradiated Potatoes by Thermoluminescence

    International Nuclear Information System (INIS)

    Teerasarn, Wannapha; Sudprasert, Wanwisa

    2009-07-01

    Full text: Thermoluminescence (TL) is a promising technique used for detection of irradiated foods. In practice, silicate minerals are first isolated from foods by density gradient with sodium poly tungstate of a density 2.0 g/cm 3 , which is very expensive. The study was carried out to develop a new low-cost reagent for silicate extraction. The silicate minerals were extracted from irradiated potatoes (at doses of 0, 0.05, 0.15, 0.25, 0.5 and 1 kGy) using potassium carbonate of a density 2 g/cm 3 . X-ray diffraction spectroscopy (XRD) was employed to investigate the types of silicate minerals present in the extracts. The TL measurement was performed to identify the irradiation status of the samples using a TL reader. The results showed that quartz was found as the major mineral of the samples. The TL analysis of glow curve showed that irradiated potatoes exhibited a maximum glow peak between 208-280 c degree, where as non-irradiated potatoes exhibited a maximum glow peak between 289-351 C degree. The results clearly indicated that the silicate minerals can effectively be isolated from potatoes by using potassium carbonate instead of sodium poly tungstate for the purpose of irradiation identification. In this sense, the cost of irradiation identification will be reduced at least 20 times comparing to using the conventional extraction reagent

  15. Experimental Determination of Spinel/Melt, Olivine/Melt, and Pyroxene/Melt Partition Coefficients for Re, Ru, Pd, Au, and Pt

    Science.gov (United States)

    Righter, K.; Campbell, A. J.; Humayun, M.

    2003-01-01

    Experimental studies have identified spinels as important hosts phases for many of the highly siderophile elements (HSE). Yet experimental studies involving chromite or Cr-rich spinel have been lacking. Experimental studies of partitioning of HSEs between silicate, oxides and silicate melt are plagued by low solubilities and the presence of small metallic nuggets at oxygen fugacities relevant to magmas, which interfere with analysis of the phases of interest. We have circumvented these problems in two ways: 1) performing experiments at oxidized conditions, which are still relevant to natural systems but in which nuggets are not observed, and 2) analysis of run products with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), allowing a combination of high sensitivity and good spatial resolution.

  16. Reactions between rocks and the hydroxides of calcium, sodium and potassium: progress report no. 1

    International Nuclear Information System (INIS)

    Van Aardt, J.H.P.; Visser, S.

    1982-01-01

    The reaction between the hydroxides of calcium, sodium and potassium, and clay minerals, feldspars, and some rocks (aggregates for use in concrete) was investigated. The reaction products were examined by means of x-ray diffraction and chemical analysis. The solid reaction products identified were hydrated calcium silicates,hydrated calcium aluminates, and hydrated calcium alumina silicates. It was found that, in the presence of water, calcium hydroxide liberated alkali into solution if the rocks and minerals contained alkali metals in their structure. Two crystalline hydrated sodium calcium silicates (12A and 16A) were prepared in the system Na 2 O-CaO-SiO 2 -H 2 O at 80 degrees Celsius. The one compound (12A) was also observed when sodium hydroxide plus calcium hydroxide and water reacted with silica- or silicate-containing rocks

  17. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation

    Science.gov (United States)

    Bruhn, D.; Groebner, N.; Kohlstedt, D. L.

    2000-01-01

    The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  18. [Isotope tracer studies of diffusion in silicates and of geological transport processes using actinide elements

    International Nuclear Information System (INIS)

    Wasserburg, G.J.

    1991-01-01

    This report consists of sections entitled resonance ionization mass spectrometry of Os, Mg self-diffusion in spinel and silicate melts, neotectonics: U-Th ages of solitary corals from the California coast, uranium-series evidence on diagenesis and hydrology of carbonates of Barbados, diffusion of H 2 O molecules in silicate glasses, and development of an extremely high abundance sensitivity mass spectrometer

  19. High-performance polymer/layered silicate nanocomposites

    Science.gov (United States)

    Heidecker, Matthew J.

    High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the

  20. Measurements of the viscosity of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 liquid solutions

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.

    1983-01-01

    Adding UO 2 produces an increase of viscosity of borax and sodium metaborate. For temperatures below 920 0 C the measurements with the borax-UO 2 solution show a phase separation. Contrary to borax the sodium metaborate solutions indicate a well defined melting point. At temperatures slightly below the melting point a solid phase is formed. The tested sodium-borates-UO 2 mixtures are in liquid form. (DG)

  1. Preparation of β-belite using liquid alkali silicates

    International Nuclear Information System (INIS)

    Koutník, P.

    2017-01-01

    The aim of this study is the preparation of β-belite by a solid-state reaction using powdered limestone, amorphous silica and liquid alkali silicates. The raw materials were blended, the mixtures were agglomerated and then burnt. The resulting samples were characterized by X-ray diffraction analysis and scanning electron microscopy. Free lime content in the β-belite samples was also determined. The effects of CaO/SiO2 ratio (1.6–2.1), burning temperature (800–1400 °C), utilization of different raw materials (silica fume, synthetic silica, potassium silicate, sodium silicate, potassium hydroxide) and burning time (0.5–16 h) on free lime content and mineralogical composition were investigated. The purest ?-belite samples were prepared from a mixture of powdered limestone, silica fume and liquid potassium silicate with a ratio CaO/SiO2 = 2 by burning at temperatures between 1100 and 1300 °C for more than 2 h. Decreasing of the CaO/SiO2 ratio led to rankinite formation and lower a burning temperature led to the formation of wollastonite. [es

  2. Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica

    Science.gov (United States)

    Currier, R. M.

    2017-12-01

    In the McMurdo Dry Valleys of Antarctica, a Jurassic aged dolerite sill induced partial melting of granite in the shallow crust. The melt zone can be traced in full, from high degrees of melting (>60%) along the dolerite contact, to no apparent signs of melting, 10s of meters above the contact. Within this melt zone, the well-known rapakivi texture is found, arrested in various stages of development. High above the contact, and at low degrees of melting, K-feldspar crystals are slightly rounded and unmantled. In the lower half of the melt zone, mantles of cellular textured plagioclase appear on K-feldspar, and thicken towards the contact heat source. At the highest degrees of melting, cellular-textured plagioclase completely replaces restitic K-feldspar. Because of the complete exposure and intact context, the leading models of rapakivi texture formation can be tested against this system. The previously proposed mechanisms of subisothermal decompression, magma-mixing, and hydrothermal exsolution all fail to adequately describe rapakivi generation in this melt zone. Preferred here is a closed system model that invokes the production of a heterogeneous, disequilibrium melt through rapid heating, followed by calcium and sodium rich melt reacting in a peritectic fashion with restitic K-feldspar crystals. This peritectic reaction results in the production of plagioclase of andesine-oligoclase composition—which is consistent with not just mantles in the melt zone, but globally as well. The thickness of the mantle is diffusion limited, and thus a measure of the diffusive length scale of sodium and calcium over the time scale of melting. Thermal modeling provides a time scale of melting that is consistent with the thickness of observed mantles. Lastly, the distribution of mantled feldspars is highly ordered in this melt zone, but if it were mobilized and homogenized—mixing together cellular plagioclase, mantled feldspars, and unmantled feldspars—the result would be

  3. Synthesis of calcium silicates by Pechini method and exchanging ions of sodium alginate-calcium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Garay, K.A.; Martinez-Luevanos, A.; Cruz-Ortiz, B.R.; Garcia-Cerda, L.A.; Lopez-Badillo, C.M.

    2016-07-01

    Calcium silicates samples were synthesized using tetraethyl orthosilicate (TEOS) and by Pechini methodology assisted with ion-exchange of sodium alginate, followed by a heat treatment of 800°C by two hours. A, B and C samples were obtained using 1.7×10−3M, 3.4×10−3M and 5.1×10−3M of TEOS, respectively, and without heat treatment; these samples were characterized by thermogravimetric analysis (TGA) and infrared spectroscopy with attenuated total reflectance (FTIR-ATR). Furthermore, samples A800, B800 and C800 obtained using a heat treatment of 800° by two hours were characterized by FTIR-ATR, absorption technique (BET), X-ray diffraction (XRD) and by scanning electron microscopy. The XRD patterns indicate that sample A800 contains olivine (Ca2SiO4) in orthorhombic phase and wollastonite-2M (CaSiO3); sample B800 showed the earlier phases and quartz (SiO2), whereas sample C800 contains wollastonite phases and larnite-2M (Ca2SiO4). (Author)

  4. Characterization and leach investigations of sodium silicate matrices used for immobilization of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Sharaf El-Deen, A N; El-Dessouky, M M; Helmy, M A [Petroleum Research Institue, Academy of Scientific Research, Nasr City, Cairo (Egypt); Abed Raouf, M W; El-Dessouky, M I [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt)

    1995-10-01

    In this study, simulated liquid waste and radioactive tracers of Cs-137 and Co-60 were used to represent the high-level liquid waste (HLLW). immobilization of the liquid waste was performed by its interaction with commercial sodium silicate hydrosol to the gel point, at room temperature. The candidate waste forms forms were fabricated from the obtained hydrogel through several steps including: drying the hydrogel to a solid gel form, crushing the solid to be in a powder from, pressing the powder to the green disk form using a cold pressing technique and finally the heat treatment of the green disks to the sintered form. Characterization for the obtained waste forms was carried out using: thermal analysis (TGA and DTA), X-ray powder diffraction (XRD) techniques and porosity investigation. The leach tests for the prepared forms were conducted according to the international atomic energy agency (IAEA) standard test (static and accelerated). The static test was carried out for simulated and radioactive waste in distilled, bidistilled and ground water for 28 days. The accelerated (Soxhlet) test was conducted for simulated waste in deionized water for 72 hours. 4 figs., 7 tabs.

  5. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    Science.gov (United States)

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization.

  6. Effect of Sodium Carboxymethyl Celluloses on Water-catalyzed Self-degradation of 200-degree C-heated Alkali-Activated Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.

    2012-05-01

    We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200°C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cement’s self-degradation. Thus, CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.

  7. Highly CO2-supersaturated melts in the Pannonian lithospheric mantle - A transient carbon reservoir?

    Science.gov (United States)

    Créon, Laura; Rouchon, Virgile; Youssef, Souhail; Rosenberg, Elisabeth; Delpech, Guillaume; Szabó, Csaba; Remusat, Laurent; Mostefaoui, Smail; Asimow, Paul D.; Antoshechkina, Paula M.; Ghiorso, Mark S.; Boller, Elodie; Guyot, François

    2017-08-01

    Subduction of carbonated crust is widely believed to generate a flux of carbon into the base of the continental lithospheric mantle, which in turn is the likely source of widespread volcanic and non-volcanic CO2 degassing in active tectonic intracontinental settings such as rifts, continental margin arcs and back-arc domains. However, the magnitude of the carbon flux through the lithosphere and the budget of stored carbon held within the lithospheric reservoir are both poorly known. We provide new constraints on the CO2 budget of the lithospheric mantle below the Pannonian Basin (Central Europe) through the study of a suite of xenoliths from the Bakony-Balaton Highland Volcanic Field. Trails of secondary fluid inclusions, silicate melt inclusions, networks of melt veins, and melt pockets with large and abundant vesicles provide numerous lines of evidence that mantle metasomatism affected the lithosphere beneath this region. We obtain a quantitative estimate of the CO2 budget of the mantle below the Pannonian Basin using a combination of innovative analytical and modeling approaches: (1) synchrotron X-ray microtomography, (2) NanoSIMS, Raman spectroscopy and microthermometry, and (3) thermodynamic models (Rhyolite-MELTS). The three-dimensional volumes reconstructed from synchrotron X-ray microtomography allow us to quantify the proportions of all petrographic phases in the samples and to visualize their textural relationships. The concentration of CO2 in glass veins and pockets ranges from 0.27 to 0.96 wt.%, higher than in typical arc magmas (0-0.25 wt.% CO2), whereas the H2O concentration ranges from 0.54 to 4.25 wt.%, on the low end for estimated primitive arc magmas (1.9-6.3 wt.% H2O). Trapping pressures for vesicles were determined by comparing CO2 concentrations in glass to CO2 saturation as a function of pressure in silicate melts, suggesting pressures between 0.69 to 1.78 GPa. These values are generally higher than trapping pressures for fluid inclusions

  8. Multiple ways of producing intermediate and silicic rocks within Thingmúli and other Icelandic volcanoes

    DEFF Research Database (Denmark)

    Charreteur, Gilles; Tegner, Christian; Haase, Karsten

    2013-01-01

    Major and trace element compositions of rocks and coexisting phenocrysts of the ThingmA(0)li volcano suggest a revision of the existing models for the formation of intermediate and silicic melts in Iceland. The new data define two compositional tholeiitic trends with a significant gap between the...... between the compositions of intermediate and silicic rocks and plate tectonic setting, therefore, should be avoided....

  9. X-ray Raman scattering study of MgSiO₃ glass at high pressure: Implication for triclustered MgSiO₃ melt in Earth's mantle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Keun; Lin, Jung-Fu; Cai, Yong Q.; Hiraoka, Nozomu; Eng, Peter J.; Okuchi, Takuo; Mao, Ho-kwang; Meng, Yue; Hu, Michael Y.; Chow, Paul; Shu, Jinfu; Li, Baosheng; Fukui, Hiroshi; Lee, Bum Han; Kim, Hyun Na; Yoo, Choong-Shik [SNU; (LLNL); (NSRRC); (Okayama); (UC); (CIW); (Wash State U); (Nagoya); (SBU)

    2015-02-09

    Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; [3]O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle.

  10. Coating and melt induced agglomeration in a poultry litter fired fluidized bed combustor

    International Nuclear Information System (INIS)

    Billen, Pieter; Creemers, Benji; Costa, José; Van Caneghem, Jo; Vandecasteele, Carlo

    2014-01-01

    The combustion of poultry litter, which is rich in phosphorus, in a fluidized bed combustor (FBC) is associated with agglomeration problems, which can lead to bed defluidization and consequent shutdown of the installation. Whereas earlier research indicated coating induced agglomeration as the dominant mechanism for bed material agglomeration, it is shown experimentally in this paper that both coating and melt induced agglomeration occur. Coating induced agglomeration mainly takes place at the walls of the FBC, in the freeboard above the fluidized bed, where at the prevailing temperature the bed particles are partially molten and hence agglomerate. In the ash, P 2 O 5 forms together with CaO thermodynamically stable Ca 3 (PO 4 ) 2 , thus reducing the amount of calcium silicates in the ash. This results in K/Ca silicate mixtures with lower melting points. On the other hand, in-bed agglomeration is caused by thermodynamically unstable, low melting HPO 4 2− and H 2 PO 4 − salts present in the fuel. In the hot FBC these salts may melt, may cause bed particles to stick together and may subsequently react with Ca salts from the bed ash, forming a solid bridge of the stable Ca 3 (PO 4 ) 2 between multiple particles. - Highlights: • Coating induced agglomeration not due to K phosphates, but due to K silicates. • Melt induced agglomeration due to H 2 PO 4 − and HPO 4 2− salts in the fuel. • Wall agglomeration corresponds to coating induced mechanism. • In-bed agglomeration corresponds to melt induced mechanism

  11. The role of liquid-liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions

    Science.gov (United States)

    Guzmics, Tibor; Zajacz, Zoltán; Mitchell, Roger H.; Szabó, Csaba; Wälle, Markus

    2015-02-01

    We have reconstructed the compositional evolution of the silicate and carbonate melt, and various crystalline phases in the subvolcanic reservoir of Kerimasi Volcano in the East African Rift. Trace element concentrations of silicate and carbonate melt inclusions trapped in nepheline, apatite and magnetite from plutonic afrikandite (clinopyroxene-nepheline-perovskite-magnetite-melilite rock) and calciocarbonatite (calcite-apatite-magnetite-perovskite-monticellite-phlogopite rock) show that liquid immiscibility occurred during the generation of carbonatite magmas from a CO2-rich melilite-nephelinite magma formed at relatively high temperatures (1,100 °C). This carbonatite magma is notably more calcic and less alkaline than that occurring at Oldoinyo Lengai. The CaO-rich (32-41 wt%) nature and alkali-"poor" (at least 7-10 wt% Na2O + K2O) nature of these high-temperature (>1,000 °C) carbonate melts result from strong partitioning of Ca (relative to Mg, Fe and Mn) in the immiscible carbonate and the CaO-rich nature (12-17 wt%) of its silicate parent (e.g., melilite-nephelinite). Evolution of the Kerimasi carbonate magma can result in the formation of natrocarbonatite melts with similar composition to those of Oldoinyo Lengai, but with pronounced depletion in REE and HFSE elements. We suggest that this compositional difference results from the different initial parental magmas, e.g., melilite-nephelinite at Kerimasi and a nephelinite at Oldoinyo Lengai. The difference in parental magma composition led to a significant difference in the fractionating mineral phase assemblage and the element partitioning systematics upon silicate-carbonate melt immiscibility. LA-ICP-MS analysis of coeval silicate and carbonate melt inclusions provides an opportunity to infer carbonate melt/silicate melt partition coefficients for a wide range of elements. These data show that Li, Na, Pb, Ca, Sr, Ba, B, all REE (except Sc), U, V, Nb, Ta, P, Mo, W and S are partitioned into the carbonate

  12. Contribution of early impact events to metal-silicate separation, thermal annealing, and volatile redistribution: Evidence in the Pułtusk H chondrite

    Science.gov (United States)

    Krzesińska, Agata M.

    2017-11-01

    Three-dimensional X-ray tomographic reconstructions and petrologic studies reveal voluminous accumulations of metal in Pułtusk H chondrite. At the contact of these accumulations, the chondritic rock is enriched in troilite. The rock contains plagioclase-rich bands, with textures suggesting crystallization from melt. Unusually large phosphates are associated with the plagioclase and consist of assemblages of merrillite, and fluorapatite and chlorapatite. The metal accumulations were formed by impact melting, rapid segregation of metal-sulfide melt and the incorporation of this melt into the fractured crater basement. The impact most likely occurred in the early evolution of the H chondrite parent body, when post-impact heat overlapped with radiogenic heat. This enabled slow cooling and separation of the metallic melt into metal-rich and sulfide-rich fractions. This led to recrystallization of chondritic rock in contact with the metal accumulations and the crystallization of shock melts. Phosphorus was liberated from the metal and subsumed by the silicate shock melt, owing to oxidative conditions upon slow cooling. The melt was also a host for volatiles. Upon further cooling, phosphorus reacted with silicates leading to the formation of merrillite, while volatiles partitioned into the residual halogen-rich, dry fluid. In the late stages, the fluid altered merrillite to patchy Cl/F-apatite. The above sequence of alterations demonstrates that impact during the early evolution of chondritic parent bodies might have contributed to local metal segregation and silicate melting. In addition, postshock conditions supported secondary processes: compositional/textural equilibration, redistribution of volatiles, and fluid alterations.

  13. Chemically durable iron phosphate glasses for vitrifying sodium bearing waste (SBW) using conventional and cold crucible induction melting (CCIM) techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.W. E-mail: cheol@umr.edu; Ray, C.S.; Zhu, D.; Day, D.E.; Gombert, D.; Aloy, A.; Mogus-Milankovic, A.; Karabulut, M

    2003-11-01

    A simulated sodium bearing waste (SBW) was successfully vitrified in iron phosphate glasses (IPG) at a maximum waste loading of 40 wt% using conventional and cold crucible induction melting (CCIM) techniques. No sulfate segregation or crystalline phases were detectable in the IPG when examined by SEM and XRD. The IPG wasteforms containing 40 wt% SBW satisfy current DOE requirements for aqueous chemical durability as evaluated from their bulk dissolution rate (D{sub R}), product consistency test, and vapor hydration test. The fluid IPG wasteforms can be melted at a relatively low temperature (1000 deg. C) and for short times (<6 h). These properties combined with a significantly higher waste loading, and the feasibility of CCIM melting offer considerable savings in time, energy, and cost for vitrifying the SBW stored at the Idaho National Engineering and Environmental Laboratory in iron phosphate glasses.

  14. Transformation and fragmentation behavior of molten aluminum in sodium pool

    International Nuclear Information System (INIS)

    Nishimura, S.; Kinoshita, I.; Ueda, N.; Sugiyama, K. I.

    2003-01-01

    In order to investigate the possibility of fragmentation of the metallic alloy fuel on liquid phase formed by metallurgical reactions, which is important in evaluating the sequence of core disruptive accidents for metallic fuel fast reactors, a series of experiments was carried out using molten aluminum and sodium under the condition that the boiling of sodium on the surface of the melt does not occur. The melting point of aluminum (933K) is roughly equivalent to the liquefaction temperature between the U-Pu-Zr alloy fuel and the SUS cladding (about 923K). The thermal fragmentation of a molten aluminum with a solid crust in the sodium pool is caused by the transient pressurization within the melt confined by the solid crust even under the condition that the instantaneous contact interface temperature between the melt and the sodium is below the boiling point of sodium. This indicates the possibility that the metallic alloy fuel on liquid phase formed by metallurgical reactions can be fragmented without occurring the boiling of sodium on the surface of the melt. The transient pressurization within the melt is considered to be caused by following two mechanisms. i) the overheating of the coolant entrapped hydrodynamically inside the aluminum melt confined by solid crust ii) the progression of solid crust inward and the squeeze of inner liquid part of the aluminum melt confined by solid crust It is found that the degree of fragmentation defined by mass median diameter has the same tendency for different dropping modes (drop or jet) with different mass and ambient Weber number of the melt in the present experimental conditions

  15. Rhenium corrosion in chloride melts

    International Nuclear Information System (INIS)

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.

    1989-01-01

    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined

  16. Modeling of evaporation processes in glass melting furnaces

    NARCIS (Netherlands)

    Limpt, van J.A.C.

    2007-01-01

    The majority of glass furnaces worldwide, apply fossil fuel combustion to transfer heat directly by radiation from the combustion processes to the melting batch and glass melt. During these high temperature melting processes, some glass components, such as: sodium, potassium, boron and lead species

  17. USE OF LOCAL NATURAL SILICEOUS RAW MATERIAL AND WASTES FOR PRODUCTION OF HEAT-INSULATING FOAMCONCRETE

    Directory of Open Access Journals (Sweden)

    V. U. Matsapulin

    2015-01-01

    Full Text Available The article analyzes the resource base, reserves and the use of siliceous rocks, their economic feasibility of the use for production of building materials of new generation with low-energy and other costs. Presented are the results of laboratory research and testing technology of production of insulating foam from a composition based on an aqueous solution of sodium silicate obtained from the local siliceous rocks (diatomite and the liquid alkali component - soapstock, hardener from ferrochrome slag and waste carbonate rock able to harden at a low temperature processing ( 100-110 ° C.

  18. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate.

    Science.gov (United States)

    Spataru, Catalin Ilie; Ianchis, Raluca; Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Trica, Bogdan; Nitu, Sabina Georgiana; Somoghi, Raluca; Alexandrescu, Elvira; Oancea, Florin; Donescu, Dan

    2016-11-19

    The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA) and its alkaline salt (OLANa). Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA), with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na⁺ = 2:1, the molar ratio (OLA/OLANa = 1:1) required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES) was added in a sodium silicate sol-gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) (TG-DSC) analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids' final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules.

  19. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate

    Science.gov (United States)

    Spataru, Catalin Ilie; Ianchis, Raluca; Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Trica, Bogdan; Nitu, Sabina Georgiana; Somoghi, Raluca; Alexandrescu, Elvira; Oancea, Florin; Donescu, Dan

    2016-01-01

    The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA) and its alkaline salt (OLANa). Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA), with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na+ = 2:1, the molar ratio (OLA/OLANa = 1:1) required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES) was added in a sodium silicate sol–gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) (TG-DSC) analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids’ final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules. PMID:27869768

  20. Effect of the addition of Na2O on the thermal stability of alumino silicated glasses rich in rare earths

    International Nuclear Information System (INIS)

    Lassalle-Herraud, Olivier; Matecki, Marc; Glorieux, Benoit; Sadiki, Najim; Montoullout, Valerie; Dussossoy, Jean-Luc

    2006-01-01

    Alumino silicated glasses rich in rare earths have been prepared by concentrated solar way. Their recrystallization, the structural and microstructural properties as well as the mechanical and thermal properties of these glasses have been studied. The results show the effect of sodium addition on the thermal stability of the materials, the vitreous transition temperature and the recrystallization temperature. A heat treatment has allowed to reveal the formation of sodium apatite micro-crystallites and of lanthanum silicate in the glasses. (O.M.)

  1. Influence of sodium content on the properties of bioactive glasses for use in air abrasion

    International Nuclear Information System (INIS)

    Farooq, Imran; Brauer, Delia S; Hill, Robert G; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz

    2013-01-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO 2 –P 2 O 5 –CaO–CaF 2 –Na 2 O) with low sodium content (0 to 10 mol% Na 2 O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na 2 O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. (paper)

  2. Transparent phosphosilicate glasses containing crystals formed during cooling of melts

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; He, W.

    2011-01-01

    The effect of P2O5-SiO2 substitution on spontaneous crystallization of SiO2-Al2O3-P2O5- Na2O-MgO melts during cooling was studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and rotation viscometry. Results show that addition of P2O5 leads...... to amorphous phase separation (APS), i.e., phosphate- and silicate-rich phases. It is due to the tendency of Mg2+ to form [MgO4] linking with [SiO4]. Molar substitution of P2O5 for SiO2 enhances the network polymerization of silicate-rich phase in the melts, and thereby the spontaneous crystallization of cubic...... Na2MgSiO4 is also enhanced during cooling of the melts. In addition, the sizes of the local crystalline and separated glassy domains are smaller than the wavelength of the visible light, and this leads to the transparency of the obtained glasses containing crystals....

  3. Electrochemistry of uranium in sodium chloroaluminate melts

    International Nuclear Information System (INIS)

    D'olieslager, W.; Meuris, F.; Heerman, L.

    1990-01-01

    The electrochemical behaviour of uranium was studied in basic, NaCl-saturated NaAlCl 4 melts at 175 deg C. Solutions of UO 3 exhibit two oxidation/reduction waves (cyclic voltammetry). Analysis of the peak currents (cyclic voltammetry), the limiting currents (pulse polarography) and the non-linear log i-t curves (anodic controlled potential coulometry) leads to the conclusion that uranium(IV) in the basic chloroaluminate melt exists as two different species in slow equilibrium with one another, of which only one species can be oxidized to U(VI). (author) 16 refs.; 7 figs.; 3 tabs

  4. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite

    Science.gov (United States)

    Ionov, Dmitri A.; Doucet, Luc S.; Xu, Yigang; Golovin, Alexander V.; Oleinikov, Oleg B.

    2018-03-01

    The Obnazhennaya kimberlite in the NE Siberian craton hosts a most unusual cratonic xenolith suite, with common rocks rich in pyroxenes and garnet, and no sheared peridotites. We report petrographic and chemical data for whole rocks (WR) and minerals of 20 spinel and garnet peridotites from Obnazhennaya with Re-depletion Os isotope ages of 1.8-2.9 Ga (Ionov et al., 2015a) as well as 2 pyroxenites. The garnet-bearing rocks equilibrated at 1.6-2.8 GPa and 710-1050 °C. Some xenoliths contain vermicular spinel-pyroxene aggregates with REE patterns in clinopyroxene mimicking those of garnet. The peridotites show significant scatter of Mg# (0.888-0.924), Cr2O3 (0.2-1.4 wt.%) and high NiO (0.3-0.4 wt.%). None are pristine melting residues. Low-CaO-Al2O3 (≤0.9 wt.%) dunites and harzburgites are melt-channel materials. Peridotites with low to moderate Al2O3 (0.4-1.8 wt.%) usually have CaO > Al2O3, and some have pockets of calcite texturally equilibrated with olivine and garnet. Such carbonates, exceptional in mantle xenoliths and reported here for the first time for the Siberian mantle, provide direct evidence for modal makeover and Ca and LREE enrichments by ephemeral carbonate-rich melts. Peridotites rich in CaO and Al2O3 (2.7-8.0 wt.%) formed by reaction with silicate melts. We infer that the mantle lithosphere beneath Obnazhennaya, initially formed in the Mesoarchean, has been profoundly modified. Pervasive inter-granular percolation of highly mobile and reactive carbonate-rich liquids may have reduced the strength of the mantle lithosphere leading the way for reworking by silicate melts. The latest events before the kimberlite eruption were the formation of the carbonate-phlogopite pockets, fine-grained pyroxenite veins and spinel-pyroxene symplectites. The reworked lithospheric sections are preserved at Obnazhennaya, but similar processes could erode lithospheric roots in the SE Siberian craton (Tok) and the North China craton, where ancient melting residues and

  5. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  6. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    International Nuclear Information System (INIS)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-01-01

    We report results on lithium alumino-silicate ion source development in preparation for warm-dense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCX-II). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ∼1275 C, a space-charge-limited Li + beam current density of J ∼1 mA/cm 2 was obtained. The lifetime of the ion source was ∼50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 (micro) s.

  7. Immiscible iron- and silica-rich melt in basalt petrogenesis documented in the Skaergaard intrusion

    DEFF Research Database (Denmark)

    Jakobsen, Jakob Kløve; Veksler, Ilya; Tegner, Christian

    2005-01-01

    colored type contains 30.9 6 4.2 wt% FeOt and 40.7 6 3.6 wt% SiO2, whereas the light colored type contains 8.6 6 5.9 wt% FeOt and 65.6 6 7.3 wt% SiO2. Similar light colored melt inclusions in olivine and fine grained dark and light colored interstitial pockets also give evidence of crystallization from......Silicate liquid immiscibility in basalt petrogenesis is a contentious issue. Immiscible iron and silica-rich liquids were reported in melt inclusions of lunar basalt and in groundmass glasses of terrestrial volcanics. In fully crystallized plutonic rocks, however, silicate liquid immiscibility has...

  8. A study on structural analysis of highly corrosive melts at high temperature

    CERN Document Server

    Ohtori, N

    2002-01-01

    When sodium is burned at high temperature in the atmosphere, it reacts simultaneously with H sub 2 O in the atmosphere so that it can produce high temperature melt of sodium hydroxide as a solvent. If this melt includes peroxide ion (O sub 2 sup 2 sup -), it will be a considerably active and corrosive for iron so that several sodium iron double oxides will be produced as corrosion products after the reaction with steel structures. The present study was carried out in order to investigate the ability of presence of peroxide ion in sodium hydroxide solvent at high temperature and that of identification of the several corrosion products using laser Raman spectroscopy. The measurement system with ultraviolet laser was developed simultaneously in the present work to improve the ability of the measurement at high temperature. As results from the measurements, the possibility of the presence of peroxide ion was shown up to 823K in sodium peroxide and 823K in the melt of sodium hydroxide mixed with sodium peroxide. A...

  9. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate

    Directory of Open Access Journals (Sweden)

    Catalin Ilie Spataru

    2016-11-01

    Full Text Available The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA and its alkaline salt (OLANa. Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA, with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na+ = 2:1, the molar ratio (OLA/OLANa = 1:1 required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES was added in a sodium silicate sol–gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG and differential scanning calorimetry (DSC (TG-DSC analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids’ final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules.

  10. Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: Evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii

    Science.gov (United States)

    Dixon, Jacqueline; Clague, David A.; Cousens, Brian; Monsalve, Maria Luisa; Uhl, Jessika

    2008-09-01

    We present new volatile, trace element, and radiogenic isotopic compositions for rejuvenated-stage lavas erupted on Niihau and its submarine northwest flank. Niihau rejuvenated-stage Kiekie Basalt lavas are mildly alkalic and are isotopically similar to, though shifted to higher 87Sr/86Sr and lower 206Pb/204Pb than, rejuvenated-stage lavas erupted on other islands and marginal seafloor settings. Kiekie lavas display trace element heterogeneity greater than that of other rejuvenated-stage lavas, with enrichments in Ba, Sr, and light-rare earth elements resulting in high and highly variable Ba/Th and Sr/Ce. The high Ba/Th lavas are among the least silica-undersaturated of the rejuvenated-stage suite, implying that the greatest enrichments are associated with the largest extents of melting. Kiekie lavas also have high and variable H2O/Ce and Cl/La, up to 620 and 39, respectively. We model the trace element concentrations of most rejuvenated-stage lavas by small degrees (˜1% to 9%) of melting of depleted peridotite recently metasomatized by a few percent of an enriched incipient melt (0.5% melting) of the Hawaiian plume. Kiekie lavas are best explained by 4% to 13% partial melting of a peridotite source metasomatized by up to 0.2% carbonatite, similar in composition to oceanic carbonatites from the Canary and Cape Verde Islands, with lower proportion of incipient melt than that for other rejuvenated-stage lavas. Primary H2O and Cl of the carbonatite component must be high, but variability in the volatile data may be caused by heterogeneity in the carbonatite composition and/or interaction with seawater. Our model is consistent with predictions based on carbonated eclogite and peridotite melting experiments in which (1) carbonated eclogite and peridotite within the Hawaiian plume are the first to melt during plume ascent; (2) carbonatite melt metasomatizes plume and surrounding depleted peridotite; (3) as the plume rises, silica-undersaturated silicate melts are also

  11. Silicate Inclusions in IAB Irons: Correlations Between Metal Composition and Inclusion Properties, and Inferences for Their Origin

    Science.gov (United States)

    Benedix, G. K.; McCoy, T. J.; Keil, K.

    1995-09-01

    IAB irons are the largest group of iron meteorites, exhibit a large range of siderophile element concentrations in their metal, and commonly contain silicate inclusions with roughly chondritic composition. They are closely related to IIICD irons [1,2] and their inclusions resemble winonaites [3]. It has been suggested that IAB's and IIICD's formed in individual impact melt pools [4,2] on a common parent body. However, it has also been suggested that fractional crystallization [5,6] of a S-saturated core could produce the observed siderophile element trends. Metal composition is correlated with silicate inclusion mineralogy in IIICD's [1], indicating reactions between solid silicates and the metallic magma in a core. These trends observed in IIICD's differ from those in IAB's, suggesting different parent bodies. A bi-modal grouping, based primarily on mineralogy and mineral abundances, was suggested for IAB inclusions [7]. However, recent recoveries of several new silicate-bearing IAB's, along with the emergence of new ideas on their origins, prompted a comprehensive study to document more fully the range of inclusions within IAB irons, to examine possible correlations between the compositions of the metallic host and the silicate inclusions, and to elucidate the origin of IAB irons. We are studying troilite-graphite-silicate inclusions in 24 IAB irons with Ni concentrations ranging from 6.6-25.0%. These include Odessa and Copiapo types [7], newly recovered meteorites (e.g., Lueders [8]) and meteorites with extreme Ni contents (e.g., Jenny's Creek, 6.8%; San Cristobal, 25.0% [9]). The inclusions exhibit a range of textures from recrystallized to partial melts (e.g., Caddo County [10]). Rigorous classification [7] is hampered by heterogeneities between group meteorites, between different samples of distinct meteorites, and within individual inclusions. While intergroup heterogeneities make comparisons between the suite of IAB's somewhat difficult, some general trends

  12. Influence of sand base preparation on properties of chromite moulding sands with sodium silicate hardened with selected methods

    Directory of Open Access Journals (Sweden)

    Stachowicz M.

    2017-03-01

    Full Text Available The paper presents a research on the relation between thermal preparation of chromite sand base of moulding sands containing sodium silicate, hardened with selected physical and chemical methods, and structure of the created bonding bridges. Test specimens were prepared of chromite sand - fresh or baked at 950°C for 10 or 24 hours - mixed with 0.5 wt.% of the selected non-modified inorganic binder and, after forming, were hardened with CO2 or liquid esters, dried traditionally or heated with microwaves at 2.45 GHz. It was shown on the grounds of SEM observations that the time of baking the base sand and the hardening method significantly affect structure of the bonding bridges and are correlated with mechanical properties of the moulding sands. It was found that hardening chromite-based moulding mixtures with physical methods is much more favourable than hardening with chemical methods, guaranteeing also more than ten times higher mechanical properties.

  13. Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite

    Directory of Open Access Journals (Sweden)

    Muljani Srie

    2016-01-01

    Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.

  14. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration.

    Science.gov (United States)

    Cui, Bencang; Li, Jing; Wang, Huining; Lin, Yuanhua; Shen, Yang; Li, Ming; Deng, Xuliang; Nan, Cewen

    2017-07-01

    To fabricate indirect restorative composites for CAD/CAM applications and evaluate the mechanical properties. Polymer-infiltrated-ceramic composites were prepared through infiltrating polymer into partially sintered sodium aluminum silicate ceramic blocks and curing. The corresponding samples were fabricated according to standard ISO-4049 using for mechanical properties measurement. The flexural strength and fracture toughness were measured using a mechanical property testing machine. The Vickers hardness and elastic modulus were calculated from the results of nano-indentation. The microstructures were investigated using secondary electron detector. The density of the porous ceramic blocks was obtained through TG-DTA. The conversion degrees were calculated from the results of mid-infrared spectroscopy. The obtained polymer infiltrated composites have a maximum flexural strength value of 214±6.5MPa, Vickers hardness of 1.76-2.30GPa, elastic modulus of 22.63-27.31GPa, fracture toughness of 1.76-2.35MPam 1/2 and brittleness index of 0.75-1.32μm -1/2 . These results were compared with those of commercial CAD/CAM blocks. Our results suggest that these materials with good mechanical properties are comparable to two commercial CAD/CAM blocks. The sintering temperature could dramatically influence the mechanical properties. Restorative composites with superior mechanical properties were produced. These materials mimic the properties of natural dentin and could be a promising candidate for CAD/CAM applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Application of siliceous metal product for preliminary deoxidizing of metal in open-hearth furnaces

    International Nuclear Information System (INIS)

    Luk'yanenko, A.A.; Evdokimov, A.V.; Kornilov, V.N.; Il'in, V.I.; Kuleshov, Yu.V.

    1995-01-01

    Metal wastes of abrasive processes-concomitant product of synthetic corundum production containing approximately 10 % Si - were tested for preliminary deoxidizing of metal in furnace to reduce manganese loss in burning and to increase the steel deoxidizing. The technology of preliminary deoxidizing of metal by siliceous metal product was mastered in the course of low carbon steel melting (st3sp, st4sp). The results of the study has shown that the use of siliceous metal product permits reducing the consumption of manganese-containing ferroalloys. 1 tab

  16. Chemical Zoning of Feldspars in Lunar Granitoids: Implications for the Origins of Lunar Silicic Magmas

    Science.gov (United States)

    Mills, R. D; Simon, J. I.; Alexander, C.M. O'D.; Wang, J.; Christoffersen, R.; Rahman, Z..

    2014-01-01

    Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,78

  17. COMPARISON OF SOL-GEL SILICATE COATINGS ON Ti SUBSTRATE

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2012-12-01

    Full Text Available The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings contained calcium nitrate and triethyl phosphate. Mechanically and chemically treated titanium substrates were dipped into sols and dried and fired. Silicate coatings from the first group were also chemically treated in 10 mol.l-1 solution of sodium hydroxide. All coatings were measured to determine their adhesive and bioactive properties and furthermore the antibacterial properties were tested in the case of first group. Surfaces of the coated substrates were investigated after the firing and after the individual tests with optical and electron microscopy and X-ray microdiffraction. A tape test demonstrated excellent adhesive property of all coatings to the substrate, classified with degree 5. A static in vitro test demonstrated bioactivity of nearly all the coatings. The basic silicate coating from the first group and one type of coating from the second group were identified as inert. Antibacterial properties of silicate coatings containing silver showed to be different when tested against Escherichia coli bacteria. A complete inhibition of the growth of bacteria under our experimental conditions was observed for the coating containing silver and monetite and a partial inhibition of the growth of bacteria for coatings containing silver and silver in combination with brushite.

  18. Sodium Silicate Gel Effect on Cemented Tailing Backfill That Contains Lead-Zinc Smelting Slag at Early Ages

    Directory of Open Access Journals (Sweden)

    Lijie Guo

    2018-01-01

    Full Text Available This paper presents the results of an experimental study on the priming effect of sodium silicate gel (SS on cemented tailing backfill (CTB that contains lead-zinc smelting slag. CTB and cemented paste (CP containing lead-zinc smelting slag samples with SS of 0 and 0.4% of the mass of the slag were prepared and cured at 20°C for 1, 3, 7, and 28 days. Mechanical test and pore structure analyses were performed on the studied CTB samples, microstructural analyses (X-ray diffraction analysis and thermal gravity analysis were performed on the studied CP samples, whereas the electrical conductivity of CTB was monitored. The results reveal that SS has a significant positive effect on cementitious activity of binder mixed by cement and lead-zinc smelting slag. This activation leads to the acceleration of binder hydration process, the formation of more cement hydration products in the CTBs, and the refinement of their pore structure, which is favorable for the strength development of CTB.

  19. Sodium waste technology: A summary report

    International Nuclear Information System (INIS)

    Abrams, C.S.; Witbeck, L.C.

    1987-01-01

    The Sodium Waste Technology (SWT) Program was established to resolve long-standing issues regarding disposal of sodium-bearing waste and equipment. Comprehensive SWT research programs investigated a variety of approaches for either removing sodium from sodium-bearing items, or disposal of items containing sodium residuals. The most successful of these programs was the design, test, and the production operation of the Sodium Process Demonstration Facility at ANL-W. The technology used was a series of melt-drain-evaporate operations to remove nonradioactive sodium from sodium-bearing items and then converting the sodium to storable compounds

  20. Fragmentation of molten core material by sodium

    International Nuclear Information System (INIS)

    Chu, T.Y.

    1982-01-01

    A series of scoping experiments was performed to study the fragmentation of prototypic high temperature melts in sodium. The quantity of melt involved was at least one order of magnitude larger than previous experiments. Two modes of contact were used: melt streaming into sodium and sodium into melt. The average bulk fragment size distribution was found to be in the range of previous data and the average size distribution was found to be insensitive to mode of contact. SEM studies showed that the metal component typically fragmented in the molten phase while the oxide component fragmented in the solid phase. For UO 2 -ZrO 2 /stainless steel melts no sigificant spatial separation of the metal and oxide was observed. The fragment size distribution was stratified vertically in the debris bed in all cases. While the bulk fragment size showed generally consistent trends, the individual experiments were sufficiently different to cause different degrees of stratification in the debris bed. For the highly stratified beds the permeability can decrease by as much as a factor of 20 from the bottom to the top of the bed

  1. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    Science.gov (United States)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  2. Intraplate mantle oxidation by volatile-rich silicic magmas

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Audrey M.; Médard, Etienne; Righter, Kevin; Lanzirotti, Antonio

    2017-11-01

    The upper subcontinental lithospheric mantle below the French Massif Central is more oxidized than the average continental lithosphere, although the origin of this anomaly remains unknown. Using iron oxidation analysis in clinopyroxene, oxybarometry, and melt inclusions in mantle xenoliths, we show that widespread infiltration of volatile (HCSO)-rich silicic melts played a major role in this oxidation. We propose the first comprehensive model of magmatism and mantle oxidation at an intraplate setting. Two oxidizing events occurred: (1) a 365–286 Ma old magmatic episode that produced alkaline vaugnerites, potassic lamprophyres, and K-rich calc-alkaline granitoids, related to the N–S Rhenohercynian subduction, and (2) < 30 Ma old magmatism related to W–E extension, producing carbonatites and hydrous potassic trachytes. These melts were capable of locally increasing the subcontinental lithospheric mantle fO2 to FMQ + 2.4. Both events originate from the melting of a metasomatized lithosphere containing carbonate + phlogopite ± amphibole. The persistence of this volatile-rich lithospheric source implies the potential for new episodes of volatile-rich magmatism. Similarities with worldwide magmatism also show that the importance of volatiles and the oxidation of the mantle in intraplate regions is underestimated.

  3. Porous Silicates Modified with Zirconium Oxide and Sulfate Ions for Alcohol Dehydration Reactions

    Directory of Open Access Journals (Sweden)

    Heriberto Esteban Benito

    2015-01-01

    Full Text Available Porous silicates were synthesized by a nonhydrothermal method, using sodium silicate as a source of silica and cetyltrimethylammonium bromide as a template agent. Catalysts were characterized using thermogravimetric analysis, N2 physisorption, X-ray diffraction, FTIR spectroscopy, pyridine adsorption, potentiometric titration with n-butylamine, scanning electronic microscopy, and transmission electronic microscopy. The surface area of the materials synthesized was greater than 800 m2/g. The introduction of zirconium atoms within the porous silicates increased their acid strength from −42 to 115 mV, while the addition of sulfate ions raised this value to 470 mV. The catalytic activity for the dehydration of alcohols yields conversions of up to 70% for ethanol and 30% for methanol.

  4. Mechanism of Phase Formation in the Batch Mixtures for Slag-Bearing Glass Ceramics - 12207

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, Sergey V.; Stefanovsky, Olga I.; Malinina, Galina A. [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation)

    2012-07-01

    Slag surrogate was produced from chemicals by heating to 900 deg. C and keeping at this temperature for 1 hr. The product obtained was intermixed with either sodium di-silicate (75 wt.% waste loading) or borax (85 wt.% slag loading). The mixtures were heat-treated within a temperature range of 25 to 1300 deg. C. The products were examined by X-ray diffraction and infrared spectroscopy. The products prepared at temperatures of up to 1000 deg. C contained both phase typical of the source slag and intermediate phases as well as phases typical of the materials melted at 1350 deg. C such as nepheline, britholite, magnetite and matrix vitreous phase. Vitrification process in batch mixtures consisting of slag surrogate and either sodium di-silicate or sodium tetraborate runs through formation of intermediate phases mainly silico-phosphates capable to incorporate Sm as trivalent actinides surrogate. Reactions in the batch mixtures are in the whole completed by ∼1000 deg. C but higher temperatures are required to homogenize the products. If in the borate-based system the mechanism is close to simple dissolution of slag constituents in the low viscous borate melt, then in the silicate-based system the mechanism was found to be much complicated and includes re-crystallization during melting with segregation of newly-formed nepheline type phase. (authors)

  5. Volatilization from borosilicate glass melts of simulated Savannah River Plant waste

    International Nuclear Information System (INIS)

    Wilds, G.W.

    1979-01-01

    Laboratory scale studies determined the rates at which the semivolatile components sodium, boron, lithium, cesium, and ruthenium volatilized from borosilicate glass melts that contained simulated Savannah River Plant waste sludge. Sodium and boric oxides volatilize as the thermally stable compound sodium metaborate, and accounted for approx. 90% of the semivolatiles that evolved. The amounts of semivolatiles that evolved increased linearly with the logarithm of the sodium content of the glass-forming mixture. Cesium volatility was slightly suppressed when titanium dioxide was added to the melt, but was unaffected when cesium was added to the melt as a cesium-loaded zeolite rather than as a cesium carbonate solution. Volatility of ruthenium was not suppressed when the glass melt was blanketed with a nonoxidizing atmosphere. Trace quantities of mercury were removed from vapor streams by adsorption onto a silver-exchanged zeolite. A bed containing silver in the ionic state removed more than 99.9% of the mercury and had a high chemisorption capacity. Beds of lead-, copper-, and copper sulfide-exchanged zeolite-X and also an unexchanged zeolite-X were tested. None of these latter beds had high removal efficiency and high chemisorption capacity

  6. Volatilization from borosilicate glass melts of simulated Savannah River Plant waste

    International Nuclear Information System (INIS)

    Wilds, G.W.

    1978-01-01

    Laboratory scale studies determined the rates at which the semivolatile components sodium, boron, lithium, cesium, and ruthenium volatilized from borosilicate glass melts that contained simulated Savannah River Plant waste sludge. Sodium and boric oxides volatilize as the thermally stable compound sodium metaborate, and accounted for approx. 90% of the semivolatiles that evolved. The amounts of semivolatiles that evolved increased linearly with the logarithm of the sodium content of the glass-forming mixture. Cesium volatility was slightly suppressed when titanium dioxide was added to the melt, but was unaffected when cesium was added to the melt as a cesium-loaded zeolite rather than as a cesium carbonate solution. Volatility of ruthenium was not suppressed when the glass melt was blanketed with a nonoxidizing atmosphere. Trace quantities of mercury were removed from vapor streams by adsorption onto a silver-exchanged zeolite. A bed containing silver in the ionic state removed more than 99.9% of the mercury and had a high chemisorption capacity. Beds of lead-, copper-, and copper sulfide-exchanged zeolite-X and also an unexchanged zeolite-X were tested. None of these latter beds had high removal efficiency and high chemisorption capacity

  7. Resistance of Alkali Activated Water-Cooled Slag Geopolymer to Sulphate Attack

    Directory of Open Access Journals (Sweden)

    S. A. Hasanein

    2011-06-01

    Full Text Available Ground granulated blast furnace slag is a finely ground, rapidly chilled aluminosilicate melt material that is separated from molten iron in the blast furnace as a by-product. Rapid cooling results in an amorphous or a glassy phase known as GGBFS or water cooled slag (WCS. Alkaline activation of latent hydraulic WCS by sodium hydroxide and/or sodium silicate in different ratios was studied. Curing was performed under 100 % relative humidity and at a temperature of 38°C. The results showed that mixing of both sodium hydroxide and sodium silicate in ratio of 3:3 wt.,% is the optimum one giving better mechanical as well as microstructural characteristics as compared with cement mortar that has various cement content (cement : sand were 1:3 and 1:2. Durability of the water cooled slag in 5 % MgSO4 as revealed by better microstructure and high resistivity-clarifying that activation by 3:3 sodium hydroxide and sodium silicate, respectively is better than using 2 and 6 % of sodium hydroxide.

  8. X-ray photoemission spectroscopy (XPS) and extended x-ray absorption fine structure (EXAFS) studies of silicate based glasses

    International Nuclear Information System (INIS)

    Karim, D.; Lam, D.J.

    1979-01-01

    The application of the x-ray photoemission spectroscopy (XPS) technique to study the electronic structure and bonding of heavy metal oxides in alkali- and alkali-earth-silicate glasses had been demonstrated. The bonding characteristics of the iron oxide and uranium oxide in sodium silicate glasses were deduced from the changes in the oxygen 1s levels and the heavy metal core levels. It is reasonable to expect that the effect of leaching on the heavy metal ions can be monitored using the appropriate core levels of these ions. To study the effect of leaching on the glass forming network, the valence band structure of the bridging and nonbridging oxygens in sodium silicate glasses were investigated. The measurement of extended x-ray absorption fine-structure (EXAFS) is a relatively new analytical technique for obtaining short range (<5 A) structural information around atoms of a selected species in both solid and fluid systems. Experiments have recently begun to establish the feasibility of using EXAFS to study the bonding of actinides in silicate glasses. Because of the ability of EXAFS to yield specific structural data even in complex multicomponent systems, it could prove to be an invaluable tool in understanding glass structure

  9. In situ study at high pressure and temperature of the environment of water in hydrous Na and Ca aluminosilicate melts and coexisting aqueous fluids

    Science.gov (United States)

    Le Losq, Charles; Dalou, Célia; Mysen, Bjorn O.

    2017-07-01

    The bonding and speciation of water dissolved in Na silicate and Na and Ca aluminosilicate melts were inferred from in situ Raman spectroscopy of the samples, in hydrothermal diamond anvil cells, while at crustal temperature and pressure conditions. Raman data were also acquired on Na silicate and Na and Ca aluminosilicate glasses, quenched from hydrous melts equilibrated at high temperature and pressure in a piston cylinder apparatus. In the hydrous melts, temperature strongly influences O-H stretching ν(O-H) signals, reflecting its control on the bonding of protons between different molecular complexes. Pressure and melt composition effects are much smaller and difficult to discriminate with the present data. However, the chemical composition of the melt + fluid system influences the differences between the ν(O-H) signals from the melts and the fluids and, hence, between their hydrogen partition functions. Quenching modifies the O-H stretching signals: strong hydrogen bonds form in the glasses below the glass transition temperature Tg, and this phenomenon depends on glass composition. Therefore, glasses do not necessarily record the O-H stretching signal shape in melts near Tg. The melt hydrogen partition function thus cannot be assessed with certainty using O-H stretching vibration data from glasses. From the present results, the ratio of the hydrogen partition functions of hydrous silicate melts and aqueous fluids mostly depends on temperature and the bulk melt + fluid system chemical composition. This implies that the fractionation of hydrogen isotopes between magmas and aqueous fluids in water-saturated magmatic systems with differences in temperature and bulk chemical composition will be different.

  10. Preparation and physicochemical properties of surfactant-free emulsions using electrolytic-reduction ion water containing lithium magnesium sodium silicate.

    Science.gov (United States)

    Okajima, Masahiro; Wada, Yuko; Hosoya, Takashi; Hino, Fumio; Kitahara, Yoshiyasu; Shimokawa, Ken-ichi; Ishii, Fumiyoshi

    2013-04-01

    Surfactant-free emulsions by adding jojoba oil, squalane, olive oil, or glyceryl trioctanoate (medium chain fatty acid triglycerides, MCT) to electrolytic-reduction ion water containing lithium magnesium sodium silicate (GE-100) were prepared, and their physiochemical properties (thixotropy, zeta potential, and mean particle diameter) were evaluated. At an oil concentration of 10%, the zeta potential was ‒22.3 ‒ ‒26.8 mV, showing no marked differences among the emulsions of various types of oil, but the mean particle diameters in the olive oil emulsion (327 nm) and MCT emulsion (295 nm) were smaller than those in the other oil emulsions (452-471 nm). In addition, measurement of the hysteresis loop area of each type of emulsion revealed extremely high thixotropy of the emulsion containing MCT at a low concentration and the olive emulsion. Based on these results, since surfactants and antiseptic agents markedly damage sensitive skin tissue such as that with atopic dermatitis, surfactant- and antiseptic-free emulsions are expected to be new bases for drugs for external use.

  11. Hydrolytic Stability of 3-Aminopropylsilane Coupling Agent on Silica and Silicate Surfaces at Elevated Temperatures

    DEFF Research Database (Denmark)

    Okhrimenko, Denis; Budi, Akin; Ceccato, Marcel

    2017-01-01

    and compared its properties with those on complex silicate surfaces such as those used by industry (mineral fibers and fiber melt wafers). The APS was deposited from aqueous and organic (toluene) solutions and studied with surface sensitive techniques, including X-ray photoelectron spectroscopy (XPS), atomic...

  12. Corrosion phenomena in sodium-potassium coolant resulting from solute interaction in multicomponent solution

    Science.gov (United States)

    Krasin, V. P.; Soyustova, S. I.

    2018-03-01

    The solubility of Fe, Cr, Ni, V, Mn and Mo in sodium-potassium melt has been calculated using the mathematical framework of pseudo-regular solution model. The calculation results are compared with available published experimental data on mass transfer of components of austenitic stainless steel in sodium-potassium loop under non-isothermal conditions. It is shown that the parameters of pair interaction of oxygen with transition metal can be used to predict the corrosion behavior of structural materials in sodium-potassium melt in the presence of oxygen impurity. The results of calculation of threshold concentration of oxygen of ternary oxide formation of sodium with transitional metals (Fe, Cr, Ni, V, Mn, Mo) are given in conditions when pure solid metal comes in contact with sodium-potassium melt.

  13. Silicate bonded ceramics of laterites

    International Nuclear Information System (INIS)

    Wagh, A.S.; Douse, V.

    1989-05-01

    Sodium silicate is vacuum impregnated in bauxite waste (red mud) at room temperature to develop ceramics of mechanical properties comparable to the sintered ceramics. For a concentration up to 10% the fracture toughness increases from 0.12 MNm -3/2 to 0.9 MNm -3/2 , and the compressive strength from 7 MNm -2 to 30 MNm -2 . The mechanical properties do not deteriorate, when soaked in water for an entire week. The viscosity and the concentration of the silicate solution are crucial, both for the success of the fabrication and the economics of the process. Similar successful results have been obtained for bauxite and lime stone, even though the latter has poor weathering properties. With scanning electron microscopy and energy dispersive analysis, an attempt is made to identify the crystals formed in the composite, which are responsible for the strength. The process is an economic alternative to the sintered ceramics in the construction industry in the tropical countries, rich in lateritic soils and poor in energy. Also the process has all the potential for further development in arid regions abundant in limestone. (author). 6 refs, 20 figs, 3 tabs

  14. Bursting the bubble of melt inclusions

    Science.gov (United States)

    Lowenstern, Jacob B.

    2015-01-01

    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  15. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  16. Simulation experiment on the flooding behaviour of core melts: KATS-9

    International Nuclear Information System (INIS)

    Fieg, G.; Massier, H.; Schuetz, W.; Stegmaier, U.; Stern, G.

    2000-11-01

    For future Light Water Reactors special devices (core catchers) are being developed to prevent containment failure by basement erosion after reactor pressure vessel meltthrough during a core meltdown accident. Quick freezing of the molten core masses is desirable to reduce release of radioactivity. Several concepts of core catcher devices have been proposed based on the spreading of corium melt onto flat surfaces with subsequent water cooling. A KATS-experiment has been performed to investigate the flooding behaviour of high temperature melts using alumina-iron thermite melts as a simulant. The oxidic thermite melt is conditioned by adding other oxides to simulate a realistic corium melt as close as possible in terms of liquidus and solidus temperatures. Before flooding with water, spreading of the separate oxidic and metallic melts has been done in one-dimensional channels with a silicate concrete as the substrate. The flooding rate was, in relation to the melt surface, identical to the flooding rate in EPR. (orig.) [de

  17. Toxicology of plutonium-sodium

    International Nuclear Information System (INIS)

    Hackett, P.L.

    1982-01-01

    Scenarios for liquid-metal fast breeder reactor (LMFBR) accidents predict the loss of sodium coolant, with subsequent core melt-down and release of mixed sodium-fuel aerosols [Na-(PuU)O 2 ] into the environment. Studies in other laboratories demonstrated that mixed aerosols of Na 2 O-PuO 2 were more readily transported from the lung than PuO 2 aerosols. We therefore devised a continuous aerosol-generating system for animal exposures in which laser-generated fuel aerosols were swept through sodium vapor to form sodium-fuel aerosols. These fuel and sodium-fuel aerosols were compared with regard to their physicochemical properties and their biological behavior following inhalation studies in rats and dogs

  18. Dynamic observations of vesiculation reveal the role of silicate crystals in bubble nucleation and growth in andesitic magmas

    Energy Technology Data Exchange (ETDEWEB)

    Pleše, P.; Higgins, M. D.; Mancini, L.; Lanzafame, G.; Brun, F.; Fife, J. L.; Casselman, J.; Baker, D. R.

    2018-01-01

    Bubble nucleation and growth control the explosivity of volcanic eruptions, and the kinetics of these processes are generally determined from examinations of natural samples and quenched experimental run products. These samples, however, only provide a view of the final state, from which the initial conditions of a time-evolving magmatic system are then inferred. The interpretations that follow are inexact due to the inability of determining the exact conditions of nucleation and the potential detachment of bubbles from their nucleation sites, an uncertainty that can obscure their nucleation location – either homogeneously within the melt or heterogeneously at the interface between crystals and melts. We present results of a series of dynamic, real-time 4D X-ray tomographic microscopy experiments where we observed the development of bubbles in crystal bearing silicate magmas. Experimentally synthesized andesitic glasses with 0.25–0.5 wt% H2O and seed silicate crystals were heated at 1 atm to induce bubble nucleation and track bubble growth and movement. In contrast to previous studies on natural and experimentally produced samples, we found that bubbles readily nucleated on plagioclase and clinopyroxene crystals, that their contact angle changes during growth and that they can grow to sizes many times that of the silicate on whose surface they originated. The rapid heterogeneous nucleation of bubbles at low degrees of supersaturation in the presence of silicate crystals demonstrates that silicates can affect when vesiculation ensues, influencing subsequent permeability development and effusive vs. explosive transition in volcanic eruptions.

  19. Dynamic observations of vesiculation reveal the role of silicate crystals in bubble nucleation and growth in andesitic magmas

    Science.gov (United States)

    Pleše, P.; Higgins, M. D.; Mancini, L.; Lanzafame, G.; Brun, F.; Fife, J. L.; Casselman, J.; Baker, D. R.

    2018-01-01

    Bubble nucleation and growth control the explosivity of volcanic eruptions, and the kinetics of these processes are generally determined from examinations of natural samples and quenched experimental run products. These samples, however, only provide a view of the final state, from which the initial conditions of a time-evolving magmatic system are then inferred. The interpretations that follow are inexact due to the inability of determining the exact conditions of nucleation and the potential detachment of bubbles from their nucleation sites, an uncertainty that can obscure their nucleation location - either homogeneously within the melt or heterogeneously at the interface between crystals and melts. We present results of a series of dynamic, real-time 4D X-ray tomographic microscopy experiments where we observed the development of bubbles in crystal bearing silicate magmas. Experimentally synthesized andesitic glasses with 0.25-0.5 wt% H2O and seed silicate crystals were heated at 1 atm to induce bubble nucleation and track bubble growth and movement. In contrast to previous studies on natural and experimentally produced samples, we found that bubbles readily nucleated on plagioclase and clinopyroxene crystals, that their contact angle changes during growth and that they can grow to sizes many times that of the silicate on whose surface they originated. The rapid heterogeneous nucleation of bubbles at low degrees of supersaturation in the presence of silicate crystals demonstrates that silicates can affect when vesiculation ensues, influencing subsequent permeability development and effusive vs. explosive transition in volcanic eruptions.

  20. Characterization and nutrient release from silicate rocks and influence on chemical changes in soil

    Directory of Open Access Journals (Sweden)

    Douglas Ramos Guelfi Silva

    2012-06-01

    Full Text Available The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O, supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste. The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol, which was incubated for 100 days, at 70 % (w/w moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB were the silicate rocks that most influenced soil pH, while the mining byproduct (MB led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.

  1. Experimental evidence for Mo isotope fractionation between metal and silicate liquids

    Science.gov (United States)

    Hin, Remco C.; Burkhardt, Christoph; Schmidt, Max W.; Bourdon, Bernard; Kleine, Thorsten

    2013-10-01

    Stable isotope fractionation of siderophile elements may inform on the conditions and chemical consequences of core-mantle differentiation in planetary objects. The extent to which Mo isotopes fractionate during such metal-silicate segregation, however, is so far unexplored. We have therefore investigated equilibrium fractionation of Mo isotopes between liquid metal and liquid silicate to evaluate the potential of Mo isotopes as a new tool to study core formation. We have performed experiments at 1400 and 1600 °C in a centrifuging piston cylinder. Tin was used to lower the melting temperature of the Fe-based metal alloys to double spike technique. In experiments performed at 1400 °C, the 98Mo/95Mo ratio of silicate is 0.19±0.03‰ (95% confidence interval) heavier than that of metal. This fractionation is not significantly affected by the presence or absence of carbon. Molybdenum isotope fractionation is furthermore independent of oxygen fugacity in the range IW -1.79 to IW +0.47, which are plausible values for core formation. Experiments at 1600 °C show that, at equilibrium, the 98Mo/95Mo ratio of silicate is 0.12±0.02‰ heavier than that of metal and that the presence or absence of Sn does not affect this fractionation. Equilibrium Mo isotope fractionation between liquid metal and liquid silicate as a function of temperature can therefore be described as ΔMoMetal-Silicate98/95=-4.70(±0.59)×105/T2. Our experiments show that Mo isotope fractionation may be resolvable up to metal-silicate equilibration temperatures of about 2500 °C, rendering Mo isotopes a novel tool to investigate the conditions of core formation in objects ranging from planetesimals to Earth sized bodies.

  2. Sodium Flux Growth of Bulk Gallium Nitride

    Science.gov (United States)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to

  3. Melting of the Primitive Mercurian Mantle, Insights into the Origin of Its Surface Composition

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Rapp, J. F.; Ross, D. K.; Pando, K. M.; Danielson, L. R.; Fontaine, E.

    2016-01-01

    Recent findings of the MESSENGER mission on Mercury have brought new evidence for its reducing nature, widespread volcanism and surface compositional heteregeneity. MESSENGER also provided major elemental ratios of its surface that can be used to infer large-scale differentiation processes and the thermal history of the planet. Mercury is known as being very reduced, with very low Fe-content and high S and alkali contents on its surface. Its bulk composition is therefore likely close to EH enstatite chondrites. In order to elucidate the origin of the chemical diversity of Mercury's surface, we determined the melting properties of EH enstatite chondrites, at pressures between 1 bar and 3 GPa and oxygen fugacity of IW-3 to IW-5, using piston-cylinder experiments, combined with a previous study on EH4 melting at 1 bar. We found that the presence of Ca-rich sulfide melts induces significant decrease of Ca-content in silicate melts at low pressure and low degree of melting (F). Also at pressures lower than 3 GPa, the SiO2-content decreases with F, while it increases at 3 GPa. This is likely due to the chemical composition of the bulk silicate which has a (Mg+Fe+Ca)/Si ratio very close to 1 and to the change from incongruent to congruent melting of enstatite. We then tested whether the various chemical compositions of Mercury's surface can result from mixing between two melting products of EH chondrites. We found that the majority of the geochemical provinces of Mercury's surface can be explained by mixing of two melts, with the exception of the High-Al plains that require an Al-rich source. Our findings indicate that Mercury's surface could have been produced by polybaric melting of a relatively primitive mantle.

  4. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    Science.gov (United States)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate

  5. Silicate species of water glass and insights for alkali-activated green cement

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Helén, E-mail: helen.jansson@chalmers.se [Department of Civil and Environmental Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Bernin, Diana, E-mail: diana.bernin@nmr.gu.se [Swedish NMR Centre, Gothenburg University, Gothenburg, 41390 Sweden (Sweden); Ramser, Kerstin, E-mail: kerstin.ramser@ltu.se [Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå (Sweden)

    2015-06-15

    Despite that sodium silicate solutions of high pH are commonly used in industrial applications, most investigations are focused on low to medium values of pH. Therefore we have investigated such solutions in a broad modulus range and up to high pH values (∼14) by use of infrared (IR) spectroscopy and silicon nuclear magnetic resonance ({sup 29}Si-NMR). The results show that the modulus dependent pH value leads to more or less charged species, which affects the configurations of the silicate units. This in turn, influences the alkali-activation process of low CO{sub 2} footprint cements, i.e. materials based on industrial waste or by-products.

  6. Experimental determination of the phase diagram of the system sodium-sodium hydride up to 9000C and hydrogen pressures up to 800 bar

    International Nuclear Information System (INIS)

    Klostermeier, W.

    1978-01-01

    In the present work part of the sodium-sodium hydride system phase diagram has been studied at high temperatures (up to 900 0 C) and high hydrogen pressures (up to 1000 bar). The absorption isothermal curves recorded at temperatures between 650 0 C and 900 0 C show an increase in hydride solubility in sodium from 5.5 mol% at 650 0 to 19 mol% at 900 0 C. The melting point of sodium hydride has been measured giving the value 632 0 C with a hydrogen equilibrium pressure of 106 bar. In the mixing gap region the plateau equilibrium pressure, which is independent of composition, and his temperature dependence have been obtained. The enthalpy and entropy of melting are determined. (GSCH) [de

  7. Effect of Moisture Content of Chitin-Calcium Silicate on Rate of Degradation of Cefotaxime Sodium.

    Science.gov (United States)

    Al-Nimry, Suhair S; Alkhamis, Khouloud A

    2018-04-01

    Assessment of incompatibilities between active pharmaceutical ingredient and pharmaceutical excipients is an important part of preformulation studies. The objective of the work was to assess the effect of moisture content of chitin calcium silicate of two size ranges (two specific surface areas) on the rate of degradation of cefotaxime sodium. The surface area of the excipient was determined using adsorption method. The effect of moisture content of a given size range on the stability of the drug was determined at 40°C in the solid state. The moisture content was determined at the beginning and the end of the kinetic study using TGA. The degradation in solution was studied for comparison. Increasing the moisture content of the excipient of size range 63-180 μm (surface area 7.2 m 2 /g) from 3.88 to 8.06% increased the rate of degradation of the drug more than two times (from 0.0317 to 0.0718 h -1 ). While an opposite trend was observed for the excipient of size range moisture content moisture content of 8.54%, and the degradation in solid state at both moisture contents was higher than that in solution (0.0871 h -1 ). In conclusion, the rate of degradation in solid should be studied taking into consideration the specific surface area and moisture content of the excipient at the storage condition and it may be higher than that in solution.

  8. Lightweight Heat Resistant Geopolymer-based Materials Synthesized from Red Mud and Rice Husk Ash Using Sodium Silicate Solution as Alkaline Activator

    Directory of Open Access Journals (Sweden)

    Hoc Thang Nguyen

    2017-01-01

    Full Text Available Geopolymer is an inorganic polymer composite with potentials to replace Ordinary Portland Cement (OPC-based materials in the future because of its lower energy consumption, minimal CO2 emissions and lower production cost as it utilizes industrial waste resources. Hence, geopolymerization and the process to produce geopolymers for various applications like building materials can be considered as green industry. Moreover, in our study, the raw materials we used are red mud and rice husk ash, which are are industrial and agricultural wastes that need to be managed to reduce their impact to the environment. The red mud and rice husk ash combined with sodium silicate (water glass solution were mixed to form geopolymer materials. Moreover, the geopolymer specimens were also tested for heat resistance at a temperature of 1000°C for 2 hours. Results suggest high heat resistance with an increase of compressive strength after exposed at high temperature.

  9. Infrared Spectroscopy and Stable Isotope Geochemistry of Hydrous Silicate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stolper, Edward

    2007-03-05

    The focus of this DOE-funded project has been the study of volatile components in magmas and the atmosphere. Over the twenty-one year period of this project, we have used experimental petrology and stable isotope geochemistry to study the behavior and properties of volatile components dissolved in silicate minerals and melts and glasses. More recently, we have also studied the concentration and isotopic composition of CO2 in the atmosphere, especially in relation to air quality issues in the Los Angeles basin.

  10. Redox dependent behaviour of molybdenum during magmatic processes in the terrestrial and lunar mantle: Implications for the Mo/W of the bulk silicate Moon

    Science.gov (United States)

    Leitzke, F. P.; Fonseca, R. O. C.; Sprung, P.; Mallmann, G.; Lagos, M.; Michely, L. T.; Münker, C.

    2017-09-01

    We present results of high-temperature olivine-melt, pyroxene-melt and plagioclase-melt partitioning experiments aimed at investigating the redox transition of Mo in silicate systems. Data for a series of other minor and trace elements (Sc, Ba, Sr, Cr, REE, Y, HFSE, U, Th and W) were also acquired to constrain the incorporation of Mo in silicate minerals. All experiments were carried out in vertical tube furnaces at 1 bar and temperatures ranging from ca. 1220 to 1300 °C. Oxygen fugacity was controlled via CO-CO2 gas mixtures and varied systematically from 5.5 log units below to 1.9 log units above the fayalite-magnetite-quartz (FMQ) redox buffer thereby covering the range in oxygen fugacities of terrestrial and lunar basalt genesis. Molybdenum is shown to be volatile at oxygen fugacities above FMQ and that its compatibility in pyroxene and olivine increases three orders of magnitude towards the more reducing conditions covered in this study. The partitioning results show that Mo is dominantly tetravalent at redox conditions below FMQ-4 and dominantly hexavalent at redox conditions above FMQ. Given the differences in oxidation states of the terrestrial (oxidized) and lunar (reduced) mantles, molybdenum will behave significantly differently during basalt genesis in the Earth (i.e. highly incompatible; average DMoperidotite/melt ∼ 0.008) and Moon (i.e. moderately incompatible/compatible; average DMoperidotite/melt ∼ 0.6). Thus, it is expected that Mo will strongly fractionate from W during partial melting in the lunar mantle, given that W is broadly incompatible at FMQ-5. Moreover, the depletion of Mo and the Mo/W range in lunar samples can be reproduced by simply assuming a primitive Earth-like Mo/W for the bulk silicate Moon. Such a lunar composition is in striking agreement with the Moon being derived from the primitive terrestrial mantle after core formation on Earth.

  11. Spectroscopic properties of 1.8 μm emission in Tm3+ doped bismuth silicate glass

    International Nuclear Information System (INIS)

    Zhao, Guoying; Tian, Ying; Wang, Xin; Fan, Huiyan; Hu, Lili

    2013-01-01

    The emission properties around 1.8 μm in Tm 3+ doped bismuth silicate glass have been investigated. Based on the obtained Raman spectroscopy and differential scanning calorimetry curves, it is found the introduced Bi 2 O 3 can efficiently reduce the phonon energy of silicate glass to 926 cm −1 . The energy gap between glass transition temperature and onset temperature of crystallization is 169 °C. The OH − content maintains lower in glass by bubbling dry O 2 during the melting process. The cut-off wavelength in mid-infrared range is as long as 5 μm. Bismuth silicate glass has high radiative transition probability of 238.80 s −1 corresponding to the Tm 3+ : 3 F 4 → 3 H 6 transition compared with conventional silicate glasses. The strongest emission at 1.8 μm with a large full width at half-maximum of 238 nm is achieved from this bismuth silicate glass doped with 0.9 mol% Tm 2 O 3 . Its fluorescence lifetime at 1.8 μm is 640 μs. - Highlights: ► The 1.8 μm fluorescence of Tm 3+ -doped bismuth silicate glass is investigated. ► The prepared glass has lower phonon energy than other typical silicate glasses. ► A broadband 1.8 μm emission with the FWHM of 238 nm is observed. ► The fluorescence lifetime of Tm 3+ : 3 F 4 level reaches 640 μs.

  12. Degradation of wall paints due to sodium sulphate and sodium chloride crystallization

    Directory of Open Access Journals (Sweden)

    Díaz Gonçalves, T.

    2003-03-01

    Full Text Available A test method for evaluating wall paints behaviour to soluble salts crystallization was developed at LNEC. in the present paper, a recent set of tests is described and discussed. The major objectives were: analysing and comparing the behaviour of a common emulsion {"plastic" paint and a silicate-based paint; observing and comparing the effect of sodium sulphate, sodium chloride and distilled water on the paints and on a non-painted stone; evaluating this test method adequacy and effectiveness. The silicate-based paint showed a resistance to soluble salts crystallization greater than the one of the plastic paint. However, the degradation pattern of the silicate-based paint (blistering of a filmic layer was similar to the one of organic paints and distinct from the one of pure mineral paints. The amount of damage that a saline solution can cause to wall paints cannot be inferred from the amount of damage it can cause to stone. Sodium chloride seems to be able to cause more severe degradation to wall paints than sodium sulphate. To the unpainted stone, sodium sulphate seems to be more damaging than sodium chloride. The test method seems adequate to observe and compare the behaviour of wall paints under soluble salts action. However, lower (around 0.5% concentrations for both sodium sulphate and sodium chloride should be tested in the future.

    RESUMEN En el LNEC se desarrolló una metodología de ensayo para evaluar la respuesta de pinturas aplicadas sobre paredes, frente a la cristalización de sales solubles. En este trabajo, se describen y discuten un conjunto de ensayos recientes. Los principales objetivos fueron: el análisis y la comparación del comportamiento de una pintura de emulsión común {''pintura plástica" y la de una pintura de silicato; la observación y la comparación de los efectos del sulfato de sodio, del cloruro de sodio y del agua destilada sobre las pinturas y sobre piedra no pintada; la evaluación de la adecuaci

  13. Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust

    Science.gov (United States)

    Ratajeski, K.; Sisson, T.W.; Glazner, A.F.

    2005-01-01

    Partial melting of mafic intrusions recently emplaced into the lower crust can produce voluminous silicic magmas with isotopic ratios similar to their mafic sources. Low-temperature (825 and 850??C) partial melts synthesized at 700 MPa in biotite-hornblende gabbros from the central Sierra Nevada batholith (Sisson et al. in Contrib Mineral Petrol 148:635-661, 2005) have major-element and modeled trace-element (REE, Rb, Ba, Sr, Th, U) compositions matching those of the Cretaceous El Capitan Granite, a prominent granite and silicic granodiorite pluton in the central part of the Sierra Nevada batholith (Yosemite, CA, USA) locally mingled with coeval, isotopically similar quartz diorite through gabbro intrusions (Ratajeski et al. in Geol Soc Am Bull 113:1486-1502, 2001). These results are evidence that the El Capitan Granite, and perhaps similar intrusions in the Sierra Nevada batholith with lithospheric-mantle-like isotopic values, were extracted from LILE-enriched, hydrous (hornblende-bearing) gabbroic rocks in the Sierran lower crust. Granitic partial melts derived by this process may also be silicic end members for mixing events leading to large-volume intermediate composition Sierran plutons such as the Cretaceous Lamarck Granodiorite. Voluminous gabbroic residues of partial melting may be lost to the mantle by their conversion to garnet-pyroxene assemblages during batholithic magmatic crustal thickening. ?? Springer-Verlag 2005.

  14. Vapor pressure and vapor fractionation of silicate melts of tektite composition

    Science.gov (United States)

    Walter, Louis S.; Carron, M.K.

    1964-01-01

    The total vapor pressure of Philippine tektite melts of approximately 70 per cent silica has been determined at temperatures ranging from 1500 to 2100??C. This pressure is 190 ?? 40 mm Hg at 1500??C, 450 ?? 50 mm at 1800??C and 850 ?? 70 mm at 2100?? C. Determinations were made by visually observing the temperature at which bubbles began to form at a constant low ambient pressure. By varying the ambient pressure, a boiling point curve was constructed. This curve differs from the equilibrium vapor pressure curve due to surface tension effects. This difference was evaluated by determining the equilibrium bubble size in the melt and calculating the pressure due to surface tension, assuming the latter to be 380 dyn/cm. The relative volatility from tektite melts of the oxides of Na, K, Fe, Al and Si has been determined as a function of temperature, total pressure arid roughly, of oxygen fugacity. The volatility of SiO2 is decreased and that of Na2O and K2O is increased in an oxygen-poor environment. Preliminary results indicate that volatilization at 2100??C under atmospheric pressure caused little or no change in the percentage Na2O and K2O. The ratio Fe3 Fe2 of the tektite is increased in ambient air at a pressure of 9 ?? 10-4 mm Hg (= 106.5 atm O2, partial pressure) at 2000??C. This suggests that tektites were formed either at lower oxygen pressures or that they are a product of incomplete oxidation of parent material with a still lower ferricferrous ratio. ?? 1964.

  15. MELTS_Excel: A Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution

    Science.gov (United States)

    Gualda, Guilherme A. R.; Ghiorso, Mark S.

    2015-01-01

    thermodynamic modeling software MELTS is a powerful tool for investigating crystallization and melting in natural magmatic systems. Rhyolite-MELTS is a recalibration of MELTS that better captures the evolution of silicic magmas in the upper crust. The current interface of rhyolite-MELTS, while flexible, can be somewhat cumbersome for the novice. We present a new interface that uses web services consumed by a VBA backend in Microsoft Excel©. The interface is contained within a macro-enabled workbook, where the user can insert the model input information and initiate computations that are executed on a central server at OFM Research. Results of simple calculations are shown immediately within the interface itself. It is also possible to combine a sequence of calculations into an evolutionary path; the user can input starting and ending temperatures and pressures, temperature and pressure steps, and the prevailing oxidation conditions. The program shows partial updates at every step of the computations; at the conclusion of the calculations, a series of data sheets and diagrams are created in a separate workbook, which can be saved independently of the interface. Additionally, the user can specify a grid of temperatures and pressures and calculate a phase diagram showing the conditions at which different phases are present. The interface can be used to apply the rhyolite-MELTS geobarometer. We demonstrate applications of the interface using an example early-erupted Bishop Tuff composition. The interface is simple to use and flexible, but it requires an internet connection. The interface is distributed for free from http://melts.ofm-research.org.

  16. Sb/Mn co-doped oxyfluoride silicate glasses for potential applications in photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chaofeng [Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Laboratoire des Verres et Céramiques, UMR-CNRS 6226, Université de Rennes 1, Rennes 35042 (France); Zhang, Xianghua, E-mail: xiang-hua.zhang@univ-rennes1.fr [Laboratoire des Verres et Céramiques, UMR-CNRS 6226, Université de Rennes 1, Rennes 35042 (France); Ma, Hongli [Laboratoire des Verres et Céramiques, UMR-CNRS 6226, Université de Rennes 1, Rennes 35042 (France)

    2016-03-15

    A series of Sb/Mn co-doped oxyfluoride silicate glasses were prepared via the melt-quenching method to explore red luminescent materials for potential applications in photosynthesis of green plants, and these glasses are investigated by means of luminescence decay curves, absorption, emission, and excitation spectra. We find that the as-prepared glasses are transparent in the visible region and can emit strong red light under ultraviolet, purple, and green light excitations. Furthermore, energy transfer from Sb{sup 3+} to Mn{sup 2+} ions occurs in Sb/Mn co-doped glasses. The results demonstrate that the as-prepared Sb/Mn co-doped oxyfluoride silicate glasses may serve as a potential candidate for developing glass greenhouse, which can enhance the utilization of solar energy for the photosynthesis of the green plants.

  17. Effect of sodium carbonate solution on self-setting properties of tricalcium silicate bone cement.

    Science.gov (United States)

    Zhiguang Huan; Jiang Chang

    2008-11-01

    In this study, the effects of sodium carbonate (Na(2)CO(3) ) solution with different concentrations (10, 15, 20, and 25 wt%) as liquid phase on the setting time and compressive strength of tricalcium silicate bone cements are investigated. The in vitro bioactivity and degradability of the resultant Ca(3)SiO(5)-Na(2)CO(3) solution paste was also studied. The results indicate that as the concentration of Na(2)CO(3) solution varies from 0 to 25 wt%, the initial and final setting time of the cement decrease significantly from 90 to 20 min and from 180 to 45 min, respectively. After setting for 24 h, the compressive strength of Ca(3)SiO(5)-Na(2)CO(3) solution paste reaches 5.1 MPa, which is significantly higher than that of Ca( 3)SiO(5)-water cement system. The in vitro bioactivity of the cements is investigated by soaking in simulated body fluid (SBF) for 7 days. The results show that the Ca(3)SiO(5)-Na(2)CO( 3) solution bone cement has a good bioactivity and can degrade in Ringer's solution. The results indicate that Na(2)CO(3) solution as a liquid phase significantly improves the self-setting properties of Ca( 3)SiO(5) cement as compared to water. The Ca(3)SiO( 5) cement paste prepared using Na(2)CO(3) solution shows good bioactivity and moderate degradability, and the Ca(3)SiO( 5)-Na(2)CO(3) solution system may be used as degradable and bioactive bone defect filling materials.

  18. Thermal analysis experiment for elucidating sodium-water chemical reaction mechanism in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki

    2012-01-01

    For the purpose of elucidating the mechanism of the sodium-water surface reaction in a steam generator of sodium-cooled fast reactors, kinetic study of the sodium (Na)-sodium hydroxide (NaOH) reaction has been carried out by using Differential Thermal Analysis (DTA) technique. The parameters, including melting points of Na and NaOH, phase transition temperature of NaOH, Na-NaOH reaction temperature, and decomposition temperature of sodium hydride (NaH) have been identified from DTA curves. Based on the measured reaction temperature, rate constant of sodium monoxide (Na 2 O) generation was obtained. Thermal analysis results indicated that Na 2 O generation at the secondary overall reaction should be considered during the sodium-water reaction. (author)

  19. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  20. High-level radioactive waste isolation by incorporation in silicate rock

    International Nuclear Information System (INIS)

    Schwartz, L.L.; Cohen, J.J.; Lewis, A.E.; Braun, R.L.

    1978-01-01

    A number of technical possibilities for isolating high-level radioactive materials have been theoretically investigated at various times and places. Isolating such wastes deep underground to ensure long term removal from the biosphere is one such possibility. The present concept involves as a first step creating the necessary void space at considerable depth, say 2 to 5 km, in a very-low-permeability silicate medium such as shale. Waste in dry, calcined or vitrified form is then lowered into the void space, and the access hole or shaft sealed. Energy released by the radioactive decay raises the temperature to a point where the surrounding rock begins to melt. The waste is then dissolved in it. The extent of this melt region grows until the heat generated is balanced by conduction away from the molten zone. Resolidification then begins, and ends when the radioactive decay has progressed to the point that the temperature falls below the melting point of the rock-waste solution. Calculations are presented showing the growth and resolidification process. A nuclear explosion is one way of creating the void space. (author)

  1. Making Earth's earliest continental crust - an analogue from voluminous Neogene silicic volcanism in NE-Iceland

    Science.gov (United States)

    Berg, Sylvia E.; Troll, Valentin R.; Burchardt, Steffi; Riishuus, Morten S.; Deegan, Frances M.; Harris, Chris; Whitehouse, Martin J.; Gústafsson, Ludvik E.

    2014-05-01

    Borgarfjörður Eystri in NE-Iceland represents the second-most voluminous exposure of silicic eruptive rocks in Iceland and is a superb example of bimodal volcanism (Bunsen-Daly gap), which represents a long-standing controversy that touches on the problem of crustal growth in early Earth. The silicic rocks in NE-Iceland approach 25 % of the exposed rock mass in the region (Gústafsson et al., 1989), thus they significantly exceed the usual ≤ 12 % in Iceland as a whole (e.g. Walker, 1966; Jonasson, 2007). The origin, significance, and duration of the voluminous (> 300 km3) and dominantly explosive silicic activity in Borgarfjörður Eystri is not yet constrained (c.f. Gústafsson, 1992), leaving us unclear as to what causes silicic volcanism in otherwise basaltic provinces. Here we report SIMS zircon U-Pb ages and δ18O values from the region, which record the commencement of silicic igneous activity with rhyolite lavas at 13.5 to 12.8 Ma, closely followed by large caldera-forming ignimbrite eruptions from the Breiðavik and Dyrfjöll central volcanoes (12.4 Ma). Silicic activity ended abruptly with dacite lava at 12.1 Ma, defining a ≤ 1 Myr long window of silicic volcanism. Magma δ18O values estimated from zircon range from 3.1 to 5.5 (± 0.3; n = 170) and indicate up to 45 % assimilation of a low-δ18O component (e.g. typically δ18O = 0 ‰, Bindeman et al., 2012). A Neogene rift relocation (Martin et al., 2011) or the birth of an off-rift zone to the east of the mature rift associated with a thermal/chemical pulse in the Iceland plume (Óskarsson & Riishuus, 2013), likely brought mantle-derived magma into contact with fertile hydrothermally-altered basaltic crust. The resulting interaction triggered large-scale crustal melting and generated mixed-origin silicic melts. Such rapid formation of silicic magmas from sustained basaltic volcanism may serve as an analogue for generating continental crust in a subduction-free early Earth (e.g. ≥ 3 Ga, Kamber et

  2. Plasma carburizing with surface micro-melting

    Science.gov (United States)

    Balanovsky, A. E.; Grechneva, M. V.; Van Huy, Vu; Ponomarev, B. B.

    2018-03-01

    This paper presents carburizing the surface of 20 low carbon steel using electric arc and graphite prior. A carbon black solution was prepared with graphite powder and sodium silicate in water. A detailed analysis of the phase structure and the distribution profile of the sample hardness after plasma treatment were given. The hardened layer consists of three different zones: 1 – the cemented layer (thin white zone) on the surface, 2 – heat-affected zone (darkly etching structure), 3 – the base metal. The experimental result shows that the various microstructures and micro-hardness profiles were produced depending on the type of graphite coating (percentage of liquid glass) and processing parameters. The experiment proved that the optimum content of liquid glass in graphite coating is 50–87.5%. If the amount of liquid glass is less than 50%, adhesion to metal is insufficient. If liquid glass content is more than 87.5%, carburization of a metal surface does not occur. A mixture of the eutectic lamellar structure, martensite and austenite was obtained by using graphite prior with 67% sodium silicate and the levels of the hardness layer increased to around 1000 HV. The thickness of the cemented layer formed on the surface was around 200 μm. It is hoped that this plasma surface carburizing treatment could improve the tribological resistance properties.

  3. Silicate Veining Above an Ascending Mantle Plume - Evidence from New Ethiopian Xenolith Localities

    Science.gov (United States)

    Rooney, T. O.; Furman, T.; Ayalew, D.; Yirgu, G.

    2004-12-01

    Quaternary basaltic eruptions in the Debre Zeyit (Bishoftu) and Butajira regions of the Main Ethiopian Rift host Al-augite, norite and rare lherzolite xenoliths, xenocrysts and megacrysts. These explosive basaltic eruptions are located 20 km to the west of the main rift axis and are characterized by cinder cones and maars. The host basalt was generated as a small degree partial melt of fertile peridotite between 15 and 25 kb and host abundant Al-augite (Type II) xenoliths derived from pressures up to 10 kb. The central Main Ethiopian Rift lies in a transitional zone between the continental rifting of East Africa and the sea floor spreading associated with the Red Sea. Lithospheric and sub-lithospheric processes that occur during the transition from continental to oceanic magmatism may be investigated using these xenolith-bearing basalts. Neither carbonatitic nor hydrous (amphibole + phlogopite) metasomatism is evident in either the xenoliths or host basalts, suggesting that infiltration of silicate melts that produced Al-augite veining dominates the regional lower crust and lithospheric mantle. These veins are significantly hotter (200 - 300 ° C) than the lherzolite wall rock they intrude suggesting the thermal influence of the Afar plume. Recent geophysical tomography indicates that this veining is pervasive and segmented, supporting the association of these Al-augite veins with the formation of a proto-ridge axis. Al-augite xenoliths and megacrysts have been observed in other continental rift settings such as Durango (Luhr, 2001) and Lake Baikal (Litasov, 2000), indicating Al-augite silicate melt metasomatism is a fundamental process associated with continental rift development.

  4. Effect of layered silicate content on the morphology and thermal properties of Poly(vinyl alcohol) films

    International Nuclear Information System (INIS)

    Silva, Jessica R.M.B. da; Santos, Barbara F.F. dos; Leite, Itamara F.

    2015-01-01

    This study aims to evaluate the effect of layered silicate content on the morphology and thermal properties of PVA films. The PVA/layered silicate (AN) films were prepared by intercalation solution, using 1 to 2% of bentonite with respect to the PVA total weight. Then the films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). Results of the FTIR revealed interaction between the functional groups of the PVA and the layered silicate. The XRD analysis showed that nanocomposites with intercalated and partially exfoliated morphology were obtained. The results of TG showed that the nanocomposite PVA/2%AN showed higher thermal stability compared to PVA/1%AN. The DSC results showed that the addition of AN to the PVA did not affect crystallization rate, as well as promoted a reduction in glass transition temperature and melting of the PVA. (author)

  5. Laser ablation of silicate glasses doped with transuranic actinides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1998-01-01

    Direct sampling laser ablation plasma mass spectrometry (DS-LAMS) was applied to silica glasses doped with 237 Np, 242 Pu or 241 Am using a unique instrument recently installed into a transuranic glovebox. The primary goal was to assess the utility of mass spectrometry of directly ablated ions for facile evaluation of actinide (An) constituents of silicate glass immobilization matrices used for encapsulation of radionuclides. The instrument and general procedures have been described elsewhere. Three high-purity silicate glasses prepared by a sol-gel process (SG) and one conventional high-temperature (HT; melting point ∼ 1,450 C) borosilicate glass were studied. These glasses comprised the following constituents, with compositions expressed in mass percentages: Np-HT ∼ 30% SiO 2 + 6% B 2 O 3 + 3% BaO + 13% Al 2 O 3 + 10% PbO + 30% La 2 O 3 + 8% 237 NpO 2 ; Np-SG ∼ 70% SiO 2 + 30% 237 NpO 2 ; Pu-SG ∼ 70% SiO 2 + 30% 242 PuO 2 ; Am-SG ∼ 85% SiO 2 + 15% 241 AmO 2

  6. Form-stable LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage

    International Nuclear Information System (INIS)

    Jiang, Zhu; Leng, Guanghui; Ye, Feng; Ge, Zhiwei; Liu, Chuanping; Wang, Li; Huang, Yun; Ding, Yulong

    2015-01-01

    Graphical abstract: The figure (a) displays the microstructure of calcium silicate and the inset figure is the LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite PCM. Calcium silicate is used as a porous skeleton material which could absorb large amounts of the nitrate PCM in voids and prevent the PCM from leakage during phase change process. Figure (b) shows the heat capacity of the composite PCM and the inset figure is the DSC curve of the composite. It indicates that this composite has a low melting point (103.5 °C) and good energy storage property. Based on the novel LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite PCM, this work involves fabrication process, thermal and microstructural characterization, and chemical and physical stability measurements. - Highlights: • A novel LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite PCM was prepared. • It has a low melting point (103.5 °C) and could remain stable until 585.5 °C. • It could keep form-stable without leakage during phase change process. • Thermal conductivity of the composite PCM reaches up to 1.177 W m"−"1 K"−"1. • It shows good thermal reliability after 1000 times heating and cooling cycling. - Abstract: In this paper, a novel form-stable LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite PCM was developed by cold compression and sintering. The eutectic quaternary nitrate is used as PCM, while calcium silicate is used as structural supporting material. X-ray Diffraction (XRD) shows the PCM and the supporting material have good chemical compatibility. This composite PCM has a low melting point (103.5 °C) and remain stable without decomposition until 585.5 °C. Moreover, this composite shows excellent long term stability after 1000 melting and freezing cycles. Thermal conductivity of the composite was measured to be 1.177 W m"−"1 K"−"1, and that could be increased by adding thermal conductivity enhancers into the composite

  7. Molar volume, excess enthalpy, and Prigogine-Defay ratio of some silicate glasses with different (P,T) histories.

    Science.gov (United States)

    Wondraczek, Lothar; Behrens, Harald

    2007-10-21

    Structural relaxation in silicate glasses with different (p,T) histories was experimentally examined by differential scanning calorimetry and measurements of molar volume under ambient pressure. Temperature and pressure-dependent rates of changes in molar volume and generation of excess enthalpy were determined for sodium trisilicate, soda lime silicate, and sodium borosilicate (NBS) compositions. From the derived data, Prigogine-Defay ratios are calculated and discussed. Changes of excess enthalpy are governed mainly by changes in short-range structure, as is shown for NBS where boron coordination is highly sensitive to pressure. For all three glasses, it is shown how the relaxation functions that underlie volume, enthalpy, and structural relaxation decouple for changes in cooling rates and pressure of freezing, respectively. The magnitude of the divergence between enthalpy and volume may be related to differences in structural sensitivity to changes in the (p,V,T,t) space on different length scales. The findings suggest that the Prigogine-Defay ratio is related to the magnitude of the discussed decoupling effect.

  8. Sandia Sodium Purification Loop (SNAPL) description and operations manual

    International Nuclear Information System (INIS)

    Acton, R.U.; Weatherbee, R.L.; Smith, L.A.; Mastin, F.L.; Nowotny, K.E.

    1985-08-01

    Sandia's Sodium Purification Loop was constructed to purify sodium for fast reactor safety experiments. An oxide impurity of less than 10 parts per million is required by these in-pile experiments. Commercial, reactor grade sodium is purchased in 180 kg drums. The sodium is melted and transferred into the unit. The unit is of a loop design and purification is accomplished by ''cold trapping.'' Sodium purified in this loop has been chemically analysed at one part per million oxygen by weight. 5 refs., 22 figs., 7 tabs

  9. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    Science.gov (United States)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  10. Improved mechanical and corrosion properties of nickel composite coatings by incorporation of layered silicates

    Energy Technology Data Exchange (ETDEWEB)

    Tientong, J. [University of North Texas, Department of Chemistry, 1155 Union Circle #305070, Denton, TX 76203 (United States); Ahmad, Y.H. [Center for Advanced Materials, P.O. Box 2713, Qatar University, Doha (Qatar); Nar, M.; D' Souza, N. [University of North Texas, Department of Mechanical and Energy Engineering, Denton, TX 76207 (United States); Mohamed, A.M.A. [Center for Advanced Materials, P.O. Box 2713, Qatar University, Doha (Qatar); Golden, T.D., E-mail: tgolden@unt.edu [University of North Texas, Department of Chemistry, 1155 Union Circle #305070, Denton, TX 76203 (United States)

    2014-05-01

    Layered silicates as exfoliated montmorillonite are incorporated into nickel films by electrodeposition, enhancing both corrosion resistance and hardness. Films were deposited onto stainless steel from a plating solution adjusted to pH 9 containing nickel sulfate, sodium citrate, and various concentrations of exfoliated montmorillonite. The presence of the incorporated layered silicate was confirmed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The composite films were also compact and smooth like the pure nickel films deposited under the same conditions as shown by scanning electron microscopy. X-ray diffraction results showed that incorporation of layered silicates into the film do not affect the nickel crystalline fcc structure. The nanocomposite films exhibited improved stability and adhesion. Pure nickel films cracked and peeled from the substrate when immersed in 3.5% NaCl solution within 5 days, while the nanocomposite films remained attached even after 25 days. The corrosion resistance of the nickel nanocomposites was also improved compared to nickel films. Nickel-layered silicate composites showed a 25% increase in Young's modulus and a 20% increase in hardness over pure nickel films. - Highlights: • 0.05–2% of layered silicates are incorporated into crystalline nickel films. • Resulting composite films had improved stability and adhesion. • Corrosion resistance improved for the composite films. • Hardness improved 20% and young's modulus improved 25% for the composite films.

  11. Thermophysical properties of sodium in the liquid and gaseous states

    International Nuclear Information System (INIS)

    Thurnay, K.

    1981-02-01

    A system of temperature and density dependent thermal-property-functions has been developed and checked for the sodium, using all of the accessible experimental data and the mutual relationships of the properties. In extending these properties beyond the range of the measurements substance independent physical relations have been used. The property-descriptions are valid for all temperatures above the melting point of the sodium and for all densities below the melting density of the liquid. The system consists of the following thermal properties: pressure, heat capacity at constant volume, thermal conductivity. (orig.) [de

  12. Rechargeable lithium and sodium anodes in chloroaluminate molten salts containing thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, J.; Osteryoung, R.A. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemistry; Carlin, R.T.

    1995-11-01

    Lithium and sodium deposition-stripping studies were performed in room temperature buffered neutral chloroaluminate melts containing low concentrations of thionyl chloride (SOCl{sub 2}). The SOCl{sub 2} solute promotes high cycling efficiencies of the alkali metals in these electrolytes. Staircase cyclic voltammetry and chronopotentiometry show cycling efficiencies of approximately 90% for both lithium and sodium. High cycling efficiencies are maintained following extended exposure of the melt to the dry box atmosphere and after time delays at open circuit. The performance of the SOCl{sub 2}-promoted systems is substantially improved over previous studies in room temperature melts containing hydrogen chloride as the promoting solute.

  13. Metal/silicate partitioning of Pt and the origin of the "late veneer"

    Science.gov (United States)

    Ertel, W.; Walter, M. J.; Drake, M. J.; Sylvester, P. J.

    2002-12-01

    the melting point of the 1 atm, AnDi system and the melting point of the Pt capsule material. Over 150 piston cylinder and 12 multi anvil experiments have been performed. Pt solubility is only slightly dependent on temperature, decreasing between 1800 and 1400°C by less than an order of magnitude. In consequence, the partitioning behavior of Pt is mostly determined by its oxygen fugacity dependence, which has only been determined in 1 atm experiments. At 10 kbar, metal/silicate partition coefficients (D's) decrease by about 3 orders of magnitude. The reason for this is not understood, but might be attributed to a first order phase transition as found for, e.g., SiO2 or H2O. Above 10 kbar any increase in pressure does not lead to any further significant decrease in partition coefficients. Solubilities stay roughly constant up to 140 kbar. Abundances of moderately siderophile elements were possibly established by metal/silicate equilibrium in a magma ocean. These results for Pt suggest that the abundances of HSEs were most probably established by the accretion of a chondritic veneer following core formation, as metal/silicate partition coefficients are too high to be consistent with metal/silicate equilibrium in a magma ocean.

  14. Transformation and fragmentation behavior of molten metal drop in sodium pool

    International Nuclear Information System (INIS)

    Nishimura, Satoshi; Zhang Zhigang; Sugiyama, Ken-Ichiro; Kinoshita, Izumi

    2007-01-01

    In order to clarify the fragmentation mechanism of a metallic alloy (U-Pu-Zr) fuel on liquid phase formed by metallurgical reactions (liquefaction temperature = 650 deg. C), which is important in evaluating the sequence of core disruptive accidents for metallic fuel fast reactors, a series of experiments was carried out using molten aluminum (melting point 660 deg. C) and sodium mainly under the condition that the boiling of sodium does not occur. When the instantaneous contact interface temperature (T i ) between molten aluminum drop and sodium is lower than the boiling point of sodium (T c,bp ), the molten aluminum drop can be fragmented and the mass median diameter (D m ) of aluminum fragments becomes small with increasing T i . When T i is roughly equivalent to or higher than T c,bp , the fragmentation of aluminum drop is promoted by thermal interaction caused by the boiling of sodium on the surface of the drop. Furthermore, even under the condition that the boiling of sodium does not occur and the solid crust is formed on the surface of the drop, it is confirmed from an analytical evaluation that the thermal fragmentation of molten aluminum drop with solid crust has a potential to be caused by the transient pressurization within the melt confined by the crust. These results indicate the possibility that the metallic alloy fuel on liquid phase formed by the metallurgical reactions can be fragmented without occurring the boiling of sodium on the surface of the melt

  15. A simple, rapid and eco friendly method for determination of uranium in geological samples of low silicate matrix by ICP-OES

    International Nuclear Information System (INIS)

    Hanuman, V.V.; Chakrapani, G.; Singh, A.K.

    2013-01-01

    A simple, rapid, cost effective and eco friendly decomposition and dissolution method is developed for the determination of uranium (U 3 O 8 ) by Inductively Coupled Plasma - Optical Emission Spectrometer (ICP-OES) in low silicate geological samples. The salts of Sodium di-hydrogen phosphate monohydrate and Sodium pyrophosphate deca hydrate are used in the ratio of 1:1 (phosphate flux) for the decomposition of low silicate matrix geological samples. Samples are decomposed by fusion with the phosphate flux after ignition and the dissolution is carried out using distilled water. If the samples contain >10% silica, they have been treated with little amount of (HF+HNO 3 ) prior to fusion with phosphate flux. These samples, are analysed by ICP-OES directly without any separation from the matrix. The spectral interferences of major matrix elements (Al, Ti, Fe, Mn, etc present in the sample) on uranium are studied and it is observed that their interferences are negligible, as dilution is required to bring uranium concentration into calibration range of instrument. This is the first time, the phosphate flux is used for decomposition of low silicate geological samples for uranium determination by ICP-OES

  16. Melt-assisted synthesis to lanthanum hexaboride nanoparticles and ...

    Indian Academy of Sciences (India)

    2017-09-22

    Sep 22, 2017 ... cubes (100–300 nm) when metal zinc was used as reaction melt. Photothermal ... powder (Zn, AR), potassium chloride (KCl, AR), sodium chloride (NaCl, AR) and ... ized water to remove NaCl, KCl and other impurities. The.

  17. Chiral hide-and-seek: retention of enantiomorphism in laser-induced nucleation of molten sodium chlorate.

    Science.gov (United States)

    Ward, Martin R; Copeland, Gary W; Alexander, Andrew J

    2011-09-21

    We report the observation of non-photochemical laser-induced nucleation (NPLIN) of sodium chlorate from its melt using nanosecond pulses of light at 1064 nm. The fraction of samples that nucleate is shown to depend linearly on the peak power density of the laser pulses. Remarkably, we observe that most samples are nucleated by the laser back into the enantiomorph (dextrorotatory or levorotatory) of the solid prior to melting. We do not observe a significant dependence on polarization of the light, and we put forward symmetry arguments that rule out an optical Kerr effect mechanism. Our observations of retention of chirality can be explained by decomposition of small amounts of the sodium chlorate to form sodium chloride, which provide cavities for retention of clusters of sodium chlorate even 18 °C above the melting point. These clusters remain sub-critical on cooling, but can be activated by NPLIN via an isotropic polarizability mechanism. We have developed a heterogeneous model of NPLIN in cavities, which reproduces the experimental data using simple physical data available for sodium chlorate.

  18. Energetically benign synthesis of lanthanum silicate through “silica garden” route and its characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Kavita [Central University of Jharkhand, Ranchi (India); Bhattacharjee, Santanu, E-mail: santanu@nmlindia.org [CSIR-National Metallurgical Laboratory, Jamshedpur (India)

    2017-06-15

    Lanthanum silicate synthesis through “silica garden” route has been reported as an alternative to energy intensive milling procedure. Under optimum conditions lanthanum chloride crystals react with water glass (sodium silicate) to produce self generating hollow lanthanum silicate precipitation tube(s) (LaSPT). The micro tubes are irregular, thick, white coloured and amorphous but are hierarchically built from smaller tubules of 10–20 nm diameters. They retain their amorphous nature on being heated up to 600 °C beyond which crystallization starts. The major phase in the LaSPT heated at 900 °C is La{sub 2}Si{sub 2}O{sub 7}. “As synthesized” LaSPT is heterogeneous and comprises non stoichiometric phases. The exterior and interior surfaces of these tubes are remarkably different in their morphology and chemical composition. LaSPT sintered at 1200 and 1300 °C show fair amount of ionic conductivity. - Graphical abstract: Lanthanum silicate precipitation tube (LaSPT) produced through ‘silica garden’ route offers a green alternative to energy intensive milling procedure. - Highlights: • La-silicate precipitation tube (LaSPT) synthesized via silica garden route. • The microtubes are irregular, thick, white coloured and amorphous. • They are hierarchically built from smaller tubules of 10–20 nm diameters. • The major phase in the LaSPT heated at 900 °C is La{sub 2}Si{sub 2}O{sub 7}. • LaSPT sintered at 1200 °C is fairly conducting.

  19. Energetically benign synthesis of lanthanum silicate through “silica garden” route and its characterization

    International Nuclear Information System (INIS)

    Parmar, Kavita; Bhattacharjee, Santanu

    2017-01-01

    Lanthanum silicate synthesis through “silica garden” route has been reported as an alternative to energy intensive milling procedure. Under optimum conditions lanthanum chloride crystals react with water glass (sodium silicate) to produce self generating hollow lanthanum silicate precipitation tube(s) (LaSPT). The micro tubes are irregular, thick, white coloured and amorphous but are hierarchically built from smaller tubules of 10–20 nm diameters. They retain their amorphous nature on being heated up to 600 °C beyond which crystallization starts. The major phase in the LaSPT heated at 900 °C is La_2Si_2O_7. “As synthesized” LaSPT is heterogeneous and comprises non stoichiometric phases. The exterior and interior surfaces of these tubes are remarkably different in their morphology and chemical composition. LaSPT sintered at 1200 and 1300 °C show fair amount of ionic conductivity. - Graphical abstract: Lanthanum silicate precipitation tube (LaSPT) produced through ‘silica garden’ route offers a green alternative to energy intensive milling procedure. - Highlights: • La-silicate precipitation tube (LaSPT) synthesized via silica garden route. • The microtubes are irregular, thick, white coloured and amorphous. • They are hierarchically built from smaller tubules of 10–20 nm diameters. • The major phase in the LaSPT heated at 900 °C is La_2Si_2O_7. • LaSPT sintered at 1200 °C is fairly conducting.

  20. Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide

    International Nuclear Information System (INIS)

    Mendoza, Oscar; Giraldo, Carolina; Camargo, Sergio S.; Tobón, Jorge I.

    2015-01-01

    This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement in calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure

  1. Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Oscar, E-mail: oamendoz@unal.edu.co [Grupo del Cemento y Materiales de Construcción (CEMATCO). Universidad Nacional de Colombia, Facultad de Minas, Medellín (Colombia); Giraldo, Carolina [Cementos Argos S.A., Medellín (Colombia); Camargo, Sergio S. [Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro/COPPE, Rio de Janeiro (Brazil); Tobón, Jorge I. [Grupo del Cemento y Materiales de Construcción (CEMATCO). Universidad Nacional de Colombia, Facultad de Minas, Medellín (Colombia)

    2015-08-15

    This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement in calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure.

  2. Cubic zirconia in >2370 °C impact melt records Earth's hottest crust

    Science.gov (United States)

    Timms, Nicholas E.; Erickson, Timmons M.; Zanetti, Michael R.; Pearce, Mark A.; Cayron, Cyril; Cavosie, Aaron J.; Reddy, Steven M.; Wittmann, Axel; Carpenter, Paul K.

    2017-11-01

    Bolide impacts influence primordial evolution of planetary bodies because they can cause instantaneous melting and vaporization of both crust and impactors. Temperatures reached by impact-generated silicate melts are unknown because meteorite impacts are ephemeral, and established mineral and rock thermometers have limited temperature ranges. Consequently, impact melt temperatures in global bombardment models of the early Earth and Moon are poorly constrained, and may not accurately predict the survival, stabilization, geochemical evolution and cooling of early crustal materials. Here we show geological evidence for the transformation of zircon to cubic zirconia plus silica in impact melt from the 28 km diameter Mistastin Lake crater, Canada, which requires super-heating in excess of 2370 °C. This new temperature determination is the highest recorded from any crustal rock. Our phase heritage approach extends the thermometry range for impact melts by several hundred degrees, more closely bridging the gap between nature and theory. Profusion of >2370 °C superheated impact melt during high intensity bombardment of Hadean Earth likely facilitated consumption of early-formed crustal rocks and minerals, widespread volatilization of various species, including hydrates, and formation of dry, rigid, refractory crust.

  3. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)

    2015-10-15

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  4. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    International Nuclear Information System (INIS)

    Heo, Hyo; Bang, In Cheol; Jerng, Dong Wook

    2015-01-01

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  5. Effect of additives in reducing ash sintering and slagging in biomass combustion applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang

    2012-07-01

    formation of low temperature melting potassium rich silicates and phosphates, causing severe sintering of the WCob ash at elevated temperatures. In contrast, both the Pioneer corn cob (PCob) and Surcin corn cob (SCob) contained high contents of Cl, Ca and Mg that promote K release from the ashes to a certain extent and inhibit formation of low temperature melting K rich silicates and phosphates. In addition, abundance of Ca and Mg in the PCob and SCob facilitated formation of high temperature melting Ca/Mg-K-silicates and Ca/Mg-K-phosphates, reducing sintering degrees of ashes derived from these two corn cobs. Utilizing additives is an efficient way to mitigate ash related operational problems in biomass combustion applications. The useful additives can be proximately categorized into Al-Si-based, S-based, calcium-based and phosphorus-based, according to the major chemical composition in the additives. After fed into biomass combustion systems with different approaches, the additives can decrease amounts of problematic ash species through five possible mechanisms, which prevent and/or abate ash related problems consequently. It is interesting to exploit additives from waste materials, which are normally characterized with rather high chemical reactivity, physical adsorption capacity, abundance of refractory compounds themselves and low costs. More detailed studies are needed to clarify effects of these additives on ash transformation during biomass combustion processes. Sintering characteristics of biomass ashes and effects of additives were investigated. The work revealed that severe fusion of wheat straw ash was associated with intensive formation and melting of potassium silicates under heating. Whereas, sintering of wood waste ash was caused by generation of low temperature melting potassium/sodium aluminum silicates and potassium/sodium calcium silicates. The best anti-sintering effect was achieved by using the marble sludge as additive. The dilution effect from the

  6. Thirteen million years of silicic magma production in Iceland: Links between petrogenesis and tectonic settings

    Science.gov (United States)

    Martin, E.; Sigmarsson, O.

    2010-04-01

    The origin of the Quaternary silicic rocks in Iceland is thought to be linked to the thermal state of the crust, which in turn depends on the regional tectonic settings. This simple model is tested here on rocks from the Miocene to present, both to suggest an internally consistent model for silicic magma formation in Iceland and to constrain the link between tectonic settings and silicic magma petrogenesis. New major and trace-element compositions together with O-, Sr- and Nd-isotope ratios have been obtained on silicic rocks from 19 volcanic systems ranging in age from 13 Ma to present. This allows us to trace the spatial and temporal evolution of both magma generation and the corresponding sources. Low δ18O (geothermal gradient. But later than 5.5 Ma they were produced in a flank zone environment by fractional crystallisation alone, probably due to decreasing geothermal gradient, of basalts derived from a mantle source with lower 143Nd/ 144Nd. This is in agreement with an eastwards rift-jump, from Snæfellsnes towards the present Reykjanes Rift Zone, between 7 and 5.5 Ma. In the South Iceland Volcanic Zone (SIVZ), the intermediate Nd-signature observed in silicic rocks from the Torfajökull central volcano reflects the transitional character of the basalts erupted at this propagating rift segment. Therefore, the abundant evolved rocks at this major silicic complex result from partial melting of the transitional alkaline basaltic crust (Iceland can, therefore, be used for deciphering past geodynamic settings characterized by rift- and off-rift zones resulting from interaction of a mantle plume and divergent plate boundaries.

  7. Crustal thermal state and origin of silicic magma in Iceland: the case of Torfajökull, Ljósufjöll and Snæfellsjökull volcanoes

    Science.gov (United States)

    Martin, E.; Sigmarsson, O.

    2007-05-01

    Pleistocene and Holocene peralkaline rhyolites from Torfajökull (South Iceland Volcanic Zone) and Ljósufjöll central volcanoes and trachytes from Snæfellsjökull (Snæfellsnes Volcanic Zone) allow the assessment of the mechanism for silicic magma genesis as a function of geographical location and crustal geothermal gradient. The low δ18O (2.4‰) and low Sr concentration (12.2 ppm) measured in Torfajökull rhyolites are best explained by partial melting of hydrated metabasaltic crust followed by major fractionation of feldspar. In contrast, very high 87Sr/86Sr (0.70473) and low Ba (8.7 ppm) and Sr (1.2 ppm) concentrations measured in Ljósufjöll silicic lavas are best explained by fractional crystallisation and subsequent 87Rb decay. Snæfellsjökull trachytes are also generated by fractional crystallisation, with less than 10% crustal assimilation, as inferred from their δ18O. The fact that silicic magmas within, or close to, the rift zone are principally generated by crustal melting whereas those from off-rift zones are better explained by fractional crystallisation clearly illustrates the controlling influence of the thermal state of the crust on silicic magma genesis in Iceland.

  8. Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions

    Science.gov (United States)

    Ives, J.A.; Moffett, J.R.; Arun, P.; Lam, D.; Todorov, T.I.; Brothers, A.B.; Anick, D.J.; Centeno, J.; Namboodiri, M.A.A.; Jonas, W.B.

    2010-01-01

    Objectives: To analyze the solutes leaching from glass containers into aqueous solutions, and to show that these solutes have enzyme activity stabilizing effects in very dilute solutions. Methods: Enzyme assays with acetylcholine esterase were used to analyze serially succussed and diluted (SSD) solutions prepared in glass and plastic containers. Aqueous SSD preparations starting with various solutes, or water alone, were prepared under several conditions, and tested for their solute content and their ability to affect enzyme stability in dilute solution. Results: We confirm that water acts to dissolve constituents from glass vials, and show that the solutes derived from the glass have effects on enzymes in the resultant solutions. Enzyme assays demonstrated that enzyme stability in purified and deionized water was enhanced in SSD solutions that were prepared in glass containers, but not those prepared in plastic. The increased enzyme stability could be mimicked in a dose-dependent manner by the addition of silicates to the purified, deionized water that enzymes were dissolved in. Elemental analyses of SSD water preparations made in glass vials showed that boron, silicon, and sodium were present at micromolar concentrations. Conclusions: These results show that silicates and other solutes are present at micromolar levels in all glass-exposed solutions, whether pharmaceutical or homeopathic in nature. Even though silicates are known to have biological activity at higher concentrations, the silicate concentrations we measured in homeopathic preparations were too low to account for any purported in vivo efficacy, but could potentially influence in vitro biological assays reporting homeopathic effects. ?? 2009 The Faculty of Homeopathy.

  9. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  10. Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites

    DEFF Research Database (Denmark)

    Baker, J.; Bizzarro, Martin; Wittig, N.

    2005-01-01

    for these meteorites, however, are typically younger than age constraints for planetesimal differentiation. Such young ages indicate that the energy required to melt their parent bodies could not have come from the most likely heat source-radioactive decay of short-lived nuclides (Al and Fe) injected from a nearby...... decay could have triggered planetesimal melting. Small Mg excesses in bulk angrite samples confirm that Al decay contributed to the melting of their parent body. These results indicate that the accretion of differentiated planetesimals pre-dated that of undifferentiated planetesimals, and reveals......Long- and short-lived radioactive isotopes and their daughter products in meteorites are chronometers that can test models for Solar System formation. Differentiated meteorites come from parent bodies that were once molten and separated into metal cores and silicate mantles. Mineral ages...

  11. 21 CFR 573.260 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does not...

  12. Rapid timescales for accretion and melting of differentiated planetesimals inferred from Al-Mg chronometry

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Haack, H.; Baker, J.A.

    2005-01-01

    . Initial Al/Al values range from (1.26 ± 0.37) × 10 to (5.12 ± 0.81) × 10 at the time of magmatism on the EPB and MPB, and are among the highest Al abundances reported for igneous meteorites. These results indicate that widespread silicate melting and differentiation of rocky bodies occurred within 3...

  13. Growth of superconductor material in a fluxed melt, and article of manufacture

    International Nuclear Information System (INIS)

    Jackson, K.A.; Schneemeyer, L.F.

    1991-01-01

    This patent describes a method for making a body of bismuth-strontium calcium cuprate, lead-substituted bismuth strontium calcium cuprate, or thallium-barium calcium cuprate superconductor material. It comprises cooling a melt at least locally, the melt comprising constituents of the material, characterized in that the melts further comprises a flux component comprising at least one fluxing agent selected from the group consisting of sodium chloride and potassium chloride, such that the cuprate body has superconductor properties at a temperature of 77 K

  14. On determination of melt composition by liquidus curves for a number of oxide systems for crystal formation

    International Nuclear Information System (INIS)

    Soboleva, L.V.

    1991-01-01

    Consideration is given to liquidus curves in 31 phase diagrams of a series of borate, aluminate, silicate, germanate, titanate and other systems with unlimited mutual solubility in liquid state. Proposed optimal compositions of melts for preparation of crystals of compounds, forming in these systems, were calculated

  15. Immobilisation of active concrete debris using soluble sodium silicates

    International Nuclear Information System (INIS)

    Field, S.N.; Jull, S.P.

    1991-01-01

    Demolition of concrete biological shields will generate large quantities of active demolition debris. The size distribution of such concrete may range from pieces of size less than one tonne down to dust. Handling and disposal methods for this material are still the subject of current research. Although the literature indicates that the mechanisms of silicate/concrete interaction are not well understood, successful setting of the smaller size fraction of concrete demolition debris can be achieved at laboratory scale. Hardened properties of the set slurry are also acceptable. A study of the full scale process has resulted in an outline design for a suitable on-site plant. Estimated capital costs of the equipment are of the order of pounds 1.1M. The project has shown that the material of less than 5mm particle size can be set by this technique. Whilst this meets the original objectives of immobilising dust, it had been hoped that the 10mm size material, (which will require removal from the larger debris before grouting can take place) could also be disposed of by the slurry setting technique. Co-disposal of slurry and large active items in the same container is unlikely to be worthwhile. 14 tabs., 5 figs., 30 refs

  16. Temperature Effects on Aluminoborosilicate Glass and Melt Structure

    Science.gov (United States)

    Wu, J.; Stebbins, J. F.

    2008-12-01

    Quantitative determination of the atomic-scale structure of multi-component oxide melts, and the effects of temperature on them, is a complex problem. Ca- and Na- aluminoborosilicates are especially interesting, not only because of their major role in widespread technical applications (flat-panel computer displays, fiber composites, etc.), but because the coordination environments of two of their main network cations (Al3+ and B3+) change markedly with composition and temperature is ways that may in part be analogous to processes in silicate melts at high pressures in the Earth. Here we examine a series of such glasses with different cooling rates, chosen to evaluate the role modifier cation field strength (Ca2+ vs. Na+) and of non-bridging oxygen (NBO) content. To explore the effects of fictive temperature, fast quenched and annealed samples were compared. We have used B-11 and Al-27 MAS NMR to measure the different B and Al coordinations and calculated the contents of non-bridging oxygens (NBO). Lower cooling rates increase the fraction of [4]B species in all compositions. The conversion of [3]B to [4]B is also expected to convert NBO to bridging oxygens, which should affect thermodynamic properties such as configurational entropy and configurational heat capacity. For four compositions with widely varying compositions and initial NBO contents, analysis of the speciation changes with the same, simple reaction [3]B = [4]B + NBO yields similar enthalpy values of 25±7 kJ/mol. B-11 triple quantum MAS NMR allows as well the proportions of [3]B boroxol ring and non-ring sites to be determined, and reveals more [3]B boroxol ring structures present in annealed (lower temperature) glasses. In situ, high-temperature MAS NMR spectra have been collected on one of the Na-aluminoborosilicate and on a sodium borate glass at 14.1 T. The exchange of boron between the 3- and 4-coordinated sites is clearly observed well above the glass transition temperatures, confirming the

  17. Hydrogen determination in magnesium, zirconium, sodium and lithium using installation, C2532

    International Nuclear Information System (INIS)

    Malikova, E.D.; Velyukhanov, V.P.; Makhinova, L.O.; Kunin, L.L.

    1980-01-01

    Techniques of hydrogen determination in magnesium, lithium, sodium and zirconium using the S 2532 installation are developed. The method of oxidizing melting using lead borate has been used for hydrogen determination in lithium and sodium and the method of vacuum extraction - for hydrogen determination in zirconium and magnesium. Zr and Mg extraction has been carried out in steel reactor at the temperatures of 1000 and 650 deg C, the time of extraction being 30 and 10 minutes respectively. A quartz reactor, temperatures of oxidizing melting of 700-800 deg C, the time of analysis 10 and 20 minutes have been used for sodium and lithium. A possibility to determine volumetric content of hydrogen in magnesium at the existing surface contaminations with hydrogen-containing compounds is shown [ru

  18. Four stream breakup of molten IFR [Integral Fast Reactor] metal fuel in sodium

    International Nuclear Information System (INIS)

    Gabor, J.D.; Purviance, R.T.; Aeschlimann, R.W.; Spencer, B.W.

    1988-01-01

    Tests have been conducted in which the breakup behavior of kilogram quantities of molten uranium, uranium-zirconium alloy, and uranium-iron alloy pour streams in 600C sodium was studied. A sodium depth of less than 0.3 m was required for hydrodynamic breakup and freezing of 25-mm pour streams of uranium and uranium-zirconium alloy with up to 400C melt superheat. The breakup material was primarily in the form of filaments and sheets with a settled bed voidage on the order of 0.9. The uranium-iron alloy with 800C melt superheat exhibited similar behavior except a sodium depth somewhat greater than 0.3 m was required for breakup and freezing of the particles

  19. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Bajpai, M.B.; Shenoi, M.R.K.; Keni, V.S.

    1994-01-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author)

  20. Silicate grout curtains behaviour for the protection of coastal aquifers

    International Nuclear Information System (INIS)

    Elektorowicz, M.; Chifrina, R.; Hesnawi, R.

    1997-01-01

    Tests were performed to evaluate the behaviour of silicate grout with different reagents (ethylacetate - formamide SA and calcium chloride SC) in pure silica sand and natural soils from coastal areas containing organic matter, clayey soil and silica sand. The grouted specimens were tested with simulated fresh and salt water. The setting process during chemical grouting in the soil and sand was studied. The grouting of soil and sand with SA caused a transfer to the environment of some compounds: sodium formate, sodium acetate, ammonia and part of the initial ethylacetate and formamide. This process had a tendency to decrease for approximately 4 months. The stability of specimens was low. The grouting of soil and sand with SC caused no significant contamination of the environment. The increase of pH of environmental water was even less than with SA grouting. Also, the stability of specimens is higher in comparison with SA grouting. Salt water protected the specimens grouted with SA and SC from destruction and prevented contamination

  1. Safety evaluation for packaging for 1720-DR sodium-filled tank

    International Nuclear Information System (INIS)

    Mercado, M.S.

    1996-01-01

    Preparations are under way to sell the sodium stored in the 1720-DR tank in the 1720-DR building. This will require that the tank, as well as the 1720-DR facility, be moved to the 300 Area, so that the sodium may be melted and transferred into a railroad tanker car. Because the sodium is a hazardous material and is being shipped in a nonspecification packaging, a safety evaluation for packaging (SEP) is required. This SEP approves the sodium-filled tank for a single shipment from the 105-DR area to the 300 Area

  2. Electrochemical conversion of solid Nb{sub 2}O{sub 5} to Nb in sodium chloride melt as proof of oxygen ionisation mechanism of electrodeoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sri Maha Vishnu, D., E-mail: smvd2@cam.ac.uk [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India); Presently with Materials Chemistry Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS (United Kingdom); Sanil, N.; Mohandas, K.S. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India)

    2016-08-25

    The direct electrochemical reduction of a solid metal oxide (MO{sub x}) to metal (M) in calcium chloride melt (FFC Cambridge process) has been proposed to take place via. oxygen ionisation mechanism, MO{sub x} + 2xe{sup −} → M + xO{sup 2−}. However, generation of calcium metal and reduction of the oxide with it too becomes possible under the applied potential condition (3.1 V) of an FFC cell. The unique chemistry of calcium chloride melt, upon cathodic polarisation, makes it difficult to distinguish between the reduction by electrons and calcium metal. Hence in order to confirm the oxygen ionisation theory of electro-deoxidation, electrochemical deoxidation experiments were carried out with sintered Nb{sub 2}O{sub 5} pellet electrodes in molten sodium chloride at 1173 K. The pellets were found reduced to Nb metal. Sodiothermic reduction of Nb{sub 2}O{sub 5} is thermodynamically not feasible (Nb{sub 2}O{sub 5} + 10Na → 5Na{sub 2}O + 2Nb, ΔG°{sub 1173K} = 102.1 kJ) and hence the observed reduction of the oxide is attributed to electrons. This study, for the first time, gives reliable experimental evidence to the oxygen ionisation mechanism of electro-reduction of solid oxides in the FFC process. The experimental results also prove that the electro-reduction of oxides can occur in melts, which otherwise were considered unsuitable from thermodynamic considerations. - Highlights: • In NaCl melt: Negligible O{sup 2−} ion solubility & Na reduction of Nb{sub 2}O{sub 5} to Nb – absent. • Nb{sub 2}O{sub 5} could be electrochemically reduced to spongy Nb in NaCl melt at 1173 K. • Mechanism: Nb{sub 2}O{sub 5} → Na−Nb−O compounds + suboxides of Nb → Na{sub x}NbO{sub y} → Nb. • Metallothermic reduction of oxide in melt - not mandatory for electrodeoxidation. • In FFC Cambridge process: Metallothermic reduction is not essential but desirable.

  3. A Physical Model for Three-Phase Compaction in Silicic Magma Reservoirs

    Science.gov (United States)

    Huber, Christian; Parmigiani, Andrea

    2018-04-01

    We develop a model for phase separation in magma reservoirs containing a mixture of silicate melt, crystals, and fluids (exsolved volatiles). The interplay between the three phases controls the dynamics of phase separation and consequently the chemical and physical evolution of magma reservoirs. The model we propose is based on the two-phase damage theory approach of Bercovici et al. (2001, https://doi.org/10.1029/2000JB900430) and Bercovici and Ricard (2003, https://doi.org/10.1046/j.1365-246X.2003.01854.x) because it offers the leverage of considering interface (in the macroscopic limit) between phases that can deform depending on the mechanical work and phase changes taking place locally in the magma. Damage models also offer the advantage that pressure is defined uniquely to each phase and does not need to be equal among phases, which will enable us to consider, in future studies, the large capillary pressure at which fluids are mobilized in mature, crystal-rich, magma bodies. In this first analysis of three-phase compaction, we solve the three-phase compaction equations numerically for a simple 1-D problem where we focus on the effect of fluids on the efficiency of melt-crystal separation considering the competition between viscous and buoyancy stresses only. We contrast three sets of simulations to explore the behavior of three-phase compaction, a melt-crystal reference compaction scenario (two-phase compaction), a three-phase scenario without phase changes, and finally a three-phase scenario with a parameterized second boiling (crystallization-induced exsolution). The simulations show a dramatic difference between two-phase (melt crystals) and three-phase (melt-crystals-exsolved volatiles) compaction-driven phase separation. We find that the presence of a lighter, significantly less viscous fluid hinders melt-crystal separation.

  4. Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material

    Science.gov (United States)

    Elalaily, Nagia A.; Abou-Hussien, Eman M.; Saad, Ebtisam A.

    2016-12-01

    Optical and FTIR spectroscopic measurements and electron paramagnetic resonance (EPR) properties have been utilized to investigate and characterize the given compositions of binary bismuth silicate glasses. In this work, it is aimed to study the possibility of using the prepared bismuth silicate glasses as a good shielding material for γ-rays in which adding bismuth oxide to silicate glasses causes distinguish increase in its density by an order of magnitude ranging from one to two more than mono divalent oxides. The good thermal stability and high density of the bismuth-based silicate glass encourage many studies to be undertaken to understand its radiation shielding efficiency. For this purpose a glass containing 20% bismuth oxide and 80% SiO2 was prepared using the melting-annealing technique. In addition the effects of adding some alkali heavy metal oxides to this glass, such as PbO, BaO or SrO, were also studied. EPR measurements show that the prepared glasses have good stability when exposed to γ-irradiation. The changes in the FTIR spectra due to the presence of metal oxides were referred to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+ and Pb2+ ions. Calculations of optical band gap energies were presented for some selected glasses from the UV data to support the probability of using these glasses as a gamma radiation shielding material. The results showed stability of both optical and magnetic spectra of the studied glasses toward gamma irradiation, which validates their irradiation shielding behavior and suitability as the radiation shielding candidate materials.

  5. Nuclear waste management by in-situ melting

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.

    1976-01-01

    A systematic assessment of the in-situ melting concept as an ultimate waste disposal option shows that the placement of solidifed, high-level radioactive wastes in an in-situ melting cavity with a crushed rock backfill not only eliminates the major deficiencies inherent in other in-situ melting schemes, but also satisfies reasonable criteria for ultimate disposal. In-situ melting reduces the waste isolation time requirements to several hundred years. Calculated spent fuel and processing waste afterheat values assess the role of actinide and cladding material nuclides in creating the total afterheat and provide quantitative variation with time for these values for contamporary and advanced-design fission reactors. The dominant roles of 134 Cs in thermal spectrum reactor afterheats during the first decade of cooling of the actinide nuclides in all typical waste after-heats following a century or two of cooling are identified. The spatial and temporal behavior of a spherically symmetric waste repository experiencing in-situ melting in an equal density, homogeneous medium for silicate rock and salt is controlled primarily by the overall volumetric thermal source strength, the time-dependent characteristics of the high-level wastes, and the thermophysical properties of the surrounding rock environment. Calculations were verified by experimental data. The hazard index for typical high-level wastes is dominated by the fission product nuclides for the first three centuries of decay. It is then controlled by the actinides, especially americium, which dominates for 10,000 years. With in-situ melting, the hazard index for the re-solidifed rock/waste matrix deepunderground falls below the hazard index of naturally occurring uranium ore bodies within a few hundred years, whether or not the more hazardous actinide nuclides are selectively removed from the wastes prior to storage

  6. Corrosion-electrochemical behavior of nickel in an alkali metal carbonate melt under a chlorine-containing atmosphere

    Science.gov (United States)

    Nikitina, E. V.; Kudyakov, V. Ya.; Malkov, V. B.; Plaksin, S. V.

    2013-08-01

    The corrosion-electrochemical behavior of a nickel electrode is studied in the melt of lithium, sodium, and potassium (40: 30: 30 mol %) carbonates in the temperature range 500-600°C under an oxidizing atmosphere CO2 + 0.5O2 (2: 1), which is partly replaced by gaseous chlorine (30, 50, 70%) in some experiments. In other experiments, up to 5 wt % chloride of sodium peroxide is introduced in a salt melt. A change in the gas-phase composition is shown to affect the mechanism of nickel corrosion.

  7. Suitability assessment of grey water quality treated with an upflow-downflow siliceous sand/marble waste filtration system for agricultural and industrial purposes.

    Science.gov (United States)

    Chaabane, Safa; Riahi, Khalifa; Hamrouni, Hédi; Thayer, Béchir Ben

    2017-04-01

    The present study examines the suitability assessment of an upflow-downflow siliceous sand/marble waste filtration system for treatment and reuse of grey water collected from bathrooms of the student residential complex at the Higher Institute of Engineering Medjez El Bab (Tunisia). Once the optimization of grey water pre-treatment system has been determined, the filtration system was operated at different hydraulic loading rate and media filter proportions in order to assess the suitability of treated grey water for irrigational purpose according to salinity hazard, sodium hazard, magnesium hazard, permeability index, water infiltration rate, and widely used graphical methods. Suitability of the treated grey water for industrial purpose was evaluated in terms of foaming, corrosion, and scaling. Under optimal operational conditions, results reveals that treated grey water samples with an upflow-downflow siliceous sand/marble waste filtration system may be considered as a good and an excellent water quality suitable for irrigation purpose. However, treated grey water was found not appropriate for industrial purpose due to high concentrations of calcium and sodium that can generate foaming and scaling harm to boilers. These results suggest that treated grey water with an upflow-downflow siliceous sand/marble waste filtration system would support production when used as irrigation water.

  8. 21 CFR 172.410 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  9. Determination of silica in silicates by differential spectrophotometry as α-molybdosilicic acid

    International Nuclear Information System (INIS)

    Ohlweiler, O.A.; Meditsch, J.O.; Silva, S.

    1980-01-01

    A method for determining silica in silicates by differential spectrophotometry, using β-molybdosilic acid, is described. The sample is attacked by a mixture of boron trioxide and lithium carbonate (10:1). α-molydbosilicic acid is developed in a buffered solution (pH approximatelly 3.9) containing acetic acid and sodium acetate. The analytical procedure involves a series of preliminary steps which were previously elaborated for the gravimetric determination of silica as oxine molybdosilicate and which account for the removal of phosphorus, titanium and zirconium through ion exchange resins. (C.L.B.) [pt

  10. From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water.

    Science.gov (United States)

    Wang, Wenbo; Tian, Guangyan; Zong, Li; Zhou, Yanmin; Kang, Yuru; Wang, Qin; Wang, Aiqin

    2017-01-01

    A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline (CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite (IS) clay, sodium silicate and magnesium sulfate as the starting materials. In this process, IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52m 2 /g (about 8.7 folds higher than that of IS clay) and very negative Zeta potential (-34.5mV). The inert SiOSi (Mg, Al) bonds in crystal framework of IS were broken to form Si(Al) O - groups with good adsorption activity, which greatly increased the adsorption sites served for holding much CTC molecules. Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81mg/g of CTC (only 159.7mg/g for raw IS clay) and remove 99.3% (only 46.5% for raw IS clay) of CTC from 100mg/L initial solution (pH3.51; adsorption temperature 30°C; adsorbent dosage, 3g/L). The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model, Temkin equation and pseudo second-order kinetic model. The mesopore adsorption, electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties. As a whole, the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC. Copyright © 2016. Published by Elsevier B.V.

  11. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, M B; Shenoi, M R.K.; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author). 3 figs., 2 tabs.

  12. Oxygen isotope partitioning between rhyolitic glass/melt and CO2: An experimental study at 550-950 degrees C and 1 bar

    International Nuclear Information System (INIS)

    Palin, J.M.; Epstein, S.; Stolper, E.M.

    1996-01-01

    Oxygen isotope partitioning between gaseous CO 2 and a natural rhyolitic glass and melt (77.7 wt% SiO 2 , 0.16 wt% H 2 O total ) has been measured at 550-950 degrees C and approximately 1 bar. Equilibrium oxygen isotope fractionation factors (α CO2-rhyolite = ( 18 O/ 16 O) rhyolite ) determined in exchange experiments of 100-255 day duration. These values agree well with predictions based on experimentally determined oxygen isotope fractionation factors for CO 2 -silica glass and CO 2 -albitic glass/melt, if the rhyolitic glass is taken to be a simple mixture of normative silica and alkali feldspar components. The results indicate that oxygen isotope partitioning in felsic glasses and melts can be modeled by linear combinations of endmember silicate constituents. Rates of oxygen isotope exchange observed in the partitioning experiments are consistent with control by diffusion of molecular H 2 O dissolved in the glass/melt and are three orders of magnitude faster than predicted for rate control solely by diffusion of dissolved molecular CO 2 under the experimental conditions. Additional experiments using untreated and dehydrated (0.09 wt% H 2 O total ) rhyolitic glass quantatively support these interpretations. We conclude that diffusive oxygen isotope exchange in rhyolitic glass/melt, and probably other polymerized silicate materials, it controlled by the concentrations and diffusivities of dissolved oxygen-bearing volatile species rather than diffusion of network oxygen under all but the most volatile-poor conditions. 25 refs., 6 figs., 1 tab

  13. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  14. Effect of cooling rate on crystallization in an aluminophosphosilicate melt

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; Yue, Yuanzheng

    2011-01-01

    The effect of cooling rate on spontaneous crystallization behavior of an alumino-phospho-silicate melt is studied by means of differential scanning calorimetry, X-ray diffraction, scanning electron microscopy and viscometry. The cooling rates of 160, 2100 and 12000 K/s are attained by subjecting ......, the opalescence of the glass can be tuned by adjusting the cooling rate. This makes the production of opal glasses or transparent glass ceramics more efficient and energy saving, since the conventional isothermal treatment procedure can be left out....

  15. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I.; Sargent, B. A.

    2016-01-01

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  16. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Sargent, B. A., E-mail: sfogerty@pas.rochester.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2016-10-20

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  17. The role of sodium in the body

    Directory of Open Access Journals (Sweden)

    Munteanu Constantin

    2011-05-01

    Full Text Available Sodium is a metallic element with the symbol Na , in the same group with Li, K, Rb, Cs; is widespread in nature in the form of salts (nitrates, carbonates, chlorides, atomic number 11 and atomic weight 22,9898 . It,s a soft metal, reactive and with a low melting point , with a relative density of 0,97 at 200C (680 F. From the commercial point of view, sodium is the most important of all the alkaline metals. Elemental sodium was first isolated by Humpry Davy in 1807 by passing an electric current through molten sodium hydroxide. Elemental sodium does not occur naturally on earth, because it quickly oxidizes in air and is violently reactive with water, so it must be stored in a non-oxidizing medium, such as liquid hydrocarbon . The free metal is used for some chemical synthesis, analysis, and heat transfer applications .

  18. Computer analysis of sodium cold trap design and performance

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1983-11-01

    Normal steam-side corrosion of steam-generator tubes in Liquid Metal Fast Breeder Reactors (LMFBRs) results in liberation of hydrogen, and most of this hydrogen diffuses through the tubes into the heat-transfer sodium and must be removed by the purification system. Cold traps are normally used to purify sodium, and they operate by cooling the sodium to temperatures near the melting point, where soluble impurities including hydrogen and oxygen precipitate as NaH and Na 2 O, respectively. A computer model was developed to simulate the processes that occur in sodium cold traps. The Model for Analyzing Sodium Cold Traps (MASCOT) simulates any desired configuration of mesh arrangements and dimensions and calculates pressure drops and flow distributions, temperature profiles, impurity concentration profiles, and impurity mass distributions

  19. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites.

    Science.gov (United States)

    Reubi, Olivier; Blundy, Jon

    2009-10-29

    Andesites represent a large proportion of the magmas erupted at continental arc volcanoes and are regarded as a major component in the formation of continental crust. Andesite petrogenesis is therefore fundamental in terms of both volcanic hazard and differentiation of the Earth. Andesites typically contain a significant proportion of crystals showing disequilibrium petrographic characteristics indicative of mixing or mingling between silicic and mafic magmas, which fuels a long-standing debate regarding the significance of these processes in andesite petrogenesis and ultimately questions the abundance of true liquids with andesitic composition. Central to this debate is the distinction between liquids (or melts) and magmas, mixtures of liquids with crystals, which may or may not be co-genetic. With this distinction comes the realization that bulk-rock chemical analyses of petrologically complex andesites can lead to a blurred picture of the fundamental processes behind arc magmatism. Here we present an alternative view of andesite petrogenesis, based on a review of quenched glassy melt inclusions trapped in phenocrysts, whole-rock chemistry, and high-pressure and high-temperature experiments. We argue that true liquids of intermediate composition (59 to 66 wt% SiO(2)) are far less common in the sub-volcanic reservoirs of arc volcanoes than is suggested by the abundance of erupted magma within this compositional range. Effective mingling within upper crustal magmatic reservoirs obscures a compositional bimodality of melts ascending from the lower crust, and masks the fundamental role of silicic melts (>/=66 wt% SiO(2)) beneath intermediate arc volcanoes. This alternative view resolves several puzzling aspects of arc volcanism and provides important clues to the integration of plutonic and volcanic records.

  20. A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass using surface sensitive shallow angle X-ray diffraction.

    Science.gov (United States)

    Martin, R A; Twyman, H; Qiu, D; Knowles, J C; Newport, R J

    2009-04-01

    Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass((R)) [(CaO)(26.9)(Na(2)O)(24.4)(SiO(2))(46.1)(P(2)O(5))(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass((R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass((R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass((R)) is dominated by a broad amorphous feature around 2.2 A(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass((R)) in SBF a second broad amorphous feature evolves ~1.6 A(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass((R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

  1. Evaluation of cyclonic ash, commercial Na-silicates, lime and phosphoric acid for metal immobilisation purposes in contaminated soils in Flanders (Belgium)

    International Nuclear Information System (INIS)

    Geebelen, Wouter; Sappin-Didier, Valerie; Ruttens, Ann; Carleer, Robert; Yperman, Jan; Bongue-Boma, Kwele; Mench, Michel; Lelie, Niels van der; Vangronsveld, Jaco

    2006-01-01

    In order to reduce the health risks associated with historically enriched metal smelting sites in Flanders (Belgium), the capacities of a non-beringite cyclonic ash and commercial Na-silicates to fix metals and create conditions to restore vegetation cover were evaluated and compared to lime and H 3 PO 4 . All tested amendments reduced Ca(NO 3 ) 2 -extractable soil metal concentrations and reduced metal uptake in Agrostis capillaris seedlings. Sodium released by Na-silicates was possibly toxic to bean plants while an isotopic dilution technique revealed that metals were only weakly sorbed by silicates (i.e. reversible sorption). Cyclonic ash appeared more efficient than lime in both reducing oxidative stress in beans and Zn, Cu and Pb uptake in grasses. The metal fixing mechanism for both amendments appeared similar (i.e. irreversible fixation at constant pH), in contrast to H 3 PO 4 where at least part of the immobilised Cd was irreversibly fixed across a range of pH. - Metal immobilising capacities of Na-silicates are weak, while the active mechanism of cyclonic ash is the same as lime

  2. Study of behaviour of lanthanum- and yttrium electrodes in chloride melts

    International Nuclear Information System (INIS)

    Shkol'nikov, S.I.; Tolypin, E.S.; Yur'ev, B.P.

    1984-01-01

    A study was made on the lanthanum- and yttrium behaviour in a mixture of molten potassium- and sodium chlorides at various temperatures. It is shown that the lanthanum- and yttrium behaviour in KCl-NaCl melt is similar to the behaviour of other metals. Their corrosion rate is much higher as compared to other metals and it grows rapidly with increasing melt temperature. The temperature growth by 200 deg C results in an increase in the corrosion rate almost by an order. The potentials of lanthanum- and yttrium electrodes at the instant they are immersed in the melt have more negative values than the potentials of alkali metals under similar conditions

  3. Transformation and fragmentation behavior of molten metal drop in sodium pool

    International Nuclear Information System (INIS)

    Nishimura, Satoshi; Kinoshita, Izumi; Zhang, Zhi-gang; Sugiyama, Ken-ichiro

    2006-01-01

    In order to clarify the fragmentation mechanism of a metallic alloy (U-Pu-Zr) fuel on liquid phase formed by metallurgical reactions (liquefaction temperature =650degC), which is important in evaluating the sequence of core disruptive accidents for metallic fuel fast reactors, a series of experiments was carried out using molten aluminum (m.p.=660degC) and sodium mainly under the condition that the boiling of sodium does not occur. When the instantaneous contact interface temperature (T i ) between molten aluminum drop and sodium is lower than the boiling point of sodium (T c,bp ), the molten aluminum drop can be fragmented and the mass median diameter (D m ) of aluminum fragments becomes small with increasing T i . When T i is roughly equivalent to or higher than T c,bp , the fragmentation of aluminum drop is promoted by thermal interaction caused by the boiling of sodium on the surface of the drop. Furthermore, even under the condition that the boiling of sodium does not occur and the solid crust is formed on the surface of the drop, it is found from an analytical evaluation that the thermal fragmentation of molten aluminum drop with solid crust is caused by the transient pressurization within the melt confined by the crust. These results indicate the possibility that the metallic alloy fuel on liquid phase formed by the metallurgical reactions can be fragmented without occurring the boiling of sodium on the surface of the melt. (author)

  4. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    Science.gov (United States)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  5. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    Science.gov (United States)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization

  6. Bond strength and interfacial morphology of orthodontic brackets bonded to eroded enamel treated with calcium silicate-sodium phosphate salts or resin infiltration.

    Science.gov (United States)

    Costenoble, Aline; Vennat, Elsa; Attal, Jean-Pierre; Dursun, Elisabeth

    2016-11-01

     To investigate the shear bond strength (SBS) of orthodontic brackets bonded to eroded enamel treated with preventive approaches and to examine the enamel/bracket interfaces.  Ninety-one brackets were bonded to seven groups of enamel samples: sound; eroded; eroded+treated with calcium silicate-sodium phosphate salts (CSP); eroded+infiltrated by ICON ® ; eroded+infiltrated by ICON ® and brackets bonded with 1-month delay; eroded+infiltrated by an experimental resin; and eroded+infiltrated by an experimental resin and brackets bonded with 1-month delay. For each group, 12 samples were tested in SBS and bond failure was assessed with the adhesive remnant index (ARI); one sample was examined using scanning electron microscopy (SEM).  Samples treated with CSP or infiltration showed no significant differences in SBS values with sound samples. Infiltrated samples followed by a delayed bonding showed lower SBS values. All of the values remained acceptable. The ARI scores were significantly higher for sound enamel, eroded, and treated with CSP groups than for all infiltrated samples. SEM examinations corroborated the findings.  Using CSP or resin infiltration before orthodontic bonding does not jeopardize the bonding quality. The orthodontic bonding should be performed shortly after the resin infiltration.

  7. Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L.; Kim, Dong-Sang; Schweiger, Michael J.; Marra, James C.; Lang, Jesse B.; Crum, Jarrod V.; Crawford, Charles L.; Vienna, John D.

    2014-05-22

    The cold crucible induction melter (CCIM) is an alternative technology to the currently deployed liquid-fed, ceramic-lined, Joule-heated melter for immobilizing of U.S. tank waste generated from defense related reprocessing. In order to accurately evaluate the potential benefits of deploying a CCIM, glasses must be developed specifically for that melting technology. Related glass formulation efforts have been conducted since the 1990s including a recent study that is first documented in this report. The purpose of this report is to summarize the silicate base glass formulation efforts for CCIM testing of U.S. tank wastes. Summaries of phosphate based glass formulation and phosphate and silicate based CCIM demonstration tests are reported separately (Day and Ray 2013 and Marra 2013, respectively). Combined these three reports summarize the current state of knowledge related to waste form development and process testing of CCIM technology for U.S. tank wastes.

  8. Boiling and fragmentation behaviour during fuel-sodium interactions

    International Nuclear Information System (INIS)

    Schins, H.; Gunnerson, F.S.

    1986-01-01

    A selection of the results and subsequent analysis of molten fuel-sodium interaction experiments conducted within the JRC BETULLA I and II facilities are reported. The fuels were copper and stainless steel, at initial temperatures far above their melting points; or urania and alumina, initially at their melting points. For each test, the molten fuel masses were in lower kilogram range and the subcooled pool mass was either 160 or 4 kg. The sodium pool was instrumented continually monitor the system temperature and pressure. Post-test examination results of the fragmented fuel debris sizes, shape and crystalline structure are given. The results of this study suggest the following: Transition boiling is the dominant boiling mode for the tested fuels in subcooled sodium. Two fragmentation mechanisms, vapour bubble formation/collapse and thermal stress shrinkage cracking prevailed for the oxide fuels. This was evidenced by the presence of both smooth and fractured particulate. In contrast, all metal fuel debris was smooth, suggesting fragmentation by the vapour bubble formation/collapse mechanism only during the molten state and for each test, there was no evidence of an energetic fuel-coolant interaction. (orig.)

  9. A volatile-rich Earth's core inferred from melting temperature of core materials

    Science.gov (United States)

    Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Clark, A. N.; Lord, O. T.; Cervera, S.; Siebert, J.; Garbarino, G.; Svitlyk, V.; Mezouar, M.

    2016-12-01

    Planetary cores are mainly constituted of iron and nickel, alloyed with lighter elements (Si, O, C, S or H). Understanding how these elements affect the physical and chemical properties of solid and liquid iron provides stringent constraints on the composition of the Earth's core. In particular, melting curves of iron alloys are key parameter to establish the temperature profile in the Earth's core, and to asses the potential occurrence of partial melting at the Core-Mantle Boundary. Core formation models based on metal-silicate equilibration suggest that Si and O are the major light element components1-4, while the abundance of other elements such as S, C and H is constrained by arguments based on their volatility during planetary accretion5,6. Each compositional model implies a specific thermal state for the core, due to the different effect that light elements have on the melting behaviour of Fe. We recently measured melting temperatures in Fe-C and Fe-O systems at high pressures, which complete the data sets available both for pure Fe7 and other binary alloys8. Compositional models with an O- and Si-rich outer core are suggested to be compatible with seismological constraints on density and sound velocity9. However, their crystallization temperatures of 3650-4050 K at the CMB pressure of 136 GPa are very close to, if not higher than the melting temperature of the silicate mantle and yet mantle melting above the CMB is not a ubiquitous feature. This observation requires significant amounts of volatile elements (S, C or H) in the outer core to further reduce the crystallisation temperature of the core alloy below that of the lower mantle. References 1. Wood, B. J., et al Nature 441, 825-833 (2006). 2. Siebert, J., et al Science 339, 1194-7 (2013). 3. Corgne, A., et al Earth Planet. Sc. Lett. 288, 108-114 (2009). 4. Fischer, R. a. et al. Geochim. Cosmochim. Acta 167, 177-194 (2015). 5. Dreibus, G. & Palme, H. Geochim. Cosmochim. Acta 60, 1125-1130 (1995). 6. Mc

  10. Water- and Boron-Rich Melt Inclusions in Quartz from the Malkhan Pegmatite, Transbaikalia, Russia

    Directory of Open Access Journals (Sweden)

    Elena Badanina

    2012-11-01

    Full Text Available In this paper we show that the pegmatite-forming processes responsible for the formation of the Malkhan pegmatites started at magmatic temperatures around 720 °C. The primary melts or supercritical fluids were very water- and boron-rich (maximum values of about 10% (g/g B2O3 and over the temperature interval from 720 to 600 °C formed a pseudobinary solvus, indicated by the coexistence of two types of primary melt inclusions (type-A and type-B representing a pair of conjugate melts. Due to the high water and boron concentration the pegmatite-forming melts are metastable and can be characterized either as genuine melts or silicate-rich fluids. This statement is underscored by Raman spectroscopic studies. This study suggested that the gel state proposed by some authors cannot represent the main stage of the pegmatite-forming processes in the Malkhan pegmatites, and probably in all others. However there are points in the evolution of the pegmatites where the gel- or gel-like state has left traces in form of real gel inclusions in some mineral in the Malkhan pegmatite, however only in a late, fluid dominated stage.

  11. FFTF metal fuel pin sodium bond quality verification

    International Nuclear Information System (INIS)

    Pitner, A.L.; Dittmer, J.O.

    1988-12-01

    The Fast Flux Test Facility (FFTF) Series III driver fuel design consists of U-10Zr fuel slugs contained in a ferritic alloy cladding. A liquid metal, sodium bond between the fuel and cladding is required to prevent unacceptable temperatures during operation. Excessive voiding or porosity in the sodium thermal bond could result in localized fuel melting during irradiation. It is therefore imperative that bond quality be verified during fabrication of these metal fuel pins prior to irradiation. This document discusses this verification

  12. Fluorescence yield in rare-earth-doped sol-gel silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Silversmith, A.J., E-mail: asilvers@hamilton.ed [Physics Department, Hamilton College, 198 College Hill Road, Clinton, NY 13323 (United States); Nguyen, Nguyen T.T.; Campbell, D.L. [Physics Department, Hamilton College, 198 College Hill Road, Clinton, NY 13323 (United States); Boye, D.M.; Ortiz, C.P. [Davidson College, Davidson, NC 28035 (United States); Hoffman, K.R. [Whitman College, Walla Walla, WA 99362 (United States)

    2009-12-15

    We have used trivalent terbium to investigate the mechanism behind fluorescence enhancement by Al{sup 3+} co-doping. Our results indicate that rare-earth (RE) ions cluster together in aluminum-rich regions of the glass, and behave as if they were dispersed uniformly throughout these regions when the ratio of Al to RE is {approx}10 or greater. We also studied the effects of adding chemical drying agents to the precursor solution for the synthesis of sol-gel-derived silicate glasses. Such glasses can be treated at significantly higher annealing temperatures without degradation of optical quality, and have the density of melt glass. Fluorescence yield from doped RE ions improves markedly with the addition of the drying agents, and the denser glasses are not subject to rehydration.

  13. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking

    International Nuclear Information System (INIS)

    Chai Liyuan; Yu Xia; Yang Zhihui; Wang Yunyan; Okido, Masazumi

    2008-01-01

    Anodization is a useful technique for forming protective films on magnesium alloys and improves its corrosion resistance. Based on the alkaline electrolyte solution with primary oxysalt developed previously, the optimum secondary oxysalt was selected by comparing the anti-corrosion property of anodic film. The structure, component and surface morphology of anodic film and cross-section were analyzed using energy dispersion spectrometer (EDS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion process was detected by electrochemical impedance spectroscopy (EIS). The results showed that secondary oxysalt addition resulted in different anodizing processes, sparking or non-sparking. Sodium silicate was the most favorable additive of electrolyte, in which anodic film with the strongest corrosion resistance was obtained. The effects of process parameters, such as silicate concentration, applied current density and temperature, were also investigated. High temperature did not improve anti-property of anodic film, while applying high current density resulted in more porous surface of film

  14. Method of chemical analysis of silicate rocks (1962); Methode d'analyse chimique des roches silicatees (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Pouget, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1962-07-01

    A rapid method of analysis for the physical and chemical determination of the major constituents of silicate rocks is described. Water losses at 100 deg. C and losses of volatile elements at 1000 deg. C are estimated after staying in oven for these temperatures, or by mean of a thermo-balance. The determination of silica is made by a double insolubilization with hydrochloric acid on attack solution with sodium carbonate; total iron and aluminium, both with calcium and magnesium, after ammoniacal precipitation of Fe and Al, are determined on the filtration product of silica by titrimetry-photometry of their complexes with EDTA. The alkalis Na and K by flame spectrophotometry, Mn by colorimetry of the permanganate, and Ti by mean of his complex with H{sub 2}O{sub 2}, are determined on fluosulfuric attack solution. Phosphorus is determined by his complex with 'molybdenum blue' on a fluoro-nitro-boric attack solution; iron is estimated by potentiometry, with the help of bichromate on hydrofluoric solution. (author) [French] Une methode d'analyse rapide est decrite pour la determination physico-chimique des constituants principaux des roches silicatees. Les pertes en eau a 100 deg. C et en matieres volatiles a 1000 deg. C sont evaluees apres passage au four a ces temperatures, ou a l'aide d'une thermobalance. La determination de la silice se fait par double insolubilisation a l'acide chlorhydrique, sur une attaque au carbonate de sodium; le fer total et l'aluminium ainsi que le calcium et le magnesium, apres precipitation a l'ammoniaque des deux premiers metaux, sont determines sur le filtrat de la silice par titrimetrie-photometrie de leurs complexes avec l'E.D.T.A. Les alcalins sodium et potassium par spectrophotometrie de flamme, le manganese par colorimetrie du permanganate, le titane a l'aide de son complexe avec l'eau oxygenee, sont determines sur une attaque fluosulfurique. Le phosphore est determine par son complexe du 'bleu de molybdene' sur une attaque fluo

  15. Large scale sodium interactions. Part 1. Test facility design

    International Nuclear Information System (INIS)

    King, D.L.; Smaardyk, J.E.; Sallach, R.A.

    1977-01-01

    During the design of the test facility for large scale sodium interaction testing, an attempt was made to keep the system as simple and yet versatile as possible; therefore, a once through design was employed as opposed to any type of conventional sodium ''loop.'' The initial series of tests conducted at the facility call for rapidly dropping from 20 kg to 225 kg of sodium at temperatures from 825 0 K to 1125 0 K into concrete crucibles. The basic system layout is described. A commercial drum heater is used to melt the sodium which is in 55 gallon drums and then a slight argon pressurization is used to force the liquid sodium through a metallic filter and into a dump tank. Then the sodium dump tank is heated to the desired temperature. A diaphragm is mechanically ruptured and the sodium is dumped into a crucible that is housed inside a large steel test chamber

  16. An assessment of the melting, boiling, and critical point data of the alkali metals

    International Nuclear Information System (INIS)

    Ohse, R.W.; Babelot, J.-F.; Magill, J.

    1985-01-01

    The paper reviews the measured melting, boiling and critical point data of alkali metals. A survey of the static heat generation methods for density and pressure-volume-temperature measurements is given. Measured data on the melting and boiling temperatures of lithium, sodium, potassium, rubidium and caesium are summarised. Also measured critical point data for the same five alkali metals are presented, and discussed. (U.K.)

  17. 21 CFR 582.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  18. Disagregation of (U, Pu)O2 fuels in molten sodium nitrate and oxides system

    International Nuclear Information System (INIS)

    Chou, T.S.

    1976-01-01

    An oxidation process based on the use of an alkali-nitrate melt has been considered as a possible head end step for the reprocessing of FBR spent fuels. The total alkali solubility in the nitrate melt was examined. It is influenced by the temperature. At 500 degC the alkali solubility in the sodium nitrate melt is about 17 mol %. Examining solidified mixture of sodium and nitrate or sodium oxides and nitrite by X-ray diffraction has revealed five unknown lattices. NaNO 3 .xNa 2 O 2 is cubic (a=8.71A), NaNO 2 .xNa 2 O 2 is tetragonal (a=5.939A, c=9.997A), NaNO 2 .xNa 2 O is cubic (a=10.586A). The structure of NaNO 3 .xNa 2 O and NaNO 3 .xNaO 2 could not be determined. The solubility of barium and ruthenium was briefly investigated. The reaction (U,Pu)O 2 with the alkaline sodium nitrate melt proceeds along the grain boundaries of the solid solution. Two steps have been recognized. First (U,Pu)O 2 is oxidized to (U,Pu)Osub(2+x) and in a subsequent step (U,Pu)Osub(2+x) reacts with sodium peroxide to form (U,Pu) 2 O 5 .xNa 2 O 2 . Disaggregation efficiency is a function of temperature, alkali concentration and physical properties of the pellets. High temperature and low alkali concentration lead to high efficiency. The structure of the reaction products (U,Pu)O 2 with alkaline NaNO 3 melt was shown to depend mainly on the alkali concentration. As the alkali concentration is lower than 2 mole % (U,Pu) 2 O 5 . Na 2 O 2 is the dominate phase. (U,Pu) 2 O 5 .3Na 2 O 2 corresponds to 6 mole % and over 11 mole % alkali, (U,Pu) 2 O 5 .xNa 2 O 2 becomes the main product. The solubility of the fuel (U,Pu) in the alkali sodium nitrate melt increases with the alkali concentration up to 6000-8000 ppm for uranium and 1200-1700 ppm for plutonium at 500 degC with only 5 mole % alkali. As a result of high losses of fissile material in the salt bath molten salt process must regarded as uneligible for a general head end step in fuel reprocessing. Nevertheless its application can still be

  19. Conduction mechanism in bismuth silicate glasses containing titanium

    International Nuclear Information System (INIS)

    Dult, Meenakshi; Kundu, R.S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-01-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO 2 –(60−x)Bi 2 O 3 –40SiO 2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10 −1 Hz to 10 MHz and in the temperature range 623–703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σ dc ), so called crossover frequency (ω H ), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (H f ) and enthalpy of migration (H m ) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti 3+ and Ti 4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses

  20. 21 CFR 182.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  1. Effects of Aqueous Solutions on the Slow Crack Growth of Soda-Lime-Silicate Glass

    Science.gov (United States)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2016-01-01

    The slow crack growth (SCG) parameters of soda-lime-silicate were measured in distilled and saltwater of various concentrations in order to determine if the presence of salt and the contaminate formation of a weak sodium film affects stress corrosion susceptibility. Past research indicates that solvents affect the rate of crack growth; however, the effects of salt have not been studied. The results indicate a small but statistically significant effect on the SCG parameters A and n at high concentrations; however, for typical engineering purposes, the effect can be ignored.

  2. Further work on sodium borates as sacrificial materials for a core-catcher

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.; Werle, H.

    1982-01-01

    Sodium borates are suitable low melting point sacrificial materials for a core-catcher of a fast reactor. Concept, design and initial development work have been described previously. Here we report on the measurements of density, volumetric thermal expansion coefficients and viscosity of borax and sodium metaborate, pure and with various percentages of dissolved UO 2 . The density of these molten salts was measured with the buoyancy method in the temperature range 850 - 1300 0 C, while the viscosity was measured in the temperature range 700 - 1250 0 C with a Haake viscosity balance. Simulation experiments with low melting point materials were performed to investigate the ratio of the downward to sideward melt velocity. The results of these experiments show that this ratio is equal to 0.34 for a solid to liquid density ratio rho = 1.66. For the real borax core-catcher rho = 4 and this would correspond to a velocity ratio of about one

  3. NON-AUTOCLAVE SILICATE BRICK

    Directory of Open Access Journals (Sweden)

    V. N. Yaglov

    2015-01-01

    Full Text Available The paper proposes a technology for obtaining bricks on the basis of lime-silica mixtures where chemical interactions are practically completely realized in dispersive state at the stage of preparation of binding contact maturing and raw mixture as a whole. The role of forming operation (moulding is changed in principle because in this case conversion of dispersive system into a rock-like solid occurs and due to this the solid obtains complete water-resistance in contact with water immediately after forming operation. Theoretical basis for the developed technology is capability of silicate dispersive substances (hydrated calcium silicate to transit in non-stable state, to form a rock-like water-resistant solid in the moment of mechanical load application during forming process. Specific feature of the proposed method is an exclusion of additional operations for autoclaving of products from the process of obtaining a silicate brick.Synthetic hydrated calcium silicate in contrast to natural ones are more uniform in composition and structure, they contain less impurities and they are characterized by dispersive composition and due to the mentioned advantages they find wider practical application. Contact-condensation binders permit to manipulate product properties on their basis and ensure maximum correspondence to the requirements of the concrete application. Raw material sources for obtaining synthetic hydrated calcium silicates are practically un-limited because calcium-silicon containing substances are found as in various technogenic wastes so in natural compounds as well. So the problem for obtaining hydrated calcium silicates having contact-condensation ability for structure formation becomes more and more actual one. This transition is considered as dependent principally on arrangement rate of substance particles which determined the level of its instability.

  4. DESEMPENHO FÍSICO-MECÂNICO DE SOLO ARGILOSO ESTABILIZADO COM CAL E SILICATO DE SÓDIO VISANDO À APLICAÇÃO EM CONSTRUÇÕES RURAIS PHYSICAL AND MECHANICAL BEHAVIOR OF A CLAYEY SOIL STABILIZED WITH LIME AND SODIUM SILICATE FOR RURAL BUILDING PURPOSES

    Directory of Open Access Journals (Sweden)

    Wesley Jorge Freire

    2007-09-01

    Full Text Available

    O uso de aditivos químicos em solos destinados à construção civil visa melhorar as suas características mecânicas e o seu comportamento sob a ação da água. O objetivo deste trabalho foi estudar o efeito da incorporação ao solo de estabilizantes químicos (cal e silicato de sódio sobre as propriedades mecânicas de um solo argiloso. Os teores de cal foram de 0%, 6% e 10%, e a dosagem de silicato de sódio foi de 4%. O solo foi submetido a ensaios de caracterização a fim de se determinar seus principais índices físicos. Foram moldados corpos-de-prova cilíndricos com 127 mm de altura e 100 mm de diâmetro, os quais foram curados em câmara úmida por 7, 28 e 56 dias. Após cada período de cura os corpos-de-prova foram submetidos ao ensaio de compressão simples. O ensaio de absorção de água foi realizado aos sete dias. Somente o teor de 10% de cal associada ao silicato de sódio permitiu atingir o mínimo de resistência exigido pela norma para tijolos de solo-cimento, e em termos de capacidade de absorção total, nenhum tratamento atingiu os valores recomendados por essa norma. Os resultados sugerem um uso promissor do silicato de sódio com vistas à melhoria das propriedades físico-mecânicas relacionadas à resistência e à durabilidade de solos destinados à construções rurais.

    PALAVRAS-CHAVE: Solo-cal; resistência à compressão; estabilização de solos; terra para construção.

    Use of chemical stabilizers in earth aims at improving mechanical characteristics and behavior under water influence. The objective of this research was to study the effect of chemical additives (lime and sodium silicate on mechanical properties of a clayey soil. The lime rates in the soil-lime mixtures were 0%, 6%, and 10%, and the sodium silicate rate was 4%. Soil was

  5. A-thermal elastic behavior of silicate glasses.

    Science.gov (United States)

    Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique

    2016-02-24

    Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm(-1) in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si(4+) ions by Al(3+) and Na(+) ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.

  6. Regularities in Low-Temperature Phosphatization of Silicates

    Science.gov (United States)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  7. Absorption spectra and cyclic voltammograms of uranium species in molten lithium molybdate-sodium molybdate eutectic at 550 C

    International Nuclear Information System (INIS)

    Nagai, T.; Fukushima, M.; Myochin, M.; Uehara, A.; Fujii, T.; Yamana, H.; Sato, N.

    2011-01-01

    Absorption spectra of uranium species dissolved in molten lithium molybdate.sodium molybdate eutectic of 0.51Li 2 MoO 4 -0.49Na 2 MoO 4 mixture at 550 C were measured by UV/Vis/NIR spectrophotometry, and their redox reactions were investigated by cyclic voltammetry. We found that the major ions of uranium species dissolved in the melt were uranyl penta-valent. After purging dry oxygen gas into the melt, pentavalent species were oxidized to the uranyl hexa-valent. In the cyclic voltammetry of the melt without uranium species, it was confirmed that the lithium-sodium molybdenum oxide compounds were deposited on the working electrode at the negative potential and the lithium molybdenum oxide compounds were deposited on the counter electrode at positive potential. When UO 2 was dissolved into the melt, the reductive reaction of the uranium species was observed at the reductive potential of the pure melt. This suggests that the uranium species dissolved in the melts could be recovered as mixed uranium-molybdenum oxides by electrolysis. (orig.)

  8. REACTION PRODUCTS AND CORROSION OF MOLYBDENUM ELECTRODE IN GLASS MELT CONTAINING ANTIMONY OXIDES AND SODIUM SULFATE

    Directory of Open Access Journals (Sweden)

    JIŘÍ MATĚJ

    2012-09-01

    Full Text Available The products on the interface of a molybdenum electrode and glass melt were investigated primarily at 1400°C in three model glass melts without ingredients, with 1 % Sb2O3 and with 1 % Sb2O3 and 0.5 % SO3 (wt. %, both under and without load by alternating current. Corrosion of the molybdenum electrode in glass melt without AC load is higher by one order of magnitude if antimony oxides are present. The corrosion continues to increase if sulfate is present in addition to antimony oxides. Isolated antimony droplets largely occur on the electrode-glass melt interface, and numerous droplets are also dissipated in the surrounding glass if only antimony oxides are present in the glass melt. A comparatively continuous layer of antimony occurs on the interface if SO3 is also present, antimony being always in contact with molybdenum sulfide. Almost no antimony droplets are dissipated in the glass melt. The total amount of precipitated antimony also increases. The presence of sulfide on the interface likely facilitates antimony precipitation. The reaction of molybdenum with antimony oxides is inhibited in sites covered by an antimony layer. The composition of sulfide layers formed at 1400°C approximates that of Mo2S3. At 1100°C, the sulfide composition approximates that of MoS4. Corrosion multiplies in the glass melt without additions through the effect of AC current, most molybdenum being separated in the form of metallic particles. Corrosion also increases in the glass melt containing antimony oxides. This is due to increased corrosion in the neighborhood of the separated antimony droplets. This mechanism also results in the loosening of molybdenum particles. The amount of precipitated antimony also increases through the effect of the AC current. AC exerts no appreciable effect on either corrosion, the character of the electrode-glass interface, or antimony precipitation in the glass melt containing SO3.

  9. Design and Evaluation of Topical Diclofenac Sodium Gel Using Hot Melt Extrusion Technology as a Continuous Manufacturing Process with Kolliphor® P407.

    Science.gov (United States)

    Pawar, Jaywant; Narkhede, Rajkiran; Amin, Purnima; Tawde, Vaishali

    2017-08-01

    The aim of the present context was to develop and evaluate a Kolliphor® P407-based transdermal gel formulation of diclofenac sodium by hot melt extrusion (HME) technology; central composite design was used to optimize the formulation process. In this study, we have explored first time ever HME as an industrially feasible and continuous manufacturing technology for the manufacturing of gel formulation using Kolliphor® P407 and Kollisolv® PEG400 as a gel base. Diclofenac sodium was used as a model drug. The HME parameters such as feeding rate, screw speed, and barrel temperature were crucial for the semisolid product development, and were optimized after preliminary trials. For the processing of the gel formulation by HME, a modified screw design was used to obtain a uniform product. The obtained product was evaluated for physicochemical characterization such as differential scanning calorimetry (DSC), X-ray diffraction (XRD), pH measurement, rheology, surface tension, and texture profile analysis. Moreover, it was analyzed for general appearance, spreadibility, surface morphology, and drug content. The optimized gel formulation showed homogeneity and transparent film when applied on a glass slide under microscope, pH was 7.02 and uniform drug content of 100.04 ± 2.74 (SD = 3). The DSC and XRD analysis of the HME gel formulation showed complete melting of crystalline API into an amorphous form. The Kolliphor® P407 and Kollisolv® PEG400 formed excellent gel formulation using HME with consistent viscoelastic properties of the product. An improved drug release was found for the HME gel, which showed a 100% drug release than that of a marketed product which showed only 88% of drug release at the end of 12 h. The Flux value of the HME gel was 106 than that of a marketed formulation, which showed only about 60 value, inferring a significant difference (P process for manufacturing of topical semisolid products.

  10. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  11. The evolution of magma during continental rifting: New constraints from the isotopic and trace element signatures of silicic magmas from Ethiopian volcanoes

    Science.gov (United States)

    Hutchison, William; Mather, Tamsin A.; Pyle, David M.; Boyce, Adrian J.; Gleeson, Matthew L. M.; Yirgu, Gezahegn; Blundy, Jon D.; Ferguson, David J.; Vye-Brown, Charlotte; Millar, Ian L.; Sims, Kenneth W. W.; Finch, Adrian A.

    2018-05-01

    Magma plays a vital role in the break-up of continental lithosphere. However, significant uncertainty remains about how magma-crust interactions and melt evolution vary during the development of a rift system. Ethiopia captures the transition from continental rifting to incipient sea-floor spreading and has witnessed the eruption of large volumes of silicic volcanic rocks across the region over ∼45 Ma. The petrogenesis of these silicic rocks sheds light on the role of magmatism in rift development, by providing information on crustal interactions, melt fluxes and magmatic differentiation. We report new trace element and Sr-Nd-O isotopic data for volcanic rocks, glasses and minerals along and across active segments of the Main Ethiopian (MER) and Afar Rifts. Most δ18 O data for mineral and glass separates from these active rift zones fall within the bounds of modelled fractional crystallization trajectories from basaltic parent magmas (i.e., 5.5-6.5‰) with scant evidence for assimilation of Pan-African Precambrian crustal material (δ18 O of 7-18‰). Radiogenic isotopes (εNd = 0.92- 6.52; 87Sr/86Sr = 0.7037-0.7072) and incompatible trace element ratios (Rb/Nb productivity or where crustal structure inhibits magma ascent). This has important implications for understanding the geotectonic settings that promote extreme melt evolution and, potentially, genesis of economically-valuable mineral deposits in ancient rift-settings. The limited isotopic evidence for assimilation of Pan-African crustal material in Ethiopia suggests that the pre-rift crust beneath the magmatic segments has been substantially modified by rift-related magmatism over the past ∼45 Ma; consistent with geophysical observations. We argue that considerable volumes of crystal cumulate are stored beneath silicic volcanic systems (>100 km3), and estimate that crystal cumulates fill at least 16-30% of the volume generated by crustal extension under the axial volcanoes of the MER and Manda Hararo

  12. Influence of fining agents on glass melting: A review, Part 2

    Czech Academy of Sciences Publication Activity Database

    Hujová, Miroslava; Vernerová, Miroslava

    2017-01-01

    Roč. 61, č. 3 (2017), s. 202-208 ISSN 0862-5468 Institutional support: RVO:67985891 Keywords : glass melting * sodium sulphate * chemical reactions * gas evolution * dissolution * fining * bubble nucleation * foaming Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 0.439, year: 2016

  13. Influence of fining agents on glass melting: A review, Part 1

    Czech Academy of Sciences Publication Activity Database

    Hujová, Miroslava; Vernerová, Miroslava

    2017-01-01

    Roč. 61, č. 2 (2017), s. 119-126 ISSN 0862-5468 Institutional support: RVO:67985891 Keywords : glass melting * sodium sulphate * chemical reactions * gas evolution * dissolution * fining * bubble nucleation * foaming Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 0.439, year: 2016

  14. The design, construction, commissioning and operation of a plant at Dounreay to dispose of sodium from KNKII

    International Nuclear Information System (INIS)

    Bowser, R.; Farquhar, J.; Currie, R.

    1997-01-01

    In a competitive bidding exercise, AEA Technology at Dounreay won a contract to dispose of 88 tonnes of fast reactor sodium from the KNKII reactor at KarIsruhe, Germany. This sodium comprises of 36 tonnes of 'primary' sodium containing traces of caesium-137 and sodium-22 and 52 tonnes of lightly tritiated 'secondary' sodium. The sodium has been transported solid to Dounreay in 200 litre drums. To fulfil this contract a sodium disposal plant has been designed, constructed, commissioned and put into operation. Following an option study, an aqueous reaction plant design was selected. In this process, sodium is reacted with aqueous caustic soda, producing hydrogen gas and more caustic soda. The hydrogen is diluted with air and vented to atmosphere, and the caustic is neutralised with hydrochloric acid before discharge to the site low-active drain. All effluents - gaseous or liquid - are filtered and treated to remove as much radioactivity as possible before discharge. The main reasons for choosing this design option were that the process was well proven, the reaction is easily controlled by controlling the supply of sodium into the reaction vessel, reaction temperatures are relatively low and the effluent can be easily prepared for discharge. It was also felt that an aqueous reaction plant could be designed to be operated remotely by one operator. The sodium in the drums is melted in a sodium melting station and then drained to a sodium buffer tank, prior to being injected into the reaction vessel. By collecting sodium in the buffer tank, sodium melting can proceed in parallel with sodium disposal allowing a high throughput to be achieved. This plant has been designed to dispose of 100 kg of sodium per hour, requiring a small operating team, suitably shielded from the radiological hazard. The design also ensures that the rate of reaction is controlled and that the effluent discharged to the low-active drain has been properly neutralised. The construction was performed

  15. The Effects of Salt Water on the Slow Crack Growth of Soda Lime Silicate Glass

    Science.gov (United States)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2016-01-01

    The slow crack growth parameters of soda-lime silicate were measured in distilled and salt water of various concentrations in order to determine if stress corrosion susceptibility is affected by the presence of salt and the contaminate formation of a weak sodium film. Past research indicates that solvents effect the rate of crack growth, however, the effects of salt have not been studied. The results indicate a small but statistically significant effect on the slow crack growth parameters A and n. However, for typical engineering purposes, the effect can be ignored.

  16. Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory

    KAUST Repository

    Bayliss, Ryan D.; Cook, Stuart N.; Scanlon, David O.; Fearn, Sarah; Cabana, Jordi; Greaves, Colin; Kilner, John A.; Skinner, Stephen J.

    2014-01-01

    © the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is

  17. Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory

    KAUST Repository

    Bayliss, Ryan D.

    2014-09-24

    © the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is

  18. Report on the vitrification and devitrification of Hanford, Washington soil. Final report

    International Nuclear Information System (INIS)

    King, J.A.; SubbaRao, S.C.

    1983-01-01

    This study as focused principally on the effects of melting or vitrification and recrystallization or devitrification on soil from the Hanford Reservation in Washington State. The fusion properties of soil are important because the containment of nuclear material in in-situ vitrified soil is a possible requirement. An understanding of the physical and chemical properties of the soil is important in determinaing how the soil can contain the nuclear material. The soil itself is composed of a plagioclastic feldspar, quartz, and hematite. The feldspar is made up of albite and anorthite. When the soil is heated, the first mineral to melt is the albite between 1100 0 C and 1200 0 C. The mineral anorthite melts above 1310 0 C and hematite below 1700 0 C. The quartz does not melt until the temperature exceeds 1715 0 C. The albite in the glass is sodium aluminosilicate. When the albite melts, microscopic spheres of non-crystalline, low-melting sodium silicate form. This indicates that the aluminosilicate matrix decomposes when heated. When crystals, which were previously fused, are heated: crystals begin to reform above 900 0 C. The minerals which crystallize are feldspar and magnetite, an iron oxide. Recrystallization should begin at a temperature 250 0 C below the liquidus point. The leaching of sodium, copper, calcium, and aluminum decreased with increasing fusion temperature, while the leaching of iron and barium increased with increasing fusion temperature

  19. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... with a spectacular improvement up to 300 % in impact strength were obtained. In the second part of this study, layered silicate bio-nanomaterials were obtained starting from natural compounds and taking into consideration their biocompatibility properties. These new materials may be used for drug delivery systems...... and as biomaterials due to their high biocompatible properties, and because they have the advantage of being biodegradable. The intercalation process of natural compounds within silicate platelets was investigated. By uniform dispersing of binary nanohybrids in a collagen matrix, nanocomposites with intercalated...

  20. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  1. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  2. Method of solidifying radioactive liquid wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Kawamura, Fumio; Kikuchi, Makoto; Fukazawa, Tetsuo.

    1983-01-01

    Purpose: To enable to confine the volatiling ingredients such as cesium in liquid wastes safely in glass solidification products while suppressing the volatilization thereof. Method: Acid salt of tetravalent metal such as titanium phosphate has an intense selective adsorption property to cesium. So liquid wastes stored in a high level liquid wastes tank is mixed with titanium phosphate gels stored in an adsorbent tank, then supplied to a mixer and mixed with a sodium silicate solution stored in a sodium silicate storage tank and boric acid stored in an additive tank, into gel-like state. The gel-like material thus formed is supplied to a drier. After being dried at a temperature of 200sup(o)C - 300sup(o)C, the material is melted under heating at a temperature of 1000sup(o)C - 1100sup(o)C, and then cooled to solidify. (Horiuchi, T.)

  3. Evolution of silicic magmas in the Kos-Nisyros volcanic center: cycles associated with caldera collapse

    Science.gov (United States)

    Ruprecht, J. S.; Bachmann, O.; Deering, C. D.; Huber, C.; Skopelitis, A.; Schnyder, C.

    2010-12-01

    Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~ 3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). Over the course of this period, magmas have changed from hornblende-biotite rich units with low eruption temperatures (≤750-800 °C; Kefalos and Kos units) to hotter (>800-850 °C), pyroxene-bearing units (Nisyros units) and are transitioning back to colder magmas (Yali units). Using bulk-rock compositions, mineral chemistry, and zircon Hf isotopes, we show that the two different types of silicic magmas followed the same differentiation trend; they all evolved by crystal fractionation (and minor assimilation) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ky Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew most of the eruptible magma out and partly froze the silicic magma source zone in the upper crust due to rapid unloading, decompression and resulting crystallization. Therefore, the system had to reinstate a shallow silicic production zone from more mafic parents, recharged at temperatures typically around 850-900 °C from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were thus slightly hotter and less evolved than the Kefalos-Kos package. However, with time, the upper crustal intermediate mush grew and cooled, leading to interstitial melt compositions reaching again the highly-evolved, cold state that prevailed prior to the Kefalos-Kos. The recent (albeit not precisely dated) eruption of the high-SiO2 rhyolite of Yali suggests that another large, potentially explosive magma chamber is presently building

  4. Antibacterial Activity of Silicate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; NING Congqin; ZHOU Yue; CHEN Lei; LIN Kaili; CHANG Jiang

    2011-01-01

    Four kinds of pure silicate ceramic particles, CaSiO3, Ca3SiO5, bredigite and akermanite were prepared and their bactericidal effects were systematically investigated. The phase compositions of these silicate ceramics were characterized by XRD. The ionic concentration meas urement revealed that the Calcium (Ca) ion concentration were relatively higher in Ca3SiO5 and bredigite, and much lower in CaSiO3 and akermanite. Accordingly, the pH values of the four silicate ceramics extracts showed a positive correlation with the particle concentrations. Meanwhile, by decreasing the particle size, higher Ca ion concentrations can be achieved, leading to the increase of aqueous pH value as well. In summary, all of the four silicate ceramics tested in our study showed antibacterial effect in a dose-dependent manner. Generally, the order of their antibacterial activity against E.coli from strong to weak is Ca3SiO5, bredigite, CaSiO3 and akermanite.

  5. Amended Silicated for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where

  6. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  7. The simulation of the process of sodium freezing in the tubes for the optimization of fast breeder reactor units maintenance

    International Nuclear Information System (INIS)

    Tashlykov, O.L.; Shcheklein, S.E.; Annikov, S.V.

    2013-01-01

    The peculiarities of the repair works of the fast breeder reactor sodium systems are considered. The requirements for the sodium melting exclusion inside the equipment and piping during their opening and repair are given. The results of the sodium cooling process simulation with SolidWorks software are also described [ru

  8. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation

    Science.gov (United States)

    Tappe, Sebastian; Romer, Rolf L.; Stracke, Andreas; Steenfelt, Agnete; Smart, Katie A.; Muehlenbachs, Karlis; Torsvik, Trond H.

    2017-05-01

    Kimberlite and carbonatite magmas that intrude cratonic lithosphere are among the deepest probes of the terrestrial carbon cycle. Their co-existence on thick continental shields is commonly attributed to continuous partial melting sequences of carbonated peridotite at >150 km depths, possibly as deep as the mantle transition zone. At Tikiusaaq on the North Atlantic craton in West Greenland, approximately 160 Ma old ultrafresh kimberlite dykes and carbonatite sheets provide a rare opportunity to study the origin and evolution of carbonate-rich melts beneath cratons. Although their Sr-Nd-Hf-Pb-Li isotopic compositions suggest a common convecting upper mantle source that includes depleted and recycled oceanic crust components (e.g., negative ΔεHf coupled with > + 5 ‰ δ7Li), incompatible trace element modelling identifies only the kimberlites as near-primary low-degree partial melts (0.05-3%) of carbonated peridotite. In contrast, the trace element systematics of the carbonatites are difficult to reproduce by partial melting of carbonated peridotite, and the heavy carbon isotopic signatures (-3.6 to - 2.4 ‰ δ13C for carbonatites versus -5.7 to - 3.6 ‰ δ13C for kimberlites) require open-system fractionation at magmatic temperatures. Given that the oxidation state of Earth's mantle at >150 km depth is too reduced to enable larger volumes of 'pure' carbonate melt to migrate, it is reasonable to speculate that percolating near-solidus melts of carbonated peridotite must be silicate-dominated with only dilute carbonate contents, similar to the Tikiusaaq kimberlite compositions (e.g., 16-33 wt.% SiO2). This concept is supported by our findings from the North Atlantic craton where kimberlite and other deeply derived carbonated silicate melts, such as aillikites, exsolve their carbonate components within the shallow lithosphere en route to the Earth's surface, thereby producing carbonatite magmas. The relative abundances of trace elements of such highly

  9. Diffusive exchange of trace elements between basaltic-andesite and dacitic melt: Insights into potential metal fractionation during magma mixing

    Science.gov (United States)

    Fiege, A.; Ruprecht, P.; Simon, A. C.; Holtz, F.

    2017-12-01

    Mafic magma recharge is a common process that triggers physical and chemical mixing in magmatic systems and drives their evolution, resulting in, e.g., hybridization and volcanic eruptions. Once magma-magma contact is initiated, rapid heat-flux commonly leads to the formation of a cooling-induced crystal mush on the mafic side of the interface. Here, on a local scale (µm to cm), at the magma-magma interface, melt-melt diffusive exchange is required to approach equilibrium. Significant chemical potential gradients drive a complex, multi-element mass flux between the two systems (Liang, 2010). This diffusive-equilibration often controls crystal dissolution rates within the boundary layers and, thus, the formation of interconnected melt or fluid networks. Such networks provide important pathways for the transport of volatiles and trace metals from the mafic recharge magma to the felsic host magma, where the latter may feed volcanic activities and ore deposits. While major element diffusion in silicate melts is mostly well understood, even in complex systems, the available data for many trace element metals are limited (Liang, 2010; Zhang et al., 2010). Differences in diffusivity in a dynamic, mixing environment can cause trace element fractionation, in particular during crystallization and volatile exsolution and separation. This may affect trace element signatures in phenocrysts and magmatic volatile phases that can form near a magma-magma boundary. As a result, the chemistry of volcanic gases and magmatic-hydrothermal ore deposits may be partially controlled by such mixing phenomena. We performed melt-melt diffusion-couple experiments at 150 MPa, 1100°C, FMQ, FMQ+1 and FMQ+3 (FMQ: fayalite-magnetite-quartz oxygen fugacity buffer). Hydrated, sulfur-bearing cylinders of dacite and basaltic andesite were equilibrated for up to 20 h. Major and trace element gradients were measured by using laser-ablation ICP-MS and electron microprobe analyses. The results we will

  10. A new system for sodium flux growth of bulk GaN. Part I: System development

    Science.gov (United States)

    Von Dollen, Paul; Pimputkar, Siddha; Alreesh, Mohammed Abo; Albrithen, Hamad; Suihkonen, Sami; Nakamura, Shuji; Speck, James S.

    2016-12-01

    Though several methods exist to produce bulk crystals of gallium nitride (GaN), none have been commercialized on a large scale. The sodium flux method, which involves precipitation of GaN from a sodium-gallium melt supersaturated with nitrogen, offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. We successfully developed a novel apparatus for conducting crystal growth of bulk GaN using the sodium flux method which has advantages with respect to prior reports. A key task was to prevent sodium loss or migration from the growth environment while permitting N2 to access the growing crystal. We accomplished this by implementing a reflux condensing stem along with a reusable capsule containing a hermetic seal. The reflux condensing stem also enabled direct monitoring of the melt temperature, which has not been previously reported for the sodium flux method. Furthermore, we identified and utilized molybdenum and the molybdenum alloy TZM as a material capable of directly containing the corrosive sodium-gallium melt. This allowed implementation of a crucible-free system, which may improve process control and potentially lower crystal impurity levels. Nucleation and growth of parasitic GaN ("PolyGaN") on non-seed surfaces occurred in early designs. However, the addition of carbon in later designs suppressed PolyGaN formation and allowed growth of single crystal GaN. Growth rates for the (0001) Ga face (+c-plane) were up to 14 μm/h while X-ray omega rocking (ω-XRC) curve full width half-max values were 731″ for crystals grown using a later system design. Oxygen levels were high, >1019 atoms/cm3, possibly due to reactor cleaning and handling procedures.

  11. Effect of moisture and chitosan layered silicate on morphology and properties of chitosan/layered silicates films

    International Nuclear Information System (INIS)

    Silva, J.R.M.B. da; Santos, B.F.F. dos; Leite, I.F.

    2014-01-01

    Thin chitosan films have been for some time an object of practical assessments. However, to obtain biopolymers capable of competing with common polymers a significant improvement in their properties is required. Currently, the technology of obtaining polymer/layered silicates nanocomposites has proven to be a good alternative. This work aims to evaluate the effect of chitosan content (CS) and layered silicates (AN) on the morphology and properties of chitosan/ layered silicate films. CS/AN bionanocomposites were prepared by the intercalation by solution in the proportion 1:1 and 5:1. Then were characterized by infrared spectroscopy (FTIR), diffraction (XRD) and X-ray thermogravimetry (TG). It is expected from the acquisition of films, based on different levels of chitosan and layered silicates, choose the best composition to serve as a matrix for packaging drugs and thus be used for future research. (author)

  12. Local Structures around Si, Al and Na in Hydrated Silicate Glasses

    International Nuclear Information System (INIS)

    Farges, Francois; Wispelaere, Sidoine de; Rossano, Stephanie; Munos, Manuel; Wilke, Max; Flank, Anne-Marie; Lagarde, Pierre

    2007-01-01

    XANES spectra were collected at the Si-, Al-, and Na K-edge in hydrous silicate glasses to understand the effect of water on the local structure around these cations. Around network forming Si and Al, no drastic changes are observed. Around Na, the dissolution of water creates more ordered environments in Al-bearing glasses and less ordered environment in Al-free glasses. Ab-initio XANES calculations were undertaken to understand the structural origins for these features. Based on these results, a bond valence model was refined that considers not only the present XANES experiments and models but also NMR information. The double percolation model refined explains, among others, the explosive properties of water-bearing hydrous melts, at the origin of a number of cataclysmic eruptions in subduction zones

  13. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    Science.gov (United States)

    Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore

    2014-05-01

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.

  14. Geochemical response of a calcareous fen to road salt contamination during snow melt and precipitation events: Kampoosa Bog, Stockbridge, MA

    Science.gov (United States)

    Rhodes, A. L.; Guswa, A. J.

    2008-12-01

    Kampoosa Bog is the largest and most diverse calcareous lake-basin fen remaining in Massachusetts, and it is one of the state's elite Areas of Critical Environmental Concern (ACEC). The ground water chemistry of the fen has been greatly altered by road salt runoff (NaCl) from the Massachusetts Turnpike, which crosses the northern margin of the wetland complex. Ground water samples collected at different depths within the wetland, measurements of exchangeable Na from an eight-meter core, and hydraulic conductivity measurements suggest that ground water flow and contamination is largely a near- surface phenomenon. Detailed sampling of surface and ground waters during three spring snow melt events and one precipitation event characterizes the geochemical response of the wetland to hydrologic events. Overall, Na:Cl ratios for surface and ground water samples are less than one, and sodium and chloride imbalances suggest that 20-30% of sodium from rock salt is stored on cation exchange sites on organic material. Na:Cl ratios greater than one for fen ground water sampled during Snow Melt 2007 suggest that sodium can be released from cation exchange sites back to ground water under dilute conditions. The total mass of Na and Cl exported from the wetland is greatest under conditions of high discharge. The flux of dissolved salts at the outlet of the fen during Snow Melt 2005 accounts for ~ 24% Na and ~ 32% Cl of rock salt added to the Massachusetts Turnpike during 2004-2005. Estimates of annual fluxes of Na and Cl are on par with the amount of road salt applied, and sodium and chloride concentrations in shallow groundwater have decreased since 2002. The months of March, April and May are the primary months for salt export, accounting for more than half of the annual salt flux in 2005. Concerning the annual net export of sodium and chloride, large rain events may be more important with removing dissolved salts from the fen than snow melt because snow melt also is a time when

  15. Nanocatalytic growth of Si nanowires from Ni silicate coated SiC nanoparticles on Si solar cell.

    Science.gov (United States)

    Parida, Bhaskar; Choi, Jaeho; Ji, Hyung Yong; Park, Seungil; Lim, Gyoungho; Kim, Keunjoo

    2013-09-01

    We investigated the nanocatalytic growth of Si nanowires on the microtextured surface of crystalline Si solar cell. 3C-SiC nanoparticles have been used as the base for formation of Ni silicate layer in a catalytic reaction with the Si melt under H2 atmosphere at an annealing temperature of 1100 degrees C. The 10-nm thick Ni film was deposited after the SiC nanoparticles were coated on the microtextured surface of the Si solar cell by electron-beam evaporation. SiC nanoparticles form a eutectic alloy surface of Ni silicate and provide the base for Si supersaturation as well as the Ni-Si alloy layer on Si substrate surface. This bottom reaction mode for the solid-liquid-solid growth mechanism using a SiC nanoparticle base provides more stable growth of nanowires than the top reaction mode growth mechanism in the absence of SiC nanoparticles. Thermally excited Ni nanoparticle forms the eutectic alloy and provides collectively excited electrons at the alloy surface, which reduces the activation energy of the nanocatalytic reaction for formation of nanowires.

  16. No sodium in the vapour plumes of Enceladus.

    Science.gov (United States)

    Schneider, Nicholas M; Burger, Matthew H; Schaller, Emily L; Brown, Michael E; Johnson, Robert E; Kargel, Jeffrey S; Dougherty, Michele K; Achilleos, Nicholas A

    2009-06-25

    The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.

  17. Development of industrial utilization of metallic sodium

    International Nuclear Information System (INIS)

    Yuhara, Shunichi

    1995-01-01

    Sodium exists in large quantity, being ranked to 6th in the existence proportion of elements, and takes 2.83% of the matters composing earth crust. Sodium is an alkali metal which is light weight, chemically very active and a strong reducing substance. It is excellent in the compatibility with iron and steel materials, and it possesses good heat conduction and flow characteristics and stable nuclear characteristics. Since the industrial production of sodium became practical, its utilization was developed as the reducing agent and catalyst in chemical industry, the core coolant and heat transport medium for nuclear reactors, the material composing the secondary batteries for storing electric power, and the auxiliaries for metal refining and so on. The industrial production of metallic sodium is carried out by the electrolysis of melted salt, namely Downs process. The production of metallic sodium in Japan is 3000-6000 t yearly, and its import is 300-350 t. Its main use is for organic chemical industry including dye production. The grades of metallic sodium products and their uses are shown. The utilization of sodium for large fast reactors, the utilization of NaK as the heat transport and cooling medium for space use nuclear reactors and deep sea fast reactor system, and the utilization of sodium as the catalyst in dye production, for silicon carbide fiber production and for agricultural and medical chemical production are reported. (K.I.)

  18. Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding

    International Nuclear Information System (INIS)

    Barick, A.K.; Tripathy, D.K.

    2010-01-01

    Thermoplastic polyurethane (TPU) nanocomposites based on organically modified layered silicate (OMLS) were prepared by melt intercalation process followed by compression molding. Different percentage of organoclays was incorporated into the TPU matrix in order to examine the influence of the nanoscaled fillers on nanostructure morphology and material properties. The microscopic morphology of the nanocomposites was evaluated by wide angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The observation revealed that both nanoclay-polymer interactions and shear stress developed during melt mixing are responsible for the effectively organoclay dispersion in TPU matrix resulting intercalated/exfoliated morphology. Thermal stability of the nanocomposites measured by thermogravimetric analysis (TGA) was improved significantly with the addition of nanoclay. The differential scanning calorimetry (DSC) analysis reveals that melting point of the nanocomposites increased with incorporation of nanoclay. The dynamic mechanical properties of the TPU nanocomposites were analyzed using a dynamic mechanical thermal analyzer (DMTA), which indicates that the storage modulus (E'), loss modulus (E''), and glass transition temperature (T g ) are significantly increased with increasing nanoclay content.

  19. Energy transfer upconversion in Er3+-Tm3+ codoped sodium silicate glass

    Science.gov (United States)

    Kumar, Vinod; Pandey, Anurag; Ntwaeaborwa, O. M.; Swart, H. C.

    2018-04-01

    Er3+/Tm3+ doped and codoped Na2O-SiO2-ZnO (NSZO) glasses were prepared by the conventional melt-quenching method. The amorphous nature of the prepared glasses was confirmed by the X-ray diffraction analysis. The optical absorption spectrum displayed several peaks, which correspond to Er3+ and Tm3+ dopant ions embedded into the NSZO glass. Both dopants experienced upconversion emission under 980 nm excitation. Efficient energy transfer from Er3+ to Tm3+ was observed in the co-doped samples to enhance the near infrared emission of the Tm3+ ions.

  20. A spectroscopic and computational study of Al(III) complexes in cryolite melts: Effect of cation nature

    International Nuclear Information System (INIS)

    Nazmutdinov, Renat R.; Zinkicheva, Tamara T.; Vassiliev, Sergey Yu.; Glukhov, Dmitrii V.; Tsirlina, Galina A.; Probst, Michael

    2013-01-01

    Highlights: ► We investigate Li, Na and K cryolite melts by Raman spectroscopy and dft. ► A slight red shift of main Raman peaks is observed in the row Li + , Na + , K + . ► A decrease of the half-widths of peaks is observed in the same row. ► Fluoroaluminates and their complexation kinetics play an important role. - Abstract: Lithium, sodium and potassium cryolite melts are probed by Raman spectroscopy in a wide range of the melt composition. The experimental data demonstrate a slight red shift of main peaks and a decrease of their half-widths in the row Li + , Na + , K + . Quantum chemical modelling of the systems is performed at the density functional theory level. The ionic environment is found to play a crucial role in the energy of fluoroaluminates. Potential energy surfaces describing the formation/dissociation of certain complex species, as well as model Raman spectra are constructed and compared with those obtained recently for sodium containing cryolite melts (R.R. Nazmutdinov, et al., Spectrochim, Acta A 75 (2010) 1244.). The calculations show that the cation nature affects the geometry of the ionic associates as well as the equilibrium and kinetics of the complexation processes. This enables to interpret both original experimental data and those reported in literature

  1. Crust behavior and erosion rate prediction of EPR sacrificial material impinged by core melt jet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gen; Liu, Ming, E-mail: ming.liu@mail.xjtu.edu.cn; Wang, Jinshi; Chong, Daotong; Yan, Junjie

    2017-04-01

    Highlights: • A numerical code was developed to analyze melt jet-concrete interaction in the frame of MPS method. • Crust and ablated concrete layer at UO{sub 2}-ZrO{sub 2} melt and concrete interface periodically developed and collapsed. • Concrete surface temperature fluctuated around a low temperature and ablation temperature. • Concrete erosion by Fe-Zr melt jet was significantly faster than that by UO{sub 2}-ZrO{sub 2} melt jet. - Abstract: Sacrificial material is a special ferro-siliceous concrete, designed in the ex-vessel core melt stabilization system of European Pressurized water Reactor (EPR). Given a localized break of RPV lower head, the melt directly impinges onto the dry concrete in form of compact jet. The concrete erosion behavior influences the failure of melt plug, and further affects melt spreading. In this study, a numerical code was developed in the frame of Moving Particle Semi-implicit (MPS) method, to analyze the crust behavior and erosion rate of sacrificial concrete, impinged by prototypic melt jet. In validation of numerical modeling, the time-dependent erosion depth and erosion configuration matched well with the experimental data. Sensitivity study of sacrificial concrete erosion indicates that the crust and ablated concrete layer presented at UO{sub 2}-ZrO{sub 2} melt and concrete interface, whereas no crust could be found in the interaction of Fe-Zr melt with concrete. The crust went through stabilization-fracture-reformation periodic process, accompanied with accumulating and collapsing of molten concrete layer. The concrete surface temperature fluctuated around a low temperature and ablation temperature. It increased as the concrete surface layer was heated to melting, and dropped down when the cold concrete was revealed. The erosion progression was fast in the conditions of small jet diameter and large concrete inclination angle, and it was significantly faster in the erosion by metallic melt jet than by oxidic melt jet.

  2. Experience with cleaning of sodium-wetted components and decontamination at Nuclear Research Centre Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Menzenhauer, P; Borgstedt, U; Stamm, H H; Dippel, Th; Kunze, S; Hentschel, D [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany)

    1978-08-01

    Within the framework of the Fast Breeder Project various institutes of the KarIsruhe Nuclear Research Center operate sodium loops for corrosion studies and component tests under sodium. The operation of these loops has led to extensive experience in cleaning sodium-wetted components. This experience relates to the alcohol method, the removal of sodium by melting, storage in air, and to cleaning by means of steam. Deposition samples from radioactive sodium loops were used for decontamination experiments employing various decontaminating agents. The department concerned with the treatment of radioactive waste studied the use of molten salts and paste type cleansers for components unsuitable for mechanical decontamination, primarily with the objective to reduce the amount of radioactive waste. (author)

  3. Experience with cleaning of sodium-wetted components and decontamination at Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Menzenhauer, P.; Borgstedt, U.; Stamm, H.H.; Dippel, Th.; Kunze, S.; Hentschel, D.

    1978-01-01

    Within the framework of the Fast Breeder Project various institutes of the KarIsruhe Nuclear Research Center operate sodium loops for corrosion studies and component tests under sodium. The operation of these loops has led to extensive experience in cleaning sodium-wetted components. This experience relates to the alcohol method, the removal of sodium by melting, storage in air, and to cleaning by means of steam. Deposition samples from radioactive sodium loops were used for decontamination experiments employing various decontaminating agents. The department concerned with the treatment of radioactive waste studied the use of molten salts and paste type cleansers for components unsuitable for mechanical decontamination, primarily with the objective to reduce the amount of radioactive waste. (author)

  4. Adsorption of aqueous silicate on hematite

    International Nuclear Information System (INIS)

    Taylor, P.; Ticknor, K.V.

    1997-08-01

    During radioisotope sorption studies, adsorption of silicate from synthetic groundwaters by synthetic hematite was observed. To further investigate this observation, the adsorption of silicate onto hematite (α-Fe 2 O 3 ) powder from a neutral, aqueous NaC1 solution (0.1 mol/dm 3 ), containing 2.56 x 10 -4 mol/dm 3 of Si added as Na 2 SiO 3 ·9H 2 O, was measured at ∼21 deg C. Equilibrium adsorption of silicate amounted to ∼1.93 μmol/m 2 (one Si(O,OH) 4 moiety per 86 A 2 ). It is important to take this adsorption into account when evaluating the ability of iron oxides to adsorb other species, especially anions, from groundwaters. Silicate adsorption is known to diminish the ability of iron oxides to adsorb other anions. (author)

  5. Study on melting available silicone from coal gangue

    Energy Technology Data Exchange (ETDEWEB)

    Chen-tao Hou; Sheng-quan Wang; Xiao-fei Xie [Xi' an University of Science and Technology, Xi' an (China). College of Geology and Environment

    2009-12-15

    Available silicone was melted from coal gangue samples from Hancheng diggings through calcination, digestion, and other means. The best calcination temperature was determined from a range of 550-1150{sup o}C; and the best time, from a range of 0.5-5 h by colorimetry method. The proper ratio of coal gangue, limestone, sodium carbonate, and caustic soda was then determined through orthogonal experiment. The results show that the proper extraction condition for available silicone is the ratio of coal gangue, limestone, sodium carbonate, and caustic soda at 1:0.5:0.1:0.05, calcination temperature at 700{sup o}C, and calcination time at 2 h. In this condition, the available silicone content can be more than 19.65%. 10 refs., 2 figs., 3 tabs.

  6. Materials problems related to the core catcher of sodium cooled reactors

    International Nuclear Information System (INIS)

    Goetzmann, O.

    1975-05-01

    There are in principal two possible solutions for the external core catcher as far as materials are concerned. 1) A barrier consisting of a material with a high melting point, 2) a tray of comparatively low melting material with a high solubility for the fuel. In case of the first concept one has to look for materials whose melting temperatures are above the temperature of the molten core. Based on metallurgical reasons it seems very likely that the molten core does not exceed a temperature in the range between 2,500 and 2,800 0 C. Due to the compatibility situation with the molten core only a few high melting oxides will be suitable as liner materials for a core catcher. In the second case basalt or concrete, if free of water and lime, are suitable materials. Graphite is a high melting material, however, due to its behaviour with the molten core it should be listed under the second group. By the reaction of graphite with the core materials the melt can be kept liquid down to temperatures of around 1,100 0 C. The evolution of CO by this reaction should be supportable. It is an endothermal reaction. Experiments on the behaviour of core catcher materials have shown that sodium is capable of penetrating into sintered bodies of UO 2 with densities of 90% TD at temperatures higher than 200 0 C. This may lead to the desintegration of these bodies. The exposure to moist air has not done much harm to UO 2 pellets of densities from 80 to 90% TD. Even after one year of exposure, swelling or desintegration could not be observed. Sodium is also capable of penetrating into bodies of synthetic carbon and graphite. Only well graphitized material will not be destroyed. (orig.) [de

  7. Clarification of sodium silicate solutions derived from diatomites, to improve their industrial expectations

    International Nuclear Information System (INIS)

    Aguilar Cantillano, Eduardo

    2000-01-01

    solutions of soluble silicates synthesized have been clarified in Costa Rica from diatomite in almost 50% of their initial coloration. Clarification and removal of iron oxides have been achieved in a higher order of 50% m/m expressed as Fe 2 O 3 . Activated carbon treatment has clarified the scope of [31-57]%, but not significantly decreases the iron content. The application of NaClO to 3% m/m clarifies the scope of [28-51]%, and reduced iron by 48% m/m. The land alone has been shown that is not very effective filter to clarify, [0-14]%, but is effective for the stripping of iron by 68% m/m. Other procedures are effective in clarifying the scope of [42-51]% and reduced the amount of iron in the field of [48-66]%. The synthesis of soluble glasses is possible to clarify for conditioning with commercial purposes diverse, treatment methodologies and analytical control, simple and economical. (author) [es

  8. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  9. The origin and evolution of silicic magmas during continental rifting: new constraints from trace elements and oxygen isotopes from Ethiopian volcanoes

    Science.gov (United States)

    Hutchison, W.; Boyce, A.; Mather, T. A.; Pyle, D. M.; Yirgu, G.; Gleeson, M. L.

    2017-12-01

    The petrologic diversity of rift magmas is generated by two key processes: interaction with the crust via partial melting or assimilation; and closed-system fractional crystallization of the parental magma. It is not yet known whether these two petrogenetic processes vary spatially between different rift settings, and whether there are any significant secular variations during rift evolution. The Ethiopian Rift is the ideal setting to test these hypotheses because it captures the transition from continental rifting to sea-floor spreading and has witnessed the eruption of large volumes of mafic and silicic volcanic rocks since 30 Ma. We use new oxygen isotope (δ18O) and trace element data to fingerprint fractional crystallisation and partial crustal melting processes in Ethiopia and evaluate spatial variations between three active rift segments. δ18O measurements are used to examine partial crustal melting processes. We find that most δ18O data from basalts to rhyolites fall within the bounds of modelled fractional crystallization trajectories (i.e., 5.5-6.5 ‰). Few samples deviate from this trend, emphasising that fractional crystallization is the dominant petrogenetic processes and that little fusible Precambrian crustal material (δ18O of 7-18 ‰) remain to be assimilated beneath the magmatic segments. Trace element systematics (e.g., Ba, Sr, Rb, Th and Zr) further underscore the dominant role of fractional crystallization but also reveal important variations in the degree of melt evolution between the volcanic systems. We find that the most evolved silicic magmas, i.e., those with greatest peralkalinity (molar Na2O+K2O>Al2O3), are promoted in regions of lowest magma flux off-axis and along rift. Our findings provide new information on the nature of the crust beneath Ethiopia's active magmatic segments and also have relevance for understanding ancient rift zones and the geotectonic settings that promote genesis of economically-valuable mineral deposits.

  10. Process for the conversion of sugars to lactic acid and 2-hydroxy-3-butenoic acid or esters thereof comprising a metallo-silicate material and a metal ion

    DEFF Research Database (Denmark)

    2015-01-01

    A process for the preparation of lactic acid and 2-hydroxy- 3-butenoic acid or esters thereof from a sugar in the presence of a metallo-silicate material, a metal ion and a solvent, wherein the metal ion is selected from one or more of the group consisting of potassium ions, sodium ions, lithium...

  11. Autoradiographic study of corrosion of refractories

    International Nuclear Information System (INIS)

    Lisenenkova, S.B.; Kucheryavyi, M.N.; Bursteva, T.A.

    1988-01-01

    A comparative study was made of the character of the interaction between a container-glass melt consisting of sodium calcium silicate and refractories in various furnace sections using an autoradiographic method. Static tests were conducted on specimens of the following refractories: chrome-aluminum-zircon, Bakor 41, corundum, a high alumina refractory, and a refractory based on tin dioxide. The specimens were activated by calcium 45. Autoradiography and photomicrography indicated that an intrinsic feature of all refractories was that calcium from the melt penetrated the refractories along the weak link; for fused-cast refractories, the glass phase; and for sintered refractories, through the binder and cracks

  12. Location of silicic caldera formation in arc settings

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Gwyneth R; Mahood, Gail A [Department of Geological and Environmental Sciences, Stanford University, 450 Serra, Mall, Building 320, Stanford, CA 94305-2115 (United States)

    2008-10-01

    Silicic calderas are the surface expressions of silicic magma chambers, and thus their study may yield information about what tectonic and crustal features favor the generation of evolved magma. The goal of this study is to determine whether silicic calderas in arc settings are preferentially located behind the volcanic front. After a global analysis of young, arc-related calderas, we find that silicic calderas at continental margins do form over a wide area behind the front, as compared to other types of arc volcanoes.

  13. Predicted mineral melt formation by BCURA Coal Sample Bank coals: Variation with atmosphere and comparison with reported ash fusion test data

    Energy Technology Data Exchange (ETDEWEB)

    D. Thompson [University of Sheffield (United Kingdom). Department of Engineering Materials

    2010-08-15

    The thermodynamic equilibrium phases formed under ash fusion test and excess air combustion conditions by 30 coals of the BCURA Coal Sample Bank have been predicted from 1100 to 2000 K using the MTDATA computational suite and the MTOX database for silicate melts and associated phases. Predicted speciation and degree of melting varied widely from coal to coal. Melting under an ash fusion test atmosphere of CO{sub 2}:H{sub 2} 1:1 was essentially the same as under excess air combustion conditions for some coals, and markedly different for others. For those ashes which flowed below the fusion test maximum temperature of 1773 K flow coincided with 75-100% melting in most cases. Flow at low predicted melt formation (46%) for one coal cannot be attributed to any one cause. The difference between predicted fusion behaviours under excess air and fusion test atmospheres becomes greater with decreasing silica and alumina, and increasing iron, calcium and alkali metal content in the coal mineral. 22 refs., 7 figs., 3 tabs.

  14. Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery

    Science.gov (United States)

    Law, Markas; Ramar, Vishwanathan; Balaya, Palani

    2017-08-01

    Here we report a polyanion-based cathode material for sodium-ion batteries, Na2MnSiO4, registering impressive sodium storage performances with discharge capacity of 210 mAh g-1 at an average voltage of 3 V at 0.1 C, along with excellent long-term cycling stability (500 cycles at 1 C). Insertion/extraction of ∼1.5 mol of sodium ion per formula unit of the silicate-based compound is reported and the utilisation of Mn2+ ⇋ Mn4+ redox couple is also demonstrated by ex-situ XPS. Besides, this study involves a systematic investigation of influence of the electrolyte additive (with different content) on the sodium storage performance of Na2MnSiO4. The electrolyte additive forms an optimum protective passivation film on the electrode surface, successfully reducing manganese dissolution.

  15. Effect of cationic composition of electrolyte on kinetics of lead electrolytic separation in chloride melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Makarov, D.V.

    1995-01-01

    The mechanism has been studied and kinetic parameters of the process of Pb(2) ion electrochemical reduction have been ascertained for different individual melts of alkali metal chlorides and their mixtures, using methods of linear voltammetry chronopotentiometry and chronoamperometry. It has been ascertained that cations in the melts of alkali metal chlorides affect stability of [PbCl n ] 2-n ions. The data obtained suggest that the strength of the complexes increases in the series NaCl-KCl-CsCl. In the melt of sodium chloride the electrode process is limited by diffusion, whereas in the melts of KCl, CsCl, CsCl-NaCl with cesium chloride content exceeding 70 mol% lead electrochemical reduction is controlled by preceding dissociation of the complexes. 10 refs., 3 figs., 2 tabs

  16. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    International Nuclear Information System (INIS)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by 29 Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of 29 Si spectra. A high-temperature (to 1300 0 C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T 1 and T 2 ) measurements as a function of composition and temperature for 23 Na and 29 Si

  17. Crystal nucleus formation on the cathode under conditions of supersaturation of melt by lower valent forms

    International Nuclear Information System (INIS)

    Kaliev, K.A.; Aksent'ev, A.G.; Baraboshkin, A.N.

    1979-01-01

    Nucleation on the cathode of sodium-tungsten bronzes forom the Na 2 WO 4 -WO 3 melt, containing 40 mol.% WO 3 is studied. It has been found that in the initial period the cathode deposition of sodium-tungsten bronze is preceeded by the formation of tungsten soluble lower reduced forms, the concentration of which can considerably exceed the equilibrium one because of excessive overstress of oxide bronze crystal nucleation. The polarization of cathode and change of its potential at the crystal nucleation of sodium-tungsten bronze and switching-off of the electrolysis current has been studied

  18. Lean production of taste improved lipidic sodium benzoate formulations.

    Science.gov (United States)

    Eckert, C; Pein, M; Breitkreutz, J

    2014-10-01

    Sodium benzoate is a highly soluble orphan drug with unpleasant taste and high daily dose. The aim of this study was to develop a child appropriate, individually dosable, and taste masked dosage form utilizing lipids in melt granulation process and tableting. A saliva resistant coated lipid granule produced by extrusion served as reference product. Low melting hard fat was found to be appropriate as lipid binder in high-shear granulation. The resulting granules were compressed to minitablets without addition of other excipients. Compression to 2mm minitablets decreased the dissolved API amount within the first 2 min of dissolution from 33% to 23%. The Euclidean distances, calculated from electronic tongue measurements, were reduced, indicating an improved taste. The reference product showed a lag time in dissolution, which is desirable for taste masking. Although a lag time was not achieved for the lipidic minitablets, drug release in various food materials was reduced to 2%, assuming a suitable taste masking for oral sodium benzoate administration. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Melt extraction during heating and cooling of felsic crystal mushes in shallow volcanic systems: An experimental study

    Science.gov (United States)

    Pistone, M.; Baumgartner, L. P.; Sisson, T. W.; Bloch, E. M.

    2017-12-01

    The dynamics and kinetics of melt extraction in near-solidus, rheologically stalled, felsic crystal mushes (> 50 vol.% crystals) are essential to feeding many volcanic eruptions. At shallow depths (volatile-saturated and may be thermally stable for long time periods (104-107 years). In absence of deformation, residual melt can segregate from the mush's crystalline framework stimulated by: 1) gas injecting from hot mafic magmas into felsic mushes (heating / partial melting scenario), and 2) gas exsolving from the crystallizing mush (cooling / crystallizing scenario). The conditions and efficiency of melt extraction from a mush in the two scenarios are not well understood. Thus, we conducted high-temperature (700 to 850 °C) and -pressure (1.1 kbar) cold seal experiments (8-day duration) on synthetic felsic mushes, composed of water-saturated (4.2 wt.%) rhyodacite melt bearing different proportions of added quartz crystals (60, 70, and 80 vol%; 68 mm average particle size). High-spatial resolution X-ray tomography of run products show: 1) in the heating scenario (> 750 °C) melt has not segregated due to coalescence of vesicles (≤ 23 vol%) and large melt connectivity (> 7 vol% glass) / low pressure gradient for melt movement up to 80 vol% crystals; 2) in the cooling scenario (≤ 750 °C) vesicle (< 11 vol%) coalescence is limited or absent and limited amount of melt (3 to 11 vol%) segregated from sample center to its outer periphery (30 to 100 mm melt-rich lenses), testifying to the efficiency of melt extraction dictated by increasing crystallinity. These results suggest that silicic melt hosted within a crystal-rich mush can accumulate rapidly due to the buildup of modest gas pressures during crystallization at temperatures near the solidus.

  20. Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferroni, Paolo [Westinghouse Electric Company LLC, Cranberry Township, PA (United States). Global Technology Development; Tatli, Emre [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Czerniak, Luke [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Yoichi, Momozaki [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-06-29

    The project “Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems” was conducted jointly by Westinghouse Electric Company (Westinghouse) and Argonne National Laboratory (ANL), over the period October 1, 2013- March 31, 2016. The project’s motivation was the need to provide designers of Sodium Fast Reactors (SFRs) with a validated, state-of-the-art computational tool for the prediction of sodium oxide (Na2O) deposition in small-diameter sodium heat exchanger (HX) channels, such as those in the diffusion bonded HXs proposed for SFRs coupled with a supercritical CO2 (sCO2) Brayton cycle power conversion system. In SFRs, Na2O deposition can potentially occur following accidental air ingress in the intermediate heat transport system (IHTS) sodium and simultaneous failure of the IHTS sodium cold trap. In this scenario, oxygen can travel through the IHTS loop and reach the coldest regions, represented by the cold end of the sodium channels of the HXs, where Na2O precipitation may initiate and continue. In addition to deteriorating HX heat transfer and pressure drop performance, Na2O deposition can lead to channel plugging especially when the size of the sodium channels is small, which is the case for diffusion bonded HXs whose sodium channel hydraulic diameter is generally below 5 mm. Sodium oxide melts at a high temperature well above the sodium melting temperature such that removal of a solid plug such as through dissolution by pure sodium could take a lengthy time. The Sodium Plugging Phenomena Loop (SPPL) was developed at ANL, prior to this project, for investigating Na2O deposition phenomena within sodium channels that are prototypical of the diffusion bonded HX channels envisioned for SFR-sCO2 systems. In this project, a Computational Fluid Dynamic (CFD) model capable of simulating the thermal-hydraulics of the SPPL test

  1. First experimental observations on melting and chemical modification of volcanic ash during lightning interaction.

    Science.gov (United States)

    Mueller, S P; Helo, C; Keller, F; Taddeucci, J; Castro, J M

    2018-01-23

    Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.

  2. Origin of Fe-rich lherzolites and wehrlites from Tok, SE Siberia by reactive melt percolation in refractory mantle peridotites

    Science.gov (United States)

    Ionov, Dmitri A.; Chanefo, Ingrid; Bodinier, Jean-Louis

    2005-10-01

    Lherzolite-wehrlite (LW) series xenoliths from the quaternary Tok volcanic field in the southeastern Siberian craton are distinguished from the more common lherzolite-harzburgite (LH) series by (a) low Mg numbers (0.84-0.89) at high modal olivine (66-84%) and (b) widespread replacement of orthopyroxene (0-12%) and spinel by clinopyroxene (7-22%). The LW series peridotites are typically enriched in Ca, Fe, Mn and Ti, and depleted in Si, Ni and Cr relative to refractory LH series rocks (Mg number ≥0.89), which are metasomatised partial melting residues. Numerical modelling of Fe-Mg solid/liquid exchange during melt percolation demonstrates that LW series rocks can form by reaction of host refractory peridotites with evolved (Mg numbers 0.6-0.7), silica-undersaturated silicate melts at high melt/rock ratios, which replace orthopyroxene with clinopyroxene and decrease Mg numbers. This process is most likely related to underplating and fractionation of basaltic magma in the shallow mantle, which also produced olivine-clinopyroxene cumulates found among the Tok xenoliths.

  3. EFFECT OF AGING TIME TOWARD CRYSTALLINITY OF PRODUCTS IN SYNTHESIS OF MESOPOROUS SILICATES MCM-41

    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta

    2010-12-01

    Full Text Available Researches about the effects of aging time toward crystallinity of products in the synthesis of mesoporous silicates MCM-41 have been done. MCM-41 was synthesized by hydrothermal treatment to the mixture of sodium silicate, sodium hydroxide, cetyltrimetylammoniumbromide (CTMAB and aquadest in the molar ratio of 8Na2SiO3 : CTMAB : NaOH : 400H2O. Hydrothermal treatment was carried out at 110 °C in a teflon-lined stainless steel autoclave heated in the oven, with variation of aging time, i.e.: 4, 8, 12, 16, 24, 36, 48, and 72 h respectively. The solid phase were filtered, then washed with deionised water, and dried in the oven at 100 °C for 2 h. The surfactant CTMAB was removed by calcinations at 550 °C for 10 h with heating rate 2 °C/min. The as-synthesized and calcined powders were characterized by using FTIR spectroscopy and X-ray diffraction method. The relative crystallinity of products was evaluated based on the intensity of d100 peaks. The best product was characterized by using N2 physisorption method in order to determine the specific surface area, mean pore diameter, lattice parameter, and pore walls thickness. It was concluded that the relative crystallinity of the products was sensitively influenced by the aging time. The highest relative crystallinity was achieved when used 36 h of aging time in hydrothermal treatment. In this optimum condition the product has 946.607 m2g-1 of specific surface area, 3.357 nm of mean pore diameter, 4.533 nm of lattice parameter, and 1.176 nm of pore walls thickness.

  4. ∼2 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in silicate glass

    International Nuclear Information System (INIS)

    Li, Ming; Liu, Xueqiang; Guo, Yanyan; Hao, Wei; Hu, Lili; Zhang, Junjie

    2014-01-01

    Graphical abstract: - Highlights: • A Er 3+ /Tm 3+ co-doped silicate glass with good thermal stability (k gl = 0.402 for STE glass) is prepared. • Efficient ∼2 μm emission is observed under 808 nm and 980 nm laser excitation. • The glass structure and spectroscopic properties are confirmed by optical absorption, IR transmission, Raman and fluorescence studies. • The content of OH groups deceases efficiently after fluorine ions are introduced. • The energy transfer coefficient from Er 3+ to Tm 3+ in STFE glass is 13.39 × 10 −40 cm 6 /s. - Abstract: A Er 3+ /Tm 3+ co-doped silicate glass with good thermal stability is prepared by melt-quenching method. An efficient emission of ∼2 μm is observed under different selective laser excitations. The optical absorption and transmission spectra, Raman spectra, and emission spectra are tested to characterize ∼2 μm emission properties of Er 3+ /Tm 3+ co-doped silicate glasses and a reasonable energy transfer mechanism of ∼2 μm emission between Er 3+ and Tm 3+ ions is proposed. Based on the optical absorption spectra, the Judd–Ofelt parameters and radiative properties were calculated. Intense ∼2 μm emission is obtained from Er 3+ /Tm 3+ co-doped silicate glasses due to the efficient energy transfer from Er 3+ to Tm 3+ ions. The energy transfer coefficient from Er 3+ to Tm 3+ ions can reach as high as 13.39 × 10 −40 cm 6 /s. In addition, the population of the OH groups is decreased and the ∼2 μm emission is effectively enhanced with fluoride introduction. The emission property, together with good thermal property, indicates that Er 3+ /Tm 3+ co-doped silicate glass is a potential kind of laser glass for efficient ∼2 μm laser

  5. A novel pharmaceutical excipient: Coprecipitation of calcium and magnesium silicate using brine-seawater in date palm cellulose as an absorbing host

    Directory of Open Access Journals (Sweden)

    Mohammad Hamaidi

    2017-09-01

    Full Text Available This research aims to produce a cost competitive and innovative pharmaceutical additive with multi-purpose use in the pharmaceutical industry from Saudi Arabia natural resources and bio-wastes. The waste substance, brine, and the naturally occurring compound, sodium silica, were reacted together to produce water insoluble calcium and magnesium silicate salts [WISS]. The purity index WISS was compared with synthetic Mg silicae.The produced particle size was 1.994 µm. Date palm cellulose [DPC] with a high purity index [0.99] was produced from the biomass waste of date palm tree. DPC was used as a host for coprecipitation of synthetic calcium magnesium silicate within its intimate structures. The interaction between the cellulose polymer and silicates is physical in nature. WISS-DPC was more flowable than DPC. In SEM, the particles of DPC were fibrous and irregular in shape, while WISS-DPC showed more regular shape than DPC. Tablets prepared from WISS-DPC were harder and had lower disintegration time at all compression forces compared to those made from DPC. The produced excipient had excellent compaction and disintegration properties and could be used as a superdisintegrant and tablet binder in pharmaceutical industries.

  6. HECLA experiments on interaction between metallic melt and hematite-containing concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sevon, Tuomo, E-mail: tuomo.sevon@vtt.f [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Kinnunen, Tuomo; Virta, Jouko; Holmstroem, Stefan; Kekki, Tommi; Lindholm, Ilona [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland)

    2010-10-15

    In a hypothetical severe accident in a nuclear power plant, molten materials may come into contact with concrete, causing concrete ablation. In five HECLA experiments the interaction between metallic melt and concrete was investigated by pouring molten stainless steel at almost 1800 {sup o}C into cylindrical concrete crucibles. The tests were transient, i.e. no decay heat simulation was used. The main objective was to test the behavior of the FeSi concrete, containing hematite (Fe{sub 2}O{sub 3}) and siliceous aggregates. This special concrete type is used as a sacrificial layer in the Olkiluoto 3 EPR reactor pit, and very scarce experimental data is available about its behavior at high temperatures. It is concluded that no clear differences between the ablation of FeSi concrete and ordinary siliceous concrete were observed. The ablation depths were small, 25 mm at maximum. No dramatic effects, such as cracking of large pieces of concrete due to the thermal shock, took place. An important side result of the test series was gaining knowledge of the properties of the special concrete type. Chemical analyses were conducted and mechanical properties were measured.

  7. Double sodium rubidium molybdates

    International Nuclear Information System (INIS)

    Mokhoseev, M.V.; Khal'baeva, K.M.; Khajkina, E.G.; Ogurtsov, A.M.

    1990-01-01

    According to ceramic technique double sodium-rubidium molybdates of the compositions Rb 2-x Na x MoO 4 (0.5≤x≤0.67) and Na 3 Rb(MoO 4 ) 2 have been prepared. It is ascertained that Rb 2-x Na x MoO 4 is crystallized in glaserite structural type (trigonal crystal system, sp.gr. P3m1, Z=2) and melts incongruently at 640 deg C. Na 3 Rb(MoO 4 ) 2 at room temperature is unstable and gradually decomposes into Na 2 MoO 4 and Rb 2-x Na x MoO 4

  8. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    International Nuclear Information System (INIS)

    Wurth, R.; Pascual, M.J.; Mather, G.C.; Pablos-Martín, A.; Muñoz, F.; Durán, A.; Cuello, G.J.; Rüssel, C.

    2012-01-01

    A base glass of composition 3.5 Li 2 O∙0.15 Na 2 O∙0.2 K 2 O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al 2 O 3 ∙67.2 SiO 2 ∙2.6 TiO 2 ∙1.7 ZrO 2 ∙1.2 As 2 O 3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi 2 O 6 with nanoscaled crystals forms at 750 °C. Quantitative Rietveld refinement of samples annealed at 750 °C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2 × 2 × 2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 ± 20 kJ mol −1 . - Highlights: ► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2 × 2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.

  9. On crystallochemistry of uranil silicates

    International Nuclear Information System (INIS)

    Sidorenko, G.A.; Moroz, I.Kh.; Zhil'tsova, I.G.

    1975-01-01

    A crystallochemical analysis has been made of uranil silicates. It is shown that on crystallochemical grounds it is justified to distinguish among them uranophane-kasolite, soddyite and viksite groups differing in the uranil-anion [SiO 4 ] -4 ratio and, as a consequence, in their crystallochemical structures. Widespread silicates of the uranophane-kasolite group is the formation of polytype modifications where, depending on the interlaminar cation, crystalline structures are formed with various packing of single-type uranil-anion layers. It has been shown experimentally that silicates of the uranophanekasolite group contain no oxonium ion in their crystalline structures. Minerals of the viksite group belong to a group of isostructural (homeotypic) laminated formation apt to form phases of different degrees of hydration. Phases with a smaller interlaminar cation form hydrates with a greater number of water molecules in the formulas unit

  10. Zirconium carbide coating for corium experiments related to water-cooled and sodium-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Plevacova, K. [CEA, DEN, STRI, LMA, Cadarache, 3108 St. Paul lez Durance (France); Journeau, C., E-mail: christophe.journeau@cea.fr [CEA, DEN, STRI, LMA, Cadarache, 3108 St. Paul lez Durance (France); Piluso, P. [CEA, DEN, STRI, LMA, Cadarache, 3108 St. Paul lez Durance (France); Zhdanov, V.; Baklanov, V. [IAE, National Nuclear Centre, Material Structure Investigation Dept., Krasnoarmeiskaya, 10, Kurchatov City (Kazakhstan); Poirier, J. [CEMHTI, 1D, av. de la Recherche Scientifique, 45071 Orleans Cedex 2 (France)

    2011-07-01

    Since the TMI and Chernobyl accidents the risk of nuclear severe accident is intensively studied for existing and future reactors. In case of a core melt-down accident in a nuclear reactor, a complex melt, called corium, forms. To be able to perform experiments with prototypic corium materials at high temperature, a coating which resists to different corium melts related to Generation I and II Water Reactors and Generation IV sodium fast reactor was researched in our experimental platforms both in IAE NNC in Kazakhstan and in CEA in France. Zirconium carbide was selected as protective coating for graphite crucibles used in our induction furnaces: VCG-135 and VITI. The method of coating application, called reactive wetting, was developed. Zirconium carbide revealed to resist well to the (U{sub x}, Zr{sub y})O{sub 2-z} water reactor corium. It has also the advantage not to bring new elements to this chemical system. The coating was then tested with sodium fast reactor corium melts containing steel or absorbers. Undesirable interactions were observed between the coating and these materials, leading to the carburization of the corium ingots. Concerning the resistance of the coating to oxide melts without ZrO{sub 2}, the zirconium carbide coating keeps its role of protective barrier with UO{sub 2}-Al{sub 2}O{sub 3} below 2000 deg. C but does not resist to a UO{sub 2}-Eu{sub 2}O{sub 3} mixture.

  11. Experience in handling core subassemblies in sodium cooled reactor KNK and test rigs

    International Nuclear Information System (INIS)

    Althaus; Jansing; Kesseler; Kirchner; Menck

    1974-01-01

    Compared with a water cooled reactor plant a sodium cooled reactor plant presents a number of problems which result from the specific nature of sodium. These problems that must be faced during all handling operations are mainly: 1. The rapid reaction of sodium in air requires handling to be done only under cover gas. 2. The temperature of all sodium-wetted components is to be kept above the melting point of sodium. 3. Poor draining of removed reactor components due to the high surface tension of sodium and the associated danger of dripping radioactive sodium may produce radiation or contamination problems. 4. Sodium is not transparent. The sum of these and further influences dictate that the general handling usually is carried out without visual means, though a method is under development in the USA to use ultrasonic for under sodium 'viewing'. These limitations to sodium component handling are applicable to all sodium reactor plants, several of which are discussed in this report. After the description of the handling systems of the KNK plant now operating at Karlsruhe, the experience with the SNR test rig and finally the handling systems for SNR 300 and SNR 2 are discussed

  12. Influence of glass furnace operational conditions on the evaporation from soda-lime and borosilicate glass melts.

    NARCIS (Netherlands)

    Beerkens, R.G.C.

    2000-01-01

    The evaporation of sodium and boron species from the melts in industrial glass furnaces leads to emissions of particulates (dust) and to furnace atmospheres containing reactive evaporation products. These reactive species, especially alkali vapors, can react with the superstructure refractories

  13. The corrosion of steels in molten sodium hydroxide

    International Nuclear Information System (INIS)

    Newman, R.N.; Smith, C.A.; Smith, R.J.

    1976-09-01

    The role of sodium hydroxide corrosion is discussed in relation to the wastage of materials observed in fast reactor boilers under fault conditions in the vicinity of a water leak into sodium. An experimental technique to study the corrosion under varying conditions is described. The results presented are for 2 1/4Cr 1Mo obtained in static sodium hydroxide in a closed volume over the temperature range 1033K to 1273K. It is found that the corrosion rate can be followed by monitoring the hydrogen produced by the reaction, which can be written as: Fe + 2NaOH = NaFeO 2 + NaH + 1/2H 2 . After an initial acceleration period the rate law is parabolic. The effect on the corrosion rate of melt and cover gas composition has been in part investigated, and the relevance of mass flow of reactants is discussed. (author)

  14. The Origin of the Compositional Diversity of Mercury's Surface Constrained From Experimental Melting of Enstatite Chondrites

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.

    2015-01-01

    Mercury is known as an endmember planet as it is the most reduced terrestrial planet with the highest core/mantle ratio. MESSENGER spacecraft has shown that its surface is FeO-poor (2-4 wt%) and Srich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting important melting stages of the Mercurian mantle. This interpretation was confirmed by the high crustal thickness (up to 100 km) derived from Mercury's gravity field. This is also corroborated by a recent experimental result that showed that Mercurian partial melts are expected to be highly buoyant within the Mercurian mantle and could have risen from depths as high as the core-mantle boundary. In addition MESSENGER spacecraft provided relatively precise data on major elemental compositions of Mercury's surface. These results revealed important chemical and mineralogical heterogeneities that suggested several stages of differentiation and re-melting processes. However, the extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Therefore, in this study, we investigated the processes that lead to the various compositions of Mercury's surface. Melting experiments with bulk Mercury-analogue compositions were performed and compared to the compositions measured by MESSENGER.

  15. Development of fast reactor containment safety analysis code, CONTAIN-LMR. (3) Improvement of sodium-concrete reaction model

    International Nuclear Information System (INIS)

    Kawaguchi, Munemichi; Doi, Daisuke; Seino, Hiroshi; Miyahara, Shinya

    2015-01-01

    A computer code, CONTAIN-LMR, is an integrated analysis tool to predict the consequence of severe accident in a liquid metal fast reactor. Because a sodium-concrete reaction behavior is one of the most important phenomena in the accident, a Sodium-Limestone Concrete Ablation Model (SLAM) has been developed and installed into the original CONTAIN code at Sandia National Laboratories (SNL) in the U.S. The SLAM treats chemical reaction kinetics between the sodium and the concrete compositions mechanistically using a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer (B/L) and dehydrated concrete) region, and a wet (hydrated concrete) region, the application is limited to the reaction between sodium and limestone concrete. In order to apply SLAM to the reaction between sodium and siliceous concrete which is an ordinary structural concrete in Japan, the chemical reaction kinetics model has been improved to consider the new chemical reactions between sodium and silicon dioxide. The improved model was validated to analyze a series of sodium-concrete experiments which were conducted in Japan Atomic Energy Agency (JAEA). It has been found that relatively good agreement between calculation and experimental results is obtained and the CONTAIN-LMR code has been validated with regard to the sodium-concrete reaction phenomena. (author)

  16. Final Environmental Impact Statement for the Treatment and Management of Sodium-Bonded Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2000-01-01

    DOE is responsible for the safe and efficient management of its sodium-bonded spent nuclear fuel. This fuel contains metallic sodium, a highly reactive material; metallic uranium, which is also reactive; and in some cases, highly enriched uranium. The presence of reactive materials could complicate the process of qualifying and licensing DOE's sodium-bonded spent nuclear fuel inventory for disposal in a geologic repository. Currently, more than 98 percent of this inventory is located at the Idaho National Engineering and Environmental Laboratory (INEEL), near Idaho Falls, Idaho. In addition, in a 1995 agreement with the State of Idaho, DOE committed to remove all spent nuclear fuel from Idaho by 2035. This EIS evaluates the potential environmental impacts associated with the treatment and management of sodium-bonded spent nuclear fuel in one or more facilities located at Argonne National Laboratory-West (ANL-W) at INEEL and either the F-Canyon or Building 105-L at the Savannah River Site (SRS) near Aiken, South Carolina. DOE has identified and assessed six proposed action alternatives in this EIS. These are: (1) electrometallurgical treatment of all fuel at ANL-W, (2) direct disposal of blanket fuel in high-integrity cans with the sodium removed at ANL-W, (3) plutonium-uranium extraction (PUREX) processing of blanket fuel at SRS, (4) melt and dilute processing of blanket fuel at ANL-W, (5) melt and dilute processing of blanket fuel at SRS, and (6) melt and dilute processing of all fuel at ANL-W. In addition, Alternatives 2 through 5 include the electrometallurgical treatment of driver fuel at ANL-W. Under the No Action Alternative, the EIS evaluates both the continued storage of sodium-bonded spent nuclear fuel until the development of a new treatment technology or direct disposal without treatment. Under all of the alternatives, the affected environment is primarily within 80 kilometers (50 miles) of spent nuclear fuel treatment facilities. Analyses indicate

  17. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    Sodium acetate trihydrate is a phase change material that can be used for long term heat storage in solar heating systems because of its relatively high heat of fusion, a melting temperature of 58 °C and its ability to supercool stable. In practical applications sodium acetate trihydrate tend to ......, 0.3–0.5 % (wt.%) Xanthan Gum or 1–2% (wt.%) of some solid or liquid polymers as additives had significantly higher heat contents compared to samples of sodium acetate trihydrate suffering from phase separation....

  18. Determination of enthalpy–temperature–composition relations in incongruent-melting phase change materials

    International Nuclear Information System (INIS)

    Desgrosseilliers, Louis; Allred, Paul; Groulx, Dominic; White, Mary Anne

    2013-01-01

    This paper demonstrates that liquidus line (T-x) data can be obtained from calorimetric determinations of phase transition enthalpy profiles (H-T) for incongruent-melting phase change materials (PCMs) more efficiently than using traditional cooling curves. An accurate and reliable equilibrium mixture enthalpy model bridges the H-T and T-x gap to provide a full suite of high density H-T-x data to assist latent heat energy storage researchers to evaluate composition-dependent two-phase equilibrium processes. The proposed method is validated for T-history method H-T determinations of 1:1 diluted sodium acetate trihydrate in water, and can also be used with other laboratory calorimetric techniques used to determine the phase transition enthalpy profiles of incongruent-melting compounds. -- Highlights: • H-T data can also be used to obtain valuable liquidus region T-x data. • Applies to all incongruent-melting compounds with known thermodynamic properties. • Reduces the effort and cost of assessing full suite H-T-x data for PCMs. • Uses existing T-x or H-T data of incongruent-melting PCMs to determine the other

  19. Analysis of fuel sodium interaction in a fast breeder reactor

    International Nuclear Information System (INIS)

    Tezuka, M.; Suzuki, K.; Sasanuma, K.; Nagasima, K.; Kawaguchi, O.

    A code ''SUGAR'' has been developed to evaluate molten Fuel Sodium Interaction (FSI) in a fast breeder reactor. This code computes thermohydrodynamic behavior by heat transfer from fuel to sodium and dynamic deformation of reactor structures simultaneously. It was applied to evaluate FSI in local fuel melting accident in a fuel assembly and in core disassembly accident for the 300MWe fast breeder reactor under development in Japan. The analytical methods of the SUGAR code are mainly shown in the following: 1) the thermal and dynamic model of FSI is mainly based on Cho-Wright's model; 2) the axial and radial expansions of surroundings of FSI region are calculated with one-dimensional and compressive hydrodynamics equation; 3) the structure response is calculated with one-dimensional and dynamic stress equation. Our studies show that mass of fuel interacted with sodium, ratio of fuel mass to sodium mass, fuel particle size, heat transfer coefficient from fuel to sodium, and structure's force have great effect on pressure amplitude and deformation of reactor structures

  20. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  1. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  2. Lambda-Cyhalothrin Nanosuspension Prepared by the Melt Emulsification-High Pressure Homogenization Method

    OpenAIRE

    Pan, Zhenzhong; Cui, Bo; Zeng, Zhanghua; Feng, Lei; Liu, Guoqiang; Cui, Haixin; Pan, Hongyu

    2015-01-01

    The nanosuspension of 5% lambda-cyhalothrin with 0.2% surfactants was prepared by the melt emulsification-high pressure homogenization method. The surfactants composition, content, and homogenization process were optimized. The anionic surfactant (1-dodecanesulfonic acid sodium salt) and polymeric surfactant (maleic rosin-polyoxypropylene-polyoxyethylene ether sulfonate) screened from 12 types of commercially common-used surfactants were used to prepare lambda-cyhalothrin nanosuspension with ...

  3. FFTF vertical sodium storage tank preliminary thermal analysis

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1995-01-01

    In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the storage tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The fourth tank is a horizontal cylindrical tank but is not the subject of this report. The storage tanks will be located near the FFTF in the 400 Area and rest on a steel-lined concrete slab in an enclosed building. The purpose of this work is to document the thermal analyses that were performed to ensure that the vertical FFTF sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium storage tank is the type of insulation. The baseline case assumed six inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of six inches. Both cases assumed a total electrical trace heat load of 60 kW, with 24 kW evenly distributed on the bottom head and 36 kW evenly distributed on the tank side wall

  4. Hadean silicate differentiation revealed by anomalous 142Nd in the Réunion hotspot source

    Science.gov (United States)

    Peters, B. J.; Carlson, R.; Day, J. M.; Horan, M.

    2017-12-01

    Geochemical and geophysical data show that volcanic hotspots can tap ancient domains sequestered in Earth's deep mantle. Evidence from stable and long-lived radiogenic isotope systems has demonstrated that many of these domains result from tectonic and differentiation processes that occurred more than two billion years ago. Recent advances in the analysis of short-lived radiogenic isotopes have further shown that some hotspot sources preserve evidence for metal-silicate differentiation occurring within the first one percent of Earth's history. Despite these discoveries, efforts to detect variability in the lithophile 146Sm-142Nd (t1/2 = 103 Ma) system in Phanerozoic hotspot lavas have not yet detected significant global variation. We report 142Nd/144Nd ratios in Réunion Island basalts that are statistically distinct from the terrestrial Nd standard ranging to both higher and lower 142Nd/144Nd. Variations in 142Nd/144Nd, which total nearly 15 ppm on Réunion, are correlated with 3He/4He among both anomalous and non-anomalous samples. Such behavior implies that there were analogous changes in Sm/Nd and (U+Th)/3He that occurred during a Hadean silicate differentiation event and were not completely overprinted by the depleted mantle. Variations in the 142Nd-143Nd compositions of Réunion basalts can be explained by a single Hadean melting event producing enriched and depleted domains that partially re-mixed after 146Sm was no longer extant. Assuming differentiation occurred at pressures where perovskite is stable, anomalies of the magnitude observed in Réunion basalts require melting of at least 50% across a wide depth range, and up to 90% for melting at pressures near those of the deepest mantle. Models with best fits to Nd isotope data suggest this differentiation occurred around 4.40 Ga and mixing occurred after 4 Ga. This two-stage differentiation process nearly erased the ancient, anomalous 142Nd composition of the Réunion source and produced the relatively

  5. Characterization and mechanical properties of coatings on magnesium by micro arc oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Usta, Metin

    2012-01-01

    Highlights: ► The commercial pure magnesium was coated by MAO in sodium silicate and sodium phosphate. ► Coatings produced in the phosphate electrolyte are thicker than ones in the silicate electrolyte. ► Coatings in the silicate electrolyte are harder than ones in the phosphate electrolyte. ► Adhesion strength of coatings increases with increasing coating thickness. ► The wear resistance of the coated commercial pure magnesium is improved. - Abstracts: The commercial pure magnesium was coated by micro arc oxidation method in different aqueous solution, containing sodium silicate and sodium phosphate. Micro arc oxidation process was carried out at 0.060 A/cm 2 , 0.085 A/cm 2 and 0.140 A/cm 2 current densities for 30 min. The thickness, phase composition, morphology, hardness, adhesion strength and wear resistance of coatings were analyzed by eddy current, X-ray diffraction (XRD), scanning electron microscope (SEM), micro hardness tester, scratch tester and ball-on disk tribometer, respectively. The average thicknesses of the micro arc oxidized coatings ranged from 27 to 48 μm for sodium silicate solution and from 45 to 75 μm for sodium phosphate solution. The dominant phases formed on the pure magnesium were found to be a mixture of spinel Mg 2 SiO 4 (Forsterite) and MgO (Periclase) for sodium silicate solution and Mg 3 (PO 4 ) 2 (Farringtonite) and MgO (Periclase) for sodium phosphate solution. The average hardnesses of the micro arc oxidized coatings were between 260 HV and 470 HV for sodium silicate solution and between 175 HV and 260 HV for sodium phosphate solution. Adhesion strengths and wear resistances of coatings produced in sodium silicate solution were higher than those of the ones in sodium phosphate solution due to high hardness of coatings produced in sodium silicate solution.

  6. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    Science.gov (United States)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  7. Post-Formation Sodium Loss on the Moon: A Bulk Estimate

    Science.gov (United States)

    Saxena, P.; Killen, R. M.; Airapetian, V.; Petro, N. E.; Mandell, A. M.

    2018-01-01

    The Moon and Earth are generally similar in terms of composition, but there exist variations in the abundance of certain elements among the two bodies. These differences are a likely consequence of differing physical evolution of the two bodies over the solar system's history. While previous works have assumed this may be due to conditions during the Moonâ€"TM"s formation, we explore the likelihood that the observed depletion in Sodium in lunar samples may be partially due to post-formation mechanisms. Solar effects, loss from a primordial atmosphere and impacts are some of the dominant post-formation mechanisms that we examine. We describe how our past and current modeling efforts indicate that a significant fraction of the observed depletion of sodium in lunar samples relative to a bulk silicate earth composition may have been due to solar activity, atmospheric loss and impacts. Using profiles of sodium abundances from lunar crustal samples may thus serve as a powerful tool towards exploring conditions on the Moon's surface throughout solar system history. Conditions on the Moon immediately after formation may still be recorded in the lunar crust and may provide a window towards interpreting observations from some of the first rocky exoplanets that will be most amenable to characterization. Potential spatial variation of sodium in the lunar crust may be a relevant consideration for future sample return efforts. Sodium Depletion in the Lunar Crust: Lunar

  8. Sodium-fuel interaction: dropping experiments and subassembly test

    International Nuclear Information System (INIS)

    Holtbecker, H.; Schins, H.; Jorzik, E.; Klein, K.

    1978-01-01

    Nine dropping tests, which bring together 2 to 4 kg of molten UO 2 with 150 l sodium, showed the incoherency and non-violence of these thermal interactions. The pressures can be described by sodium incipient boiling and bubble collapse; the UO 2 fragmentation by thermal stress and bubble collapse impact forces. The mildness of the interaction is principally due to the slowness and incoherency of UO 2 fragmentation. This means that parametric models which assume instantaneous mixing and fragmentation are of no use for the interpretation of dropping experiments. One parametric model, the Caldarola Fuel Coolant Interaction Variable Mass model, is being coupled to the two dimensional time dependent hydrodynamic REXCO-H code. In a first step the coupling is applicated to a monodimensional geometry. A subassembly test is proposed to validate the model. In this test rapid mixing between UO 2 and sodium has to be obtained. Dispersed molten UO 2 fuel is obtained by flashing injected sodium drops inside a UO 2 melt. This flashing is theoretically explained and modelled as a superheat limited explosion. The measured sodium drop dwell times of two experiments are compared to results obtained from the mentioned theory, which is the basis of the Press 2 Code

  9. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  10. CO2-SO3-rich (carbonate-sulfate) melt/fluids in the lithosphere beneath El Hierro, Canary Islands.

    Science.gov (United States)

    Oglialoro, E.; Ferrando, S.; Malaspina, N.; Villa, I. M.; Frezzotti, M. L.

    2015-12-01

    Mantle xenoliths from the island of El Hierro, the youngest of the Canary Islands, have been studied to characterize fluxes of carbon in the lithosphere of an OIB volcanism region. Fifteen xenoliths (4-10 cm in diameter) were collected in a rift lava flow (15-41 ka) at a new xenolith locality in El Julan cliff (S-SW of the island). Peridotites consist of protogranular to porphyroblastic spinel harzburgites, lherzolites, and subordinate dunites. One spinel clinopyroxenite, and one olivine-websterite were also analyzed. Ultramafic xenoliths were classified as HEXO (harzburgite and dunite with exsolved orthopyroxene), HLCO (harzburgite and lherzolite containing orthopyroxene without visible exsolution lamellae), and HTR (transitional harzburgite with exsolved orthopyroxene porphyroclasts, and poikilitic orthopyroxene) following [1]. While HLCO and HTR peridotites contain mostly CO2 fluid inclusions, HEXO peridotites preserve an early association of melt/fluid inclusions containing dominantly carbonate/sulfate/silicate glass, evolving to carbonate/sulfate/phosphate/spinel aggregates, with exsolved CO2 (± carbonates, anhydrite and H2O). Chemical and Raman analyses identify dolomite, Mg-calcite, anhydrite, sulfohalite [Na6(SO4)2FCl] (± other anhydrous and hydrous alkali-sulfates), apatite, and Cr-spinel in the inclusions. Sulfides are noticeably absent. The microstructure and chemical composition of the metasomatic fluids indicate that the peridotites were infiltrated by a carbonate-sulfate-silicate melt/fluid enriched in CO2, H2O, and P. A mantle origin for this fluid is supported by high densities of CO2inclusions (> 1g/cm3), determined by Raman microspectroscopy and cross-checked by microthermometry. Consequently, El Julan peridotites provide the first evidence for liberating oxidized C and S fluxes from the Earth lithosphere in an OIB source region, and suggest that oxidation of sulfide to sulfate can occur during small-degree partial melting of the upper mantle

  11. Anodic solution of alkali earth alloys in potassium chloride-sodium chloride melts

    International Nuclear Information System (INIS)

    Volkovich, A.V.

    1997-01-01

    Generalized results of studying the process of anodic dissolution of alkaline-earth metal alloys with zinc, aluminium and copper in the melts of KCl-NaCl equimolar mixture containing alkaline-earth metal chlorides, are presented. It is shown that during dissolution of both pure liquid metals and their alloys there is no electrode polarization in the range of the current densities lower or comparable in their values to corrosion current

  12. Spectral properties of porphyrins in the systems with layered silicates

    International Nuclear Information System (INIS)

    Ceklovsky, A.

    2009-03-01

    This work is focused on investigation of hybrid materials based on layered silicates, representing host inorganic component, and porphyrin dyes as organic guest. Aqueous colloidal dispersions, as well as thin solid films of layered silicate/porphyrin systems were studied. Modification of photophysical properties, such as absorption and fluorescence of molecules, adsorbed or incorporated in layered silicate hosts, were studied mainly to spread the knowledge about the environments suitable for incorporating aromatic compounds, providing photoactive properties of potential technological interest. TMPyP cations interact with the surfaces of layered silicates via electrostatic interactions. The extent of dye adsorption on colloidal particles of the silicates is influenced by the CEC values and swelling ability of silicates. Interaction of porphyrins with layered silicate hosts leads to significant changes of dye spectral properties. One of the key parameters that has a crucial impact on this interaction is the layer charge of silicate template. Other factors influence the resulting spectral properties of hybrid systems, such as the method of hybrid material preparation, the material's type (colloid, film), and the modification of the silicate host. Molecular orientation studies using linearly-polarized spectroscopies in VIS and IR regions revealed that TMPyP molecules were oriented in almost parallel fashion with respect to the silicate surface plane. Slightly higher values of the orientation angle of TMPyP transition moment were observed for the TMPyP/FHT system. Thus, flattening of the guest TMPyP molecules is the next important factor (mainly in the systems with lower layer charge), influencing its spectral properties upon the interaction with layered silicates. Fluorescence was effectively quenched in the systems based on solid films prepared from the high concentration of the dye (10-3 mol.dm-3). The quenching is most probably related to the structure of the

  13. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  14. The partitioning of sulfur between multicomponent aqueous fluids and felsic melts

    Science.gov (United States)

    Binder, Bernd; Wenzel, Thomas; Keppler, Hans

    2018-02-01

    Sulfur partitioning between melt and fluid phase largely controls the environmental impact of volcanic eruptions. Fluid/melt partitioning data also provide the physical basis for interpreting changes in volcanic gas compositions that are used in eruption forecasts. To better constrain some variables that control the behavior of sulfur in felsic systems, in particular the interaction between different volatiles, we studied the partitioning of sulfur between aqueous fluids and haplogranitic melts at 200 MPa and 750-850 °C as a function of oxygen fugacity (Ni-NiO or Re-ReO2 buffer), melt composition (Al/(Na + K) ratio), and fluid composition (NaCl and CO2 content). The data confirm a first-order influence of oxygen fugacity on the partitioning of sulfur. Under "reducing conditions" (Ni-NiO buffer), D fluid/melt is nearly one order of magnitude larger (323 ± 14 for a metaluminous melt) than under "oxidizing conditions" (Re-ReO2 buffer; 74 ± 5 for a metaluminous melt). This effect is likely related to a major change in sulfur speciation in both melt and fluid. Raman spectra of the quenched fluids show the presence of H2S and HS- under reducing conditions and of SO4 2- and HSO4 - under oxidizing conditions, while SO2 is undetectable. The latter observation suggests that already at the Re-ReO2 buffer, sulfur in the fluid is almost completely in the S6+ state and, therefore, more oxidized than expected according to current models. CO2 in the fluid (up to x CO2 = 0.3) has no effect on the fluid/melt partitioning of sulfur, neither under oxidizing nor under reducing conditions. However, the effect of NaCl depends on redox state. While at oxidizing conditions, D fluid/melt is independent of x NaCl, the fluid/melt partition coefficient strongly decreases with NaCl content under reducing conditions, probably due to a change from H2S to NaSH as dominant sulfur species in the fluid. A decrease of D fluid/melt with alkali content in the melt is observed over the entire

  15. Experimental comparison of manufacturing techniques of toughened and nanoreinforced polyamides

    Science.gov (United States)

    Siengchin, S.; Bergmann, C.; Dangtungee, R.

    2011-11-01

    Composites consisting of polyamide-6 (PA-6), nitrile rubber (NBR), and sodium fluorohectorite (FH) or alumina silicate (Sungloss; SG) were produced by different techniques with latex precompounding. Their tensile and thermomechanical properties were determined by using tensile tests and a dynamic-mechanical analysis, performed at various temperatures. The PA-6/NBR composite systems produced by the direct melt compounding outperformed those obtained by using the masterbatch technique with respect to the strength and ductility, but the latter ones had a higher storage modulus.

  16. Synthesis of non-siliceous mesoporous oxides.

    Science.gov (United States)

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  17. Study of thermophysical and thermohydraulic properties of sodium for fast sodium cooled reactors

    International Nuclear Information System (INIS)

    Vega R, A. K.; Espinosa P, G.; Gomez T, A. M.

    2016-09-01

    The importance of liquid sodium lies in its use as a coolant for fast reactors, but why should liquid metal be used as a coolant instead of water? Water is difficult to use as a coolant for a fast nuclear reactor because its acts as a neutron moderator, that is, stop the fast neutrons and converts them to thermal neutrons. Nuclear reactors such as the Pressurized Water Reactor or the Boiling Water Reactor are thermal reactors, which mean they need thermal neutrons for their operation. However, is necessary for fast reactors to conserve as much fast neutrons, so that the liquid metal coolants that do have this capability are implemented. Sodium does not need to be pressurized, its low melting point and its high boiling point, higher than the operating temperature of the reactor, make it an adequate coolant, also has a high thermal conductivity, which is necessary to transfer thermal energy and its viscosity is close to that of the water, which indicates that is an easily transportable liquid and does not corrode the steel parts of the reactor. This paper presents a brief state of the art of the rapid nuclear reactors that operated and currently operate, as well as projects in the door in some countries; types of nuclear reactors which are cooled by liquid sodium and their operation; the mathematical models for obtaining the properties of liquid sodium in a range of 393 to 1673 Kelvin degrees and a pressure atmosphere. Finally a program is presented in FORTRAN named Thermo-Sodium for the calculation of the properties, which requires as input data the Kelvin temperature in which the liquid sodium is found and provides at the user the thermo-physical and thermo-hydraulic properties for that data temperature. Additional to this the user is asked the Reynolds number and the hydraulic diameter in case of knowing them, and in this way the program will provide the value of the convective coefficient and that of the dimensionless numbers: Nusselt, Prandtl and Peclet. (Author)

  18. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  19. Effect of layered silicate content on the morphology and thermal properties of Poly(vinyl alcohol) films; Efeito do teor de silicato em camadas na morfologia e propriedades termicas de filmes de poli(alcool vinilico)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jessica R.M.B. da; Santos, Barbara F.F. dos; Leite, Itamara F., E-mail: jraquell@homail.com [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Tecnologia. Departamento de Engenharia de Materiais

    2015-07-01

    This study aims to evaluate the effect of layered silicate content on the morphology and thermal properties of PVA films. The PVA/layered silicate (AN) films were prepared by intercalation solution, using 1 to 2% of bentonite with respect to the PVA total weight. Then the films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). Results of the FTIR revealed interaction between the functional groups of the PVA and the layered silicate. The XRD analysis showed that nanocomposites with intercalated and partially exfoliated morphology were obtained. The results of TG showed that the nanocomposite PVA/2%AN showed higher thermal stability compared to PVA/1%AN. The DSC results showed that the addition of AN to the PVA did not affect crystallization rate, as well as promoted a reduction in glass transition temperature and melting of the PVA. (author)

  20. Evaluation of molten lead mixing in sodium coolant by diffusion for application to PAHR

    International Nuclear Information System (INIS)

    Chawla, T.C.; Pedersen, D.R.; Leaf, G.; Minkowycz, W.J.

    1983-01-01

    In post-accident heat removal (PAHR) applications the use of a lead slab is being considered for protecting a porous bed of steel shots in ex-vessel cavity from direct impingement of molten steel or fuel upon vessel failure following a hypothetical core dissembly accident in an LMFBR. The porous bed is provided to increase coolability of the fuel debris by the sodium coolant. The objectives of the present study are (1) to determine melting rates of lead slabs of various thicknesses in contact with sodium coolant and (2) to evaluate the extent of penetration and mixing rates of molten lead into sodium coolant by molecular diffusion alone

  1. Theoretical Prediction of Melting Relations in the Deep Mantle: the Phase Diagram Approach

    Science.gov (United States)

    Belmonte, D.; Ottonello, G. A.; Vetuschi Zuccolini, M.; Attene, M.

    2016-12-01

    Despite the outstanding progress in computer technology and experimental facilities, understanding melting phase relations in the deep mantle is still an open challenge. In this work a novel computational scheme to predict melting relations at HP-HT by a combination of first principles DFT calculations, polymer chemistry and equilibrium thermodynamics is presented and discussed. The adopted theoretical framework is physically-consistent and allows to compute multi-component phase diagrams relevant to Earth's deep interior in a broad range of P-T conditions by a convex-hull algorithm for Gibbs free energy minimisation purposely developed for high-rank simplexes. The calculated phase diagrams are in turn used as a source of information to gain new insights on the P-T-X evolution of magmas in the deep mantle, providing some thermodynamic constraints to both present-day and early Earth melting processes. High-pressure melting curves of mantle silicates are also obtained as by-product of phase diagram calculation. Application of the above method to the MgO-Al2O3-SiO2 (MAS) ternary system highlights as pressure effects are not only able to change the nature of melting of some minerals (like olivine and pyroxene) from eutectic to peritectic (and vice versa), but also simplify melting relations by drastically reducing the number of phases with a primary phase field at HP-HT conditions. It turns out that mineral phases like Majorite-Pyrope garnet and Anhydrous Phase B (Mg14Si5O24), which are often disregarded in modelling melting processes of mantle assemblages, are stable phases at solidus or liquidus conditions in a P-T range compatible with the mantle transition zone (i.e. P = 16 - 23 GPa and T = 2200 - 2700 °C) when their thermodynamic and thermophysical properties are properly assessed. Financial support to the Senior Author (D.B.) during his stay as Invited Scientist at the Institut de Physique du Globe de Paris (IPGP, Paris) is warmly acknowledged.

  2. Ab Initio Predictions of K, He and Ar Partitioning Between Silicate Melt and Liquid Iron Under High Pressure

    Science.gov (United States)

    Xiong, Z.; Tsuchiya, T.

    2017-12-01

    Element partitioning is an important property in recording geochemical processes during the core-mantle differentiation. However, experimental measurements of element partitioning coefficients under extreme temperature and pressure condition are still challenging. Theoretical modeling is also not easy, because it requires estimation of high temperature Gibbs free energy, which is not directly accessible by the standard molecular dynamics method. We recently developed an original technique to simulate Gibbs free energy based on the thermodynamics integration method[1]. We apply it to element partitioning of geochemical intriguing trace elements between molten silicate and liquid iron such as potassium, helium and argon as starting examples. Radiogenic potassium in the core can provide energy for Earth's magnetic field, convection in the mantle and outer core[2]. However, its partitioning behavior between silicate and iron remains unclear under high pressure[3,4]. Our calculations suggest that a clear positive temperature dependence of the partitioning coefficient but an insignificant pressure effect. Unlike sulfur and silicon, oxygen dissolved in the metals considerably enhances potassium solubility. Calculated electronic structures reveal alkali-metallic feature of potassium in liquid iron, favoring oxygen with strong electron affinity. Our results suggest that 40K could serve as a potential radiogenic heat source in the outer core if oxygen is the major light element therein.­­ We now further extend our technique to partitioning behaviors of other elements, helium and argon, to get insides into the `helium paradox' and `missing argon' problems. References [1] T. Taniuchi, and T. Tsuchiya, Phys.Rev.B. In press [2] B.A. Buffett, H.E. Huppert, J.R. Lister, and A.W. Woods, Geophys.Res.Lett. 29 (1996) 7989-8006. [3] V.R. Murthy, W. Westrenen, and Y. Fei, Nature. 426 (2003) 163-165. [4] A. Corgne, S.Keshav, Y. Fei, and W.F. McDonough, Earth.Planet.Sci.Lett. 256 (2007

  3. Metal-silicate Partitioning and Its Role in Core Formation and Composition on Super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Laura; Petaev, M. I.; Sasselov, Dimitar D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Jacobsen, Stein B.; Remo, John L., E-mail: lschaefer@asu.edu [Harvard University, Department of Earth and Planetary Sciences, 20 Oxford St., Cambridge, MA 02138 (United States)

    2017-02-01

    We use a thermodynamic framework for silicate-metal partitioning to determine the possible compositions of metallic cores on super-Earths. We compare results using literature values of the partition coefficients of Si and Ni, as well as new partition coefficients calculated using results from laser shock-induced melting of powdered metal-dunite targets at pressures up to 276 GPa, which approaches those found within the deep mantles of super-Earths. We find that larger planets may have little to no light elements in their cores because the Si partition coefficient decreases at high pressures. The planet mass at which this occurs will depend on the metal-silicate equilibration depth. We also extrapolate the equations of state (EOS) of FeO and FeSi alloys to high pressures, and present mass–radius diagrams using self-consistent planet compositions assuming equilibrated mantles and cores. We confirm the results of previous studies that the distribution of elements between mantle and core will not be detectable from mass and radius measurements alone. While observations may be insensitive to interior structure, further modeling is sensitive to compositionally dependent properties, such as mantle viscosity and core freeze-out properties. We therefore emphasize the need for additional high pressure measurements of partitioning as well as EOSs, and highlight the utility of the Sandia Z-facilities for this type of work.

  4. Effect of oxygen on the complexing and electrochemical processes in the NaCl-KCl-K2TaF7 melt

    International Nuclear Information System (INIS)

    Polyakova, L.P.; Kononova, Z.A.; Kremenetskij, V.G.; Polyakov, E.K.

    1997-01-01

    Using the method of linear voltametry oxygen influence on electrochemical behaviour of tantalum during NaCl-KCl-K 2 TaF 7 melt titration with sodium oxide is studied. It is shown that in NaCl-KCl-K 3 TaOF 6 and NaCl-KCl-K 2 TaF 7 -Na 2 O melts (at molar ratio O/Ta = 1 ) tantalum reduction proceeds from oxyhalide complex of TaOClF 5 -3 composition. On further titration with sodium oxide (1 5 3- complexes, but their concentration is decreased at the cost of formation of insoluble compound K 0,4 TaO 2,4 F 0,6 . When O/Ta ≥ 2,4 tantalum concentration in electrolyte is decreased up to zero and peak of tantalum reduction on voltamogram is not recorded. (author)

  5. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Directory of Open Access Journals (Sweden)

    Massimiliano Tirone

    2017-10-01

    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  6. Late metal-silicate separation on the IAB parent asteroid: Constraints from combined W and Pt isotopes and thermal modelling

    Science.gov (United States)

    Hunt, Alison C.; Cook, David L.; Lichtenberg, Tim; Reger, Philip M.; Ek, Mattias; Golabek, Gregor J.; Schönbächler, Maria

    2018-01-01

    The short-lived 182Hf-182W decay system is a powerful chronometer for constraining the timing of metal-silicate separation and core formation in planetesimals and planets. Neutron capture effects on W isotopes, however, significantly hamper the application of this tool. In order to correct for neutron capture effects, Pt isotopes have emerged as a reliable in-situ neutron dosimeter. This study applies this method to IAB iron meteorites, in order to constrain the timing of metal segregation on the IAB parent body. The ε182W values obtained for the IAB iron meteorites range from -3.61 ± 0.10 to -2.73 ± 0.09. Correlating εiPt with ε182W data yields a pre-neutron capture ε182W of -2.90 ± 0.06. This corresponds to a metal-silicate separation age of 6.0 ± 0.8 Ma after CAI for the IAB parent body, and is interpreted to represent a body-wide melting event. Later, between 10 and 14 Ma after CAI, an impact led to a catastrophic break-up and subsequent reassembly of the parent body. Thermal models of the interior evolution that are consistent with these estimates suggest that the IAB parent body underwent metal-silicate separation as a result of internal heating by short-lived radionuclides and accreted at around 1.4 ± 0.1 Ma after CAIs with a radius of greater than 60 km.

  7. Equilibrium chemical transformations in NaPO3 + NaCl melts

    International Nuclear Information System (INIS)

    Kovarskaya, E.N.; Rodionov, Yu.I.

    1988-01-01

    Because of the problems of the burial of solidified radioactive wastes into different geological rock formations, in particular into massives of rock-salt, the state of molten polyphosphate-chloride mixtures (taking into account the chemical character of the interaction of their components) for a prolonged period of time. The equilibrium products of the reaction in the NaPO 3 -NaCl system were studied in melts in air in the composition range of 30-70 mole % NaCl. It was shown that with increase in the NaCl content in the mixtures, the polyphosphate gradually depolymerizes to sodium tri-, di-, and monophosphates, and the composition of the equilibrium melts is dependent only on the ratio between the components in the initial molten mixtures. The time until the equilibrium is attained is shorter, the higher is the experimental temperature

  8. Determining Bond Sodium Remaining in Plenum Region of Spent Nuclear Driver Fuel

    International Nuclear Information System (INIS)

    Vaden, D.; Li, S.X.

    2008-01-01

    The Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL) treats spent nuclear fuel using an electro-chemical process that separates the uranium from the fission products, sodium thermal bond, and cladding materials (REF 1). Upon immersion into the ER electrolyte, the sodium used to thermally bond the fuel to the clad jacket chemically reacts with the UCl3 in the electrolyte producing NaCl and uranium metal. The uranium in the spent fuel is separated from the cladding and fission products by taking advantage of the electro-chemical potential differences between uranium and the other fuel components. Assuming all the sodium in the thermal bond is converted to NaCl in the ER, the difference between the cumulative bond sodium mass in the fuel elements and the cumulative sodium mass found in the driver ER electrolyte inventory provides an upper mass limit for the sodium that migrated to the upper gas region, or plenum section, of the fuel element during irradiation in the reactor. The plenums are to be processed as metal waste via melting and metal consolidation operations. However, depending on the amount of sodium in the plenums, additional processing may be required to remove the sodium before metal waste processing

  9. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia)

    Science.gov (United States)

    Tommasi, Andréa; Vauchez, Alain; Ionov, Dmitri A.

    2008-07-01

    Partial melting and reactive melt transport may change the composition, microstructures, and physical properties of mantle rocks. Here we explore the relations between deformation and reactive melt transport through detailed microstructural analysis and crystallographic orientation measurements in spinel peridotite xenoliths that sample the shallow lithospheric mantle beneath the southeastern rim of the Siberian craton. These xenoliths have coarse-grained, annealed microstructures and show petrographic and chemical evidence for variable degrees of reaction with silicate melts and fluids, notably Fe-enrichment and crystallization of metasomatic clinopyroxene (cpx). Olivine crystal preferred orientations (CPO) range from strong to weak. [010]-fiber patterns, characterized by a point concentration of [010] normal to the foliation and by dispersion of [100] in the foliation plane with a weak maximum parallel to the lineation, predominate relative to the [100]-fiber patterns usually observed in lithospheric mantle xenoliths and peridotite massifs. Variations in olivine CPO patterns or intensity are not correlated with modal and chemical compositions. This, together with the analysis of microstructures, suggests that reactive melt percolation postdated both deformation and static recrystallization. Preferential crystallization of metasomatic cpx along (010) olivine grain boundaries points to an influence of the preexisting deformation fabrics on melt transport, with higher permeability along the foliation. Similarity between orthopyroxene (opx) and cpx CPO suggests that cpx orientations may be inherited from those of opx during melt-rock reaction. As observed in previous studies, reactive melt transport does not weaken olivine CPO and seismic anisotropy in the upper mantle, except in melt accumulation domains. In contrast, recovery and selective grain growth during static recrystallization may lead to development of [010]-fiber olivine CPO and, if foliations are

  10. First investigations on the quaternary system Na2O-K2O-CaO-SiO2: synthesis and crystal structure of the mixed alkali calcium silicate K1.08Na0.92Ca6Si4O15

    Science.gov (United States)

    Kahlenberg, Volker; Mayerl, Michael Jean-Philippe; Schmidmair, Daniela; Krüger, Hannes; Tribus, Martina

    2018-04-01

    In the course of an exploratory study on the quaternary system Na2O-K2O-CaO-SiO2 single crystals of the first anhydrous sodium potassium calcium silicate have been obtained from slow cooling of a melt in the range between 1250 and 1050 °C. Electron probe micro analysis suggested the following idealized molar ratios of the oxides for the novel compound: K2O:Na2O:CaO:SiO2 = 1:1:12:8 (or KNaCa6Si4O15). Single-crystal diffraction measurements on a crystal with chemical composition K1.08Na0.92Ca6Si4O15 resulted in the following basic crystallographic data: monoclinic symmetry, space group P 21/ c, a = 8.9618(9) Å, b = 7.3594(6) Å, c = 11.2453(11) Å, β= 107.54(1)°, V = 707.2(1) Å3, Z = 2. Structure solution was performed using direct methods. The final least-squares refinement converged at a residual of R(|F|) = 0.0346 for 1288 independent reflections and 125 parameters. From a structural point of view, K1.08Na0.92Ca6Si4O15 belongs to the group of mixed-anion silicates containing [Si2O7]- and [SiO4]-units in the ratio 1:2. The mono- and divalent cations occupy a total of four crystallographically independent positions located in voids between the tetrahedra. Three of these sites are exclusively occupied by calcium. The fourth site is occupied by 54(1)% K and 46%(1) Na, respectively. Alternatively, the structure can be described as a heteropolyhedral framework based on corner-sharing silicate tetrahedra and [CaO6]-octahedra. The network can build up from kröhnkite-like [Ca(SiO4)2O2]-chains running along [001]. A detailed comparison with other A2B6Si4O15-compounds including topological and group-theoretical aspects is presented.

  11. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  12. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  13. Effect of MnO2 doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash

    Directory of Open Access Journals (Sweden)

    Ali Jabbar Abed Al-Nidawi

    Full Text Available In this study, an investigation was conducted to explore and synthesize silicate (SiO2 glass from waste rice husk ash (RHA. MnO2 doped zinc silicate glasses with chemical formula [(ZnO55 + (WRHA45]100-X[MnO2]X, (where X = 0, 1, 3 and 5 wt% was prepared by conventional melt quenching technique. The glass samples were characterized using energy dispersive X-ray fluorescence (EDXRF, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, Fourier transform infrared (FTIR spectroscopy, and ultraviolet–visible (UV–Vis spectroscopy. The results revealed that by increasing the concentration of MnO2, the color of glass samples changed from colorless to brown and the density of glass increased. XRD results showed that a broad halo peak which centered on the low angle (2θ = 30° indicated the amorphous nature of the glass. FTIR results showed basic structural units of Si-O-Si in non-bridging oxygen, Si-O and Mn-O in the glass network. FESEM result showed a decreasing porosity with an increasing MnO2 content, which was attributed to the Mn ions resort to occupy interstitial sites inside the pores of glass. Besides, the absorption intensity of glass increased and the band gap value decreased with increasing the MnO2 percentage. In this synthesized glass system of MnO2 doped zinc silicate glasses using RHA as a source of silica, the MnO2 affect most of the properties of the glass system under investigation. Keywords: Rice husk, Manganese dioxide, Glass, Zinc silicate, Sintering, Optical properties

  14. Beryllium electrodeposition on aluminium cathode from chloride melts

    International Nuclear Information System (INIS)

    Nichkov, I.F.; Novikov, E.A.; Serebryakov, G.A.; Kanashin, Yu.P.; Sardyko, G.N.

    1980-01-01

    Cathodic processes during beryllium deposition on liquid and solid aluminium cathodes are investigated. Mixture of sodium, potassium and beryllium chloride melts served as an lectrolyte. Beryllium ion discharge at the expense of alloy formation takes place at more positive potentials than on an indifferent cathode at low current densities ( in the case of liquid aluminium cathode). Metallographic analysis and measurements of microhardness have shown, that the cathodic product includes two phases: beryllium solid solution in aluminium and metallic beryllium. It is concluded, that aluminium-beryllium alloys with high cathodic yield by current can be obtained by the electrolytic method

  15. Tin isotope fractionation during magmatic processes and the isotope composition of the bulk silicate Earth

    Science.gov (United States)

    Wang, Xueying; Amet, Quentin; Fitoussi, Caroline; Bourdon, Bernard

    2018-05-01

    Tin is a moderately volatile element whose isotope composition can be used to investigate Earth and planet differentiation and the early history of the Solar System. Although the Sn stable isotope composition of several geological and archaeological samples has been reported, there is currently scarce information about the effect of igneous processes on Sn isotopes. In this study, high-precision Sn isotope measurements of peridotites and basalts were obtained by MC-ICP-MS with a double-spike technique. The basalt samples display small variations in δ124/116Sn ranging from -0.01 ± 0.11 to 0.27 ± 0.11‰ (2 s.d.) relative to NIST SRM 3161a standard solution, while peridotites have more dispersed and more negative δ124Sn values ranging from -1.04 ± 0.11 to -0.07 ± 0.11‰ (2 s.d.). Overall, basalts are enriched in heavy Sn isotopes relative to peridotites. In addition, δ124Sn in peridotites become more negative with increasing degrees of melt depletion. These results can be explained by different partitioning behavior of Sn4+ and Sn2+ during partial melting. Sn4+ is overall more incompatible than Sn2+ during partial melting, resulting in Sn4+-rich silicate melt and Sn2+-rich residue. As Sn4+ has been shown experimentally to be enriched in heavy isotopes relative to Sn2+, the effect of melting is to enrich residual peridotites in relatively more compatible Sn2+, which results in isotopically lighter peridotites and isotopically heavier mantle-derived melts. This picture can be disturbed partly by the effect of refertilization. Similarly, the presence of enriched components such as recycled oceanic crust or sediments could explain part of the variations in Sn isotopes in oceanic basalts. The most primitive peridotite analyzed in this study was used for estimating the Sn isotope composition of the BSE, with δ124Sn = -0.08 ± 0.11‰ (2 s.d.) relative to the Sn NIST SRM 3161a standard solution. Altogether, this suggests that Sn isotopes may be a powerful probe of

  16. Fuel Coolant Interaction Results in the Fuel Pins Melting Facility (PMF)

    International Nuclear Information System (INIS)

    Urunashi, H.; Hirabayashi, T.; Mizuta, H.

    1976-01-01

    The experimental work related to FCI at PNC has been concentrated into the molten UO 2 dropping test. After the completion of molten UO 2 drop experiments, emphasis is directed toward the FCI phenomena of the initiating conditions of the accident under the more realistic geometry. The experiments are conducted within the Pin Melt Facility (PMF) in which UO 2 pellets clad in stainless steel are melted by direct electric heating under the stagnant or flowing sodium. The primary objectives of the PMF test are to: - obtain detail experimental results (heat-input, clad temperature, sodium temperature, etc.) on the FCI under TOP and LOF conditions; - observe the movement of the fuel before and after the pin failure by the X-ray cinematography; - observe the degree of coherence of the pin failures; - accumulate the experience of the FCI experiment which is applicable to the subassembly or more larger scale; - simulate the fuel behavior of the in-pile test (GETR, CABRI). The preliminary conclusions can be drawn from the foregoing observations are as follows: - Although the fuel motion and FCI of the closed test section appeared to be different from those of the open test section, the conclusion of the effect of the inside pressure on FCI needs more experimental data. - The best heating condition of the UO 2 pellet for the FCI study with PMF is established as 40 w/cm at the steady state and 1680 J/g of UO 2 during the additional transient state. The total energy deposition of the UO 2 pellet is thus estimated in the range of 2400 J/g of UO 2 -2600 J/g of UO 2 . The analytical model of the fuel pin failure and the subsequent FCI are suggested to count the following parameters: - The fuel pin failure due to the fuel vaporization due to the rapid energy deposition; - Molten fuel, clad and sodium interaction in the fuel pin after the pin failure; - The upward flow of molten fuel with molten clad or vapor sodium, as well as the slumping of molten fuel

  17. Wind-eroded silicate as a source of hydrogen peroxide on Mars

    DEFF Research Database (Denmark)

    Bak, Ebbe Norskov; Merrison, Jonathan P.; Jensen, Svend Knak

    -sists of silicates [4] that due to wind erosion has a very fine grained texture. Based on the composition of the surface material and investigations showing that crushing of silicates can give rise to reactive oxygen species [5], we hypothesized that wind erosion of silicates can explain the reactivity of Martian...... soil. Wind-erosion of silicate could thus be one of several causes of the soil’s reactivity. As our experiments show, the globally distributed wind eroded silicate dust can lead to the production of hydrogen peroxide which might explain the reactivity of the Martian soil. The reactivity of eroded...

  18. Studies Conducted of Sodium Carbonate Contaminant Found on the Wing Leading Edge and the Nose Cap of the Space Shuttle Orbiter

    Science.gov (United States)

    Jacobson, Nathan S.; Palou, Jaime J.

    2003-01-01

    In early 2001, three of the space shuttle orbiters were found to have a sodium carbonate contaminant on the wing leading edge and nose cap. These parts are made of a reinforced carbon/carbon material protected by silicon carbide (SiC) and a glass coating. The glass coating is known as Type A and is primarily sodium silicate with particles of SiC. NASA Glenn Research Center's Environmental Durability Branch was asked to determine the chemistry of this deposit formation and assess any possible detrimental effects. At low temperatures, the reverse reaction is favorable. Previous studies of the corrosion of glass show that carbon dioxide in the presence of water does form sodium carbonate on sodium silicate glass (ref. 1). It is quite likely that a similar scenario exists for the orbiter wing leading edge. All three orbiters that formed sodium carbonate were exposed to rain. This formation of sodium carbonate was duplicated in the laboratory. The Type A glass, which coats the wing leading edge and nose cap, was made in a freestanding form and exposed to water in two separate experiments. In one set of experiments, the coating was placed in a petri dish filled with water. As the water evaporated, sodium carbonate formed. In another case, water was slowly dripped on the coating and sodium carbonate formed. The sodium carbonate was detected by chemical analysis and, in some cases, xray diffraction showed a hydrated sodium carbonate. The next step was to examine possible detrimental effects of this sodium carbonate. There are three likely scenarios for the sodium carbonate deposit: (1) it may be removed with a simple rinse, (2) it may remain and flow back into the Type A glass after heating during reentry, or (3) it may remain and flow onto unprotected SiC and/or other parts after heating during reentry. The effect of case 1 is to remove the Na2O constituent from the Type A glass, thus decreasing its effectiveness as a sealant. Even so, overall, it is probably the best

  19. The effect of sodium chloride on the dissolution of calcium silicate hydrate gels

    International Nuclear Information System (INIS)

    Hill, J.; Harris, A.W.; Manning, M.; Chambers, A.; Swanton, S.W.

    2006-01-01

    The use of cement based materials will be widespread in the long-term management of radioactive materials in the United Kingdom. One of the applications could be the Nirex reference vault backfill (NRVB) as an engineered barrier within a deep geological repository. NRVB confers alkaline conditions, which would provide a robust chemical barrier through the control of the solubility of some key radionuclides, enhanced sorption and minimised corrosion of steel containers. An understanding of the dissolution of C-S-H gels in cement under the appropriate conditions (e.g., saline groundwaters) is necessary to demonstrate the expected evolution of the chemistry over time and to provide sufficient cement to buffer the porewater conditions for the required time. A programme of experimental work has been undertaken to investigate C-S-H gel dissolution behaviour in sodium chloride solutions and the effect of calcium/silicon ratio (C/S), temperature and cation type on this behaviour. Reductions in calcium concentration and pH values were observed with samples equilibrated at 45 deg. C compared to those prepared at 25 deg. C. The effect of salt cation type on salt-concentration dependence of the dissolution of C-S-H gels was investigated by the addition of lithium or potassium chloride in place of sodium chloride for gels with a C/S of 1.0 and 1.8. With a C/S of 1.0, similar increases in dissolved calcium concentration with increasing ionic strength were recorded for the different salts. However, at a C/S of 1.8, anomalously high calcium concentrations were observed in the presence of lithium

  20. PETROLOGY AND GEOCHEMISTRY OF CALC-SILICATE SCHISTS ...

    African Journals Online (AJOL)

    DR OKONKOWO

    2012-02-29

    silicate reaction bands have higher contents of CaO and Sr and lower concentrations of K2O, Rb, Ni, and Ba relative to the calc-silicate schists; and relatively higher SiO2, TiO2, Al2O3, Fe2O3, MgO, Na2O, K2O and P2O5 and lower ...

  1. The application of silicon and silicates in dentistry: a review.

    Science.gov (United States)

    Lührs, A-K; Geurtsen, Werner

    2009-01-01

    Silicates and silicate-based compounds are frequently used materials in dentistry. One of their major applications is their use as fillers in different dental filling materials such as glass-ionomer cements, compomers, composites, and adhesive systems. In these materials, the fillers react with acids during the setting process or they improve the mechanical properties by increasing physical resistance, thermal expansion coefficient and radiopacity in acrylic filling materials. They also reduce polymerization shrinkage, and increase esthetics as well as handling properties. Furthermore, silicates are used for the tribochemical silication of different surfaces such as ceramics or alloys. The silicate layer formed in this process is the chemical basis for silanes that form a bond between this layer and the organic composite matrix. It also provides a micromechanical bond between the surface of the material and the composite matrix. Silicates are also a component of dental ceramics, which are frequently used in dentistry, for instance for veneers, inlays, and onlays, for denture teeth, and for full-ceramic crowns or as crown veneering materials.

  2. Surface charges and Np(V) sorption on amorphous Al- and Fe- silicates

    International Nuclear Information System (INIS)

    Del Nero, M.; Assada, A.; Barillon, R.; Duplatre, G.; Made, B.

    2005-01-01

    Full text of publication follows: Sorption onto Si-rich alteration layers of crystalline minerals and nuclear glasses, and onto amorphous secondary silicates of rocks and soils, are expected to retard the migration of actinides in the near- and far-field of HLW repositories. We present experimental and modeling studies on the effects of silicate structure and bulk chemistry, and of solution chemistry, on charges and adsorption of neptunyl ions at surfaces of synthetic, amorphous or poorly ordered silica, Al-silicates and Fe-silicates. The Al-silicates display similar pH-dependent surface charges characterized by predominant Si-O - Si sites, and similar surface affinities for neptunyl ions, irrespective to their Si/Al molar ratio (varying from 10 to 4.3). Such experimental features are explained by incorporation of Al atoms in tetrahedral position in the silicate lattice, leading to only trace amounts of high-affinity Al-OH surface groups due to octahedral Al. By contrast, the structure of the Fe-silicates ensures the occurrence of high-affinity Fe-OH surface groups, whose concentration is shown by proton adsorption measurements to increase with decreasing of the silicate Si/Fe molar ratio (from 10 to 2.3). Nevertheless, experimental data of the adsorption of neptunyl and electrolyte ions show unexpectedly weak effect of the Si/Fe ratio, and suggest predominant Si-OH surface groups. A possible explanation is that aqueous silicate anions, released by dissolution, adsorb at OH Fe - surface groups and / or precipitate as silica gel coatings, because experimental solutions were found at near-equilibrium with respect to amorphous silica. Therefore, the environmental sorption of Np(V) onto Si-rich, amorphous or poorly ordered Al-silicates may primarily depend on pH and silicate specific surface areas, given the low overall chemical affinity of such phases for dissolved metals. By contrast, the sorption of Np(V) on natural, amorphous or poorly ordered Fe-silicates may be a

  3. Effects of fluoride and other halogen ions on the external stress corrosion cracking of Type 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Whorlow, K.M.; Hutto, F.B. Jr.

    1997-07-01

    The drip procedure from the Standard Test Method for Evaluating the Influence of Thermal Insulation on External Stress Corrosion Cracking Tendency of Austenitic Stainless Steel (ASTM C 692-95a) was used to research the effect of halogens and inhibitors on the External Stress Corrosion Cracking (ESCC) of Type 304 stainless steel as it applies to Nuclear Regulatory Commission Regulatory Guide 1.36, Nonmetallic Thermal Insulation for Austenitic Stainless Steel. The solutions used in this research were prepared using pure chemical reagents to simulate the halogens and inhibitors found in insulation extraction solutions. The results indicated that sodium silicate compounds that were higher in sodium were more effective for preventing chloride-induced ESCC in Type 304 austenitic stainless steel. Potassium silicate (all-silicate inhibitor) was not as effective as sodium silicate. Limited testing with sodium hydroxide (all-sodium inhibitor) indicated that it may be effective as an inhibitor. Fluoride, bromide, and iodide caused minimal ESCC which could be effectively inhibited by sodium silicate. The addition of fluoride to the chloride/sodium silicate systems at the threshold of ESCC appeared to have no synergistic effect on ESCC. The mass ratio of sodium + silicate (mg/kg) to chloride (mg/kg) at the lower end of the NRC RG 1.36 Acceptability Curve was not sufficient to prevent ESCC using the methods of this research

  4. Emerging melt quality control solution technologies for aluminium melt

    Directory of Open Access Journals (Sweden)

    Arturo Pascual, Jr

    2009-11-01

    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  5. Properties of Tricalcium Silicate Sealers.

    Science.gov (United States)

    Khalil, Issam; Naaman, Alfred; Camilleri, Josette

    2016-10-01

    Sealers based on tricalcium silicate cement aim at an interaction of the sealer with the root canal wall, alkalinity with potential antimicrobial activity, and the ability to set in a wet field. The aim of this study was to characterize and investigate the properties of a new tricalcium silicate-based sealer and verify its compliance to ISO 6876 (2012). A new tricalcium silicate-based sealer (Bio MM; St Joseph University, Beirut, Lebanon), BioRoot RCS (Septodont, St Maure de Fosses, France), and AH Plus (Dentsply, DeTrey, Konstanz, Germany) were investigated. Characterization using scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis was performed. Furthermore, sealer setting time, flow, film thickness, and radiopacity were performed following ISO specifications. pH and ion leaching in solution were assessed by pH analysis and inductively coupled plasma. Bio MM and BioRoot RCS were both composed of tricalcium silicate and tantalum oxide in Bio MM and zirconium oxide in BioRoot RCS. In addition, the Bio MM contained calcium carbonate and a phosphate phase. The inorganic components of AH Plus were calcium tungstate and zirconium oxide. AH Plus complied with the ISO norms for both flow and film thickness. BioRoot RCS and Bio MM exhibited a lower flow and a higher film thickness than that specified for sealer cements in ISO 6876. All test sealers exhibited adequate radiopacity. Bio MM interacted with physiologic solution, thus showing potential for bioactivity. Sealer properties were acceptable and comparable with other sealers available clinically. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Sorption of caesium and strontium onto calcium silicate hydrate in saline groundwater

    International Nuclear Information System (INIS)

    Sugiyama, D.; Fujita, T.

    2005-01-01

    Full text of publication follows: In the concept for radioactive waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. The sorption of radionuclides onto cement materials, which controls the aqueous concentrations of elements in the pore-water, is a very important parameter when considering the release of radionuclides from the near field of a cementitious radioactive waste repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium (10 -5 ∼ 10 -2 mol dm -3 ) and sodium (10 -4 ∼ 10 -1 mol dm -3 ) onto Calcium Silicate Hydrate (C-S-H gel, Ca/Si 0.65 ∼ 1.2) at a liquid:solid ratio of 100:1, to support the assumption. In addition, the competitive sorption between caesium or strontium, and sodium is studied by sorption measurements using a range of sodium chloride concentration to simulate different ionic strengths in saline groundwater. The initial and equilibrated aqueous compositions were measured in the sorption experiments and it was found that caesium, strontium and sodium were sorbed by substitution for Ca in C-S-H phases by examining the mass balance. Based on the experimental results, we propose a modelling approach in which the ion-exchange model is employed and the presence of some calcium sites with different ion-exchange log K values in C-S-H is assumed by considering the composition and the structure of C-S-H. The modelling calculation results predict the measured Rd values well and also describe the competition of sorption of caesium or strontium, and sodium in the experiments. The log K values for sorption of each cation element decreased as Ca/Si ratio of C-S-H gel increased. This agrees with the trend that C-S-H gel is negatively charged at low

  7. Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: Effect of organoclay on thermal, mechanical and flammability properties

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Lakshmi; Mohanty, Smita [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India); Nayak, Sanjay K., E-mail: drsknayak@gmail.com [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India); Ali, Anwar [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India)

    2011-05-15

    Research highlights: {yields} The present work deals with preparation and characterization of poly(methyl methacrylate) nanocomposites via melt intercalation technique. {yields} The effect of various modified nanoclays on the properties of base matrix has been investigated. {yields} It was observed that compatibilization using maleic anhydride improved the performance characteristics of PMMA/layered silicate nanocomposites. - Abstract: The PMMA nanocomposites were prepared by melt processing method. The influence of organoclay loading on extent of intercalation, thermal, mechanical and flammability properties of poly(methyl methacrylate) (PMMA)-clay nanocomposites were studied. Three different organoclay modifiers with varying hydrophobicity (single tallow vs. ditallow) were investigated. The nanocomposites were characterized by using wide angle X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. The intercalation of polymer chain within the silicate galleries was confirmed by WAXD and TEM. Mechanical properties such as tensile modulus (E), tensile strength, percentage elongation at break and impact strength were determined for nanocomposites at various clay loadings. Overall thermal stability of nanocomposites increased by 16-17 deg. C. The enhancement in T{sub g} of nanocomposite is merely by 2-4 deg. C. The incorporation of maleic anhydride as compatibilizer further enhanced all the properties indicating improved interface between PMMA and clay. The flammability characteristics were studied by determining the rate of burning and LOI.

  8. Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: Effect of organoclay on thermal, mechanical and flammability properties

    International Nuclear Information System (INIS)

    Unnikrishnan, Lakshmi; Mohanty, Smita; Nayak, Sanjay K.; Ali, Anwar

    2011-01-01

    Research highlights: → The present work deals with preparation and characterization of poly(methyl methacrylate) nanocomposites via melt intercalation technique. → The effect of various modified nanoclays on the properties of base matrix has been investigated. → It was observed that compatibilization using maleic anhydride improved the performance characteristics of PMMA/layered silicate nanocomposites. - Abstract: The PMMA nanocomposites were prepared by melt processing method. The influence of organoclay loading on extent of intercalation, thermal, mechanical and flammability properties of poly(methyl methacrylate) (PMMA)-clay nanocomposites were studied. Three different organoclay modifiers with varying hydrophobicity (single tallow vs. ditallow) were investigated. The nanocomposites were characterized by using wide angle X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. The intercalation of polymer chain within the silicate galleries was confirmed by WAXD and TEM. Mechanical properties such as tensile modulus (E), tensile strength, percentage elongation at break and impact strength were determined for nanocomposites at various clay loadings. Overall thermal stability of nanocomposites increased by 16-17 deg. C. The enhancement in T g of nanocomposite is merely by 2-4 deg. C. The incorporation of maleic anhydride as compatibilizer further enhanced all the properties indicating improved interface between PMMA and clay. The flammability characteristics were studied by determining the rate of burning and LOI.

  9. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber.

    Science.gov (United States)

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-12-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ(57)Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ(57)Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ(57)Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted.

  10. Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery.

    Science.gov (United States)

    Adelli, Goutham R; Balguri, Sai Prachetan; Bhagav, Prakash; Raman, Vijayasankar; Majumdar, Soumyajit

    2017-11-01

    The goal of the present study is to develop polymeric matrix films loaded with a combination of free diclofenac sodium (DFS free ) and DFS:Ion exchange resin complexes (DFS:IR) for immediate and sustained release profiles, respectively. Effect of ratio of DFS and IR on the DFS:IR complexation efficiency was studied using batch processing. DFS:IR complex, DFS free , or a combination of DFS free  +   DFS:IR loaded matrix films were prepared by melt-cast technology. DFS content was 20% w/w in these matrix films. In vitro transcorneal permeability from the film formulations were compared against DFS solution, using a side-by-side diffusion apparatus, over a 6 h period. Ocular disposition of DFS from the solution, films and corresponding suspensions were evaluated in conscious New Zealand albino rabbits, 4 h and 8 h post-topical administration. All in vivo studies were carried out as per the University of Mississippi IACUC approved protocol. Complexation efficiency of DFS:IR was found to be 99% with a 1:1 ratio of DFS:IR. DFS release from DFS:IR suspension and the film were best-fit to a Higuchi model. In vitro transcorneal flux with the DFS free  +   DFS:IR (1:1) (1 + 1) was twice that of only DFS:IR (1:1) film. In vivo, DFS solution and DFS:IR (1:1) suspension formulations were not able to maintain therapeutic DFS levels in the aqueous humor (AH). Both DFS free and DFS free  +   DFS:IR (1:1) (3 + 1) loaded matrix films were able to achieve and maintain high DFS concentrations in the AH, but elimination of DFS from the ocular tissues was much faster with the DFS free formulation. DFS free  +   DFS:IR combination loaded matrix films were able to deliver and maintain therapeutic DFS concentrations in the anterior ocular chamber for up to 8 h. Thus, free drug/IR complex loaded matrix films could be a potential topical ocular delivery platform for achieving immediate and sustained release characteristics.

  11. Kinetics and mechanisms of iron redox reactions in silicate melts: The effects of temperature and alkali cations

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V.; Pinet, O. [CEA VALRHO, SCDV/LEBV, F-30207 Bagnols Sur Ceze, (France); Magnien, V.; Neuville, D. R.; Roux, J.; Richet, P. [IPGP, CNRS, Physique des Mineraux et Magmas, F-75252 Paris 05, (France); Cormier, L. [Univ Paris 06, IMPMC, F-75015 Paris, (France); Hazemann, J. L. [CNRS, Inst Neel, F-38043 Grenoble, (France); De Ligny, D. [Univ Lyon 1, LMLC, CNRS, UMR 5620, F-69622 Villeurbanne, (France); Pascarelli, S. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Vickridge, I. [Univ Paris 06, INSP, F-75015 Paris, (France)

    2008-07-01

    The kinetics and the mechanisms of iron redox reactions in molten Fe-bearing pyroxene compositions have been investigated by Raman spectroscopy and X-ray absorption Near Edge Structure (XANES) experiments at the iron K-edge. The former experiments have been made only near the glass transition whereas the latter have also been performed from about 1300 to 2100 K. The same kinetics are observed with both techniques. They are described by characteristic times that depend primarily on temperature and not on the initial redox state. At high temperatures, where both kinds of reactions could be investigated, these times are similar for oxidation and reduction. From these characteristic times we have calculated as a function of temperature and composition a parameter termed effective redox diffusivity. For a given melt, the diffusivities follow two distinct Arrhenius laws, which indicate that the mechanisms of the redox reaction are not the same near the glass transition and at high temperatures. As is now well established, diffusion of divalent cations is the dominant mechanism at low temperatures but the enhanced kinetics observed for alkali-bearing melts indicate that Li{sup +} and Na{sup +} also participate in ionic transport. At super-liquidus temperatures, in contrast, diffusion of oxygen represents the dominant mechanism. (authors)

  12. Effect of layered silicates and reactive compatibilization on structure and properties of melt-drawn HDPE/PA6 microfibrillar composites

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kaprálková, Ludmila; Kratochvíl, Jaroslav; Padovec, Z.; Růžička, M.; Hromádková, Jiřina

    2016-01-01

    Roč. 73, č. 6 (2016), s. 1673-1688 ISSN 0170-0839 R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:61389013 Keywords : nanocomposite * blend * melt drawing Subject RIV: JI - Composite Materials Impact factor: 1.430, year: 2016

  13. Experimental determination of dissolved CO2 content in nominally anhydrous andesitic melts at graphite/diamond saturation - Remobilization of deeply subducted reduced carbon via partial melts of MORB-like eclogite

    Science.gov (United States)

    Eguchi, J.; Dasgupta, R.

    2015-12-01

    Experimental phase relations of carbonated lithologies [1] and geochemistry of deep diamonds [2] suggest that deep recycling of carbon has likely been efficient for a significant portion of Earth's history. Both carbonates and organic carbon subduct into the mantle, but with gradual decrease of fO2 with depth [3] most carbon in deep mantle rocks including eclogite could be diamond/graphite [4]. Previous studies investigated the transfer of CO2 from subducted eclogite to the ambient mantle by partial melting in the presence of carbonates, i.e., by generation of carbonate-rich melts [5]. However, the transfer of carbon from subducted eclogite to the mantle can also happen, perhaps more commonly, by extraction of silicate partial melt in the presence of reduced carbon; yet, CO2 solubility in eclogite-derived andesitic melt at graphite/diamond saturation remains unconstrained. CO2content of eclogite melts is also critical as geochemistry of many ocean island basalts suggest the presence of C and eclogite in their source regions [6]. In the present study we determine CO2 concentration in a model andesitic melt [7] at graphite/diamond saturation at conditions relevant for partial melting of eclogite in the convecting upper mantle. Piston cylinder and multi anvil experiments were conducted at 1-6 GPa and 1375-1550 °C using Pt/Gr double capsules. Oxygen fugacity was monitored with Pt-Fe sensors in the starting mix. Completed experiments at 1-3 GPa show that CO2 concentration increases with increasing P, T, and fO2 up to ~0.3 wt%. Results were used to develop empirical and thermodynamic models to predict CO2 concentration in partial melts of graphite saturated eclogite. This allowed us to quantify the extent to which CO2 can mobilize from eclogitic heterogeneities at graphite/diamond saturated conditions. With estimates of eclogite contribution to erupted basaltic lavas, the models developed here allow us to put constraints on the flux of CO2 to mantle source regions

  14. Calcium Isotopic Composition of Bulk Silicate Earth

    Science.gov (United States)

    Kang, J.; Ionov, D. A.; Liu, F.; Zhang, C.; Zhang, Z.; Huang, F.

    2016-12-01

    Ca isotopes are used to study the accretion history of the Earth and terrestrial planets, but, Ca isotopic composition of the Bulk Silicate Earth (BSE) remains poorly constrained [1]. To better understand the Ca isotopic composition of BSE, we analyzed 22 well studied peridotite xenoliths from Tariat (Mongolia), Vitim (southern Siberia) and Udachnaya (Siberian Craton). These samples include both fertile and highly depleted garnet and spinel peridotites that show no or only minor post-melting metasomatism or alteration. Ca isotope measurements were done on a Triton-TIMS using double spike method at the Guangzhou Institute of Geochemistry, CAS. The data are reported as δ44/40Ca (relative to NIST SRM 915a). Results for geostandards are consistent with those from other laboratories. 2 standard deviations of SRM 915a analyses are 0.13‰ (n=48). δ44/40Ca of both and fertile and refractory peridotites range from 0.79 to 1.07‰ producing an average of 0.93±0.12‰ (2SD). This value defines the Ca isotopic composition of the BSE, which is consistent with the average δ44/40Ca of oceanic basalts ( 0.90‰)[2,3]. [1] Huang et al (2010) EPSL 292; [2] Valdes et al (2014) EPSL 394; [3]DePaolo (2004) RMG 55.

  15. Storage conditions of the mafic and silicic magmas at Cotopaxi, Ecuador

    Science.gov (United States)

    Martel, Caroline; Andújar, Joan; Mothes, Patricia; Scaillet, Bruno; Pichavant, Michel; Molina, Indira

    2018-04-01

    The 2015 reactivation of the Cotopaxi volcano urges us to understand the complex eruptive dynamics of Cotopaxi for better management of a potential major crisis in the near future. Cotopaxi has commonly transitioned from andesitic eruptions of strombolian style (lava flows and scoria ballistics) or nuées ardentes (pyroclastic flows and ash falls) to highly explosive rhyolitic ignimbrites (pumiceous pyroclastic flows), which entail drastically different risks. To better interpret geophysical and geochemical signals, Cotopaxi magma storage conditions were determined via existing phase-equilibrium experiments that used starting materials chemically close to the Cotopaxi andesites and rhyolites. The results suggest that Cotopaxi's most mafic andesites (last erupted products) can be stored over a large range of depth from 7 km to ≥16 km below the summit (pressure from 200 to ≥400 MPa), 1000 °C, NNO +2, and contain 4.5-6.0±0.7 wt% H2O dissolved in the melt in equilibrium with 30-40% phenocrysts of plagioclase, two pyroxenes, and Fe-Ti oxides. These mafic andesites sometimes evolve towards more silicic andesites by cooling to 950 °C. Rhyolitic magmas are stored at 200-300 MPa (i.e. 7-11 km below the summit), 750 °C, NNO +2, and contain 6-8 wt% H2O dissolved in a nearly aphyric melt (<5% phenocrysts of plagioclase, biotite, and Fe-Ti oxides). Although the andesites produce the rhyolitic magmas by fractional crystallization, the Cotopaxi eruptive history suggests reactivation of either reservoirs at distinct times, likely reflecting flux or time fluctuations during deep magma recharge.

  16. Cleaning of the equipment of residual sodium by means of water-vacuum technology

    International Nuclear Information System (INIS)

    Klykov, B.P.; Lednev, A.I.

    1997-01-01

    Results of investigation into a problem of equipment decontamination from sodium, that have been conducted in OKBM since 1960 are given. The investigations performed have shown that a water-vacuum washing process is the most optimal method for equipment decontamination from sodium residues. The essence of the method is in conduction of sodium-water reaction under reduced pressure in a leak-tight tank. Boundary conditions are selected experimentally which not allow sodium to be melted during the process, that gives possibility to control the sodium-water reaction. Continuous removal of H 2 and reaction products creates safe conditions for the process conduction. More that 20-year period of operation of a stationary water-vacuum facility and washing the electromagnetic pump for BN-350 fast nuclear reactor directly at is test rig are the best proofs of the proposed method. This method is well suitable for washing the equipment contaminated by radioactive sodium, because by-products of the process are simply utilized. The method is used in a number of Russian enterprises, and recommended for implementation at BN-350 and BN-600 reactor plants. (author)

  17. Synthesis, characterization and magnetic properties of a manganese (II) silicate containing frustrated S=5/2 zig–zag ladders

    International Nuclear Information System (INIS)

    Brandão, P.; Santos, A.M. dos; Paixão, L.S.; Reis, M.S.

    2014-01-01

    The hydrothermal synthesis, structural characterization and magnetic properties of a manganese silicate with ideal formula of NaMn 2 Si 3 O 8 (OH) is reported. This compound is a synthetic analog to the naturally occurring mineral Serandite. The crystal structure comprises MnO 6 octahedra and SiO 4 tetrahedra. The MnO 6 share four edges with neighboring octahedra forming double chains. These chains are connected by silicate chains Si 3 O 8 (OH) resulting in an open framework structure with six-member ring channels where sodium ions are located. From the magnetic point of view, the intra-chain exchange between neighboring S=5/2 manganese ions is weak, partly due to the distortion observed in the octahedra, but also due to the frustrated topology of the chain. A successful fitting of the magnetic susceptibility was obtained by considering a double chain numerical model with Monte Carlo derived empirical parameters. -- Graphical abstract: A manganese silicate prepared hydrothermally with formula NaMn 2 Si 3 O 8 (OH) possessing the structure of the mineral Serandite contains doubled chains of edge-sharing MnO 6 octahedra. The magnetic susceptibility was measured and shows an antiferromagnetic behavior. Highlights: • Characterization of a synthetic analog to the mineral Serandite: NaMn 2 Si 3 O 8 (OH). • Fitting of the magnetic susceptibility considering a classical regular chain. • Weak metal–oxygen–metal super-exchange interactions; antiferromagnetic in nature. • Elevated degree of frustration along the chain, without sign of interchain ordering

  18. Aluminum deoxidation equilibria and inclusion modification mechanism by calcium treatment of stainless steel melts

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Kim, Dong Sik; Kim, Yong Hwan; Lee, Sang Beom

    2005-01-01

    A thermodynamic equilibrium between aluminum and oxygen along with the inclusion morphology in Fe-16%Cr stainless steel was investigated to understand the fundamentals of aluminum deoxidation technology for ferritic stainless steels. Further, the effects of calcium addition on the changes in chemistry and morphology of inclusions were discussed. The measured results for aluminum-oxygen equilibria exhibit relatively good agreement with the calculated values, indicating that the introduction of the first- and second-order interaction parameters, recently reported, is reasonable to numerically express aluminum deoxidation equilibrium in a ferritic stainless steel. In the composition of dissolved aluminum content greater than about 60 ppm, pure alumina particles were observed, while the alumino-manganese silicates containing Cr 2 O 3 were appeared at less than 20 mass ppm of dissolved aluminum. The formation of calcium aluminate inclusions after Ca treatment could be discussed based on the thermodynamic equilibrium with calcium, aluminum, and oxygen in the steel melts. In the composition of steel melt with relatively high content of calcium and low aluminum, the log(X CaO /X Al 2 O 3 ) of inclusions linearly increases with increasing the log [a Ca /a Al 2 ·a O 2 ] with the slope close to unity. However, the slope of the line is significantly lower than the expected value in the composition of steel melt with relatively low calcium and high aluminum contents

  19. Structure and properties of polymer-silicate nanocomposites based on polytetrafluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Sleptsova, Sardana A.; Okhlopkova, Aitalina A. [North-Eastern Federal University, Yakutsk (Russian Federation)

    2011-07-01

    The results of physicomechanical, tribological , and structural investigation of polytetrafluoroethylene based polymers and natural layered silicates are reported. It is shown that the tribological behaviour of the composites can be significantly improved by introducing a small amount of activated silicates. The results of structural examination of the composite friction surfaces by scanning-probe microscopy and IR spectroscopy are discussed. Key words: polytetrafluoroethylene, layered silicates, wear resistance, friction coefficient, structure, IR-spectrum.

  20. Optical and luminescence properties of Dy3+ doped sodium silicate glass

    Science.gov (United States)

    Srisittipokakun, N.; Kaewkhao, J.

    2017-07-01

    The aim of the present work is to study the optical and luminescence properties of Dy2O3 doped Na2O-BaO-Bi2O3-SiO2 glasses. The Dy3+ ion is chosen as dopant because it emits three visible bands, blue (470-485 nm; 4F9/2→6H15/2), yellow (570-580 nm; 4F9/2→6H13/2) and red (640-655 nm; 4F9/2→6H11/2) luminescence and finds its applications in the fields of laser, white LEDs, telecommunication technology and display devices. NaBaBiSiDy glasses with the compositions of (30-x)SiO2: 10Bi2O3: 30Na2O: 30BaO: xDy2O3 where x=0.0, 0.1, 0.5, 1.0, 1.5 and 2.0 mol% were prepared by melt-quenching technique and characterized by using density, optical absorption photoluminescence (PL) and decay rate measurements as function of different concentrations. The density (ρ), molar volume (VM) and refractive index obtained were found to increase with increase in the concentration of Dy2O3 in the glass matrix. The chromaticity coordinates were calculated from emission spectra and analyzed with CIE color diagram and appear in the white light region under ultraviolet excitation.

  1. Coordinated HArd Sphere Model (CHASM): A Simplified Model for Silicate and Oxide Liquids at Mantle Conditions

    Science.gov (United States)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2013-12-01

    Recent first-principles theoretical calculations (Stixrude 2009) and experimental shock-wave investigations (Mosenfelder 2009) indicate that melting perovskite requires significantly less energy than previously thought, supporting the idea of a deep-mantle magma ocean early in Earth's history. The modern-day solid Earth is thus likely the result of crystallization from an early predominantly molten state, a process that is primarily controlled by the poorly understood behavior of silicate melts at extreme pressures and temperatures. Probing liquid thermodynamics at mantle conditions is difficult for both theory and experiment, and further challenges are posed by the large relevant compositional space including at least MgO, SiO2, and FeO. First-principles molecular dynamics has been used with great success to determine the high P-T properties of a small set of fixed composition silicate-oxide liquids including MgO (Karki 2006), SiO2 (Karki 2007), Mg2SiO4 (de Koker 2008), MgSiO3 (Stixrude 2005), and Fe2SiO4 (Ramo 2012). While extremely powerful, this approach has limitations including high computational cost, lower bounds on temperature due to relaxation constraints, as well as restrictions to length scales and time scales that are many orders of magnitude smaller than those relevant to the Earth or experimental methods. As a compliment to accurate first-principles calculations, we have developed the Coordinated HArd Sphere Model (CHASM). We extend the standard hard sphere mixture model, recently applied to silicate liquids by Jing (2011), by accounting for the range of oxygen coordination states available to liquid cations. Utilizing approximate analytic expressions for the hard sphere model, the method can predict complex liquid structure and thermodynamics while remaining computationally efficient. Requiring only minutes on standard desktop computers rather than months on supercomputers, the CHASM approach is well-suited to providing an approximate thermodynamic

  2. Chemistry of the subalkalic silicic obsidians

    Science.gov (United States)

    MacDonald, Ray; Smith, Robert L.; Thomas, John E.

    1992-01-01

    liquid-state differentiation mechanisms, or in other words a complex interaction of petrogenetic processes (CIPP types). Such rocks may also form by volatile-fluxed partial melting of the wallrocks, and subsequent mixing into the magma reservoir. Compositional ranges and averages for CLPD and CIPP obsidians are given. It is shown by analogy with well-documented, zoned ash-flow ruffs that obsidians fractionated by CIPP have very low Mg, P, Ba, and Sr contents, flat rare-earth-element patterns with extensive Eu anomalies, low K/Rb and Zr/Nb ratios, and relatively high Na2O/K2O ratios. There is, however, considerable compositional overlap between CLPD and CIPP obsidians. The effects of magma mixing, assimilation, and vapor-phase transport in producing compositional variations in the obsidians are briefly assessed. The geochemistry of the subalkalic silicic obsidians is described on an element-by-element basis, in order to provide a database for silicic magma compositions that will hopefully contribute to studies of granitic rocks. Attempts are also made to isolate the geochemical effects of tectonic environment and genetic mechanism for each element, by comparison with data from crystal-liquid equilibria-controlled systems, from ash-flow sheets zoned by CIPP, and from mixed-magma series. A final tabulation relates the complexities of obsidian geochemistry to all the tectonic and genetic variables.

  3. Silicon K-edge XANES spectra of silicate minerals

    Science.gov (United States)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  4. Double melting in polytetrafluoroethylene γ-irradiated above its melting point

    International Nuclear Information System (INIS)

    Serov, S.A.; Khatipov, S.A.; Sadovskaya, N.V.; Tereshenkov, A.V.; Chukov, N.A.

    2012-01-01

    Highlights: ► PTFE irradiation leads to formation of double melting peaks in DSC curves. ► This is connected to dual crystalline morphology typical for PTFE. ► Two crystalline types exist in the PTFE irradiated in the melt. - Abstract: PTFE irradiation above its melting point leads to formation of double melting and crystallization peaks in DSC curves. Splitting of melting peaks is connected to dual crystalline morphology typical for PTFE irradiated in the melt. According to electron microscopy, two crystalline types with different size and packing density exist in the irradiated PTFE.

  5. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    Science.gov (United States)

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  6. Argon Diffusion Measured in Rhyolite Melt at 100 MPa

    Science.gov (United States)

    Weldon, N.; Edwards, P. M.; Watkins, J. M.; Lesher, C. E.

    2016-12-01

    Argon diffusivity (D_{Ar} ) controls the rate and length scale of argon exchange between melt and gas phases and is used as a parameter to model noble gas fractionation during magma degassing. D_{Ar} may also be useful in geochronology to estimate the distribution of excess (non-radiogenic) atmospheric argon in lavas. Our measurements of D_{Ar} in molten anhydrous rhyolite near 1000 °C and 100 MPa add to the existing dataset. Using a rapid-quench cold seal pressure apparatus we exposed cylindrical charges drilled from a Miocene rhyolite flow near Buck Mtn., CA to a pure argon atmosphere resulting in a gradually lengthening argon concentration gradient between the saturated surface and the argon poor interior. Argon concentration was measured by electron microprobe along radial transects from the center to the surface of bisected samples. D_{Ar} was calculated for each transect by fitting relative argon concentration (as a function of distance from the surface) to Green's function (given each experiment's specific temperature, pressure and runtime). Variability (σ = 1.202{μm }^{2} /s) was smaller than in previous studies, but still greater than what is likely due to analytical or experimental uncertainty. We observed a symmetric geometric bias in the distribution of argon in our samples, possibly related to advective redistribution of argon accompanying the deformation of cylindrical charges into spheroids driven by surface tension. Average diffusivity, D_{Ar} = 4.791{μm }^{2} /s, is close to the predicted value, D_{Ar} = {μm }^{2} /s ( σ_{ \\bar{x} } = 1.576 {μm }^{2} /s), suggesting that Behrens and Zhang's (2001) empirical model is valid for anhydrous rhyolite melts to relatively higher temperatures and lower pressures. Behrens, H. and Y. Zhang (2001). "Ar diffusion in hydrous silicic melts: implications for volatile diffusion mechanisms and fractionation." Earth and Planetary Science Letters 192: 363-376.

  7. Lead-silicate glass optical microbubble resonator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pengfei, E-mail: pengfei.wang@dit.ie [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic [Light-Matter Interactions Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Feng, Xian; Brambilla, Gilberto [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Farrell, Gerald [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  8. Molten (Mg0.88Fe0.12)2SiO4 at lower mantle conditions - Melting products and structure of quenched glasses

    Science.gov (United States)

    Williams, Quentin

    1990-01-01

    Infrared spectra of quenched magnesium silicate glasses synthesized by fusing olivine at pressures in excess of 50 GPa and temperatures greater than 2500 K demonstrate that silicon is dominantly present in four-fold coordination with respect to oxygen within these quenched glasses. This low coordination is attributed, by analogy with the structural behavior of glasses compressed at 300 K, to the instability of higher coordinations in glasses of these compositions on decompression. Spectra of glasses formed in a hydrous environment document that water is extensively soluble in melts at these high pressures and temperatures. Also, these results are consistent with the melting of (Mg0.88Fe0.12)2SiO4 compositions to liquids near pyroxene in stoichiometry under these conditions, with iron-rich magnesiowuestite being the liquidus phase.

  9. Enhancement of antibacterial activity of ciprofloxacin hydrochloride by complexation with sodium cholate

    Directory of Open Access Journals (Sweden)

    Uduma E. Osonwa

    2017-12-01

    Full Text Available Ciprofloxacin is a broad spectrum bactericidal anti-infective agent of the fluoroquinolones class used in treatment of many bacterial infections. In recent times, there has been increasing resistance to the antibiotic. In this work, we investigated the effect of making an ion- pair complex of Ciprofloxacin – hydrochloride with Sodium cholate on bacterial activity. The optimal ratio of the reactants and pH were determined using UV spectrometry. The complex was characterized by octanol-water partitioning, melting point, and IR spectrometry. The antibacterial activity of the complex was determined against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Streptococcus pneumoniae by the agar-well diffusion method. The complex was whitish to off-white in color and crystalline, with a melting point of 238 °C. The stoichiometry of the complex shows a molar ratio of 1:1 of sodium cholate to ciprofloxacin. The best pH for complexation was pH 9. The complex partitioned 3.38 times into octanol than in water. The FTIR revealed interaction between the 4-nitrogen atom in the 7-piperazinyl group of ciprofloxacin and the carbonyl of the cholate. The drug in complex form gave double the antibacterial activity of the uncomplexed drug. This study showed that development of hydrophobic ion pair complex enhances antibacterial activity of ciprofloxacin hydrochloride. Keywords: Ciprofloxacin, Sodium cholate, Ion-pair complex, Antibacterial activity, Enhanced activity

  10. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: mpascual@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2012-06-15

    A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.

  11. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    International Nuclear Information System (INIS)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-01-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  12. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David [Argonne National Lab. (ANL), Argonne, IL (United States); Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  13. Moessbauer effect study of oxidation and coordination states of iron in some sodium borate glasse:;

    International Nuclear Information System (INIS)

    Eissa, N.A.; Sanad, A.M.; Youssef, S.M.; El-Henawii, S.A.; Gomaa, S.Sh.; Mostafa, A.G.

    1980-01-01

    A structural study of some sodium borate glasses containing iron was carried out applying ME spectroscopy. Both oxidation and coordination states of iron were investigated under the effect of gradual replacing of sodium carbonate by sodium nitrate in the glass batches. The glasses were melted in porcelain crucibles using an electrically heated furnace at 1000+-10 deg C, then were quenched on a steel plate at room temperature (R.T.). The ME source was 20 mCi radioactive Co-57 in chromium. The obtained ME spectra indicated that at lower sodium nitrate content both Fe 2+ and Fe 3+ are present in these glasses. At moderate concentrations some Fe 3+ ions were separated in a crystalline phase and the rest of the iron ions appeared as ferric ions in glassy state. At high sodium nitrate content only Fe 3+ ions in glassy state were detected. The values of the ME parameters for all iron ions indicated that all of them are in the octahedral coordination state. The density measurements confirm the separation of a crystalline phase at moderate sodium nitrate content. (author)

  14. On the Relation of Silicates and SiO Maser in Evolved Stars

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiaming; Jiang, Biwei, E-mail: bjiang@bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2017-04-01

    The SiO molecule is one of the candidates for the seed of silicate dust in the circumstellar envelope of evolved stars, but this opinion is challenged. In this work we investigate the relation of the SiO maser emission power and the silicate dust emission power. With both our own observation by using the PMO/Delingha 13.7 m telescope and archive data, a sample is assembled of 21 SiO v  = 1, J  = 2 − 1 sources and 28 SiO v  = 1, J  = 1 − 0 sources that exhibit silicate emission features in the ISO /SWS spectrum as well. The analysis of their SiO maser and silicate emission power indicates a clear correlation, which is not against the hypothesis that the SiO molecules are the seed nuclei of silicate dust. On the other hand, no correlation is found between SiO maser and silicate crystallinity, which may imply that silicate crystallinity does not correlate with mass-loss rate.

  15. Degradation of l-polylactide during melt processing with layered double hydroxides

    DEFF Research Database (Denmark)

    Gerds, Nathalie; Katiyar, Vimal; Koch, Christian Bender

    2012-01-01

    PLA was melt compounded in small-scale batches with two forms of laurate-modified magnesium–aluminum layered double hydroxide (Mg-Al-LDH-C12), the corresponding carbonate form (Mg-Al-LDH-CO3) and a series of other additives. Various methods were then adopted to characterize the resulting compounds...... in an effort to gain greater insights into PLA degradation during melt processing. PLA molecular weight reduction was found to vary according to the type of LDH additive. It is considered that the degree of particle dispersion and LDH exfoliation, and hence the accessibility of the hydroxide layer surfaces...... and catalytically active Mg site centers are causative factors for PLA degradation. Interestingly, the release of water under the processing conditions was found to have a rather small effect on the PLA degradation. Low loadings of sodium laurate also caused PLA degradation indicating that carboxylate chain ends...

  16. Prediction of the pressure-time history due to fuel-sodium interaction in a subassembly

    International Nuclear Information System (INIS)

    Jacobs, H.

    1975-01-01

    A local cooling disturbance may lead to complete voiding of a subassembly and melt down of the fuel pins. Thus molten fuel may be accumulated and mixed with liquid sodium returning accidentally into the subassembly. The resulting fuel-sodium interaction (FSI) produces a pressure load on the surrounding core structures. It is necessary to prove that the corresponding core deformation neither initiates a nuclear excursion nor renders the shut down system inoperable. This requires the knowledge of the initiating FSI pressure time history. In this paper a theoretical pressure time history is presented which differs completely from all calculations known so far. (Auth.)

  17. Melting method for miscellaneous radioactive solid waste and melting furnace

    International Nuclear Information System (INIS)

    Osaki, Toru; Furukawa, Hirofumi; Uda, Nobuyoshi; Katsurai, Kiyomichi

    1998-01-01

    A vessel containing miscellaneous solid wastes is inserted in a crucible having a releasable material on the inner surface, they are induction-heated from the outside of the crucible by way of low temperature heating coils to melt low melting point materials in the miscellaneous wastes within a temperature range at which the vessel does not melt. Then, they are induction-heated by way of high temperature heating coils to melt the vessel and not yet melted materials, those molten materials are cooled, solidified molten material and the releasable material are taken out, and then the crucible is used again. Then, the crucible can be used again, so that it can be applied to a large scaled melting furnace which treats wastes by a unit of drum. In addition, since the cleaning of the used crucible and the application of the releasable material can be conducted without interrupting the operation of the melting furnace, the operation cycle of the melting furnace can be shortened. (N.H.)

  18. Composition characteristics and regularities of dissolving of hydroxyapatite materials obtained in water solutions with varied content of silicate ions

    Science.gov (United States)

    Solonenko, A. P.

    2018-01-01

    Research aimed at developing new bioactive materials for the repair of defects in bone tissues, do not lose relevance due to the strengthening of the regenerative approach in medicine. From this point of view, materials based on calcium phosphates, including silicate ions, consider as one of the most promising group of substances. Methods of synthesis and properties of hydroxyapatite doped with various amounts of SiO4 4- ions are described in literature. In the present work synthesis of a solid phase in the systems Ca(NO3)2 - (NH4)2HPO4 - Na2SiO3 - NH4OH - H2O (Cca/CP = 1.70) performed with a wide range of sodium silicate additive concentration (y = CSi/CP = 0 ÷ 5). It is established that under the studied conditions at y ≥ 0.3 highly dispersed poorly crystallized apatite containing isomorphic impurities of CO3 2- and SiO4 4- precipitates in a mixture with calcium hydrosilicate and SiO2. It is shown that the resulting composites can gradually dissolve in physiological solution and initiate passive formation of the mineral component of hard tissues.

  19. Extraction of lead from waste CRT funnel glass by generating lead sulfide - An approach for electronic waste management.

    Science.gov (United States)

    Hu, Biao; Hui, Wenlong

    2017-09-01

    Waste cathode ray tube (CRT) funnel glass is the key and difficult points in waste electrical and electronic equipment (WEEE) disposal. In this paper, a novel and effective process for the detoxification and reutilization of waste CRT funnel glass was developed by generating lead sulfide precipitate via a high-temperature melting process. The central function in this process was the generation of lead sulfide, which gathered at the bottom of the crucible and was then separated from the slag. Sodium carbonate was used as a flux and reaction agent, and sodium sulfide was used as a precipitating agent. The experimental results revealed that the lead sulfide recovery rate initially increased with an increase in the amount of added sodium carbonate, the amount of sodium sulfide, the temperature, and the holding time and then reached an equilibrium value. The maximum lead sulfide recovery rate was approximately 93%, at the optimum sodium carbonate level, sodium sulfide level, temperature, and holding time of 25%, 8%, 1200°C, and 2h, respectively. The glass slag can be made into sodium and potassium silicate by hydrolysis in an environmental and economical process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. EFFECT OF SILICATE ON GRAM STAINING AND VIABILITY OF PNEUMOCOCCI AND OTHER BACTERIA

    Science.gov (United States)

    MacLeod, Colin M.; Roe, Amy S.

    1956-01-01

    Application of silicate solutions to living or heat-killed pneumococci and to certain "viridans" streptococci causes their conversion from a Gram-positive to a Gram-negative state. The original staining properties can be restored by suspending the silicate-treated bacteria in alkaline solutions of various salts but not by simple washing in water. Living pneumococci and the strains of streptococci whose staining properties are similarly affected are killed when suspended in silicate solutions. In other Gram-positive species silicate causes conversion to Gram negativity but restoration to positivity occurs upon washing in water. In a third group of Gram-positive organisms silicate has no effect on the Gram reaction. The viability of organisms in these two groups is unaffected by silicate under the conditions employed. No effect on staining or viability of Gram-negative bacteria has been observed. The effects of silicate on staining and viability are inhibited by nutrient broth or whole serum but not by purified serum albumin. Lecithin, choline, and other substituted ammonium compounds also inhibit the effects of silicate on pneumococci. PMID:13306854