WorldWideScience

Sample records for sodium pump endocytosis

  1. Downregulation of surface sodium pumps by endocytosis during meiotic maturation of Xenopus laevis oocytes

    International Nuclear Information System (INIS)

    Schmalzing, G.; Eckard, P.; Kroener, S.P.; Passow, H.

    1990-01-01

    During meiotic maturation, plasma membranes of Xenopus laevis oocytes completely lose the capacity to transport Na and K and to bind ouabain. To explore whether the downregulation might be due to an internalization of the sodium pump molecules, the intracellular binding of ouabain was determined. Selective permeabilization of the plasma membrane of mature oocytes (eggs) by digitonin almost failed to disclose ouabain binding sites. However, when the eggs were additionally treated with 0.02% sodium dodecyl sulfate (SDS) to permeabilize inner membranes, all sodium pumps present before maturation were recovered. Phosphorylation by [gamma-32P]ATP combined with SDS-polyacrylamide gel electrophoresis (PAGE) and autoradiography showed that sodium pumps were greatly reduced in isolated plasma membranes of eggs. According to sucrose gradient fractionation, maturation induced a shift of sodium pumps from the plasma membrane fraction to membranes of lower buoyant density with a protein composition different from that of the plasma membrane. Endocytosed sodium pumps identified on the sucrose gradient from [3H]ouabain bound to the cell surface before maturation could be phosphorylated with inorganic [32P]phosphate. The findings suggest that downregulation of sodium pumps during maturation is brought about by translocation of surface sodium pumps to an intracellular compartment, presumably endosomes. This contrasts the mechanism of downregulation of Na-dependent cotransport systems, the activities of which are reduced as a consequence of a maturation-induced depolarization of the membrane without a removal of the corresponding transporter from the plasma membrane

  2. alpha-Adducin mutations increase Na/K pump activity in renal cells by affecting constitutive endocytosis: implications for tubular Na reabsorption.

    Science.gov (United States)

    Torielli, Lucia; Tivodar, Simona; Montella, Rosa Chiara; Iacone, Roberto; Padoani, Gloria; Tarsini, Paolo; Russo, Ornella; Sarnataro, Daniela; Strazzullo, Pasquale; Ferrari, Patrizia; Bianchi, Giuseppe; Zurzolo, Chiara

    2008-08-01

    Genetic variation in alpha-adducin cytoskeletal protein is implicated in the polymerization and bundling of actin and alteration of the Na/K pump, resulting in abnormal renal sodium transport and hypertension in Milan hypertensive rats and humans. To investigate the molecular involvement of alpha-adducin in controlling Na/K pump activity, wild-type or mutated rat and human alpha-adducin forms were, respectively, transfected into several renal cell lines. Through multiple experimental approaches (microscopy, enzymatic assays, coimmunoprecipitation), we showed that rat and human mutated forms increased Na/K pump activity and the number of pump units; moreover, both variants coimmunoprecipitate with Na/K pump. The increased Na/K pump activity was not due to changes in its basolateral localization, but to an alteration of Na/K pump residential time on the plasma membrane. Indeed, both rat and human mutated variants reduced constitutive Na/K pump endocytosis and similarly affected transferrin receptor trafficking and fluid-phase endocytosis. In fact, alpha-adducin was detected in clathrin-coated vesicles and coimmunoprecipitated with clathrin. These results indicate that adducin, besides its modulatory effects on actin cytoskeleton dynamics, might play a direct role in clathrin-dependent endocytosis. The constitutive reduction of the Na/K pump endocytic rate induced by mutated adducin variants may be relevant in Na-dependent hypertension.

  3. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  4. Parallel operation of primary sodium pumps in FBTR

    International Nuclear Information System (INIS)

    Athmalingam, S.; Ellappan, T.R.; Vaidyanathan, G.; Chetal, S.C.; Bhoje, S.B.

    1994-01-01

    Sodium pumps used in the primary main circuit of Fast Breeder Test Reactor (FBTR) are centrifugal pumps. These pumps have a free level of sodium with a cover gas above it to simplify the pump seal arrangement. The sodium level in the pumps will vary based on the flow. The minimum level is governed by consideration of gas entrainment and net positive suction head (NPSH) to the pump while the maximum level is limited by sodium entering the pump tank gas line. There is a special feature in these pumps in that a small portion of the pump outlet sodium flow is led back into the suction chamber to maintain level and avoid gas entrainment. A control valve in this line helps in controlling the level at the desired value. With parallel operation of two sodium pumps a study was conducted to find the regions of safe operation of the two pumps. The purpose of this paper is to give the various design features and methodology of the analysis to arrive at the limiting condition of operation for the different operating states of the two pumps and the effect of pump speed variations on the fluctuations in sodium flows. (author). 6 figs

  5. Sodium removal disassembly and examination of the Fermi secondary sodium pump

    International Nuclear Information System (INIS)

    Maffei, H.P.; Funk, C.W.; Ballif, J.L.

    1974-01-01

    The Fermi secondary pump is a centrifugal single stage design. The pump had been operated more than 42,000 hours between 450 and 800 0 F. Sodium was drained from the pump in 1973 and the system was back filled with carbon dioxide. The pump was fabricated for 2.25 Cr-1 Mo Croloy steel. Prior to cleaning the pump was inerted and heated with 150 0 F nitrogen using the pump casing as the containment vessel. The water-vapor-nitrogen process was used in three increasing stages of water concentration. The hydrogen concentration in the discharge line was followed as an indicator of the sodium-water reaction rate. Upon completion of the hydrogen evolution, the pump was rinsed several times with hot water. Six pounds of sodium were removed from the pump during a process cycle of 79 hours including rinsing. The maximum pump temperature recorded was 175 0 F with no variation exceeding 10 0 F. The hydrogen concentration in the effluent provided a very satisfactory index for control of the reaction by adjustment of the water-vapor concentration feed to the system. Rinsing effectiveness was limited by a pool of water in the volute that was not drainable with the available system hook up. Sodium and its compounds were removed from all internal surfaces that could be observed by the first stage of disassembly. All such surfaces were coated with a black deposit. Areas above the sodium liquid level were coated with a vermillion colored oxide. Sodium was found on the (1) threads of the impeller nut lock screw, (2) impeller nut-tapered shaft interface, and (3) vapor deposited sodium was found in the oil seal

  6. Alignment analysis of a vertical sodium pump

    International Nuclear Information System (INIS)

    Gupta, V.K.; Fair, C.E.

    1981-01-01

    With the objective of identifying important alignment features of pumps such as FFTF, HALLAM, EBR II, PNC, PHENIX, and CRBR, alignment of the vertical sodium pump for the Clinch River Breeder Reactor Plant (CRBRP) is investigated. The CRBRP pump includes a flexibly coupled pump shaft and motor shaft, two oil-film tilting-pad hydrodynamic radial bearings in the motor plus a vertical thrust bearing, and two sodium hydrostatic bearings straddling the double-suction centrifugal impeller in the pump. The assembled CRBRP prototype pump shows smooth predictable vibration behavior experienced during water test. An ealier swing check of the pump shaft about the motor shaft hub demonstrated that the pump is relatively insensitive to manufacturing and assembly tolerances, a consequence of close dimensional control and unique alignment features. (orig./GL)

  7. Performance Tests of a Mechanical Pump in Sodium Environment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Kim, Byeongyeon; Cho, Youngil; Jung, Min-Hwan; Gam, Da-Young; Lee, Yong Bum; Jeong, Ji-Young; Kim, Jong-Bum [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Water is often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Nevertheless, to ensure the performance, safety, and operability of major components before its installation in the SFR, a series of demonstration experiments of some components in sodium environment should be positively necessary. So, SFR NSSS System Design Division of Korea Atomic Energy Research Institute (KAERI) built various sodium experimental facilities, especially STELLA-1 in 2012. STELLA-1 (Sodium inTegral Effect test Loop for safety simuLation and Assessment) is a large-scale separated effect test facility for demonstrating the thermal-hydraulic performances of major components such as a Sodium-to-Sodium heat exchanger (DHX), Sodium-to-Air heat exchanger (AHX) of the decay heat removal system, and mechanical sodium pump of the primary heat transport system (PHTS). The mechanical pump in-sodium performance test was successfully performed with good reproducibility of the experiment and data to compare hydraulic characteristic of a mechanical pump in-water was collected. In effect of temperature variation on the pump pressure head, reduction of pump pressure head at 250℃ by 0.57% of that of 300℃ maybe the result of an increase in sodium viscosity by 13.6% according to operating temperature decrease by 50℃. Also, we confirmed that the more flywheel weight, the longer halving time and the more initial flow rate when the pump seized, the shorter halving time. The results of the mechanical pump performance test data in sodium environment will be used to compare with that of the in water environment after the evaluation of measurement uncertainty for tests.

  8. The Performance test of Mechanical Sodium Pump with Water Environment

    International Nuclear Information System (INIS)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum; Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang

    2015-01-01

    As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance

  9. Development of model pump for establishing hydraulic design of primary sodium pumps in PFBR

    International Nuclear Information System (INIS)

    Chougule, R.J.; Sahasrabudhe, H.G.; Rao, A.S.L.K.; Balchander, K.; Kale, R.D.

    1994-01-01

    Indira Gandhi Centre for Atomic Research, Kalpakkam indicated requirement of indigenous development of primary sodium pump, handling liquid sodium as coolant in Fast Breeder Reactor. The primary sodium pump concept selected in its preliminary design is a vertical, single stage, with single suction impeller, suction facing downwards. The pump is having diffuser, discharge casing and discharge collector. The 1/3 rd size model pump is developed to establish the hydraulic performance of the prototype primary sodium pump. The main objectives were to verify the hydraulic design to operate on low net positive suction head available (NPSHA), no evidence of visible cavitation at available NPSHA, the pump should be designed with a diffuser etc. The model pump PSP 250/40 was designed and successfully developed by Research and Development Division of M/s Kirloskar Brothers Ltd., Kirloskarvadi. The performance testing using model pump was successfully carried out on a closed circuit test rig. The performance of a model pump at three different speeds 1900 rpm, 1456 rpm and 975 rpm was established. The values of hydraulic axial thrust with and without balancing holes on impeller at 1900 rpm was measured. Visual cavitation study at 1900 rpm was carried out to establish the NPSH at bubble free operation of the pump. The tested performance of the model pump is converted to the full scale prototype pump. The predicted performance of prototype pump at 700 rpm was found to be meeting fully with the expected duties. (author). 6 figs., 3 tabs

  10. Alignment and operability analysis of a vertical sodium pump

    International Nuclear Information System (INIS)

    Gupta, V.K.; Fair, C.E.

    1981-01-01

    With the objective of identifying important alignment features of pumps such as FFTF, HALLAM, EBR II, PNC, PHENIX, and CRBR, alignment of the vertical sodium pump for the Clinch River Breeder Reactor Plant (CRBRP) is investigated. The CRBRP pump includes a flexibly coupled pump shaft and motor shaft, two oil-film tilting-pad hydrodynamic radial bearings in the motor plus a vertical thrust bearing, and two sodium hydrostatic bearings straddling the double-suction centrifugal impeller in the pump

  11. CRBRP sodium circulating pump design evaluation

    International Nuclear Information System (INIS)

    Marrujo, F.; Cook, M.; Manners, L.; Cothran, H.

    1977-12-01

    The following topics are discussed: (1) primary sodium pump design concept; (2) pump level control system; (3) resolution of design problems in stress analysis, dynamics analysis, and mechanical design; (4) model testing; (5) planned performance tests; and (6) fabrication status

  12. Study of an electromagnetic pump in a sodium cooled reactor. Design study of secondary sodium main pumps (Joint research)

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Kisohara, Naoyuki; Hishida, Masahiko; Fujii, Tadashi; Konomura, Mamoru; Ara, Kuniaki; Hori, Toru; Uchida, Akihito; Nishiguchi, Youhei; Nibe, Nobuaki

    2006-07-01

    In the feasibility study on commercialized fast breeder cycle system, a medium scale sodium cooled reactor with 750 MW electricity has been designed. In this study, EMPs are applied to the secondary sodium main pump. The EMPs type is selected to be an annular linear induction pump (ALIP) type with double stators which is used in the 160 m 3 /min EMP demonstration test. The inner structure and electromagnetic features are decided reviewing the 160 m 3 /min EMP. Two dimensional electromagnetic fluid analyses by EAGLE code show that Rms (magnetic Reynolds number times slip) is evaluated to be 1.08 which is less than the stability limit 1.4 confirmed by the 160 m 3 /min EMP test, and the instability of the pump head is evaluated to be 3% of the normal operating pump head. Since the EMP stators are cooled by contacting coolant sodium duct, reliability of the inner structures are confirmed by temperature distribution and stator-duct contact pressure analyses. Besides, a power supply system, maintenance and repair feature and R and D plan of EMP are reported. (author)

  13. Fast Flux Test Facility replacement of a primary sodium pump

    International Nuclear Information System (INIS)

    Krieg, S.A.; Thomson, J.D.

    1985-01-01

    The Fast Flux Test Facility is a 400 MW Thermal Sodium Cooled Fast Reactor operated by Westinghouse Hanford Company for the US Department of Energy. During startup testing in 1979, the sodium level in one of the primary sodium pumps was inadvertently raised above the normal height. This resulted in distortion of the pump shaft. Pump replacement was carried out using special maintenance equipment. Nuclear radiation and contamination were not significant problems since replacement operations were carried out shortly after startup of the Fast Flux Test Facility

  14. Fast Flux Test Facility sodium pump operating experience - mechanical

    International Nuclear Information System (INIS)

    Buonamici, R.

    1987-11-01

    The Heat Transport System (HTS) pumps were designed, fabricated, tested, and installed in the Fast Flux Test Facility (FFTF) Plant during the period from September 1970 through July 1977. Since completion of the installation and sodium fill in December 1978, the FFTF Plant pumps have undergone extensive testing and operation with HTS testing and reactor operation. Steady-state hydraulic and mechanical performances have been and are excellent. In all, FFTF primary and secondary pumps have operated in sodium for approximately 75,000 hours and 79,000 hours, respectively, to August 24, 1987

  15. Study on cavitation in centrifugal sodium pumps for FBTR and PFBR

    International Nuclear Information System (INIS)

    Rao, A.S.L.K.; Prabhakar, R.; Prakash, V.; Paranjpe, S.R.

    2002-01-01

    Fast Breeder Test Reactor (FBTR) which is expected to become critical shortly is a loop type reactor of 40 MW thermal capacity and has two primary and two secondary centrifugal pumps for heat removal. During the initial periods of reactor operation, the steam generator is bypassed and the secondary sodium pumps are required to operate at flows less than that at best efficiency point. This paper deals with the cavitation problems associated with operation at partial f lows, theoretical estimations and experimental cavitation measurements carried out on FBTR secondary sodium pumps. These investigations revealed that operation of FBTR pumps at this off design condition is free from cavitation damage. Cavitation experiments on a model pump for the development of large sodium pumps for a 500 MWe Prototype Fast Breeder Reactor (PFBR) are described in this paper

  16. Development of a sodium-pump/neon-lasant photopumped soft X-ray laser

    International Nuclear Information System (INIS)

    Stephanakis, S.J.; Apruzese, J.P.; Burkhalter, P.G.

    1988-01-01

    Resonant photopumping of heliumlike neon by heliumlike sodium is investigated to extend this potentially efficient technique for inversion and lasing to shorter wavelengths. Properties of the sodium-pump plasma and the neon-lasant plasma required to optimize fluorescence and lasing are determined. The implosion of a sodium-bearing plasma with a megampere pulsed-power driver (Gamble II) is used to produce a linear Z-pinch with up to 25 GW of sodium-pump-line radiation. A separate neon plasma, driven by part of the return current form the imploding sodium plasma, is created parallel to the sodium line source at a distance of 5 cm. Implosion requirements for the neon plasma and its dynamics in the Gamble II return-current geometry are described. Evidence for population inversion is indicated by fluorescence enhancement of the 11-A resonance line from the n = 4 level of neon when pumped by sodium. The neon spectra are in qualitative agreement with calculations based on the sodium-pump power. Improvements in the experiment required to achieve lasing are discussed

  17. Sodium flow rate measurement method of annular linear induction pumps

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.

    2012-01-01

    Highlights: ► We found a new method of flow rate monitoring of electromagnetic pump. ► The method is very simple and does not require a large space. ► The method was verified with an experiment and a numerical analysis. ► The experimental data and the numerical results are in good agreement. - Abstract: The present paper proposes a method for measuring sodium flow rate of annular linear induction pumps. The feature of the method lies in measuring the leaked magnetic field with measuring coils near the stator end on the outlet side and in correlating it with the sodium flow rate. This method is verified through an experiment and a numerical analysis. The data obtained in the experiment reveals that the correlation between the leaked magnetic field and the sodium flow rate is almost linear. The result of the numerical analysis agrees with the experimental data. The present method will be particularly effective to sodium flow rate monitoring of each one of plural annular linear induction pumps arranged in parallel in a vessel which forms a large-scale pump unit.

  18. Design, in-sodium testing and performance evaluation of annular linear induction pump for a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Nashine, B.K.; Rao, B.P.C.

    2014-01-01

    Highlights: • Derivation of applicable design equations. • Design of an annular induction pump based on these equations. • Testing of the designed pump in a sodium test facility. • Performance evaluation of the designed pump. - Abstract: Annular linear induction pumps (ALIPs) are used for pumping electrically conducting liquid metals. These pumps find wide application in fast reactors since the coolant in fast reactors is liquid sodium which a good conductor of electricity. The design of these pumps is usually done using equivalent circuit approach in combination with numerical simulation models. The equivalent circuit of ALIP is similar to that of an induction motor. This paper presents the derivation of equivalent circuit parameters using first principle approach. Sodium testing of designed ALIP using the equivalent circuit approach is also described and experimental results of the testing are presented. Comparison between experimental and analytical calculations has also been carried out. Some of the reasons for variation have also been listed in this paper

  19. Operating states of PFBR-primary sodium pump

    International Nuclear Information System (INIS)

    Sreedharan, K.V.; Rao, A.S.L.K.; Raju, C.; Kale, R.D.

    1994-01-01

    The proposed 500 MWe Prototype Fast Breeder Reactor (PFBR), the design of which is in progress at the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam will be equipped with four centrifugal sodium pumps each in its primary and secondary circuits. This paper discusses the various operating states of the primary pumps viz. (i) normal steady state (ii) transient state operation. The paper also discusses the safe limits on the pump operating speed and a few design basis incidents. (author). 1 ref., 2 figs., 3 tabs

  20. Single-phase sodium pump model for LMFBR thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Agrawal, A.K.

    1979-01-01

    A single-phase, homologous pump model has been developed for simulation of safety-related transients in LMFBR systems. Pump characteristics are modeled by homologous head and torque relations encompassing all regimes of operation. These relations were derived from independent model test results with a centrifugal pump of specific speed equal to 35 (SI units) or 1800 (gpm units), and are used to analyze the steady-state and transient behavior of sodium pumps in a number of LMFBR plants. Characteristic coefficients for the polynomials in all operational regimes are provided in a tabular form. The speed and flow dependence of head is included through solutions of the impeller and coolant dynamic equations. Results show the model to yield excellent agreement with experimental data in sodium for the FFTF prototype pump, and with vendor calculations for the CRBR pump. A sample pipe rupture calculation is also performed to demonstrate the necessity for modeling the complete pump characteristics

  1. The Effects of Altered Membrane Cholesterol Levels on Sodium Pump Activity in Subclinical Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Suparna Roy

    2017-02-01

    Full Text Available BackgroundMetabolic dysfunctions characteristic of overt hypothyroidism (OH start at the early stage of subclinical hypothyroidism (SCH. Na+/K+-ATPase (the sodium pump is a transmembrane enzyme that plays a vital role in cellular activities in combination with membrane lipids. We evaluated the effects of early changes in thyroid hormone and membrane cholesterol on sodium pump activity in SCH and OH patients.MethodsIn 32 SCH patients, 35 OH patients, and 34 euthyroid patients, sodium pump activity and cholesterol levels in red blood cell membranes were measured. Serum thyroxine (T4 and thyroid stimulating hormone (TSH levels were measured using enzyme-linked immunosorbent assays. Differences in their mean values were analysed using post hoc analysis of variance. We assessed the dependence of the sodium pump on other metabolites by multiple regression analysis.ResultsSodium pump activity and membrane cholesterol were lower in both hypothyroid groups than in control group, OH group exhibiting lower values than SCH group. In SCH group, sodium pump activity showed a significant direct dependence on membrane cholesterol with an inverse relationship with serum TSH levels. In OH group, sodium pump activity depended directly on membrane cholesterol and serum T4 levels. No dependence on serum cholesterol was observed in either case.ConclusionDespite the presence of elevated serum cholesterol in hypothyroidism, membrane cholesterol contributed significantly to maintain sodium pump activity in the cells. A critical reduction in membrane cholesterol levels heralds compromised enzyme activity, even in the early stage of hypothyroidism, and this can be predicted by elevated TSH levels alone, without any evident clinical manifestations.

  2. AS160 associates with the Na+,K+-ATPase and mediates the adenosine monophosphate-stimulated protein kinase-dependent regulation of sodium pump surface expression.

    Science.gov (United States)

    Alves, Daiane S; Farr, Glen A; Seo-Mayer, Patricia; Caplan, Michael J

    2010-12-01

    The Na(+),K(+)-ATPase is the major active transport protein found in the plasma membranes of most epithelial cell types. The regulation of Na(+),K(+)-ATPase activity involves a variety of mechanisms, including regulated endocytosis and recycling. Our efforts to identify novel Na(+),K(+)-ATPase binding partners revealed a direct association between the Na(+),K(+)-ATPase and AS160, a Rab-GTPase-activating protein. In COS cells, coexpression of AS160 and Na(+),K(+)-ATPase led to the intracellular retention of the sodium pump. We find that AS160 interacts with the large cytoplasmic NP domain of the α-subunit of the Na(+),K(+)-ATPase. Inhibition of the activity of the adenosine monophosphate-stimulated protein kinase (AMPK) in Madin-Darby canine kidney cells through treatment with Compound C induces Na(+),K(+)-ATPase endocytosis. This effect of Compound C is prevented through the short hairpin RNA-mediated knockdown of AS160, demonstrating that AMPK and AS160 participate in a common pathway to modulate the cell surface expression of the Na(+),K(+)-ATPase.

  3. Resonant photopumping of a neon lasant plasma by a sodium pump plasma

    International Nuclear Information System (INIS)

    Young, F.C.; Apruzese, J.P.; Burkhalter, P.G.; Cooperstein, G.; Davis, J.; Mosher, D.; Ottinger, P.F.; Scherrer, V.E.; Stephanakis, S.J.; Mehlman, C.; Welch, B.L.

    1988-01-01

    Resonant photopumping of heliumlike neon by helium like sodium is being investigated to extend this pumping technique to the soft x-ray region. In the Na-pump/Ne-lasant system, the 1s 2 -1s2p 1 P 1 line of Na X at 11.0027 A differs by 2 parts in 10 4 from the 1s 2 -1s 4 p 1 P 1 line of Ne 1X at 11.0003 A. This wavelength difference corresponds to about one Doppler width at the sodium plasma temperatures (200-500 eV) required for strong Na X pump radiation. Sodium line radiation of sufficient power irradiating a properly prepared neon plasma will cause overpopulation of the Ne 1X n = 4 singlet level leading to lasing in the 4-3, 4-2, and possibly 3-2 singlet transitions. Experimentally, the current pulse from the NRL Gamble-II generator is used to produce side-by-side z-pinch plasmas of sodium fluoride (NaF) and neon. The discharges are viewed radially with x-ray diagnostics including time-integrated pinhole cameras, time-resolved x-ray diodes, and a time-integrated curved-crystal spectrograph. Measurements of the neon plasma indicate that a discharge current of about 200 kA is required to produce a neon lasant with a dominant heliumlike ground-state population. For fluorescence experiments, appropriate neon lasant conditions (density of about 10 18 cm -3 and temperature of 50-100 eV) must be produced at the time of the intense sodium pump-line radiation. Fluorescence is demonstrated by observing enhancement of the 4-1 line (He-γ) from the neon plasma relative to the 3-1 line (He-γ) when the neon is pumped by sodium. An increase in this γ-to-β ratio of 25% has been observed when the sodium pump radiation is present. The results of recent experiments are reported, and their implications for future experiments are discussed

  4. Sodium flow rate measurement method of annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo

    2011-01-01

    This report describes a method for measuring sodium flow rate of annular linear induction pumps arranged in parallel and its verification result obtained through an experiment and a numerical analysis. In the method, the leaked magnetic field is measured with measuring coils at the stator end on the outlet side and is correlated with the sodium flow rate. The experimental data and the numerical result indicate that the leaked magnetic field at the stator edge keeps almost constant when the sodium flow rate changes and that the leaked magnetic field change arising from the flow rate change is small compared with the overall leaked magnetic field. It is shown that the correlation between the leaked magnetic field and the sodium flow rate is almost linear due to this feature of the leaked magnetic field, which indicates the applicability of the method to small-scale annular linear induction pumps. (author)

  5. Thirteen pump-probe resonances of the sodium D1 line

    International Nuclear Information System (INIS)

    Wong, Vincent; Boyd, Robert W.; Stroud, C. R. Jr.; Bennink, Ryan S.; Marino, Alberto M.

    2003-01-01

    We present the results of a pump-probe laser spectroscopic investigation of the Doppler-broadened sodium D1 resonance line. We find 13 resonances in the resulting spectra. These observations are well described by the numerical predictions of a four-level atomic model of the hyperfine structure of the sodium D1 line. We also find that many, but not all, of these features can be understood in terms of processes originating in a two-level or three-level subset of the full four-level model. The processes we observed include forward near-degenerate four-wave mixing and saturation in a two-level system, difference-frequency crossing and nondegenerate four-wave mixing in a three-level V system, electromagnetically induced transparency and optical pumping in a three-level lambda system, cross-transition resonance in a four-level double-lambda system, and conventional optical pumping. Most of these processes lead to sub-Doppler or even subnatural linewidths. The dependence of these resonances on the pump intensity and pump detuning from atomic resonance are also studied

  6. Design and operation of a small (benchtop) pumped sodium loop

    International Nuclear Information System (INIS)

    Trevillion, E.A.; Rowe, D.M.J.

    1975-08-01

    The report outlines the design and operation of a small (benchtop) pumped sodium loop (sodium, 650g). The loop incorporates a diffusion cold trap to control the oxygen impurity level in the sodium and a sodium sampler/distillation unit to enable sodium samples to be analysed for impurities. Sodium flow rates of up to 5.5cm.s -1 (1cm 3 .s -1 ) have been achieved at temperatures up to 673.2K (400 0 C) and temperatures of up to 1023.2K (750 0 C) have been achieved under static conditions. A device for the addition and removal of metallic speciments to and from the loop sodium without contamination of either the specimens or the sodium is also described. (author)

  7. Development of electro-magnetic pump for the ASTRID Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Suzuki, Tetsu; Aizawa, Rie; Wakasaki, Shingo; Dechelette, Frank; Benoit, Fabrice

    2017-01-01

    In the framework of the SFR (Sodium-cooled Fast Reactor) prototype called ASTRID (Advance Sodium Technological Reactor for Industrial Demonstration), the large capacity Electro-Magnetic Pumps (EMP) as main circulating pumps on the intermediate sodium circuits has been considered instead of mechanical pumps by CEA. The use of EMP has several decisive technological merits compared with mechanical pump in the reactor design, operation and maintenance. Nevertheless, some theoretical and technological developments have to be carried out in order to validate the design tools which take Magneto Hydro Dynamic (MHD) phenomena into account and the applicability of the EMP to the steady state and transient operating conditions of ASTRID. To move forward to developments, a collaboration agreement between the CEA and TOSHIBA Corporation was made and entered into to carry out a joint work program on the EMP for ASTRID design and development. CEA performed the theoretical analysis, and the EMP experimental model is constructed by CEA to support these theoretical developments. This model consists of a middle-size annular EMP for the liquid metal sodium. The various testing program using this model has been started in 2016. TOSHIBA performed the examination of design specification for ASTRID, an electromagnetic design, a structural design and various analyses. The structure design has been examined the placement of the sodium boundary and the withstand pressure, etc. And, if the thicknesses of the structure increase for withstanding pressure, the pump efficiency falls because the loss of the electromagnetic force increases. Therefore the balance between withstanding pressure and the efficiency has been considered by an electromagnetism design. This paper presents the design studies and experimental activities for the EMP development in the framework of the CEA-TOSHIBA collaborations. (author)

  8. The Design of the Annular Linear Induction EM Pump with a Sodium Flowrate of 35 kg/sec

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Lee, Tae Ho; Lee, Yong Bum

    2010-01-01

    Generally, an electromagnetic (EM) pump has been employed to circulate liquid metal with a high electrical conductivity by the electromagnetic force (Lorentz force) which is the cross product of the magnetic field and its perpendicular current. Therefore, an EM pump has its advantages over a mechanical pump such as no noise, no rotating parts, and its simplicity. Actually, it can be used for the Sodium Fast Reactor (SFR) which uses liquid sodium with a high electrical conductivity as a coolant. In the present study, the annular linear induction EM pump with a flowrate of 2,265 L/min and a head of 4 bar is designed by using an electrical equivalent circuit method which is applied to linear induction machines. The designed pump will be used for the verification of the elements, which are IHX, AHX and DHX, in the component performance test sodium loop for the sodium thermo-hydraulic experimental facility. The pump is manufactured and fabricated to meet the requirements of the material and a functioning in high temperature-sodium environments. The P-Q characteristic is theoretically calculated on the designed pump according to the input currents and voltage

  9. Inadvertent raising of levels in the FFTF primary sodium pumps. Final unusual occurrence report, HEDL 79-34 (FFTF-58)

    International Nuclear Information System (INIS)

    Kuechle, J.D.

    1981-01-01

    The final unusual occurrence report describes the inadvertent raising of the sodium level in the FFTF primary sodium pumps during system testing. This event is now judged to have caused permanent deformation of the primary pump shaft on loop 1 during a period when pump rotation was stopped and sodium level in the pump tank was inadvertently increased. The shaft was subsequently removed, straightened, and returned to service in the spare FFTF pump

  10. Flavonolignans As a Novel Class of Sodium Pump Inhibitors

    Czech Academy of Sciences Publication Activity Database

    Kubala, M.; Čechová, P.; Geletičová, J.; Biler, M.; Štenclová, T.; Trouillas, P.; Biedermann, David

    2016-01-01

    Roč. 7, Mar 30 (2016), s. 115 ISSN 1664-042X R&D Projects: GA ČR(CZ) GA15-03037S Institutional support: RVO:61388971 Keywords : sodium pump * Na+/K+-ATPase * flavonolignans Subject RIV: CE - Biochemistry Impact factor: 4.134, year: 2016

  11. Specialists' meeting on cavitation criteria for designing mechanisms working in sodium: Application to pumps. Summary report

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of the meeting was to provide a forum for discussions and exchanges of views on cavitation phenomena in sodium, cavitation tests on pump models in water and sodium, application of test results to LMFBR plants, impact on sodium pump design. Topics of interest were also detection methods for cavitation during tests and cavitation problems in electro-magnetic pumps. Two categories of papers were presented: national position papers and specialised topical papers. The main topics discussed, in three sessions were the following: National papers on cavitation; cavitation tests, performance, measuring methods and results; application of test results and implications on the future programmes

  12. Characterization and isolation of a light driven sodium pump from membranes of Halobacterium halobium. Final technical progress report

    International Nuclear Information System (INIS)

    MacDonald, R.E.

    1982-01-01

    We investigated three aspects of the light driven sodium pump (halorhodopsin, which appear to be crucial to our understanding of the mechanisms employed by Halobacterium halobium and to further investigate this unique system of energy conservation. We characterized the molecular mechanisms of transmembrane sodium transport in vesicles from H. halobium with particular reference to the mechanism of couplins of light energy to net sodium translocation. We develop procedures and techniques for extracting the components of the light driven sodium pump from membranes and incorporating them into artificial membrane systems. We examine the mechanism of conversion of bacteriorhodopsin from an active to an inactive form in membrane vesicles and to relate this alternative state of this pigment to the presence of the light driven sodium pump

  13. Pumps modelling of a sodium fast reactor design and analysis of hydrodynamic behavior

    Directory of Open Access Journals (Sweden)

    Ordóñez Ródenas José

    2016-01-01

    Full Text Available One of the goals of Generation IV reactors is to increase safety from those of previous generations. Different research platforms have been identified the need to improve the reliability of the simulation tools to ensure the capability of the plant to accommodate the design basis transients established in preliminary safety studies. The paper describes the modelling of primary pumps in advanced sodium cooled reactors using the TRACE code. Following the implementation of the models, the results obtained in the analysis of different design basis transients are compared with the simplifying approximations used in reference models. The paper shows the process to obtain a consistent pump model of the ESFR (European Sodium Fast Reactor design and the analysis of loss of flow transients triggered by pumps coast–down analyzing the thermal hydraulic neutronic coupled system response. A sensitivity analysis of the system pressure drops effect and the other relevant parameters that influence the natural convection after the pumps coast–down is also included.

  14. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events, especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  15. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events - especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  16. Comparison of cavitation tests on the SNR 300 prototype sodium pump, carried out using water at room temperature and liquid sodium at 5800C

    International Nuclear Information System (INIS)

    Fakkel, R.H.; Hoornweg, C.J.; Kamerling, B.; Ten Wolde, Tj.; Heslenfeld, M.W.; Mendte, W.K.; Bunjies, J.H.

    1976-01-01

    This paper gives results of tests carried out on a centrifugal pump in both a water and a sodium test facility. The pump tested is a prototype of the primary circulation pumps intended for a LMFBR 300 MWe nuclear power station (the SNR reactor) under construction at Kalkar, West Germany. The pump characteristics under various NPSH-conditions were investigated, and a comparison is made in the paper between the results of cavitation tests using water and liquid sodium. An attempt is made to account for differences in pump characteristics in both types of tests by referring to the physical properties of the liquids used (water and sodium). An attempt is also made to correlate the results obtained with the full-scale prototype to those obtained previously with a half-scale model of the impeller. The various test circuits used should be made identical, in order to avoid that differences in geometry should obscure essential features resulting from using different liquids. Yet, it showed that in this respect, the tests did not obey to this key-rule, reasons why the test results did not fully reveal the essential physical properties of either fluid under cavitating conditions. (author)

  17. Reversal of sodium pump inhibitor induced vascular smooth muscle contraction with digibind. Stoichiometry and its implications.

    Science.gov (United States)

    Krep, H H; Graves, S W; Price, D A; Lazarus, M; Ensign, A; Soszynski, P A; Hollenberg, N K

    1996-01-01

    The possibility that a circulating sodium pump inhibitor contributes to the pathogenesis of volume-dependent hypertension via an action on vascular smooth muscle (VSM) is supported by multiple lines of investigation, but remains controversial. We had two goals in this study. The first was to compare the pattern of contractile response of rabbit aorta induced by two candidates, ouabain and a labile sodium pump inhibitor that we have identified in the peritoneal dialysate of volume-expanded hypertensive patients with chronic renal failure. Our second goal was to examine the ability of Digibind, a Fab fragment of antisera directed against digoxin, to reverse VSM contraction induced by both agents. Ouabain induced a concentration-dependent contraction, which was delayed in onset, was gradual, and reached a stable plateau after many hours. The labile sodium pump inhibitor induced a qualitatively similar series of responses. Digibind rapidly reversed the contractile responses to both sodium pump inhibitors, with a rate of relaxation that matched that induced by physical removal of the pump inhibitor from the bath. For ouabain, the Digibind:ouabain stoichiometry was highly predictable. When Digibind was present in a molar concentration equivalent to that of ouabain, or less, it had no effect. When the Digibind concentration was twice that of ouabain, complete relaxation occurred. Although the concentration:VSM response relationship for ouabain was steep, the concentration:effect interaction with Digibind was even more steep. The molar concentration of Digibind required to reverse the effects of the labile endogenous inhibitor from peritoneal dialysate was consistently lower than that for ouabain, which is compatible with either greater potency of the labile factor in VSM or greater affinity for Digibind. These findings are compatible with a role for one or more endogenous sodium pump inhibitors as the determinant of vascular smooth muscle tone in the volume

  18. Pumps modelling of a sodium fast reactor design and analysis of hydrodynamic behavior - 15294

    International Nuclear Information System (INIS)

    Ordonez, J.; Lazaro, A.; Martorell, S.

    2015-01-01

    One of the goals of Generation IV reactors is to increase safety from those of previous generations. Different research platforms have identified the need to improve the reliability of the simulation tools to ensure the capability of the plant to accommodate the design basis transients established in preliminary safety studies. The paper describes the modeling of recirculation pumps in advanced sodium cooled reactors using the TRACE code. Following the implementation of the models, the results obtained in the analysis of different design basis transients are compared with the simplifying approximations used in reference models. The paper shows the process to obtain a consistent pump model of the ESFR (European Sodium Fast Reactor) design and the analysis of loss of flow transients triggered by pumps coast-down analyzing the thermal hydraulic neutronic coupled system response. A sensitivity analysis of the system pressure drops effect and the other relevant parameters that influence the natural convection after the pumps coast-down is also included. (authors)

  19. Mode of Action of the Natural Insecticide, Decaleside Involves Sodium Pump Inhibition.

    Science.gov (United States)

    Rajashekar, Yallappa; Shivanandappa, Thimmappa

    2017-01-01

    Decalesides are a new class of natural insecticides which are toxic to insects by contact via the tarsal gustatory chemosensilla. The symptoms of their toxicity to insects and the rapid knockdown effect suggest neurotoxic action, but the precise mode of action and the molecular targets for decaleside action are not known. We have presented experimental evidence for the involvement of sodium pump inhibition in the insecticidal action of decaleside in the cockroach and housefly. The knockdown effect of decaleside is concomitant with the in vivo inhibition of Na+, K+ -ATPase in the head and thorax. The lack of insecticidal action by experimental ablation of tarsi or blocking the tarsal sites with paraffin correlated with lack of inhibition of Na+- K+ ATPase in vivo. Maltotriose, a trisaccharide, partially rescued the toxic action of decaleside as well as inhibition of the enzyme, suggesting the possible involvement of gustatory sugar receptors. In vitro studies with crude insect enzyme preparation and purified porcine Na+, K+ -ATPase showed that decaleside competitively inhibited the enzyme involving the ATP binding site. Our study shows that the insecticidal action of decaleside via the tarsal gustatory sites is causally linked to the inhibition of sodium pump which represents a unique mode of action. The precise target(s) for decaleside in the tarsal chemosensilla and the pathway linked to inhibition of sodium pump and the insecticidal action remain to be understood.

  20. On the concept of resting potential--pumping ratio of the Na⁺/K⁺ pump and concentration ratios of potassium ions outside and inside the cell to sodium ions inside and outside the cell.

    Science.gov (United States)

    Xu, Ning

    2013-01-01

    In animal cells, the resting potential is established by the concentration gradients of sodium and potassium ions and the different permeabilities of the cell membrane to them. The large concentration gradients of sodium and potassium ions are maintained by the Na⁺/K⁺ pump. Under physiological conditions, the pump transports three sodium ions out of and two potassium ions into the cell per ATP hydrolyzed. However, unlike other primary or secondary active transporters, the Na⁺/K⁺ pump does not work at the equilibrium state, so the pumping ratio is not a thermodynamic property of the pump. In this article, I propose a dipole-charging model of the Na⁺/K⁺ pump to prove that the three Na⁺ to two K⁺ pumping ratio of the Na⁺/K⁺ pump is determined by the ratio of the ionic mobilities of potassium to sodium ions, which is to ensure the time constant τ and the τ-dependent processes, such as the normal working state of the Na⁺/K⁺ pump and the propagation of an action potential. Further, the concentration ratios of potassium ions outside and inside the cell to sodium ions inside and outside the cell are 0.3027 and 0.9788, respectively, and the sum of the potassium and sodium equilibrium potentials is -30.3 mV. A comparative study on these constants is made for some marine, freshwater and terrestrial animals. These findings suggest that the pumping ratio of the Na⁺/K⁺ pump and the ion concentration ratios play a role in the evolution of animal cells.

  1. The design and testing of sodium pumps in the UK to meet the CDFR cavitation criteria

    International Nuclear Information System (INIS)

    Preece, G.E.; Macleod, I.D.; Wilkinson, D.

    2002-01-01

    A primary objective in the design of the sodium pumps for the UK Commercial Demonstration Fast Reactor has been to avoid cavitation during normal operation. This requirement arises from the need to avoid blade erosion and also, in the case of the Primary Sodium Pumps (PSP), the generation of cavitation noise which might otherwise interfere with instrumentation installed to detect noise of boiling in the core. This paper outlines the approach adopted to achieve a pump design with good cavitation performance and the programme of model testing carried out in a water loop to establish the cavitation boundaries for incipient cavitation of selected designs using both visual and acoustic techniques

  2. Development of active magnetic bearings and ferrofluid seals toward oil free sodium pumps

    International Nuclear Information System (INIS)

    Sreedhar, B.K.; Kumar, R. Nirmal; Sharma, Prashant; Ruhela, Shivprakash; Philip, John; Sundarraj, S.I.; Chakraborty, N.; Mohana, M.; Sharma, Vijay; Padmakumar, G.; Nashine, B.K.; Rajan, K.K.

    2013-01-01

    Sodium centrifugal pumps employ conventional oil cooled bearings and mechanical seals to support the rotor assembly outside sodium and to seal the cover gas from the atmosphere. Although engineered safety features are incorporated in the design and detailed operational procedures formulated to ensure that no oil contamination of sodium can occur, there have been incidents of oil ingress into sodium. A design variant that eliminates the need for oil in top bearings and seals is therefore a promising option. This paper discusses the work in progress to develop a magnetic bearing and ferrofluid seal combination that can achieve this purpose

  3. Mode of Action of the Natural Insecticide, Decaleside Involves Sodium Pump Inhibition.

    Directory of Open Access Journals (Sweden)

    Yallappa Rajashekar

    Full Text Available Decalesides are a new class of natural insecticides which are toxic to insects by contact via the tarsal gustatory chemosensilla. The symptoms of their toxicity to insects and the rapid knockdown effect suggest neurotoxic action, but the precise mode of action and the molecular targets for decaleside action are not known. We have presented experimental evidence for the involvement of sodium pump inhibition in the insecticidal action of decaleside in the cockroach and housefly. The knockdown effect of decaleside is concomitant with the in vivo inhibition of Na+, K+ -ATPase in the head and thorax. The lack of insecticidal action by experimental ablation of tarsi or blocking the tarsal sites with paraffin correlated with lack of inhibition of Na+- K+ ATPase in vivo. Maltotriose, a trisaccharide, partially rescued the toxic action of decaleside as well as inhibition of the enzyme, suggesting the possible involvement of gustatory sugar receptors. In vitro studies with crude insect enzyme preparation and purified porcine Na+, K+ -ATPase showed that decaleside competitively inhibited the enzyme involving the ATP binding site. Our study shows that the insecticidal action of decaleside via the tarsal gustatory sites is causally linked to the inhibition of sodium pump which represents a unique mode of action. The precise target(s for decaleside in the tarsal chemosensilla and the pathway linked to inhibition of sodium pump and the insecticidal action remain to be understood.

  4. Several particular aspects of hydrostatic shaft guide bearings in mechanical liquid sodium pumps

    International Nuclear Information System (INIS)

    Elie, X.

    A number of problems arise with immersed hydrostatic shaft guide bearings in sodium pumps, mainly at high-temperature operation. Experience has shown that a substantial bearing clearance is required which, in present designs, takes a considerable amount of fluid from the pumps. A new design is suggested, resulting in a very appreciable reduction in the additional flow requirement, while maintaining a comparable load capacity by a hydrodynamic effect

  5. Rotor dynamic studies of a vertical sodium pump supported on a spherical seat

    International Nuclear Information System (INIS)

    Asokkumar, S.; Ramalingam, P.; Baskar, S.; Balachander, K.; Kale, R.D.

    1994-01-01

    One of the important areas in the mechanical design of Primary Sodium Pumps (PSP) concerns with the problem of accommodating the differential thermal expansion between the pump support and the discharge pipe which function at substantially different temperatures. A spherical ball resting on a spherical split seat is designed to allow the tilting of the pump without creating significant stresses in the pump casing and the discharge pipe. To ascertain the dynamic performance of the pump and to validate the design, an experimental study was carried out with a 1/4 model spherical seat installed in an existing 50 cu.m/hr pump. The paper discusses the modeling criteria, details of theoretical/experimental studies and results obtained during testing. This paper also discusses details of full size test rig which is under construction. (author). 4 refs., 3 figs., 2 tabs

  6. Effects of dietary magnesium on sodium-potassium pump action in the heart of rats

    International Nuclear Information System (INIS)

    Fischer, P.W.; Giroux, A.

    1987-01-01

    Sprague-Dawley rats were fed a basal AIN-76 diet containing 80, 200, 350, 500 or 650 mg of magnesium per kilogram of diet for 6 wk. Ventricular slices, as well as microsomal fractions, were prepared from the hearts and were used to determine sodium-potassium pump activity. Sodium-potassium pump activity was assessed in the microsomal membranes by determining the ouabain-inhibitable Na+, K+-ATPase activity and [ 3 H]ouabain binding, and in the ventricular slices, by determining ouabain-sensitive 86 Rb uptake under K+-free conditions. The ATPase activity increased with increasing dietary magnesium, so that in the hearts of those animals that were fed 500 and 650 mg of magnesium/kg diet, it was significantly greater than the activity in the hearts of the animals fed 80 and 200 mg/kg diet. Similarly, 86 Rb uptake by heart slices from rats fed 500 and 650 mg of magnesium/kg diet was significantly greater than the uptake by heart slices from animals fed 80 and 200 mg/kg diet. [ 3 H]Ouabain binding did not change with increasing dietary magnesium. Thus, magnesium deficiency appears to have no effect on the number of sodium-potassium pump sites, but does decrease the activity of the pump. It is suggested that this leads to an increase in intracellular Na+, resulting in a change in the membrane potential, and may contribute to the arrhythmias associated with magnesium deficiency

  7. Internal fluid flow management analysis for Clinch River Breeder Reactor Plant sodium pumps

    International Nuclear Information System (INIS)

    Cho, S.M.; Zury, H.L.; Cook, M.E.; Fair, C.E.

    1978-12-01

    The Clinch River Breeder Reactor Plant (CRBRP) sodium pumps are currently being designed and the prototype unit is being fabricated. In the design of these large-scale pumps for elevated temperature Liquid Metal Fast Breeder Reactor (LMFBR) service, one major design consideration is the response of the critical parts to severe thermal transients. A detailed internal fluid flow distribution analysis has been performed using a computer code HAFMAT, which solves a network of fluid flow paths. The results of the analytical approach are then compared to the test data obtained on a half-scale pump model which was tested in water. The details are presented of pump internal hydraulic analysis, and test and evaluation of the half-scale model test results

  8. Electromagnetic pump technology

    International Nuclear Information System (INIS)

    Prabhakar, R.

    1994-01-01

    Fast Breeder Reactors have an important role to play in our nuclear power programme. Liquid metal sodium is used as the coolant for removing fission heat generated in fast reactors and a distinctive physical property of sodium is its high electrical conductivity. This enables application of electromagnetic (EM) pumps, working on same principle as electric motors, for pumping liquid sodium. Due to its lower efficiency as compared to centrifugal pumps, use of EM pumps has been restricted to reactor auxiliary circuits and experimental facilities. As part of our efforts to manufacture fast reactor components indigenously, work on the development of two types of EM pumps namely flat linear induction pump (FLIP) and annular linear induction pump (ALIP) has been undertaken. Design procedures based on an equivalent circuit approach have been established and results from testing a 5.6 x 10E-3 Cum/s (20 Cum/h) FLIP in a sodium loop were used to validate the procedure. (author). 7 refs., 6 figs

  9. Stability of penicillin G sodium diluted with 0.9% sodium chloride injection or 5% dextrose injection and stored in polyvinyl chloride bag containers and elastomeric pump containers.

    Science.gov (United States)

    Hossain, Mirza Akram; Friciu, Mihaela; Aubin, Sebastien; Leclair, Grégoire

    2014-04-15

    The stability of penicillin G sodium solutions stored in polyvinyl chloride (PVC) bags or elastomeric pump containers was studied. Test samples were prepared by diluting powdered penicillin G sodium (10 million units/10-mL vial) to solutions of 2,500 or 50,000 units/mL with 0.9% sodium chloride injection or 5% dextrose injection. The preparations were transferred to 250-mL PVC bags and elastomeric pump containers. All samples were prepared in triplicate and stored at 5°C. Chemical stability was measured by a stability-indicating high-performance liquid chromatographic (HPLC) assay and by pH evaluation. Particulate matter was evaluated according to compendial standards using a light-obscuration particle count test. Preparations were visually examined throughout the study. After 21 days of storage, all test samples remained chemically stable, with an HPLC assay recovery value of more than 90% of the initial value. After 28 days, all samples prepared with either diluent and stored in PVC bags, as well as the samples diluted to 2,500 units/mL with sodium chloride injection and stored in elastomeric pump containers, did not meet the recovery acceptance limit. For all test samples, the mean pH consistently decreased during storage, from about 6.4 to about 5.5. Particle counts remained acceptable throughout the study, and no change in appearance was observed. Penicillin G for injection (2,500 and 50,000 units/mL) diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 5°C in PVC containers or elastomeric pump containers was physically and chemically stable for a period of at least 21 days.

  10. The development of a cavitation free sodium pump for the breeder reactor

    International Nuclear Information System (INIS)

    Baladi, J.Y.; Nyilas, C.P.

    1986-01-01

    The sodium pumps for a liquid metal fast breeder reactor must be designed for exceptionally high reliability and long life. The principal adverse factor which tends to limit the primary pump life is cavitation which becomes potentially severe under off-design flow conditions caused by the requirement of two loop operations which resulted in a large operating flow range. This problem prompted an extensive study which included experimental investigations of scaled down and full size pumps. The investigations involved visual observations, acoustic signature recordings, and physical characteristic measurements of the model and full size impellers. The blade configuration of the model was modified several times. This paper describes the test facilities erected for this study, discusses the experimental techniques employed, and presents a sample of the experimental results

  11. Sodium-immersed self-cooled electromagnetic pump design and development of a large-scale coil for high temperature

    International Nuclear Information System (INIS)

    Oto, Akihiro; Naohara, Nobuyuki; Ishida, Masayoshi; Katsuki, Kenji; Kumazawa, Ryouji

    1995-01-01

    A sodium-immersed, self-cooled electromagnetic (EM) pump was recently studied as a prospective innovative technology to simplify a fast breeder reactor plant system. The EM pump for a primary pump, a pump type, was designed, and the structural concept and the system performance were clarified. For the flow control method, a constant voltage/frequency method was preferable from the point of view of pump performance and efficiency. The insulation life was tested on a large-scale coil at high temperature as part of the development of a large-capacity EM pump. Mechanical and electrical damage were not observed, and the insulation performance was quite good. The insulation system could also be applied to large-scale coils

  12. Cavitation erosion scaling: tests on a pump impeller in water and in sodium

    International Nuclear Information System (INIS)

    Dorey, J.M.; Rascalou, T.

    1992-01-01

    Tests to quantify cavitation agressivity carried out in water and in sodium (400 deg) on a model pump impeller are presented. The polished samples method has been used. It can be now applied to curved surfaces such as impeller blades with the help of new measurement devices. Results are discussed regarding scaling laws for fluid-to-fluid transposition

  13. Liquid sodium pumps

    International Nuclear Information System (INIS)

    Allen, H.G.

    1985-01-01

    The pump for use in a nuclear reactor cooling system comprises a booster stage impeller for drawing the liquid through the inlet. A diffuser is affixedly disposed within the pump housing to convert the kinetic pressure imparted to the liquid into increased static pressure. A main stage impeller is rotatively driven by a pump motor at a relatively high speed to impart a relatively high static pressure to the liquid and for discharging the liquid at a relatively high static pressure. A hydraulic coupling is disposed remotely from the liquid path for hydraulically coupling the main stage impeller and the booster stage impeller to rotate the booster stage impeller at a relatively low speed to maintain the low net positive suction pressure applied to the liquid at the inlet greater than the vapor pressure of the liquid and to ensure that the low net positive suction heat, as established by the main stage impeller exceeds the vapor pressure. The coupling comprises a grooved drum which rotates between inner and outer drag coupling members. In a modification the coupling comprises a torque converter. (author)

  14. Predictive Reliability Assessment of the Automatic Clutch on a Primary Sodium Pump Drive

    International Nuclear Information System (INIS)

    Westwell, P.

    1975-01-01

    This paper examines the reliability of a group of three clutch couplings each mounted between a pony motor and the main drive for the primary sodium pumps. The sodium pumps specification requires that continuously running AC pony motors be fitted to give a guaranteed 10% drive to the pumps in the event of a main supply failure. The drive to the main shaft is via 3 : 1 reduction gearing such that a six pole pony motor running at 300 rpm would drive the main shaft at 100 rpm i.e., 10% of its rated speed. In order that the pony motor drive could be permanently energised during normal operation a free wheeling clutch is fitted between the motor and the reduction gearing. The type of clutch chosen is. the Synchro-Self Shifting (SSS) clutch, shown in Figure 1. This type of clutch has proved itself under fairly onerous operating conditions, but is normally mounted on a horizontal driving shaft whereas in this case because of space limitations, it is necessary to mount it vertically. The reliability target set is that the chance of losing all three independent back-up pony motor drives on loss of main supplies should fall within the 10 -5 - 10 -6 band. Since the electrical supplies and other parts of the pony motor drives have been assessed within this target and some doubts expressed about the clutch it was now necessary to look at this in some detail

  15. Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes

    Science.gov (United States)

    Fan, Yuting; Yokoyama, Wally; Yi, Jiang

    2017-01-01

    The relative uptake and mechanisms of lipid-based emulsions of three different particle diameters by Caco-2 cells were studied. The corn oil-sodium caseinate emulsions showed little or no cytotoxicity even at 2 mg/mL protein concentration for any of the three droplet size emulsions. Confocal laser scanning microscopy (CLSM) of Nile red containing emulsions showed that the lipid-based emulsions were absorbed by Caco-2 cells. A negative correlation between the mean droplet size and cellular uptake was observed. There was a time-dependent and energy-dependent uptake as shown by incubation at different times and treatment with sodium azide a general inhibitor of active transport. The endocytosis of lipid-based emulsions was size-dependent. The internalization of nanoemulsion droplets into Caco-2 cells mainly occurred through clathrin- and caveolae/lipid raft-related pathways, while macropinocytosis route played the most important role for 556 nm emulsion endocytosis as shown by the use of specific pathway inhibitors. Permeability of the emulsion through the apical or basal routes also suggested that active transport may be the main route for lipid-based nanoemulsions. The results may assist in the design and application of lipid-based nanoemulsions in nutraceuticals and pharmaceuticals delivery. PMID:29072633

  16. Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes

    Directory of Open Access Journals (Sweden)

    Yuting Fan

    2017-10-01

    Full Text Available The relative uptake and mechanisms of lipid-based emulsions of three different particle diameters by Caco-2 cells were studied. The corn oil-sodium caseinate emulsions showed little or no cytotoxicity even at 2 mg/mL protein concentration for any of the three droplet size emulsions. Confocal laser scanning microscopy (CLSM of Nile red containing emulsions showed that the lipid-based emulsions were absorbed by Caco-2 cells. A negative correlation between the mean droplet size and cellular uptake was observed. There was a time-dependent and energy-dependent uptake as shown by incubation at different times and treatment with sodium azide a general inhibitor of active transport. The endocytosis of lipid-based emulsions was size-dependent. The internalization of nanoemulsion droplets into Caco-2 cells mainly occurred through clathrin- and caveolae/lipid raft-related pathways, while macropinocytosis route played the most important role for 556 nm emulsion endocytosis as shown by the use of specific pathway inhibitors. Permeability of the emulsion through the apical or basal routes also suggested that active transport may be the main route for lipid-based nanoemulsions. The results may assist in the design and application of lipid-based nanoemulsions in nutraceuticals and pharmaceuticals delivery.

  17. The development of a cavitation free sodium pump for the breeder reactor

    International Nuclear Information System (INIS)

    Baladi, J.Y.; Nyilas, C.P.

    1986-12-01

    The sodium pumps for a liquid metal fast breeder reactor must be designed for exceptionally high reliability and long life. The principal adverse factor which tends to limit the primary pump life is cavitation which becomes potentially severe under off-design flow conditions caused by the requirement of two loop operations which resulted in a large operating flow range. This problem prompted an extensive study which included experimental investigations of scaled down and full size pumps. The investigations involved visual observations, acoustic signature recordings, and physical characteristic measurements of the model and full size impellers. The blade configuration of the model was modified several times. After each modification intensive testing was conducted with feedback to established design criteria. The results obtained from the final configuration showed excellent cavitation performance. This configuration was then machined on the full scale impeller and tested. The results confirmed acceptable performance in the entire range of operating conditions. This paper describes the test facilities erected for this study, discusses the experimental techniques employed, and presents the experimental techniques employed, and presents a sample of the experimental results

  18. Liquid metals pumping

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1984-01-01

    Pumps used to pump liquid metals depend on the liquid metal and on the type of application concerned. One deals more particularly with electromagnetic pumps, the main pumps used with mechanical pumps. To pump sodium in the nuclear field, these two types of pumps are used; the pumps of different circuits of Super Phenix are presented and described [fr

  19. Determination of the full characteristics of a journal bearing for a fast reactor sodium pump using a full scale model bearing operating in water

    International Nuclear Information System (INIS)

    Gilroy, J.E.; Dostal, M.; Jones, R.P.

    1988-01-01

    This paper describes the analytical and experimental work carried out in support of a sodium-lubricated hydrostatic bearing for the CDFR primary sodium pump. The principle objective of the work was to establish bearing characteristics under steady-state and transient running conditions. A knowledge of these characteristics is necessary for the determination of the dynamic performance of the pump under normal and transient operating conditions and also under earthquake loading conditions

  20. Endocytosis and Enamel Formation

    Directory of Open Access Journals (Sweden)

    Cong-Dat Pham

    2017-07-01

    Full Text Available Enamel formation requires consecutive stages of development to achieve its characteristic extreme mineral hardness. Mineralization depends on the initial presence then removal of degraded enamel proteins from the matrix via endocytosis. The ameloblast membrane resides at the interface between matrix and cell. Enamel formation is controlled by ameloblasts that produce enamel in stages to build the enamel layer (secretory stage and to reach final mineralization (maturation stage. Each stage has specific functional requirements for the ameloblasts. Ameloblasts adopt different cell morphologies during each stage. Protein trafficking including the secretion and endocytosis of enamel proteins is a fundamental task in ameloblasts. The sites of internalization of enamel proteins on the ameloblast membrane are specific for every stage. In this review, an overview of endocytosis and trafficking of vesicles in ameloblasts is presented. The pathways for internalization and routing of vesicles are described. Endocytosis is proposed as a mechanism to remove debris of degraded enamel protein and to obtain feedback from the matrix on the status of the maturing enamel.

  1. Synaptic Vesicle Endocytosis in Different Model Systems

    Directory of Open Access Journals (Sweden)

    Quan Gan

    2018-06-01

    Full Text Available Neurotransmission in complex animals depends on a choir of functionally distinct synapses releasing neurotransmitters in a highly coordinated manner. During synaptic signaling, vesicles fuse with the plasma membrane to release their contents. The rate of vesicle fusion is high and can exceed the rate at which synaptic vesicles can be re-supplied by distant sources. Thus, local compensatory endocytosis is needed to replenish the synaptic vesicle pools. Over the last four decades, various experimental methods and model systems have been used to study the cellular and molecular mechanisms underlying synaptic vesicle cycle. Clathrin-mediated endocytosis is thought to be the predominant mechanism for synaptic vesicle recycling. However, recent studies suggest significant contribution from other modes of endocytosis, including fast compensatory endocytosis, activity-dependent bulk endocytosis, ultrafast endocytosis, as well as kiss-and-run. Currently, it is not clear whether a universal model of vesicle recycling exist for all types of synapses. It is possible that each synapse type employs a particular mode of endocytosis. Alternatively, multiple modes of endocytosis operate at the same synapse, and the synapse toggles between different modes depending on its activity level. Here we compile review and research articles based on well-characterized model systems: frog neuromuscular junctions, C. elegans neuromuscular junctions, Drosophila neuromuscular junctions, lamprey reticulospinal giant axons, goldfish retinal ribbon synapses, the calyx of Held, and rodent hippocampal synapses. We will compare these systems in terms of their known modes and kinetics of synaptic vesicle endocytosis, as well as the underlying molecular machineries. We will also provide the future development of this field.

  2. Interaction among Saccharomyces cerevisiae pheromone receptors during endocytosis

    Directory of Open Access Journals (Sweden)

    Chien-I Chang

    2014-03-01

    Full Text Available This study investigates endocytosis of Saccharomyces cerevisiae α-factor receptor and the role that receptor oligomerization plays in this process. α-factor receptor contains signal sequences in the cytoplasmic C-terminal domain that are essential for ligand-mediated endocytosis. In an endocytosis complementation assay, we found that oligomeric complexes of the receptor undergo ligand-mediated endocytosis when the α-factor binding site and the endocytosis signal sequences are located in different receptors. Both in vitro and in vivo assays suggested that ligand-induced conformational changes in one Ste2 subunit do not affect neighboring subunits. Therefore, recognition of the endocytosis signal sequence and recognition of the ligand-induced conformational change are likely to be two independent events.

  3. Sodium bicarbonate does not prevent postoperative acute kidney injury after off-pump coronary revascularization: a double-blinded randomized controlled trial.

    Science.gov (United States)

    Soh, S; Song, J W; Shim, J K; Kim, J H; Kwak, Y L

    2016-10-01

    Acute kidney injury (AKI) is a common morbidity after off-pump coronary revascularization. We investigated whether perioperative administration of sodium bicarbonate, which might reduce renal injury by alleviating oxidative stress in renal tubules, prevents postoperative AKI in off-pump coronary revascularization patients having renal risk factors. Patients (n=162) having at least one of the following AKI risk factors were enrolled: (i) age >70 yr; (ii) diabetes mellitus; (iii) chronic renal disease; (iv) congestive heart failure or left ventricular ejection fraction 24 h) relative to the control group (20 vs 6, P=0.003). Perioperative sodium bicarbonate administration did not decrease the incidence of AKI after off-pump coronary revascularization in high-risk patients and might even be associated with a need for prolonged ventilatory care. NCT01840241. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The replacement of an electromagnetic primary sodium sampling pump in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Grygiel, M.L.; McCargar, C.G.

    1985-01-01

    On November 16, 1984 a leak was discovered in one of the Fast Flux Test Facility (FFTF) Primary Sodium Sampling System electromagnetic pumps. The leak was discovered in the course of routine cell entry to investigate a shorted trace heat element. The purpose of this paper is to describe the circumstances surrounding the occurrence of the leak, the actions taken to replace the damaged pump and the additional steps which were necessary to return the plant to power. In addition, the processes involved in producing the leak are described briefly. The relative ease of recovery from this incident is indicative of the overall feasibility of the Liquid Metal Reactor (LMR) operational concept

  5. Sodium test of the Super-Phenix full size primary pump shaft on the CPV-1 test rig at ENEA-Brasimone

    International Nuclear Information System (INIS)

    Contardi, T.; Rapezzi, L.; Partiti, C.; Zola, M.; Denimal, P.

    1984-01-01

    Tests on FBR Superphenix primary pump shaft were performed within the sodium-cooled FBR common research and development programs provided for by the cooperation agreement between ENEA and CEA. These tests were performed in CPV-1 plant ENEA - Brasimone Energy Research Center. The CPV-1 rig was built by FIAT-TTG and reproduces the reactor operating conditions (sodium-temperature and level, shaft inclination, etc..). Furthermore, CPV-1 rig's most interesting feature is its possibility to apply seismic stresses to test section by means of an oleodynamic actuator. Pivoterie-1 test section was made by JEUMONT-SCHNEIDER which built Superphenix pumps too; it was given to ENEA by FIAT-TTG. Seismic tests were performed with the cooperation of ISMES and FIAT-TTG. (author)

  6. Potassium homeostasis during exercise in domestic species: the role of the sodium-potassium pump in skeletal muscle

    NARCIS (Netherlands)

    Everts, Maria E.

    2001-01-01

    In 1997, Jens Christian Skou was awarded the Nobel prize in Chemistry for his discovery and elegant description, some 40 years earlier, of the sodium-potassium (Na+,K+) pump in crab nerve fibres [37]. It is now widely accepted that this cation transport system is essential for cell function, and

  7. CW light sources at the 589 nm sodium D2 line by sum-frequency mixing of diode pumped neodymium lasers

    International Nuclear Information System (INIS)

    Lü, Y F; Lu, J; Xu, L J; Sun, G C; Zhao, Z M; Gao, X; Lin, J Q

    2010-01-01

    We present a laser architecture to obtain continuous-wave (CW) light sources at the 589 nm sodium D2 line. A 808 nm diode-pumped a Nd:YLiF 4 (Nd:YLF) crystal emitting at 1053 nm. A part of the pump power was then absorbed by the Nd:YLF crystal. The remaining was used to pump a Nd:YAG crystal emitting at 1338 nm. Intracavity sum-frequency mixing at 1053 and 1338 nm was then realized in a LiB 3 O 5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 235 mW at 589 nm with a pump laser diode emitting 17.8 W at 808 nm

  8. The function of endocytosis in Wnt signaling.

    Science.gov (United States)

    Brunt, Lucy; Scholpp, Steffen

    2018-03-01

    Wnt growth factors regulate one of the most important signaling networks during development, tissue homeostasis and disease. Despite the biological importance of Wnt signaling, the mechanism of endocytosis during this process is ill described. Wnt molecules can act as paracrine signals, which are secreted from the producing cells and transported through neighboring tissue to activate signaling in target cells. Endocytosis of the ligand is important at several stages of action: One central function of endocytic trafficking in the Wnt pathway occurs in the source cell. Furthermore, the β-catenin-dependent Wnt ligands require endocytosis for signal activation and to regulate gene transcription in the responding cells. Alternatively, Wnt/β-catenin-independent signaling regulates endocytosis of cell adherence plaques to control cell migration. In this comparative review, we elucidate these three fundamental interconnected functions, which together regulate cellular fate and cellular behavior. Based on established hypotheses and recent findings, we develop a revised picture for the complex function of endocytosis in the Wnt signaling network.

  9. Spectroscopic analysis of sodium-bearing Z-pinch plasmas for their x-ray-laser pumping efficiency

    International Nuclear Information System (INIS)

    Apruzese, J.P.; Mehlman, G.; Davis, J.; Rogerson, J.E.; Scherrer, V.E.; Stephanakis, S.J.; Ottinger, P.F.; Young, F.C.

    1987-01-01

    Using axially resolved spectra, we have derived temperature and density profiles of sodium-bearing Z-pinch plasmas produced on the Naval Research Laboratory's Gamble-II generator. The variations in the output power of the Na X 1s 2 1 S 0 --1s2p 1 P 1 line which can be used to pump a Ne IX x-ray laser, are analyzed as functions of mass loading, temperature, and density. The fractional conversion of plasma energy to lasing lines is projected as 10/sup -3/ if an optimum neon lasant plasma can be prepared and pumped to saturation. This would require an increase in load current of less than or equal to 50% from the present 1.2 MA

  10. Pump cavitation and inducer design

    International Nuclear Information System (INIS)

    Heslenfeld, M.W.; Hes, M. de

    2002-01-01

    Details of past work on sodium pump development and cavitation studies executed mainly for SNR 300 were reported earlier. Among the requirements for large sodium pumps are long life (200000 hours up to 300000 hours) and small size of impeller and pump, fully meeting the process and design criteria. These criteria are the required 'Q, H, r characteristics' in combination with a low NPSH value and the avoidance of cavitation damage to the pump. The pump designer has to develop a sound hydraulic combination consisting of suction arrangement, impeller design and diffuser. On the other hand the designer is free to choose an optimal pump speed. The pump speed in its turn influences the rotor dynamic pump design and the pump drive. The introduction of the inducer as an integral part of the pump design is based on following advantages: no tip cavitation; (possible) cavitation bubbles move to the open centre due to centrifugal forces on the fluid; the head of the inducer improves the inlet conditions of the impeller. The aim of an inducer is the increase in the suction specific speed (SA value) of a pump whereby the inducer functions as a pressure source improving the impeller inlet conditions. With inducer-impeller combinations values up to SA=15000 are realistic. With the use of an inducer the overall pump sizes can be reduced with Ca. 30%. Pumps commonly available have SA values up to a maximum of ca. 10000. A development programme was executed for SNR 300 in order to reach an increase of the suction specific speed of the impeller from SA 8200 to SA 11000. Further studies to optimize pumps design for the follow up line introduced the 'inducer acting as a pre-impeller' development. This programme was executed in the period 1979-1981. At the FDO premises a scale 1 2.8 inducer impeller combination with a suction specific speed SA=15000 was developed, constructed and tested at the water test rig. This water test rig is equipped with a perspex pipe allowing also visualisation

  11. Seismic tests in sodium of the SPX-1 primary pump shaft carried out in the CPV-1 test rig at ENEA-Brasimone

    International Nuclear Information System (INIS)

    Contardi, T.; Rapezzi, L.; Le Coz, P.; Tigeot, Y.; Partiti, C.; Zola, M.; Denimal, P.

    1988-01-01

    Dynamic tests were carried out by ISMES, on behalf of ENEA and CEA and in co-operation with FIAT/TTG, on a SPX-1 primary pump shaft. These tests were conducted, mainly in sodium, in the CPV-1 test rig at the ENEA Brasimone Center. The excitation was applied to the flange supporting the hydrostatic bearing. After some preliminary analysis performed in absence of liquid sodium and at ambient temperature, the following tests were performed on the rig filled with sodium at operating temperature: (A) sine sweeps between 1 and 15 Hz, (B) ambient vibration investigation, and (C) seismic tests with a SSE acceleration time-history (20 s duration) calculated by CEA at hydrostatic bearing level. Two sets of seismic tests were carried out, each time increasing amplitudes up to 70% of SSE. This value was not exceeded for safety reasons and actuator power limit. The first set of tests began in nominal operating conditions; when 70% of SSE was reached, pressure feed to hydrostatic bearing was reduced lowering its effective support. This simulated a larger earthquake. The second set of tests was representative of SPX-1 pump actual operating conditions, because both hydrostatic bearing pressure and shaft rotating speed were simultaneously reduced following the primary pump characteristic curve. The tests allowed the SPX-1 pump rotating set to be widely qualified. Among the main results, it is worth noting that the stiffness of the hydrostatic bearing system was generally compatible with seismic requirements. Finally, it is worth pointing out that, in order to allow the above-mentioned tests to be carried out, a full seismic qualification of the CPV-1 test rig was necessary: thus, this rig might be used in the future for further seismic tests on LMFBR components and systems in sodium. (author). Figs and tabs

  12. Sodium pumps in the Malpighian tubule of Rhodnius sp.

    Directory of Open Access Journals (Sweden)

    CARUSO-NEVES CELSO

    2000-01-01

    Full Text Available Malpighian tubule of Rhodnius sp. express two sodium pumps: the classical ouabain-sensitive (Na+ + K+ATPase and an ouabain-insensitive, furosemide-sensitive Na+-ATPase. In insects, 5-hydroxitryptamine is a diuretic hormone released during meals. It inhibits the (Na+ + K+ATPase and Na+ -ATPase activities indicating that these enzymes are involved in fluid secretion. Furthermore, in Rhodnius neglectus, proximal cells of Malpighian tubule exposed to hyperosmotic medium, regulate their volume through a mechanism called regulatory volume increase. This regulatory response involves inhibition of the (Na+ + K+ATPase activity that could lead to accumulation of active osmotic solute inside the cell, influx of water and return to the normal cell volume. Adenosine, a compound produced in stress conditions, also inhibits the (Na+ + K+ATPase activity. Taken together these data indicate that (Na+ + K+ATPase is a target of the regulatory mechanisms of water and ions transport responsible for homeostasis in Rhodnius sp.

  13. Effects of receptor-mediated endocytosis and tubular protein composition on volume retention in experimental glomerulonephritis

    DEFF Research Database (Denmark)

    Kastner, Christian; Pohl, Marcus; Sendeski, Mauricio

    2009-01-01

    Human glomerulonephritis (GN) is characterized by sustained proteinuria, sodium retention, hypertension, and edema formation. Increasing quantities of filtered protein enter the renal tubule, where they may alter epithelial transport functions. Exaggerated endocytosis and consequent protein...... overload may affect proximal tubules, but intrinsic malfunction of distal epithelia has also been reported. A straightforward assignment to a particular tubule segment causing salt retention in GN is still controversial. We hypothesized that 1) trafficking and surface expression of major transporters...

  14. Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain

    OpenAIRE

    Ogawa, Haruo; Shinoda, Takehiro; Cornelius, Flemming; Toyoshima, Chikashi

    2009-01-01

    The sodium-potassium pump (Na+,K+-ATPase) is responsible for establishing Na+ and K+ concentration gradients across the plasma membrane and therefore plays an essential role in, for instance, generating action potentials. Cardiac glycosides, prescribed for congestive heart failure for more than 2 centuries, are efficient inhibitors of this ATPase. Here we describe a crystal structure of Na+,K+-ATPase with bound ouabain, a representative cardiac glycoside, at 2.8 Å resolution in a state analog...

  15. NERATOOM work on pump development

    International Nuclear Information System (INIS)

    Hoornweg, C.J.

    1976-01-01

    The prototype pump has been manufactured by Stork Engineerings Works at Hengelo in 1969. The full-scale test on water has been carried out as part of the procedures of acceptance. Tests on sodium have been carried out in the pumptestfacility of Interatom at Bensberg (W. Germany); these tests started in March 1971 and were finished in October 1972. During that period nearly 6000 hours of pump testing were accomplished, of which 150 hours the pump was subjected to cavitation. During 30 hours the pump was subjected to a cavitation intensity of more than 3% loss of delivery head. At some occasions the loss of delivery head was 7%. The measured NPSH with the tests on sodium was 10m, whereas the NPSH obtained with the tests on water was 9m. Attempts have been made to account for this difference of NPSH-setting on the two liquids concerned. At the end of the tests on sodium (that is after the excecution of the cavitation tests) the delivery head of the pump was 2 m.l.c. less than the rated value. After dismantling the pump it appeared that the surface of the impeller vanes was roughened, especially at those parts where the original sand cast surface had not been polished. Based on the testresults and not being contradicted by calculation-results so far, our opinion is that cavitation in sodium of reactor temperature (550 0 C) most probably is of the same order of magnitude as it is in water of roomtemperature under the same conditions of NPSH, provided the same pump operates in systems that are exact replica of one another

  16. The effect of pump cavitation on the design of the primary pumps for C.F.R

    International Nuclear Information System (INIS)

    Worster, R.C.

    1976-01-01

    In the design appraisal of the sodium pumps for the primary circuit of the proposed 1300 MW(e) CFR it has been recognised that cavitation, its effects and its control, is the outstanding hydraulic design problem. Careful consideration of this problem and of the possible effects of pump cavitation on the performance of other reactor systems has led to the conclusion that it is more prudent at present to specify pumps with zero cavitation at normal full speed operating conditions. Under abnormal operation it may be necessary to reduce the pumps' speed to prevent cavitation in the pumps or associated equipment. The principal reasons for this decision were uncertainties concerning the possibility of erosion due to limited cavitation in sodium and the possibility of pump cavitation noise interfering with acoustic detection of malfunctioning of reactor components or of boiling in the reactor core

  17. Physical and Chemical Stability of Urapidil in 0.9% Sodium Chloride in Elastomeric Infusion Pump.

    Science.gov (United States)

    Tomasello, Cristina; Leggieri, Anna; Rabbia, Franco; Veglio, Franco; Baietto, Lorena; Fulcheri, Chiara; De Nicolò, Amedeo; De Perri, Giovanni; D'Avolio, Antonio

    2016-01-01

    Urapidil is an antihypertensive agent, usually administered through intravenous bolus injection, slow-intravenous infusion, or continuous-drug infusion by perfusor. Since to date no evidences are available on drug stability in elastomeric pumps, patients have to be hospitalized. The purpose of this study was to validate an ultra-performance liquid chromatographic method to evaluate urapidil stability in an elastomeric infusion pump, in order to allow continuous infusion as home-care treatment. Analyses were conducted by diluting urapidil in an elastomeric pump. Two concentrations were evaluated: 1.6 mg/mL and 3.3 mg/mL. For the analyses, a reverse-phase ultra-performance liquid chromatographic- photodiode array detection instrument was used. Stressed degradation, pH changes, and visual clarity were used as stability indicators up to 10 days after urapidil solution preparation. The drug showed no more than 5% degradation during the test period at room temperature. No pH changes and no evidences of incompatibility were observed. Stress tests resulted in appreciable observation of degradation products. Considering the observed mean values, urapidil hydrochloride in sodium chloride 0.9% in elastomeric infusion pumps is stable for at least 10 days. These results indicate that this treatment could be administered at home for a prolonged duration (at least 7 days) with a satisfactory response. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  18. Cation depletion by the sodium pump in red cells with pathologic cation leaks. Sickle cells and xerocytes.

    Science.gov (United States)

    Joiner, C H; Platt, O S; Lux, S E

    1986-12-01

    The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blocked by ouabain, removal of external potassium, or pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonate, which blocks the increase in cation permeability induced by deoxygenation. The loss of cation exhibited by oxygenated xerocytes similarly incubated was also blocked by ouabain. These data support the hypothesis that the elevated "passive" cation fluxes of xerocytes and deoxygenated sickle cells are not directly responsible for cation depletion of these cells; rather, these pathologic leaks interact with the sodium pump to produce a net loss of cellular cation.

  19. Cardiotonic steroids trigger non-classical testosterone signaling in Sertoli cells via the α4 isoform of the sodium pump.

    Science.gov (United States)

    Konrad, Lutz; Dietze, Raimund; Kirch, Ulrike; Kirch, Herbert; Eva, Alexander; Scheiner-Bobis, Georgios

    2011-12-01

    The α4 isoform of the Na(+),K(+)-ATPase (sodium pump) is known to be expressed in spermatozoa and to be critical for their motility. In the investigation presented here, we find that the rat-derived Sertoli cell line 93RS2 also expresses considerable amounts of the α4 isoform in addition to the α1 isoform. Since Sertoli cells are not motile, one can assume that the function of the α4 isoform in these cells must differ from that in spermatozoa. Thus, we assessed a potential involvement of this isoform in signaling pathways that are activated by the cardiotonic steroid (CTS) ouabain, a highly specific sodium pump ligand. Treatment of 93RS2 cells with ouabain leads to activation of the c-Src/c-Raf/Erk1/2 signaling cascade. Furthermore, we show for the first time that the activation of this cascade by ouabain results in phosphorylation and activation of the transcription factor CREB. This signaling cascade is induced at low nanomolar concentrations of ouabain, consistent with the involvement of the α4 isoform. This is further supported by experiments involving siRNA: silencing of α4 expression entirely blocks ouabain-induced activation of Erk1/2 whereas silencing of α1 has no effect. The findings of this study unveil new aspects in CTS/sodium pump interactions by demonstrating for the first time ouabain-induced signaling through the α4 isoform. The c-Src/c-Raf/Erk1/2/CREB cascade activated by ouabain is identical to the so-called non-classical signaling cascade that is normally triggered in Sertoli cells by testosterone. Taking into consideration that CTS are produced endogenously, our results may help to gain new insights into the physiological mechanisms associated with male fertility and reproduction. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Driving Sodium-Potassium Pumps With An Oscillating Electric Field: Effects On Muscle Recovery In The Human Biceps Brachii

    Science.gov (United States)

    Bovyn, Matt; Chen, Wei; Lanes, Olivia; Mast, Jason

    2013-03-01

    Dr. Chen has developed a technique called synchronization modulation, which uses an oscillating electric field to increase the rate at which the sodium-potassium pumps in the cell membrane work. Because the sodium-potassium pump is integral in the recovery of skeletal muscle fibers after an action potential, we investigated the effects of applying synchronization modulation to muscles which had already undergone fatigue due to repeated action potentials during exercise. Fatigue was induced in human subjects' biceps brachii through isometric contraction. Surface electromyography measurements of fatigue index were used to quantify how the muscle recovered over the minutes following fatigue, both when synchronization modulation was applied and when it was absent. The preliminary results were inconclusive, but it is hoped that in later work it will be shown that applying synchronization modulation is effective in increasing the rate at which the muscle recovers to its initial state. This would demonstrate not only that synchronization modulation can be successfully applied to human muscle, but also that it has many potential applications in sports medicine and novel disease treatments. Work done as part of an REU program at the University of South Florida

  1. Continuous analyzers of hydrogen and carbon in liquid sodium and of hydrocarbon total in protective atmosphere above sodium

    International Nuclear Information System (INIS)

    Pitak, O.; Fresl, M.

    1980-01-01

    The principle is described of a leak detector for detecting water penetration into sodium in a steam generator. The device operates as a diffusion H-meter with an ion pump. Ni or Fe diffusion diaphragm is washed with sodium while diffused hydrogen is pumped and also monitored with the ion pump. Another detector uses the principle of analyzing hydrocarbons in the cover gas above the sodium level. The carrier gas flow for the analyzer divided into measuring and reference parts is passed through a chamber housing the diffusion standard. For measuring carbon content in sodium, the detector analytical part may be completed with a chamber with moisturizing filling for scrubbing gas. Carbon passing through the diffusion Fe diaphragm is scrubbed on the inner wall in the form of CO which is reduced to methane and measured using the detector C-meter. (M.S.)

  2. Crystal structure of the sodium-potassium pump

    DEFF Research Database (Denmark)

    Morth, J Preben; Pedersen, Bjørn Panyella; Toustrup-Jensen, Mads S

    2007-01-01

    The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution......-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential. Udgivelsesdato: 2007-Dec-13...

  3. Reactor having coolant recycling pump

    International Nuclear Information System (INIS)

    Goto, Tadashi; Karatsuka, Shigeki; Yamamoto, Hajime.

    1991-01-01

    In a coolant recycling pump for an LMFBR type reactor, vertical grooves are formed to a static portion which surrounds a pump shaft as far as the lower end thereof. Sodium mists present in an annular gap of the pump shaft form a rotational flow, lose its centrifugal force at the grooved portion and are collected positively to the grooved portion. Further, since the rotational flow in the grooved channel is in a state of a cavity flow, the pressure is released in the grooved portion and a secondary eddy current is formed thereby providing a depressurized state. Accordingly, by a synergestic effect of the centrifugal force and the cavity flow, sodium mists can be recovered completely. (T.M.)

  4. Inducer pumps for liquid metal reactor plants

    International Nuclear Information System (INIS)

    Jackson, E.D.

    2002-01-01

    Pumps proposed for liquid metal reactor plants typically use centrifugal impellers as the rotating element and are required to maintain a relatively low speed to keep the suction specific speed low enough to operate at the available net positive suction head (HPSH) and to avoid cavitation damage. These low speeds of operation require that the pump diameter increase and/or multiple stages be used to achieve the design head. This frequently results in a large, heavy, complex pump design. In addition, the low speed results in a larger drive motor size so that the resultant penalty to the plant designer is multiplied. The heavier pump can also result in further complications as, e.g., the difficulty in maintaining the first critical speed sufficiently above the pump operating range to provide margin for rotor dynamic stability. To overcome some of these disadvantages, it was proposed the use of inducer pumps for Liquid Metal Fast Breeder Reactor (LMFBR) plants. This paper discusses some of the advantages of the inducer pump and the development history of designing and testing these pumps both in water and sodium. The inducer pump is seen to be a sound concept with a strong technology base derived from the aerospace and ship propulsion industries. The superior suction performance capability of the inducer offers significant system design advantages, primarily a smaller, lighter weight, less complex pump design with resulting saving in cost. Extensive testing of these pumps has been conducted in both sodium and water to demonstrate the long-life capability with no cavitation damage occurring in those designs based on Rockwell's current design criteria. These tests have utilized multiple inspection and measurement approaches to accurately assess and identify any potential for cavitation damage, and these approaches have all concluded that no damage is occurring. Therefore, it is concluded that inducer pumps can be safely designed for long life operation in sodium with

  5. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    2015-01-01

    Full Text Available Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons.

  6. Thermo-electric pump

    International Nuclear Information System (INIS)

    Georges, J.-L.; Veyret, J.-F.

    1973-01-01

    Description is given of a thermo-pump for electrically conductive liquid fluids, e.g. for a liquid metal such as sodium. This pump is characterized in that the piping for the circulation of the conductive liquid is constituted by a plurality of conduits defined by two co-axial cylinders and two walls parallel to their axis. Each conduit limited outside by a magnet, inside by a mild-iron tube, and laterally by two materials forming a thermocouple. The electric current generated by that thermo-couple and the magnetic flux generated by the magnets both loop the loop through an outer cylindrical nickel shell. This can be applied to sodium circulation loops for testing nuclear fuel elements [fr

  7. Design and experimental characterization of an EM pump

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Hong, Sang Hee

    1999-01-01

    Generally, an EM (electromagnetic) pump is been employed to circulate electrically conducting liquids by using the Lorentz force. Especially, at the liquid metal reactor (LMR), which uses liquid sodium with high electrical conductivity as a coolant, an EM pump is needed due to its advantages over a mechanical pump, such as no rotating parts, no noise, and simplicity. In this research, an EM pump of a pilot annular linear induction type with a flow rate of 200 l/min was designed by using the electrical equivalent-circuit method. The pump was designed and manufactured by considering material and environmental (high temperature and liquid sodium) requirements. The pump performance was experimentally characterized based on input currents, voltage, power, and frequency. Also, the theoretical prediction was compared with the experimental result

  8. The Performance Estimation of PHTS Pump of DSFR

    International Nuclear Information System (INIS)

    Cho, Chungho; Han, Ji-Woong; Kim, Jong-Man; Cho, Youngil; Jung, Min-Hwan; Gam, Da-Young; Lee, Yong-bum; Jeong, Ji-Young

    2015-01-01

    In order to estimate the hydraulic behavior of the PHTS pump in sodium environment, model tests were conducted in water experimental facility by SAMJIN Industrial Co. before model tests using the STELLA-1 with sodium environment in 2015. STELLA-1 (Sodium inTegral Effect test Loop for safety simuLation and Assessment) is a large-scale separate effect test facility for demonstrating the thermal-hydraulic performances of major components such as a Sodium-to-Sodium heat exchanger (DHX), Sodium-to-Air heat exchanger (AHX) of the decay heat removal system, and mechanical sodium pump of the primary heat transport system (PHTS), which are important to ensure the safety of the sodium-cooled fast reactor (SFR). When the model and the prototype have the same the flow coefficient, to maintaining the dynamic similarity both model and prototype the non-dimensional coefficients to be simulated are head coefficient and power coefficient

  9. An acoustic method for characterizing the onset of cavitation in nozzles and pumps

    International Nuclear Information System (INIS)

    Courbiere, P.

    1984-12-01

    The high sodium flow rates required by the reactor power rating have led to the use of sodium loop and pump designs in which a cavitation hazard exists. This paper discusses CEA test results on incipient cavitation, and examines pump impeller scale effects, sodium-water similitude criteria and the influence of the entrained gas content in the sodium flow

  10. Laser optical pumping of sodium and lithium atom beams

    International Nuclear Information System (INIS)

    Cusma, J.T.

    1983-01-01

    The method of optical pumping with a continuous wave dye laser has been used to produce beams of polarized 23 Na atoms and polarized 6 Li atoms. Optical pumping of a 23 Na atom beam using either a multimode dye laser or a single frequency dye laser with a double passed acousto-optic modulator results in electron spin polarizations of 0.70-0.90 and nuclear spin polarizations of 0.75-0.90. Optical pumping of a 6 Li atom beam using a single frequency dye laser either with an acousto-optic modulator or with Doppler shift pumping results in electron spin polarizations of 0.77-0.95 and nuclear spin polarizations greater than 0.90. The polarization of the atom beam is measured using either the laser induced fluorescence in an intermediate magnetic field or a 6-pole magnet to determine the occupation probabilities of the ground hyperfine sublevels following optical pumping. The results of the laser optical pumping experiments agree with the results of a rate equation analysis of the optical pumping process which predicts that nearly all atoms are transferred into a single sublevel for our values of laser intensity and interaction time. The use of laser optical pumping in a polarized ion source for nuclear scattering experiments is discussed. The laser optical pumping method provides a means of constructing an intense source of polarized Li and Na ions

  11. Regulation of the sodium-potassium pump in cultured rat skeletal myotubes by intracellular sodium ions

    International Nuclear Information System (INIS)

    Brodie, C.; Sampson, S.R.

    1989-01-01

    The properties of the Na-K pump and some of the factors controlling its amount and function were studied in rat myotubes in culture. The number of Na-K pump sites was quantified by measuring the amount of [ 3 H]ouabain bound to whole-cell preparations. Activity of the pump was determined by measurement of ouabain-sensitive 86 Rb-uptake and component of membrane potential. Chronic treatment of myotubes with tetrodotoxin (TTX), which lowers [Na]i, decreased the number of Na-K pumps, the ouabain-sensitive 86Rb uptake, and the size of the electrogenic pump component of Em. In contrast, chronic treatment with either ouabain or veratridine, which increases [Na+]i, resulted in an elevated level of Na-K pump sites. This effect was blocked by inhibitors of protein synthesis. Neither rates of degradation nor affinity of pump sites in cells treated with TTX, veratridine, or ouabain differred from those in control cells. The number and activity of Na-K pump sites were unaffected by chronic elevation in [Ca]i or chronic depolarization. We conclude that alterations in the level in intracellular Na ions play the major role in regulation of Na-K pump synthesis in cultured mammalian skeletal muscle

  12. Endocytosis and exocytosis of nanoparticles in mammalian cells

    Science.gov (United States)

    Oh, Nuri; Park, Ji-Ho

    2014-01-01

    Engineered nanoparticles that can be injected into the human body hold tremendous potential to detect and treat complex diseases. Understanding of the endocytosis and exocytosis mechanisms of nanoparticles is essential for safe and efficient therapeutic application. In particular, exocytosis is of significance in the removal of nanoparticles with drugs and contrast agents from the body, while endocytosis is of great importance for the targeting of nanoparticles in disease sites. Here, we review the recent research on the endocytosis and exocytosis of functionalized nanoparticles based on various sizes, shapes, and surface chemistries. We believe that this review contributes to the design of safe nanoparticles that can efficiently enter and leave human cells and tissues. PMID:24872703

  13. Actin and Endocytosis in Budding Yeast

    Science.gov (United States)

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  14. Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles

    Science.gov (United States)

    Engelberg, Shira; Modrejewski, Julia; Walter, Johanna G.; Livney, Yoav D.; Assaraf, Yehuda G.

    2018-01-01

    Lung cancer is the leading cause of cancer mortality worldwide, resulting in 88% deaths of all diagnosed patients. Hence, novel therapeutic modalities are urgently needed. Single-stranded oligonucleotide-based aptamers (APTs) are excellent ligands for tumor cell targeting. However, the molecular mechanisms underlying their internalization into living cells have been poorly studied. Towards the application of APTs for active drug targeting to cancer cells, we herein studied the mechanism underlying S15-APT internalization into human non-small cell lung cancer A549 cells. We thus delineated the mode of entry of a model nanomedical system based on quantum dots (QDs) decorated with S15-APTs as a selective targeting moiety for uptake by A549 cells. These APT-decorated QDs displayed selective binding to, and internalization by target A549 cells, but not by normal human bronchial epithelial BEAS2B, cervical carcinoma (HeLa) and colon adenocarcinoma CaCo-2 cells, hence demonstrating high specificity. Flow cytometric analysis revealed a remarkably low dissociation constant of S15-APTs-decorated QDs to A549 cells (Kd = 13.1 ± 1.6 nM). Through the systematic application of a series of established inhibitors of known mechanisms of endocytosis, we show that the uptake of S15-APTs proceeds via a classical clathrin-dependent receptor-mediated endocytosis. This cancer cell-selective mode of entry could possibly be used in the future to evade plasma membrane-localized multidrug resistance efflux pumps, thereby overcoming an important mechanism of cancer multidrug resistance. PMID:29765515

  15. Robust remote-pumping sodium laser for advanced LIDAR and guide star applications

    Science.gov (United States)

    Ernstberger, Bernhard; Enderlein, Martin; Friedenauer, Axel; Schwerdt, Robin; Wei, Daoping; Karpov, Vladimir; Leisching, Patrick; Clements, Wallace R. L.; Kaenders, Wilhelm G.

    2015-10-01

    The performance of large ground-based optical telescopes is limited due to wavefront distortions induced by atmospheric turbulence. Adaptive optics systems using natural guide stars with sufficient brightness provide a practical way for correcting the wavefront errors by means of deformable mirrors. Unfortunately, the sky coverage of bright stars is poor and therefore the concept of laser guide stars was invented, creating an artificial star by exciting resonance fluorescence from the mesospheric sodium layer about 90 km above the earth's surface. Until now, mainly dye lasers or sumfrequency mixing of solid state lasers were used to generate laser guide stars. However, these kinds of lasers require a stationary laser clean room for operation and are extremely demanding in maintenance. Under a development contract with the European Southern Observatory (ESO) and W. M. Keck Observatory (WMKO), TOPTICA Photonics AG and its partner MPB Communications have finalized the development of a next-generation sodium guide star laser system which is available now as a commercial off-the-shelf product. The laser is based on a narrow-band diode laser, Raman fiber amplifier (RFA) technology and resonant second-harmonic generation (SHG), thus highly reliable and simple to operate and maintain. It emits > 22 W of narrow-linewidth (≈ 5 MHz) continuous-wave radiation at sodium resonance and includes a re-pumping scheme for boosting sodium return flux. Due to the SHG resonator acting as spatial mode filter and polarizer, the output is diffraction-limited with RMS wavefront error concept of line-replaceable units (LRU). A comprehensive system software, as well as an intuitive service GUI, allow for remote control and error tracking down to at least the LRU level. In case of a failure, any LRU can be easily replaced. With these fiber-based guide star lasers, TOPTICA for the first time offers a fully engineered, off-the-shelf guide star laser system for groundbased optical telescopes

  16. Minimizing unbalance response of the CRBRP sodium pumps

    International Nuclear Information System (INIS)

    Gupta, V.K.; Marrujo, F.G.

    1979-04-01

    The unbalance response characteristics of the vertical pumps for the Clinch River Breeder Reactor Plant are investigated. Finite-element shell and beam models representative of the pump-motor structure including the rotating assembly are developed to assess structural stiffnesses of dominant joints as well as the foundation support stiffness so as to exclude the danger of resonant excitation during normal operation. Less than four mils peak-to-peak vibration amplitude at the pump tank discharge nozzle results from just 10% frequency separation between the first rocking mode and the maximum operating speed of 1116 RPM, based on 0.5% modal damping ratio and balance quality grade of ISO/ANSI G2.5 for the rotating components: motor rotor, pump shaft, Bendix diaphragm-type flexible coupling, and centrigual double-suction impeller. Several design options are explored for raising shaft critical speed beyond 125% of maximum operating speed

  17. Cavitation erosion in sodium flow, sodium cavitation tunnel testing

    International Nuclear Information System (INIS)

    Courbiere, Pierre.

    1981-04-01

    The high-volume sodium flows present in fast neutron reactors are liable to induce cavitation phenomena in various portion of the sodium lines and pumps. The absence of sufficient data in this area led the C.E.A. to undertake an erosion research program in cavitating sodium flow. This paper discusses the considerations leading to the definition and execution of sodium cavitation erosion tests, and reviews the tests run with 400 0 C sodium on various steel grades: 316, 316 L, 316 Ti (Z8CNDT17-12), Poral (Z3CND18-12), 304 L and LN2 - clad 316 L (Ni coating-clad 316 L). Acoustic detection and signal processing methods were used with an instrument package designed and implemented at the Cadarache Nuclear Research Center

  18. Single Event Resolution of Plant Plasma Membrane Protein Endocytosis by TIRF Microscopy.

    Science.gov (United States)

    Johnson, Alexander; Vert, Grégory

    2017-01-01

    Endocytosis is a key process in the internalization of extracellular materials and plasma membrane proteins, such as receptors and transporters, thereby controlling many aspects of cell signaling and cellular homeostasis. Endocytosis in plants has an essential role not only for basic cellular functions but also for growth and development, nutrient delivery, toxin avoidance, and pathogen defense. The precise mechanisms of endocytosis in plants remain quite elusive. The lack of direct visualization and examination of single events of endocytosis has greatly hampered our ability to precisely monitor the cell surface lifetime and the recruitment profile of proteins driving endocytosis or endocytosed cargos in plants. Here, we discuss the necessity to systematically implement total internal reflection fluorescence microcopy (TIRF) in the Plant Cell Biology community and present reliable protocols for high spatial and temporal imaging of endocytosis in plants using clathrin-mediated endocytosis as a test case, since it represents the major route for internalization of cell-surface proteins in plants. We developed a robust method to directly visualize cell surface proteins using TIRF microscopy combined to a high throughput, automated and unbiased analysis pipeline to determine the temporal recruitment profile of proteins to single sites of endocytosis, using the departure of clathrin as a physiological reference for scission. Using this 'departure assay', we assessed the recruitment of two different AP-2 subunits, alpha and mu, to the sites of endocytosis and found that AP2A1 was recruited in concert with clathrin, while AP2M was not. This validated approach therefore offers a powerful solution to better characterize the plant endocytic machinery and the dynamics of one's favorite cargo protein.

  19. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  20. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    Directory of Open Access Journals (Sweden)

    T.I. Omotayo

    2015-04-01

    Full Text Available The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump.

  1. Constitutive endocytosis and turnover of the neuronal glycine transporter GlyT2 is dependent on ubiquitination of a C-terminal lysine cluster.

    Directory of Open Access Journals (Sweden)

    Jaime de Juan-Sanz

    Full Text Available Inhibitory glycinergic neurotransmission is terminated by sodium and chloride-dependent plasma membrane glycine transporters (GlyTs. The mainly glial glycine transporter GlyT1 is primarily responsible for the completion of inhibitory neurotransmission and the neuronal glycine transporter GlyT2 mediates the reuptake of the neurotransmitter that is used to refill synaptic vesicles in the terminal, a fundamental role in the physiology and pathology of glycinergic neurotransmission. Indeed, inhibitory glycinergic neurotransmission is modulated by the exocytosis and endocytosis of GlyT2. We previously reported that constitutive and Protein Kinase C (PKC-regulated endocytosis of GlyT2 is mediated by clathrin and that PKC accelerates GlyT2 endocytosis by increasing its ubiquitination. However, the role of ubiquitination in the constitutive endocytosis and turnover of this protein remains unexplored. Here, we show that ubiquitination of a C-terminus four lysine cluster of GlyT2 is required for constitutive endocytosis, sorting into the slow recycling pathway and turnover of the transporter. Ubiquitination negatively modulates the turnover of GlyT2, such that increased ubiquitination driven by PKC activation accelerates transporter degradation rate shortening its half-life while decreased ubiquitination increases transporter stability. Finally, ubiquitination of GlyT2 in neurons is highly responsive to the free pool of ubiquitin, suggesting that the deubiquitinating enzyme (DUB ubiquitin C-terminal hydrolase-L1 (UCHL1, as the major regulator of neuronal ubiquitin homeostasis, indirectly modulates the turnover of GlyT2. Our results contribute to the elucidation of the mechanisms underlying the dynamic trafficking of this important neuronal protein which has pathological relevance since mutations in the GlyT2 gene (SLC6A5 are the second most common cause of human hyperekplexia.

  2. RNASEK Is a V-ATPase-Associated Factor Required for Endocytosis and the Replication of Rhinovirus, Influenza A Virus, and Dengue Virus

    Directory of Open Access Journals (Sweden)

    Jill M. Perreira

    2015-08-01

    Full Text Available Human rhinovirus (HRV causes upper respiratory infections and asthma exacerbations. We screened multiple orthologous RNAi reagents and identified host proteins that modulate HRV replication. Here, we show that RNASEK, a transmembrane protein, was needed for the replication of HRV, influenza A virus, and dengue virus. RNASEK localizes to the cell surface and endosomal pathway and closely associates with the vacuolar ATPase (V-ATPase proton pump. RNASEK is required for endocytosis, and its depletion produces enlarged clathrin-coated pits (CCPs at the cell surface. These enlarged CCPs contain endocytic cargo and are bound by the scissioning GTPase, DNM2. Loss of RNASEK alters the localization of multiple V-ATPase subunits and lowers the levels of the ATP6AP1 subunit. Together, our results show that RNASEK closely associates with the V-ATPase and is required for its function; its loss prevents the early events of endocytosis and the replication of multiple pathogenic viruses.

  3. Cardiac glycoside ouabain induces activation of ATF-1 and StAR expression by interacting with the α4 isoform of the sodium pump in Sertoli cells.

    Science.gov (United States)

    Dietze, Raimund; Konrad, Lutz; Shihan, Mazen; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2013-03-01

    Sertoli cells express α1 and α4 isoforms of the catalytic subunit of Na(+),K(+)-ATPase (sodium pump). Our recent findings demonstrated that interactions of the α4 isoform with cardiotonic steroids (CTS) like ouabain induce signaling cascades that resemble the so-called non-classical testosterone pathway characterized by activation of the c-Src/c-Raf/Erk1/2/CREB signaling cascade. Here we investigate a possible physiological significance of the activated cascade. The results obtained in the current investigation show that the ouabain-induced signaling cascade also leads to the activation of the CREB-related activating transcription factor 1 (ATF-1) in the Sertoli cell line 93RS2 in a concentration- and time-dependent manner, as demonstrated by detection of ATF-1 phosphorylated on Ser63 in western blots. The ouabain-activated ATF-1 protein was found to localize to the cell nuclei. The sodium pump α4 isoform mediates this activation, as it is ablated when cells are incubated with siRNA to the α4 isoform. Ouabain also leads to increased expression of steroidogenic acute regulator (StAR) protein, which has been shown to be a downstream consequence of CREB/ATF-1 activation. Taking into consideration that CTS are most likely produced endogenously, the demonstrated induction of StAR expression by ouabain establishes a link between CTS, the α4 isoform of the sodium pump, and steroidogenesis crucial for male fertility and reproduction. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. ER network homeostasis is critical for plant endosome streaming and endocytosis

    Science.gov (United States)

    Stefano, Giovanni; Renna, Luciana; Lai, YaShiuan; Slabaugh, Erin; Mannino, Nicole; Buono, Rafael A; Otegui, Marisa S; Brandizzi, Federica

    2015-01-01

    Eukaryotic cells internalize cargo at the plasma membrane via endocytosis, a vital process that is accomplished through a complex network of endosomal organelles. In mammalian cells, the ER is in close association with endosomes and regulates their fission. Nonetheless, the physiological role of such interaction on endocytosis is yet unexplored. Here, we probed the existence of ER–endosome association in plant cells and assayed its physiological role in endocytosis. Through live-cell imaging and electron microscopy studies, we established that endosomes are extensively associated with the plant ER, supporting conservation of interaction between heterotypic organelles in evolutionarily distant kingdoms. Furthermore, by analyzing ER–endosome dynamics in genetic backgrounds with defects in ER structure and movement, we also established that the ER network integrity is necessary for homeostasis of the distribution and streaming of various endosome populations as well as for efficient endocytosis. These results support a novel model that endocytosis homeostasis depends on a spatiotemporal control of the endosome dynamics dictated by the ER membrane network. PMID:27462431

  5. Sodium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hammers, H.W.

    1982-01-01

    The invention concerns a sodium-cooled nuclear reactor, whose reactor tank contains the primary circuit, shielding surrounding the reactor core and a primary/secondary heat exchanger, particularly a fast breeder reactor on the module principle. In order to achieve this module principle it is proposed to have electromagnetic circulating pumps outside the reactor tank, where the heat exchanger is accomodated in an annular case above the pumps. This case has several openings at the top end to the space above the reactor core, some smaller openings in the middle to the same space and is connected at the bottom to an annular space between the tank wall and the reactor core. As a favoured variant, it is proposed that the annular electromagnetic pumps should be arranged concentrically to the reactor tank, where there is an annual duct on the inside of the reactor tank. In this way the sodium-cooled nuclear reactor is made suitable as a module with a large number of such elements. (orig.) [de

  6. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach

    KAUST Repository

    Bueno-Orovio, Alfonso

    2013-05-15

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies. © 2013 Springer-Verlag Berlin Heidelberg.

  7. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach.

    Science.gov (United States)

    Bueno-Orovio, Alfonso; Sánchez, Carlos; Pueyo, Esther; Rodriguez, Blanca

    2014-02-01

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies.

  8. Weak Molecular Interactions in Clathrin-Mediated Endocytosis

    Directory of Open Access Journals (Sweden)

    Sarah M. Smith

    2017-11-01

    Full Text Available Clathrin-mediated endocytosis is a process by which specific molecules are internalized from the cell periphery for delivery to early endosomes. The key stages in this step-wise process, from the starting point of cargo recognition, to the later stage of assembly of the clathrin coat, are dependent on weak interactions between a large network of proteins. This review discusses the structural and functional data that have improved our knowledge and understanding of the main weak molecular interactions implicated in clathrin-mediated endocytosis, with a particular focus on the two key proteins: AP2 and clathrin.

  9. Pump, sodium, inducer, intermediate size (ISIP) (impeller/inducer/diffuser retrofit)

    International Nuclear Information System (INIS)

    Paradise, D.R.

    1978-01-01

    This specification defines the requirements for the Intermediate-Size Inducer Pump (ISIP), which is to be made by replacing the impeller of the FFTF Prototype Pump with a new inducer, impeller, diffuser, seal, and necessary adapter hardware. Subsequent testing requirements of the complete pump assembly are included

  10. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  11. Enhanced clathrin-dependent endocytosis in the absence of calnexin.

    Directory of Open Access Journals (Sweden)

    Hao-Dong Li

    Full Text Available Calnexin, together with calreticulin, constitute the calnexin/calreticulin cycle. Calnexin is a type I endoplasmic reticulum integral membrane protein and molecular chaperone responsible for the folding and quality control of newly-synthesized (glycoproteins. The endoplasmic reticulum luminal domain of calnexin is responsible for lectin-like activity and interaction with nascent polypeptide chains. The role of the C-terminal, cytoplasmic portion of calnexin is not clear.Using yeast two hybrid screen and immunoprecipitation techniques, we showed that the Src homology 3-domain growth factor receptor-bound 2-like (Endophilin interacting protein 1 (SGIP1, a neuronal specific regulator of endocytosis, forms complexes with the C-terminal cytoplasmic domain of calnexin. The calnexin cytoplasmic C-tail interacts with SGIP1 C-terminal domains containing the adaptor complexes medium subunit (Adap-Comp-Sub region. Calnexin-deficient cells have enhanced clathrin-dependent endocytosis in neuronal cells and mouse neuronal system. This is reversed by expression of full length calnexin or calnexin C-tail.We show that the effects of SGIP1 and calnexin C-tail on clathrin-dependent endocytosis are due to modulation of the internalization of the receptor-ligand complexes. Enhanced clathrin-dependent endocytosis in the absence of calnexin may contribute to the neurological phenotype of calnexin-deficient mice.

  12. Spontaneous excitation patterns computed for axons with injury-like impairments of sodium channels and Na/K pumps.

    Directory of Open Access Journals (Sweden)

    Na Yu

    Full Text Available In injured neurons, "leaky" voltage-gated sodium channels (Nav underlie dysfunctional excitability that ranges from spontaneous subthreshold oscillations (STO, to ectopic (sometimes paroxysmal excitation, to depolarizing block. In recombinant systems, mechanical injury to Nav1.6-rich membranes causes cytoplasmic Na(+-loading and "Nav-CLS", i.e., coupled left-(hyperpolarizing-shift of Nav activation and availability. Metabolic injury of hippocampal neurons (epileptic discharge results in comparable impairment: left-shifted activation and availability and hence left-shifted I(Na-window. A recent computation study revealed that CLS-based I(Na-window left-shift dissipates ion gradients and impairs excitability. Here, via dynamical analyses, we focus on sustained excitability patterns in mildly damaged nodes, in particular with more realistic Gaussian-distributed Nav-CLS to mimic "smeared" injury intensity. Since our interest is axons that might survive injury, pumps (sine qua non for live axons are included. In some simulations, pump efficacy and system volumes are varied. Impacts of current noise inputs are also characterized. The diverse modes of spontaneous rhythmic activity evident in these scenarios are studied using bifurcation analysis. For "mild CLS injury", a prominent feature is slow pump/leak-mediated E(Ion oscillations. These slow oscillations yield dynamic firing thresholds that underlie complex voltage STO and bursting behaviors. Thus, Nav-CLS, a biophysically justified mode of injury, in parallel with functioning pumps, robustly engenders an emergent slow process that triggers a plethora of pathological excitability patterns. This minimalist "device" could have physiological analogs. At first nodes of Ranvier and at nociceptors, e.g., localized lipid-tuning that modulated Nav midpoints could produce Nav-CLS, as could co-expression of appropriately differing Nav isoforms.

  13. Experience on sodium removal from various components

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, M; Kanbe, M; Yagisawa, H; Sasaki, S; Kataoka, H; Fukada, T; Ishii, Y; Saito, R; Mimoto, Y [O-arai Engineering Centre, PNC, Ibaraki-ken, Tokio (Japan)

    1978-08-01

    Since 1970, OEC (O-arai Engineering Center) has been Investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of 'JOYO' and Dummy fuel assembly of 'JOYO', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of 'JOYO', a sector model of Sodium-to-Air cooler of 'JOYO' and a proto-type isolation valve of 'JOYO' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental sub-assemblies, the Fuel Handling Machine of 'MONJU' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a 'JOYO' prototype pump by reinstalling it after sodium removal five times. (author)

  14. Experience on sodium removal from various components

    International Nuclear Information System (INIS)

    Kamei, M.; Kanbe, M.; Yagisawa, H.; Sasaki, S.; Kataoka, H.; Fukada, T.; Ishii, Y.; Saito, R.; Mimoto, Y.

    1978-01-01

    Since 1970, OEC (O-arai Engineering Center) has been Investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of 'JOYO' and Dummy fuel assembly of 'JOYO', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of 'JOYO', a sector model of Sodium-to-Air cooler of 'JOYO' and a proto-type isolation valve of 'JOYO' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental sub-assemblies, the Fuel Handling Machine of 'MONJU' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a 'JOYO' prototype pump by reinstalling it after sodium removal five times. (author)

  15. Experience on sodium removal from various components

    International Nuclear Information System (INIS)

    Kamei, M.; Kanbe, M.; Yagisawa, H.; Sasaki, S.; Kataoka, H.

    1978-02-01

    Since 1970, OEC (O-arai Engineering Center) has been investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of ''JOYO'' and Dummy fuel assembly of ''JOYO'', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of ''JOYO'', a sector model of Sodium-to-Air cooler of ''JOYO'' and a proto-type Isolation valve of ''JOYO'' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental subassemblies, the Fuel Handling Machine of ''MONJU'' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of Sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a ''JOYO'' prototype pump by reinstalling it after sodium removal five times. (author)

  16. Excessive Cellular S-nitrosothiol Impairs Endocytosis of Auxin Efflux Transporter PIN2

    Directory of Open Access Journals (Sweden)

    Min Ni

    2017-11-01

    Full Text Available S-nitrosoglutathione reductase (GSNOR1 is the key enzyme that regulates cellular levels of S-nitrosylation across kingdoms. We have previously reported that loss of GSNOR1 resulted in impaired auxin signaling and compromised auxin transport in Arabidopsis, leading to the auxin-related morphological phenotypes. However, the molecular mechanism underpinning the compromised auxin transport in gsnor1-3 mutant is still unknown. Endocytosis of plasma-membrane (PM-localized efflux PIN proteins play critical roles in auxin transport. Therefore, we investigate whether loss of GSNOR1 function has any effects on the endocytosis of PIN-FORMED (PIN proteins. It was found that the endocytosis of either the endogenous PIN2 or the transgenically expressed PIN2-GFP was compromised in the root cells of gsnor1-3 seedlings relative to Col-0. The internalization of PM-associated PIN2 or PIN2-GFP into Brefeldin A (BFA bodies was significantly reduced in gsnor1-3 upon BFA treatment in a manner independent of de novo protein synthesis. In addition, the exogenously applied GSNO not only compromised the endocytosis of PIN2-GFP but also inhibited the root elongation in a concentration-dependent manner. Taken together, our results indicate that, besides the reduced PIN2 level, one or more compromised components in the endocytosis pathway could account for the reduced endocytosis of PIN2 in gsnor1-3.

  17. Annual report 1974. Sodium technology development programme

    International Nuclear Information System (INIS)

    1975-01-01

    The sodium technology development program comprises a number of separate research programs in the field of designing and testing parts and components for the SNR-300 reactor. Design studies and theoretical studies on cold trapping and the behavior of hydrogen in sodium circuits are reported. A preliminary test program for fighting sodium fires is completed. Results of research done on vibration measurements and counter-current mixing in a dummy tube bundle of a S.N.R. spiralized steam generator with counter-current flow are reported briefly. Research done in the field of heat transfer, pressure drop and bubble dynamics of a straight pipe steam generator are also briefly reported. To determine the influence of spiral diameter of the spiralized pipe on heat transfer in a spiralized pipe heat exchanger, a second testsection will be built in 1975. Research was reported on pump viscoseals, bearing stability, rotordynamics and bearing materials for sodium pumps. Research done on the properties of SNR-construction materials at high temperature and long time exposure and corrosion in sodium are reported. Fundamental research on corrosion accompanied this research. The report closes with results of weldability, mechanized-welding and remote welding of sodium-wetted surfaces

  18. Thermal energy storage using thermo-chemical heat pump

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Rossides, S.D.; Haj Khalil, R.

    2013-01-01

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  19. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms.

    Directory of Open Access Journals (Sweden)

    Farnaz Fekri

    Full Text Available Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR, and distinct mechanism(s that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may

  20. Aspartic acid 397 in subunit B of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae forms part of a sodium-binding site, is involved in cation selectivity, and affects cation-binding site cooperativity.

    Science.gov (United States)

    Shea, Michael E; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-10-25

    The Na(+)-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC).

  1. Report of sodium cavitation

    International Nuclear Information System (INIS)

    Murai, Hitoshi; Shima, Akira; Oba, Toshisaburo; Kobayashi, Ryoji; Hashimoto, Hiroyuki

    1975-01-01

    The damage of components for LMFBRs due to sodium cavitation is serious problem. This report summarizes the following items, (1) mechanism of the incipience of sodium cavitation, (2) damage due to sodium cavitation, (3) detection method for sodium cavitation, and (4) estimation method for sodium cavitation by the comparison with water cavitation. Materials were collected from the reports on liquid metal cavitation, sodium cavitation and water cavitation published from 1965 to now. The mechanism of the incipience of sodium cavitation cavitation parameters (mean location, distributed amount or occurrence aspect and stability), experiment of causing cavitation with Venturi tube, and growth of bubbles within superheated sodium. The sodium cavitation damage was caused by magnetostriction vibration method and with Venturi tube. The state of damage was investigated with the cavitation performance of a sodium pump, and the damage was examined in view of the safety of LMFBR plants. Sodium cavitation was detected with acoustic method, radiation method, and electric method. The effect of physical property of liquid on incipient cavitation was studied. These are thermodynamic effect based on quasistatic thermal equilibrium condition and the effect of the physical property of liquid based on bubble dynamics. (Iwase, T.)

  2. Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus.

    Science.gov (United States)

    Kajimoto, Kousuke; Kikukawa, Takashi; Nakashima, Hiroki; Yamaryo, Haruki; Saito, Yuta; Fujisawa, Tomotsumi; Demura, Makoto; Unno, Masashi

    2017-05-04

    Sodium-ion-pump rhodopsin (NaR) is a microbial rhodopsin that transports Na + during its photocycle. Here we explore the photocycle mechanism of NaR from Indibacter alkaliphilus with transient absorption and transient resonance Raman spectroscopy. The transient absorption data indicate that the photocycle of NaR is K (545 nm) → L (490 nm)/M (420 nm) → O 1 (590 nm) → O 2 (560 nm) → NaR, where the L and M are formed as equilibrium states. The presence of K, L, M, and O intermediates was confirmed by the resonance Raman spectra with 442 and 532 nm excitation. The main component of the transient resonance Raman spectra was due to L which contains a 13-cis retinal protonated Schiff base. The presence of an enhanced hydrogen out-of-plane band as well as its sensitivity to the H/D exchange indicate that the retinal chromophore is distorted near the Schiff base region in L. Moreover, the retinal Schiff base of the L state forms a hydrogen bond that is stronger than that of the dark state. These observations are consistent with a Na + pumping mechanism that involves a proton transfer from the retinal Schiff base to a key aspartate residue (Asp116 in Krokinobacter eikastus rhodopsin 2) in the L/M states.

  3. Scavenger receptor-mediated endocytosis by sinusoidal cells in rat bone marrow

    International Nuclear Information System (INIS)

    Geoffroy, J.S.

    1987-01-01

    Endocytosis of serum albumin by sinusoidal endothelial cells in rat bone marrow was investigated initially at the ultrastructural level with subsequent biochemical investigation of the specificity mediating this event. Bovine serum albumin adsorbed to 20nm colloidal gold particles (AuBSA) was chosen as the electron microscopic probe. Morphological data strongly suggested that a receptor was involved in uptake of AuBSA. Confirmation of receptor involvement in the uptake of AuBSA by marrow sinusoidal endothelial cells was achieved utilizing an in situ isolated hind limb perfusion protocol in conjunction with unlabeled, radiolabeled, and radio-/colloidal gold labeled probes. The major findings of competition and saturation experiments were: (1) endocytosis of AuBSA was mediated by a receptor for modified/treated serum albumin; (2) endocytosis of formaldehyde-treated serum albumin was mediated by a binding site which may be the same or closely related to the site responsible for the uptake of AuBSA; and (3) endocytosis of native untreated albumin was not mediated by receptor and probably represents fluid-phase pinocitosis

  4. Endophilin, Lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis.

    Science.gov (United States)

    Vehlow, Anne; Soong, Daniel; Vizcay-Barrena, Gema; Bodo, Cristian; Law, Ah-Lai; Perera, Upamali; Krause, Matthias

    2013-10-16

    The epidermal growth factor receptor (EGFR) plays an essential role during development and diseases including cancer. Lamellipodin (Lpd) is known to control lamellipodia protrusion by regulating actin filament elongation via Ena/VASP proteins. However, it is unknown whether this mechanism supports endocytosis of the EGFR. Here, we have identified a novel role for Lpd and Mena in clathrin-mediated endocytosis (CME) of the EGFR. We have discovered that endogenous Lpd is in a complex with the EGFR and Lpd and Mena knockdown impairs EGFR endocytosis. Conversely, overexpressing Lpd substantially increases the EGFR uptake in an F-actin-dependent manner, suggesting that F-actin polymerization is limiting for EGFR uptake. Furthermore, we found that Lpd directly interacts with endophilin, a BAR domain containing protein implicated in vesicle fission. We identified a role for endophilin in EGFR endocytosis, which is mediated by Lpd. Consistently, Lpd localizes to clathrin-coated pits (CCPs) just before vesicle scission and regulates vesicle scission. Our findings suggest a novel mechanism in which Lpd mediates EGFR endocytosis via Mena downstream of endophilin.

  5. Fabrication and testing of main sodium pumps of Superphenix 1

    International Nuclear Information System (INIS)

    Noel, H.; Pasqualini, G.

    1985-01-01

    The complexity of the loads involved and the extremely fine analysis required necessitates extensive design calculations for the Superphenix 1 primary and secondary pumps and associated expansion tanks, aiming toward detailed design validation, after slight adjustments, mainly to the secondary pumps and expansion tanks. The component parts to be built were far larger than those for the previous pumps (Rapsodie, Phenix), with very low manufacturing tolerances, which led to precision machining and welding operations, together with numerous dimensional inspections and materials characterization tests to achieve the required quality standards

  6. Bladder uptake of liposomes after intravesical administration occurs by endocytosis.

    Directory of Open Access Journals (Sweden)

    Bharathi Raja Rajaganapathy

    Full Text Available Liposomes have been used therapeutically and as a local drug delivery system in the bladder. However, the exact mechanism for the uptake of liposomes by bladder cells is unclear. In the present study, we investigated the role of endocytosis in the uptake of liposomes by cultured human UROtsa cells of urothelium and rat bladder. UROtsa cells were incubated in serum-free media with liposomes containing colloidal gold particles for 2 h either at 37°C or at 4°C. Transmission Electron Microscopy (TEM images of cells incubated at 37°C found endocytic vesicles containing gold inside the cells. In contrast, only extracellular binding was noticed in cells incubated with liposomes at 4°C. Absence of liposome internalization at 4°C indicates the need of energy dependent endocytosis as the primary mechanism of entry of liposomes into the urothelium. Flow cytometry analysis revealed that the uptake of liposomes at 37°C occurs via clathrin mediated endocytosis. Based on these observations, we propose that clathrin mediated endocytosis is the main route of entry for liposomes into the urothelial layer of the bladder and the findings here support the usefulness of liposomes in intravesical drug delivery.

  7. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica; Usman, Anwar; Gereige, Issam; Duren, Jeroen Van; Lyssenko, Vadim; Leo, Karl; Mohammed, Omar F.

    2015-01-01

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  8. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica

    2015-04-14

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  9. Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1.

    Science.gov (United States)

    Bhowmick, Tridib; Berk, Erik; Cui, Xiumin; Muzykantov, Vladimir R; Muro, Silvia

    2012-02-10

    Delivery of drugs into the endothelium by nanocarriers targeted to endothelial determinants may improve treatment of vascular maladies. This is the case for intercellular adhesion molecule 1 (ICAM-1), a glycoprotein overexpressed on endothelial cells (ECs) in many pathologies. ICAM-1-targeted nanocarriers bind to and are internalized by ECs via a non-classical pathway, CAM-mediated endocytosis. In this work we studied the effects of endothelial adaptation to physiological flow on the endocytosis of model polymer nanocarriers targeted to ICAM-1 (anti-ICAM/NCs, ~180 nm diameter). Culturing established endothelial-like cells (EAhy926 cells) and primary human umbilical vein ECs (HUVECs) under 4 dyn/cm(2) laminar shear stress for 24 h resulted in flow adaptation: cell elongation and formation of actin stress fibers aligned to the flow direction. Fluorescence microscopy showed that flow-adapted cells internalized anti-ICAM/NCs under flow, although at slower rate versus non flow-adapted cells under static incubation (~35% reduction). Uptake was inhibited by amiloride, whereas marginally affected by filipin and cadaverine, implicating that CAM-endocytosis accounts for anti-ICAM/NC uptake under flow. Internalization under flow was more modestly affected by inhibiting protein kinase C, which regulates actin remodeling during CAM-endocytosis. Actin recruitment to stress fibers that maintain the cell shape under flow may delay uptake of anti-ICAM/NCs under this condition by interfering with actin reorganization needed for CAM-endocytosis. Electron microscopy revealed somewhat slow, yet effective endocytosis of anti-ICAM/NCs by pulmonary endothelium after i.v. injection in mice, similar to that of flow-adapted cell cultures: ~40% (30 min) and 80% (3 h) internalization. Similar to cell culture data, uptake was slightly faster in capillaries with lower shear stress. Further, LPS treatment accelerated internalization of anti-ICAM/NCs in mice. Therefore, regulation of endocytosis

  10. Endocytosis and Endosomal Trafficking in Plants.

    Science.gov (United States)

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.

  11. The Effect of Substrate Elasticity and Actomyosin Contractility on Different Forms of Endocytosis

    Science.gov (United States)

    Missirlis, Dimitris

    2014-01-01

    Substrate mechanical properties have emerged as potent determinants of cell functions and fate. We here tested the hypothesis that different forms of endocytosis are regulated by the elasticity of the synthetic hydrogels cells are cultured on. Towards this objective, we quantified cell-associated fluorescence of the established endocytosis markers transferrin (Tf) and cholera toxin subunit B (CTb) using a flow-cytometry based protocol, and imaged marker internalization using microscopy techniques. Our results demonstrated that clathrin-mediated endocytosis of Tf following a 10-minute incubation with a fibroblast cell line was lower on the softer substrates studied (5 kPa) compared to those with elasticities of 40 and 85 kPa. This effect was cancelled after 1-hour incubation revealing that intracellular accumulation of Tf at this time point did not depend on substrate elasticity. Lipid-raft mediated endocytosis of CTb, on the other hand, was not affected by substrate elasticity in the studied range of time and substrate elasticity. The use of pharmacologic contractility inhibitors revealed inhibition of endocytosis for both Tf and CTb after a 10-minute incubation and a dissimilar effect after 1 hour depending on the inhibitor type. Further, the internalization of fluorescent NPs, used as model drug delivery systems, showed a dependence on substrate elasticity, while transfection efficiency was unaffected by it. Finally, an independence on substrate elasticity of Tf and CTb association with HeLa cells indicated that there are cell-type differences in this respect. Overall, our results suggest that clathrin-mediated but not lipid-raft mediated endocytosis is potentially influenced by substrate mechanics at the cellular level, while intracellular trafficking and accumulation show a more complex dependence. Our findings are discussed in the context of previous work on how substrate mechanics affect the fundamental process of endocytosis and highlight important

  12. Removal of sodium from the component of the sodium purification loop

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Kyung Chai; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun

    2005-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Several types of failures due to improper cleaning procedures have been defined in the past. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either the intergranular penetration characteristic of a high-oxygen sodium or an accelerated corrosion due to oxygen. The methods used for cleaning sodium equipment depend on the condition and types of equipment to be cleaned and whether the equipment is to be reused. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, chemical, physical, or mechanical damage, and external effects. This paper discusses a steam-nitrogen gas cleaning method for the routine applications that permits the reuse of the cold trap in sodium

  13. Actin- and dynamin-dependent maturation of bulk endocytosis restores neurotransmission following synaptic depletion.

    Directory of Open Access Journals (Sweden)

    Tam H Nguyen

    Full Text Available Bulk endocytosis contributes to the maintenance of neurotransmission at the amphibian neuromuscular junction by regenerating synaptic vesicles. How nerve terminals internalize adequate portions of the presynaptic membrane when bulk endocytosis is initiated before the end of a sustained stimulation is unknown. A maturation process, occurring at the end of the stimulation, is hypothesised to precisely restore the pools of synaptic vesicles. Using confocal time-lapse microscopy of FM1-43-labeled nerve terminals at the amphibian neuromuscular junction, we confirm that bulk endocytosis is initiated during a sustained tetanic stimulation and reveal that shortly after the end of the stimulation, nerve terminals undergo a maturation process. This includes a transient bulging of the plasma membrane, followed by the development of large intraterminal FM1-43-positive donut-like structures comprising large bulk membrane cisternae surrounded by recycling vesicles. The degree of bulging increased with stimulation frequency and the plasmalemma surface retrieved following the transient bulging correlated with the surface membrane internalized in bulk cisternae and recycling vesicles. Dyngo-4a, a potent dynamin inhibitor, did not block the initiation, but prevented the maturation of bulk endocytosis. In contrast, cytochalasin D, an inhibitor of actin polymerization, hindered both the initiation and maturation processes. Both inhibitors hampered the functional recovery of neurotransmission after synaptic depletion. Our data confirm that initiation of bulk endocytosis occurs during stimulation and demonstrates that a delayed maturation process controlled by actin and dynamin underpins the coupling between exocytosis and bulk endocytosis.

  14. Endocytosis of G protein-coupled receptors is regulated by clathrin light chain phosphorylation.

    Science.gov (United States)

    Ferreira, Filipe; Foley, Matthew; Cooke, Alex; Cunningham, Margaret; Smith, Gemma; Woolley, Robert; Henderson, Graeme; Kelly, Eamonn; Mundell, Stuart; Smythe, Elizabeth

    2012-08-07

    Signaling by transmembrane receptors such as G protein-coupled receptors (GPCRs) occurs at the cell surface and throughout the endocytic pathway, and signaling from the cell surface may differ in magnitude and downstream output from intracellular signaling. As a result, the rate at which signaling molecules traverse the endocytic pathway makes a significant contribution to downstream output. Modulation of the core endocytic machinery facilitates differential uptake of individual cargoes. Clathrin-coated pits are a major entry portal where assembled clathrin forms a lattice around invaginating buds that have captured endocytic cargo. Clathrin assembles into triskelia composed of three clathrin heavy chains and associated clathrin light chains (CLCs). Despite the identification of clathrin-coated pits at the cell surface over 30 years ago, the functions of CLCs in endocytosis have been elusive. In this work, we identify a novel role for CLCs in the regulated endocytosis of specific cargoes. Small interfering RNA-mediated knockdown of either CLCa or CLCb inhibits the uptake of GPCRs. Moreover, we demonstrate that phosphorylation of Ser204 in CLCb is required for efficient endocytosis of a subset of GPCRs and identify G protein-coupled receptor kinase 2 (GRK2) as a kinase that can phosphorylate CLCb on Ser204. Overexpression of CLCb(S204A) specifically inhibits the endocytosis of those GPCRs whose endocytosis is GRK2-dependent. Together, these results indicate that CLCb phosphorylation acts as a discriminator for the endocytosis of specific GPCRs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts

    Science.gov (United States)

    Xu, Congfeng; Zhang, Yanhui H.; Thangavel, Muthusamy; Richardson, Mekel M.; Liu, Li; Zhou, Bin; Zheng, Yi; Ostrom, Rennolds S.; Zhang, Xin A.

    2009-01-01

    Tetraspanin CD82 suppresses cell migration, tumor invasion, and tumor metastasis. To determine the mechanism by which CD82 inhibits motility, most studies have focused on the cell surface CD82, which forms tetraspanin-enriched microdomains (TEMs) with other transmembrane proteins, such as integrins. In this study, we found that CD82 undergoes endocytosis and traffics to endosomes and lysosomes. To determine the endocytic mechanism of CD82, we demonstrated that dynamin and clathrin are not essential for CD82 internalization. Depletion or sequestration of sterol in the plasma membrane markedly inhibited the endocytosis of CD82. Despite the demand on Cdc42 activity, CD82 endocytosis is distinct from macropinocytosis and the documented dynamin-independent pinocytosis. As a TEM component, CD82 reorganizes TEMs and lipid rafts by redistributing cholesterol into these membrane microdomains. CD82-containing TEMs are characterized by the cholesterol-containing microdomains in the extreme light- and intermediate-density fractions. Moreover, the endocytosis of CD82 appears to alleviate CD82-mediated inhibition of cell migration. Taken together, our studies demonstrate that lipid-dependent endocytosis drives CD82 trafficking to late endosomes and lysosomes, and CD82 reorganizes TEMs and lipid rafts through redistribution of cholesterol.—Xu, C., Zhang, Y. H., Thangavel, M., Richardson, M. M., Liu, L., Zhou, B., Zheng, Y., Ostrom, R. S., Zhang, X. A. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. PMID:19497983

  16. Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1

    Science.gov (United States)

    Renigunta, Vijay; Fischer, Thomas; Zuzarte, Marylou; Kling, Stefan; Zou, Xinle; Siebert, Kai; Limberg, Maren M.; Rinné, Susanne; Decher, Niels; Schlichthörl, Günter; Daut, Jürgen

    2014-01-01

    The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface, and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 colocalized in the early endosomal compartment, as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant that cannot assemble with other SNARE proteins had virtually the same effect as wild-type syntaxin-8. Total internal reflection fluorescence microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1, and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalized via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion. PMID:24743596

  17. Signaling induced by hop/STI-1 depends on endocytosis

    International Nuclear Information System (INIS)

    Americo, Tatiana A.; Chiarini, Luciana B.; Linden, Rafael

    2007-01-01

    The co-chaperone hop/STI-1 is a ligand of the cell surface prion protein (PrP C ), and their interaction leads to signaling and biological effects. Among these, hop/STI-1 induces proliferation of A172 glioblastoma cells, dependent on both PrP C and activation of the Erk pathway. We tested whether clathrin-mediated endocytosis affects signaling induced by hop/STI-1. Both hyperosmolarity induced by sucrose and monodansyl-cadaverine blocked Erk activity induced by hop/STI-1, without affecting the high basal Akt activity typical of A172. The endocytosis inhibitors also affected the sub-cellular distribution of phosphorylated Erk, consistent with blockade of the latter's activity. The data indicate that signaling induced by hop/STI-1 depends on endocytosis. These findings are consistent with a role of sub-cellular trafficking in signal transduction following engagement by PrP C by ligands such as hop/STI-1, and may help help unravel both the functions of the prion protein, as well as possible loss-of-function components of prion diseases

  18. Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells

    Energy Technology Data Exchange (ETDEWEB)

    Dombu, Christophe Youta; Kroubi, Maya; Zibouche, Rima; Matran, Regis; Betbeder, Didier, E-mail: dbetbeder@aol.com [EA 4483, IFR 114, Laboratoire de Physiologie, Faculte de Medecine Pole Recherche, Universite de Lille 2, 1 place de Verdun, 59045 Lille Cedex (France)

    2010-09-03

    A major challenge of drug delivery using colloids via the airway is to understand the mechanism implied in their interactions with epithelial cells. The purpose of this work was to characterize the process of endocytosis and exocytosis of cationic nanoparticles (NPs) made of maltodextrin which were developed as a delivery system for antigens in vaccine applications. Confocal microscopy demonstrated that these NP are rapidly endocytosed after as little as 3 min incubation, and that the endocytosis was also faster than NP binding since most of the NPs were found in the middle of the cells around the nuclei. A saturation limit was observed after a 40 min incubation, probably due to an equilibrium becoming established between endocytosis and exocytosis. Endocytosis was dramatically reduced at 4 deg. C compared with 37 deg. C, or by NaN{sub 3} treatment, both results suggesting an energy dependent process. Protamine pretreatment of the cells inhibited NPs uptake and we found that clathrin pathway is implied in their endocytosis. Cholesterol depletion increased NP uptake by 300% and this phenomenon was explained by the fact that cholesterol depletion totally blocked NP exocytosis. These results suggest that these cationic NPs interact with anionic sites, are quickly endocytosed via the clathrin pathway and that their exocytosis is cholesterol dependent, and are similar to those obtained in other studies with viruses such as influenza.

  19. Hierarchical classification strategy for Phenotype extraction from epidermal growth factor receptor endocytosis screening

    NARCIS (Netherlands)

    L. Cao (Lu); M. Graauw (Marjo de); K. Yan (Kuan); L.C.J. Winkel (Leah C.J.); F.J. Verbeek (Fons)

    2016-01-01

    textabstractBackground: Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In

  20. Endocytosis of HERG is clathrin-independent and involves arf6.

    Directory of Open Access Journals (Sweden)

    Rucha Karnik

    Full Text Available The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6.

  1. Development of the immersed sodium flowmeter

    International Nuclear Information System (INIS)

    Chen Daolong

    1994-09-01

    An immersed sodium flowmeter of the range 3 m 3 /h is developed. It is a flowmeter of entire-sealed construction, it can be operated in sodium. Its construction, the theoretical calculation of the calibration characteristic and the pressure loss, the test facility and the calibration test are presented in detail. It analytical expression of the calibration characteristic in the temperature limit 200∼600 degree C and the error analysis are given. The basic error of this immersed sodium flowmeter is below +-2.3% of the measuring range. The immersed sodium flowmeter can be used to resolve the sodium flowrate measuring problems of the in-reactor component of LMFBR, for example, the flowrate measuring of the in-reactor sodium purification loop, the flowrate measuring of the immersed sodium pump and the flowrate measuring of the in-reactor test component

  2. Improvements to the sodium supply system of a nuclear reactor core

    International Nuclear Information System (INIS)

    Chevallier, Rene; Marchais, Christian.

    1981-01-01

    This invention concerns an improvement to the sodium supply system of a nuclear reactor core and, in particular, concerns the area included between the outlet of the primary circulation pumps and the core proper. A simplified structure and a lightening of all this linking area between the circulation pumps and the distribution tank under the core is achieved and this results in a very significant reduction in the risks of deterioration and in a definite increase in the reliability of the reactor. The invention is therefore an improvement to the sodium supply system of the nuclear reactor core vessel with incorporated exchangers, in which the cool sodium, after passing through the primary exchangers, is collected in a ring compartment from whence it is taken up by the pumps and moved to at least one pipe reaching a distribution tank located under the reactor core [fr

  3. Synergistic and complete reversal of the multidrug resistance of mitoxantrone hydrochloride by three-in-one multifunctional lipid-sodium glycocholate nanocarriers based on simultaneous BCRP and Bcl-2 inhibition.

    Science.gov (United States)

    Ling, Guixia; Zhang, Tianhong; Zhang, Peng; Sun, Jin; He, Zhonggui

    Multidrug resistance (MDR) is a severe obstacle to successful chemotherapy due to its complicated nature that involves multiple mechanisms, such as drug efflux by transporters (P-glycoprotein and breast cancer resistance protein, BCRP) and anti-apoptotic defense (B-cell lymphoma, Bcl-2). To synergistically and completely reverse MDR by simultaneous inhibition of pump and non-pump cellular resistance, three-in-one multifunctional lipid-sodium glycocholate (GcNa) nanocarriers (TMLGNs) have been designed for controlled co-delivery of water-soluble cationic mitoxantrone hydrochloride (MTO), cyclosporine A (CsA - BCRP inhibitor), and GcNa (Bcl-2 inhibitor). GcNa and dextran sulfate were incorporated as anionic compounds to enhance the encapsulation efficiency of MTO (up to 97.8%±1.9%) and sustain the release of cationic MTO by electrostatic interaction. The results of a series of in vitro and in vivo investigations indicated that the TMLGNs were taken up by the resistant cancer cells by an endocytosis pathway that escaped the efflux induced by BCRP, and the simultaneous release of CsA with MTO further efficiently inhibited the efflux of the released MTO by BCRP; meanwhile GcNa induced the apoptosis process, and an associated synergistic antitumor activity and reversion of MDR were achieved because the reversal index was almost 1.0.

  4. Effects of chlorpromazine on Na+-K+-ATPase pumping and solute transport in rat hepatocytes

    International Nuclear Information System (INIS)

    Van Dyke, R.W.; Scharschmidt, B.F.

    1987-01-01

    Inhibition of Na+-K+-ATPase and sodium-dependent bile acid transport has been suggested as a mechanism for the cholestasis produced by certain drugs such as chlorpromazine. We examined the effects of chlorpromazine (and in selected studies, two of its metabolites) on Na+-K+-ATPase cation pumping (ouabain-suppressible 86 Rb uptake), exchangeable intracellular sodium content, membrane potential (assessed by 36 Cl- distribution), and sodium-dependent transport of taurocholate and alanine in primary cultures of rat hepatocytes. Chlorpromazine (10-300 microM), 7,8-dihydroxychlorpromazine (10-300 microM), and ouabain (0.1-2 mM), but not chlorpromazine sulfoxide, produced a concentration-dependent decrease in Na+-K+-ATPase cation pumping and an increase in intracellular sodium content. Chlorpromazine (100 microM) and ouabain (0.75 mM) also modestly decreased hepatocyte membrane potential. In further studies, chlorpromazine (75 and 100 microM) and ouabain (0.1, 0.5, and 0.75 mM) decreased initial sodium-dependent uptake rates of taurocholate and alanine by 18-63%. Although the steady-state intracellular content of alanine was decreased 25-53% by both agents, chlorpromazine increased the steady-state content of taurocholate by 171% and decreased taurocholate efflux, apparently related to partitioning of taurocholate into a large, slowly turning over intracellular pool. These studies provide direct evidence that chlorpromazine inhibits Na+-K+-ATPase cation pumping in intact cells and that partial inhibition of Na+-K+-ATPase cation pumping is associated with a reduction of both the electrochemical sodium gradient and sodium-dependent solute transport. These effects of chlorpromazine may contribute to chlorpromazine-induced cholestasis in animals and humans

  5. Effects of chlorpromazine on Na+-K+-ATPase pumping and solute transport in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyke, R.W.; Scharschmidt, B.F.

    1987-11-01

    Inhibition of Na+-K+-ATPase and sodium-dependent bile acid transport has been suggested as a mechanism for the cholestasis produced by certain drugs such as chlorpromazine. We examined the effects of chlorpromazine (and in selected studies, two of its metabolites) on Na+-K+-ATPase cation pumping (ouabain-suppressible /sup 86/Rb uptake), exchangeable intracellular sodium content, membrane potential (assessed by /sup 36/Cl- distribution), and sodium-dependent transport of taurocholate and alanine in primary cultures of rat hepatocytes. Chlorpromazine (10-300 microM), 7,8-dihydroxychlorpromazine (10-300 microM), and ouabain (0.1-2 mM), but not chlorpromazine sulfoxide, produced a concentration-dependent decrease in Na+-K+-ATPase cation pumping and an increase in intracellular sodium content. Chlorpromazine (100 microM) and ouabain (0.75 mM) also modestly decreased hepatocyte membrane potential. In further studies, chlorpromazine (75 and 100 microM) and ouabain (0.1, 0.5, and 0.75 mM) decreased initial sodium-dependent uptake rates of taurocholate and alanine by 18-63%. Although the steady-state intracellular content of alanine was decreased 25-53% by both agents, chlorpromazine increased the steady-state content of taurocholate by 171% and decreased taurocholate efflux, apparently related to partitioning of taurocholate into a large, slowly turning over intracellular pool. These studies provide direct evidence that chlorpromazine inhibits Na+-K+-ATPase cation pumping in intact cells and that partial inhibition of Na+-K+-ATPase cation pumping is associated with a reduction of both the electrochemical sodium gradient and sodium-dependent solute transport. These effects of chlorpromazine may contribute to chlorpromazine-induced cholestasis in animals and humans.

  6. Insulin regulation of Na/K pump activity in rat hepatoma cells

    International Nuclear Information System (INIS)

    Gelehrter, T.D.; Shreve, P.D.; Dilworth, V.M.

    1984-01-01

    Insulin rapidly increases Na/K pump activity in HTC rat hepatoma cells in tissue culture, as measured by the ouabain-sensitive influx of the potassium analogue 86Rb+. Increased influx is observed within minutes and is maximal (70% above control) within 1-2 h. The effect appears to be mediated by the insulin receptors, as: the concentration dependence on insulin is identical to that for insulin induction of tyrosine aminotransferase and stimulation of 2-aminoisobutyric acid transport, proinsulin is 6% as potent as insulin, and the effect is blocked by anti-receptor antibodies. The early stimulation of potassium influx is not blocked by cycloheximide and is not associated with an increased number of pump sites as measured by 3 H-ouabain binding. The insulin effect is blocked by amiloride, which blocks sodium influx, and is mimicked by the sodium ionophore monensin, which increases sodium influx and intracellular accumulation. Insulin also rapidly increases the initial rate of 22 Na+ influx, suggesting that insulin may enhance Na/K pump activity, in part, by increasing intracellular sodium concentration. Incubation of HTC cells with insulin for 24 h causes complete unresponsiveness to the insulin induction of transaminase and stimulation of amino acid transport, a phenomenon mediated by postbinding mechanisms. In contrast, similar incubation with insulin does not cause unresponsiveness to the insulin stimulation of Na/K pump activity. Therefore, the site of regulation of responsiveness to insulin must be distal to, or separate from, those events causing stimulation of ion fluxes

  7. Protein kinase A-induced internalization of Slack channels from the neuronal membrane occurs by adaptor protein-2/clathrin-mediated endocytosis.

    Science.gov (United States)

    Gururaj, Sushmitha; Evely, Katherine M; Pryce, Kerri D; Li, Jun; Qu, Jun; Bhattacharjee, Arin

    2017-11-24

    The sodium-activated potassium (K Na ) channel Kcnt1 (Slack) is abundantly expressed in nociceptor (pain-sensing) neurons of the dorsal root ganglion (DRG), where they transmit the large outward conductance I KNa and arbitrate membrane excitability. Slack channel expression at the DRG membrane is necessary for their characteristic firing accommodation during maintained stimulation, and reduced membrane channel density causes hyperexcitability. We have previously shown that in a pro-inflammatory state, a decrease in membrane channel expression leading to reduced Slack-mediated I KNa expression underlies DRG neuronal sensitization. An important component of the inflammatory milieu, PKA internalizes Slack channels from the DRG membrane, reduces I KNa , and produces DRG neuronal hyperexcitability when activated in cultured primary DRG neurons. Here, we show that this PKA-induced retrograde trafficking of Slack channels also occurs in intact spinal cord slices and that it is carried out by adaptor protein-2 (AP-2) via clathrin-mediated endocytosis. We provide mass spectrometric and biochemical evidence of an association of native neuronal AP-2 adaptor proteins with Slack channels, facilitated by a dileucine motif housed in the cytoplasmic Slack C terminus that binds AP-2. By creating a competitive peptide blocker of AP-2-Slack binding, we demonstrated that this interaction is essential for clathrin recruitment to the DRG membrane, Slack channel endocytosis, and DRG neuronal hyperexcitability after PKA activation. Together, these findings uncover AP-2 and clathrin as players in Slack channel regulation. Given the significant role of Slack in nociceptive neuronal excitability, the AP-2 clathrin-mediated endocytosis trafficking mechanism may enable targeting of peripheral and possibly, central neuronal sensitization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Endocytosis of desmosomal plaques depends on intact actin filaments and leads to a nondegradative compartment

    DEFF Research Database (Denmark)

    Holm, Pernille K.; Hansen, Steen H.; Sandvig, Kirsten

    1993-01-01

    Cellebiologi, human epithelial cell line, growth inhibition, desmosomes, clathrin-independent endocytosis, cytoskeleton, nondegradative compartment......Cellebiologi, human epithelial cell line, growth inhibition, desmosomes, clathrin-independent endocytosis, cytoskeleton, nondegradative compartment...

  9. Experience on sodium removal from FBTR components in its operating phase

    International Nuclear Information System (INIS)

    Jambunathan, D.; Rao, M.S.; Krishnamachari, V.S.; Kasiviswanathan, K.V.; Rajan, M.

    1997-01-01

    FBTR is a 40 MWt/13 MWe loop type, sodium cooled mixed carbide fuelled reactor. There are two primary loops, two secondary loops and a common steam-water circuit. Criticality was achieved in 1985 and during the course of the 10 years of operation phase experience has been gained on the decontamination of certain core components, primary sodium pumps, CRDM parts, handling components and cold traps. This paper deals with the decontamination aspects of these components in detail. For core subassemblies a remote sodium cleaning system was provided in the hot cell. The unique feature of this system is that it pumps alcohol into wash chamber using compressed nitrogen. During cleaning, the sub assembly is loaded into the system using master slave manipulator and compressed nitrogen gas is used to pump alcohol into the system for cleaning the outer and inner surfaces of the sub assembly in cycles. Each cycle takes about 15 minutes and around 5 to 6 cycles of cleaning were employed to remove 100 g of sodium. The level of alcohol in the tank is measured by ultrasonic level probes. The used alcohol is pumped to medium active waste storage tank. Primary and secondary sodium pumps are the large components which were cleaned off sodium using steam and water in decontamination pit. Lower part of CRDM with a failed bellow was another component cleaned in decontamination pit. An electro decontamination technique was successfully developed to remove coloration on the lower part of CRDM for reuse. A stainless steel carrier with antimony capsule was the first radio active component to undergo sodium cleaning operation in decontamination pit meant for large primary sodium circuit components after making necessary modifications. Decontamination of other components such as fingers of grippers and scrapper rings of charging and discharging flasks was carried out with alcohol under inert atmosphere. The secondary loop cold trap was successfully cleaned by hydride decomposition and vacuum

  10. Functional studies of sodium pump isoforms

    DEFF Research Database (Denmark)

    Clausen, Michael Jakob

    The Na+,K+-ATPase is an essential ion pump found in all animal cells. It uses the energy from ATP hydrolysis to export three Na+ and import two K+, both against their chemical gradients and for Na+ also against the electrical potential. Mammals require four Na+,K+-ATPase isoforms that each have...... unique expression profiles and specialized functional features. We use a Two Electrode Voltage Clamp setup to determine pre-steady-state and steady-state characteristics of each isoform and design chimeras to pin-point the structural elements responsible for observed differences. With this strategy we...

  11. Nanomechanics of magnetically driven cellular endocytosis

    Czech Academy of Sciences Publication Activity Database

    Zablotskyy, Vitaliy A.; Lunov, O.; Dejneka, Alexandr; Jastrabík, Lubomír; Polyakova, T.; Syrovets, T.; Simmet, T.

    2011-01-01

    Roč. 99, č. 18 (2011), 183701/1-183701/3 ISSN 0003-6951 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : magnetically controled endocytosis * cell membranes * iron oxide nanoparticles Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.844, year: 2011

  12. Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing.

    Science.gov (United States)

    Ding, Bohua; Tian, Yongmei; Pan, Yangang; Shan, Yuping; Cai, Mingjun; Xu, Haijiao; Sun, Yingchun; Wang, Hongda

    2015-05-07

    We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly.

  13. Distinct functions of Crumbs regulating slit diaphragms and endocytosis in Drosophila nephrocytes.

    Science.gov (United States)

    Hochapfel, Florian; Denk, Lucia; Mendl, Gudrun; Schulze, Ulf; Maaßen, Christine; Zaytseva, Yulia; Pavenstädt, Hermann; Weide, Thomas; Rachel, Reinhard; Witzgall, Ralph; Krahn, Michael P

    2017-12-01

    Mammalian podocytes, the key determinants of the kidney's filtration barrier, differentiate from columnar epithelial cells and several key determinants of apical-basal polarity in the conventional epithelia have been shown to regulate podocyte morphogenesis and function. However, little is known about the role of Crumbs, a conserved polarity regulator in many epithelia, for slit-diaphragm formation and podocyte function. In this study, we used Drosophila nephrocytes as model system for mammalian podocytes and identified a conserved function of Crumbs proteins for cellular morphogenesis, nephrocyte diaphragm assembly/maintenance, and endocytosis. Nephrocyte-specific knock-down of Crumbs results in disturbed nephrocyte diaphragm assembly/maintenance and decreased endocytosis, which can be rescued by Drosophila Crumbs as well as human Crumbs2 and Crumbs3, which were both expressed in human podocytes. In contrast to the extracellular domain, which facilitates nephrocyte diaphragm assembly/maintenance, the intracellular FERM-interaction motif of Crumbs is essential for regulating endocytosis. Moreover, Moesin, which binds to the FERM-binding domain of Crumbs, is essential for efficient endocytosis. Thus, we describe here a new mechanism of nephrocyte development and function, which is likely to be conserved in mammalian podocytes.

  14. Electromagnetic pumping of liquid lithium in inertial confinement fusion reactors

    International Nuclear Information System (INIS)

    Baker, R.S.; Blink, J.A.; Tessier, M.J.

    1983-01-01

    The basic operating principles and geometries of ten electromagnetic pumps are described. Two candidate pumps, the annular-linear-induction pump and the helical-rotor electromagnetic pump, are compared for possible use in a full-scale liquid-lithium inertial confinement fusion reactor. A parametric design study completed for the helical-rotor pump is shown to be valid when applied to an experimental sodium pump. Based upon the preliminary HYLIFE requirements for a lithium flow rate per pump of 8.08 m 3 /s at a head of 82.5 kPa, a complete set of 70 variables are specified for a helical-rotor pump with either a normally conducting or a superconducting winding. The two alternative designs are expected to perform with efficiencies of 50 and 60%, respectively

  15. Coupling of exocytosis and endocytosis at the presynaptic active zone.

    Science.gov (United States)

    Maritzen, Tanja; Haucke, Volker

    2018-02-01

    Brain function depends on the ability of neurons to communicate with each other via the regulated exocytosis of neurotransmitter-containing synaptic vesicles (SVs) at specialized presynaptic release sites termed active zones (AZs). The presynaptic AZ comprises an assembly of large multidomain proteins that link the machinery for vesicle fusion to sites of voltage-dependent Ca 2+ entry. Following SV fusion at AZ release sites SV membranes are retrieved by compensatory endocytosis, and SVs are reformed. Recent data suggest that Ca 2+ -triggered SV exocytosis at AZs and endocytic retrieval of SVs may be functionally and physically linked. Here we discuss the evidence supporting such exo-endocytic coupling as well as possible modes and mechanisms that may underlie coupling of exocytosis and endocytosis at and around AZs in presynaptic nerve terminals. As components of the exo-endocytic machinery at synapses have been linked to neurological and neuropsychiatric disorders, understanding the mechanisms that couple exocytosis and endocytosis at AZs may be of importance for developing novel therapies to treat these diseases. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  16. Chronic ethanol consumption in rats produces opioid antinociceptive tolerance through inhibition of mu opioid receptor endocytosis.

    Directory of Open Access Journals (Sweden)

    Li He

    Full Text Available It is well known that the mu-opioid receptor (MOR plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the process of endocytosis. Importantly, agonists at the MOR that promote receptor endocytosis, such as the endogenous peptides enkephalin and β-endorphin, show a reduced propensity to promote antinociceptive tolerance than do agonists, like morphine, which do not promote receptor endocytosis. These observations led us to examine whether chronic ethanol consumption produced opioid tolerance by interfering with MOR endocytosis. Indeed, here we show that chronic ethanol consumption inhibits the endocytosis of MOR in response to opioid peptide. This loss of endocytosis was accompanied by a dramatic decrease in G protein coupled receptor kinase 2 (GRK2 protein levels after chronic drinking, suggesting that loss of this component of the trafficking machinery could be a mechanism by which endocytosis is lost. We also found that MOR coupling to G-protein was decreased in ethanol-drinking rats, providing a functional explanation for loss of opioid antinociception. Together, these results suggest that chronic ethanol drinking alters the ability of MOR to endocytose in response to opioid peptides, and consequently, promotes tolerance to the effects of opioids.

  17. Endocytosis of hERG Is Clathrin-Independent and Involves Arf6

    Science.gov (United States)

    Abuarab, Nada; Smith, Andrew J.; Hardy, Matthew E. L.; Elliott, David J. S.; Sivaprasadarao, Asipu

    2013-01-01

    The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6. PMID:24392021

  18. The Analysis of an End Effect according to the Input Frequency Change in the EM Pump

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Kim, Jong Man; Cha, Jae Eun; Choi, Jong Hyun; Nam, Ho Yoon

    2006-01-01

    In general, an electromagnetic (EM) pump is considered to circulate a liquid sodium coolant for a Sodium Fast Reactor (SFR). The EM pump has an end effect at both ends basically due to its finite core length. The generated magnetic field across the flow gap is distorted at both ends of the pump. Consequently, there arises reduction on the developed force by the vector product of that magnetic field and its perpendicular induced current. Especially, it experiences even the opposite pumping force near the pump inlet. That causes low efficiency of the pump and resultantly brings about bad performance of a pump. The present study theoretically shows that this end effect can be lessened by control of input frequency. It is predicted that pump operates much more efficiently in the range of low frequency around teen hertz than in that of high frequency over 60 Hz. The force density is investigated in the narrow annular channel of the pump with the length of 84cm according to pump axial coordinates at various frequency

  19. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Raman Deep, E-mail: Takhter.Ramandeep@mayo.edu; Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L., E-mail: Marks.david@mayo.edu; Pagano, Richard E.

    2013-05-10

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily

  20. The immunological synapse: a focal point for endocytosis and exocytosis.

    Science.gov (United States)

    Griffiths, Gillian M; Tsun, Andy; Stinchcombe, Jane C

    2010-05-03

    There are many different cells in the immune system. To mount an effective immune response, they need to communicate with each other. One way in which this is done is by the formation of immunological synapses between cells. Recent developments show that the immune synapse serves as a focal point for exocytosis and endocytosis, directed by centrosomal docking at the plasma membrane. In this respect, formation of the immunological synapse bears striking similarities to cilia formation and cytokinesis. These intriguing observations suggest that the centrosome may play a conserved role in designating a specialized area of membrane for localized endocytosis and exocytosis.

  1. Cooling Performance of ALIP according to the Air or Sodium Cooling Type

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Huee-Youl; Yoon, Jung; Lee, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    ALIP pumps the liquid sodium by Lorentz force produced by the interaction of induced current in the liquid metal and their associated magnetic field. Even though the efficiency of the ALIP is very low compared to conventional mechanical pumps, it is very useful due to the absence of moving parts, low noise and vibration level, simplicity of flow rate regulation and maintenance, and high temperature operation capability. Problems in utilization of ALIP concern a countermeasure for elevation of internal temperature of the coil due to joule heating and how to increase magnetic flux density of Na channel gap. The conventional ALIP usually used cooling methods by circulating the air or water. On the other hand, GE-Toshiba developed a double stator pump adopting the sodium-immersed self-cooled type, and it recovered the heat loss in sodium. Therefore, the station load factor of the plant could be reduced. In this study, the cooling performance with cooling types of ALIP is analyzed. We developed thermal analysis models to evaluate the cooling performance of air or sodium cooling type of ALIP. The cooling performance is analyzed for operating parameters and evaluated with cooling type. 1-D and 3-D thermal analysis model for IHTS ALIP was developed, and the cooling performance was analyzed for air or sodium cooling type. The cooling performance for air cooling type was better than sodium cooling type at higher air velocity than 0.2 m/s. Also, the air temperature of below 270 .deg. demonstrated the better cooling performance as compared to sodium.

  2. Insulin affects the sodium affinity of the rat adipocyte (Na+,K+)-ATPase

    International Nuclear Information System (INIS)

    Lytton, J.

    1985-01-01

    The K0.5 for intracellular sodium of the two forms of (Na + ,K + )-ATPase which exist in rat adipocytes has been determined by incubating the cells in the absence of potassium in buffers of varying sodium concentration; these conditions shut off the Na + pump and allow sodium to equilibrate into the cell. The activity of (Na + ,K + )-ATPase was then monitored with 86 Rb + /K + pumping which was initiated by adding isotope and KCl to 5 mM, followed by a 3-min uptake period. Atomic absorption and 22 Na + tracer equilibration were used to determine the actual intracellular [Na + ] under the different conditions. The K0.5 values thus obtained were 17 mM for alpha and 52 mM for alpha(+). Insulin treatment of rat adipocytes had no effect on the intracellular [Na+] nor on the Vmax of 86 Rb + /K + pumping, but did produce a shift in the sodium ion K0.5 values to 14 mM for alpha and 33 mM for alpha(+). This change in affinity can explain the selective stimulation of alpha(+) by insulin under normal incubation conditions

  3. Sodium and Proton Effects on Inward Proton Transport through Na/K Pumps

    Science.gov (United States)

    Mitchell, Travis J.; Zugarramurdi, Camila; Olivera, J. Fernando; Gatto, Craig; Artigas, Pablo

    2014-01-01

    The Na/K pump hydrolyzes ATP to export three intracellular Na (Nai) as it imports two extracellular K (Ko) across animal plasma membranes. Within the protein, two ion-binding sites (sites I and II) can reciprocally bind Na or K, but a third site (site III) exclusively binds Na in a voltage-dependent fashion. In the absence of Nao and Ko, the pump passively imports protons, generating an inward current (IH). To elucidate the mechanisms of IH, we used voltage-clamp techniques to investigate the [H]o, [Na]o, and voltage dependence of IH in Na/K pumps from ventricular myocytes and in ouabain-resistant pumps expressed in Xenopus oocytes. Lowering pHo revealed that Ho both activates IH (in a voltage-dependent manner) and inhibits it (in a voltage-independent manner) by binding to different sites. Nao effects depend on pHo; at pHo where no Ho inhibition is observed, Nao inhibits IH at all concentrations, but when applied at pHo that inhibits pump-mediated current, low [Na]o activates IH and high [Na]o inhibits it. Our results demonstrate that IH is a property inherent to Na/K pumps, not linked to the oocyte expression environment, explains differences in the characteristics of IH previously reported in the literature, and supports a model in which 1), protons leak through site III; 2), binding of two Na or two protons to sites I and II inhibits proton transport; and 3), pumps with mixed Na/proton occupancy of sites I and II remain permeable to protons. PMID:24940773

  4. Design and research on nuclear power plant EAS jet pump

    International Nuclear Information System (INIS)

    Chen Xingjiang; Fang Xiquan; Xie Jian; Yang Bin; Wang Xueling; Qi Yanli

    2014-01-01

    The jet pump is an important part of the PWR containment spray system. It will be performed the security functions under the accident conditions, which the containment spray system adds the right amount of sodium hydroxide through the jet pump to spray water. This paper describes the principle of jet pump. And the optimum structure dimensions were calculated according to the performance parameter and requirement of the jet pump. On the basis of foreign EAS jet pump design experience, the structure dimensions were modified according to the CFD analysis and performance test. Finally, the results of CFD analysis and performance test were provided. (authors)

  5. Cw hyper-Raman laser and four-wave mixing in atomic sodium

    Science.gov (United States)

    Klug, M.; Kablukov, S. I.; Wellegehausen, B.

    2005-01-01

    Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.

  6. Design of DC Conduction Pump for PGSFR Active Decay Heat Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dehee; Hong, Jonggan; Lee, Taeho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A DC conduction pump has been designed for the ADHRS of PGSFR. A VBA code developed by ANL was utilized to design and optimize the pump. The pump geometry dependent parameters were optimized to minimize the total current while meeting the design requirements. A double-C type dipole was employed to produce the calculated magnetic strength. Numerical simulations for the magnetic field strength and its distribution around the dipole and for the turbulent flow under magnetic force will be carried out. A Direct Current (DC) conduction Electromagnetic Pump (EMP) has been designed for Active Decay Heat Removal System (ADHRS) of PGSFR. The PGSFR has active as well as passive systems for the DHRS. The passive DHRS (PDHRS) works by natural circulation head and the ADHRS is driven by an EMP for the DHRS sodium loop and a blower for the finned-tube sodium-to-air heat exchanger (FHX). An Annular Linear Induction Pump (ALIP) can be also considered for the ADHRS, but DC conduction pump has been chosen. Selection basis of DHRS EMP is addressed and EMP design for single ADHRS loop with 1MWt heat removal capacity is introduced.

  7. Radiative characteristics of CVL pumped dye laser

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Uichi; Ishiguro, Takahide

    1987-09-01

    This paper describes the radiative characteristics of CVL pumped dye laser. It is compared YAG-SH (530 nm) with CVL (511, 578 nm) and CVL (511 nm) for pumping source. Influence of solvent in dye laser power was examined. The present experimental results show that efficiency of CVL (511 nm) pumped dye laser was most high. When the dye solution is at a standstill, the efficiency of dye laser with water and Sodium Lauryl Sulfate (S.L.S., 2 %wt.) was most high among the four kinds of solvent. In the condition of dye solution flow, the water and S.L.S. or ethylene glycol was useful solvent for dye laser.

  8. 85,000-GPM, single-stage, single-suction LMFBR intermediate centrifugal pump

    International Nuclear Information System (INIS)

    Fair, C.E.; Cook, M.E.; Huber, K.A.; Rohde, R.

    1983-01-01

    The mechanical and hydraulic design features of the 85,000-gpm, single-stage, single-suction pump test article, which is designed to circulate liquid-sodium coolant in the intermediate heat-transport system of a Large-Scale Liquid Metal Fast Breeder Reactor (LS-LMFBR), are described. The design and analytical considerations used to satisfy the pump performance and operability requirements are presented. The validation of pump hydraulic performance using a hydraulic scale-model pump is discussed, as is the featute test for the mechanical-shaft seal system

  9. Liquid metal flow control by DC electromagnetic pumps

    International Nuclear Information System (INIS)

    Borges, Eduardo Madeira; Braz Filho, Francisco Antonio; Guimaraes, Lamartine Nogueira Frutuoso

    2006-01-01

    The cooling system of high-density thermal power requires fluids of high thermal conductivity, such as liquid metals. Electromagnetic pumps can be used to liquid metal fluid flow control in cooling circuits. The operation of electromagnetic pumps used to flow control is based on Lorentz force. This force can be achieved by magnetic field and electric current interaction, controlled by external independent power supplies. This work presents the electromagnetic pump operational principles, the IEAv development scheme and the BEMC-1 simulation code. The theoretical results of BEMC-1 simulation are compared to electromagnetic pump operation experimental data, validating the BEMC-1 code. This code is used to evaluate the DC electromagnetic pump performance applied to Mercury flow control and others liquid metal such as Sodium, Lead and Bismuth, used in nuclear fast reactors. (author)

  10. Regulation of the Na(+)-K+ pump activity and estimation of the reserve capacity in intact rat peritoneal mast cells

    DEFF Research Database (Denmark)

    Knudsen, Torben; Johansen, Torben

    1990-01-01

    Evidence is provided that regulation of the Na(+)-K+ pump activity in rat peritoneal mast cells occurs mainly through stimulation of the pump from inside the plasma membrane by sodium. It is demonstrated that there is a large reserve capacity for the exchange of intracellular sodium...... with extracellular potassium in these cells. The maximal pump activity was estimated to be 3230 pmol/10(6) cells per min and Km for extracellular potassium was 1.5 mM....

  11. Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain

    Science.gov (United States)

    Ogawa, Haruo; Shinoda, Takehiro; Cornelius, Flemming; Toyoshima, Chikashi

    2009-01-01

    The sodium-potassium pump (Na+,K+-ATPase) is responsible for establishing Na+ and K+ concentration gradients across the plasma membrane and therefore plays an essential role in, for instance, generating action potentials. Cardiac glycosides, prescribed for congestive heart failure for more than 2 centuries, are efficient inhibitors of this ATPase. Here we describe a crystal structure of Na+,K+-ATPase with bound ouabain, a representative cardiac glycoside, at 2.8 Å resolution in a state analogous to E2·2K+·Pi. Ouabain is deeply inserted into the transmembrane domain with the lactone ring very close to the bound K+, in marked contrast to previous models. Due to antagonism between ouabain and K+, the structure represents a low-affinity ouabain-bound state. Yet, most of the mutagenesis data obtained with the high-affinity state are readily explained by the present crystal structure, indicating that the binding site for ouabain is essentially the same. According to a homology model for the high affinity state, it is a closure of the binding cavity that confers a high affinity. PMID:19666591

  12. Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain.

    Science.gov (United States)

    Ogawa, Haruo; Shinoda, Takehiro; Cornelius, Flemming; Toyoshima, Chikashi

    2009-08-18

    The sodium-potassium pump (Na(+),K(+)-ATPase) is responsible for establishing Na(+) and K(+) concentration gradients across the plasma membrane and therefore plays an essential role in, for instance, generating action potentials. Cardiac glycosides, prescribed for congestive heart failure for more than 2 centuries, are efficient inhibitors of this ATPase. Here we describe a crystal structure of Na(+),K(+)-ATPase with bound ouabain, a representative cardiac glycoside, at 2.8 A resolution in a state analogous to E2.2K(+).Pi. Ouabain is deeply inserted into the transmembrane domain with the lactone ring very close to the bound K(+), in marked contrast to previous models. Due to antagonism between ouabain and K(+), the structure represents a low-affinity ouabain-bound state. Yet, most of the mutagenesis data obtained with the high-affinity state are readily explained by the present crystal structure, indicating that the binding site for ouabain is essentially the same. According to a homology model for the high affinity state, it is a closure of the binding cavity that confers a high affinity.

  13. Ancient Systems of Sodium/Potassium Homeostasis as Predecessors of Membrane Bioenergetics.

    Science.gov (United States)

    Dibrova, D V; Galperin, M Y; Koonin, E V; Mulkidjanian, A Y

    2015-05-01

    Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes.

  14. Effect of sulfur dioxide on pulmonary macrophage endocytosis at rest and during exercise

    International Nuclear Information System (INIS)

    Skornik, W.A.; Brain, J.D.

    1990-01-01

    Inhaled SO2 may cause damage by injuring upper airways. To what extent can SO2 also alter pulmonary macrophage function in the parenchyma and what is the impact of exercise? We studied the effect of SO2 on pulmonary macrophage endocytosis in resting and in exercising animals by measuring the rates of macrophage endocytosis in situ for 1 h of a test particle of insoluble radioactive colloidal gold (198Au), 1, 24, or 48 h after inhalation exposure to SO2. Resting hamsters exposed for 4 h to 50 ppm SO2 had no significant reduction in macrophage endocytosis compared with air-breathing control hamsters. However, if hamsters were exposed to the same concentration of SO2 while continuously running (40 min at 0.9 km/h), macrophage endocytosis was significantly reduced 1 h after exposure even though the exposure time was only one-sixth as long. Twenty-four hours later, the percentage of gold ingested by pulmonary macrophages remained significantly depressed. By 48 h, the rate had returned to control values. Exercise alone did not affect endocytosis. Hamsters exposed to 50 ppm SO2, with or without exercise, also showed significant reductions in the number of lavaged macrophages. This decrease was greatest and most persistent in the SO2 plus exercise group. These data indicate that even when animals are exposed to water-soluble gases, which are normally removed by the upper airways, exercise can potentiate damage to more peripheral components of the pulmonary defense system such as the macrophage

  15. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images

    Directory of Open Access Journals (Sweden)

    Lee Chia-Wei

    2010-12-01

    Full Text Available Abstract Background Understanding the endocytosis process of gold nanoparticles (AuNPs is important for the drug delivery and photodynamic therapy applications. The endocytosis in living cells is usually studied by fluorescent microscopy. The fluorescent labeling suffers from photobleaching. Besides, quantitative estimation of the cellular uptake is not easy. In this paper, the size-dependent endocytosis of AuNPs was investigated by using plasmonic scattering images without any labeling. Results The scattering images of AuNPs and the vesicles were mapped by using an optical sectioning microscopy with dark-field illumination. AuNPs have large optical scatterings at 550-600 nm wavelengths due to localized surface plasmon resonances. Using an enhanced contrast between yellow and blue CCD images, AuNPs can be well distinguished from cellular organelles. The tracking of AuNPs coated with aptamers for surface mucin glycoprotein shows that AuNPs attached to extracellular matrix and moved towards center of the cell. Most 75-nm-AuNPs moved to the top of cells, while many 45-nm-AuNPs entered cells through endocytosis and accumulated in endocytic vesicles. The amounts of cellular uptake decreased with the increase of particle size. Conclusions We quantitatively studied the endocytosis of AuNPs with different sizes in various cancer cells. The plasmonic scattering images confirm the size-dependent endocytosis of AuNPs. The 45-nm-AuNP is better for drug delivery due to its higher uptake rate. On the other hand, large AuNPs are immobilized on the cell membrane. They can be used to reconstruct the cell morphology.

  16. P-Q characteristic of the electromagnetic pump with the flow rate of 60 l/min

    International Nuclear Information System (INIS)

    Kim, Hee Reyoun; KIm, Jong Man; Cha, Jae Eun; Choi, Jong Hyun; Nam, Ho Yoon

    2005-01-01

    In general, an EM pump has been employed to circulate electrically conductive liquids like molten metals by Lorentz force generated from the magnetic field and its perpendicular current. Especially, at the Liquid Metal Reactor (LMR) which uses liquid sodium with high electrical conductivity as a coolant, an EM pump is noticed due to advantages over mechanical pump such as no rotating part, no noise and simplicity. In the present study, the EM pump of a pilot annular linear induction type with the flowrate of 60 l/min is designed by using electrical equivalent circuit method that is applied to linear induction machines. The designed pump is manufactured by consideration of the requirements of material and function in high temperature and sodium environments. Experimental characterization is carried out according to input currents and frequency. And compared analyses between theoretical prediction and experimental results are performed

  17. Method of processing waste sodium

    International Nuclear Information System (INIS)

    Shimoyashiki, Shigehiro; Takahashi, Kazuo.

    1982-01-01

    Purpose: To enable safety store of waste sodium in the form of intermetallic compounds. Method: Waste sodium used in a reactor is mixed with molten metal under an inert gas atmosphere and resulted intermetallic compounds are stored in a closely sealed container to enable quasi-permanent safety store as inert compound. Used waste sodium particularly, waste sodium in the primary system containing radioactive substances is charged in a waste sodium melting tank having a heater on the side, the tank is evacuated by a vacuum pump and then sealed with gaseous argon supplied from a gaseous argon tank, and waste sodium is melted under heating. The temperature and the amount of the liquid are measured by a thermometer and a level meter respectively. While on the other hand, molten metal such as Sn, Pb and Zn having melting point above 300 0 C are charged in a metal melting tank and heated by a heater. The molten sodium and the molten metals are charged into a mixing tank and agitated to mix by an induction type agitator. Sodium vapors in the tank are collected by traps. The air in the tank is replaced with gaseous argon. The molten mixture is closely sealed in a drum can and cooled to solidify for safety storage. (Seki, T.)

  18. Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit.

    Directory of Open Access Journals (Sweden)

    Cheen Fei Chin

    2016-07-01

    Full Text Available Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS formation at the division site to drive acto-myosin ring (AMR constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit.

  19. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 1. Commercial plant conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The conceptual design of the 100-MW solar tower focus commercial power plant is described in detail. Sodium is pumped up to the top of a tall tower where the receiver is located. The sodium is heated in the receiver and then flows down the tower, through a pressure reducing device, and thence into a large, hot storage tank which is located at ground level and whose size is made to meet a specific thermal energy storage capacity requirement. From this tank, the sodium is pumped by a separate pump, through a system of sodium-to-water steam generators. The steam generator system consists of a separate superheater and reheater operating in parallel and an evaporator unit operating in series with the other two units. The sodium flowing from the evaporator unit is piped to a cold storage tank. From the cold storage tank, sodium is then pumped up to the tip of the tower to complete the cycle. The steam generated in the steam generators is fed to a conventional off-the-shelf, high-efficiency turbine. The steam loop operates in a conventional rankine cycle with the steam generators serving the same purpose as a conventional boiler and water being fed to the evaporator with conventional feedwater pumps. The pressure reducing device (a standard drag valve, for example) serves to mitigate the pressure caused by the static head of sodium and thus allows the large tanks to operate at ambient pressure conditions. (WHK)

  20. Radiative characteristics of CVL pumped dye laser

    International Nuclear Information System (INIS)

    Kubo, Uichi; Ishiguro, Takahide.

    1987-01-01

    This paper describes the radiative characteristics of CVL pumped dye laser. It is compared YAG-SH (530 nm) with CVL (511, 578 nm) and CVL (511 nm) for pumping source. Influence of solvent in dye laser power was examined. The present experimental results show that efficiency of CVL (511 nm) pumped dye laser was most high. When the dye solution is at a standstill, the efficiency of dye laser with water and Sodium Lauryl Sulfate (S.L.S., 2 %wt.) was most high among the four kinds of solvent. In the condition of dye solution flow, the water and S.L.S. or Ethylene Glycol was useful solvent for dye laser. (author)

  1. Endocytosis of Integrin-Binding Human Picornaviruses

    Directory of Open Access Journals (Sweden)

    Pirjo Merilahti

    2012-01-01

    Full Text Available Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9, echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1 has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses.

  2. Specificities of reactor coolant pumps units with lead and lead-bismuth coolant

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Anotonenkov, M.A.; Bokov, P.A.; Baranova, V.S.; Kustov, M.S.

    2009-01-01

    The analysis results of impact of lead and lead-bismuth coolants specific properties on the coolants flow features in flow channels of the main and auxiliary circulating pumps are presented. Impossibility of cavitation initiation in flow channels of vane pumps pumping lead and lead-bismuth coolants was demonstrated. The experimental research results of discontinuity of heavy liquid metal coolant column were presented and conditions of gas cavitation initiation in coolant flow were discussed. Invalidity of traditional calculation methods of water and sodium coolants circulation pumps calculations for lead and lead-bismuth coolants circulation pumps was substantiated [ru

  3. Study of an electromagnetic pump applied to a primary main pump of a large scale sodium cooled reactor

    International Nuclear Information System (INIS)

    Aizawa, Kosuke; Kotake, Shoji; Chikazawa, Yoshitaka; Ara, Kuniaki; Araseki, Hideo; Aizawa, Rie; Ota, Hiroyuki

    2009-01-01

    This paper describes a future innovative design options with a parallel electromagnetic pump (EMP) system as the main circulating pump of the JSFR design. A conceptual design of EMPs integrated with an intermediate heat exchanger (IHX) is carried out. The major design parameters are consistent with the current JSFR design, where the main flow rate is 630 m 3 /min and the flow halving time is the same of the mechanical pump with the similar reliability. As a result of several design studies, a five parallel EMPs with IHX system has been selected from the geometry suitability for JSFR design. The EMP advantages comparing with mechanical pumps are investigated from the views of in-service inspection, maintenance and reliability. Numerical analysis with two dimensional MHD codes is conducted on a former experiment of a 160 m 3 /min flow rate EMP. The overall trend of the experimental data and the numerical results agrees with that in small-scale EMPs. However, the difference between the experimental data and the numerical results seems larger compared with the small-scale EMPs, which comes from large magnetic Reynolds number and interaction parameter of 160 m 3 /min EMP. (author)

  4. Sodium removal from CSRDM lower part by water vapour - CO2 process

    International Nuclear Information System (INIS)

    Sundar Raj, S.I.; Sreedhar, B.K.; Gurumoorthy, K.; Rajan, K.K.; Kalyanasundaram, P.; Rajan, M.; Vaidyanathan, G.

    2006-01-01

    Sodium is the primary and secondary coolant in fast reactors. Primary and secondary circuits components like Control and Safety Rod Drive Mechanism (CSRDM), pumps, heat exchangers etc. handle liquid sodium. Sodium has good affinity to oxygen and reacts vigorously with water. Hence sodium cleaning is the first and important activity in the maintenance of the components. In reactor components this cleaning process also helps in removing a major part of radioactive contaminants after which they are subjected to chemical decontamination. There are several methods available for removing sodium from components. Out of these, the water vapour-CO 2 process is selected for large components such as pumps, heat exchangers etc. while steam cleaning is used for the core sub assemblies. The cleaning processes are to be closely monitored to ensure safety because the release of hydrogen is to be kept below 4 % during the process. This paper discusses the in house facility and the experience in the successful use of the process in the cleaning of CSRDM. (author)

  5. Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases.

    Science.gov (United States)

    Ghaddar, Kassem; Merhi, Ahmad; Saliba, Elie; Krammer, Eva-Maria; Prévost, Martine; André, Bruno

    2014-12-01

    Many plasma membrane transporters are downregulated by ubiquitylation, endocytosis, and delivery to the lysosome in response to various stimuli. We report here that two amino acid transporters of Saccharomyces cerevisiae, the general amino acid permease (Gap1) and the arginine-specific permease (Can1), undergo ubiquitin-dependent downregulation in response to their substrates and that this downregulation is not due to intracellular accumulation of the transported amino acids but to transport catalysis itself. Following an approach based on permease structural modeling, mutagenesis, and kinetic parameter analysis, we obtained evidence that substrate-induced endocytosis requires transition of the permease to a conformational state preceding substrate release into the cell. Furthermore, this transient conformation must be stable enough, and thus sufficiently populated, for the permease to undergo efficient downregulation. Additional observations, including the constitutive downregulation of two active Gap1 mutants altered in cytosolic regions, support the model that the substrate-induced conformational transition inducing endocytosis involves remodeling of cytosolic regions of the permeases, thereby promoting their recognition by arrestin-like adaptors of the Rsp5 ubiquitin ligase. Similar mechanisms might control many other plasma membrane transporters according to the external concentrations of their substrates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Endocytosis of heat-denatured albumin by cultured rat Kupffer cells

    International Nuclear Information System (INIS)

    Brouwer, A.; Knook, D.L.

    1982-01-01

    Purified Kupffer cells were obtained by centrifugal elutriation of sinusoidal cells isolated by pronase treatment of the rat liver. The endocytosis of radioactively labeled heat-aggregated colloidal albumin (CA 125 I) was investigated in maintenance cultures of the purified Kupffer cells. The endocytic capacity of the cells was studied during 4 days of culture. Maximum uptake was observed after 24 hr of culture, with a gradual decline during the following days. When the uptake was measured after incubation with increasing concentrations of CA 125 I, a saturation effect was observed. This finding and the observed high rate of uptake are strong indications that receptor sites on the cell membrane are involved in the mechanism of endocytosis. The uptake of CA 125 I by Kupffer cells was inhibited by the metabolic inhibitors fluoride and antimycin A, indicating that endocytosis of CA 125 I is dependent on energy derived from both glycolysis and mitochondrial respiration. The mechanism of internalization may also require the action of microfilaments as well as intact microtubules, since both cytochalasin B and colchicine inhibited the uptake of CA 125 I. The intracellular degradation of CA 125 I by Kupffer cells was strongly inhibited by chloroquine but not by colchicine. The degradation of ingested CA 125 I occurred within the Kupffer cell lysosomes

  7. Assertion based verification methodology for HDL designs of primary sodium pump speed and eddy current flow measurement systems of PFBR

    International Nuclear Information System (INIS)

    Misra, M.K.; Menon, Saritha P.; Thirugnana Murthy, D.

    2013-01-01

    With the growing complexity and size of digital designs, functional verification has become a huge challenge. The validation and testing process accounts for a significant percentage of the overall development effort and cost for electronic systems. Many studies have shown that up to 70% of the design development time and resources are spent on functional verification. Functional errors manifest themselves very early in the design flow, and unless they are detected upfront, they can result in severe consequences - both financially and from a safety viewpoint. This paper covers the various types of verification methodologies and focuses on Assertion Based Verification Methodology for HDL designs, taking as case studies, the Primary Sodium Pump Speed and Eddy Current Flow Measurement Systems of PFBR. (author)

  8. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.

    Science.gov (United States)

    Chakraborty, Atanu; Jana, Nikhil R

    2015-09-17

    Nanoparticle interacts with live cells depending on their surface chemistry, enters into cell via endocytosis, and is commonly trafficked to an endosome/lysozome that restricts subcellular targeting options. Here we show that nanoparticle surface chemistry can be tuned to alter their cell uptake mechanism and subcellular trafficking. Quantum dot based nanoprobes of 20-30 nm hydrodynamic diameters have been synthesized with tunable surface charge (between +15 mV to -25 mV) and lipophilicity to influence their cellular uptake processes and subcellular trafficking. It is observed that cationic nanoprobe electrostatically interacts with cell membrane and enters into cell via clathrin-mediated endocytosis. At lower surface charge (between +10 mV to -10 mV), the electrostatic interaction with cell membrane becomes weaker, and additional lipid raft endocytosis is initiated. If a lipophilic functional group is introduced on a weakly anionic nanoparticle surface, the uptake mechanism shifts to predominant lipid raft-mediated endocytosis. In particular, the zwitterionic-lipophilic nanoprobe has the unique advantage as it weakly interacts with anionic cell membrane, migrates toward lipid rafts for interaction through lipophilic functional group, and induces lipid raft-mediated endocytosis. While predominate or partial clathrin-mediated entry traffics most of the nanoprobes to lysozome, predominate lipid raft-mediated entry traffics them to perinuclear region, particularly to the Golgi apparatus. This finding would guide in designing appropriate nanoprobe for subcellular targeting and delivery.

  9. Meeting after meeting: 20 years of discoveries by the members of the Exocytosis-Endocytosis Club.

    Science.gov (United States)

    Niedergang, Florence; Gasman, Stéphane; Vitale, Nicolas; Desnos, Claire; Lamaze, Christophe

    2017-09-01

    Twenty years ago, a group of French cell biologists merged two scientific clubs with the aim of bringing together researchers in the fields of Endocytosis and Exocytosis. Founded in 1997, the first annual meeting of the Exocytosis Club was held in 1998. The Endocytosis Club held quarterly meetings from its founding in 1999. The first joint annual meeting of the Exocytosis-Endocytosis Club took place in Paris in April, 2001. What started as a modest gathering of enthusiastic scientists working in the field of cell trafficking has gone from strength to strength, rapidly becoming an unmissable yearly meeting, vividly demonstrating the high quality of science performed in our community and beyond. On the occasion of the 20th meeting of our club, we want to provide historic insight into the fields of exocytosis and endocytosis, and by extension, to subcellular trafficking, highlighting how French scientists have contributed to major advances in these fields. Today, the Exocytosis-Endocytosis Club represents a vibrant and friendly community that will hold its 20th meeting at the Presqu'Ile de Giens, near Toulon in the South of France, on May 11-13, 2017. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  10. Some techniques for sodium removal in CIAE

    International Nuclear Information System (INIS)

    Yuan Waimai; Ding Dejun; Guo Huanfang; Hong Shuzhang; Zhou Shuxia; Shen Fenyang; Yang Zhongmin; Xu Yongxing

    1997-01-01

    In this paper the experiment and application on sodium removal and sodium disposal are presented. Steam-nitrogen process was used in CIAE for cleaning cold traps, sodium vapor traps, a sodium tank. Atomized water-nitrogen process was used for cleaning dummy fuel assembly for CEFR and a sintered stainless steel filter. Sprinkle process was used for cleaning some tubes. Bultylcellosolve was used for cleaning sintered stainless steel filter and sodium flow measurement device. Ethanol alcohol was used for cleaning electromagnetic pump. Paraffin, transformer-oil or their mixture was used for cleaning sodium valves, a sodium vapor trap and sodium-potassium alloy absorber. A small sintered stainless steel filter was distillated in vacuum. A simple sodium disposal device has been served for several years in CIA.E. It can dispose about 10 Kg sodium each time and the disposal process is no-aerosol. It operates in open air for non-radioactive sodium. In recent years a small sodium cleaning plant has been built. It can use atomized water, steam or organic alcohol to removal of sodium. The LAVEL cleaning plant and SLAPSO cleaning plant were introduced from Italy. And CEFR preliminary design on sodium cleaning for spent fuel assembly and on sodium removal-decontamination for large reactor components is introduced. Vapour-nitrogen process is planned to use in them. (author)

  11. Corrosion performance of advanced structural materials in sodium.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L. (Nuclear Engineering Division)

    2012-05-16

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux

  12. Corrosion performance of advanced structural materials in sodium

    International Nuclear Information System (INIS)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L.

    2012-01-01

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and

  13. How Cells Can Control Their Size by Pumping Ions

    Directory of Open Access Journals (Sweden)

    Alan R. Kay

    2017-05-01

    Full Text Available The ability of all cells to set and regulate their size is a fundamental aspect of cellular physiology. It has been known for sometime but not widely so, that size stability in animal cells is dependent upon the operation of the sodium pump, through the so-called pump-leak mechanism (Tosteson and Hoffman, 1960. Impermeant molecules in cells establish an unstable osmotic condition, the Donnan effect, which is counteracted by the operation of the sodium pump, creating an asymmetry in the distribution of Na+ and K+ staving off water inundation. In this paper, which is in part a tutorial, I show how to model quantitatively the ion and water fluxes in a cell that determine the cell volume and membrane potential. The movement of water and ions is constrained by both osmotic and charge balance, and is driven by ion and voltage gradients and active ion transport. Transforming these constraints and forces into a set of coupled differential equations allows us to model how the ion distributions, volume and voltage change with time. I introduce an analytical solution to these equations that clarifies the influence of ion conductances, pump rates and water permeability in this multidimensional system. I show that the number of impermeant ions (x and their average charge have a powerful influence on the distribution of ions and voltage in a cell. Moreover, I demonstrate that in a cell where the operation of active ion transport eliminates an osmotic gradient, the size of the cell is directly proportional to x. In addition, I use graphics to reveal how the physico-chemical constraints and chemical forces interact with one another in apportioning ions inside the cell. The form of model used here is applicable to all membrane systems, including mitochondria and bacteria, and I show how pumps other than the sodium pump can be used to stabilize cells. Cell biologists may think of electrophysiology as the exclusive domain of neuroscience, however the electrical

  14. Downstream shift in sodium pump activity along the nephron during acute hypertension

    DEFF Research Database (Denmark)

    Magyar, C E; Zhang, Y; Holstein-Rathlou, N H

    2001-01-01

    Acute hypertension rapidly inhibits proximal tubule (PT) Na,K-ATPase activity and sodium reabsorption 30 to 40%, increasing sodium and volume delivery to the thick ascending loop of Henle (TALH) and macula densa, providing the error signal for tubuloglomerular feedback. The hypothesis was tested...... in rats that an acute increase in sodium and volume delivery to the TALH would acutely increase outer medulla Na,K-ATPase activity. Flow to the TALH was increased by either (1) elevating BP (102 to 160 mmHg) for 5 min by constricting arteries (hypertension) or (2) inhibiting PT sodium and volume...... reabsorption with the carbonic anhydrase inhibitor benzolamide: 2 mg/kg in 300 mM NaHCO(3) at 50 microl/min for 5 to 7 min. Both stimuli increased urine output and lithium clearance three- to four-fold and increased basolateral Na,K-ATPase activity about 40%. In homogenates, acute hypertension increased...

  15. Adaptor protein complex 2-mediated endocytosis is crucial for male reproductive organ development in Arabidopsis.

    Science.gov (United States)

    Kim, Soo Youn; Xu, Zheng-Yi; Song, Kyungyoung; Kim, Dae Heon; Kang, Hyangju; Reichardt, Ilka; Sohn, Eun Ju; Friml, Jirí; Juergens, Gerd; Hwang, Inhwan

    2013-08-01

    Fertilization in flowering plants requires the temporal and spatial coordination of many developmental processes, including pollen production, anther dehiscence, ovule production, and pollen tube elongation. However, it remains elusive as to how this coordination occurs during reproduction. Here, we present evidence that endocytosis, involving heterotetrameric adaptor protein complex 2 (AP-2), plays a crucial role in fertilization. An Arabidopsis thaliana mutant ap2m displays multiple defects in pollen production and viability, as well as elongation of staminal filaments and pollen tubes, all of which are pivotal processes needed for fertilization. Of these abnormalities, the defects in elongation of staminal filaments and pollen tubes were partially rescued by exogenous auxin. Moreover, DR5rev:GFP (for green fluorescent protein) expression was greatly reduced in filaments and anthers in ap2m mutant plants. At the cellular level, ap2m mutants displayed defects in both endocytosis of N-(3-triethylammonium-propyl)-4-(4-diethylaminophenylhexatrienyl) pyridinium dibromide, a lypophilic dye used as an endocytosis marker, and polar localization of auxin-efflux carrier PIN FORMED2 (PIN2) in the stamen filaments. Moreover, these defects were phenocopied by treatment with Tyrphostin A23, an inhibitor of endocytosis. Based on these results, we propose that AP-2-dependent endocytosis plays a crucial role in coordinating the multiple developmental aspects of male reproductive organs by modulating cellular auxin level through the regulation of the amount and polarity of PINs.

  16. EH and UIM: endocytosis and more

    DEFF Research Database (Denmark)

    Polo, Simona; Confalonieri, Stefano; Salcini, Anna Elisabetta

    2003-01-01

    Exogenously and endogenously originated signals are propagated within the cell by functional and physical networks of proteins, leading to numerous biological outcomes. Many protein-protein interactions take place between binding domains and short peptide motifs. Frequently, these interactions......). The other, which we define as the monoubiquitin (mUb) network, relies on monoubiquitination, which is emerging as an important posttranslational modification that regulates protein function. Both networks were initially implicated in the control of plasma membrane receptor endocytosis and in the regulation...

  17. Cyclophilin B interacts with sodium-potassium ATPase and is required for pump activity in proximal tubule cells of the kidney.

    Science.gov (United States)

    Suñé, Guillermo; Sarró, Eduard; Puigmulé, Marta; López-Hellín, Joan; Zufferey, Madeleine; Pertel, Thomas; Luban, Jeremy; Meseguer, Anna

    2010-11-10

    Cyclophilins (Cyps), the intracellular receptors for Cyclosporine A (CsA), are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients. In this report, we focused on the identification of novel CypB-interacting proteins to understand the role of CypB in kidney function and, in turn, to gain further insight into the molecular mechanisms of CsA-induced toxicity. By means of yeast two-hybrid screens with human kidney cDNA, we discovered a novel interaction between CypB and the membrane Na/K-ATPase β1 subunit protein (Na/K-β1) that was confirmed by pull-down, co-immunoprecipitation and confocal microscopy, in proximal tubule-derived HK-2 cells. The Na/K-ATPase pump, a key plasma membrane transporter, is responsible for maintenance of electrical Na+ and K+ gradients across the membrane. We showed that CypB silencing produced similar effects on Na/K-ATPase activity than CsA treatment in HK-2 cells. It was also observed an enrichment of both alpha and beta subunits in the ER, what suggested a possible failure on the maturation and routing of the pump from this compartment towards the plasma membrane. These data indicate that CypB through its interaction with Na/K-β1 might regulate maturation and trafficking of the pump through the secretory pathway, offering new insights into the relationship between cyclophilins and the nephrotoxic effects of CsA.

  18. Crystal structure of the plasma membrane proton pump

    DEFF Research Database (Denmark)

    Pedersen, Bjørn P.; Buch-Pedersen, Morten Jeppe; Morth, J. Preben

    2007-01-01

    A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H1-ATPase (the proton pump) in plants and fungi1......-3, and Na1,K1-ATPase (the sodium-potassium pump) in animals4. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis5.The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na1,K1-ATPase and Ca21......- ATPase are type II6. Electron microscopy has revealed the overall shape of proton pumps7, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define...

  19. Endocytosis regulates membrane localization and function of the fusogen EFF-1.

    Science.gov (United States)

    Smurova, Ksenia; Podbilewicz, Benjamin

    2017-07-03

    Cell fusion is essential for sexual reproduction and formation of muscles, bones, and placenta. Two families of cell fusion proteins (Syncytins and FFs) have been identified in eukaryotes. Syncytins have been shown to form the giant syncytial trophoblasts in the placenta. The FFs are essential to fuse cells in the skin, reproductive, excretory, digestive and nervous systems in nematodes. EFF-1 (Epithelial Fusion Failure 1), a member of the FF family, is a type I membrane glycoprotein that is essential for most cell fusions in C. elegans. The crystal structure of EFF-1 ectodomain reveals striking structural similarity to class II fusion glycoproteins from enveloped viruses (e.g. dengue and rubella) that mediate virus to cell fusion. We found EFF-1 to be present on the plasma membrane and in RAB-5-positive early endosomes, with EFF-1 recycling between these 2 cell compartments. Only when EFF-1 proteins transiently arrive to the surfaces of 2 adjacent cells do they dynamically interact in trans and mediate membrane fusion. EFF-1 is continuously internalized by receptor-mediated endocytosis via the activity of 2 small GTPases: RAB-5 and Dynamin. Here we propose a model that explains how EFF-1 endocytosis together with interactions in trans can control cell-cell fusion. Kontani et al. showed that vacuolar ATPase (vATPase) mutations result in EFF-1-dependent hyperfusion. 1 We propose that vATPase is required for normal degradation of EFF-1. Failure to degrade EFF-1 results in delayed hyperfusion and mislocalization to organelles that appear to be recycling endosomes. EFF-1 is also required to fuse neurons as part of the repair mechanism following injury and to prune dendrites. We speculate that EFF-1 may regulate neuronal tree like structures via endocytosis. Thus, endocytosis of cell-cell fusion proteins functions to prevent merging of cells and to sculpt organs and neurons.

  20. Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Yani Zhao

    Full Text Available The Duffy antigen receptor for chemokines (DARC shows high affinity binding to multiple inflammatory CC and CXC chemokines and is expressed by erythrocytes and endothelial cells. Recent evidence suggests that endothelial DARC facilitates chemokine transcytosis to promote neutrophil recruitment. However, the mechanism of chemokine endocytosis by DARC remains unclear.We investigated the role of several endocytic pathways in DARC-mediated ligand internalization. Here we report that, although DARC co-localizes with caveolin-1 in endothelial cells, caveolin-1 is dispensable for DARC-mediated (125I-CXCL1 endocytosis as knockdown of caveolin-1 failed to inhibit ligand internalization. (125I-CXCL1 endocytosis by DARC was also independent of clathrin and flotillin-1 but required cholesterol and was, in part, inhibited by silencing Dynamin II expression.(125I-CXCL1 endocytosis was inhibited by amiloride, cytochalasin D, and the PKC inhibitor Gö6976 whereas Platelet Derived Growth Factor (PDGF enhanced ligand internalization through DARC. The majority of DARC-ligand interactions occurred on the endothelial surface, with DARC identified along plasma membrane extensions with the appearance of ruffles, supporting the concept that DARC provides a high affinity scaffolding function for surface retention of chemokines on endothelial cells.These results show DARC-mediated chemokine endocytosis occurs through a macropinocytosis-like process in endothelial cells and caveolin-1 is dispensable for CXCL1 internalization.

  1. Feasibility study on the type of KALIMER coolant circulation pump

    International Nuclear Information System (INIS)

    Nam, H. Y.; Kim, Y. K.; Lee, Y. B.; Hwang, J. S.; Choi, S. K.

    1997-07-01

    The characteristics of mechanical pump and electromagnetic (EM) pump for liquid sodium coolant in a liquid metal reactor are compared and analysed as a design concept of KALIMER coolant pumps. The type of coolant circulation pump affects the selection of reactor type, economics, and reliability of reactor. Though the mechanical pump has much application experience and give satisfaction to the reliability of developed reactor type, the possibility of development is limited and its large weight and volume have a negative effect on the design of the economical liquid metal reactor. The large scale electromagnetic pump has not been verified yet, but it is expected to be demonstrated in time. Because the size of EM pump is small relative to the mechanical pump, the compact reactor design is possible. Therefore the selection of EM pump can be one of the methods to improve the economics. Since the shape of EM pump can be varied according to the arrangement of electromagnet coils, a new or unique reactor type can be developed easily in the process of KALIMER development. In the view point of economic LMR development, it is desirable to adopt the electromagnetic pump. (author). 50 refs., 11 tabs., 24 figs

  2. Connection of indicator of sodium burning in enclosed area

    Energy Technology Data Exchange (ETDEWEB)

    Enenkl, V

    1975-01-15

    The connection is described of an indicator of sodium burning in a closed area. The air and combustion product mixture is sucked by a pump through a pipe from the steam generator. Following possible aftercooling it is passed to a hermetically sealed vessel with distilled water. Fitted in the vessel are electrodes wired to a galvanometer. The air-sodium combustion product mixture is directed to the bottom of the vessel and bubbles through the distilled water. Sodium oxide contained in the mixture dissolves in the water and forms an electrolytic solution. The voltage produced at the electrodes may be indicated by the galvanometer.

  3. Single-phase pump model for analysis of LMFBR heat transport systems

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.

    1978-05-01

    A single-phase pump model for transient and steady-state analysis of LMFBR heat transport systems is presented. Fundamental equations of the model are angular momentum balance to determine transient impeller speed and mass balance (including thermal expansion effects) to determine the level of sodium in the pump tank. Pump characteristics are modeled by homologous head and torque relations. All regions of pump operation are represented with reverse rotation allowed. The model also includes option for enthalpy rise calculations and pony motor operation. During steady state, the pump operating speed is determined by matching required head with total load in the circuit. Calculated transient results are presented for pump coastdown and double-ended pipe break accidents. The report examines the influence of frictional torque and specific speed on predicted response for the pump coastdown to natural circulation transient. The results for a double-ended pipe break accident indicate the necessity of including all regions of operation for pump characteristics

  4. Performance of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.

    1990-01-01

    The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.

  5. Anchored but not internalized: shape dependent endocytosis of nanodiamond

    Science.gov (United States)

    Zhang, Bokai; Feng, Xi; Yin, Hang; Ge, Zhenpeng; Wang, Yanhuan; Chu, Zhiqin; Raabova, Helena; Vavra, Jan; Cigler, Petr; Liu, Renbao; Wang, Yi; Li, Quan

    2017-04-01

    Nanoparticle-cell interactions begin with the cellular uptake of the nanoparticles, a process that eventually determines their cellular fate. In the present work, we show that the morphological features of nanodiamonds (NDs) affect both the anchoring and internalization stages of their endocytosis. While a prickly ND (with sharp edges/corners) has no trouble of anchoring onto the plasma membrane, it suffers from difficult internalization afterwards. In comparison, the internalization of a round ND (obtained by selective etching of the prickly ND) is not limited by its lower anchoring amount and presents a much higher endocytosis amount. Molecular dynamics simulation and continuum modelling results suggest that the observed difference in the anchoring of round and prickly NDs likely results from the reduced contact surface area with the cell membrane of the former, while the energy penalty associated with membrane curvature generation, which is lower for a round ND, may explain its higher probability of the subsequent internalization.

  6. Design of a Mechanical NaK Pump for Fission Space Power

    Science.gov (United States)

    Mireles, Omar R.; Bradley, David E.; Godfroy, Thomas

    2011-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid, which has specific pumping requirements. Traditionally, electromagnetic linear induction pumps have been used to provide the required flow and pressure head conditions for NaK systems but they can be limited in performance, efficiency, and number of available vendors. The objective of the project was to develop a mechanical NaK centrifugal pump that takes advantages of technology advances not available in previous liquid metal mechanical pump designs. This paper details the design, build, and performance test of a mechanical NaK pump developed at NASA Marshall Space Flight Center. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  7. Flame photometric detection of sodium leaks: Tests on a fullscale model for the control gear sodium rig

    International Nuclear Information System (INIS)

    Grundy, B.R.; Knowles, P.

    1971-01-01

    The proposed arrangement for detecting sodium leaks from the large flanges of the Control Gear Sodium Rig (Test Section No. 8, MCTR) at REML is to jacket then in a secondary containment from which air samples will be continuously pumped. Pipework feeds the air to a flame photometer which responds if soditun is present. To prove that sodium smoke could be transferred through the system, tests were performed on a fullscale model by burning small amounts of sodium in different jackets. Large signals free from fluctuations were obtained in all tests, peak response occurring in 2 1/4 minutes or less. The signal quickly cleared after isolating the appropriate vessel. A waiting period of several hours was sufficient to reduce the signal to zero, no cleaning of pipework, etc being necessary. In contrast, samples of two lagging materials heated to 400 °C gave no response with the photometer at maximum sensitivity. (author)

  8. Site specific health and safety plan, 100-HR-3 pump and treat. Revision 2

    International Nuclear Information System (INIS)

    St John, C.H.

    1997-09-01

    The 100-HR-3 Pump and Treat system is a groundwater remedial action to remove Hexavalent Chromium (Cr+6) from the groundwater underlying the 100-HR-3 Operable Unit. This plan covers operation, maintenance, repairs, resin exchange and equipment removal/installation. The 100-HR-3 Operable Unit addresses groundwater underlying the 100-D Area. The primary groundwater contaminant is Chromium +6. The chromium contamination resulted from the use of sodium dichromate during past reactor operations. Sodium dichromate was used to treat reactor coolant water during reactor operations. The purpose of this Pump and Treat system is to pump contaminated groundwater through above ground ion exchange resin and then return treated water to aquifer. Chromium levels extracted from the wells are anticipated to range in the low parts per billion (∼50 ppb) which is the drinking water limit for Cr+6

  9. Sodium--NaK engineering handbook. Volume IV. Sodium pumps, valves, piping, and auxiliary equipment

    International Nuclear Information System (INIS)

    Foust, O.J.

    1978-01-01

    The handbook is useful for designers in the Liquid Metals Fast Breeder Reactor (LMFBR) program and by the engineering and scientific community performing investigation and experimentation requiring high-temperature Na and NaK technology. Data are presented for pumps, bearings and seals, valves, vessels and piping, and auxiliary equipment including vapor traps, freeze plugs, fuel-channel flow regulators, antivortexing devices, and miscellaneous mechanical elements. Reactor materials are also discussed

  10. Cleaning of Sodium in the Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun

    2005-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Several types of failures due to improper cleaning procedures have been defined in the past. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either the intergranular penetration characteristic of a high- oxygen sodium or an accelerated corrosion due to oxygen. The methods used for cleaning sodium equipment depend on the condition and types of equipment to be cleaned and whether the equipment is to be reused. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, chemical, physical, or mechanical damage, and external effects. This paper discusses a steam-nitrogen gas cleaning method for the routine applications that permits the reuse of the cold trap in sodium

  11. Quantitative proteome analysis reveals the correlation between endocytosis-associated proteins and hepatocellular carcinoma dedifferentiation.

    Science.gov (United States)

    Naboulsi, Wael; Bracht, Thilo; Megger, Dominik A; Reis, Henning; Ahrens, Maike; Turewicz, Michael; Eisenacher, Martin; Tautges, Stephanie; Canbay, Ali E; Meyer, Helmut E; Weber, Frank; Baba, Hideo A; Sitek, Barbara

    2016-11-01

    The majority of poorly differentiated hepatocellular carcinomas (HCCs) develop from well-differentiated tumors. Endocytosis is a cellular function which is likely to take part in this development due to its important role in regulating the abundances of vital signaling receptors. Here, we aimed to investigate the abundance of endocytosis-associated proteins in HCCs with various differentiation grades. Therefore, we analyzed 36 tissue specimens from HCC patients via LC-MS/MS-based label-free quantitative proteomics including 19 HCC tissue samples with different degrees of histological grades and corresponding non-tumorous tissue controls. As a result, 277 proteins were differentially regulated between well-differentiated tumors and controls. In moderately and poorly differentiated tumors, 278 and 1181 proteins, respectively, were significantly differentially regulated compared to non-tumorous tissue. We explored the regulated proteins based on their functions and identified thirty endocytosis-associated proteins, mostly overexpressed in poorly differentiated tumors. These included proteins that have been shown to be up-regulated in HCC like clathrin heavy chain-1 (CLTC) as well as unknown proteins, such as secretory carrier-associated membrane protein 3 (SCAMP3). The abundances of SCAMP3 and CLTC were immunohistochemically examined in tissue sections of 84 HCC patients. We demonstrate the novel association of several endocytosis-associated proteins, in particular, SCAMP3 with HCC progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Clathrin-independent endocytosis: mechanisms and function

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; Pust, Sascha; Skotland, Tore

    2011-01-01

    It is now about 20 years since we first wrote reviews about clathrin-independent endocytosis. The challenge at the time was to convince the reader about its existence. Then the suggestion came up that caveolae might be responsible for the uptake. However, clearly this could not be the case since ...... having several functions of their own. This article aims at providing a brief update on the importance of clathrin-independent endocytic mechanisms, how the processes are regulated differentially, for instance on the poles of polarized cells, and the challenges in studying them....

  13. Protein C inhibits endocytosis of thrombin-thrombomodulin complexes in A549 lung cancer cells and human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Maruyama, I.; Majerus, P.W.

    1987-01-01

    We investigated the effect of protein C on the endocytosis of thrombin-thrombomodulin complexes. We previously showed that exposure of umbilical vein endothelial cells to thrombin stimulated the internalization and degradation of thrombin. A similar internalization was stimulated by a monoclonal antithrombomodulin antibody. We have repeated these studies in the presence of protein C and found that endocytosis of 125 I-thrombin-thrombomodulin complexes, but not 125 I-antithrombomodulin-thrombomodulin complexes, is inhibited. Activated protein C did not inhibit endocytosis of thrombin-thrombomodulin complexes. Protein C inhibited both internalization and degradation of 125 I-thrombin and diisopropylphosphoryl (DIP) 125 I-thrombin in human lung cancer cells (A549). These effects were observed at protein C concentrations found in human plasma. Protein S had no effect on the inhibition of endocytosis of thrombin-thrombomodulin complexes by protein C. We propose that protein C may regulate the rate of endocytosis of thrombin-thrombomodulin complexes in vivo and thereby control the capacity for endothelium to activate protein C

  14. Cyclophilin B interacts with sodium-potassium ATPase and is required for pump activity in proximal tubule cells of the kidney.

    Directory of Open Access Journals (Sweden)

    Guillermo Suñé

    Full Text Available Cyclophilins (Cyps, the intracellular receptors for Cyclosporine A (CsA, are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients. In this report, we focused on the identification of novel CypB-interacting proteins to understand the role of CypB in kidney function and, in turn, to gain further insight into the molecular mechanisms of CsA-induced toxicity. By means of yeast two-hybrid screens with human kidney cDNA, we discovered a novel interaction between CypB and the membrane Na/K-ATPase β1 subunit protein (Na/K-β1 that was confirmed by pull-down, co-immunoprecipitation and confocal microscopy, in proximal tubule-derived HK-2 cells. The Na/K-ATPase pump, a key plasma membrane transporter, is responsible for maintenance of electrical Na+ and K+ gradients across the membrane. We showed that CypB silencing produced similar effects on Na/K-ATPase activity than CsA treatment in HK-2 cells. It was also observed an enrichment of both alpha and beta subunits in the ER, what suggested a possible failure on the maturation and routing of the pump from this compartment towards the plasma membrane. These data indicate that CypB through its interaction with Na/K-β1 might regulate maturation and trafficking of the pump through the secretory pathway, offering new insights into the relationship between cyclophilins and the nephrotoxic effects of CsA.

  15. Modulation of epithelial sodium channel trafficking and function by sodium 4-phenylbutyrate in human nasal epithelial cells.

    Science.gov (United States)

    Prulière-Escabasse, Virginie; Planès, Carole; Escudier, Estelle; Fanen, Pascale; Coste, André; Clerici, Christine

    2007-11-23

    Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.

  16. Bipolar and Related Disorders Induced by Sodium 4-Phenylbutyrate in a Male Adolescent with Bile Salt Export Pump Deficiency Disease.

    Science.gov (United States)

    Vitale, Giovanni; Simonetti, Giulia; Pirillo, Martina; Taruschio, Gianfranco; Andreone, Pietro

    2016-09-01

    Bile Salt Export Pump (BSEP) Deficiency disease, including Progressive Familial Intrahepatic Cholestasis type 2 (PFIC2), is a rare disease, usually leading within the first ten years to portal hypertension, liver failure, hepatocellular carcinoma. Often liver transplantation is needed. Sodium 4-phenylbutyrate (4-PB) seems to be a potential therapeutic compound for PFIC2. Psychiatric side effects in the adolescent population are little known and little studied since the drug used to treat children and infants. So we described a case of Caucasian boy, suffering from a late onset PFIC2, listed for a liver transplant when he was sixteen and treated with 4-FB (200 mg per kilogram of body weight per day). The drug was discontinued for the onset of bipolar and related disorders. This case illustrates possible psychiatric side effects of the drug.

  17. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  18. Shedding light on endocytosis with optimized super-resolution microscopy

    NARCIS (Netherlands)

    Leyton Puig, D.M.

    2017-01-01

    Super-resolution microscopy is a relatively new microscopy technique that is still under optimization. In this thesis we focus on the improvement of the quality of super-resolution images, to apply them to the study of the processes of cell signaling and endocytosis. First, we show that the use of a

  19. Conceptual Design of Liquid Sodium Charging and Draining System of STELLA-2

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Nam, Ho-Yun; Kim, Jong-Man; Ko, Yung Joo; Kim, Byeongyeon; Cho, Youngil; Eoh, Jeahyuk; Yoon, Jung; Kim, Hyungmo; Lee, Hyeong-Yeon; Lee, Yong Bum; Jeong, Ji-Young; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    STELLA program consist of two phases. In the first phase of the program, separated effects tests for demonstrating the thermal-hydraulic performances of major components such as a decay heat exchanger (DHX), Natural-draft sodium-to-air heat exchanger (AHX) of the decay heat removal system, and mechanical sodium pump of the primary heat transport system (PHTS) had been successfully performed using STELLA-1 in 2015. Now is the time for us to proceed to the second phase of STELLA program. In the second phase, to demonstrate thermal-hydraulic performances and safety features and to produce base data for the specific design approval for the PGSFR (Prototype Generation IV Sodium-cooled Fast Reactor) which will be constructed by 2028 in Korea, integral effects tests will be carried out using the STELLA-2 test facility which is underway with detailed design and will be constructed in 2018. To establish the maintenance easiness of test facility and to prevent a de-functionalization of elementary sodium component located under the main experimental sodium loops, arrangement area was separated the sodium charging and draining piping area from main system experimental piping area. The operation margin of test facility and the best use of electro-magnetic pumps were established according to employ connecting line between RV charging piping and main experimental system charging piping. To prevent liquid sodium inflow into the piping of gas supply system, the overflow line was employed in sodium expansion tanks of PHDRS and ADHRS, RV, and reservoirs of IHTS.

  20. Conceptual Design of Liquid Sodium Charging and Draining System of STELLA-2

    International Nuclear Information System (INIS)

    Cho, Chungho; Nam, Ho-Yun; Kim, Jong-Man; Ko, Yung Joo; Kim, Byeongyeon; Cho, Youngil; Eoh, Jeahyuk; Yoon, Jung; Kim, Hyungmo; Lee, Hyeong-Yeon; Lee, Yong Bum; Jeong, Ji-Young; Kim, Jong-Bum

    2016-01-01

    STELLA program consist of two phases. In the first phase of the program, separated effects tests for demonstrating the thermal-hydraulic performances of major components such as a decay heat exchanger (DHX), Natural-draft sodium-to-air heat exchanger (AHX) of the decay heat removal system, and mechanical sodium pump of the primary heat transport system (PHTS) had been successfully performed using STELLA-1 in 2015. Now is the time for us to proceed to the second phase of STELLA program. In the second phase, to demonstrate thermal-hydraulic performances and safety features and to produce base data for the specific design approval for the PGSFR (Prototype Generation IV Sodium-cooled Fast Reactor) which will be constructed by 2028 in Korea, integral effects tests will be carried out using the STELLA-2 test facility which is underway with detailed design and will be constructed in 2018. To establish the maintenance easiness of test facility and to prevent a de-functionalization of elementary sodium component located under the main experimental sodium loops, arrangement area was separated the sodium charging and draining piping area from main system experimental piping area. The operation margin of test facility and the best use of electro-magnetic pumps were established according to employ connecting line between RV charging piping and main experimental system charging piping. To prevent liquid sodium inflow into the piping of gas supply system, the overflow line was employed in sodium expansion tanks of PHDRS and ADHRS, RV, and reservoirs of IHTS

  1. Design of a Mechanical NaK Pump for Fission Space Power Systems

    Science.gov (United States)

    Mireles, Omar R.; Bradley, David; Godfroy, Thomas

    2010-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for mid-range spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid. Traditionally, linear induction pumps have been used to provide the required flow and head conditions for liquid metal systems but can be limited in performance. This paper details the design, build, and check-out test of a mechanical NaK pump. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  2. Effects of pancreatic digestive enzymes, sodium bicarbonate, and a proton pump inhibitor on steatorrhoea caused by pancreatic diseases.

    Science.gov (United States)

    Nakamura, T; Takebe, K; Kudoh, K; Ishii, M; Imamura, K; Kikuchi, H; Kasai, F; Tandoh, Y; Yamada, N; Arai, Y

    1995-01-01

    Forty-five patients with pancreatic steatorrhoea (27 with calcified pancreatitis, 13 with non-calcified pancreatitis, two with pancreaticoduodenectomy, one with total pancreatectomy, and two with pancreatic cancer) were divided into four groups and given the following medication for 2 to 4 weeks: 4 to 6 g/day of sodium bicarbonate (group I); 9 g/day of high-lipase pancreatin (lipase, 56,600 U/g, Fédération Internationale Pharmaceutique (FIP); group II); 12 to 24 tablets or 9.0 g of commercial pancreatic enzyme preparations (group III); or 50 mg of omeprazole (group IV). Faecal fat excretion was evaluated before and after drug administration. Faecal fat excretion was reduced by 2.9 g (range, 1.7 to 5.0 g) in group I; 8.8 g (range, 2.9 to 39.9 g) in group II; 10.8 g (range, 2.3 to 21.8 g) in group III; and 4.3 g (range, 3.6 to 5.6 g) in group IV. The pancreatic digestive enzyme preparation was more effective than sodium bicarbonate and agents that raise the pH of the upper small intestine (such as proton-pump inhibitors) in reducing faecal fat excretion. The results indicate that all of the preparations used are effective against mild pancreatic steatorrhoea. If the condition is more advanced, however, a massive dosage of pancreatic digestive enzyme and possibly the combined use of an agent to raise the pH of the upper small intestine are likely to be effective.

  3. Instrumentation and Control Systems for Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byeong Yeon; Kim, Hyung Mo; Cho, Youn Gil; Kim, Jong Man; Ko, Yung Joo; Kang, Byeong Su; Jung, Min Hwan; Jeong, Ji Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A forced-draft sodium-to-air heat exchanger (FHX) is a part of decay heat removal system (DHRS) in Prototype Gen-IV Sodium-cooled fast reactor (PGSFR), which is being developed at Korea Atomic Energy Research Institute (KAERI). Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA) is a test facility for verification and validation of the design code for a forced-draft sodium-to-air heat exchanger (FHX). In this paper, we have provided design and fabrication features for the instrumentation and control systems of SELFA. In general, the instrumentation systems and control systems are coupled for measurement and control of process variables. Instrumentation systems have been designed for investigating thermal-hydraulic characteristics of FHX and control systems have been designed to control the main components (e.g. electromagnetic pumps, heaters, valves etc.) required for test in SELFA. In this paper, we have provided configurations of instrumentation and control systems for Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA). The instrumentation and control systems of SELFA have been implemented based on the expected operation ranges and lesson learned from operational experience of 'Sodium integral effect test loop for safety simulation and assessment-1' (STELLA-1)

  4. Equine arteritis virus is delivered to an acidic compartment of host cells via clathrin-dependent endocytosis

    International Nuclear Information System (INIS)

    Nitschke, Matthias; Korte, Thomas; Tielesch, Claudia; Ter-Avetisyan, Gohar; Tuennemann, Gisela; Cardoso, M. Cristina; Veit, Michael; Herrmann, Andreas

    2008-01-01

    Equine arteritis virus (EAV) is an enveloped, positive-stranded RNA virus belonging to the family Arteriviridae. Infection by EAV requires the release of the viral genome by fusion with the respective target membrane of the host cell. We have investigated the entry pathway of EAV into Baby Hamster Kindey cells (BHK). Infection of cells assessed by the plaque reduction assay was strongly inhibited by substances which interfere with clathrin-dependent endocytosis and by lysosomotropic compounds. Furthermore, infection of BHK cells was suppressed when clathrin-dependent endocytosis was inhibited by expression of antisense RNA of the clathrin-heavy chain before infection. These results strongly suggest that EAV is taken up via clathrin-dependent endocytosis and is delivered to acidic endosomal compartments

  5. Analysis of occludin trafficking, demonstrating continuous endocytosis, degradation, recycling and biosynthetic secretory trafficking.

    Directory of Open Access Journals (Sweden)

    Sarah J Fletcher

    Full Text Available Tight junctions (TJs link adjacent cells and are critical for maintenance of apical-basolateral polarity in epithelial monolayers. The TJ protein occludin functions in disparate processes, including wound healing and Hepatitis C Virus infection. Little is known about steady-state occludin trafficking into and out of the plasma membrane. Therefore, we determined the mechanisms responsible for occludin turnover in confluent Madin-Darby canine kidney (MDCK epithelial monolayers. Using various biotin-based trafficking assays we observed continuous and rapid endocytosis of plasma membrane localised occludin (the majority internalised within 30 minutes. By 120 minutes a significant reduction in internalised occludin was observed. Inhibition of lysosomal function attenuated the reduction in occludin signal post-endocytosis and promoted co-localisation with the late endocytic system. Using a similar method we demonstrated that ∼20% of internalised occludin was transported back to the cell surface. Consistent with these findings, significant co-localisation between internalised occludin and recycling endosomal compartments was observed. We then quantified the extent to which occludin synthesis and transport to the plasma membrane contributes to plasma membrane occludin homeostasis, identifying inhibition of protein synthesis led to decreased plasma membrane localised occludin. Significant co-localisation between occludin and the biosynthetic secretory pathway was demonstrated. Thus, under steady-state conditions occludin undergoes turnover via a continuous cycle of endocytosis, recycling and degradation, with degradation compensated for by biosynthetic exocytic trafficking. We developed a mathematical model to describe the endocytosis, recycling and degradation of occludin, utilising experimental data to provide quantitative estimates for the rates of these processes.

  6. Optimized efflux assay for the NorA multidrug efflux pump in Staphylococcus aureus.

    Science.gov (United States)

    Zimmermann, Saskia; Tuchscherr, Lorena; Rödel, Jürgen; Löffler, Bettina; Bohnert, Jürgen A

    2017-11-01

    Real-time fluorescent efflux assays are commonly used for measuring the efflux of bacterial pumps. Here we describe an optimized protocol for the NorA efflux pump in S. aureus using DiOC 3 instead of ethidium bromide. Glucose and sodium formate were tested as energy carriers. This novel method is fast and reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Site specific health and safety plan, 100-HR-3 pump and treat. Revision 1

    International Nuclear Information System (INIS)

    Tuttle, B.G.

    1996-06-01

    The 100-HR-3 Operable Unit encompasses groundwater contamination underlying the 100-D and 100-H Areas. The primary contaminate is chromium VI. The sources of chromium contamination resulted from the use of sodium dichromate during past reactor operations. The purpose of the 100-HR-3 Pump-and-Treat system is to pump contaminated groundwater through aboveground ion exchange resin and then return the treated waster to the aquifer. This plan covers operation, maintenance, repairs, and pump removal/installation

  8. Operating problem of low specific speed pumps operating in closed hydraulic loop

    International Nuclear Information System (INIS)

    Rajput, A.K.

    1979-01-01

    Results of the studies of pressure pulsations caused by the centrifugal pump driving a typical sodium test loop are presented. The method of characteristics has been used for solving the equations of unsteady fluid flow in closed hydraulic loops with various boundary points, important of which are pump, control valve and heater tank (acting hydraulically as surge tank). Mathematical and computational models used for calculations are described. (M.G.B.)

  9. Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis.

    Science.gov (United States)

    Bauß, Katharina; Knapp, Barbara; Jores, Pia; Roepman, Ronald; Kremer, Hannie; Wijk, Erwin V; Märker, Tina; Wolfrum, Uwe

    2014-08-01

    The human Usher syndrome (USH) is a complex ciliopathy with at least 12 chromosomal loci assigned to three clinical subtypes, USH1-3. The heterogeneous USH proteins are organized into protein networks. Here, we identified Magi2 (membrane-associated guanylate kinase inverted-2) as a new component of the USH protein interactome, binding to the multifunctional scaffold protein SANS (USH1G). We showed that the SANS-Magi2 complex assembly is regulated by the phosphorylation of an internal PDZ-binding motif in the sterile alpha motif domain of SANS by the protein kinase CK2. We affirmed Magi2's role in receptor-mediated, clathrin-dependent endocytosis and showed that phosphorylated SANS tightly regulates Magi2-mediated endocytosis. Specific depletions by RNAi revealed that SANS and Magi2-mediated endocytosis regulates aspects of ciliogenesis. Furthermore, we demonstrated the localization of the SANS-Magi2 complex in the periciliary membrane complex facing the ciliary pocket of retinal photoreceptor cells in situ. Our data suggest that endocytotic processes may not only contribute to photoreceptor cell homeostasis but also counterbalance the periciliary membrane delivery accompanying the exocytosis processes for the cargo vesicle delivery. In USH1G patients, mutations in SANS eliminate Magi2 binding and thereby deregulate endocytosis, lead to defective ciliary transport modules and ultimately disrupt photoreceptor cell function inducing retinal degeneration. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  11. Sodium source development for pulsed power driven, photopumped NA/NE x-ray laser experiments

    International Nuclear Information System (INIS)

    Burkhalter, P.G.; Cooperstein, G.; Mosher, D.; Ottinger, P.F.; Scherrer, V.E.; Stephanakis, S.J.; Young, F.C.; Hinshelwood, D.D.; Mehlman, G.; Welch, B.L.; Jones, W.D.

    1988-01-01

    A sodium plasma source is being developed for a resonant photopumping x-ray laser scheme in which the 11A 1s 2 - 1s2rho 1 P 1 line in heliumlike Na X is used to pump the Ne IX n=4 singlet level. In their experiment the NRL Gamble II generator is used to produce two z-pinch plasmas in a side-by-side geometry. The sodium plasma is produced on axis and conducts the full 1 MA machine current. A fraction of this current returns through a neon gas puff located 5 cm from the sodium. This separation is determined by the need to prevent the plasmas from mixing and the need to have each plasma's azimuthal magnetic field as symmetric as possible. A minimum separation is desirable to increase coupling efficiency. To improve the pump source, a more confined source of pure sodium involving a coaxial plasma gun is being developed. They are currently studying both the operation of this source on a test stand and implosions of the resulting plasma on Gamble II. In initial experiments aluminum is substituted for sodium. Test stand diagnostics include photodiodes, witness plates, and current monitors designed to investigate the early motion of the annular plasma. Results from test stand and Gamble II experiments with both aluminum and sodium, as well as sodium handling techniques, are presented

  12. Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release

    DEFF Research Database (Denmark)

    Verstreken, Patrik; Kjaerulff, Ole; Lloyd, Thomas E

    2002-01-01

    We have identified mutations in Drosophila endophilin to study its function in vivo. Endophilin is required presynaptically at the neuromuscular junction, and absence of Endophilin dramatically impairs endocytosis in vivo. Mutant larvae that lack Endophilin fail to take up FM1-43 dye in synaptic ...

  13. Sodium cleaning device for nuclear reactor equipments

    International Nuclear Information System (INIS)

    Fujisawa, Morio.

    1985-01-01

    Purpose: To enable sodium cleaning over the entire length of large size equipments such as control rod drives and primary coolant recycling pumps for use in FBR type reactors. Constitution: A plurality of warm water supply nozzles each having a valve are connected at varying height on the side of a cleaning tank, to which an exhaust line is connected. These nozzles are connected with an exhaust port at the bottom of the tank to constitute a pipeway for cleaning warm water recycling line including a water feed pump and a feedwater heater. The water level in the tank is changed stepwise by successively selecting the warm water feed nozzles. Further, the warm water in the tank is recyclically fed through the nozzles selected at each step of the water level through the recycle line while warming. On the other hand, the pressure inside the tank is reduced through the exhaust line, whereby the warm water in the tank is boiled at low temperature to clean-up sodium on the equipments to be cleaned over the entire length. (Horiuchi, T.)

  14. Bovine parvovirus uses clathrin-mediated endocytosis for cell entry.

    Science.gov (United States)

    Dudleenamjil, Enkhmart; Lin, Chin-Yo; Dredge, Devin; Murray, Byron K; Robison, Richard A; Johnson, F Brent

    2010-12-01

    Entry events of bovine parvovirus (BPV) were studied. Transmission electron micrographs of infected cells showed virus particles in cytoplasmic vesicles. Chemical inhibitors that block certain aspects of the cellular machinery were employed to assess viral dependency upon those cellular processes. Chlorpromazine, ammonium chloride, chloroquine and bafilamicin A1 were used to inhibit acidification of endosomes and clathrin-associated endocytosis. Nystatin was used as an inhibitor of the caveolae pathway. Cytochalasin D and ML-7 were used to inhibit actin and myosin functions, respectively. Nocodazole and colchicine were employed to inhibit microtubule activity. Virus entry was assessed by measuring viral transcription using real-time PCR, synthesis of capsid protein and assembly of infectious progeny virus in the presence of inhibitor blockage. The results indicated that BPV entry into embryonic bovine trachael cells utilizes endocytosis in clathrin-coated vesicles, is dependent upon acidification, and appears to be associated with actin and microtubule dependency. Evidence for viral entry through caveolae was not obtained. These findings provide a fuller understanding of the early cell-entry events of the replication cycle for members of the genus Bocavirus.

  15. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics

    Directory of Open Access Journals (Sweden)

    Guangqing Xiao

    2013-01-01

    Full Text Available Transport of macromolecules across the blood-brain-barrier (BBB requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn in regulating the efflux of Immunoglobulin G (IgG from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed.

  16. The Sodium-Potassium Pump Controls the Intrinsic Firing of the Cerebellar Purkinje Neuron

    Science.gov (United States)

    Forrest, Michael D.; Wall, Mark J.; Press, Daniel A.; Feng, Jianfeng

    2012-01-01

    In vitro, cerebellar Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal pattern. The trimodal pattern consists of tonic spiking, bursting, and quiescence. The bimodal pattern consists of tonic spiking and quiescence. It is unclear how these firing patterns are generated and what determines which firing pattern is selected. We have constructed a realistic biophysical Purkinje cell model that can replicate these patterns. In this model, Na+/K+ pump activity sets the Purkinje cell's operating mode. From rat cerebellar slices we present Purkinje whole cell recordings in the presence of ouabain, which irreversibly blocks the Na+/K+ pump. The model can replicate these recordings. We propose that Na+/K+ pump activity controls the intrinsic firing mode of cerbellar Purkinje cells. PMID:23284664

  17. Exothermic potential of sodium nitrate salt cake

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1977-06-01

    High-Level radioactive liquid waste is being reduced to a liquid slurry by an evaporation and crystallization process and stored in the existing single-shell tanks. Continuous pumping of the waste storage tank will reduce the present 30 to 50% moisture to the minimum possible. The reduced waste is a relatively immobile salt cake consisting predominantly of sodium nitrate (NaNO 3 ) with lesser amounts of sodium nitrite (NaNO 2 ), sodium metaaluminate (NaAlO 2 ), and sodium hydroxide (NaOH). Trace amounts of fission products, transuranics, and a broad spectrum of organic materials in small but unknown amounts are also present. A program was initiated in 1973 to determine whether or not conditions exist which could lead to an exothermic reaction in the salt cake. Results of the latest series of tests conducted to determine the effects of mass and pressure are summarized. Hanford salt cake, as stored, cannot support combustion, and does not ignite when covered with a burning volatile hydrocarbon

  18. Adaptor Protein Complex 2–Mediated Endocytosis Is Crucial for Male Reproductive Organ Development in Arabidopsis[W

    Science.gov (United States)

    Kim, Soo Youn; Xu, Zheng-Yi; Song, Kyungyoung; Kim, Dae Heon; Kang, Hyangju; Reichardt, Ilka; Sohn, Eun Ju; Friml, Jiří; Juergens, Gerd; Hwang, Inhwan

    2013-01-01

    Fertilization in flowering plants requires the temporal and spatial coordination of many developmental processes, including pollen production, anther dehiscence, ovule production, and pollen tube elongation. However, it remains elusive as to how this coordination occurs during reproduction. Here, we present evidence that endocytosis, involving heterotetrameric adaptor protein complex 2 (AP-2), plays a crucial role in fertilization. An Arabidopsis thaliana mutant ap2m displays multiple defects in pollen production and viability, as well as elongation of staminal filaments and pollen tubes, all of which are pivotal processes needed for fertilization. Of these abnormalities, the defects in elongation of staminal filaments and pollen tubes were partially rescued by exogenous auxin. Moreover, DR5rev:GFP (for green fluorescent protein) expression was greatly reduced in filaments and anthers in ap2m mutant plants. At the cellular level, ap2m mutants displayed defects in both endocytosis of N-(3-triethylammonium-propyl)-4-(4-diethylaminophenylhexatrienyl) pyridinium dibromide, a lypophilic dye used as an endocytosis marker, and polar localization of auxin-efflux carrier PIN FORMED2 (PIN2) in the stamen filaments. Moreover, these defects were phenocopied by treatment with Tyrphostin A23, an inhibitor of endocytosis. Based on these results, we propose that AP-2–dependent endocytosis plays a crucial role in coordinating the multiple developmental aspects of male reproductive organs by modulating cellular auxin level through the regulation of the amount and polarity of PINs. PMID:23975898

  19. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    Directory of Open Access Journals (Sweden)

    George Kourouniotis

    2016-07-01

    Full Text Available The binding of epidermal growth factor (EGF to EGF receptor (EGFR stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ and tagged a green fluorescent protein (GFP at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc, extracellular signal-regulated kinase (ERK and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis.

  20. The Small GTPase Rac1 Contributes to Extinction of Aversive Memories of Drug Withdrawal by Facilitating GABAA Receptor Endocytosis in the vmPFC.

    Science.gov (United States)

    Wang, Weisheng; Ju, Yun-Yue; Zhou, Qi-Xin; Tang, Jian-Xin; Li, Meng; Zhang, Lei; Kang, Shuo; Chen, Zhong-Guo; Wang, Yu-Jun; Ji, Hui; Ding, Yu-Qiang; Xu, Lin; Liu, Jing-Gen

    2017-07-26

    Extinction of aversive memories has been a major concern in neuropsychiatric disorders, such as anxiety disorders and drug addiction. However, the mechanisms underlying extinction of aversive memories are not fully understood. Here, we report that extinction of conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal in male rats activates Rho GTPase Rac1 in the ventromedial prefrontal cortex (vmPFC) in a BDNF-dependent manner, which determines GABA A receptor (GABA A R) endocytosis via triggering synaptic translocation of activity-regulated cytoskeleton-associated protein (Arc) through facilitating actin polymerization. Active Rac1 is essential and sufficient for GABA A R endocytosis and CPA extinction. Knockdown of Rac1 expression within the vmPFC of rats using Rac1-shRNA suppressed GABA A R endocytosis and CPA extinction, whereas expression of a constitutively active form of Rac1 accelerated GABA A R endocytosis and CPA extinction. The crucial role of GABA A R endocytosis in the LTP induction and CPA extinction is evinced by the findings that blockade of GABA A R endocytosis by a dynamin function-blocking peptide (Myr-P4) abolishes LTP induction and CPA extinction. Thus, the present study provides first evidence that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories and reveals the sequence of molecular events that contribute to learning experience modulation of synaptic GABA A R endocytosis. SIGNIFICANCE STATEMENT This study reveals that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories associated with drug withdrawal and identifies Arc as a downstream effector of Rac1 regulations of synaptic plasticity as well as learning and memory, thereby suggesting therapeutic targets to promote extinction of the unwanted memories. Copyright © 2017 the authors 0270-6474/17/377096-15$15.00/0.

  1. Magnetohydrodynamic instability in annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.; Ogorodnikov, Anatoly P.

    2006-01-01

    In the previous work, the authors showed some detailed aspects of the magnetohydrodynamic instability arising in an annular linear induction pump: the instability is accompanied with a low frequency pressure pulsation in the range of 0-10 Hz when the magnetic Reynolds number is larger than unity; the low frequency pressure pulsation is produced by the sodium vortices that come from some azimuthal non-uniformity of the applied magnetic field or of the sodium inlet velocity. In the present work, an experiment and a numerical analysis are carried out to verify the pump winding phase shift that is expected as an effective way to suppress the instability. The experimental data shows that the phase shift suppresses the instability unless the slip value is so high, but brings about a decrease of the developed pressure. The numerical results indicate that the phase shift causes a local decrease of the electromagnetic force, which results in the suppression of the instability and the decrease of the developed pressure. In addition, it is exhibited that the intensity of the double-supply-frequency pressure pulsation is in nearly the same level in the case with and without the phase shift

  2. Ultrasound Targeted Microbubble Destruction Stimulates Cellular Endocytosis in Facilitation of Adeno-Associated Virus Delivery

    Directory of Open Access Journals (Sweden)

    Lian-Fang Du

    2013-05-01

    Full Text Available The generally accepted mechanism for ultrasound targeted microbubble destruction (UTMD to enhance drug and gene delivery is through sonoporation. However, passive uptake of adeno-associated virus (AAV into cells following sonoporation does not adequately explain observations of enhanced transduction by UTMD. This study investigated alternative mechanisms of UTMD enhancement in AAV delivery. UTMD significantly enhanced transduction efficiency of AAV in a dose-dependent manner. UTMD stimulated a persistent uptake of AAV into the cytoplasm and nucleus. This phenomenon occurred over several hours, suggesting that some viral particles are endocytosed by cells rather than exclusively passing through pores created by sonoporation. Additionally, UTMD enhanced clathrin expression and accumulation at the plasma membrane suggesting greater clathrin-mediated endocytosis following UTMD. Transmission electron microscopy (TEM revealed that UTMD stimulated formation of clathrin-coated pits (CPs and uncoated pits (nCPs. Furthermore, inhibition of clathrin-mediated endocytosis partially blocked the enhancement of AAV uptake following UTMD. The results of this study implicate endocytosis as a mechanism that contributes to UTMD-enhanced AAV delivery.

  3. Correlated Fluorescence-Atomic Force Microscopy Studies of the Clathrin Mediated Endocytosis in SKMEL Cells

    Science.gov (United States)

    Smith, Steve; Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam

    Clathrin-mediated endocytosis is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorescent fusion proteins (actin filaments labeled with green phalloidin-antibody and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. Results from our work are compared against dynamical polarized total internal fluorescence (TIRF), super-resolution photo-activated localization microscopy (PALM) and transmission electron microscopy (TEM) to draw conclusions regarding the prominent model of vesicle formation in clathrin-mediated endocytosis. Funding provided by NSF MPS/DMR/BMAT award # 1206908.

  4. Cathepsin X Cleaves Profilin 1 C-Terminal Tyr139 and Influences Clathrin-Mediated Endocytosis.

    Directory of Open Access Journals (Sweden)

    Urša Pečar Fonović

    Full Text Available Cathepsin X, a cysteine carboxypeptidase, is upregulated in several types of cancer. Its molecular target in tumor cells is profilin 1, a known tumor suppressor and regulator of actin cytoskeleton dynamics. Cathepsin X cleaves off the C-terminal Tyr139 of profilin 1, affecting binding of poly-L-proline ligands and, consequently, tumor cell migration and invasion. Profilin 1 with mutations at the C-terminus, transiently expressed in prostate cancer cells PC-3, showed that Tyr139 is important for proper function of profilin 1 as a tumor suppressor. Cleaving off Tyr139 prevents the binding of clathrin, a poly-L-proline ligand involved in endocytosis. More profilin 1-clathrin complexes were present in PC-3 cells when cathepsin X was inhibited by its specific inhibitor AMS36 or silenced by siRNA. As a consequence, the endocytosis of FITC-labeled dextran and transferrin conjugate was significantly increased. These results constitute the first report of the regulation of clathrin-mediated endocytosis in tumor cells through proteolytic processing of profilin 1.

  5. Cathepsin X Cleaves Profilin 1 C-Terminal Tyr139 and Influences Clathrin-Mediated Endocytosis

    Science.gov (United States)

    Pečar Fonović, Urša; Kos, Janko

    2015-01-01

    Cathepsin X, a cysteine carboxypeptidase, is upregulated in several types of cancer. Its molecular target in tumor cells is profilin 1, a known tumor suppressor and regulator of actin cytoskeleton dynamics. Cathepsin X cleaves off the C-terminal Tyr139 of profilin 1, affecting binding of poly-L-proline ligands and, consequently, tumor cell migration and invasion. Profilin 1 with mutations at the C-terminus, transiently expressed in prostate cancer cells PC-3, showed that Tyr139 is important for proper function of profilin 1 as a tumor suppressor. Cleaving off Tyr139 prevents the binding of clathrin, a poly-L-proline ligand involved in endocytosis. More profilin 1—clathrin complexes were present in PC-3 cells when cathepsin X was inhibited by its specific inhibitor AMS36 or silenced by siRNA. As a consequence, the endocytosis of FITC-labeled dextran and transferrin conjugate was significantly increased. These results constitute the first report of the regulation of clathrin-mediated endocytosis in tumor cells through proteolytic processing of profilin 1. PMID:26325675

  6. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis

    International Nuclear Information System (INIS)

    Li Wei; Chen Chunying; Ye Chang; Zhao Yuliang; Chen Zhen; Meng Huan; Gao Yuxi; Yuan Hui; Xing Genmei; Zhao Feng; Chai Zhifang; Wei Taotao; Zhang Xujia; Yang Fuyu; Lao Fang; Han Dong; Tang Xianhua; Zhang Yingge

    2008-01-01

    Manufactured fullerene nanoparticles easily enter into cells and hence have been rapidly developed for biomedical uses. However, it is generally unknown which route the nanoparticles undergo when crossing cell membranes and where they localize to the intracellular compartments. Herein we have used both microscopic imaging and biological techniques to explore the processes of [C 60 (C(COOH) 2 ) 2 ] n nanoparticles across cellular membranes and their intracellular translocation in 3T3 L1 and RH-35 living cells. The fullerene nanoparticles are quickly internalized by the cells and then routed to the cytoplasm with punctate localization. Upon entering the cell, they are synchronized to lysosome-like vesicles. The [C 60 (C(COOH) 2 ) 2 ] n nanoparticles entering cells are mainly via endocytosis with time-, temperature- and energy-dependent manners. The cellular uptake of [C 60 (C(COOH) 2 ) 2 ] n nanoparticles was found to be clathrin-mediated but not caveolae-mediated endocytosis. The endocytosis mechanism and the subcellular target location provide key information for the better understanding and predicting of the biomedical function of fullerene nanoparticles inside cells

  7. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis.

    Science.gov (United States)

    Partridge, Emily A; Le Roy, Christine; Di Guglielmo, Gianni M; Pawling, Judy; Cheung, Pam; Granovsky, Maria; Nabi, Ivan R; Wrana, Jeffrey L; Dennis, James W

    2004-10-01

    The Golgi enzyme beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is up-regulated in carcinomas and promotes the substitution of N-glycan with poly N-acetyllactosamine, the preferred ligand for galectin-3 (Gal-3). Here, we report that expression of Mgat5 sensitized mouse cells to multiple cytokines. Gal-3 cross-linked Mgat5-modified N-glycans on epidermal growth factor and transforming growth factor-beta receptors at the cell surface and delayed their removal by constitutive endocytosis. Mgat5 expression in mammary carcinoma was rate limiting for cytokine signaling and consequently for epithelial-mesenchymal transition, cell motility, and tumor metastasis. Mgat5 also promoted cytokine-mediated leukocyte signaling, phagocytosis, and extravasation in vivo. Thus, conditional regulation of N-glycan processing drives synchronous modification of cytokine receptors, which balances their surface retention against loss via endocytosis.

  8. A reflux capsule steam generator for sodium cooled reactors

    International Nuclear Information System (INIS)

    Lantz, E.

    Pressurized water reactor plants at numerous sites have sustained significant leakage through their steam generators. The consequent shutdowns for repairs and replacements have damaged their economics. This experience suggests that if steam generators for liquid metal fast breeder reactors (LMFBR's) continue to be built as presently designed some of them will have similar problems. Because of their larger capital investment, the consequent damage to the economics of LMFBR's could be more serious. Reflux capsules provide a way to separate sodium from water and to reduce thermal stresses in steam generators for sodium cooled reactors. Their use would also eliminate the need for a primary heat exchanger and a secondary sodium loop pump. (author)

  9. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells.

    Science.gov (United States)

    Langston Suen, Wai-Leung; Chau, Ying

    2014-04-01

    We aim to quantify the effect of size and degree of folate loading of folate-decorated polymeric nanoparticles (NPs) on the kinetics of cellular uptake and the selection of endocytic pathways in retinal pigment epithelium (RPE) cells. In this study, methoxy-poly(ethylene glycol)-b-polycaprolactone (mPEG-b-PCL) and folate-functionalized PEG-b-PCL were synthesized for assembling into nanoparticles with sizes ranging from 50 nm to 250 nm. These nanoparticles were internalized into ARPE-19 (human RPE cell line) via receptor-mediated endocytosis. A two-step endocytosis process mathematical model was adopted to quantify binding affinity and uptake kinetics of nanoparticles in RPE cells in uptake and inhibition studies. Nanoparticles with 100% folate loading have highest binding affinity and uptake rate in RPE cells. Maximum uptake rate (Vmax) of nanoparticles increased as the size of particles decreased from 250 nm to 50 nm. Endocytic pathway study was studied by using chlorpromazine and methyl-β-cyclodextran (MβCD), which are clathrin- and caveolae-mediated endocytosis inhibitors, respectively. Both chlorpromazine and MβCD inhibited the uptake of folate-decorated nanoparticles. Inhibition constant (Ki) and maximum uptake rate (Vmax) revealed that 50 nm and 120 nm folate-decorated nanoparticles were found to be internalized via both clathrin- and caveolae-mediated endocytosis. The 250 nm folate-decorated nanoparticles, however, were only internalized via caveolae-mediated pathway. Increased uptake rate of folate-decorated NPs into RPE cells is observed with increasing degree of folate modification. These NPs utilize both clathrin- and caveolae-mediated receptor-mediated endocytosis pathways to enter RPE cells upon size variation. The 50 nm NPs are internalized the fastest, with clathrin-mediated endocytosis as the preferred route. Uptake of 250 nm particles is the slowest and is dominated by caveolae-mediated endocytosis. © 2013 Royal Pharmaceutical

  10. Earthquake-proof support structures for the recycling pump in FBR type reactors

    International Nuclear Information System (INIS)

    Nakagawa, Masaki; Shigeta, Masayuki.

    1984-01-01

    Purpose: To improve the earthquake proofness of the recycling pump for use in FBR type reactors upon earthquake by reducing the vibration response of the pump. Constitution: The outer casing of a recycle pump suspended into liquid sodium is extended to the portion that penetrates a reactor core support structures. Support structures surrounding the outer side of the recycling pump are disposed with a gap not restraining the free thermal deformations of the recycling pump to the inside of the partition wall structures and the portion of the recycling pump penetrating the reator core support structures, to integrate the support structures with the reactor core support structures. Accordingly, there are no interferences between the recycling pump and the support structures with respect to the thermal deformations that change gradually with time. Upon vibrating under the rapidly changing external forces of earthquakes, however, the pressure resulted to the liquid in the gap due to the vibrations of the recycling pump is transmitted with no escape to the support structures, the recycling pump and the support structures integrally resist the vibrations thereby enabling to reduce the vibrations in the recycling pumps. (Horiuchi, T.)

  11. Cyclin dependent kinase 5 regulates endocytosis in nerve terminals via dynamin I phosphorylation

    International Nuclear Information System (INIS)

    Tan, T.C.; Hansra, G.; Calova, V.; Cousin, M.; Robinson, P.J.

    2002-01-01

    Full text: Synaptic vesicle endocytosis (SVE) in nerve terminals is essential for normal synaptic transmission and for memory retrieval. Dynamin I is a 96kDa nerve terminal phosphoprotein necessary for synaptic vesicle endocytosis in the nerve terminal. Dynamin I is dephosphorylated and rephosphorylated in a cyclical fashion with nerve terminal depolarisation and repolarisation. A number of kinases phosphorylate dynamin I in vitro including PKC, MAP kinase and cdc2. PKC phosphorylates dynamin in the proline rich domain on Ser 795 and is also thought to be the in vivo kinase for dynamin I. Another candidate is the neuron specific kinase cdk5, crucial for CNS development. The aim of this study is to identify the kinase which phosphorylates dynamin I in intact nerve terminals. Here we show that cyclin-dependent kinase 5 (cdk5) phosphorylates dynamin I in the proline-rich tail on Ser-774 or Ser-778. The phosphorylation of these sites but not Ser-795 also occurred in intact nerve terminals suggesting that cdk5 is the physiologically relevant enzyme for dynamin I. Synaptosomes prepared from rat brains (after cervical dislocations) and labelled with 32 Pi, were incubated with 100 M roscovitine (a selective inhibitor of cdks), 10 M Ro 31-8220 (a selective PKC inhibitor) and 100 M PD 98059 (a MEK kinase inhibitor). Dynamin rephosphorylation during repolarisation was reduced in synaptosomes treated with roscovitine and Ro 38-8220 but not in synaptosomes treated with PD 98059. Fluorimetric experiments on intact synaptosomes utilising FM-210 (a fluorescent dye) indicate that endocytosis was reduced in synaptosomes treated with 100 M roscovitine. Our results suggest that dynamin phosphorylation in intact nerve terminals may not be regulated by PKC or MAP kinase and that dynamin phosphorylation by cdk5 may regulate endocytosis. Copyright (2002) Australian Neuroscience Society

  12. A resting bottom sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Costes, D.

    2012-01-01

    This follows ICAPP 2011 paper 11059 'Fast Reactor with a Cold Bottom Vessel', on sodium cooled reactor vessels in thermal gradient, resting on soil. Sodium is frozen on vessel bottom plate, temperature increasing to the top. The vault cover rests on the safety vessel, the core diagrid welded to a toric collector forms a slab, supported by skirts resting on the bottom plate. Intermediate exchangers and pumps, fixed on the cover, plunge on the collector. At the vessel top, a skirt hanging from the cover plunges into sodium, leaving a thin circular slit partially filled by sodium covered by argon, providing leak-tightness and allowing vessel dilatation, as well as a radial relative holding due to sodium inertia. No 'air conditioning' at 400 deg. C is needed as for hanging vessels, and this allows a large economy. The sodium volume below the slab contains isolating refractory elements, stopping a hypothetical corium flow. The small gas volume around the vessel limits any LOCA. The liner cooling system of the concrete safety vessel may contribute to reactor cooling. The cold resting bottom vessel, proposed by the author for many years, could avoid the complete visual inspection required for hanging vessels. However, a double vessel, containing support skirts, would allow introduction of inspecting devices. Stress limiting thermal gradient is obtained by filling secondary sodium in the intermediate space. (authors)

  13. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach

    KAUST Repository

    Bueno-Orovio, Alfonso; Sá nchez, Carlos; Pueyo, Esther; Rodriguez, Blanca

    2013-01-01

    gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology

  14. Endocytosis and exocytosis of nanoparticles in mammalian cells

    OpenAIRE

    Park, Ji- Ho; Oh,Nuri

    2014-01-01

    Nuri Oh,1,2 Ji-Ho Park1–31Department of Bio and Brain Engineering, 2Institute for Optical Science and Technology, 3Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of KoreaAbstract: Engineered nanoparticles that can be injected into the human body hold tremendous potential to detect and treat complex diseases. Understanding of the endocytosis and exocytosis mechanisms of nanoparticles is essential for safe and efficient the...

  15. Experimental and numerical analysis of behavior of electromagnetic annular linear induction pump

    International Nuclear Information System (INIS)

    Goldsteins, Linards

    2015-01-01

    The research explores the issue of magnetohydrodynamic (MHD) instability in electromagnetic induction pumps with focus on the regimes of high slip Reynolds magnetic number (Rm s ) in Annular Linear Induction Pumps (ALIP) operating with liquid sodium. The context of the thesis is French GEN IV Sodium Fast Reactor research and development program for ASTRID in a framework of which the use of high discharge ALIP in the secondary cooling loops is being studied. CEA has designed, realized and will exploit PEMDYN facility, able to represent MHD instability in high discharge ALIP. In the thesis stability of an ideal ALIP is elaborated theoretically using linear stability analysis. Analysis revealed that strong amplification of perturbation is expected after convective stability threshold is reached. Theory is supported with numerical results and experiments reported in literature. Stable operation and stabilization technique operating with two frequencies in case of an ideal ALIP is discussed and necessary conditions derived. Detailed numerical models of flat linear induction pump (FLIP) taking into account effects of a real pump are developed. New technique of magnetic field measurements has been introduced and experimental results demonstrate a qualitative agreement with numerical models capturing all principal phenomena such as oscillation of magnetic field and perturbed velocity profiles. These results give significantly more profound insight in the phenomenon of MHD instability and can be used as a reference in further studies. (author) [fr

  16. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2017-12-19

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  17. The acoustic detection of cavitation in pumps

    International Nuclear Information System (INIS)

    Macleod, I.D.; Gray, B.S.; Taylor, C.G.

    1978-01-01

    A programme was initiated to develop a reliable technique for detecting the onset of acoustic noise from cavitation in a pump and to relate this to cavitation inception data, since significant noise from collapse of vapour bubbles arising from such cavitation would reduce the sensitivity of a noise detection system for boiling of sodium in fast breeder reactors. Factors affecting the detection of cavitation are discussed. The instrumentation and techniques of frequency analysis and pulse detection are described. Two examples are then given of the application of acoustic detection techniques under controlled conditions. It is concluded that acoustic detection can be a reliable method for detecting inception of cavitation in a pump and the required conditions are stated. (U.K.)

  18. Flow in sodium loop surge tank

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1977-01-01

    The alternate liquid flow, the condition of vortex formation, gas entrainment in the discharge and the liquid level characteristics are studied using the models of the vertical and horizontal surge tanks of a sodium circuit with pump and heat exchangers. The conditions for vortex formation are more favourable in the vertical cylindrical tank than in the horizontal tank. The size of the vortex produced in the tank is affected by the initial speed circulation, due as a rule to an unsuitable inlet design. The proposed design considers an inlet below the sodium level using capped perforated pipes. Vortex formation, gas transport to the discharge pipe and turbulences of the liquid in the tank may be prevented by dividing the tank to the discharge and the inlet areas using perforated partitions, and by inserting the discharge cylinder above the discharge pipe outflow. The liquid level in the tank may be calmed by screens or by perforated plates. The adaptation of the surge tank of the sodium circuit will probably eliminate vortex formation and the entrainment of cover gas into the discharge piping and the sodium circuit under nominal conditions. (J.B.)

  19. Modeling of fully coupled MHD flows in annular linear induction pumps

    International Nuclear Information System (INIS)

    Roman, C.; Dumont, M.; Letout, S.; Courtessole, C.; Fautrelle, Y.; Vitry, S.; Rey, F.

    2014-01-01

    The paper studies specific pumping characteristics of the Annular Linear Induction Pumps (ALIP) with travelling field for liquid sodium. The present work is focused on the analysis of very large electromagnetic pumps able to provide high flow rates. The magnetic Reynolds number is quite large, therefore, it is necessary to take into account the full magnetohydrodynamic interaction between the electromagnetic field and the liquid metal flow inside pump channel. We couple the electromagnetic aspects with the hydrodynamic ones by means of two commercial softwares. The geometry considered here is 2D axisymmetric. It is found that in such induction pumps the effect of convection is very important. Two main effects have been put forth. Firstly, due to the magnetic entrainment significant end effects are observed for large velocities. This leads to the existence of regions where the axial force is negative. Secondly, a Hartmann effect occurs near the walls. The electric current and the corresponding forces are confined near the wall in Hartmann layers. Global stability of e.m. pump is also analysed. (authors)

  20. Exocytosis and endocytosis in juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, U G; Jensen, B L; Hansen, Pernille B. Lærkegaard

    2000-01-01

    fusion events between secretory granules and cell membrane and measurement of intermittent secretion of renin from single afferent arterioles, with a renin content of each secretion episode that corresponds to the renin content of one secretory granule. More recently it has been demonstrated...... that the afferent arterioles lose a large number of renin granules after acute stimulation without changing the average granular volume. Current electrophysiological techniques have now permitted direct measurements of cell membrane capacitance in juxtaglomerular (JG) cells as a measure of net addition (exocytosis...... and endocytosis are regulated processes in the JG-cells and both may be important for the long-term control of renin secretion at the single cell level....

  1. Final report on the safety assessment of sodium sulfite, potassium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium metabisulfite and potassium metabisulfite.

    Science.gov (United States)

    Nair, Bindu; Elmore, Amy R

    2003-01-01

    Sodium Sulfite, Ammonium Sulfite, Sodium Bisulfite, Potassium Bisulfite, Ammonium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite are inorganic salts that function as reducing agents in cosmetic formulations. All except Sodium Metabisulfite also function as hair-waving/straightening agents. In addition, Sodium Sulfite, Potassium Sulfite, Sodium Bisulfite, and Sodium Metabisulfite function as antioxidants. Although Ammonium Sulfite is not in current use, the others are widely used in hair care products. Sulfites that enter mammals via ingestion, inhalation, or injection are metabolized by sulfite oxidase to sulfate. In oral-dose animal toxicity studies, hyperplastic changes in the gastric mucosa were the most common findings at high doses. Ammonium Sulfite aerosol had an acute LC(50) of >400 mg/m(3) in guinea pigs. A single exposure to low concentrations of a Sodium Sulfite fine aerosol produced dose-related changes in the lung capacity parameters of guinea pigs. A 3-day exposure of rats to a Sodium Sulfite fine aerosol produced mild pulmonary edema and irritation of the tracheal epithelium. Severe epithelial changes were observed in dogs exposed for 290 days to 1 mg/m(3) of a Sodium Metabisulfite fine aerosol. These fine aerosols contained fine respirable particle sizes that are not found in cosmetic aerosols or pump sprays. None of the cosmetic product types, however, in which these ingredients are used are aerosolized. Sodium Bisulfite (tested at 38%) and Sodium Metabisulfite (undiluted) were not irritants to rabbits following occlusive exposures. Sodium Metabisulfite (tested at 50%) was irritating to guinea pigs following repeated exposure. In rats, Sodium Sulfite heptahydrate at large doses (up to 3.3 g/kg) produced fetal toxicity but not teratogenicity. Sodium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite were not teratogenic for mice, rats, hamsters, or rabbits at doses up to 160 mg/kg. Generally, Sodium Sulfite, Sodium

  2. The Grand Quevilly thermal test station - the SMW sodium circuit with a generator of superheated steam at 545 deg

    International Nuclear Information System (INIS)

    Robin, M.G.

    1964-01-01

    A 5 MW installation is described which is a reduced model of the heat exchange system of a sodium-cooled reactor. This plant, which is situated at Grand Quevilly (near Rouen), consists of: 1 - A primary sodium loop made up of a sodium re-heater running on heavy diesel oil, a mechanical pump and an intermediate exchanger made up of clusters of tubes fitted with baffles. 2 - A NaK(56 per cent of K) secondary loop consisting mainly of a mechanical pump and a double-wall steam generator with forced circulation and complete vaporization. 3 - A tertiary water loop consisting of the inside of the steam generator pipes, a pressure-reducing valve which cools down the super-heated fluid and acts as a turbine, a condenser, a charge-pump and a supply pump for the boiler. The heat is given finally to a water-source flowing into the Seine. Two important points of the installation are: - The water treatment unit - The control and regulation system Apart from the general satisfactory operation of the installation which it is hoped to obtain, a careful study will be made of the heat transmission coefficients of the important equipment such as the intermediate exchanger and the steam generator. The construction was finished on April 28, 1964. (author) [fr

  3. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.

    Science.gov (United States)

    Phuc, Le Thi Minh; Taniguchi, Akiyoshi

    2017-06-19

    The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF-EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  4. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis

    Directory of Open Access Journals (Sweden)

    Le Thi Minh Phuc

    2017-06-01

    Full Text Available The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF on the uptake efficiency of polystyrene nanoparticles (PS NPs by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs indicated that cellular uptake of PS NPs is related to the binding of EGF–EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  5. Ricin A chain reaches the endoplasmic reticulum after endocytosis

    International Nuclear Information System (INIS)

    Liu Qiong; Zhan Jinbiao; Chen Xinhong; Zheng Shu

    2006-01-01

    Ricin is a potent ribosome inactivating protein and now has been widely used for synthesis of immunotoxins. To target ribosome in the mammalian cytosol, ricin must firstly retrograde transport from the endomembrane system to reach the endoplasmic reticulum (ER) where the ricin A chain (RTA) is recognized by ER components that facilitate its membrane translocation to the cytosol. In the study, the fusion gene of enhanced green fluorescent protein (EGFP)-RTA was expressed with the pET-28a (+) system in Escherichia coli under the control of a T7 promoter. The fusion protein showed a green fluorescence. The recombinant protein can be purified by metal chelated affinity chromatography on a column of NTA. The rabbit anti-GFP antibody can recognize the fusion protein of EGFP-RTA just like the EGFP protein. The cytotoxicity of EGFP-RTA and RTA was evaluated by the MTT assay in HeLa and HEP-G2 cells following fluid-phase endocytosis. The fusion protein had a similar cytotoxicity of RTA. After endocytosis, the subcellular location of the fusion protein can be observed with the laser scanning confocal microscopy and the immuno-gold labeling Electro Microscopy. This study provided important evidence by a visualized way to prove that RTA does reach the endoplasmic reticulum

  6. Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells

    DEFF Research Database (Denmark)

    Hao, Xian; Wu, Jiazhen; Shan, Yuping

    2012-01-01

    the internalization mechanism of small-size AuNPs by living Hela cells. Herein, we found that the caveolae-mediated endocytosis was the dominant pathway for the intracellular delivery of small-size AuNPs. The intracellular delivery was suppressed when we depleted the cholesterol with methyl-β-cyclodextrin (M beta CD...

  7. Detection of cavitation inception by acoustic technique in centrifugal pumps for nuclear application

    International Nuclear Information System (INIS)

    Prakash, V.; Prabhakar, R.; Rao, A.S.L.K.; Kale, R.D.

    1994-01-01

    The primary centrifugal pumps in a pool type reactor like the proposed Prototype Fast Breeder Reactor (PFBR) are required to operate at low values of available net positive suction head due to the limited submergence available in the pool. Pump hydraulics are designed to ensure that there is no cavitation or only minimum cavitation in the pump impeller in order to minimise long term erosion damage. Rigorous cavitation tests are usually carried out during development and final testing phase and a promising cavitation detection technique lies in acoustic noise measurements on the pump. As part of PFBR pump development programme, cavitation noise measurements were initially carried out on an experimental sodium pump in a water rig to establish detection procedures. Recently cavitation noise measurements were carried out on a 1/3 scale model impeller of PFBR pump along with visual observation of impeller passages to establish a correlation between visual and acoustic technique. Accelerometer responding to structure borne noise seems to give the best result. (author). 4 refs., 6 figs

  8. Sodium temperature/wind lidar based on laser-diode-pumped Nd:YAG lasers deployed at Tromsø, Norway (69.6°N, 19.2°E).

    Science.gov (United States)

    Kawahara, T D; Nozawa, S; Saito, N; Kawabata, T; Tsuda, T T; Wada, S

    2017-06-12

    An Nd:YAG laser-based sodium temperature/wind lidar was developed for the measurement of the northern polar mesosphere and lower thermosphere at Tromsø (69.6N, 19.2E), Norway. Coherent light at 589 nm is produced by sum frequency generation of 1064 nm and 1319 nm from two diode laser end-pumped pulsed Nd:YAG lasers. The output power is as high as 4W, with 4 mJ/pulse at 1000 Hz repetition rate. Five tilting Cassegrain telescopes enable us to make five-direction (zenith, north, south, east, west) observation for temperature and wind simultaneously. This highly stable laser system is first of its kind to operate virtually maintenance-free during the observation season (from late September to March) since 2010.

  9. Status of sodium boiling noise detection programme at reactor research centre, India

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, R; Elumalai, G [Reactor Engineering Laboratory, Reactor Research Centre, Chingleput, Tamil Nadu (India)

    1982-01-01

    Acoustic detection of sodium boiling is a promising technique to monitor subassembly fault in a last reactor. This paper summarises the programme for developing this detection system and describes the design of a high temperature transducer for boiling detection. It is appreciated that the background noise from primary pumps can interfere with this detection. Noise measurements were therefore carried out during water testing of the primary pump of the Fast Breeder Test Reactor. Some preliminary results of these measurements are presented.

  10. Status of sodium boiling noise detection programme at reactor research centre, India

    International Nuclear Information System (INIS)

    Prabhakar, R.; Elumalai, G.

    1982-01-01

    Acoustic detection of sodium boiling is a promising technique to monitor subassembly fault in a last reactor. This paper summarises the programme for developing this detection system and describes the design of a high temperature transducer for boiling detection. It is appreciated that the background noise from primary pumps can interfere with this detection. Noise measurements were therefore carried out during water testing of the primary pump of the Fast Breeder Test Reactor. Some preliminary results of these measurements are presented

  11. Endocytosis of a functionally enhanced GFP-tagged transferrin receptor in CHO cells.

    Directory of Open Access Journals (Sweden)

    Qi He

    Full Text Available The endocytosis of transferrin receptor (TfR has served as a model to study the receptor-targeted cargo delivery system for cancer therapy for many years. To accurately evaluate and optically measure this TfR targeting delivery in vitro, a CHO cell line with enhanced green fluorescent protein (EGFP-tagged human TfR was established. A chimera of the hTfR and EGFP was engineered by fusing EGFP to the amino terminus of hTfR. Data were provided to demonstrate that hTfR-EGFP chimera was predominantly localized on the plasma membrane with some intracellular fluorescent structures on CHO cells and the EGFP moiety did not affect the endocytosis property of hTfR. Receptor internalization occurred similarly to that of HepG2 cells expressing wild-type hTfR. The internalization percentage of this chimeric receptor was about 81 ± 3% of wild type. Time-dependent co-localization of hTfR-EGFP and PE-conjugated anti-hTfR mAb in living cells demonstrated the trafficking of mAb-receptor complexes through the endosomes followed by segregation of part of the mAb and receptor at the late stages of endocytosis. The CHO-hTfR cells preferentially took up anti-hTfR mAb conjugated nanoparticles. This CHO-hTfR cell line makes it feasible for accurate evaluation and visualization of intracellular trafficking of therapeutic agents conjugated with transferrin or Abs targeting the hTfRs.

  12. Altered erythrocyte Na-K pump in anorectic patients

    Energy Technology Data Exchange (ETDEWEB)

    Pasquali, R.; Strocchi, E.; Malini, P.; Casimirri, F.; Ambrosioni, E.; Melchionda, N.; Labo, G.

    1985-07-01

    The status of the erythrocyte sodium pump was evaluated in a group of patients suffering from anorexia nervosa and a group of healthy female control subjects. Anorectic patients showed significantly higher mean values of digoxin-binding sites/cell (ie, the number of Na-K-ATPase units) with respect to control subjects while no differences were found in the specific /sup 86/Rb uptake (which reflects the Na-K-ATPase activity) between the two groups. A significant correlation was found between relative weight and the number of Na-K-ATPase pump units (r = -0.66; P less than 0.0001). Anorectic patients showed lower serum T3 concentrations (71.3 +/- 53 ng/dL) with respect to control subjects (100.8 +/- 4.7 ng/dL; P less than 0.0005) and a significant negative correlation between T3 levels and the number of pump units (r = -0.52; P less than 0.003) was found. This study therefore shows that the erythrocyte Na-K pump may be altered in several anorectic patients. The authors suggest that this feature could be interrelated with the degree of underweight and/or malnutrition.

  13. Altered erythrocyte Na-K pump in anorectic patients

    International Nuclear Information System (INIS)

    Pasquali, R.; Strocchi, E.; Malini, P.; Casimirri, F.; Ambrosioni, E.; Melchionda, N.; Labo, G.

    1985-01-01

    The status of the erythrocyte sodium pump was evaluated in a group of patients suffering from anorexia nervosa and a group of healthy female control subjects. Anorectic patients showed significantly higher mean values of digoxin-binding sites/cell (ie, the number of Na-K-ATPase units) with respect to control subjects while no differences were found in the specific 86 Rb uptake (which reflects the Na-K-ATPase activity) between the two groups. A significant correlation was found between relative weight and the number of Na-K-ATPase pump units (r = -0.66; P less than 0.0001). Anorectic patients showed lower serum T3 concentrations (71.3 +/- 53 ng/dL) with respect to control subjects (100.8 +/- 4.7 ng/dL; P less than 0.0005) and a significant negative correlation between T3 levels and the number of pump units (r = -0.52; P less than 0.003) was found. This study therefore shows that the erythrocyte Na-K pump may be altered in several anorectic patients. The authors suggest that this feature could be interrelated with the degree of underweight and/or malnutrition

  14. Prediction of EMP cavitation threshold from other than sodium testing

    International Nuclear Information System (INIS)

    Kambe, M.; Kamei, M.

    2002-01-01

    An experimental study has been performed to predict the cavitation threshold of electromagnetic pumps from measurements on test models using water and alcohol. Cavitation tests were carried out using water and alcohol test loop on subscale ducts of transparent acrylic resin with reference to an actual pump (1.1m 3 /min). These data were compared to those obtained from the in-sodium tests on the actual pump. The investigation revealed that the value of Thoma's dimensionless parameter: σ applied to the test model for water and alcohol is quite higher than that of corresponding σ on the actual pump. To minimize the incipient cavitation safety margin, more accurate prediction must be required. In view of this, the authors proposed the dimensionless parameter: σ T =σ/W-bare where W-bare denotes the Weber number. This parameter was confirmed to predict the cavitation threshold of electromagnetic pumps with much more accuracy than ever before. It can also be adopted to predict cavitation threshold of other FBR components. (author)

  15. Dynamic bio-adhesion of polymer nanoparticles on MDCK epithelial cells and its impact on bio-membranes, endocytosis and paracytosis.

    Science.gov (United States)

    He, Bing; Yuan, Lan; Dai, Wenbing; Gao, Wei; Zhang, Hua; Wang, Xueqing; Fang, Weigang; Zhang, Qiang

    2016-03-21

    Nowadays, concern about the use of nanotechnology for biomedical application is unprecedentedly increasing. In fact, nanosystems applied for various potential clinical uses always have to cross the primary biological barrier consisting of epithelial cells. However, little is really known currently in terms of the influence of the dynamic bio-adhesion of nanosystems on bio-membranes as well as on endocytosis and transcytosis. This was investigated here using polymer nanoparticles (PNs) and MDCK epithelial cells as the models. Firstly, the adhesion of PNs on cell membranes was found to be time-dependent with a shift of both location and dispersion pattern, from the lateral adhesion of mainly mono-dispersed PNs initially to the apical coverage of the PN aggregate later. Then, it was interesting to observe in this study that the dynamic bio-adhesion of PNs only affected their endocytosis but not their transcytosis. It was important to find that the endocytosis of PNs was not a constant process. A GM1 dependent CDE (caveolae dependent endocytosis) pathway was dominant in the preliminary stage, followed by the co-existence of a CME (clathrin-mediated endocytosis) pathway for the PN aggregate at a later stage, in accordance with the adhesion features of PNs, suggesting the modification of PN adhesion patterns on the endocytosis pathways. Next, the PN adhesion was noticed to affect the structure of cell junctions, via altering the extra- and intra-cellular calcium levels, leading to the enhanced paracellular transport of small molecules, but not favorably enough for the obviously increased passing of PNs themselves. Finally, FRAP and other techniques all demonstrated the obvious impact of PN adhesion on the membrane confirmation, independent of the adhesion location and time, which might lower the threshold for the internalization of PNs, even their aggregates. Generally, these findings confirm that the transport pathway mechanism of PNs through epithelial cells is rather

  16. Dynamic bio-adhesion of polymer nanoparticles on MDCK epithelial cells and its impact on bio-membranes, endocytosis and paracytosis

    Science.gov (United States)

    He, Bing; Yuan, Lan; Dai, Wenbing; Gao, Wei; Zhang, Hua; Wang, Xueqing; Fang, Weigang; Zhang, Qiang

    2016-03-01

    Nowadays, concern about the use of nanotechnology for biomedical application is unprecedentedly increasing. In fact, nanosystems applied for various potential clinical uses always have to cross the primary biological barrier consisting of epithelial cells. However, little is really known currently in terms of the influence of the dynamic bio-adhesion of nanosystems on bio-membranes as well as on endocytosis and transcytosis. This was investigated here using polymer nanoparticles (PNs) and MDCK epithelial cells as the models. Firstly, the adhesion of PNs on cell membranes was found to be time-dependent with a shift of both location and dispersion pattern, from the lateral adhesion of mainly mono-dispersed PNs initially to the apical coverage of the PN aggregate later. Then, it was interesting to observe in this study that the dynamic bio-adhesion of PNs only affected their endocytosis but not their transcytosis. It was important to find that the endocytosis of PNs was not a constant process. A GM1 dependent CDE (caveolae dependent endocytosis) pathway was dominant in the preliminary stage, followed by the co-existence of a CME (clathrin-mediated endocytosis) pathway for the PN aggregate at a later stage, in accordance with the adhesion features of PNs, suggesting the modification of PN adhesion patterns on the endocytosis pathways. Next, the PN adhesion was noticed to affect the structure of cell junctions, via altering the extra- and intra-cellular calcium levels, leading to the enhanced paracellular transport of small molecules, but not favorably enough for the obviously increased passing of PNs themselves. Finally, FRAP and other techniques all demonstrated the obvious impact of PN adhesion on the membrane confirmation, independent of the adhesion location and time, which might lower the threshold for the internalization of PNs, even their aggregates. Generally, these findings confirm that the transport pathway mechanism of PNs through epithelial cells is rather

  17. Development of sputter ion pump based SG leak detection system for Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Babu, B.; Sureshkumar, K.V.; Srinivasan, G.

    2013-01-01

    Highlights: ► Development and commissioning of SG leak detection system for FBTR. ► Development of Robust method of using sputter ion pump based system. ► Modifications for improving reliability and availability. ► On line injection of hydrogen in sodium during reactor operation. ► Triplication of the SG leak detection system. - Abstract: The Fast Breeder Test Reactor (FBTR) is a 40 MWt, loop type sodium cooled fast reactor built at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam as a fore-runner to the second stage of Indian nuclear power programme. The reactor design is based on the French reactor Rapsodie with several modifications which include the provision of a steam-water circuit and turbo-generator. FBTR uses sodium as the coolant in the main heat transport medium to transfer heat from the reactor core to the feed water in the tertiary loop for producing superheated steam, which drives the turbo-generator. Sodium and water flow in shell and tube side respectively, separated by thin-walls of the ferritic steel tubes of the once-through steam generator (SG). Material defects in these tubes can lead to leakage of water into sodium, resulting in sodium water reactions leading to undesirable consequences. Early detection of water or steam leaks into sodium in the steam generator units of liquid metal fast breeder reactors (LMFBR) is an important requirement from safety and economic considerations. The SG leak in FBTR is detected by Sputter Ion Pump (SIP) based Steam Generator Leak Detection (SGLD) system and Thermal Conductivity Detector (TCD) based Hydrogen in Argon Detection (HAD) system. Many modifications were carried out in the SGLD system for the reactor operation to improve the reliability and availability. This paper details the development and the acquired experience of SIP based SGLD system instrumentation for real time hydrogen detection in sodium for FBTR.

  18. Inhibition of endocytosis blocks Wnt signalling to beta-catenin by promoting dishevelled degradation

    Czech Academy of Sciences Publication Activity Database

    Bryja, Vítězslav; Čajánek, L.; Grahn, A.; Schulte, G.

    2007-01-01

    Roč. 190, č. 1 (2007), s. 53-596 ISSN 0001-6772 Institutional research plan: CEZ:AV0Z50040507 Keywords : beta-catenin * clathrin-mediated endocytosis * desensitization Subject RIV: BO - Biophysics Impact factor: 2.554, year: 2007

  19. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics.

    Science.gov (United States)

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng; Shah, Vijay H

    2014-10-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl(-/-); or Yes, Src, and Fyn knockout mice (YSF(-/-))] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl(-/-) MEF showed impaired matrix endocytosis, YSF(-/-) MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  20. Understanding magnetic nanoparticle osteoblast receptor-mediated endocytosis using experiments and modeling

    International Nuclear Information System (INIS)

    Tran, Nhiem; Webster, Thomas J

    2013-01-01

    Iron oxide nanoparticles are promising candidates for controlling drug delivery through an external magnetic force to treat a wide range of diseases, including osteoporosis. Previous studies have demonstrated that in the presence of hydroxyapatite coated magnetite (Fe 3 O 4 ) nanoparticles, osteoblast (or bone forming cell) proliferation and long-term functions (such as calcium deposition) were significantly enhanced. Hydroxyapatite is the major inorganic component of bone. As a further attempt to understand why, in the current study, the uptake of such nanoparticles into osteoblasts was experimentally investigated and mathematically modeled. Magnetite nanoparticles were synthesized using a co-precipitation method and were coated with hydroxyapatite. A cellular uptake experiment at low temperatures indicated that receptor-mediated endocytosis contributed to the internalization of the magnetic nanoparticles into osteoblasts. A model was further developed to explain the uptake of magnetic nanoparticles into osteoblasts using receptor-mediated endocytosis. This model may explain the internalization of hydroxyapatite into osteoblasts to elevate intracellular calcium levels necessary to promote osteoblast functions to treat a wide range of orthopedic problems, including osteoporosis. (paper)

  1. NtGNL1a ARF-GEF acts in endocytosis in tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Jelínková, Adriana; Müller, Karel; Pařezová, Markéta; Petrášek, Jan

    2015-01-01

    Roč. 15, NOV 5 (2015), s. 272 ISSN 1471-2229 R&D Projects: GA ČR GPP305/11/P797 Institutional support: RVO:61389030 Keywords : Endocytosis * PIN1 protein trafficking * Inhibitors of endomembrane trafficking Subject RIV: EA - Cell Biology Impact factor: 3.631, year: 2015

  2. Dynamin-dependent amino acid endocytosis activates mechanistic target of rapamycin complex 1 (mTORC1).

    Science.gov (United States)

    Shibutani, Shusaku; Okazaki, Hana; Iwata, Hiroyuki

    2017-11-03

    The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis and potential target for modifying cellular metabolism in various conditions, including cancer and aging. mTORC1 activity is tightly regulated by the availability of extracellular amino acids, and previous studies have revealed that amino acids in the extracellular fluid are transported to the lysosomal lumen. There, amino acids induce recruitment of cytoplasmic mTORC1 to the lysosome by the Rag GTPases, followed by mTORC1 activation by the small GTPase Ras homolog enriched in brain (Rheb). However, how the extracellular amino acids reach the lysosomal lumen and activate mTORC1 remains unclear. Here, we show that amino acid uptake by dynamin-dependent endocytosis plays a critical role in mTORC1 activation. We found that mTORC1 is inactivated when endocytosis is inhibited by overexpression of a dominant-negative form of dynamin 2 or by pharmacological inhibition of dynamin or clathrin. Consistently, the recruitment of mTORC1 to the lysosome was suppressed by the dynamin inhibition. The activity and lysosomal recruitment of mTORC1 were rescued by increasing intracellular amino acids via cycloheximide exposure or by Rag overexpression, indicating that amino acid deprivation is the main cause of mTORC1 inactivation via the dynamin inhibition. We further show that endocytosis inhibition does not induce autophagy even though mTORC1 inactivation is known to strongly induce autophagy. These findings open new perspectives for the use of endocytosis inhibitors as potential agents that can effectively inhibit nutrient utilization and shut down the upstream signals that activate mTORC1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Pumps and pump facilities. 2. ed.

    International Nuclear Information System (INIS)

    Bohl, W.; Bauerfeind, H.; Gutmann, G.; Leuschner, G.; Matthias, H.B.; Mengele, R.; Neumaier, R.; Vetter, G.; Wagner, W.

    1981-01-01

    This book deals with the common fundamental aspects of liquid pumps and gives an exemplary choice of the most important kinds of pumps. The scientific matter is dealt with by means of practical mathematical examples among other ways of presenting the matter. Survey of contents: Division on main operational data of pumps - pipe characteristics - pump characteristics - suction behaviour of the pumps - projecting and operation of rotary pumps - boiler feed pumps - reactor feed pumps - oscillating positive-displacement pumps - eccentric spiral pumps. (orig./GL) [de

  4. Podocytic PKC-alpha is regulated in murine and human diabetes and mediates nephrin endocytosis.

    Directory of Open Access Journals (Sweden)

    Irini Tossidou

    Full Text Available BACKGROUND: Microalbuminuria is an early lesion during the development of diabetic nephropathy. The loss of high molecular weight proteins in the urine is usually associated with decreased expression of slit diaphragm proteins. Nephrin, is the major component of the glomerular slit diaphragm and loss of nephrin has been well described in rodent models of experimental diabetes as well as in human diabetic nephropathy. METHODOLOGY/PRINCIPAL FINDINGS: In this manuscript we analyzed the role of PKC-alpha (PKCalpha on endocytosis of nephrin in podocytes. We found that treatment of diabetic mice with a PKCalpha-inhibitor (GO6976 leads to preserved nephrin expression and reduced proteinuria. In vitro, we found that high glucose stimulation would induce PKCalpha protein expression in murine and human podocytes. We can demonstrate that PKCalpha mediates nephrin endocytosis in podocytes and that overexpression of PKCalpha leads to an augmented endocytosis response. After PKC-activation, we demonstrate an inducible association of PKCalpha, PICK1 and nephrin in podocytes. Moreover, we can demonstrate a strong induction of PKCalpha in podocytes of patients with diabetic nephropathy. CONCLUSIONS/SIGNIFICANCE: We therefore conclude that activation of PKCalpha is a pathomechanistic key event during the development of diabetic nephropathy. PKCalpha is involved in reduction of nephrin surface expression and therefore PKCalpha inhibition might be a novel target molecule for anti-proteinuric therapy.

  5. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis.

    Science.gov (United States)

    Muro, Silvia; Schuchman, Edward H; Muzykantov, Vladimir R

    2006-01-01

    Enzyme replacement therapy, a state-of-the-art treatment for many lysosomal storage disorders, relies on carbohydrate-mediated binding of recombinant enzymes to receptors that mediate lysosomal delivery via clathrin-dependent endocytosis. Suboptimal glycosylation of recombinant enzymes and deficiency of clathrin-mediated endocytosis in some lysosomal enzyme-deficient cells limit delivery and efficacy of enzyme replacement therapy for lysosomal disorders. We explored a novel delivery strategy utilizing nanocarriers targeted to a glycosylation- and clathrin-independent receptor, intercellular adhesion molecule (ICAM)-1, a glycoprotein expressed on diverse cell types, up-regulated and functionally involved in inflammation, a hallmark of many lysosomal disorders. We targeted recombinant human acid sphingomyelinase (ASM), deficient in types A and B Niemann-Pick disease, to ICAM-1 by loading this enzyme to nanocarriers coated with anti-ICAM. Anti-ICAM/ASM nanocarriers, but not control ASM or ASM nanocarriers, bound to ICAM-1-positive cells (activated endothelial cells and Niemann-Pick disease patient fibroblasts) via ICAM-1, in a glycosylation-independent manner. Anti-ICAM/ASM nanocarriers entered cells via CAM-mediated endocytosis, bypassing the clathrin-dependent pathway, and trafficked to lysosomes, where delivered ASM displayed stable activity and alleviated lysosomal lipid accumulation. Therefore, lysosomal enzyme targeting using nanocarriers targeted to ICAM-1 bypasses defunct pathways and may improve the efficacy of enzyme replacement therapy for lysosomal disorders, such as Niemann-Pick disease.

  6. The design and commissioning of cold trap purifying system of hydrogen meter sodium loop

    International Nuclear Information System (INIS)

    Zhao Zhaoyi; Jia Baoshan; Chen Xiaoming; Pan Fengguo

    1993-01-01

    The design feature and parameters of cold trap purifying system of hydrogen meter sodium loop and its commissioning results are reported and discussed. In order to adjust the flow easily,. the cold trap purifying system is arranged in the exit of the electromagnetic pump. It is composed of regenerator and the cold trap. The regenerator is above the cold trap. The high temperature sodium in the main-loop flows through the regenerator, in the entrance of the cold trap, its temperature is reduced to 180 degree C. After entering into the cold trap, the sodium flows to the purifying region by side, when it arrives the bottom of the trap, its temperature is reduced to 110 degree C. The cold trap is cooled by air. The temperature of the clean sodium rises nearby the main-loop's by the regenerator, and then it returns to the entrance of the electromagnetic pump. According to the commissioning results, the sodium's temperature of the cold trap could be reduced to 110 degree C by reducing the flow of the cold trap purifying system and the temperature of the main-loop, or increasing the air flow and cutting off the power supply of its heating. The authors think that the latter is more conformable with the design stipulation and with the requirement of the hydrogen meter experiment, and it can meet the requirements of the operation of the Nuclear Power Plant

  7. Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol

    NARCIS (Netherlands)

    Cerneus, D. P.; Ueffing, E.; Posthuma, G.; Strous, G. J.; van der Ende, A.

    1993-01-01

    Alkaline phosphatase is anchored to the outer leaflet of the plasma membrane by a covalently attached glycosyl-phosphatidylinositol anchor. We have studied the biosynthetic transport and endocytosis of alkaline phosphatase in the choriocarcinoma cell line BeWo, which endogenously expresses this

  8. Hypothesized diprotomeric enzyme complex supported by stochastic modelling of palytoxin-induced Na/K pump channels.

    Science.gov (United States)

    Vilallonga, Gabriel D; de Almeida, Antônio-Carlos G; Ribeiro, Kelison T; Campos, Sergio V A; Rodrigues, Antônio M

    2018-03-01

    The sodium-potassium pump (Na + /K + pump) is crucial for cell physiology. Despite great advances in the understanding of this ionic pumping system, its mechanism is not completely understood. We propose the use of a statistical model checker to investigate palytoxin (PTX)-induced Na + /K + pump channels. We modelled a system of reactions representing transitions between the conformational substates of the channel with parameters, concentrations of the substates and reaction rates extracted from simulations reported in the literature, based on electrophysiological recordings in a whole-cell configuration. The model was implemented using the UPPAAL-SMC platform. Comparing simulations and probabilistic queries from stochastic system semantics with experimental data, it was possible to propose additional reactions to reproduce the single-channel dynamic. The probabilistic analyses and simulations suggest that the PTX-induced Na + /K + pump channel functions as a diprotomeric complex in which protein-protein interactions increase the affinity of the Na + /K + pump for PTX.

  9. Preliminary conceptual design of the secondary sodium circuit-eliminated JSFR (Japan Sodium Fast Reactor) adopting a supercritical CO2 turbine system (1). Sodium/CO2 heat exchanger

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Sakamoto, Yoshihiko; Kotake, Shoji

    2014-09-01

    Research and development of the supercritical CO 2 (S-CO 2 ) cycle turbine system is underway in various countries for further improvement of the safety and economy of sodium-cooled fast reactors. The Component Design and Balance-Of-Plant (CD and BOP) of the Generation IV International Nuclear Forum (Gen-IV) has addressed this study, and their analytical and experimental results have been discussed between the relevant countries. JAEA, who is a member of the CD and BOP, has performed a design study of an S-CO 2 gas turbine system applied to the Japan Sodium-cooled Fast Reactor (JSFR). In this study, the S-CO 2 cycle turbine system was directly connected to the primary sodium system of the JSFR to eliminate the secondary sodium circuit, aiming for further economical improvement. This is because there is no risk of sodium-water reaction in the S-CO 2 cycle turbine system of SFRs. The Na/CO 2 heat exchanger is one of the key components for the secondary sodium system eliminated SFR, and this report describes its structure and the safety in case of CO 2 leak. A Printed Circuit Heat Exchanger (PCHE), which has a greater heat transfer performance, is employed to the heat exchanger. Another advantage of the PCHE is to limit the area affected by a leak of CO 2 because of its partitioned flow path structure. A SiC/SiC ceramic composite material is used for the PCHE to prevent crack growth and to reduce thermal stress. The Na/CO 2 heat exchanger has been designed in such a way that a number of small heat transfer modules are combined in the vessel in consideration of manufacture and repair. The primary sodium pump is installed in the center of the heat exchanger vessel. CO 2 leak events in the heat exchanger have been also evaluated, and it revealed that no significant effect has arisen on the core or the primary sodium boundary. (author)

  10. Intestinal alkaline phosphatase: selective endocytosis from the enterocyte brush border during fat absorption

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Niels-Christiansen, Lise-Lotte; Immerdal, Lissi

    2007-01-01

    explants. By immunofluorescence microscopy, fat absorption caused a translocation of IAP from the enterocyte brush border to the interior of the cell, whereas other brush-border enzymes were unaffected. By electron microscopy, the translocation occurred by a rapid (5 min) induction of endocytosis via...

  11. Effect of dietary sodium on the Na-K ATPase inhibitor in patients with essential hypertension

    International Nuclear Information System (INIS)

    Ashida, T.; Kuramochi, M.; Kojima, S.

    1989-01-01

    To study the circulating humoral factor modifying transmembrane sodium transport, plasma was obtained from 12 patients with essential hypertension (EH) fed a high sodium diet (NaCl 15 to 17 g/d) for seven days and thereafter a low sodium diet (NaCl 2 to 3 g/d) for seven days. Ouabain-sensitive 86 Rb+ influx into the red blood cells (RBC) obtained from a healthy subject, and incubated with the plasma obtained during the high sodium diet was significantly lower than that incubated with the plasma obtained during the low sodium diet (3.74 +/- 0.26 v 3.97 +/- 0.30 nmol/10(8) cells, P less than .05). The changes in mean blood pressure from the high to low sodium diet showed a significant positive correlation with the changes in the ouabain-sensitive Rb influx into RBC in the plasma from the high to low sodium diet. These results suggest that a humoral factor modifying the sodium pump might be altered by sodium balance in EH, especially in salt-sensitive hypertension

  12. Effect of dietary sodium on the Na-K ATPase inhibitor in patients with essential hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Ashida, T.; Kuramochi, M.; Kojima, S.; Yoshimi, H.; Kawano, Y.; Kimura, G.; Abe, H.; Imanishi, M.; Yoshida, K.; Kawamura, M. (National Cardiovascular Center, Osaka (Japan))

    1989-07-01

    To study the circulating humoral factor modifying transmembrane sodium transport, plasma was obtained from 12 patients with essential hypertension (EH) fed a high sodium diet (NaCl 15 to 17 g/d) for seven days and thereafter a low sodium diet (NaCl 2 to 3 g/d) for seven days. Ouabain-sensitive {sup 86}Rb+ influx into the red blood cells (RBC) obtained from a healthy subject, and incubated with the plasma obtained during the high sodium diet was significantly lower than that incubated with the plasma obtained during the low sodium diet (3.74 +/- 0.26 v 3.97 +/- 0.30 nmol/10(8) cells, P less than .05). The changes in mean blood pressure from the high to low sodium diet showed a significant positive correlation with the changes in the ouabain-sensitive Rb influx into RBC in the plasma from the high to low sodium diet. These results suggest that a humoral factor modifying the sodium pump might be altered by sodium balance in EH, especially in salt-sensitive hypertension.

  13. Effect of endocytosis inhibitors on Coxiella burnetii interaction with host cells

    International Nuclear Information System (INIS)

    Tujulin, E.; Macellaro, A.; Norlander, L.; Liliehoeoek, B.

    1998-01-01

    The obligate intracellular rickettsia Coxiella burnetii has previously been reported to reach the intra-vacuolar compartment of host cells by phagocytosis. With the aim to further examine the mechanisms of C. burnetii internalisation, macrophage monolayers were treated with well characterised inhibitors of endocytosis. The treatment with two general inhibitors, colchicine and methylamine, resulted in a pronounced dose-dependent decrease of radiolabelled phase II rickettsiae retained from the intracellular fraction. A third inhibitor used, amiloride, has been reported to reduce effectively clathrin-independent pinocytic pathways. The internalisation of C. burnetii was shown to be substantially reduced also by amiloride and the effect was dependent on its concentration. The passive role of C. burnetii in the internalisation was verified by using heat-killed C. burnetii. Host cells treated with either of the three inhibitors (amiloride, colchicine and methylamine) showed a similar reduction of intracellular C. burnetii after exposure to killed as weal as live organisms. The data presented indicate that different endocytic mechanisms, pinocytosis as well as phagocytosis, may mediate the uptake of C. burnetii by a host cell. Key words: Coxiella burnetii; internalisation; endocytosis (authors)

  14. Ubiquitin-Mediated Regulation of Endocytosis by Proteins of the Arrestin Family

    Directory of Open Access Journals (Sweden)

    Michel Becuwe

    2012-01-01

    Full Text Available In metazoans, proteins of the arrestin family are key players of G-protein-coupled receptors (GPCRS signaling and trafficking. Following stimulation, activated receptors are phosphorylated, thus allowing the binding of arrestins and hence an “arrest” of receptor signaling. Arrestins act by uncoupling receptors from G proteins and contribute to the recruitment of endocytic proteins, such as clathrin, to direct receptor trafficking into the endocytic pathway. Arrestins also serve as adaptor proteins by promoting the recruitment of ubiquitin ligases and participate in the agonist-induced ubiquitylation of receptors, known to have impact on their subcellular localization and stability. Recently, the arrestin family has expanded following the discovery of arrestin-related proteins in other eukaryotes such as yeasts or fungi. Surprisingly, most of these proteins are also involved in the ubiquitylation and endocytosis of plasma membrane proteins, thus suggesting that the role of arrestins as ubiquitin ligase adaptors is at the core of these proteins' functions. Importantly, arrestins are themselves ubiquitylated, and this modification is crucial for their function. In this paper, we discuss recent data on the intricate connections between arrestins and the ubiquitin pathway in the control of endocytosis.

  15. A Global Analysis of Kinase Function in Candida albicans Hyphal Morphogenesis Reveals a Role for the Endocytosis Regulator Akl1.

    Science.gov (United States)

    Bar-Yosef, Hagit; Gildor, Tsvia; Ramírez-Zavala, Bernardo; Schmauch, Christian; Weissman, Ziva; Pinsky, Mariel; Naddaf, Rawi; Morschhäuser, Joachim; Arkowitz, Robert A; Kornitzer, Daniel

    2018-01-01

    The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.

  16. AMPA Receptor Endocytosis in Rat Perirhinal Cortex Underlies Retrieval of Object Memory

    Science.gov (United States)

    Cazakoff, Brittany N.; Howland, John G.

    2011-01-01

    Mechanisms consistent with long-term depression in the perirhinal cortex (PRh) play a fundamental role in object recognition memory; however, whether AMPA receptor endocytosis is involved in distinct phases of recognition memory is not known. To address this question, we used local PRh infusions of the cell membrane-permeable Tat-GluA2[subscript…

  17. Spatiotemporal analysis of endocytosis and membrane distribution of fluorescent sterols in living cells

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Faergeman, Nils J

    2008-01-01

    proximity to the cell membrane. Spatial surface intensity patterns of DHE as well as that of the lipid marker DiIC12 being assessed by statistical image analysis persisted over several minutes in cells having a constant overall curvature. Sites of sterol endocytosis appeared indistinguishable from other...

  18. CD4- and dynamin-dependent endocytosis of HIV-1 into plasmacytoid dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Pritschet, Kathrin; Donhauser, Norbert; Schuster, Philipp; Ries, Moritz; Haupt, Sabrina; Kittan, Nicolai A.; Korn, Klaus [Institute of Clinical and Molecular Virology, National Reference Centre for Retroviruses, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, 91054 Erlangen (Germany); Poehlmann, Stefan [Institute of Virology, Hannover Medical School, 30625 Hannover (Germany); Holland, Gudrun; Bannert, Norbert [Robert Koch-Institute, Center for Biological Security 4, 13353 Berlin (Germany); Bogner, Elke [Institute of Virology, Charite University Hospital, 10117 Berlin (Germany); Schmidt, Barbara, E-mail: baschmid@viro.med.uni-erlangen.de [Institute of Clinical and Molecular Virology, National Reference Centre for Retroviruses, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, 91054 Erlangen (Germany)

    2012-02-20

    Chronic immune activation, triggered by plasmacytoid dendritic cell (PDC) interferon (IFN)-alpha production, plays an important role in HIV-1 pathogenesis. As the entry of HIV-1 seems to be important for the activation of PDC, we directly characterized the viral entry into these cells using immuno-electron microscopy, cellular fractionation, confocal imaging, and functional experiments. After attachment to PDC, viruses were taken up in an energy-dependent manner. The virions were located in compartments positive for caveolin; early endosomal antigen 1; Rab GTPases 5, 7 and 9; lysosomal-associated membrane protein 1. PDC harbored more virus in endocytic vesicles than CD4+ T cells (p < 0.05). Blocking CD4 inhibited the uptake of virions into cytosolic and endosomal compartments. Dynasore, an inhibitor of dynamin-dependent endocytosis, not the fusion inhibitor T-20, reduced the HIV-1 induced IFN-alpha production. Altogether, our morphological and functional data support the role of endocytosis for the entry and IFN-alpha induction of HIV-1 in PDC.

  19. Development of sodium technology

    International Nuclear Information System (INIS)

    Hwang, Sung Tai; Nam, H. Y.; Choi, Y. D.

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, τ c = δ·g -0.83 ·10 (3570/T Na -3.34) , in 400-500 deg C of liquid sodium atmosphere. The characteristics of pressure propagation and gas flow, and

  20. Development of sodium technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tai; Nam, H Y; Choi, Y D [and others

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, {tau}{sub c} = {delta}{center_dot}g{sup -0.83}{center_dot}10{sup (3570/T{sub Na}-3.34)}, in 400-500 deg C of liquid sodium atmosphere. The characteristics

  1. Pumping behavior of sputter ion pumps

    International Nuclear Information System (INIS)

    Chou, T.S.; McCafferty, D.

    The ultrahigh vacuum requirements of ISABELLE is obtained by distributed pumping stations. Each pumping station consists of 1000 l/s titanium sublimation pump for active gases (N 2 , H 2 , O 2 , CO, etc.), and a 20 l/s sputter ion pump for inert gases (methane, noble gases like He, etc.). The combination of the alarming production rate of methane from titanium sublimation pumps (TSP) and the decreasing pumping speed of sputter ion pumps (SIP) in the ultrahigh vacuum region (UHV) leads us to investigate this problem. In this paper, we first describe the essential physics and chemistry of the SIP in a very clean condition, followed by a discussion of our measuring techniques. Finally measured methane, argon and helium pumping speeds are presented for three different ion pumps in the range of 10 -6 to 10 -11 Torr. The virtues of the best pump are also discussed

  2. Digitalis-induced cell signaling by the sodium pump: on the relation of Src to Na(+)/K(+)-ATPase.

    Science.gov (United States)

    Gable, Marjorie E; Abdallah, Simon L; Najjar, Sonia M; Liu, Lijun; Askari, Amir

    2014-04-18

    In addition to performing its essential transport function, the sodium pump also activates multiple cell signaling pathways in response to digitalis drugs such as ouabain. Based mainly on cell-free studies with mixtures of purified Src kinase and Na(+)/K(+)-ATPase, a well-advocated hypothesis on how ouabain initiates the activation of signaling pathways is that there is a preexisting physiological complex of inactive Src bound to the α-subunit of Na(+)/K(+)-ATPase, and that ouabain binding to this subunit disrupts the bound Src and activates it. Because of the published disagreements of the results of such cell-free experiments of two other laboratories, our aim was to attempt the resolution of these discrepancies. We reexamined the effects of ouabain, vanadate, and oligomycin on mixtures of Src, Na(+)/K(+)-ATPase, Mg(2+), and ATP as specified in prior studies; and assayed for Src-418 autophosphorylation as the measure of Src activation. In contrast to the findings of the proponents of the above hypothesis, our results showed similar effects of the three inhibitors of Na(+)/K(+)-ATPase; indicating that Src activation in such experiments is primarily due to the ATP-sparing effect of the ATPase inhibitor on the mixture of two enzymes competing for ATP. We conclude that there is no solid evidence for direct molecular interaction of Src with Na(+)/K(+)-ATPase under physiological conditions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Measurement of the Residual Sodium and Reaction Compounds on a Cleaned Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun Nam

    2006-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either a intergranular penetration characteristic of a high-oxygen sodium or an accelerated corrosion due to oxygen. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, a chemical, physical, or mechanical damage, and external effects. It is important to determine the levels of residual sodium that can be accepted so that those deleterious effects will not negate the reuse of the component. The purpose of this paper is to measure the amount of the sodium and the reaction compounds remaining on a component after a cleaning and prepare acceptable criteria for the reuse of components which have been subjected to a sodium cleaning

  4. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property.

    Science.gov (United States)

    Zhang, Xiao; Ren, Juan; Wang, Jingren; Li, Shixie; Zou, Qingze; Gao, Nan

    2018-08-01

    Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals. © 2017 Wiley Periodicals, Inc.

  5. Observation of correlated anti-Stokes emissions by multiwave mixing in sodium vapor

    International Nuclear Information System (INIS)

    Motomura, Koji; Tsukamoto, Mayumi; Wakiyama, Akira; Harada, Ken-ichi; Mitsunaga, Masaharu

    2005-01-01

    We study experimentally nonlinear optical processes in which Stokes and anti-Stokes fields build up under strong, resonant, counterpropagating pump laser excitation in atomic sodium vapor. We find that, at some pump frequency, two off-axis anti-Stokes emissions propagating along reflection-symmetric directions are strongly temporally correlated, with a correlation time of 0.5 μs and a correlation range of 1 mrad. It is shown by the numerical analysis based on six-wave mixing process involving pump, Stokes, and anti-Stokes waves in the forward and the backward directions that such correlated anti-Stokes emissions are possible when the medium is opaque for the Stokes field and transparent for the anti-Stokes field. Possibilities of quantum correlation for entangled photon generation using this system are discussed

  6. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis

    DEFF Research Database (Denmark)

    Confalonieri, S; Salcini, A E; Puri, C

    2000-01-01

    for endocytosis of the epidermal growth factor receptor (EGFR), the prototypical ligand-inducible receptor, but not of the transferrin receptor (TfR), the prototypical constitutively internalized receptor. Eps15, an endocytic protein that is tyrosine phosphorylated by EGFR, is a candidate for such a function....... Here, we show that tyrosine phosphorylation of Eps15 is necessary for internalization of the EGFR, but not of the TfR. We mapped Tyr 850 as the major in vivo tyrosine phosphorylation site of Eps15. A phosphorylation-negative mutant of Eps15 acted as a dominant negative on the internalization...... of the EGFR, but not of the TfR. A phosphopeptide, corresponding to the phosphorylated sequence of Eps15, inhibited EGFR endocytosis, suggesting that phosphotyrosine in Eps15 serves as a docking site for a phosphotyrosine binding protein. Thus, tyrosine phosphorylation of Eps15 represents the first molecular...

  7. Efficacy of omeprazole/sodium bicarbonate treatment in gastroesophageal reflux disease: a systematic review.

    Science.gov (United States)

    Higuera-de-la-Tijera, Fátima

    2018-03-14

    Proton pump inhibitors are the most effective medical therapy for gastroesophageal reflux disease, but their onset of action may be slow. To assess the available literature regarding the efficacy of omeprazole/sodium bicarbonate in gastroesophageal reflux patients. A systematic review was conducted. A systematic literature search starting from 2000. Reviewed manuscripts concerning the effectiveness of omeprazole/sodium bicarbonate treatment in gastroesophageal reflux disease were reviewed and the data were extracted. Data were subsequently analyzed with descriptive statistics. This review included information of four studies. Two trials compared the efficacy of omeprazole/sodium bicarbonate versus omeprazole. One study compared the efficacy of once-daily morning or nighttime dosing. And another study compared omeprazole/sodium bicarbonate/alginate versus omeprazole. In total, there was no difference between omeprazole/sodium bicarbonate and omeprazole. However, there is a trend towards more sustained response and a greater proportion of patients with sustained total relief by 30 minutes with omeprazole/sodium bicarbonate. Omeprazole/sodium bicarbonate therapy is not more effective than omeprazole in the treatment of gastroesophageal reflux disease. However, data obtained suggest that it can have a more sustained response and sustained total relief.

  8. A Global Analysis of Kinase Function in Candida albicans Hyphal Morphogenesis Reveals a Role for the Endocytosis Regulator Akl1

    Directory of Open Access Journals (Sweden)

    Hagit Bar-Yosef

    2018-02-01

    Full Text Available The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.

  9. Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin- nor caveolin-mediated endocytosis.

    Science.gov (United States)

    Devadas, Deepika; Koithan, Thalea; Diestel, Randi; Prank, Ute; Sodeik, Beate; Döhner, Katinka

    2014-11-01

    Herpes simplex virus 1 (HSV-1) is an alphaherpesvirus that has been reported to infect some epithelial cell types by fusion at the plasma membrane but others by endocytosis. To determine the molecular mechanisms of productive HSV-1 cell entry, we perturbed key endocytosis host factors using specific inhibitors, RNA interference (RNAi), or overexpression of dominant negative proteins and investigated their effects on HSV-1 infection in the permissive epithelial cell lines Vero, HeLa, HEp-2, and PtK2. HSV-1 internalization required neither endosomal acidification nor clathrin- or caveolin-mediated endocytosis. In contrast, HSV-1 gene expression and internalization were significantly reduced after treatment with 5-(N-ethyl-N-isopropyl)amiloride (EIPA). EIPA blocks the activity of Na(+)/H(+) exchangers, which are plasma membrane proteins implicated in all forms of macropinocytosis. HSV-1 internalization furthermore required the function of p21-activated kinases that contribute to macropinosome formation. However, in contrast to some forms of macropinocytosis, HSV-1 did not enlist the activities of protein kinase C (PKC), tyrosine kinases, C-terminal binding protein 1, or dynamin to activate its internalization. These data suggest that HSV-1 depends on Na(+)/H(+) exchangers and p21-activated kinases either for macropinocytosis or for local actin rearrangements required for fusion at the plasma membrane or subsequent passage through the actin cortex underneath the plasma membrane. After initial replication in epithelial cells, herpes simplex viruses (HSVs) establish latent infections in neurons innervating these regions. Upon primary infection and reactivation from latency, HSVs cause many human skin and neurological diseases, particularly in immunocompromised hosts, despite the availability of effective antiviral drugs. Many viruses use macropinocytosis for virus internalization, and many host factors mediating this entry route have been identified, although the

  10. Novel nanostructured enoxaparin sodium-PLGA hybrid carriers overcome tumor multidrug resistance of doxorubicin hydrochloride.

    Science.gov (United States)

    Wang, Jia; Wu, Lei; Kou, Longfa; Xu, Meng; Sun, Jin; Wang, Yongjun; Fu, Qiang; Zhang, Peng; He, Zhonggui

    2016-11-20

    Novel enoxaparin sodium-PLGA hybrid nanocarries (EPNs) were successfully designed for sustained delivery of hydrophilic cationic doxorubicin hydrochloride (DOX) and to overcome multidrug resistance (MDR). By incorporation of the negative polymer of enoxaparin sodium (ES), DOX was highly encapsulated into EPNs with an encapsulation efficiency of 92.49%, and ES effectively inhibited the proliferation of HUVEC cell lines. The in vivo pharmacokinetics study after intravenous injection indicated that DOX-loaded EPNs (DOX-EPNs) exhibited a higher area under the curve (AUC) and a longer half-life (t 1/2 ) in comparison with DOX solution (DOX-Sol). The biodistribution study demonstrated that DOX-EPNs increased the DOX level in plasma and decreased the accumulation of DOX in liver and spleen. Compared with DOX-Sol, DOX-EPNs increased the cytotoxicity in P-gp over-expressing MCF-7/Adr cells, attributed to the higher intracellular efficiency of DOX produced by the EPNs. DOX-EPNs entered into resistant tumor cells by multiple endocytosis pathways, which resulted in overcoming the multidrug resistance of MCF-7/Adr cells by escaping the efflux induced by P-gp transporters. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Final technical report. A sodium-cycle based organism with improved membrane resistance aimed at increasing the efficiency of energy biotransformations

    International Nuclear Information System (INIS)

    Lewis, Kim

    2001-01-01

    The aim of the project was to express in E. coli components that would allow a formation of oxidative phosphorylation based on a sodium cycle. This would improve the resistance of cells to organic solvents, detergents and other toxins. The author cloned and expressed the nqr operon FR-om H. influenzae in E. coli. Experiments with membrane vesicles indicated the presence of the functional recombinant sodium pumping NADH dehydrogenase. A gene for a hybrid E. coli/P.modestum ATPase was constructed which will enable one to co-express a sodium ATPsynthase together with a sodium NADH dehydrogenase

  12. [INHIBITORS OF MAP-KINASE PATHWAY U0126 AND PD98059 DIFFERENTLY AFFECT ORGANIZATION OF TUBULIN CYTOSKELETON AFTER STIMULATION OF EGF RECEPTOR ENDOCYTOSIS].

    Science.gov (United States)

    Zlobina, M V; Steblyanko, Yu Yu; Shklyaeva, M A; Kharchenko, V V; Salova, A V; Kornilova, E S

    2015-01-01

    To confirm the hypothesis about the involvement of EGF-stimulated MAP-kinase ERK1/2 in the regulation of microtubule (MT) system, the influence of two widely used ERK1/2 inhibitors, U0126 and PD98059, on the organization of tubulin cytoskeleton in interphase HeLa cells during EGF receptor endocytosis has been investigated. We have found that addition of U0126 or PD98059 to not-stimulated with EGF ells for 30 min has no effect on radially organized MT system. However, in the case of U0126 addition before EGF endocytosis stimulation, the number of MT per cell decreased within 15 min after such stimulation and was followed by complete MT depolymerization by 60-90 min. Stimulation of EGF endocytosis in the presence of PD98059 resulted only in insignificant depolymerization of MT and it could be detected mainly from their minus-ends. At the same time, MT regions close to plasma membrane became stabilized, which was proved by increase in tubulin acetylation level. This situation was characteristic for all period of the experiment. It has been also found that the inhibitors affect endocytosis dynamics of EGF-receptor complexes. Quantitative analysis demonstrated that the stimulation of endocytosis in the presence of U0126 generated a greater number of endosomes compared to control cells, and their number did not change significantly during the experiment. All these endosomes were localized peripherally. Effect of PD98059 resulted in the formation of lower number of endosomes that in control, but they demonstrated very slow clusterization despite the presence of some intact MT. Both inhibitors decreased EGFR colocolization with early endosomal marker EEA1, which indicated a delay in endosome fusions and maturation. The inhibitors were also shown to affect differently phospho-ERK 1 and 2 forms: U0126 completely inhibited phospho-ERK1 and 2, white, in the presence of PD98059, the two ERK forms demonstrated sharp transient activation in 15 min after stimulation, but only

  13. The Lowe syndrome protein OCRL1 is required for endocytosis in the zebrafish pronephric tubule.

    Directory of Open Access Journals (Sweden)

    Francesca Oltrabella

    2015-04-01

    Full Text Available Lowe syndrome and Dent-2 disease are caused by mutation of the inositol 5-phosphatase OCRL1. Despite our increased understanding of the cellular functions of OCRL1, the underlying basis for the renal tubulopathy seen in both human disorders, of which a hallmark is low molecular weight proteinuria, is currently unknown. Here, we show that deficiency in OCRL1 causes a defect in endocytosis in the zebrafish pronephric tubule, a model for the mammalian renal tubule. This coincides with a reduction in levels of the scavenger receptor megalin and its accumulation in endocytic compartments, consistent with reduced recycling within the endocytic pathway. We also observe reduced numbers of early endocytic compartments and enlarged vacuolar endosomes in the sub-apical region of pronephric cells. Cell polarity within the pronephric tubule is unaffected in mutant embryos. The OCRL1-deficient embryos exhibit a mild ciliogenesis defect, but this cannot account for the observed impairment of endocytosis. Catalytic activity of OCRL1 is required for renal tubular endocytosis and the endocytic defect can be rescued by suppression of PIP5K. These results indicate for the first time that OCRL1 is required for endocytic trafficking in vivo, and strongly support the hypothesis that endocytic defects are responsible for the renal tubulopathy in Lowe syndrome and Dent-2 disease. Moreover, our results reveal PIP5K as a potential therapeutic target for Lowe syndrome and Dent-2 disease.

  14. Fire protection at the Fast Flux Test Facility (a sodium cooled test reactor)

    International Nuclear Information System (INIS)

    Bell, J.R.

    1980-01-01

    For purposes of this presentation, fire protection at the FFTF is subdivided into two catagories; protection for non-sodium areas and protection for areas containing sodium. Fire protection systems and philosophies for non-sodium areas at the FFTF are very similar to those used at conventional power plants being constructed throughout the country. They follow, essentially, the NRC rules and guidelines and ANSI 59.4 Generic Requirements for Light Water Nuclear Power Plant Fire Protection. The FFTF with its support facilities have their own water system comprised of a looped 8'' and 10'' underground distribution system, three 1500 GPM fire pumps and three ground level storage tanks totaling 736,000 gallons with 420,000 reserved for fire protection. Fire hydrants are enclosed with hose houses outfitted for use by the Emergency Response Team (ERT). Fire prevention systems for sodium areas of the FFTF are also described

  15. Natriuretic peptides stimulate the cardiac sodium pump via NPR-C-coupled NOS activation

    DEFF Research Database (Denmark)

    William, M.; Hamilton, E.J.; Garcia, A.

    2008-01-01

    Natriuretic peptides (NPs) and their receptors (NPRs) are expressed in the heart, but their effects on myocyte function are poorly understood. Because NPRs are coupled to synthesis of cGMP, an activator of the sarcolemmal Na(+)-K(+) pump, we examined whether atrial natriuretic peptide (ANP) regul...

  16. Quantification of cytosolic interactions identifies Ede1 oligomers as key organizers of endocytosis.

    Science.gov (United States)

    Boeke, Dominik; Trautmann, Susanne; Meurer, Matthias; Wachsmuth, Malte; Godlee, Camilla; Knop, Michael; Kaksonen, Marko

    2014-11-03

    Clathrin-mediated endocytosis is a highly conserved intracellular trafficking pathway that depends on dynamic protein-protein interactions between up to 60 different proteins. However, little is known about the spatio-temporal regulation of these interactions. Using fluorescence (cross)-correlation spectroscopy in yeast, we tested 41 previously reported interactions in vivo and found 16 to exist in the cytoplasm. These detected cytoplasmic interactions included the self-interaction of Ede1, homolog of mammalian Eps15. Ede1 is the crucial scaffold for the organization of the early stages of endocytosis. We show that oligomerization of Ede1 through its central coiled coil domain is necessary for its localization to the endocytic site and we link the oligomerization of Ede1 to its function in locally concentrating endocytic adaptors and organizing the endocytic machinery. Our study sheds light on the importance of the regulation of protein-protein interactions in the cytoplasm for the assembly of the endocytic machinery in vivo. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  17. Quantitative Measurement of GPCR Endocytosis via Pulse-Chase Covalent Labeling.

    Directory of Open Access Journals (Sweden)

    Hidetoshi Kumagai

    Full Text Available G protein-coupled receptors (GPCRs play a critical role in many physiological systems and represent one of the largest families of signal-transducing receptors. The number of GPCRs at the cell surface regulates cellular responsiveness to their cognate ligands, and the number of GPCRs, in turn, is dynamically controlled by receptor endocytosis. Recent studies have demonstrated that GPCR endocytosis, in addition to affecting receptor desensitization and resensitization, contributes to acute G protein-mediated signaling. Thus, endocytic GPCR behavior has a significant impact on various aspects of physiology. In this study, we developed a novel GPCR internalization assay to facilitate characterization of endocytic GPCR behavior. We genetically engineered chimeric GPCRs by fusing HaloTag (a catalytically inactive derivative of a bacterial hydrolase to the N-terminal end of the receptor (HT-GPCR. HaloTag has the ability to form a stable covalent bond with synthetic HaloTag ligands that contain fluorophores or a high-affinity handle (such as biotin and the HaloTag reactive linker. We selectively labeled HT-GPCRs at the cell surface with a HaloTag PEG ligand, and this pulse-chase covalent labeling allowed us to directly monitor the relative number of internalized GPCRs after agonist stimulation. Because the endocytic activities of GPCR ligands are not necessarily correlated with their agonistic activities, applying this novel methodology to orphan GPCRs, or even to already characterized GPCRs, will increase the likelihood of identifying currently unknown ligands that have been missed by conventional pharmacological assays.

  18. Prospects for a deuterium internal target, tensor polarized by optical pumping: spin exchange

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    The prospects for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) appropriate for nuclear physics studies in medium and high energy particle storage rings are discussed. Using the technique of electron spin exchange with an optically pumped sodium (or potassium) vapor, we hope to polarize deuterium at a rate approx. 10 17 atoms/sec. Predictions for the deuterium polarization for a particular target cell design will be presented leading to the identification of the required optical pumping power and cell wall depolarization probability to attain optimum performance. The technical obstacles to be surmounted in such a target design will also be discussed

  19. Contributions of herpes simplex virus type 1 envelope proteins to entry by endocytosis

    Science.gov (United States)

    Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the ...

  20. Cleaning of the equipment of residual sodium by means of water-vacuum technology

    International Nuclear Information System (INIS)

    Klykov, B.P.; Lednev, A.I.

    1997-01-01

    Results of investigation into a problem of equipment decontamination from sodium, that have been conducted in OKBM since 1960 are given. The investigations performed have shown that a water-vacuum washing process is the most optimal method for equipment decontamination from sodium residues. The essence of the method is in conduction of sodium-water reaction under reduced pressure in a leak-tight tank. Boundary conditions are selected experimentally which not allow sodium to be melted during the process, that gives possibility to control the sodium-water reaction. Continuous removal of H 2 and reaction products creates safe conditions for the process conduction. More that 20-year period of operation of a stationary water-vacuum facility and washing the electromagnetic pump for BN-350 fast nuclear reactor directly at is test rig are the best proofs of the proposed method. This method is well suitable for washing the equipment contaminated by radioactive sodium, because by-products of the process are simply utilized. The method is used in a number of Russian enterprises, and recommended for implementation at BN-350 and BN-600 reactor plants. (author)

  1. The Grand Quevilly thermal test station - the SMW sodium circuit with a generator of superheated steam at 545 deg; Station d'essais thermiques de grand quevilly - circuit de sodium de 5 MW avec generateur de vapeur surchauffee a 545 deg

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A 5 MW installation is described which is a reduced model of the heat exchange system of a sodium-cooled reactor. This plant, which is situated at Grand Quevilly (near Rouen), consists of: 1 - A primary sodium loop made up of a sodium re-heater running on heavy diesel oil, a mechanical pump and an intermediate exchanger made up of clusters of tubes fitted with baffles. 2 - A NaK(56 per cent of K) secondary loop consisting mainly of a mechanical pump and a double-wall steam generator with forced circulation and complete vaporization. 3 - A tertiary water loop consisting of the inside of the steam generator pipes, a pressure-reducing valve which cools down the super-heated fluid and acts as a turbine, a condenser, a charge-pump and a supply pump for the boiler. The heat is given finally to a water-source flowing into the Seine. Two important points of the installation are: - The water treatment unit - The control and regulation system Apart from the general satisfactory operation of the installation which it is hoped to obtain, a careful study will be made of the heat transmission coefficients of the important equipment such as the intermediate exchanger and the steam generator. The construction was finished on April 28, 1964. (author) [French] On decrit une installation de 5 MW figurant a echelle reduite un systeme de transfert de chaleur d'un reacteur refroidi au sodium. Cette installation, situee a Grand Quevilly (pres de Rouen) comprend: 1 - Une boucle de sodium primaire comportant un rechauffeur de sodium alimente en fuel lourd, une pompe mecanique et un echangeur intermediaire a faisceau tubulaire muni de chicanes, 2 - Une boucle de NaK (56% de K) secondaire dont les appareils principaux sont une pompe mecanique et un generateur de vapeur a double paroi, circulation forcee et vaporisation totale. 3 - une boucle tertiaire a eau comprenant l'interieur des tubes du generateur de vapeur, un detendeur-desurchauffeur simulant une turbine, un condenseur, une pompe de

  2. Autophagy Proteins in Phagocyte Endocytosis and Exocytosis

    Directory of Open Access Journals (Sweden)

    Christian Münz

    2017-09-01

    Full Text Available Autophagy was initially described as a catabolic pathway that recycles nutrients of cytoplasmic constituents after lysosomal degradation during starvation. Since the immune system monitors products of lysosomal degradation via major histocompatibility complex (MHC class II restricted antigen presentation, autophagy was found to process intracellular antigens for display on MHC class II molecules. In recent years, however, it has become apparent that the molecular machinery of autophagy serves phagocytes in many more membrane trafficking pathways, thereby regulating immunity to infectious disease agents. In this minireview, we will summarize the recent evidence that autophagy proteins regulate phagocyte endocytosis and exocytosis for myeloid cell activation, pathogen replication, and MHC class I and II restricted antigen presentation. Selective stimulation and inhibition of the respective functional modules of the autophagy machinery might constitute valid therapeutic options in the discussed disease settings.

  3. Adsorption pump for helium pumping out

    International Nuclear Information System (INIS)

    Donde, A.L.; Semenenko, Yu.E.

    1981-01-01

    Adsorption pump with adsorbent cooling by liquid helium is described. Shuttered shield protecting adsorbent against radiation is cooled with evaporating helium passing along the coil positioned on the shield. The pump is also equipped with primed cylindrical shield, cooled with liquid nitrogen. The nitrogen shield has in the lower part the shuttered shield, on the pump casing there is a valve used for pump pre-burning, and valves for connection to recipient as well. Pumping- out rates are presented at different pressures and temperatures of adsorbent. The pumping-out rate according to air at absorbent cooling with liquid nitrogen constituted 5x10 -4 Pa-3000 l/s, at 2x10 -2 Pa-630 l/s. During the absorbent cooling with liquid hydrogen the pumping-out rate according to air was at 4x10 -4 Pa-580 l/s, at 2x10 -3 Pa-680 l/s, according to hydrogen - at 8x10 -5 Pa-2500 l/s, at 5x10 -3 Pa-4200 l/s. During adsorbent cooling with liquid helium the rate of pumping-out according to hydrogen at 3x10 5 Pa-2400% l/s, at 6x10 3 Pa-1200 l/s, and according to helium at 3.5x10 -5 Pa-2800 l/s, at 4x10 -3 Pa-1150 l/s. The limit vacuum is equal to 1x10 -7 Pa. The volume of the vessel with liquid helium is equal to 3.5 l. Helium consumption is 80 cm 3 /h. Consumption of liquid nitrogen from the shield is 400 cm 3 /h. The limit pressure in the pump is obtained after forevacuum pumping-out (adsorbent regeneration) at 300 K temperature. The pump is made of copper. The pump height together with primed tubes is 800 mm diameter-380 mm [ru

  4. Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate.

    Science.gov (United States)

    Luo, Yangchao; Teng, Zi; Wang, Thomas T Y; Wang, Qin

    2013-08-07

    Cellular evaluation of zein nanoparticles has not been studied systematically due to their poor redispersibility. Caseinate (CAS)-stabilized zein nanoparticles have been recently developed with better redispersibility in salt solutions. In this study, zein-CAS nanoparticles were prepared with different zein/CAS mass ratios. The prepared nanoparticles demonstrated good stabilities to maintain particle size (120-140 nm) in cell culture medium and HBSS buffer at 37 °C. The nanoparticles showed no cytotoxicity for Caco-2 cells for 72 h. CAS not only significantly enhanced cell uptake of zein nanoparticles in a concentration- and time-dependent manner but also remarkably improved epithelial transport through Caco-2 cell monolayer. The cell uptake of zein-CAS nanoparticles indicated an energy-dependent endocytosis process as evidenced by cell uptake under blocking conditions, that is, 4 °C, sodium azide, and colchicine. Fluorescent microscopy clearly showed the internalization of zein-CAS nanoparticles. This study may shed some light on the cellular evaluations of hydrophobic protein nanoparticles.

  5. Natriuretic Hormones, Endogenous Ouabain, and Related Sodium Transport Inhibitors

    Directory of Open Access Journals (Sweden)

    John eHamlyn

    2014-12-01

    Full Text Available The work of deWardener and colleagues stimulated longstanding interest in natriuretic hormones (NH. In addition to the atrial peptides (APs, the circulation contains unidentified physiologically-relevant NHs. One NH is controlled by the central nervous system (CNS and likely secreted by the pituitary. Its circulating activity is modulated by salt intake and the prevailing sodium concentration of the blood and intracerebroventricular fluid, and contributes to postprandial and dehydration natriuresis. The other NH, mobilized by atrial stretch, promotes natriuresis by increasing the production of intrarenal dopamine and/or nitric oxide. Both NHs have short (<35 minutes circulating half lives, depress renotubular sodium transport, and neither requires the renal nerves. The search for NHs led to endogenous cardiotonic steroids (CTS including ouabain-, digoxin-, and bufadienolide-like materials. These CTS, given acutely in high nanomole to micromole amounts into the general or renal circulations, inhibit sodium pumps and are natriuretic. Among these CTS, only bufalin is cleared sufficiently rapidly to qualify for an NH-like role. Ouabain-like CTS are cleared slowly, and when given chronically in low daily nanomole amounts, promote sodium retention, augment arterial myogenic tone, reduce renal blood flow and glomerular filtration, suppress nitric oxide in the renal vasa recta, and increase sympathetic nerve activity and blood pressure. Moreover, lowering total body sodium raises circulating endogenous ouabain. Thus, ouabain-like CTS have physiological actions that, like aldosterone, support renal sodium retention and blood pressure. In conclusion, the mammalian circulation contains two non-AP NHs. Identification of the CNS NH should be a priority.

  6. Genetically encoded pH sensor for tracking surface proteins through endocytosis.

    Science.gov (United States)

    Grover, Anmol; Schmidt, Brigitte F; Salter, Russell D; Watkins, Simon C; Waggoner, Alan S; Bruchez, Marcel P

    2012-05-14

    Traffic cam: a tandem dye prepared from a FRET acceptor and a fluorogenic donor functions as a cell surface ratiometric pH indicator, which upon internalization serves to follow protein trafficking during endocytosis. This sensor was used to analyze agonist-dependent internalization of β(2)-adrenergic receptors. It was also used as a surrogate antigen to reveal direct surface-to-endosome antigen transfer between dendritic cells (not shown). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synopsis on remarks on the topics of the agenda, presentated for informal discussion during the Specialists Meeting on Operational Safety of Sodium Circuits on 17 to 20 March 1971

    International Nuclear Information System (INIS)

    Gasselt, N.L.G. van

    1971-01-01

    The work done in the Sodium field by the Department of Nuclear Reactor Technology of the Central Technical Institute TNO at Apeldoorn, consists mainly of the design, construction and operation of sodium test rigs, four of which are rigs for the investigation of corrosion phenomena. Research and development on sodium pumps, electromagnetic brakes, large valves, forced circulation cold traps, vapor traps, electrical trace heating, instrumentation, impurity monitoring, in-line distillation and sodium chemistry

  8. The mode of inhibition of the Na+-K+ pump activity in mast cells by calcium

    DEFF Research Database (Denmark)

    Knudsen, T; Johansen, Torben

    1989-01-01

    , and hence the pump activity. This hypothesis is supported by the stimulation of pump activity produced by monensin, which is not inhibited by calcium. The enhancement of pump activity after exposure of calcium-deprived cells to EGTA might be the result of a further increase in the sodium permeability......1 The inhibition by calcium of the Na(+)-K+ pump in the plasma membrane of rat peritoneal mast cells was studied in pure populations of the cells by measuring the ouabain-sensitive uptake of the radioactive potassium analogue, 86rubidium (86Rb+). 2 Exposure of the cells to calcium induced a time......- and concentration-dependent decrease in the ouabain-sensitive K+(86Rb+)-uptake of the cells without influencing the ouabain-resistant uptake. The development of the inhibition required the presence of potassium in the medium in the millimolar range (1.5-8.0 mM), and it did not occur at a concentration of potassium...

  9. Reactions between sodium and various carbon bearing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Raine, A C; Thorley, A W [UKAEA, Risley, Warrington, Cheshire (United Kingdom)

    1980-05-01

    The presence of carbon bearing materials in liquid sodium is undesirable because of their ability to carburise stainless steel components. It has been demonstrated for example that carbon taken up by stainless steels can affect their mechanical properties and that thinner sectioned material such as fuel cladding and the tubing of intermediate heat exchanger may be more sensitive to such effects. Generally speaking, there are a number of potential carbon sources in reactor systems. Some of the sources such as the graphite in neutron shield rods, boron carbide in control rods and carbide fuels are part of the reactor designs while others such as oil in mechanical pumps arid 'coupling-fluids' used to inspect plant components are associated with the respective operation arid inspection of the plant. In this paper it is intended to discuss in general terms the way these various compounds behave in liquid sodium and to assess what effect their presence will have on the materials of construction in fast reactor systems. The paper also reviews the chemistry of the environment in relation to the types of carburizing species which may exist in sodium systems.

  10. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of β-glucuronidase

    International Nuclear Information System (INIS)

    Watanabe, H.; Grubb, J.H.; Sly, W.S.

    1990-01-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human β-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3% of the total functional receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of β-glucuronidase. At pH 7.5, the rate of endocytosis was only 14% the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized β-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized β-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor

  11. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 is pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump

  12. Construction and evaluation of BSA-CaP nanomaterials with enhanced transgene performance via biocorona-inspired caveolae-mediated endocytosis

    Science.gov (United States)

    Ma, Xi-Xi; Gao, Han; Zhang, Ya-Xuan; Jia, Yi-Yang; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2018-02-01

    Non-viral nanovectors have attracted much attention owing to their ability to condense genetic materials and their ease of modification. However, their poor stability, low biocompatibility and gene degradation in endosomes or lysosomes has significantly hampered their application in vivo and in the clinic. In an attempt to overcome these difficulties a series of bovine serum albumin (BSA)-calcium phosphate (CaP) nanoparticles were constructed. The CaP condenses with DNA to form nanocomplexes coated with a biomimetic corona of BSA. Such complexes may retain the inherent endocytosis profile of BSA, with improved biocompatibility. In particular the transgene performance may be enhanced by stimulating the cellular uptake pathway via caveolae-mediated endocytosis. Two methods were employed to construct and optimize the formulation of BSA-CaP nanomaterials. The optimized BSA-CaP-50-M2 nanoparticles prepared by our second method exhibited good stability, negligible cytotoxicity and enhanced transgene performance with long-term expression for 72 h in vivo even with a single dose. Determination of the cellular uptake pathway and Western blot revealed that cellular uptake of the designed BSA-CaP-50-M2 nanoparticles was mainly via caveolae-mediated endocytosis in a non-degradative pathway in which the biomimetic uptake profile of BSA was retained.

  13. Cellular entry of G3.5 poly (amido amine) dendrimers by clathrin- and dynamin-dependent endocytosis promotes tight junctional opening in intestinal epithelia.

    Science.gov (United States)

    Goldberg, Deborah S; Ghandehari, Hamidreza; Swaan, Peter W

    2010-08-01

    This study investigates the mechanisms of G3.5 poly (amido amine) dendrimer cellular uptake, intracellular trafficking, transepithelial transport and tight junction modulation in Caco-2 cells in the context of oral drug delivery. Chemical inhibitors blocking clathrin-, caveolin- and dynamin-dependent endocytosis pathways were used to investigate the mechanisms of dendrimer cellular uptake and transport across Caco-2 cells using flow cytometry and confocal microscopy. Dendrimer cellular uptake was found to be dynamin-dependent and was reduced by both clathrin and caveolin endocytosis inhibitors, while transepithelial transport was only dependent on dynamin- and clathrin-mediated endocytosis. Dendrimers were quickly trafficked to the lysosomes after 15 min of incubation and showed increased endosomal accumulation at later time points, suggesting saturation of this pathway. Dendrimers were unable to open tight junctions in cell monolayers treated with dynasore, a selective inhibitor of dynamin, confirming that dendrimer internalization promotes tight junction modulation. G3.5 PAMAM dendrimers take advantage of several receptor-mediated endocytosis pathways for cellular entry in Caco-2 cells. Dendrimer internalization by dynamin-dependent mechanisms promotes tight junction opening, suggesting that dendrimers act on intracellular cytoskeletal proteins to modulate tight junctions, thus catalyzing their own transport via the paracellular route.

  14. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump. 13 refs., 5 figs., 1 tab

  15. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes.

    Science.gov (United States)

    Chang, Hsin-Fang; Bzeih, Hawraa; Schirra, Claudia; Chitirala, Praneeth; Halimani, Mahantappa; Cordat, Emmanuelle; Krause, Elmar; Rettig, Jens; Pattu, Varsha

    2016-09-15

    CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Operating experience of a sodium rig following the ingress of oil

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A C; Mehew, R D; Robertson, C M [UKAEA, Dounreay, Thurso, Caithness, Scotland (United Kingdom)

    1980-05-01

    The experience of operating the Small Water Leak Rig at Dounreay in the two years following the ingress into the sodium of silicone oil from the pump is reported. The carbon penetration into the rig pipework has been monitored and has been found to agree with a diffusion model. The predictions based on this model have enabled an operating strategy to be determined to allow continued operation of the rig. (author)

  17. Operating experience of a sodium rig following the ingress of oil

    International Nuclear Information System (INIS)

    Bell, A.C.; Mehew, R.D.; Robertson, C.M.

    1980-01-01

    The experience of operating the Small Water Leak Rig at Dounreay in the two years following the ingress into the sodium of silicone oil from the pump is reported. The carbon penetration into the rig pipework has been monitored and has been found to agree with a diffusion model. The predictions based on this model have enabled an operating strategy to be determined to allow continued operation of the rig. (author)

  18. Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements.

    Science.gov (United States)

    Liesche, Johannes; Schulz, Alexander; Krügel, Undine; Grimm, Bernhard; Kühn, Christina

    2008-12-01

    The sucrose transporter StSUT1 from Solanum tuberosum was shown to be regulated post-translationally by redox reagents. Its activity is increased at least 10-fold in the presence of oxidizing agents if expressed in yeast. Oxidation has also an effect on plasma membrane targeting and dimerization of the protein. In response to oxidizing agents, StSUT1 is targeted to lipid raft-like microdomains and SUT1 protein is detectable in the detergent resistant membrane fraction of plant plasma membranes. Interestingly, StSUT1 treated with brefeldin A seems to aggregate in endocytic compartments in mature sieve elements.1 Further analysis of SUT1 targeting will certainly provide more information about the putative involvement of lipid raft-like microdomains in endocytic events. We provide here additional information on the dimerization and endocytosis of the SUT1 protein. The oligomerization of overexpressed SoSUT1 from Spinacia oleracea in transgenic potato plants was analyzed by two-dimensional gel electrophoresis and endocytosis of the StSUT1 protein was confirmed by immunogold labeling.

  19. The report of inspection and repair technology of sodium cooled reactors

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Uchita, Masato; Konomura, Mamoru

    2002-12-01

    considered, and short-term repair methods were investigated for secondary sodium leak from the main piping. The application and issue of the repair methods were discussed for commercialized plants. More specific repair sequence must be developed for each sodium leak location by referring to other plants' repair experience. Furthermore, the repair methods of components such as a pump must be investigated. (author)

  20. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  1. Investigation of a Plugging Meter for Measuring Impurity Content in Liquid Sodium (I)

    International Nuclear Information System (INIS)

    Choi, Jong Hyeun; Kim, Jong Man; Choi, Byoung Hae; Jeong, Ji Young; Lee, Yong Bum

    2010-01-01

    In a Sodium-cooled Fast Reactor (SFR), liquid sodium is subject to the formation of impurities by its high chemical reactivity with so many elements and common compounds used in nuclear reactor construction materials. The impurities are mainly in the form of hydrides, oxides, metallic compounds, metallic and carbon particles, which originate primarily from steam generator corrosion, moisture from system component surface, and leakage of air into the system. These are finally deposited in the form of the crystallization of sodium hydride (NaH) or sodium oxide (Na 2 O) at the cold points of the circuit, which may lead to the clogging of the narrowed sections or may damage the pump. Therefore, the sodium must be purified and analyzed in order to prevent from the detrimental influence. The analysis of hydrogen and oxygen is very important. There are many chemical methods for analyzing the impurities, but these methods are time-consuming, troublesome and contamination of samples from air and containers, that is the reason why the countries develop the instruments of impurity on-line measurement. The plugging meter is one of the most important on-line measuring instruments and it is a reliable instrument which has been widely used on sodium loops

  2. PIV Investigations of the Flow Field in the Volute of a Rotary Blood Pump

    Science.gov (United States)

    Sankovic, John M.; Kadambi, Jaikrishnan R.; Smith, William A.; Wernet, Mark P.

    2004-01-01

    A full-size acrylic model of a rotary blood pump was developed in order to utilize Particle Image Velocimetry (PIV) to make measurements of the fluid velocities and turbulent stresses throughout the device. The development of an understanding of the hemodynamics within the blood pump is critical to the development and validation of computational models. A blood analog solution, consisting of sodium iodide solution and glycerin, was developed to match physiological kinematic viscosity. The refractive indices of the fluid, the pump casing, and the impeller were matched to facilitate the use of PIV to make velocity measurements. Velocity measurements made in the volute exit/diffuser region are presented for pumps speeds of 3000-3850 rpm. At each speed data were obtained at a physiological pressure of 12 kPa and at a maximum flow condition. Four hundred data pairs were used for each resultant mean velocity vector value, representing greater than an order of magnitude more data pairs than reported previously in the literature on similar devices and resulting in velocity uncertainty levels of approximately 22.9%.

  3. Cavitation experiments at butterfly valves in water and in sodium at 850K

    International Nuclear Information System (INIS)

    Mendte, K.; Klemm, J.

    1976-01-01

    Throttling valves fabricated by Gebrueder Adams, Bochum will be installed in the SNR-300 plant, serving as flow control devices during postscram operation. Valves of the same type were used in the pump test facility at INTERATOM (APB) to throttle down the sodium pump head. This test loop was to demonstrate at the same time that the prototype SNR valves could withstand the design conditions (flow and temperature) during endurance tests. To optimize the pump test facility design, a 350mm diameter valve was tested in water under cavitational conditions. With the aid of calculational method described herein, the hydraulic kinetic relationships of the throttled flow could predict the influences leading to cavitation. The results of the calculational model showed close agreement with that, actually incurred during visual observations. Valves of the same type and in 350mm as well as in 600mm diameter sizes were again cavitation tested in sodium. During this test, in addition to the hydraulic data, noise measurements were taken using accelerometers. Concerning such tests, the following inherent difficulties are to be noted: a) The noise measurements would register influences of general entrained bubbles (gas and vapor bubbles) causing increased attenuation of the noise in the medium of transmission. Therefore, it is mandatory that the loop be carefully degassed to enable measurement of the cavitational bubbles. b) The primary function of these valves in the test loop APB is to dissipate the pressure head of the pump being tested. Through energy dissipation across the valves, they become strong sources of noise generation, in broad-band frequency levels at these locations up to a factor 50 larger than those at the pump. The cavitation dependent vaporizing noise, developed by incipient cavitation, was, inspite of background noise, measurable. Similar to that for the water test runs, incipient cavitation was detected at the valves when the corresponding sigma worths were

  4. Role of receptor-mediated endocytosis in the antiangiogenic effects of human T lymphoblastic cell-derived microparticles.

    Science.gov (United States)

    Yang, Chun; Xiong, Wei; Qiu, Qian; Shao, Zhuo; Shao, Zuo; Hamel, David; Tahiri, Houda; Leclair, Grégoire; Lachapelle, Pierre; Chemtob, Sylvain; Hardy, Pierre

    2012-04-15

    Microparticles possess therapeutic potential regarding angiogenesis. We have demonstrated the contribution of apoptotic human CEM T lymphocyte-derived microparticles (LMPs) as inhibitors of angiogenic responses in animal models of inflammation and tumor growth. In the present study, we characterized the antivascular endothelial growth factor (VEGF) effects of LMPs on pathological angiogenesis in an animal model of oxygen-induced retinopathy and explored the role of receptor-mediated endocytosis in the effects of LMPs on human retinal endothelial cells (HRECs). LMPs dramatically inhibited cell growth of HRECs, suppressed VEGF-induced cell migration in vitro experiments, and attenuated VEGF-induced retinal vascular leakage in vivo. Intravitreal injections of fluorescently labeled LMPs revealed accumulation of LMPs in retinal tissue, with more than 60% reductions of the vascular density in retinas of rats with oxygen-induced neovascularization. LMP uptake experiments demonstrated that the interaction between LMPs and HRECs is dependent on temperature. In addition, endocytosis is partially dependent on extracellular calcium. RNAi-mediated knockdown of low-density lipoprotein receptor (LDLR) reduced the uptake of LMPs and attenuated the inhibitory effects of LMPs on VEGF-A protein expression and HRECs cell growth. Intravitreal injection of lentivirus-mediated RNA interference reduced LDLR protein expression in retina by 53% and significantly blocked the antiangiogenic effects of LMPs on pathological vascularization. In summary, the potent antiangiogenic LMPs lead to a significant reduction of pathological retinal angiogenesis through modulation of VEGF signaling, whereas LDLR-mediated endocytosis plays a partial, but pivotal, role in the uptake of LMPs in HRECs.

  5. Failure rate evaluation for different components operating in sodium, based on operating experience of the RAPSODIE and the PHENIX reactors and the test loops

    International Nuclear Information System (INIS)

    Boisseau, J.; Dorey, J.; Hedin, F.; Le Floch, C.

    1982-01-01

    The failure rates of the following components, valves operating in sodium, mechanical and electromagnetic pumps, and heat exchangers including intermediate heat exchangers, cold traps, steam generators, are evaluated by analysing the main incidents which occurred on these components. Therefore, this paper contains an evaluation of the operating experience of components working in sodium and of the reliability of these components

  6. Short-term memory of motor network performance via activity-dependent potentiation of Na+/K+ pump function.

    Science.gov (United States)

    Zhang, Hong-Yan; Sillar, Keith T

    2012-03-20

    Brain networks memorize previous performance to adjust their output in light of past experience. These activity-dependent modifications generally result from changes in synaptic strengths or ionic conductances, and ion pumps have only rarely been demonstrated to play a dynamic role. Locomotor behavior is produced by central pattern generator (CPG) networks and modified by sensory and descending signals to allow for changes in movement frequency, intensity, and duration, but whether or how the CPG networks recall recent activity is largely unknown. In Xenopus frog tadpoles, swim bout duration correlates linearly with interswim interval, suggesting that the locomotor network retains a short-term memory of previous output. We discovered an ultraslow, minute-long afterhyperpolarization (usAHP) in network neurons following locomotor episodes. The usAHP is mediated by an activity- and sodium spike-dependent enhancement of electrogenic Na(+)/K(+) pump function. By integrating spike frequency over time and linking the membrane potential of spinal neurons to network performance, the usAHP plays a dynamic role in short-term motor memory. Because Na(+)/K(+) pumps are ubiquitously expressed in neurons of all animals and because sodium spikes inevitably accompany network activity, the usAHP may represent a phylogenetically conserved but largely overlooked mechanism for short-term memory of neural network function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  8. Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes

    DEFF Research Database (Denmark)

    Danielsen, E Michael

    2015-01-01

    The small intestinal brush border is a specialized cell membrane that needs to withstand the solubilizing effect of bile salts during assimilation of dietary nutrients and to achieve detergent resistance; it is highly enriched in glycolipids organized in lipid raft microdomains. In the present work......-toluenesulfonate), and CellMask Orange plasma membrane stain were used to study endocytosis from the enterocyte brush border of organ-cultured porcine mucosal explants. All the dyes readily incorporated into the brush border but were not detectably endocytosed by 5 min, indicating a slow uptake compared with other cell types...

  9. Mechanism of Aldolase Control of Sorting Nexin 9 Function in Endocytosis*

    OpenAIRE

    Rangarajan, Erumbi S.; Park, HaJeung; Fortin, Emanuelle; Sygusch, Jurgen; Izard, Tina

    2010-01-01

    Sorting nexin 9 (SNX9) functions in a complex with the GTPase dynamin-2 at clathrin-coated pits, where it provokes fission of vesicles to complete endocytosis. Here the SNX9·dynamin-2 complex binds to clathrin and adapter protein complex 2 (AP-2) that line these pits, and this occurs through interactions of the low complexity domain (LC4) of SNX9 with AP-2. Intriguingly, localization of the SNX9·dynamin-2 complex to clathrin-coated pits is blocked by interactions with the abundant glycolytic ...

  10. Sodium bicarbonate-augmented stress thallium myocardial scintigraphy

    International Nuclear Information System (INIS)

    Sarin, Badal; Chugh, Pradeep Kumar; Kaushal, Dinesh; Soni, Nakse Lal; Sawroop, Kishan; Mondal, Anupam; Bhatnagar, Aseem

    2004-01-01

    It is well known that sodium bicarbonate in pharmacological doses induces transient alkalosis, causing intracellular transport of serum potassium. The aims of this study were (a) to investigate whether, in humans, myocardial thallium-201 uptake can be augmented by pretreatment with a single bolus of sodium bicarbonate at a pharmacological dose, (b) to verify general safety aspects of the intervention and (c) to evaluate the clinical implications of augmentation of 201 Tl uptake, if any. Routine exercise myocardial scintigraphy was performed twice in eight adult volunteers (five normal and three abnormal), once without intervention and the second time (within a week) following intravenous administration of sodium bicarbonate (88 mEq in 50 ml) as a slow bolus 1 h prior to the injection of 201 Tl. Conventional myocardial thallium study was compared with sodium bicarbonate interventional myocardial scintigraphy with respect to myocardial uptake (counts per minute per mCi injected dose), washout patterns in normal and abnormal myocardial segments, and overall clinical interpretation based on planar and single-photon emission tomographic (SPET) images. All patients remained asymptomatic after the intervention. A mean increase of 53% in myocardial uptake of thallium was noted in post-exercise acquisitions after the intervention, confirming uptake of the tracer via the potassium-hydrogen pump and its augmentation by transient alkalosis. The washout pattern remained unchanged. The visual quality of planar and SPET images improved significantly after the intervention. Out of the five abnormal myocardial segments identified in three cases, four showed significant filling-in after the intervention, causing the diagnosis to be upgraded from ''partial scar'' to ''ischaemia'', or from ''ischaemia'' to ''normal''. The overall scan impression changed in two out of three such cases. Sodium bicarbonate augmentation may have significant implications for stress-thallium scintigraphy

  11. Three-dimensional finite-element analysis of the cellular convection phenomena in the Clinch River Breeder Reactor Plant prototype pump

    International Nuclear Information System (INIS)

    Silver, A.H.; Lee, J.Y.

    1983-01-01

    Cellular convection was studied rigorously during the development of the Clinch River Breeder Reactor Plant (CRBRP) Program Pumps. This paper presents the development of a three-dimensional finite-element heat transfer model which accounts for the cellular convection phenomena. A buoyancy driven cellular convection flow pattern is introduced in the annulus region between the upper inner structure and the pump tank. Steady-state thermal data were obtained for several test conditions for argon gas pressures up to 93 psig (741 kPa) and sodium operating temperatures to 1000 0 F (811 0 K). Test temperature distributions on the pump tank and inner structure were correlated with numerical results and excellent agreement was obtained

  12. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis

    Science.gov (United States)

    Banerjee, Anand; Berezhkovskii, Alexander; Nossal, Ralph

    2016-02-01

    Several viruses exploit clathrin-mediated endocytosis to gain entry into host cells. This process is also used extensively in biomedical applications to deliver nanoparticles (NPs) to diseased cells. The internalization of these nano-objects is controlled by the assembly of a clathrin-containing protein coat on the cytoplasmic side of the plasma membrane, which drives the invagination of the membrane and the formation of a cargo-containing endocytic vesicle. Current theoretical models of receptor-mediated endocytosis of viruses and NPs do not explicitly take coat assembly into consideration. In this paper we study cellular uptake of viruses and NPs with a focus on coat assembly. We characterize the internalization process by the mean time between the binding of a particle to the membrane and its entry into the cell. Using a coarse-grained model which maps the stochastic dynamics of coat formation onto a one-dimensional random walk, we derive an analytical formula for this quantity. A study of the dependence of the mean internalization time on NP size shows that there is an upper bound above which this time becomes extremely large, and an optimal size at which it attains a minimum. Our estimates of these sizes compare well with experimental data. We also study the sensitivity of the obtained results on coat parameters to identify factors which significantly affect the internalization kinetics.

  13. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    A proposed design for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target

  14. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-05-01

    A proposed design for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target. 15 references, 10 figures

  15. LMFBR with booster pump in pumping loop

    International Nuclear Information System (INIS)

    Rubinstein, H.J.

    1975-01-01

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation

  16. Laser-induced nuclear orientation and gamma anisotropy in sodium

    International Nuclear Information System (INIS)

    Pappas, P.G.

    1980-12-01

    The use of laser optical pumping to induce nuclear orientation in several isotopes and one isomer of atomic sodium vapor is described. Essentially complete nuclear polarization, P > 90%, has been achieved in stable 23 Na when pumping with modest laser intensities (I approx. = 10 mW/cm 2 ). The volume of the sample cell was approximately 10 cc, and was filled with a sodium density of about 10'' atoms/cc. Complete coverage of the Doppler distribution was accomplished with the use of trace amounts (less than or equal to 1 torr) of argon buffer gas to induce velocity changing collisions. A theoretical model which accurately predicts the amount of polarization is developed. The orientation of nuclei which are unstable to gamma decay can manifest itself in anisotropic gamma ray emission. This anisotropy can be used to measure isotope and isomer shifts, from which nuclear properties can be derived. Gamma anisotropy was observed in two systems, 22 Na and /sup 24m/Na. From the observed anisotropy in /sup 24m/Na, a negative sign for the g factor is determined. Values are derived for the magnetic moment, μ = 2.56 +- 0.64 nm, and the isomer shift, deltaν/sub 24m/ = 288 +- 191 MHz (D1 line). A model is described which relates various laser and fubber gas parameters to the observed gamma anisotropy lineshape. This model facilitates the extraction of physical parameters from knowledge of the laser frequency at which the anisotropy is a maximum

  17. Huntingtin-associated protein-1 (HAP1) regulates endocytosis and interacts with multiple trafficking-related proteins.

    Science.gov (United States)

    Mackenzie, Kimberly D; Lim, Yoon; Duffield, Michael D; Chataway, Timothy; Zhou, Xin-Fu; Keating, Damien J

    2017-07-01

    Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1 -/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Quantitative determination of a hydrogen impurity in a sodium coolant by hydride thermal dissociation

    Science.gov (United States)

    Ivanovskiy, M. N.; Pavlova, G. D.; Shmatko, B. A.; Milovidova, A. V.; Konovalov, E. YE.; Arnoldov, M. N.; Pleshivtsev, A. D.

    1988-01-01

    A molten sodium coolant containing hydrogen was heated in a vacuum at 450 C, and the gases generated pumped through a liquid nitrogen trap, and the H2 was then oxidized on a copper oxide substrate heated to 400 C. The accuracy of the method is 1.5 percent and the sensitivity is 1x10 to the -5 wt percent hydrogen.

  19. MK-III function tests in JOYO. Primary main cooling pump

    International Nuclear Information System (INIS)

    Isozaki, Kazunori; Saito, Takakazu; Sumino, Kouzo; Karube, Kouji; Terano, Toshihiro; Sakaba, Hideo; Nakai, Satoru

    2004-06-01

    MK-III function test (SKS-1) that was carried out from October 17, 2001 through October 23, 2001 using MK-III transition core configuration and MK-III function tests (SKS-2) was carried out from January 27, 2003 through February 13, 2003 using MK-III core configuration. The major function tests results of primary cooling system were shown as follows; (1) The stability of the primary main pump flow control system was confirmed on both CAS (cascade) mode and Man (manual) mode. Also no divergence of flow and revolution of the pump were observed at step flow change disturbance. (2) The main motor was shifted to run-back flow control operation in about 54 seconds after scram. The flow rate and pump revolution at run-back operation of A and B cooling system were 167 m 3 /h and 117 rpm, 185m 3 /h and 118 rpm respectively. The pump revolution was within the design target revolution 122 rpm ± 8 rpm and the flow was over the 10% of the rated flow. (3) The pony motor was engaged in operation in about 39 seconds after the primary main pump trip. The flow rate and pump revolution at the pony motor operation of A and B cooling system were 180 m 3 /h and 124 rpm, 190 m 3 /h and 123 rpm respectively. These values were satisfied the design low limit of 93 rpm and 10% of the rated flow. (4) Free flow coast down time constant was longer than 10 seconds that was design shortest time at both the primary pump trip and run-back operation. (5) Pump over flow column sodium levels of both A and B cooling system at rated operating condition were NL-1550 mm and, NL-1468 mm respectively and were lower than NL-1581 mm of the design value. This result shows the new IHX pressure loss estimation was conservative. (6) It was confirmed that the primary main pump could operate with out scram for up to 0.6 seconds of external power supply loss. (author)

  20. Indigenous development of 20 Cu. M/hr flat linear induction pump (Paper No. 047)

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, R; Prakash, V; Sundarasekaran, S

    1987-01-01

    A distinctive physical property of sodium metal which is used as a coolant in fast reactors, is its high electrical conductivity. This together with its ability to wet stainless steel permits fluid pumping techniques using electromagnetic devices. Electromagnetic pumps are analogous to the electric motor, in which a force is produced by the interaction of magnetic field and current flowing in a conductor. Flat linear induction pump (FLIP) whose operating principle is similar to that of an induction motor is one of the types of electromagnetic pumps in wide use in auxilary circuits of fast reactors. As part of efforts to develop fast reactor components indigenously, work on the design and construction of a prototype FLIP rated for 20Cu.M/hr and 5Kg/sq.cm at 550degC was initiated. Under Board of Research in Nuclear Sciences scheme, the design was carried out by the Electrical Engineering Department of IIT, Madras. Pump was constructed at Engineering Development Division, Indira Gandhi Centre for Atomic Research, Kalpakkam. This paper presents in detail the work carried out for the fabrication of flow channel and for the stator assembly. Results obtained from dry electrical tests are also reported. Appendix summarises the design data. (author).

  1. Dialysate sodium and sodium gradient in maintenance hemodialysis: a neglected sodium restriction approach?

    OpenAIRE

    Munoz Mendoza, Jair; Sun, Sumi; Chertow, Glenn M.; Moran, John; Doss, Sheila; Schiller, Brigitte

    2011-01-01

    Background. A higher sodium gradient (dialysate sodium minus pre-dialysis plasma sodium) during hemodialysis (HD) has been associated with sodium loading; however, its role is not well studied. We hypothesized that a sodium dialysate prescription resulting in a higher sodium gradient is associated with increases in interdialytic weight gain (IDWG), blood pressure (BP) and thirst.

  2. The pumping of hydrogen and helium by sputter-ion pumps

    International Nuclear Information System (INIS)

    Welch, K.M.; Pate, D.J.; Todd, R.J.

    1992-01-01

    The pumping of hydrogen in diode and triode sputter-ion pumps is discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium or titanium alloy anodes is also shown to measurably impact on the speed of these pumps at.very low pressures. This stems from the fact that hydrogen is x10 6 more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Lastly, quantitative data are given for the He speeds and capacities of both noble and conventional diode and triode pumps. The effectiveness of various pump regeneration procedures, subsequent to the pumping of He, is reported.These included bakeout and N 2 glow discharge cleaning. The comparative desorption of He with the subsequent pumping of N 2 is reported on. The N 2 speed of these pumps was used as the benchmark for defining the size of the pumps vs. their respective He speeds

  3. Testing of Local Velocity Transducer Used at Sodium Thermal Hydraulic Test Facilities

    International Nuclear Information System (INIS)

    Kim, Tae Joon; Eoh, Jae Hyuk; Hwang, In Koo; Jeong, Ji Young; Kim, Jong Man; Lee, Yong Bum; Kim, Yeong Il

    2012-01-01

    KAERI (Korea Atomic Energy Research Institute) will perform a test for a thermal hydraulic simulation with STELLA-1 for a Component Performance Test Sodium Loop in the year 2012, and subsequently it will construct for STELLA-2 for a Sodium Thermalhydraulic Experimental Facility in the year 2016. The STELLA-2 consists of a scaled reactor vessel with a core of electric heaters, four IHXs, two PHTS pumps, two DHXs, and two AHXs. In STELLA-2, several kinds of flow measurements exists. In this paper, the local velocity transducer as a prototype tested in IPPE (in Russia), was manufactured as a prototype by a shop in KAERI. This local velocity transducer will be used to measure the flow rate in a pool

  4. Protonation of key acidic residues is critical for the K⁺-selectivity of the Na/K pump.

    Science.gov (United States)

    Yu, Haibo; Ratheal, Ian M; Artigas, Pablo; Roux, Benoît

    2011-09-11

    The sodium-potassium (Na/K) pump is a P-type ATPase that generates Na(+) and K(+) concentration gradients across the cell membrane. For each hydrolyzed ATP molecule, the pump extrudes three Na(+) and imports two K(+) by alternating between outward- and inward-facing conformations that preferentially bind K(+) or Na(+), respectively. Remarkably, the selective K(+) and Na(+) binding sites share several residues, and how the pump is able to achieve the selectivity required for the functional cycle is unclear. Here, free energy-perturbation molecular dynamics (FEP/MD) simulations based on the crystal structures of the Na/K pump in a K(+)-loaded state (E2·P(i)) reveal that protonation of the high-field acidic side chains involved in the binding sites is crucial to achieving the proper K(+) selectivity. This prediction is tested with electrophysiological experiments showing that the selectivity of the E2P state for K(+) over Na(+) is affected by extracellular pH.

  5. Innovating analytical spectroscopies for the improvement of liquid sodium cooled fast neutron reactors safety

    International Nuclear Information System (INIS)

    Maury, C.

    2012-01-01

    In the context of the project of sodium fast reactor ASTRID, CEA is currently developing new analytical techniques to monitor the chemical purity of liquid sodium. Indeed, incidental situations occurring in the reactor, such as fuel clad failures, leakages in the steam generator or in the coolant pumps, and accelerated corrosion, might release several elements in the sodium. Analytical techniques based on laser ablation and emission spectroscopy are well suited for this application. They do not require any sample preparation, and can perform direct on-line analysis. Amongst them, Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation coupled to Laser-Induced Fluorescence (LA-LIF) have been selected for this study. The objective of this work was to characterize the sensitivity of those two techniques for the detection of impurities in liquid sodium. Their limits of detection were calculated for model analytes using calibration lines. Then results were theoretically extrapolated to other analytes of interest. This study shows the feasibility of the detection of steel corrosion products in liquid sodium. However, the LIBS technique is more robust and easier to implement, and would therefore be more suited to nuclear conditions. (author) [fr

  6. The reaction between barium and nitrogen in liquid sodium: resistivity studies

    International Nuclear Information System (INIS)

    Addison, C.C.; Creffield, G.K.; Hubberstey, P.; Pulham, R.J.

    1976-01-01

    The reaction of nitrogen with solutions of barium (between 0.34 and 6.89 mol % Ba) in liquid sodium at 573 K has been followed by changes in the electrical resistivity of the liquid. The capillary method has been employed, continuous sampling during reaction being achieved by electromagnetic pumping. The initial solution of nitrogen in the metal, followed by precipitation of barium and nitrogen from sodium as the nitride Ba 2 N, are reflected in the resistivity changes. The solubility of nitrogen in the alloy is a linear function of the barium concentration: S(mol % N) = x/4 (0 <= x <= 6.89 mol % Ba). This and the decrease in resistivity which invariably occurs during the solution process, provides additional information on the nature of solvation of nitrogen in solution in the liquid metal. (author)

  7. Cation depletion by the sodium pump in red cells with pathologic cation leaks. Sickle cells and xerocytes.

    OpenAIRE

    Joiner, C H; Platt, O S; Lux, S E

    1986-01-01

    The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blo...

  8. Reaction between barium and nitrogen in liquid sodium

    International Nuclear Information System (INIS)

    Addison, C.C.; Pulham, R.J.; Trevillion, E.A.

    1975-01-01

    Nitrogen in increasing amounts has been added to separate solutions of barium in sodium of constant composition (ca.4.40 mol % Ba) at 300 0 C. After rendering each mixture homogenous using an electromagnetic pump, filtration, and nitrogen analysis, all the N 2 added has been found in solution up to a solution composition approximating to Ba 4 N (i.e. 1.1 mol % N) beyond which the quantity of dissolved N 2 decreases progressively due to precipitation of the nitride Ba 2 N. The solubilization is interpreted in terms of strong preferential solvation of the nitride ion by barium cations. (author)

  9. Endocytosis of a maltose permease is induced when amylolytic enzyme production is repressed in Aspergillus oryzae.

    Science.gov (United States)

    Hiramoto, Tetsuya; Tanaka, Mizuki; Ichikawa, Takanori; Matsuura, Yuka; Hasegawa-Shiro, Sachiko; Shintani, Takahiro; Gomi, Katsuya

    2015-09-01

    In the filamentous fungus Aspergillus oryzae, amylolytic enzyme production is induced by the presence of maltose. Previously, we identified a putative maltose permease (MalP) gene in the maltose-utilizing cluster of A. oryzae. malP disruption causes a significant decrease in α-amylase activity and maltose consumption, indicating that MalP is a maltose transporter required for amylolytic enzyme production in A. oryzae. Although the expression of amylase genes and malP is repressed by the presence of glucose, the effect of glucose on the abundance of functional MalP is unknown. In this study, we examined the effect of glucose and other carbon sources on the subcellular localization of green fluorescence protein (GFP)-tagged MalP. After glucose addition, GFP-MalP at the plasma membrane was internalized and delivered to the vacuole. This glucose-induced internalization of GFP-MalP was inhibited by treatment with latrunculin B, an inhibitor of actin polymerization. Furthermore, GFP-MalP internalization was inhibited by repressing the HECT ubiquitin ligase HulA (ortholog of yeast Rsp5). These results suggest that MalP is transported to the vacuole by endocytosis in the presence of glucose. Besides glucose, mannose and 2-deoxyglucose also induced the endocytosis of GFP-MalP and amylolytic enzyme production was inhibited by the addition of these sugars. However, neither the subcellular localization of GFP-MalP nor amylolytic enzyme production was influenced by the addition of xylose or 3-O-methylglucose. These results imply that MalP endocytosis is induced when amylolytic enzyme production is repressed. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. An evaluation of the fluid-elastic instability for Intermediate Heat Exchanger of Prototype Sodium-cooled fast Reactor

    International Nuclear Information System (INIS)

    Cho, Jaehun; Kim, Sungkyun; Koo, Gyeonghoi

    2014-01-01

    The sodium-cooled fast reactor (SFR) module consists of the vessel, containment vessel, head, rotating plug (RP), upper internal structure (UIS), intermediate heat exchanger (IHX), decay heat exchanger (DHX), primary pump, internal structure, internal components and reactor core. The IHXs transfer heat from the radioactive sodium coolant (primary sodium) in the primary heat transport system to the nonradioactive sodium coolant (secondary sodium) in the intermediate heat transport system. Each sodium flows like Fig. 1. Primary sodium flows inside of tube and secondary sodium flows outside. During transferring heat two sodium to sodium, the fluid-elastic instability is occurred among tube bundle by cross flow. Large amplitude vibration occurred by the fluid-elastic instability is caused such as crack and wear of tube. Thus it is important to decrease the fluid-elastic instability in terms of a safety. The purpose of this paper is to evaluate the fluid-elastic instability for tube bundle in the IHX following ASME code. This paper evaluated the fluid-elastic instability of tube bundle in the SFR IHX. According evaluation results, the fluid-elastic instability of IHX tube bundle is occurred. A installing an additional TSP under the upper tubesheet can decrease a probability of fluid-elastic instability. If a location of an additional TSP does not exceed tube length to become a 750 mm, tube bundle of IHX is safety from the fluid-elastic instability

  11. Inadvertent pump start with gas expansion modules

    International Nuclear Information System (INIS)

    Campbell, L.R.; Harris, R.A.; Heard, F.J.; Dautel, W.A.

    1992-01-01

    Previous testing demonstrated the effectiveness of gas expansion modules (GEMs) in mitigating the consequences of a loss-of-flow-without-scram transient in Fast Flux Test Facility (FFTF)-sized sodium cooled cores. As a result, GEMs have been included in the advance liquid-metal reactor (PRISM) design project sponsored by the US Department of Energy. The PRISM design is under review at the US Nuclear Regulatory Commission for licensability. In the unlikely event that the reactor does not scram during a loss of low, the GEMs quickly insert sufficient negative reactivity to limit fuel and cladding temperatures to acceptable values. This is the positive benefit of the GEMs; however, the reverse situation must be considered. A primary pump could be inadvertently started from near-critical conditions resulting in a positive reactivity insertion and a power transient. One mitigating aspect of this event is that as the reactivity associated with the GEMs is inserted, the increasing flow increases core cooling. A test was conducted in the FFTF to demonstrate that the GEM and feedback reactivity are well predicted following pump start, and the reactivity transient is benign

  12. Continuously pumping and reactivating gas pump

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped

  13. Continuously pumping and reactivating gas pump

    Science.gov (United States)

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  14. Sodium pump activity and calcium relaxation in vascular smooth muscle of deoxycorticosterone acetate-salt rats

    International Nuclear Information System (INIS)

    Soltis, E.E.; Field, F.P.

    1986-01-01

    The Na + -K + pump activity was determined in femoral arterial smooth muscle from deoxycorticosterone acetate (DOCA)-salt hypertensive rats using potassium relaxation and ouabain-sensitive 86 Rb uptake as indices. The membrane-stabilizing effect of calcium and its relation to Na + -K + pump activity also were examined. Femoral arteries from DOCA-salt rats exhibited a greater relaxation in response to potassium addition after contraction with norepinephrine in a low potassium (0.6 mM) Krebs solution. The concentration of potassium required to produce a 50% relaxation was significantly less in DOCA-salt rats. Ouabain-sensitive 86 Rb uptake was significantly greater at 3, 10, and 20 minutes of 86 Rb incubation in femoral arteries from DOCA-salt rats. Linear regression analysis revealed a significant correlation between the uptake of 86 Rb and time of incubation in both control and DOCA-salt rats. A significant difference in the slopes of the regression lines showed that the rate of uptake was greater in DOCA-salt rats. No difference was observed in ouabain-insensitive 86 Rb uptake. A dose-dependent relaxation in response to increasing concentrations of calcium following contraction to norepinephrine was observed in femoral arteries from control and DOCA-salt rats. The relaxation was directly dependent on the level of extracellular potassium and was blocked by ouabain. Femoral arteries from DOCA-salt rats relaxed to a significantly greater extent in response to calcium at each level of potassium when compared with controls. These results provide further evidence for an increase in Na + -K + pump activity in vascular smooth muscle from DOCA-salt hypertensive rats

  15. Chemical sensors for monitoring non-metallic impurities in liquid sodium coolant

    International Nuclear Information System (INIS)

    Ganesan, Rajesh; Jayaraman, V.; Rajan Babu, S.; Sridharan, R.; Gnanasekaran, T.

    2011-01-01

    Liquid sodium is the coolant of choice for fast breeder reactors. Liquid sodium is highly compatible with structural steels when the concentration of dissolved non-metallic impurities such as oxygen and carbon are low. However, when their concentrations are above certain threshold limits, enhanced corrosion and mass transfer and carburization of the steels would occur. The threshold concentration levels of oxygen in sodium are determined by thermochemical aspects of various ternary oxides of Na-M-O systems (M alloying elements in steels) which take part in corrosion and mass transfer. Dissolved carbon also influences these threshold levels by establishing relevant carbide equilibria. An event of steam leak into sodium at the steam generator, if undetected at its inception itself, can lead to extensive wastage of the tubes of the steam generator and prolonged shutdown. Air ingress into the argon cover gas and leak of hydrocarbon oil used as cooling fluids of the shafts of the centrifugal pumps of sodium are the sources of oxygen and carbon impurities in sodium. Continuous monitoring of the concentration of dissolved hydrogen, carbon and oxygen in sodium coolant will help identifying their ingress at inception itself. An electrochemical hydrogen sensor based on CaHBr-CaBr 2 hydride ion conducting solid electrolyte has been developed for detecting the steam leak during normal operating conditions of the reactor. A nickel diffuser based sensor system using thermal conductivity detector (TCD) and Pd-doped tin oxide thin film sensor has been developed for use during low power operations of the reactor or during its start up. For monitoring carbon in sodium, an electrochemical sensor with molten Na 2 CO 3 -LiCO 3 as the electrolyte and pure graphite as reference electrode has been developed. Yttria Doped Thoria (YDT) electrolyte based oxygen sensor is under development for monitoring dissolved oxygen levels in sodium. Fabrication, assembly, testing and performance of

  16. Effect of pump limiter throat on pumping efficiency

    International Nuclear Information System (INIS)

    Ghendrih, P.; Grosman, A.; Samain, A.; Capes, H.; Morera, J.P.

    1988-01-01

    The necessary control of plasma edge density has led to the development of pump limiters to achieve this task. On Tore Supra, where a large part of the program is devoted to plasma edge studies, two types of such density control apparatus have been implemented, a set of pump limiters and the pumps associated to the ergodic divertor (magnetically assisted pump limiters). Generally two different kinds of pump limiters can be used, those with a throat which drives the plasma from the open edge plasma (SOL) to the neutralizer plate, and those without or with a very short throat. We are interested here in this aspect of the pump limiter concept, i.e. on the throat effect on neutral density build-up in the vicinity of the pumping plates (and hence on pumping efficieny). The underlying idea of this throat effect can be readily understood; indeed while the neutral capture in pump limiters without throats is only a ballistic effect, on expects the plasma to improve the efficiency of pump-limiters via plasma-neutral-sidewall interactions in the throat. This problem has been studied both numerically and analytically. The paper is divided as follows. In section 2, we describe the basic features of pump-limiters which are modelized by the numerical code Cezanne. Section 3 is devoted to the throat length effect considering in particular the neutral density profile in the throat and the neutral density buil-up as a function of the throat lenght. In section 4, we show that the plugging effect occurs for reasonnable values of throat lengths. An analytical value of the plugging length is discussed and compared to the values obtained numerically

  17. Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B cells and subsequent biological response.

    Science.gov (United States)

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Maruyama, Kayo; Usui, Yuki; Aoki, Kaoru; Takanashi, Seiji; Kobayashi, Shinsuke; Nomura, Hiroki; Okamoto, Masanori; Shimizu, Masayuki; Kato, Hiroyuki

    2013-09-01

    We examined the cytotoxicity of multi-walled carbon nanotubes (MWCNTs) and the resulting cytokine secretion in BEAS-2B cells or normal human bronchial epithelial cells (HBEpCs) in two types of culture media (Ham's F12 containing 10% FBS [Ham's F12] and serum-free growth medium [SFGM]). Cellular uptake of MWCNT was observed by fluorescent microscopy and analyzed using flow cytometry. Moreover, we evaluated whether MWCNT uptake was suppressed by 2 types of endocytosis inhibitors. We found that BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM showed similar biological responses, but BEAS-2B cells cultured in SFGM did not internalize MWCNTs, and the 50% inhibitory concentration value, i.e., the cytotoxicity, was increased by more than 10-fold. MWCNT uptake was suppressed by a clathrin-mediated endocytosis inhibitor and a caveolae-mediated endocytosis inhibitor in BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM. In conclusion, we suggest that BEAS-2B cells cultured in a medium containing serum should be used for the safety evaluation of nanomaterials as a model of normal human bronchial epithelial cells. However, the culture medium composition may affect the proteins that are expressed on the cytoplasmic membrane, which may influence the biological response to MWCNTs. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  19. Perfluorooctanoic acid affects endocytosis involving clathrin light chain A and microRNA-133b-3p in mouse testes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yin; Wang, Jianshe [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, PR China. (China); Yan, Shengmin [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2017-03-01

    Perfluorooctanoic acid (PFOA) is an abundant perfluoroalkyl substance widely applied in industrial and consumer products. Among its potential health hazards, testicular toxicity is of major concern. To explore the potential effect of miRNA on post-translational regulation after PFOA exposure, changes in miRNAs were detected via miRNA array. Seventeen miRNAs were differentially expressed (eight upregulated, nine downregulated) in male mouse testes after exposure to 5 mg/kg/d of PFOA for 28 d (> 1.5-fold and P < 0.05 compared with the control). Eight of these miRNAs were further selected for TaqMan qPCR analysis. Proteomic profile analysis indicated that many changed proteins after PFOA treatment, including intersectin 1 (ITSN1), serine protease inhibitor A3K (Serpina3k), and apolipoprotein a1 (APOA1), were involved in endocytosis and blood-testis barrier (BTB) processes. These changes were further verified by immunohistochemical and Western blot analyses. Endocytosis-related genes were selected for qPCR analysis, with many found to be significantly changed after PFOA treatment, including epidermal growth factor receptor pathway substrate 8 (Eps8), Eps15, cortactin, cofilin, espin, vinculin, and zyxin. We further predicted the potential interaction between changed miRNAs and proteins, which indicated that miRNAs might play a role in the post-translational regulation of gene expression after PFOA treatment in mouse testes. Among them, miR-133b-3p/clathrin light chain A (CLTA) was selected and verified in vitro by transfection and luciferase activity assay. Results showed that PFOA exposure affects endocytosis in mouse testes and that CLTA is a potential target of miR-133b-3p. - Highlights: • Endocytosis and blood-testis barrier proteins were changed after PFOA exposure. • Seventeen miRNAs were differentially expressed in testes after PFOA exposure. • MiRNAs might play a role in gene regulation in testes after PFOA exposure.CLTA is a potential target of miR-133b

  20. Perfluorooctanoic acid affects endocytosis involving clathrin light chain A and microRNA-133b-3p in mouse testes

    International Nuclear Information System (INIS)

    Lu, Yin; Wang, Jianshe; Guo, Xuejiang; Yan, Shengmin; Dai, Jiayin

    2017-01-01

    Perfluorooctanoic acid (PFOA) is an abundant perfluoroalkyl substance widely applied in industrial and consumer products. Among its potential health hazards, testicular toxicity is of major concern. To explore the potential effect of miRNA on post-translational regulation after PFOA exposure, changes in miRNAs were detected via miRNA array. Seventeen miRNAs were differentially expressed (eight upregulated, nine downregulated) in male mouse testes after exposure to 5 mg/kg/d of PFOA for 28 d (> 1.5-fold and P < 0.05 compared with the control). Eight of these miRNAs were further selected for TaqMan qPCR analysis. Proteomic profile analysis indicated that many changed proteins after PFOA treatment, including intersectin 1 (ITSN1), serine protease inhibitor A3K (Serpina3k), and apolipoprotein a1 (APOA1), were involved in endocytosis and blood-testis barrier (BTB) processes. These changes were further verified by immunohistochemical and Western blot analyses. Endocytosis-related genes were selected for qPCR analysis, with many found to be significantly changed after PFOA treatment, including epidermal growth factor receptor pathway substrate 8 (Eps8), Eps15, cortactin, cofilin, espin, vinculin, and zyxin. We further predicted the potential interaction between changed miRNAs and proteins, which indicated that miRNAs might play a role in the post-translational regulation of gene expression after PFOA treatment in mouse testes. Among them, miR-133b-3p/clathrin light chain A (CLTA) was selected and verified in vitro by transfection and luciferase activity assay. Results showed that PFOA exposure affects endocytosis in mouse testes and that CLTA is a potential target of miR-133b-3p. - Highlights: • Endocytosis and blood-testis barrier proteins were changed after PFOA exposure. • Seventeen miRNAs were differentially expressed in testes after PFOA exposure. • MiRNAs might play a role in gene regulation in testes after PFOA exposure.CLTA is a potential target of miR-133b

  1. Simian hemorrhagic fever virus cell entry is dependent on CD163 and uses a clathrin-mediated endocytosis-like pathway.

    Science.gov (United States)

    Caì, Yíngyún; Postnikova, Elena N; Bernbaum, John G; Yú, Shu Qìng; Mazur, Steven; Deiuliis, Nicole M; Radoshitzky, Sheli R; Lackemeyer, Matthew G; McCluskey, Adam; Robinson, Phillip J; Haucke, Volker; Wahl-Jensen, Victoria; Bailey, Adam L; Lauck, Michael; Friedrich, Thomas C; O'Connor, David H; Goldberg, Tony L; Jahrling, Peter B; Kuhn, Jens H

    2015-01-01

    Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-β-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin

  2. UK fast reactor components. Sodium removal decontamination and requalification

    International Nuclear Information System (INIS)

    Donaldson, D.M.; Bray, J.A.; Newson, I.H.

    1978-01-01

    Extensive experience gained at the U.K.A.E.A. Dounreay Nuclear Power Development Establishment is being applied to form the basis of the plant to be provided for sodium removal, decontamination, and requalification of components in future commercial fast reactors. In the first part of a three part paper, the factors to be taken into account, showing the UK philosophy and approach to maintenance and repair operations are discussed. In the second part, PFR facilities for sodium removal and decontamination are described and some examples are given of cleaning components such as pumps, charge machine, cold trap baskets, and steam generator units. Similar facilities at DFR are briefly described. In the third part of the paper a short description is given of the Harwell mass transfer loop, currently used to study the deposition of activated stainless steel corrosion products. Decontamination method for pipework specimens cut from the loop are described and results of first screening tests of various chemical decontaminants are presented. (U.K.)

  3. Thermodiffusive behaviour of NaCl and KCl aqueous solutions a model for the Na-K pump

    International Nuclear Information System (INIS)

    Gaeta, F.S.; Mita, D.G.; Perna, G.; Scala, G.

    1975-01-01

    In NaCl and KCl aqueous nonisothermal solutions K + inverts its sense of migration within the physiological concentration range; Na + behaves similarly at much lower concentrations. These findings are discussed in relation to solute induced modifications of water structure and of their influence on thermal diffusion. A possible evolutionary model of a thermodiffusive mechanism for the sodium potassium pump is also suggested

  4. Visualization of the endocytic pathway in the filamentous fungus Aspergillus oryzae using an EGFP-fused plasma membrane protein

    International Nuclear Information System (INIS)

    Higuchi, Yujiro; Nakahama, Tomoyuki; Shoji, Jun-ya; Arioka, Manabu; Kitamoto, Katsuhiko

    2006-01-01

    Endocytosis is an important process for cellular activities. However, in filamentous fungi, the existence of endocytosis has been so far elusive. In this study, we used AoUapC-EGFP, the fusion protein of a putative uric acid-xanthine permease with enhanced green fluorescent protein (EGFP) in Aspergillus oryzae, to examine whether the endocytic process occurs or not. Upon the addition of ammonium into the medium the fusion protein was internalized from the plasma membrane. The internalization of AoUapC-EGFP was completely blocked by sodium azide, cold, and cytochalasin A treatments, suggesting that the internalization possesses the general features of endocytosis. These results demonstrate the occurrence of endocytosis in filamentous fungi. Moreover, we discovered that the endosomal compartments appeared upon the induction of endocytosis and moved in a microtubule-dependent manner

  5. Dry vacuum pumps

    International Nuclear Information System (INIS)

    Sibuet, R

    2008-01-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R and D/industries, merits over conventional pumps and future growth scope will be discussed

  6. Off-Pump Versus On-Pump Coronary Artery Bypass Grafting

    DEFF Research Database (Denmark)

    Møller, Christian H; Steinbrüchel, Daniel A

    2014-01-01

    Coronary artery bypass grafting (CABG) remains the preferred treatment in patients with complex coronary artery disease. However, whether the procedure should be performed with or without the use of cardiopulmonary bypass, referred to as off-pump and on-pump CABG, is still up for debate....... Intuitively, avoidance of cardiopulmonary bypass seems beneficial as the systemic inflammatory response from extracorporeal circulation is omitted, but no single randomized trial has been able to prove off-pump CABG superior to on-pump CABG as regards the hard outcomes death, stroke or myocardial infarction....... In contrast, off-pump CABG is technically more challenging and may be associated with increased risk of incomplete revascularization. The purpose of the review is to summarize the current literature comparing outcomes of off-pump versus on-pump coronary artery bypass surgery....

  7. Analyses of hydrodynamic effects of large sodium-water reactions

    International Nuclear Information System (INIS)

    Sakano, K.; Shindo, Y.; Koishikawa, A.; Maekawa, I.

    1977-01-01

    Large leak sodium-water reactions that would occur in a steam generator of LMFBR causes abrupt changes of pressure and velocity of fluid in a secondary sodium system and relief system. This paper describes SOWACS-III together with its model and method. Results of analyses are also given, the comparison with experimental results of initial pressure spike being included. SOWACS-III treats the system which consists of the steam generator, vessel, valve, pump and pipe, and uses the following models and methods. (1) Components are assumed to be one-dimensional. (2) Pressure wave propagation near a reaction zone, where hydrogen is generated, is analyzed with the spherical co-ordinate (sphere-cylinder model). (3) A moving boundary is formed by contact of sodium with other fluid such as hydrogen and nitrogen. The boundary travels without mixing of sodium and another fluid through the boundary (boundary tracking model). The boundary can be treated not to move from the original place (fixed boundary model). (4) Pressure wave propagation is analyzed by the explicit method of characteristics in one-dimensional Eulerian co-ordinate. (5) Flow-induced force is analyzed by momentum balance. (6) The lateral motion of relief piping caused by the force is analyzed by NASTRAN code. Analyses were carried out for large sodium-water reaction experiments in SWAT-3 rig of PNC by using the sphere-cylinder model. The calculated pressure spike in the reaction vessel was compared with the measured one for a few milliseconds after water injection. The calculated value and measured one were 6.4 ata and 6.7 ata for peak pressure and 0.6 ms and 2.8 ms for rising time, respectively

  8. FBR structural material test facility in flowing sodium environment

    International Nuclear Information System (INIS)

    Shanmugasundaram, M.; Kumar, Hemant; Ravi, S.

    2016-01-01

    In Fast Breeder Reactor (FBR), components such as Control and Safety Rod Drive Mechanism (CSRDM), Diverse Safety Rod Drive Mechanism (DSRDM), Transfer arm and primary sodium pumps etc., are experiencing friction and wear between the moving parts in contact with liquid sodium at high temperature. Hence, it is essential to evaluate the friction and wear behaviour to validate the design of components. In addition, the above core structural reactor components such as core cover plate, control plugs etc., undergoes thermal striping which is random thermal cycling induced by flow stream resulting from the mixing of non isothermal jets near that component. This leads to development of surface cracks and assist in crack growth which in turn may lead to failure of the structural component. Further, high temperature components are often subjected to low cycle fatigue due to temperature gradient induced cyclic thermal stresses caused by start-ups, shutdowns and transients. Also steady state operation at elevated temperature introduces creep and the combination of creep and fatigue leads to creep-fatigue interactions. Therefore, resistance to low cycle fatigue, creep and creep-fatigue are important considerations in the design of FBR components. Liquid sodium is used as coolant and hence the study of the above properties in dynamic sodium are equally important. In view of the above, facility for materials testing in sodium (INSOT) has been constructed and in operation for conducting the experiments such as tribology, thermal stripping, low cycle fatigue, creep and creep-fatigue interaction etc. The salient features of the operation and maintenance of creep and fatigue loops of INSOT facility are discussed in detail. (author)

  9. The cell-based L-glutathione protection assays to study endocytosis and recycling of plasma membrane proteins.

    Science.gov (United States)

    Cihil, Kristine M; Swiatecka-Urban, Agnieszka

    2013-12-13

    Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.

  10. Rab11b mediates melanin transfer between donor melanocytes and acceptor keratinocytes via coupled exo/endocytosis.

    Science.gov (United States)

    Tarafder, Abul K; Bolasco, Giulia; Correia, Maria S; Pereira, Francisco J C; Iannone, Lucio; Hume, Alistair N; Kirkpatrick, Niall; Picardo, Mauro; Torrisi, Maria R; Rodrigues, Inês P; Ramalho, José S; Futter, Clare E; Barral, Duarte C; Seabra, Miguel C

    2014-04-01

    The transfer of melanin from melanocytes to keratinocytes is a crucial process underlying maintenance of skin pigmentation and photoprotection against UV damage. Here, we present evidence supporting coupled exocytosis of the melanin core, or melanocore, by melanocytes and subsequent endocytosis by keratinocytes as a predominant mechanism of melanin transfer. Electron microscopy analysis of human skin samples revealed three lines of evidence supporting this: (1) the presence of melanocores in the extracellular space; (2) within keratinocytes, melanin was surrounded by a single membrane; and (3) this membrane lacked the melanosomal membrane protein tyrosinase-related protein 1 (TYRP1). Moreover, co-culture of melanocytes and keratinocytes suggests that melanin exocytosis is specifically induced by keratinocytes. Furthermore, depletion of Rab11b, but not Rab27a, caused a marked decrease in both keratinocyte-stimulated melanin exocytosis and transfer to keratinocytes. Thus, we propose that the predominant mechanism of melanin transfer is keratinocyte-induced exocytosis, mediated by Rab11b through remodeling of the melanosome membrane, followed by subsequent endocytosis by keratinocytes.

  11. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  12. Liquid metal pump

    Science.gov (United States)

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  13. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair

  14. Effect of radiation on sodium and water transport in rat erythrocytes and possible repair using olive oil

    International Nuclear Information System (INIS)

    Othman, A.I.; El-Missiry, M.A.

    1991-01-01

    Gamma radiation dose 4 Gy was administered to whole rats, and sodium, water transport and sulfhydryl groups (-SH) contents of the erythrocytes were evaluated in vivo at postirradiation times 1, 3 and 7 days. The present results showed increased sodium and water gain associated with loss of sulfhydryl contents of the erythrocytes. These results are attributed to inhibition of Na pump activity and increased Na leakage into cells which increased the intracellular osmotic elements that lead to influx of water. These changes were secondary to the destruction of erythrocyte -SH groups which was investigated as a change in tertiary structure of the membrane proteins. Olive oil administered intraperitoneally resulted in restoration of the status of the studied parameters. We also noticed an increase in the amount of plasma unsaturated fatty acids including phospholipids. The relation between the reappearance of erythrocyte -SH groups and increased plasma phospholipids suggested a repair role for olive oil. This is through reconstitution of the Na-pump activity in erythrocytes by reactivation of (Na-K) ATPase stimulated by negatively charged plasma phospholipids.4 fig.,1 tab. i

  15. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  16. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  17. Improved α-Amylase Production by Dephosphorylation Mutation of CreD, an Arrestin-Like Protein Required for Glucose-Induced Endocytosis of Maltose Permease and Carbon Catabolite Derepression in Aspergillus oryzae.

    Science.gov (United States)

    Tanaka, Mizuki; Hiramoto, Tetsuya; Tada, Hinako; Shintani, Takahiro; Gomi, Katsuya

    2017-07-01

    Aspergillus oryzae produces copious amount of amylolytic enzymes, and MalP, a major maltose permease, is required for the expression of amylase-encoding genes. The expression of these genes is strongly repressed by carbon catabolite repression (CCR) in the presence of glucose. MalP is transported from the plasma membrane to the vacuole by endocytosis, which requires the homolog of E6-AP carboxyl terminus ubiquitin ligase HulA, an ortholog of yeast Rsp5. In yeast, arrestin-like proteins mediate endocytosis as adaptors of Rsp5 and transporters. In the present study, we examined the involvement of CreD, an arrestin-like protein, in glucose-induced MalP endocytosis and CCR of amylase-encoding genes. Deletion of creD inhibited the glucose-induced endocytosis of MalP, and CreD showed physical interaction with HulA. Phosphorylation of CreD was detected by Western blotting, and two serine residues were determined as the putative phosphorylation sites. However, the phosphorylation state of the serine residues did not regulate MalP endocytosis and its interaction with HulA. Although α-amylase production was significantly repressed by creD deletion, both phosphorylation and dephosphorylation mimics of CreD had a negligible effect on α-amylase activity. Interestingly, dephosphorylation of CreD was required for CCR relief of amylase genes that was triggered by disruption of the deubiquitinating enzyme-encoding gene creB The α-amylase activity of the creB mutant was 1.6-fold higher than that of the wild type, and the dephosphorylation mimic of CreD further improved the α-amylase activity by 2.6-fold. These results indicate that a combination of the dephosphorylation mutation of CreD and creB disruption increased the production of amylolytic enzymes in A. oryzae IMPORTANCE In eukaryotes, glucose induces carbon catabolite repression (CCR) and proteolytic degradation of plasma membrane transporters via endocytosis. Glucose-induced endocytosis of transporters is mediated by

  18. Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump

    OpenAIRE

    Li, Tao; Zhang, Weiming; Jiang, Ming; Li, Zhengyang

    2013-01-01

    A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Re...

  19. Centrifugal pump handbook

    CERN Document Server

    Pumps, Sulzer

    2010-01-01

    This long-awaited new edition is the complete reference for engineers and designers working on pump design and development or using centrifugal pumps in the field. This authoritative guide has been developed with access to the technical expertise of the leading centrifugal pump developer, Sulzer Pumps. In addition to providing the most comprehensive centrifugal pump theory and design reference with detailed material on cavitation, erosion, selection of materials, rotor vibration behavior and forces acting on pumps, the handbook also covers key pumping applications topics and operational

  20. Sodium bicarbonate-augmented stress thallium myocardial scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, Badal; Chugh, Pradeep Kumar; Kaushal, Dinesh; Soni, Nakse Lal; Sawroop, Kishan; Mondal, Anupam; Bhatnagar, Aseem [Department of Nuclear Medicine, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, 110054, Delhi (India)

    2004-04-01

    It is well known that sodium bicarbonate in pharmacological doses induces transient alkalosis, causing intracellular transport of serum potassium. The aims of this study were (a) to investigate whether, in humans, myocardial thallium-201 uptake can be augmented by pretreatment with a single bolus of sodium bicarbonate at a pharmacological dose, (b) to verify general safety aspects of the intervention and (c) to evaluate the clinical implications of augmentation of {sup 201}Tl uptake, if any. Routine exercise myocardial scintigraphy was performed twice in eight adult volunteers (five normal and three abnormal), once without intervention and the second time (within a week) following intravenous administration of sodium bicarbonate (88 mEq in 50 ml) as a slow bolus 1 h prior to the injection of {sup 201}Tl. Conventional myocardial thallium study was compared with sodium bicarbonate interventional myocardial scintigraphy with respect to myocardial uptake (counts per minute per mCi injected dose), washout patterns in normal and abnormal myocardial segments, and overall clinical interpretation based on planar and single-photon emission tomographic (SPET) images. All patients remained asymptomatic after the intervention. A mean increase of 53% in myocardial uptake of thallium was noted in post-exercise acquisitions after the intervention, confirming uptake of the tracer via the potassium-hydrogen pump and its augmentation by transient alkalosis. The washout pattern remained unchanged. The visual quality of planar and SPET images improved significantly after the intervention. Out of the five abnormal myocardial segments identified in three cases, four showed significant filling-in after the intervention, causing the diagnosis to be upgraded from ''partial scar'' to ''ischaemia'', or from ''ischaemia'' to ''normal''. The overall scan impression changed in two out of three such cases. Sodium

  1. Salt-Induced Hypertension in a Mouse Model of Liddle's Syndrome is Mediated by Epithelial Sodium Channels in the Brain

    Science.gov (United States)

    Van Huysse, James W.; Amin, Md. Shahrier; Yang, Baoli; Leenen, Frans H. H.

    2012-01-01

    Neural precursor cell expressed and developmentally downregulated 4-2 protein (Nedd4-2) facilitates the endocytosis of epithelial Na channels (ENaC). Both mice and humans with a loss of regulation of ENaC by Nedd4-2 have salt-induced hypertension. ENaC is also expressed in the brain, where it is critical for hypertension on high salt diet in salt-sensitive rats. In the present studies we assessed whether Nedd4-2 knockout (−/−) mice have: 1) increased brain ENaC; 2) elevated CSF sodium on high salt diet; and 3) enhanced pressor responses to CSF sodium and hypertension on high salt diet, both mediated by brain ENaC. Prominent choroid plexus and neuronal ENaC staining was present in −/− but not in wild-type (W/T) mice. In chronically instrumented mice, intracerebroventricular (icv) infusion of Na-rich aCSF increased MAP 3-fold higher in −/− than W/T. Icv infusion of the ENaC blocker benzamil abolished this enhancement. In telemetered −/− mice on high salt diet (8% NaCl), CSF [Na+], MAP and HR increased significantly, MAP by 30-35 mmHg. These MAP and HR responses were largely prevented by icv benzamil, but only to a minor extent by sc benzamil at the icv rate. We conclude that increased ENaC expression in the brain of Nedd 4-2 −/− mice mediates their hypertensive response to high salt diet, by causing increased sodium levels in the CSF as well as hyper-responsiveness to CSF sodium. These findings highlight the possible causative contribution of CNS ENaC in the etiology of salt-induced hypertension. PMID:22802227

  2. Penis Pump

    Science.gov (United States)

    ... your appointment might be less involved. Choosing a penis pump Some penis pumps are available without a ... it doesn't get caught in the ring. Penis pumps for penis enlargement Many advertisements in magazines ...

  3. Pumping characteristics of sputter ion pump (SIP) and titanium sublimation pump (TSP) combination

    International Nuclear Information System (INIS)

    Ratnakala, K.C.; Patel, R.J.; Bhavsar, S.T.; Pandiyar, M.L.; Ramamurthi, S.S.

    1995-01-01

    For achieving hydrocarbon free, clean ultra high vacuum, SIP-TSP combination is one of the ideal choice for pumping. For the SRS facility in Centre for Advanced Technology (CAT), we are utilising this combination, enmass. For this purpose, two modules of these combination set-ups are assembled, one with the TSP as an integral part of SIP and the other, with TSP as a separate pump mounted on the top of SIP. The pump bodies were vacuum degassed at 700 degC at 10 -5 mbar for 3 hrs. An ultimate vacuum of 3 x 10 -11 mbar was achieved, after a bake-out at 250 degC for 4 hrs, followed by continuous SIP pumping for 48 hrs, with two TSP flashing at approximately 10 hrs interval. The pump-down patterns as well as the pressure-rise patterns are studied. (author). 2 refs., 5 figs

  4. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis.

    Science.gov (United States)

    Lacruz, Rodrigo S; Brookes, Steven J; Wen, Xin; Jimenez, Jaime M; Vikman, Susanna; Hu, Ping; White, Shane N; Lyngstadaas, S Petter; Okamoto, Curtis T; Smith, Charles E; Paine, Michael L

    2013-03-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data

  5. Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis

    Science.gov (United States)

    Rampazzo, Enrico; Voltan, Rebecca; Petrizza, Luca; Zaccheroni, Nelsi; Prodi, Luca; Casciano, Fabio; Zauli, Giorgio; Secchiero, Paola

    2013-08-01

    Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2 leukemic cell line and primary normal peripheral blood mononuclear cells) or in adherence (human hepatocarcinoma Huh7 and umbilical vein endothelial cells). Moreover, by multiparametric flow cytometry, we could demonstrate that the highest efficiency of cell uptake and entry was observed with NP-PEG-amino, with a stable persistence of the fluorescence signal associated with SiNPs in the loaded cell populations both in vitro and in vivo settings suggesting this as an innovative method for cell traceability and detection in whole organisms. Finally, experiments performed with the endocytosis inhibitor Genistein clearly suggested the involvement of a caveolae-mediated pathway in SiNP endocytosis. Overall, these data support the safe use of these SiNPs for diagnostic and therapeutic applications.Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2

  6. Large scale breeder reactor plant prototype mechanical pump conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    This report includes engineering memorandums, drawings, key feature descriptions, and other data. Some of the reports, such as manufacturability and some stress analysis, were done by consultants for Byron Jackson. Review of this report indicates that the design is feasible. The pump can be manufactured to system and specification requirements. The overall length and weight of some pieces will require special consideration, but is within the scope of equipment and technology available today. The fabricated parts are large and heavy, but can be manufactured and machined. Only the high temperature is unique to this size, since previous sodium pumps were smaller. Nondestructive tests as required by the Code are described and are feasible. The performance test of the prototype has been studied thoroughly. It is feasible for a cold water test. There are some problem areas. However, all of them can be solved. Development needs include building and testing a small scale model.

  7. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The appendices include: (A) design data sheets and P and I drawing for 100-MWe commercial plant design, for all-sodium storage concept; (B) design data sheets and P and I drawing for 100-MWe commercial plant design, for air-rock bed storage concept; (C) electric power generating water-steam system P and I drawing and equipment list, 100-MWe commercial plant design; (D) design data sheets and P and I drawing for 281-MWe commercial plant design; (E) steam generator system conceptual design; (F) heat losses from solar receiver surface; (G) heat transfer and pressure drop for rock bed thermal storage; (H) a comparison of alternative ways of recovering the hydraulic head from the advanced solar receiver tower; (I) central receiver tower study; (J) a comparison of mechanical and electromagnetic sodium pumps; (K) pipe routing study of sodium downcomer; and (L) sodium-cooled advanced central receiver system simulation model. (WHK)

  8. DRP1-Dependent Endocytosis is Essential for Polar Localization and Boron-Induced Degradation of the Borate Transporter BOR1 in Arabidopsis thaliana.

    Science.gov (United States)

    Yoshinari, Akira; Fujimoto, Masaru; Ueda, Takashi; Inada, Noriko; Naito, Satoshi; Takano, Junpei

    2016-09-01

    Boron (B) is essential for plants but toxic in excess. The borate efflux transporter BOR1 is expressed in various root cells and localized to the inner/stele-side domain of the plasma membrane (PM) under low-B conditions. BOR1 is rapidly degraded through endocytosis upon sufficient B supply. The polar localization and degradation of BOR1 are considered important for efficient B translocation and avoidance of B toxicity, respectively. In this study, we first analyzed the subcellular localization of BOR1 in roots, cotyledons and hypocotyls, and revealed a polar localization in various cell types. We also found that the inner polarity of BOR1 is established after completion of cytokinesis in the root meristem. Moreover, variable-angle epifluorescence microscopy visualized BOR1-green fluorescent protein (GFP) as particles in the PM with significant lateral movements but in restricted areas. Importantly, a portion of BOR1-GFP particles co-localized with DYNAMIN-RELATED PROTEIN 1A (DRP1A), which is involved in scission of the clathrin-coated vesicles, and they disappeared together from the PM. To examine the contribution of DRP1A-mediated endocytosis to BOR1 localization and degradation, we developed an inducible expression system of the DRP1A K47A variant. The DRP1A variant prolonged the residence time of clathrin on the PM and inhibited endocytosis of membrane lipids. The dominant-negative DRP1A blocked endocytosis of BOR1 and disturbed its polar localization and B-induced degradation. Our results provided insight into the endocytic mechanisms that modulate the subcellular localization and abundance of a mineral transporter for nutrient homeostasis in plant cells. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. The Experimental Characterization of the Magnetic Field Effect on a Liquid Sodium Flow

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Kim, Jong Man; Cha, Jae Eun; Choi, Jong Hyun; Nam, Ho Yoon

    2006-01-01

    A liquid sodium coolant is used for a LMR such as KALIMER and a magnetic field is generated in the electromagnetic pump or flowmeter. The magnetic field has an effect on the electrically conducting metal flow by a generation of an electromagnetic pressure drop. Therefore, in the present study, a theoretical calculation is carried out for the effect of an external magnetic field and the magnetic field is measured over the electromagnet system manufactured for the magnetohydrodynamic experiments

  10. The Theoretical Investigation of the Magnetic Field Effect on a Liquid Sodium Flow

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Kim, Jong Man; Cha, Jae Eun; Choi, Jong Hyun; Nam, Ho Yoon

    2005-01-01

    The liquid sodium coolant is used for LMR such as KALIMER and magnetic field is generated in the electromagnetic pump or flowmeter. The magnetic field takes an effect on the electrically conducting metal flow by the generation of the electromagnetic pressure drop. Therefore, in the present study, the theoretical calculation is carried out for an effect from the external magnetic field and the magnetic field is firstly measured over the electromagnet system manufactured for the magnetohydrodynamic experiments

  11. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  12. Predictors of sudden death and death from pump failure in congestive heart failure are different. Analysis of 24 h Holter monitoring, clinical variables, blood chemistry, exercise test and radionuclide angiography

    DEFF Research Database (Denmark)

    Madsen, B K; Rasmussen, Verner; Hansen, J F

    1997-01-01

    Association class II and 44% in III. Total mortality after 1 year was 21%, after 2 years 32%. Of 60 deaths, 33% were sudden and 49% due to pump failure. Multivariate analyses identified totally different risk factors for sudden death: ventricular tachycardia, s-sodium ....6 mmol/l, s-potassium sudden death and for death from progressive pump failure........80 mmol/l, s-creatinine > 121 mumol/l, and maximal change in heart rate during exercise death from progressive pump failure: New York Heart Association class III + IV, delta heart rate over 24 h 7...

  13. Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells

    Directory of Open Access Journals (Sweden)

    Nils Bohmer

    2015-01-01

    Full Text Available Nanomedicine is a rapidly growing field in nanotechnology, which has great potential in the development of new therapies for numerous diseases. For example iron oxide nanoparticles are in clinical use already in the thermotherapy of brain cancer. Although it has been shown, that tumor cells take up these particles in vitro, little is known about the internalization routes. Understanding of the underlying uptake mechanisms would be very useful for faster and precise development of nanoparticles for clinical applications. This study aims at the identification of key proteins, which are crucial for the active uptake of iron oxide nanoparticles by HeLa cells (human cervical cancer as a model cell line. Cells were transfected with specific siRNAs against Caveolin-1, Dynamin 2, Flotillin-1, Clathrin, PIP5Kα and CDC42. Knockdown of Caveolin-1 reduces endocytosis of superparamagnetic iron oxide nanoparticles (SPIONs and silica-coated iron oxide nanoparticles (SCIONs between 23 and 41%, depending on the surface characteristics of the nanoparticles and the experimental design. Knockdown of CDC42 showed a 46% decrease of the internalization of PEGylated SPIONs within 24 h incubation time. Knockdown of Dynamin 2, Flotillin-1, Clathrin and PIP5Kα caused no or only minor effects. Hence endocytosis in HeLa cells of iron oxide nanoparticles, used in this study, is mainly mediated by Caveolin-1 and CDC42. It is shown here for the first time, which proteins of the endocytotic pathway mediate the endocytosis of silica-coated iron oxide nanoparticles in HeLa cells in vitro. In future studies more experiments should be carried out with different cell lines and other well-defined nanoparticle species to elucidate possible general principles.

  14. Radioactive sodium waste treatment and conditioning. Review of main aspects

    International Nuclear Information System (INIS)

    2007-01-01

    This publication reviews the main aspects relating to the treatment and conditioning of radioactive sodium waste. This waste arises from the operation of liquid metal fast reactors (LMFRs). In this type of reactor, sodium (Na) or sodium-potassium alloys (NaK) are used as a low-effect neutron moderating coolant medium for extracting and transferring thermal energy from the core and they represent a significant technical and safety challenge during operation and decommissioning. This publication provides the reader with technologically oriented information on the present status of sodium waste management approaches and recent achievements related to treatment and conditioning, with the objective of facilitating planning and preparatory work for the decommissioning of LMFRs. This publication provides a comprehensive review of the hazards associated with sodium waste management. Given the large quantities of sodium waste arising during decommissioning or reactor refurbishment, as well as the challenges and varied techniques associated with removal of 100% of all sodium and NaK bulk quantities and residues during decommissioning, a hazards review and analysis is a critical component in planning the dismantling and waste management activities. Roughly half of this publication focuses on sodium waste generating, handling and treatment processes. This includes draining sodium and NaK from plant systems; in situ treatment of residual sodium; cutting techniques for pumps, valves, piping and other components; cleaning of components; potential reuse of sodium; and removal of selected radionuclides from sodium waste with the objective of reducing the waste classification or converting it to exempt waste. The focus is on proven techniques and technologies, and each discussed method includes a review of the associated principle or theory, practical applications, advantages and disadvantages, limitations, industry experience, and final waste products. A review is provided of final

  15. Pumping characteristics of roots blower pumps for light element gases

    International Nuclear Information System (INIS)

    Hiroki, Seiji; Abe, Tetsuya; Tanzawa, Sadamitsu; Nakamura, Jun-ichi; Ohbayashi, Tetsuro

    2002-07-01

    The pumping speed and compression ratio of the two-stage roots blower pumping system were measured for light element gases (H 2 , D 2 and He) and for N 2 , in order to assess validity of the ITER torus roughing system as an ITER R and D task (T234). The pumping system of an Edwards EH1200 (nominal pumping speed of 1200 m 3 /s), two EH250s (ibid. 250 m 3 /s) and a backing pump (ibid. 100 m 3 /s) in series connection was tested under PNEUROP standards. The maximum pumping speeds of the two-stage system for D 2 and N 2 were 1200 and 1300 m 3 /h, respectively at 60 Hz, which satisfied the nominal pumping speed. These experimental data support the design validity of the ITER torus roughing system. (author)

  16. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  17. Pump characteristics and applications

    CERN Document Server

    Volk, Michael

    2013-01-01

    Providing a wealth of information on pumps and pump systems, Pump Characteristics and Applications, Third Edition details how pump equipment is selected, sized, operated, maintained, and repaired. The book identifies the key components of pumps and pump accessories, introduces the basics of pump and system hydraulics as well as more advanced hydraulic topics, and details various pump types, as well as special materials on seals, motors, variable frequency drives, and other pump-related subjects. It uses example problems throughout the text, reinforcing the practical application of the formulae

  18. Mathematical modeling of white adipocyte exocytosis predicts adiponectin secretion and quantifies the rates of vesicle exo- and endocytosis.

    Science.gov (United States)

    Brännmark, Cecilia; Lövfors, William; Komai, Ali M; Axelsson, Tom; El Hachmane, Mickaël F; Musovic, Saliha; Paul, Alexandra; Nyman, Elin; Olofsson, Charlotta S

    2017-12-08

    Adiponectin is a hormone secreted from white adipocytes and takes part in the regulation of several metabolic processes. Although the pathophysiological importance of adiponectin has been thoroughly investigated, the mechanisms controlling its release are only partly understood. We have recently shown that adiponectin is secreted via regulated exocytosis of adiponectin-containing vesicles, that adiponectin exocytosis is stimulated by cAMP-dependent mechanisms, and that Ca 2+ and ATP augment the cAMP-triggered secretion. However, much remains to be discovered regarding the molecular and cellular regulation of adiponectin release. Here, we have used mathematical modeling to extract detailed information contained within our previously obtained high-resolution patch-clamp time-resolved capacitance recordings to produce the first model of adiponectin exocytosis/secretion that combines all mechanistic knowledge deduced from electrophysiological experimental series. This model demonstrates that our previous understanding of the role of intracellular ATP in the control of adiponectin exocytosis needs to be revised to include an additional ATP-dependent step. Validation of the model by introduction of data of secreted adiponectin yielded a very close resemblance between the simulations and experimental results. Moreover, we could show that Ca 2+ -dependent adiponectin endocytosis contributes to the measured capacitance signal, and we were able to predict the contribution of endocytosis to the measured exocytotic rate under different experimental conditions. In conclusion, using mathematical modeling of published and newly generated data, we have obtained estimates of adiponectin exo- and endocytosis rates, and we have predicted adiponectin secretion. We believe that our model should have multiple applications in the study of metabolic processes and hormonal control thereof. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting.

    Science.gov (United States)

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2013-12-23

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.

  20. Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis.

    Directory of Open Access Journals (Sweden)

    Natasha Chaudhary

    2014-04-01

    Full Text Available Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1 and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP studies. In the absence of cavins (and caveolae CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide

  1. Pump element for a tube pump

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction...... relative to the rod element so as to allow for a fluid flow in the tube through the first valve member, along the rod element, and through the second valve member. The tube comprises an at least partly flexible tube portion between the valve members such that a repeated deformation of the flexible tube...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...

  2. Pumping behavior of sputtering ion pump

    Energy Technology Data Exchange (ETDEWEB)

    Chou, T.S.; Bittner, J.; Schuchman, J.

    1991-12-31

    To optimize the design of a distributed ion pump (DIP) for the Superconducting X-Ray Lithography Source (SXLS) the stability of the rotating electron cloud at very high magnetic field beyond transition, must be re-examined. In this work the pumping speed and frequency spectrum of a DIP at various voltages (1 to 10 KV) and various magnetic fields (0.1 to 4 Tesla) are measured. Three cell diameters 10 mm, 5 mm and 2.5 mm, each 8 mm long, and with 3 or 4 mm gaps between anode and cathode are investigated. In this study both the titanium cathodes and the stainless steel anode plates are perforated with holes comparable in size to the anode cell diameters. Only the partially saturated pumping behavior is under investigation. The ultimate pressure and conditioning of the pump will be investigated at a later date when the stability criterion for the electron cloud is better understood.

  3. Pumping behavior of sputtering ion pump

    Energy Technology Data Exchange (ETDEWEB)

    Chou, T.S.; Bittner, J.; Schuchman, J.

    1991-01-01

    To optimize the design of a distributed ion pump (DIP) for the Superconducting X-Ray Lithography Source (SXLS) the stability of the rotating electron cloud at very high magnetic field beyond transition, must be re-examined. In this work the pumping speed and frequency spectrum of a DIP at various voltages (1 to 10 KV) and various magnetic fields (0.1 to 4 Tesla) are measured. Three cell diameters 10 mm, 5 mm and 2.5 mm, each 8 mm long, and with 3 or 4 mm gaps between anode and cathode are investigated. In this study both the titanium cathodes and the stainless steel anode plates are perforated with holes comparable in size to the anode cell diameters. Only the partially saturated pumping behavior is under investigation. The ultimate pressure and conditioning of the pump will be investigated at a later date when the stability criterion for the electron cloud is better understood.

  4. Sodium

    Science.gov (United States)

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  5. Multiple pump housing

    Science.gov (United States)

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  6. Distinct cargo-specific response landscapes underpin the complex and nuanced role of galectin-glycan interactions in clathrin-independent endocytosis.

    Science.gov (United States)

    Mathew, Mohit P; Donaldson, Julie G

    2018-05-11

    Clathrin-independent endocytosis (CIE) is a form of endocytosis that lacks a defined cytoplasmic machinery. Here, we asked whether glycan interactions, acting from the outside, could be a part of that endocytic machinery. We show that the perturbation of global cellular patterns of protein glycosylation by modulation of metabolic flux affects CIE. Interestingly, these changes in glycosylation had cargo-specific effects. For example, in HeLa cells, GlcNAc treatment, which increases glycan branching, increased major histocompatibility complex class I (MHCI) internalization but inhibited CIE of the glycoprotein CD59 molecule (CD59). The effects of knocking down the expression of galectin 3, a carbohydrate-binding protein and an important player in galectin-glycan interactions, were also cargo-specific and stimulated CD59 uptake. By contrast, inhibition of all galectin-glycan interactions by lactose inhibited CIE of both MHCI and CD59. None of these treatments affected clathrin-mediated endocytosis, implying that glycosylation changes specifically affect CIE. We also found that the galectin lattice tailors membrane fluidity and cell spreading. Furthermore, changes in membrane dynamics mediated by the galectin lattice affected macropinocytosis, an altered form of CIE, in HT1080 cells. Our results suggest that glycans play an important and nuanced role in CIE, with each cargo being affected uniquely by alterations in galectin and glycan profiles and their interactions. We conclude that galectin-driven effects exist on a continuum from stimulatory to inhibitory, with distinct CIE cargo proteins having unique response landscapes and with different cell types starting at different positions on these conceptual landscapes.

  7. Assessing the energy efficiency of pumps and pump units background and methodology

    CERN Document Server

    Bernd Stoffel, em Dr-Ing

    2015-01-01

    Assessing the Energy Efficiency of Pumps and Pump Units, developed in cooperation with Europump, is the first book available providing the background, methodology, and assessment tools for understanding and calculating energy efficiency for pumps and extended products (pumps+motors+drives). Responding to new EU requirements for pump efficiency, and US DOE exploratory work in setting pump energy efficiency guidelines, this book provides explanation, derivation, and illustration of PA and EPA methods for assessing energy efficiency. It surveys legislation related to pump energy eff

  8. Sodium component reliability data collection at CREDO

    International Nuclear Information System (INIS)

    Bott, T.F.; Haas, P.M.; Manning, J.J.

    1979-01-01

    The Centralized Reliability Data Organization (CREDO) has been established at Oak Ridge National Laboratory (ORNL) by the Department of Energy to provide a national center for collection, evaluation and dissemination of reliability data for advanced reactors. While the system is being developed and continuous data collection at the two U.S. reactor sites (EBR-II and FFTF) is being established, data on advanced reactor components which have been in use at U.S. test loops and experimental reactors have been collected and analyzed. Engineering, operating and event data on sodium valves, pumps, flow meters, rupture discs, heat exchangers and cold traps have been collected from more than a dozen sites. The results of analyses of the data performed to date are presented

  9. Effect of Non-linear Velocity Loss Changes in Pumping Stage of Hydraulic Ram Pumps on Pumping Discharge Rate

    Directory of Open Access Journals (Sweden)

    Reza Fatahialkouhi

    2018-03-01

    Full Text Available The ram pump is a device which pumps a portion of input discharge to the pumping system in a significant height by using renewable energy of water hammer. The complexities of flow hydraulic on one hand and on the other hand the use of simplifying assumptions in ram pumps have caused errors in submitted analytical models for analyzing running cycle of these pumps. In this study it has been tried to modify the governing analytical model on hydraulic performance of these pumps in pumping stage. In this study by creating a logical division, the cycle of the ram pump was divided into three stages of acceleration, pumping and recoil and the governing equations on each stage of cycling are presented by using method of characteristics. Since the closing of impulse valve is nonlinear, velocity loss in pumping stage is considered nonlinearly. Also the governing equations in pumping stage were modified by considering disc elasticity of impulse valve and changing volume of the pump body when the water hammer phenomenon is occurred. In order to evaluate results and determine empirical factors of the proposed analytical model, a physical model of the ram pump is made with internal diameter of 51 mm. Results of this study are divided into several parts. In the first part, loss coefficients of the impulse valve were measured experimentally and empirical equations of drag coefficient and friction coefficient of the impulse valve were submitted by using nonlinear regression. In the second part, results were evaluated by using experimental data taken from this study. Evaluation of statistical error functions showed that the proposed model has good accuracy for predicting experimental observations. In the third part, in order to validate the results in pumping stage, the analytical models of Lansford and Dugan (1941 and Tacke (1988 were used and the error functions resulted from prediction of experimental observations were investigated through analytical models of

  10. Corrosion of Steels in the Vicinity of a Sodium-Water Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Davies, R. A.; Bray, J. A.; Lyons, J. M. [U.K. Atomic Energy Authority, Dounreay Experimental Reactor Establishment, Thurso, Caithness (United Kingdom)

    1967-06-15

    Rapid corrosion of steels in the vicinity of a sodium-water reaction could lead to a major reaction in a sodium-water heat exchanger. An investigation of the magnitude of the corrosion problem has been carried out under conditions simulating both a small water leak and a full size pipe burst, and further tube failures have been obtained. These experiments were carried out on a sodium rig which could accommodate simple full-scale models of sections of heat exchanger, and up to 70 lb of water was injected into 700 lb of sodium in 9.0s. The corrosion phenomena have also been investigated on a small scale under more controllable conditions by pumping water at normal pressures into a pot of sodium. With a flow-rate of 1 ml/min corrosion rates in excess of 0.005 in./min have been obtained. The effect of various parameters on the corrosion rate has been studied, and a comparison has been made of the corrosion rates obtained with a variety of steels. The corrosion appears to be a direct result of conditions during the reaction, and the appearance of the specimen and pattern of damage suggests that the main effect is concentrated where the sodium water reaction front impinges on the metal surface. The corrosion rates are very much lower with stainless steel and nickel alloys than with ferritic materials, and suggest that the phenomena are associated with the formation of (Na{sub 2}O){sub 2}FeO. Iron powder has also been observed in the vicinity of the reaction which would suggest that this is reduced at a later stage, either as a result of the hydrogen produced during reaction, or by thermal cycling. (author)

  11. Methodology for Extraction of Remaining Sodium of Used Sodium Containers

    International Nuclear Information System (INIS)

    Jung, Minhwan; Kim, Jongman; Cho, Youngil; Jeong, Jiyoung

    2014-01-01

    Sodium used as a coolant in the SFR (Sodium-cooled Fast Reactor) reacts easily with most elements due to its high reactivity. If sodium at high temperature leaks outside of a system boundary and makes contact with oxygen, it starts to burn and toxic aerosols are produced. In addition, it generates flammable hydrogen gas through a reaction with water. Hydrogen gas can be explosive within the range of 4.75 vol%. Therefore, the sodium should be handled carefully in accordance with standard procedures even though there is a small amount of target sodium remainings inside the containers and drums used for experiment. After the experiment, all sodium experimental apparatuses should be dismantled carefully through a series of draining, residual sodium extraction, and cleaning if they are no longer reused. In this work, a system for the extraction of the remaining sodium of used sodium drums has been developed and an operation procedure for the system has been established. In this work, a methodology for the extraction of remaining sodium out of the used sodium container has been developed as one of the sodium facility maintenance works. The sodium extraction system for remaining sodium of the used drums was designed and tested successfully. This work will contribute to an establishment of sodium handling technology for PGSFR. (Prototype Gen-IV Sodium-cooled Fast Reactor)

  12. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  13. Residual heat removal pump and low pressure safety injection pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1992-01-01

    Residual Heat Removal (RHR) and low pressure safety injection (LPSI) pumps installed in pressurized water-to-reactor power plants are used to provide low-head safety injection in the event of loss of coolant in the reactor coolant system. Because these pumps are subjected to rather severe temperature and pressure transients, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. Typically the pump impeller is mounted on an extended motor shaft (close-coupled configuration) and a mechanical seal is employed at the pump end of the shaft. Traditionally RHR and LPSI pumps have been a significant maintenance item for many utilities. Periodic mechanical seal of motor bearing replacement often is considered routine maintenance. The closed-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. This paper introduces a design modification developed to convert the close-coupled RHR and LPSI pumps to a coupled configuration

  14. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion

    Directory of Open Access Journals (Sweden)

    de la Vega Michelle

    2011-12-01

    Full Text Available Abstract Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.

  15. Endocytosis-independent function of clathrin heavy chain in the control of basal NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Man Lyang Kim

    Full Text Available BACKGROUND: Nuclear factor-κB (NF-κB is a transcription factor that regulates the transcription of genes involved in a variety of biological processes, including innate and adaptive immunity, stress responses and cell proliferation. Constitutive or excessive NF-κB activity has been associated with inflammatory disorders and higher risk of cancer. In contrast to the mechanisms controlling inducible activation, the regulation of basal NF-κB activation is not well understood. Here we test whether clathrin heavy chain (CHC contributes to the regulation of basal NF-κB activity in epithelial cells. METHODOLOGY: Using RNA interference to reduce endogenous CHC expression, we found that CHC is required to prevent constitutive activation of NF-κB and gene expression. Immunofluorescence staining showed constitutive nuclear localization of the NF-κB subunit p65 in absence of stimulation after CHC knockdown. Elevated basal p65 nuclear localization is caused by constitutive phosphorylation and degradation of inhibitor of NF-κB alpha (IκBα through an IκB kinase α (IKKα-dependent mechanism. The role of CHC in NF-κB signaling is functionally relevant as constitutive expression of the proinflammatory chemokine interleukin-8 (IL-8, whose expression is regulated by NF-κB, was found after CHC knockdown. Disruption of clathrin-mediated endocytosis by chemical inhibition or depletion of the μ2-subunit of the endocytosis adaptor protein AP-2, and knockdown of clathrin light chain a (CHLa, failed to induce constitutive NF-κB activation and IL-8 expression, showing that CHC acts on NF-κB independently of endocytosis and CLCa. CONCLUSIONS: We conclude that CHC functions as a built-in molecular brake that ensures a tight control of basal NF-κB activation and gene expression in unstimulated cells. Furthermore, our data suggest a potential link between a defect in CHC expression and chronic inflammation disorder and cancer.

  16. The polyene antimycotics nystatin and filipin disrupt the plasma membrane, whereas natamycin inhibits endocytosis in germinating conidia of Penicillium discolor

    NARCIS (Netherlands)

    Leeuwen, van M.R.; Golovina, E.A.; Dijksterhuis, J.

    2009-01-01

    To investigate the differences in membrane permeability and the effect on endocytosis of the polyene antimycotics nystatin, filipin and natamycin on germinating fungal conidia. Methods and Results: The model system was Penicillium discolor, a food spoilage fungus. Filipin resulted in

  17. Pump Application as Hydraulic Turbine – Pump as Turbine (PaT)

    OpenAIRE

    Rusovs, D

    2009-01-01

    The paper considers pump operation as hydraulic turbine with purpose to produce mechanical power from liquid flow. The Francis hydraulic turbine was selected for comparison with centrifugal pump in reverse operation. Turbine and centrifugal pump velocity triangles were considered with purpose to evaluate PaT efficiency. Shape of impeller blades for turbine and pumps was analysed. Specific speed calculation is carried out with purpose to obtain similarity in pump and turbine description. For ...

  18. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  19. Novel apigenin-loaded sodium hyaluronate nano-assemblies for targeting tumor cells.

    Science.gov (United States)

    Zhao, Ting; He, Yue; Chen, Huali; Bai, Yan; Hu, Wenjing; Zhang, Liangke

    2017-12-01

    We aimed to construct a novel nano-assembly carrying apigenin (APG), a hydrophobic drug, and to evaluate its in vitro targeting ability for A549 cells overexpressing CD44 receptors. The apigenin-loaded sodium hyaluronate nano-assemblies (APG/SH-NAs) were assembled by multiple non-covalent interactions between sodium hyaluronate (SH) and APG. The prepared APG/SH-NAs exhibited a small average size and narrow particle size distribution. In addition, satisfactory encapsulation efficiency and drug loading were obtained. The drug release curves indicated that APG/SH-NAs achieved a sustainable drug-release effect due to the presence of hydrophilic materials. The in vitro cytotoxicity of APG/SH-NAs against A549 cells and HepG2 cells was evaluated, and the results indicated that the prepared APG/SH-NA showed higher cytotoxicity compared to apigenin suspensions. When CD44 receptors on the surface of A549 cells were blocked by the addition of excess SH, the cytotoxicity of APG/SH-NA was significantly reduced. However, similar phenomena were not observed in HepG2 cells with relatively low CD44 receptor expression. The resulting APG/SH-NAs could efficiently facilitate the internalization of APG into A549 cells, which might be due to their high affinity for CD44 receptors. Moreover, the apoptotic rate of APG/SH-NAs through receptor-mediated endocytosis mechanism was higher than that of the other groups in A549 cells. Thus, such nano-assemblies were considered to be an effective transport system with excellent affinity for CD44 receptors to allow the SH-mediated targeted delivery of APG. Copyright © 2017. Published by Elsevier Ltd.

  20. Sodium fire tests for investigating the sodium leak in Monju

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi

    1996-01-01

    As a part of the work for investigating the sodium leak accident which occurred in Monju on December 8, 1995, three tests, (1) sodium leak test, (2) sodium fire test-I, and (3) sodium fire test-II, were carried out at OEC/PNC. Main objectives of these tests are to confirm leak and burning behavior of sodium from the damaged thermometer, and effects of the sodium fire on integrity of the surrounding structure, etc. The main conclusions obtained from the tests are shown as below. 1) Average sodium leak rate obtained from the sodium leak test was about 50 g/sec. This was equivalent to the value estimated from level change in the sodium overflow tank in the Monju accident. 2) Observation from video cameras in the sodium fire tests revealed that in early stages of sodium leak, sodium dropped down out of the flexible tube of thermometer in drips. This dripping and burning were expanded in range as sodium splashed on the duct. 3) Though, in the sodium fire test-I, there was a decrease of about 1 mm at a thickness of the burning pan in the vicinity in just under in the leak point, there were completely no crack and failure. In the meantime, in the sodium fire test-II the six open holes were found in the floor liner. By this liner failure, the reaction between sodium and concrete might take place. At present, while the detailed evaluation on the sodium fire test-II has been mainly carried out, the investigation for clarifying the cause of the liner failure has been also carried out. (author)

  1. Reactor coolant purification system circulation pumps (CUW pumps)

    International Nuclear Information System (INIS)

    Tsutsui, Toshiaki

    1979-01-01

    Coolant purification equipments for BWRs have been improved, and the high pressure purifying system has become the main type. The quantity of purifying treatment also changed to 2% of the flow rate of reactor feed water. As for the circulation pumps, canned motor pumps are adopted recently, and the improvements of reliability and safety are attempted. The impurities carried in by reactor feed water and the corrosion products generated in reactors and auxiliary equipments are activated by neutron irradiation or affect heat transfer adversely, adhering to fuel claddings are core structures. Therefore, a part of reactor coolant is led to the purification equipments, and returned to reactors after the impurities are eliminated perfectly. At the time of starting and stopping reactors, excess reactor water and the contaminated water from reactors are transferred to main condenser hot wells or waste treatment systems. Thus the prescribed water quality is maintained. The operational modes of and the requirements for the CUW pumps, the construction and the features of the canned motor type CUW pumps are explained. Recently, a pump operated for 11 months without any maintenance has been disassembled and inspected, but the wear of bearings has not been observed, and the high reliability of the pump has been proved. (Kako, I.)

  2. On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels

    Directory of Open Access Journals (Sweden)

    Virgilio L. Lew

    2017-12-01

    Full Text Available In a healthy adult, the transport of O2 and CO2 between lungs and tissues is performed by about 2 · 1013 red blood cells, of which around 1.7 · 1011 are renewed every day, a turnover resulting from an average circulatory lifespan of about 120 days. Cellular lifespan is the result of an evolutionary balance between the energy costs of maintaining cells in a fit functional state versus cell renewal. In this Review we examine how the set of passive and active membrane transporters of the mature red blood cells interact to maximize their circulatory longevity thus minimizing costs on expensive cell turnover. Red blood cell deformability is critical for optimal rheology and gas exchange functionality during capillary flow, best fulfilled when the volume of each human red blood cell is kept at a fraction of about 0.55–0.60 of the maximal spherical volume allowed by its membrane area, the optimal-volume-ratio range. The extent to which red blood cell volumes can be preserved within or near these narrow optimal-volume-ratio margins determines the potential for circulatory longevity. We show that the low cation permeability of red blood cells allows volume stability to be achieved with extraordinary cost-efficiency, favouring cell longevity over cell turnover. We suggest a mechanism by which the interplay of a declining sodium pump and two passive membrane transporters, the mechanosensitive PIEZO1 channel, a candidate mediator of Psickle in sickle cells, and the Ca2+-sensitive, K+-selective Gardos channel, can implement red blood cell volume stability around the optimal-volume-ratio range, as required for extended circulatory longevity.

  3. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis

    International Nuclear Information System (INIS)

    Black, J.D.; Dolly, J.O.

    1986-01-01

    Using pharmacological and autoradiographic techniques it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target

  4. Sodium technology handbook

    International Nuclear Information System (INIS)

    2005-09-01

    This document was published as a textbook for the education and training of personnel working for operations and maintenances of sodium facilities including FBR plants and those engaged in R and D activities related to sodium technology. This handbook covers the following technical areas. Properties of sodium. Compatibilities of sodium with materials. Thermalhydraulics and structural integrity. Sodium systems and components. Sodium instrumentations. Sodium handling technology. Sodium related accident evaluation and countermeasures for FBRs. Operation, maintenance and repair technology of sodium facilities. Safety measures related to sodium. Laws, regulations and internal rules related to sodium. The plannings and discussions of the handbook were made in the Sodium Technology Education Committee organized in O-arai Engineering Center consisting of the representatives of the related departments including Tsuruga headquarters. Experts in various departments participated in writing individual technical subjects. (author)

  5. The detection of sodium vapor bubble collapse in a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Carey, W.M.; Gavin, A.P.; Bobis, J.P.; Sheen, S.H.; Anderson, T.T.; Doolittle, R.D.; Albrecht, R.W.

    1977-01-01

    Sodium boiling detection utilizing the sound pressure emanated during the collapse of a sodium vapour bubble in a subcooled media is discussed in terms of the sound characteristic, the reactor ambient noise background, transmission loss considerations and performance criteria. Data obtained in several loss of flow experiments on Fast Test Reactor Fuel Elements indicate that the collapse of the sodium vapour bubble depends on the presence of a subcooled structure or sodium. The collapse pressure pulse was observed in all cases to be on the order of a kPa, indicating a soft type of cavitational collapse. Spectral examination of the pulses indicates the response function of the test structure and geometry is important. The sodium boiling observed in these experiments was observed to occur at a low ( 0 C) liquid superheat with the rate of occurrence of sodium vapor bubble collapse in the 3 to 30 Hz range. Reactor ambient noise data were found to be due to machinery induced vibrations flow induced vibrations, and flow noise. These data were further found to be weakly stationary enhancing the possibility of acoustic surveillance of an operating Liquid Metal Fast Breeder Reactor. Based on these noise characteristics and extrapolating the noise measurements from the Fast Flux Test Facility Pump (FFTP), one would expect a signal to noise ratio of up to 20 dB in the absence of transmission loss. The requirement of a low false alarm probability is shown to necessitate post detection analysis of the collapse event sequence and the cross correlation with the second derivative of the neutronic boiling detection signal. Sodium boiling detection using the sounds emitted during sodium vapor bubble collapse are shown to be feasible but a need for in-reactor demonstration is necessary. (author)

  6. Work plan, AP-102 mixer pump removal and pump replacement

    International Nuclear Information System (INIS)

    Jimenez, R.F.

    1994-01-01

    The objective of this work plan is to plan the steps and estimate the costs required to remove the failed AP-102 mixer pump, and to plan and estimate the cost of the necessary design and specification work required to order a new, but modified, mixer pump including the pump and pump pit energy absorbing design. The main hardware required for the removal of the mixer is as follows: a flexible receiver and blast shield; a metal container for the pulled mixer pump; and a trailer and strongback to haul and manipulate the container. Additionally: a gamma scanning device will be needed to detect the radioactivity emanating from the mixer as it is pulled from the tank; a water spray system will be required to remove tank waste from the surface of the mixer as it is pulled from the AP-102 tank; and a lifting yoke to lift the mixer from the pump pit (the SY-101 Mixer Lifting Yoke will be used). A ''green house'' will have to be erected over the AP-102 pump pit and an experienced Hoisting and Rigging crew must be assembled and trained in mixer pump removal methods before the actual removal is undertaken

  7. Measurement of carbon activity of sodium using nickel tabs and the Harwell Carbon Meter - Preliminary experience

    International Nuclear Information System (INIS)

    Blundell, A.; Thorley, A.W.

    1980-01-01

    Carbon can have an important effect on the mechanical properties of certain constructional materials likely to be used in the LMFBRs. Transfer of carbon will occur between the metal and the sodium at any particular location to bring the chemical potential of carbon in both components to the sam: value. Thus, in a mixed system containing austenitic stainless steel and unstabilized ferritic steel, carbon could be transferred by the sodium from the high carbon activity ferritic to the lower activity austenitic steel. Loss of carbon from the unstabilized ferritic steel leads to a weaker, more ductile material, while carburization of the stainless steel could lead to its embrittlement. Similarly carbon entering the coolant in the form of oil from leaking mechanical pumps could have similar effects on the mechanical property of stainless steels. In the light of these possibilities it is essential to measure the carbon activity of the sodium so that its effect on materials properties can be predicted

  8. Measurement of carbon activity of sodium using nickel tabs and the Harwell Carbon Meter - Preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Blundell, A; Thorley, A W [UKAEA, Risley, Warrington, Cheshire (United Kingdom)

    1980-05-01

    Carbon can have an important effect on the mechanical properties of certain constructional materials likely to be used in the LMFBRs. Transfer of carbon will occur between the metal and the sodium at any particular location to bring the chemical potential of carbon in both components to the sam: value. Thus, in a mixed system containing austenitic stainless steel and unstabilized ferritic steel, carbon could be transferred by the sodium from the high carbon activity ferritic to the lower activity austenitic steel. Loss of carbon from the unstabilized ferritic steel leads to a weaker, more ductile material, while carburization of the stainless steel could lead to its embrittlement. Similarly carbon entering the coolant in the form of oil from leaking mechanical pumps could have similar effects on the mechanical property of stainless steels. In the light of these possibilities it is essential to measure the carbon activity of the sodium so that its effect on materials properties can be predicted.

  9. Design study on sodium-cooled middle-scale modular reactor

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Hishida, Masahiko; Nibe, Nobuaki

    2003-09-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled middle-scale modular reactor, which has a possibility to fulfill the design requirements of the F/S. This report summarizes the results of the design study on the sodium-cooled middle-scale modular reactor performed in JFY2002, which is the second year of Phase 2. The construction cost of the sodium-cooled middle-scale modular reactor, which has been constructed in JFY2002, was almost achieved the economical goal. But its achievability was not sufficient to accept the concept. In order to reduce the construction cost, the plant concept has been re-constructed based on the 50 MWe plant studied in JFY2002. After that, fundamental specifications of main systems and components for the new concept have been set, and critical subjects have been examined and evaluated. In addition, in order to achieve the further cost reduction, the plant with simplified secondary system, the plant with electric magnetic pump in secondary system, and the fuel handling system are examined and evaluated. As a result of this study, the plant concept of the sodium-cooled middle-scale modular reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  10. An analytical method for defining the pump`s power optimum of a water-to-water heat pump heating system using COP

    Directory of Open Access Journals (Sweden)

    Nyers Jozsef

    2017-01-01

    Full Text Available This paper analyzes the energy efficiency of the heat pump and the complete heat pump heating system. Essentially, the maximum of the coefficient of performance of the heat pump and the heat pump heating system are investigated and determined by applying a new analytical optimization procedure. The analyzed physical system consists of the water-to-water heat pump, circulation and well pump. In the analytical optimization procedure the "first derivative equal to zero" mathematical method is applied. The objective function is the coefficient of performance of the heat pump, and the heat pump heating system. By using the analytical optimization procedure and the objective function, as the result, the local and the total energy optimum conditions with respect to the mass flow rate of hot and cold water i. e. the power of circulation or well pump are defined.

  11. Proton Pump Inhibition Increases Rapid Eye Movement Sleep in the Rat

    Directory of Open Access Journals (Sweden)

    Munazah Fazal Qureshi

    2014-01-01

    Full Text Available Increased bodily CO2 concentration alters cellular pH as well as sleep. The proton pump, which plays an important role in the homeostatic regulation of cellular pH, therefore, may modulate sleep. We investigated the effects of the proton pump inhibitor “lansoprazole” on sleep-wakefulness. Male Wistar rats were surgically prepared for chronic polysomnographic recordings. Two different doses of lansoprazole (low: 1 mg/kg; high: 10 mg/kg were injected intraperitoneally in the same animal (n=7 and sleep-wakefulness was recorded for 6 hrs. The changes in sleep-wakefulness were compared statistically. Percent REM sleep amount in the vehicle and lansoprazole low dose groups was 9.26±1.03 and 9.09±0.54, respectively, which increased significantly in the lansoprazole high dose group by 31.75% (from vehicle and 34.21% (from low dose. Also, REM sleep episode numbers significantly increased in lansoprazole high dose group. Further, the sodium-hydrogen exchanger blocker “amiloride” (10 mg/kg; i.p. (n=5 did not alter sleep-wake architecture. Our results suggest that the proton pump plays an important role in REM sleep modulation and supports our view that REM sleep might act as a sentinel to help maintain normal CO2 level for unperturbed sleep.

  12. Overexpression of Myo1e in mouse podocytes enhances cellular endocytosis, migration, and adhesion.

    Science.gov (United States)

    Jin, Xia; Wang, Wenjing; Mao, Jianhua; Shen, Huijun; Fu, Haidong; Wang, Xia; Gu, Weizhong; Liu, Aimin; Yu, Huimin; Shu, Qiang; Du, Lizhong

    2014-02-01

    Podocytes are a terminally differentiated and highly specialized cell type in the glomerulus that forms a crucial component of the glomerular filtration barrier. Recently, Myo1e was identified in the podocytes of glomeruli. Myo1e podocyte-specific knockout mice exhibit proteinuria, podocyte foot process effacement, glomerular basement membrane disorganization, signs of chronic renal injury, and kidney inflammation. After overexpression of Myo1e in a conditionally immortalized mouse podocyte cell line (MPC5), podocyte migration was evaluated via transwell assay, endocytosis was evaluated using FITC-transferrin, and adhesion was evaluated using a detachment assay after puromycin aminonucleoside treatment. Myo1e overexpression significantly increased the adherence of podocytes. ANOVA analysis indicated significant differences for cell adhesion between the overexpression and control groups (overexpression vs. control, t = 11.3199, P = 0.005; overexpression vs. negative control, t = 12.0570, P = 0.0006). Overexpression of Myo1e inhibited puromycin aminonucleoside-induced podocyte detachment, and the number of cells remaining on the bottom of the culture plate increased. Cell migration was enhanced in Myo1e-overexpressing podocytes in the transwell migration assay. Internalization of FITC-transferrin also increased in Myo1e-overexpressing podocytes relative to control cells. Overexpression of Myo1e can enhance podocyte migration ability, endocytosis, and attachment to the glomerular basement membrane. Restoration of Myo1e expression in podocytes may therefore strengthen their functional integrity against environmental and mechanical injury. © 2013 Wiley Periodicals, Inc.

  13. Inhibitin: a specific inhibitor of sodium/sodium exchange in erythrocytes.

    OpenAIRE

    Morgan, K; Brown, R C; Spurlock, G; Southgate, K; Mir, M A

    1986-01-01

    An inhibitor of ouabain-insensitive sodium/sodium exchange in erythrocytes has been isolated from leukemic promyelocytes. To explore the specific effects of this inhibitor, named inhibitin, sodium transport experiments were carried out in human erythrocytes. Inhibitin reduced ouabain-insensitive bidirectional sodium transport. It did not change net sodium fluxes, had no significant effect on rubidium influx, and did not inhibit sodium-potassium-ATPase activity. The inhibitory effect of inhibi...

  14. Adaptor Protein Complex 2 (AP-2) Mediated, Clathrin Dependent Endocytosis, And Related Gene Activities, Are A Prominent Feature During Maturation Stage Amelogenesis

    Science.gov (United States)

    LACRUZ, Rodrigo S.; BROOKES, Steven J.; WEN, Xin; JIMENEZ, Jaime M.; VIKMAN, Susanna; HU, Ping; WHITE, Shane N.; LYNGSTADAAS, S. Petter; OKAMOTO, Curtis T.; SMITH, Charles E.; PAINE, Michael L.

    2012-01-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real time PCR, we show that the expression of clathrin and adaptor protein subunits are up-regulated in maturation stage rodent enamel organ cells. AP-2 is the most up-regulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin dependent endocytosis, thus implying the likelihood of a specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also up-regulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1), cluster of differentiation 63 and 68 (Cd63 and Cd68), ATPase, H+ transporting, lysosomal V0 subunit D2 (Atp6v0d2), ATPase, H+ transporting, lysosomal V1 subunit B2 (Atp6v1b2), chloride channel, voltage-sensitive 7 (Clcn7) and cathepsin K (Ctsk). Immunohistological data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain® showed up-regulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor regulated pathway for the endocytosis of enamel matrix proteins. These data together

  15. Pumping life

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel

    2012-01-01

    The name PUMPKIN may suggest a research centre focused on American Halloween traditions or the investigation of the growth of vegetables – however this would be misleading. Researchers at PUMPKIN, short for Centre for Membrane Pumps in Cells and Disease, are in fact interested in a large family o......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  16. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  17. Pumping of methane by an ionization assisted Zr/Al getter pump

    International Nuclear Information System (INIS)

    Shen, G.L.

    1987-01-01

    The pumping of methane by an ionization assisted Zr/Al getter pump has been investigated. This pump consists of 12 pieces of ring getters. A spiral shape W filament is located within the ring getters. A bias voltage is applied across the filament and the getter itself. The experiments have shown that (1) when the bias voltage is turned off, the pumping speed of the getter pump for methane increases exponentially with the filament temperature; (2) when the filament temperature is held constant, its pumping speed varies directly with the ionization electron current; (3) when the filament temperature is 2063 0 C and the electron current is 57 mA, the pumping speed of the Zr/Al getter pump is 475 ml/s, and the specific speed is 16.8 ml/s cm 2 ; and (4) an activation energy and critical temperature measured for methane molecules decomposition are, respectively, 47.4 kcal/mol and about 1700 0 C. Analysis of the results indicates that methane is pumped by an ionization assisted Zr/Al getter pump not because of the adsorption and the diffusion of methane molecules directly, but because methane molecules are decomposed as C and H 2 through a catalysis of the hot W filament, carbon is adsorbed on the surface of the W filament, and is diffused into the interior of the W lattice. H 2 is immediately absorbed by the Zr/Al getters. Besides, electron impact with CH 4 would result in the additional decomposition and ionization, then the effect of electron bombardment enhances methane pumping by the Zr/Al getters

  18. Breastfeeding FAQs: Pumping

    Science.gov (United States)

    ... of pump is best? You can buy or rent a breast pump from lactation consultants, hospitals, retail ... place to do it. Many companies offer their employees pumping and nursing areas. If yours doesn't, ...

  19. Development and evaluation of cryosorption pump and cryotrapping pump for CTR applications

    International Nuclear Information System (INIS)

    Kuribayashi, S.; Ota, H.; Sato, H.

    1986-01-01

    In order to obtain the engineering data to design compound cryopump for CTR, the authors tested the cryosorption pump and cryotrapping pump. The cryosorption panel was consisted of coconut charcoal metallically bonded to 4.2K cryopanel by brazing. The initial pumping speed of helium of cryosorption pump was found to be ≅2.2 iota/scm/sup 2/. The speed dropped off with loading (about 8 Torr iota/cm/sup 2/) to 1.5 iota/scm/sup 2/. The initial helium pumping speed of the 4.2K cryotrapping pump by argon spray was found to be ≅6 iota/scm/sup 2/. The speed, however, dropped off with loading (≅0.3 Torr iota/cm/sup 2/) to less than 5%. These results indicate that the cryosorption pump by coconut charcoal is superior to the cryotrapping pump, because the capacity of the former is larger than the latter

  20. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    Science.gov (United States)

    Hwang, In H.; Lee, Ja H.

    1991-01-01

    The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.

  1. Pumping station design for a pumped-storage wind-hydro power plant

    International Nuclear Information System (INIS)

    Anagnostopoulos, John S.; Papantonis, Dimitris E.

    2007-01-01

    This work presents a numerical study of the optimum sizing and design of a pumping station unit in a hybrid wind-hydro plant. The standard design that consists of a number of identical pumps operating in parallel is examined in comparison with two other configurations, using one variable-speed pump or an additional set of smaller jockey pumps. The aim is to reduce the amount of the wind generated energy that cannot be transformed to hydraulic energy due to power operation limits of the pumps and the resulting step-wise operation of the pumping station. The plant operation for a period of one year is simulated by a comprehensive evaluation algorithm, which also performs a detailed economic analysis of the plant using dynamic evaluation methods. A preliminary study of the entire plant sizing is carried out at first using an optimization tool based on evolutionary algorithms. The performance of the three examined pumping station units is then computed and analyzed in a comparative study. The results reveal that the use of a variable-speed pump constitutes the most effective and profitable solution, and its superiority is more pronounced for less dispersed wind power potential

  2. DeVelopment of the high-intensity polarized H- source with proton charge exchange on sodium optically oriented atoms

    International Nuclear Information System (INIS)

    Zelenskij, A.N.; Kokhanovskij, S.A.

    1982-01-01

    The results of experimental study on the source of polarized H - ions at polarized electron capture by proton from optically oriented sodium atoms are presented. Circular-polarized dye laser radiation with lamp pumping is used for polarization of highly dense sodium vapors in the pulsed mode. A facility for polarization measurement in the ion source is described. Dependence of the counting rate of metastables for the right and left circular radiation polarization in respect to wave length is presented. The results of measuring the degree of polarization under change of sodium density are revealed. The measurements have disclosed that obtaining of high polarization degree at 20-30% charge exchange effectiveness is possible but large radiation power is required. Use of a dense charge exchange target provides high effectiveness of hte whole polarization process. Yield of polarized H - ions can approach 10 μA/1 mA of the initial proton current

  3. Influence of the ac Stark effect on stimulated hyper-Raman profiles in sodium vapor

    International Nuclear Information System (INIS)

    Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-08-01

    When pumping near the two-photon 3d resonance in pure sodium vapor and observing the backward hyper-Raman emission to the 3p substates, an asymmetry in ratios of 3p/sub 1/2/, 3p/sub 3/2/ associated emissions was observed dependent upon the direction of the initial laser detuning from the resonance. It has been determined that this asymmetry can be attributed to the ac Stark effect induced by the hyper-Raman emission itself. 3 refs., 3 figs

  4. Progress Report on Sodium Cooled Fast Breeder Reactor Development in Japan, April 1975

    International Nuclear Information System (INIS)

    Tomabechi, K.

    1975-01-01

    The progress of the sodium cooled fast Breeder Reactor development in Japan in the past 12 months can be summarized as follows. Installation of all the components of the Experimental Fast Reactor, ''JOYO'', was completed in the end of the last year and various commissioning tests of the reactor began in January 1975. It is planned to charge sodium into the reactor in coming fall and the first criticality experiment is currently planned in the summer 1976. Most of the research and development works for ''JOYO'' are nearing completion. These include an endurance test of 3 prototype primary sodium pump for 12,000 hours. 86 core fuel subassemblies and 220 blanket subassemblies, a sufficient number for composing the initial core, have already been fabricated. Concerning the Prototype Fast Breeder Reactor, ''MONJU'', design activity as well as relevant research and development works are continued. A siting problem exists and it is hoped to be resolved soon. Of the research and development works, a significant achievement in the past 12 months can be a successful operation at full power of the 50 MW Steam Generator Test Facility. This facility was put into operation at full power in June 1974. No leak of water into sodium has been experienced with operation of the steam generator tested. The steam generator is being dismantled for a detailed inspection originally planned

  5. BWR series pump recirculation system

    International Nuclear Information System (INIS)

    Dillmann, C.W.

    1992-01-01

    This patent describes a recirculation system for driving reactor coolant water contained in an annular downcomer defined between a boiling water reactor vessel and a reactor core spaced radially inwardly therefrom. It comprises a plurality of circumferentially spaced second pumps disposed in the downcomer, each including an inlet for receiving from the downcomer a portion of the coolant water as pump inlet flow, and an outlet for discharging the pump inlet flow pressurized in the second pump as pump outlet flow; and means for increasing pressure of the pump inlet flow at the pump inlet including a first pump disposed in series flow with the second pump for first receiving the pump inlet flow from the downcomer and discharging to the second pump inlet flow pressurized in the first pump

  6. Early outcome of off-pump versus on-pump coronary revascularization

    African Journals Online (AJOL)

    Introduction: The use of coronary artery bypass surgery (CABG) with cardiopulmonary bypass (CPB) or without CPB technique (off-pump) can be associated with different mortality and morbidity and their outcomes remain uncertain. The goal of this study was to evaluate the early outcome of on-pump versus off-pump CABG.

  7. Analysis of the Sodium Recirculation Theory of Solute Coupled Water Transport in Small Intestine

    DEFF Research Database (Denmark)

    Larsen, E. H.; Sørensen, Jens Nørkær; Sørensen, J. B.

    2002-01-01

    Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral......, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions....... The computed sodium recirculation flux that is required for isotonic transport corresponds to that estimated in experiments on toad small intestine. This result is shown to be robust and independent of whether the apical entrance mechanism for the sodium ion is a channel, a SGLT1 transporter driving inward...

  8. Pumps in wearable ultrafiltration devices: pumps in wuf devices.

    Science.gov (United States)

    Armignacco, Paolo; Garzotto, Francesco; Bellini, Corrado; Neri, Mauro; Lorenzin, Anna; Sartori, Marco; Ronco, Claudio

    2015-01-01

    The wearable artificial kidney (WAK) is a device that is supposed to operate like a real kidney, which permits prolonged, frequent, and continuous dialysis treatments for patients with end-stage renal disease (ESRD). Its functioning is mainly related to its pumping system, as well as to its dialysate-generating and alarm/shutoff ones. A pump is defined as a device that moves fluids by mechanical action. In such a context, blood pumps pull blood from the access side of the dialysis catheter and return the blood at the same rate of flow. The main aim of this paper is to review the current literature on blood pumps, describing the way they have been functioning thus far and how they are being engineered, giving details about the most important parameters that define their quality, thus allowing the production of a radar comparative graph, and listing ideal pumps' features. © 2015 S. Karger AG, Basel.

  9. Adiabatic flame temperature of sodium combustion and sodium-water reaction

    International Nuclear Information System (INIS)

    Okano, Y.; Yamaguchi, A.

    2001-01-01

    In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na 2 O (l) , and in combustion in moist air, with NaOH (g) . The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH (g) , NaOH (l) and H2 (g) . Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar

  10. Sodium in diet

    Science.gov (United States)

    Diet - sodium (salt); Hyponatremia - sodium in diet; Hypernatremia - sodium in diet; Heart failure - sodium in diet ... Too much sodium in the diet may lead to: High blood pressure in some people A serious buildup of fluid in people with heart failure , cirrhosis of ...

  11. Carbon in sodium - A status review of the U.S.A. R and D work

    International Nuclear Information System (INIS)

    McCown, J.J.; Bagnall, C.

    1980-01-01

    Liquid Metal Fast Breeder Reactors contain several types of steel in primary and secondary sodium systems. Austenitic stainless steels are used for in-core components, valves, heat exchangers, tanks and fuel cladding in primary systems. In power generating plants, the secondary or intermediate heat transport system may contain both austenitic and ferritic steel such as 2-1/4 Cr-l Mo type. Sodium circulating throughout the plant contains a number of impurities, metallic and non-metallic, with the steel interstitial elements carbon, hydrogen and oxygen being of prime importance. These elements can affect corrosion rates and mechanical behavior of materials. In the case of carbon, the sodium provides a transport medium with carburization and decarburization occurring in several parts of a system at rates depending upon temperature and types of steel. The US Sodium Technology R and D programs have investigated the behavior, transport, measurement and control of carbon in sodium. Measurement and control methods for carbon-containing materials which might contaminate the plant systems during reactor operation have also been studied. During the early 1970's, several US laboratories were active in studying carbon solubility, activity in sodium and interstitial transfer using both theoretical and experimental approaches. Modelling studies were done and models were used to predict FFTF and CRBRP materials requirements, component design and plant operating conditions. Over the past several years, carbon work has not been heavily emphasized. Most of the R and D studies have centered on improving chemical analysis methods for measuring active carbon, both by on-line monitors and by metal foil equilibration procedures; and on studies of pump oil-sodium reactions, reaction products, temperature effects and oil leak detection methods. One program at General Electric is investigating carburization-decarburization in a ferritic-austenitic system simulating conditions expected in

  12. Carbon in sodium - A status review of the U.S.A. R and D work

    Energy Technology Data Exchange (ETDEWEB)

    McCown, J J; Bagnall, C [HEDL, Richland, WA (United States)

    1980-05-01

    Liquid Metal Fast Breeder Reactors contain several types of steel in primary and secondary sodium systems. Austenitic stainless steels are used for in-core components, valves, heat exchangers, tanks and fuel cladding in primary systems. In power generating plants, the secondary or intermediate heat transport system may contain both austenitic and ferritic steel such as 2-1/4 Cr-l Mo type. Sodium circulating throughout the plant contains a number of impurities, metallic and non-metallic, with the steel interstitial elements carbon, hydrogen and oxygen being of prime importance. These elements can affect corrosion rates and mechanical behavior of materials. In the case of carbon, the sodium provides a transport medium with carburization and decarburization occurring in several parts of a system at rates depending upon temperature and types of steel. The US Sodium Technology R and D programs have investigated the behavior, transport, measurement and control of carbon in sodium. Measurement and control methods for carbon-containing materials which might contaminate the plant systems during reactor operation have also been studied. During the early 1970's, several US laboratories were active in studying carbon solubility, activity in sodium and interstitial transfer using both theoretical and experimental approaches. Modelling studies were done and models were used to predict FFTF and CRBRP materials requirements, component design and plant operating conditions. Over the past several years, carbon work has not been heavily emphasized. Most of the R and D studies have centered on improving chemical analysis methods for measuring active carbon, both by on-line monitors and by metal foil equilibration procedures; and on studies of pump oil-sodium reactions, reaction products, temperature effects and oil leak detection methods. One program at General Electric is investigating carburization-decarburization in a ferritic-austenitic system simulating conditions expected in

  13. TFTR ultrahigh-vacuum pumping system incorporating mercury diffusion pumps

    International Nuclear Information System (INIS)

    Sink, D.A.; Sniderman, M.

    1976-06-01

    The TFTR vacuum vessel will have a system of four 61 cm diameter mercury diffusion pumps to provide a base pressure in the 10 -8 to 10 -9 Torr range as well as a low impurity level within the vessel. The system, called the Torus Vacuum Pumping System (TVPS), will be employed with the aid of an occasional 250 0 C bakeout in situ as well as periodic applications of aggressive discharge cleaning. The TVPS is an ultrahigh-vacuum (UHV) system using no elastomers as well as being a closed system with respect to tritium or any tritiated gases. The backing system employing approximately 75 all-metal isolation valves is designed with the features of redundancy and flexibility employed in a variety of ways to meet the fundamental requirements and functions enumerated for the TVPS. Since the design, is one which is a modification of the conceptual design of the TVPS, those features which have changed are discussed. Calculations are presented for the major performance parameters anticipated for the TVPS and include conductances, effective pumping speeds, base pressures, operating parameters, getter pump parameters, and calculations of time constants associated with leak checking. Modifications in the vacuum pumping system for the guard regions on the twelve bellows sections are presented so that it is compatible with the main TVPS. The bellows pumping system consists of a mechanical pump unit, a zirconium aluminum getter pump unit and a residual gas analyzer. The control and management of the TVPS is described with particular attention given to providing both manual and automatic control at a local station and at the TFTR Central Control. Such operations as testing, maintenance, leak checking, startup, bakeout, and various other operations are considered in some detail. Various aspects related to normal pulsing, discharge cleaning, non-tritium operations and tritium operations are also taken into consideration. A cost estimate is presented

  14. In situ Microscopic Observation of Sodium Deposition/Dissolution on Sodium Electrode

    OpenAIRE

    Yuhki Yui; Masahiko Hayashi; Jiro Nakamura

    2016-01-01

    Electrochemical sodium deposition/dissolution behaviors in propylene carbonate-based electrolyte solution were observed by means of in situ light microscopy. First, granular sodium was deposited at pits in a sodium electrode in the cathodic process. Then, the sodium particles grew linearly from the electrode surface, becoming needle-like in shape. In the subsequent anodic process, the sodium dissolved near the base of the needles on the sodium electrode and the so-called ?dead sodium? broke a...

  15. Photovoltaic pump systems

    Science.gov (United States)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  16. Damages on pumps and systems the handbook for the operation of centrifugal pumps

    CERN Document Server

    Merkle, Thomas

    2014-01-01

    Damage on Pumps and Systems. The Handbook for the Operation of Centrifugal Pumps offers a combination of the theoretical basics and practical experience for the operation of circulation pumps in the engineering industry. Centrifugal pumps and systems are extremely vulnerable to damage from a variety of causes, but the resulting breakdown can be prevented by ensuring that these pumps and systems are operated properly. This book provides a total overview of operating centrifugal pumps, including condition monitoring, preventive maintenance, life cycle costs, energy savings and economic aspects. Extra emphasis is given to the potential damage to these pumps and systems, and what can be done to prevent breakdown. Addresses specific issues about pumping of metal chips, sand, abrasive dust and other solids in fluidsEmphasis on economic and efficiency aspects of predictive maintenance and condition monitoring Uses life cycle costs (LCC) to evaluate and calculate the costs of pumping systems

  17. Electrokinetic pump

    Science.gov (United States)

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  18. Pumping behavior of ion pump elements at high and misaligned magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Hseuh, H. C.; Jiang, W. S.; Mapes, M.

    1994-11-01

    The pumping speeds of several diode type ion pump elements with cell radii of 5 mm, 5.5 mm, 6 mm, 9 mm and 12 mm were measured while being subjected to a magnetic field B, ranging from 500 Gauss up to 15 KG, and misalignment angles (angles between the direction of B and the anode axis) from 0 to 13 degrees. The pumping speeds of elements with the 9 mm and 12 mm cells peaked around 1--2 KG, then dropped off rapidly with an increasing magnetic field. The pumping speeds of the smaller cell elements remained constant with an increasing magnetic field. The pumping speeds of all the elements decreased with increasing misalignment. The measured pumping speeds from this study are 3--4 times lower than the calculated pumping, speeds using previously reported empirical formulae.

  19. Pumping behavior of ion pump elements at high and misaligned magnetic fields

    International Nuclear Information System (INIS)

    Hseuh, H.C.; Jiang, W.S.; Mapes, M.

    1994-01-01

    The pumping speeds of several diode type ion pump elements with cell radii of 5 mm, 5.5 mm, 6 mm, 9 mm and 12 mm were measured while being subjected to a magnetic field B, ranging from 500 Gauss up to 15 KG, and misalignment angles (angles between the direction of B and the anode axis) from 0 to 13 degrees. The pumping speeds of elements with the 9 mm and 12 mm cells peaked around 1--2 KG, then dropped off rapidly with an increasing magnetic field. The pumping speeds of the smaller cell elements remained constant with an increasing magnetic field. The pumping speeds of all the elements decreased with increasing misalignment. The measured pumping speeds from this study are 3--4 times lower than the calculated pumping, speeds using previously reported empirical formulae

  20. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  1. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1981-01-01

    A liquid metal pump comprising a shaft support structure which is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft carries an impeller and the support structure carries an impeller cage which is slidably disposed in a diffuser so as to allow complete removal of pump internals for inspection and repair. The diffuser is concentrically supported in the pump housing which also takes up all reaction forces generated by the discharge of the liquid metal from the diffuser, with floating seals arranged between impeller cage and the diffuser. The space between the diffuser and the pump housing permits the incoming liquid to essentially surround the diffuser. (author)

  2. Rotary piston blood pumps: past developments and future potential of a unique pump type.

    Science.gov (United States)

    Wappenschmidt, Johannes; Autschbach, Rüdiger; Steinseifer, Ulrich; Schmitz-Rode, Thomas; Margreiter, Raimund; Klima, Günter; Goetzenich, Andreas

    2016-08-01

    The design of implantable blood pumps is either based on displacement pumps with membranes or rotary pumps. Both pump types have limitations to meet the clinical requirements. Rotary piston blood pumps have the potential to overcome these limitations and to merge the benefits. Compared to membrane pumps, they are smaller and with no need for wear-affected membranes and valves. Compared to rotary pumps, the blood flow is pulsatile instead of a non-physiological continuous flow. Furthermore, the risk of flow-induced blood damage and platelet activation may be reduced due to low shear stress to the blood. The past developments of rotary piston blood pumps are summarized and the main problem for long-term application is identified: insufficient seals. A new approach with seal-less drives is proposed and current research on a simplified rotary piston design is presented. Expert commentary: The development of blood pumps focuses mainly on the improvement of rotary pumps. However, medical complications indicate that inherent limitations of this pump type remain and restrict the next substantial step forward in the therapy of heart failure patients. Thus, research on different pump types is reasonable. If the development of reliable drives and bearings succeeds, rotary piston blood pumps become a promising alternative.

  3. High-vacuum plasma pump

    International Nuclear Information System (INIS)

    Dorodnov, A.M.; Minajchev, V.E.; Miroshkin, S.I.

    1980-01-01

    The action of an electric-arc high-vacuum pump intended for evacuating the volumes in which the operation processes are followed by a high gas evolution is considered. The operation of the pump is based on the principle of controlling the getter feed according to the gas load and effect of plasma sorbtion pumping. The pump performances are given. The starting pressure is about 5 Pa, the limiting residual pressure is about 5x10 -6 Pa, the pumping out rate of nitrogen in the pressure range 5x10 -5 -5x10 -3 Pa accounts for about 4000 l/s, the power consumption comes to 6 kW. Analyzing the results of the test operation of the pump, it has been concluded that its principal advantages are the high starting pressure, controlled getter feed rate and possibility of pumping out the gases which are usually pumped out with difficulty. The operation reliability of the pump is defined mainly by reliable operation of the ignition system of the vacuum arc [ru

  4. Pumping machinery theory and practice

    CERN Document Server

    Badr, Hassan M

    2014-01-01

    Pumping Machinery Theory and Practice comprehensively covers the theoretical foundation and applications of pumping machinery. Key features: Covers characteristics of centrifugal pumps, axial flow pumps and displacement pumpsConsiders pumping machinery performance and operational-type problemsCovers advanced topics in pumping machinery including multiphase flow principles, and two and three-phase flow pumping systemsCovers different methods of flow rate control and relevance to machine efficiency and energy consumptionCovers different methods of flow rate control and relevance to machine effi

  5. HIV internalization into oral and genital epithelial cells by endocytosis and macropinocytosis leads to viral sequestration in the vesicles

    Science.gov (United States)

    Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina; Lien, Kathy; Tugizov, Sharof M.

    2018-01-01

    Recently, we showed that HIV-1 is sequestered, i.e., trapped, in the intracellular vesicles of oral and genital epithelial cells. Here, we investigated the mechanisms of HIV-1 sequestration in vesicles of polarized tonsil, foreskin and cervical epithelial cells. HIV-1 internalization into epithelial cells is initiated by multiple entry pathways, including clathrin-, caveolin/lipid raft-associated endocytosis and macropinocytosis. Inhibition of HIV-1 attachment to galactosylceramide and heparan sulfate proteoglycans, and virus endocytosis and macropinocytosis reduced HIV-1 sequestration by 30–40%. T-cell immunoglobulin and mucin domain 1 (TIM-1) were expressed on the apical surface of polarized tonsil, cervical and foreskin epithelial cells. However, TIM-1-associated HIV-1 macropinocytosis and sequestration were detected mostly in tonsil epithelial cells. Sequestered HIV-1 was resistant to trypsin, pronase, and soluble CD4, indicating that the sequestered virus was intracellular. Inhibition of HIV-1 intraepithelial sequestration and elimination of vesicles containing virus in the mucosal epithelium may help in the prevention of HIV-1 mucosal transmission. PMID:29277006

  6. JSFR design progress related to development of safety design criteria for generation IV sodium-cooled fast reactors. (3) Progress of component design

    International Nuclear Information System (INIS)

    Enuma, Yasuhiro; Kawasaki, Nobuchika; Orita, Junichi; Eto, Masao; Miyagawa, Takayuki

    2015-01-01

    In the frame work of generation IV international forum (GIF), safety design criteria (SDC) and safety design guideline (SDG) for the generation IV sodium-cooled fast reactors have been developing in the circumstance of worldwide deployment of SFRs. JAEA, JAPC, MFBR have been investigating design study for JSFR to satisfy SDC in the feasibility study of SDG for Sodium-cooled Fast Reactor (SFR). In addition to the safety measures, maintainability, reparability and manufacturability are taken into account in the JSFR design study. This paper describes the design of main components. Enlargement of the access route for the inspection devices and addition of the access routes were carried out for the reactor structure. The pump-integrated IHX (pump/IHX) was modified for the primary heat exchanger (PHX), which was installed for the decay heat removal in the IHX at the upper plenum, to be removable for improved repair and maintenance. For the steam generator (SG), protective wall tube type design is under investigation as an option with less R and D risks. (author)

  7. Sodium pool fire analysis of sodium-cooled fast reactor by calculation

    International Nuclear Information System (INIS)

    Yu Hong; Xu Mi; Jin Degui

    2002-01-01

    Theoretical models were established according to the characteristic of sodium pool fire, and the SPOOL code was created independently. Some transient processes in sodium pool fire were modeled, including chemical reaction of sodium and oxygen; sodium combustion heat transfer modes in several kids of media; production, deposition and discharge of sodium aerosol; mass and energy exchange between different media in different ventilating conditions. The important characteristic parameters were calculated, such as pressure and temperature of gas, temperature of building materials, mass concentration of sodium aerosol, and so on. The SPOOL code, which provided available safety analysis tool for sodium pool fire accidents in sodium-cooled fast reactor, was well demonstrated with experimental data

  8. Hydraulic optimization of 'S' characteristics of the pump-turbine for Xianju pumped storage plant

    International Nuclear Information System (INIS)

    Liu, W C; Zheng, J S; Cheng, J; Shi, Q H

    2012-01-01

    The pump-turbine with a rated power capacity of 375MW each at Xianju pumped storage plant is the most powerful one under construction in China. In order to avoid the instability near no-load conditions, the hydraulic design of the pump-turbine has been optimized to improving the 'S' characteristic in the development of the model pump-turbine. This paper presents the cause of 'S' characteristic of a pump-turbine by CFD simulation of the internal flow. Based on the CFD analysis, the hydraulic design optimization of the pump-turbine was carried out to eliminate the 'S' characteristics of the machine at Xianju pumped storage plant and a big step for removing the 'S' characteristic of a pump-turbine has been obtained. The model test results demonstrate that the pump-turbine designed for Xianju pumped storage plant can smoothly operate near no-load conditions without an addition of misaligned guide vanes.

  9. Pump integrated closed loop control. The intelligent actuator pump - state of the art and perspectives; Pumpenintegrierte Prozessregelung. Der intelligente Aktor Pumpe - Stand und Moeglichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Thomas; Schullerer, Joachim; Oesterle, Manfred [KSB AG, Frankenthal (Germany)

    2009-07-01

    In many areas of industrial automation, centrifugal pumps and systems of centrifugal pumps are important actuators of a process und therefore a fundamental part of the entire plant. In contrary to the controlled valves, located behind the pump in the pipework system, the functions of the intelligent actuator pump or system of pumps are rarely used and noticed. With regard to the reduction of life cycle costs of the asset pump, pump integrated closed loop control of the fluid transport task has advantages over central closed loop control e.g. in a process control system. This article contains a survey of the intelligent actuator pump, its structure and functions with regard to the solution of the fluid transport task and according pump integrated closed loop control. (orig.)

  10. High-vacuum pumping out of hydrogen isotopes by compressed and electrophysical pumps

    International Nuclear Information System (INIS)

    Bychkova, A.D.; Ershova, Z.V.; Saksaganskij, G.L.; Serebrennikov, D.V.

    1982-01-01

    To explain the selection of parameters of vacuum systems of projected thermonuclear devices, experiments are performed on the pumping-out of deuterium and tritium by high-vacuum pumps of different types. The values of the fast response of turbomolecular, diffusion vapour-mercury, magneto-discharge and titanium getter pumps in the operation pressure range are determined. The rate of sorption of hydrogen isotopes by non-spraying gas absorber of cial alloy depending on the amount of the gas absorbed and temperature, is measured. Gas current is determined by the pressure drop on the diagram of the known conductivity. Individual calibration of manometric converters for different gases using a mercury burette is performed preliminarily. The means of high-vacuum pumping-out that have been studied have the following values of fast response for tritium (relatively to protium): turbomolecular pump-0.95; evaporation getter pump-0.25; magneto-discharge pumps-0.65-0.9; cial alloy-0.1...0.5

  11. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.; Easley, S.

    2012-05-01

    The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  12. Wet motor geroter fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Wiernicki, M.V.

    1987-05-05

    This patent describes a wet motor gerotor fuel pump for pumping fuel from a fuel source to an internal combustion which consists of: gerotor pump means comprising an inner pump gear, an outer pump gear, and second tang means located on one of the inner and outer pump gears. The second tang means further extends in a second radial direction radially offset from the first radial direction and forms a driving connection with the first tang means such that the fuel pump pumps fuel from the fuel source into the narrow conduit inlet chamber, through the gerotor pump means past the electric motor means into the outlet housing means substantially along the flow axis to the internal combustion engine.

  13. Pump failure leads to alternative vertical pump condition monitoring technique

    International Nuclear Information System (INIS)

    DeVilliers, Adriaan; Glandon, Kevin

    2011-01-01

    Condition monitoring and detecting early signs of potential failure mechanisms present particular problems in vertical pumps. Most often, the majority of the pump assembly is not readily accessible for visual or audible inspection or conventional vibration monitoring techniques using accelerometers and/or proximity sensors. The root cause failure analysis of a 2-stage vertical centrifugal service-water pump at a nuclear power generating facility in the USA is presented, highlighting this long standing challenge in condition monitoring of vertical pumps. This paper will summarize the major findings of the root cause analysis (RCA), highlight the limitations of traditional monitoring techniques, and present an expanded application of motor current monitoring as a means to gain insight into the mechanical performance and condition of a pump. The 'real-world' example of failure, monitoring and correlation of the monitoring technique to a detailed pump disassembly inspection is also presented. This paper will explain some of the reasons behind well known design principles requiring natural frequency separation from known forcing frequencies, as well as explore an unexpected submerged brittle fracture failure mechanism, and how such issues may be avoided. (author)

  14. Diode-pumped laser with improved pumping system

    Science.gov (United States)

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  15. Activity-Dependent Ubiquitination of GluA1 Mediates a Distinct AMPAR Endocytosis and Sorting Pathway

    Science.gov (United States)

    Schwarz, Lindsay A.; Hall, Benjamin J.; Patrick, Gentry N.

    2010-01-01

    The accurate trafficking of AMPA receptors (AMPARs) to and from the synapse is a critical component of learning and memory in the brain, while dysfunction of AMPAR trafficking is hypothesized to be an underlying mechanism of Alzheimer’s disease. Previous work has shown that ubiquitination of integral membrane proteins is a common post-translational modification used to mediate endocytosis and endocytic sorting of surface proteins in eukaryotic cells. Here we report that mammalian AMPARs become ubiquitinated in response to their activation. Using a mutant of GluA1 that is unable to be ubiquitinated at lysines on its carboxy-terminus, we demonstrate that ubiquitination is required for internalization of surface AMPARs and their trafficking to the lysosome in response to the AMPAR agonist AMPA, but not for internalization of AMPARs in response to the NMDA receptor (NMDAR) agonist NMDA. Through over-expression or RNAi-mediated knockdown, we identify that a specific E3 ligase, Nedd4-1, is necessary for this process. Finally, we show that ubiquitination of GluA1 by Nedd4-1 becomes more prevalent as neurons mature. Together, these data show that ubiquitination of GluA1-containing AMPARs by Nedd4-1 mediates their endocytosis and trafficking to the lysosome. Furthermore, these results provide insight into how hippocampal neurons regulate AMPAR trafficking and degradation with high specificity in response to differing neuronal signaling cues, and suggest that changes to this pathway may occur as neurons mature. PMID:21148011

  16. Endocytosis Pathways of the Folate Tethered Star-Shaped PEG-PCL Micelles in Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yu-Lun Li

    2014-03-01

    Full Text Available This study reports on the cellular uptake of folate tethered micelles using a branched skeleton of poly(ethylene glycol and poly(ε-caprolactone. The chemical structures of the copolymers were characterized by proton nuclear magnetic resonance spectroscopy, and Fourier transform infrared spectroscopy. Doxorubicin (DOX was utilized as an anticancer drug. The highest drug loading efficiencies of DOX in the folate decorated micelle (DMCF and folate-free micelle (DMC were found to be 88.5% and 88.2%, respectively, depending on the segment length of the poly(ε-caprolactone in the copolymers. A comparison of fluorescent microscopic images of the endocytosis pathway in two cell lines, human breast cancer cells (MCF-7 and human oral cavity carcinoma cells (KB, revealed that the micelles were engulfed by KB and MCF-7 cells following in vitro incubation for one hour. Flow cytometric analysis revealed that free folic acid can inhibit the uptake of DOX by 48%–57% and 26%–39% in KB cells and MCF-7 cells, respectively. These results prove that KB cells are relatively sensitive to folate-tethered micelles. Upon administering methyl-β-cyclodextrin, an inhibitor of the caveolae-mediated endocytosis pathway, the uptake of DOX by KB cells was reduced by 69% and that by MCF-7 cells was reduced by 56%. This finding suggests that DMCF enters cells via multiple pathways, thus implying that the folate receptor is not the only target of tumor therapeutics.

  17. The effect of vanadate on receptor-mediated endocytosis of asialoorosomucoid in rat liver parenchymal cells

    International Nuclear Information System (INIS)

    Kindberg, G.M.; Gudmundsen, O.; Berg, T.

    1990-01-01

    Vanadate is a phosphate analogue that inhibits enzymes involved in phosphate release and transfer reactions. Since such reactions may play important roles in endocytosis, we studied the effects of vanadate on various steps in receptor-mediated endocytosis of asialoorosomucoid labeled with 125I-tyramine-cellobiose (125I-TC-AOM). The labeled degradation products formed from 125I-TC-AOM are trapped in the lysosomes and may therefore serve as lysosomal markers in subcellular fractionation studies. Vanadate reduced the amount of active surface asialoglycoprotein receptors approximately 70%, but had no effect on the rate of internalization and retroendocytosis of ligand. The amount of surface asialoglycoprotein receptors can be reduced by lowering the incubation temperature gradually from 37 to 15 degrees C; vanadate affected only the temperature--sensitive receptors. Vanadate inhibited degradation of 125I-TC-AOM 70-80%. Degradation was much more sensitive to vanadate than binding; half-maximal effects were seen at approximately 1 mM vanadate for binding and approximately 0.1 mM vanadate for degradation. By subcellular fractionation in sucrose and Nycodenz gradients, it was shown that vanadate completely prevented the transfer of 125I-TC-AOM from endosomes to lysosomes. Therefore, the inhibition of degradation by vanadate was indirect; in the presence of vanadate, ligand did not gain access to the lysosomes. The limited degradation in the presence of vanadate took place in a prelysosomal compartment. Vanadate did not affect cell viability and ATP content

  18. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  19. Outcome of Cardiac Rehabilitation Following Off-Pump Versus On-Pump Coronary Bypass Surgery

    Directory of Open Access Journals (Sweden)

    Reza Arefizadeh

    2017-05-01

    CONCLUSIONS: Regarding QOL and psychological status, there were no differences in the CR outcome between those who underwent off-pump bypass surgery and those who underwent on-pump surgery; nevertheless, the off-pump technique was superior to the on-pump method on METs improvement following CR.

  20. Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. [Building Media and the Building America Retrofit Alliance (BARA), Wilmington, DE (United States); Easley, S. [Building Media and the Building America Retrofit Alliance (BARA), Wilmington, DE (United States)

    2012-05-01

    This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.